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Abstract. We use lens-shaped models and the second obstruction to pseudoisotopy
to construct a nontrivial diffeomorphism of M × I where M is the connected sum
of S1 × S2 with a another nonsimply connected 3-manifold M ′. Then we take two
copies of this diffeomorphism and paste together their tops and bottoms to obtain a
diffeomorphism of M×S1. Properties of the second obstruction and the first Postnikov
invariant imply that this diffeomorphism of the closed 4-manifold M×S1 is not isotopic
to the identity.

Introduction

There has been a resurgence of interest in diffeomorphisms of 4-manifolds, for example
the work of Watanabe [11], [10] and Budney-Gabai [1].

In this paper we construct pseudoisotopies of a family of 3-manifolds M and use these
to construct nontrivial diffeomorphisms of the closed 4-manifolds M ×S1. Recall that a
pseudoisotopy of M is a diffeomorphism of M × I which is the identity on M × 0. The
space of pseudoisotopies of M is denoted C(M). Our first theorem is:

Theorem A (Theorem 2.1). Let M ′ be any nonsimply connected 3-manifold and let
M = (S1 × S2)#M ′. Then there is a pseudoisotopy of M every power of which is
nontrivial.

To prove this we use “lens-shaped models” to construct diffeomorphisms of M × I
which are the identity on the bottom (M × 0) and show using our formulas from [7]
to show that these diffeomorphisms are nontrivial. More precisely, we compute the
“second obstruction” which is an element of the group Wh+1 (π1M ;Z2 ⊕ π2M). In the
first example of this (when M ′ = S1 × S2) the first Postnikov invariant of M is trivial
(since π1M is a free group which has no cohomology in degrees ≥ 2). So this preliminary
calculation is enough to prove Theorem A in this case.

In the general case, when M ′ is an arbitrary nontrivial 3-manifold, we need a calcu-
lation of the mapping

χ : K3(Z[π1M ])→ Wh+1 (π1M ;Z2 ⊕ π2M)

induced by the first Postikov invariant k1M (ignoring the Z2 component Wh+1 (π1M ;Z2).
We use the fact that the sphere S2 in S1 × S2 is a retract of M and we use the

retraction r : M → S2 to get a surjective mapping

r∗ : Wh+1 (π1M ; π2M)→ Wh+1 (π1M ;Z).
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We show that the composition r∗ ◦ χ = 0. Therefore, when r∗ is applied to the sec-
ond obstruction of our example, the result is nonzero. So, our pseudoisotopy is stably
nontrivial.

At this point we need to discuss the stablization process. We need a definition of the
second obstruction invariant which commutes with stabilization:

C(M)→ P(M) = colim C(M × In)

given by iterating the suspension map σ± : C(M)→ C(M × I) (Figures 3, 4). However,
positive suspension and negative suspension are negative to each other. So, we need
our second obstruction to commute with σ+ and anti-commute with σ−. To this end we
need to introduce a sign, namely (−1)k where k is the lower index of the two indices
used in the lens-shaped model. Then we have a well-defined stable invariant given as
follows.

First, we need the definition of the stable first invariant. This is given by stabilizing,
then taking the first obstruction:

π0C(M)→ π0P(M)→ Wh2(π1M).

Then we define the stable second invariant on the kernel of the stable first invariant.
The reason that we need to make this fuss is because of the involution on lens-shaped

models. Since 3 is an odd number, the space of lens-shaped models cannot be chosen to
be invariant under the involution. In fact the involution sends D−(M) to D+(M) where
D−(M) is the space of lens-shaped models in the indices 1, 2 and D+(M) is the same in
indices 2, 3.

We have trouble computing the second obstruction on the sum g ∪ εg since the two
summands are elements of different groups π0D−0 (M) and π0D+

0 (M). (We use marked
lens-shaped models so that they form a group.) However, the stable second obstruction
is additive (it makes sense to add their values on the two pieces even though they lie
in different groups). We show that this is well defined and give a “stable retraction
invariant” in Wh+1 (π1M ;Z). We compute this on g ∪ εg and show that this (g union
the upside-down version εg) is stably nontrivial. This gives a nontrivial diffeomorphism
of M × I fixing the boundary.

By a general fact which should be well-known (but I don’t know where to find it) any
such diffeomorphism gives a nontrivial diffeomorphism of M × S1.

Finally we note that the diffeomorphism g∪ εg of M × I and the resulting diffeomor-
phism of M ×S1 are both pseudoisotopic to the identity. The pseudoisotopy is given by
the positive suspension of g. Since the obstruction group Wh+1 (π1M ;Z) is a free abelian
group we obtain the following.

Theorem B. For M = (S1 × S2)#M ′ as above, there is a diffeomorphism of M × S1

every power of which is nontrivial. Furthermore this diffeomorphism is pseudoisotopic
to the identity.

The paper is organized as follows. In Section 1 we review the definition of Wh+1 (G;A)
for any G-module A. In Section 2 we construct the specific lens-shaped model for
M = (S1 × S2)#M ′ using any nontrivial element of π1M

′. (Figure 2). Section 3
discusses the Postnikov invariant k1M and its affect on the second obstruction. We
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construct the “retraction invariant” and show it is well-defined. This proves Theorem
A. Section 4 deals with the involution ε which turns a pseudoisotopy upside-down. We
also show how to stabilize the second obstruction so we can add the invariants for g and
εg. Section 5 goes over the “closing the clam” construction (Figure 5) to complete the
proof of Theorem B.

The author would like to thank Danny Ruberman for asking him if the 4-manifold
pseudoisotopy constructed in [9] gives a nontrivial diffeomorphism of the top M×1. This
paper is an attempt to answer that question. The author also acknowledges support from
the Simons Foundation.

1. The second obstruction group

We review the algebra of the second obstruction group Wh+1 (π1M ;Z2 ⊕ π2M).

Definition 1.1. For any group G and left G-module A let A[G] be the G-module
A⊗Z[G] with diagonal action action ofG where the action ofG on Z[G] is by conjugation:

g(a⊗ h) = ga⊗ ghg−1.

The group of coinvariants of this action is A[G]G = H0(G;A[G]). This is also isomorphic
to Z[G]⊗G A if G acts on Z[G] on the right by conjugation: (

∑
nigi) · h =

∑
ni h

−1gh.
A[1] is a submodule of A[G] and its coinvariants give

Wh+1 (G;A) := (A[G]/A[1])G = H0(G;A[G])/H0(G;A).

For example, when the action of G on A is trivial, Wh+1 (G;A) is the direct sum of
copies of A, one for every conjugacy class of nonidentity elements of G.

In particular, one can show that the element α[σ] ∈ A[G] gives a nontrivial element
of Wh+1 (G;A) if σ is not the identity in G and if there is a homomorphism ϕ : A → B
where B has trivial G action so that ϕ(α) 6= 0. In that case

ϕ∗ : Wh+1 (G;A)→ Wh+1 (G;B)

sends α[σ] to ϕ(α)[σ] which is nontrivial in Wh+1 (G;B).

2. Constructing the lens-shaped model

Let M be the connected sum of S1 × S2 with another nontrivial 3-manifold M ′. Let
α ∈ π2M be given by the 2-sphere S2 ⊂ S1 × S2 and let σ be any nontrivial element
of π1M

′ ⊂ π1M . We will construct a lens-shaped model for M with second obstruction
α[σ].

Recall that a lens-shaped model for M is a 1-parameter family of functions ft : M × I
whose graphic is a 1-lens. (See Figure 1.) We refer to [9] for definitions. We note however
that there is one important difference between dimensions 3 and 4. In dimension 3 there
are two choices for the middle two indices. We take our lens-shaped model to be a family
of functions ft with critical points in indices 1, 2. Let D−(M) denote the space of all
such lens-shaped models. Let D−0 (M) be the space of “marked” lens-shaped models.
(See [9].) The purpose of the marking is to make π0D−0 (M) into a group. To show
that multiplication is well-defined we need only to observe that O(4)/O(2) is simply
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connected. The marking has no affect on the second obstruction if we ignore the framing
invariant.

α

t0 t1 t2

qt

pt

Figure 1. Depicted is the graphic of a “1-lens”, a 1-parameter family of
functions ft representing an pseudoisotopy of a 3-manifold M . The points
pt, qt are critical of ft of indices 1,2. The dashed red circle and dotted blue
2-sphere are explained in the text.

Figure 1 gives the graphic of the lens-shaped model we will construct. Recall that
this is the set of ordered pairs (t, s) where s is a critical value of ft for t ∈ I. The
function f0 : M × I → I is the projection map. At t = t0 the function has a birth-death
point. For t slightly more than t0, we have a Morse function ft : M × I → I with
two canceling critical points pt, qt of indices 1, 2 and there is a single trajectory of the
gradient of ft going from pt to qt. Along the deformation, two additional trajectories
are created then canceled and these trajectories form a circle of trajectories spanning a
2-sphere as indicated in Figure 1. For t0 < t < t2, the intermediate level surface f−1t (1

2
)

is V 3 which is the connected sum of M with another S1 × S2 as shown in Figure 2.
The 1-parameter family of functions ft on M × I is constructed as follows. The

function has one critical point pt of index 1. This attaches a 1-handle to M × [0, 1/4] to
produce the level surface M#(S1×S2

p) with the meridian 2-sphere S2
p being the unstable

sphere of pt. This 2-sphere is shown in red in Figure 2. The longitudinal 1-sphere S1
∗

meets S2
p transversely in one point. This shown in green in Figure 2.

For t = t0 + ε (a little bit past the birth point of ft at t = t0), the stable sphere of
qt will be the green circle S1

∗ in Figure 2. This is in “cancelling position” with S2
p . As t

goes from t0 to t2, we deform this 2-sphere in the level surface as follows. We push one
part of it through an embedded loop representing any nontrivial σ ∈ π1M ′ on the right
side of Figure 2. Then we slide this “finger” over the 1-handle created by the critical
point pt increasing to 3 the number of transverse intersection points of S2

p with S1
q .

Then we wrap this “finger” around the 2-sphere in S1 × S2 as shown in the figure.
Then we pull it back. When we pull back the blue circle, the extra two intersections
with S2

p will be eliminated and the blue circle will go back to its original position shown

by the green circle S1
∗ in Figure 2. Then, the critical points pt, qt can cancel at t = t2

and the “lens” will be complete.
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S2

S1 × S2

M ′

S2
p

S1
q

S1
∗

Figure 2. The level surface of the Morse function ft for t = t1 (in the
middle of the 1-lens in Figure 1) is shown with the stable 1-sphere S1

q of

the index 2 critical point qt in blue (deformed from the standard circle S1
∗

in green) and the unstable 2-sphere S2
p of the index 1 critical point pt in

red. These cross in three points.

Theorem 2.1 (Theorem A). The pseudoisotopy of M = (S1 × S2)#M ′ given by the
1-parameter family of functions ft constructed above realizes the second obstruction

λ(ft) = α[σ] ∈ Wh+1 (π1M ; π2M)

where α ∈ π2M is given by the 2-sphere S2 in S1 × S2 and σ ∈ π1M comes from a
nontrivial element of π1M

′. This gives a nontrivial element of π0C(M).

Proof. This follows from the construction. The two additional intersection points of
S2
p with S1

q give ±σ in the incidence matrix of the Morse complex. The blue circle S1
q

represents the base of a cone of trajectories up to qt. When that base goes through the
2-sphere in S1 × S2, that 2-cycle is pushed into the top of the cone and the circle of
trajectories from pt to qt will represent that class α ∈ π2M . So, the second obstruction
for our lens-shaped model is α[σ]. When the first Postnikov invariant k1M is trivial, as
in the case M ′ = S1 × S2, there is nothing more to do and Theorem A holds in that
case. But, in general, k1M 6= 0. Theorem 3.3 will complete the proof. �

3. Postikov invariant

The first Postnikov invariant of M is the cohomology class

k1M ∈ H3(π1M ; π2M)

which is the first obstruction to the existence of a homotopy section of the natural map
M → Bπ1M . The original formula of Hatcher and Wagoner assumed this invariant to
be zero. We recall the formula for what happens when k1M is nonzero.

Theorem 3.1. [7] In the stable range (dimM ≥ 6) there is an exact sequence

(3.1) Wh3(π1M)
χ−→ Wh+1 (π1M ;Z2 ⊕ π2M)→ π0C(M)→ Wh2(π1M)→ 0
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where Wh3(π1M) is some quotient of K3(Z[π1M ]) and the second component of the map
χ, composed with this quotient map is given by

K3(Z[π1M ])→ H3(GL∞(Z[π1M ])
χk1−−→ H0(π1M ; π2M [π1M ])→ Wh+1 (π1M ; π2M)

where χk1 is given at the chain level by

χk1(A,B,C) =
∑
i,j,k,`

f(aij ⊗ bjk ⊗ ck`)[d`i] ∈ π2M [π1M ]

for all A,B,C ∈ GLn(Z[π1M ]) where aij, bjk, ck`, d`i ∈ Z[π1M ] are the entries of A,B,C,
D = (ABC)−1 and f : Z[π1M ] ⊗ Z[π1M ] ⊗ Z[π1M ] → π2M is the linearization of the
3-cocycle representing k1M .

The important aspect of the formula is its naturality:

Corollary 3.2. Let ϕ : π2M → A be a homomorphism of π1M modules and let k1A
be the image of k1M under the induced map H3(π1M ; π2M) → H3(π1M ;A). Then the
following diagram commutes

H0(π1M ; π2M [π1M ])

ϕ∗

��

H3(GL∞(Z[π1M ])

χk1M 22

χk1A

,,
H0(π1M ;A[π1M ])

We use the naturality of the Postnikov invariant to show that the map χ does not hit
our two second obstruction elements α[σ] and α[σ] + α[σ−1] (which will occur later).

The connected sum M = S1 × S2#M ′ has separating 2-sphere which cuts M into
two 3-manifolds with boundary S2, call them W,W ′. Thus W is S1× S2 minus a 3-ball
and W ′ is M ′ minus a 3-ball and M/W ′ = S1 × S2. Let X = W ′ ∨ S1. This embeds in
M with the same fundamental group π1X ∼= π1M = π. By naturality of the Postnikov
invariant, the map in cohomology

j∗ : H3(π1X; π2X)→ H3(π1M ; π2M)

induced by the inclusion map j : X ↪→M sends k1X to k1M .
The inclusion map S2 → M has a retraction r : M → S2 given by first pinching

W ′ ⊂M to a point, then projecting to the factor S2:

M = (S1 × S2)#M ′ → S1 × S2 → S2.

The induced map on π2, π2M → π2S
2 = Z is π1M equivariant since it factors through

the Hurewicz map π2M → H2(M). Since this retraction sends X to one point, the
induced map in cohomology

r∗ : H3(π1M ; π2M)→ H3(π1M ;Z)

given by the coefficient map π2M → π2S
2 = Z induced by r sends k1M to 0.
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The naturality argument is the following commuting diagram.

K3(Z[π1M ])⊗H3(π1M ; π2M)

id⊗r∗
��

// H0(π1M ; π2M [π1M ])

��

// Wh+1 (π1M ; π2M)

��
K3(Z[π1M ])⊗H3(π1M ;Z) // H0(π1M ;Z[π1M ]) // Wh+1 (π1M ;Z)

Since k1M goes to 0 in H3(π1M ;Z), the image of K3(Z[π1M ]) in Wh+1 (π1M ; π2M) goes
to zero in Wh+1 (π1M ;Z). Since the second obstruction element α[σ] ∈ Wh+1 (π1M ; π2M)
goes to 1[σ] ∈ Wh+1 (π1M ;Z), it survives to π0C(M) showing that the corresponding
pseudoisotopy is nontrivial and, furthermore, gives a nontrivial element of π0P(M).

The group Wh+1 (π1M ;Z) is the free abelian group generated by the set of conjugacy
classes of nontrivial elements of π1M . Thus, α[σ] and α[σ] + α[σ−1] map to [σ] and
[σ]+[σ−1] which are both nonzero in Wh+1 (π1M ;Z) even in the case when σ is conjugate
to its inverse in which case we would get [σ] + [σ−1] = 2[σ].

Theorem 3.3. The second obstruction elements α[σ] and α[σ] + α[σ−1] are not in the
image of χ : Wh3(π1M) → Wh+1 (π1M ;Z2 ⊕ π2M) and therefore survive to nontrivial
elements of π0P(M). In particular, our construction gives two nontrivial elements of
π0C(M).

4. Involution and suspension

For a pseudoisotopy g ∈ C(M) we have an involution ε which acts by

ε(g) = (r(g)× idI)−1 ◦ τ ◦ g ◦ τ
where τ is the automorphism of M × I given by τ(x, t) = (x, 1 − t) and r(g) is the
restriction of g to M×1. On the corresponding family of functions ft : M×I → I (with
f0 the identity and f1 = p2 ◦ g, p2 being projection to I), the involution ε acts by

ε(ft)(x, s) = 1− ft(x, 1− s).

Lemma 4.1. The pseudoisotopy g ◦ε(g) is the identity on both top and bottom of M×I
and, after expanding I to [0, 2], g ◦ ε(g) is isotopic to g ∪ τ ◦ g ◦ τ .

Proof. When expanding I to [0, 2], we need to extend g to M × [1, 2] by r(g) × id[1,2].
We shift ε(g) to M × [1, 2] and extend to M × I by the identity. Then r(g)× id cancels
(r(g)× id)−1 and the composition becomes g on M × I and τ ◦ g ◦ τ on M × [1, 2]. �

We denote g∪τ ◦g◦τ by g∪ε(g) even though it is not quite correct. The corresponding
family of functions is ft ∪ ε(ft) which is a union of two lenses, one in indices 1, 2 and
the other in indices 2, 3. These lie in two different groups: π0D−0 (M) and π0D+

0 (M)
where D+

0 (M) is the space of marked lens-shaped models in indices 2, 3. To make the
homomorphism

ε : π0D−0 (M)→ π0D+
0 (M)

well-defined on the markings, we take the orientation at the birth point of a marked lens-
shaped model inD−0 (M), pull it back to the base point ofM×I2, take the complementary
orientation using a fixed orientation of the tangent space at the base point, then push it
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to the base point of the upside-down lens-shaped model in D+
0 (M). This uses the fact

that both O(4)/O(2) and O(4)/SO(2)×O(1) are simply connected.
We need to find compatible definitions of the second invariant on D+

0 (M) and D−0 (M)
in order to show that g ∪ ε(g) is nontrivial.

4.1. Suspension. We recall the (positive) suspension operator

σ+ : C(M)→ C(M × [−1, 1])

which is given in modified polar coordinates [r, θ] ∈ [−1, 1]× [0, π] (explained below) by

σ+(g)(x, r, θ) = (g(x, r), θ)

where the relation to standard coordinates in I × [−1, 1] is

(r, θ)↔ (0, 1)− ((1− r) cos θ, (1− r) sin θ).

We assume that g is a diffeomorphism of M × I which is the identity near the bottom
and sides and equal to r(g)× idI near the top. We extend g to M× [−1, 1] by taking g to
be the identity on M × [−1, 0]. Figure 3 is the standard visualization of the suspension.
The following follows directly from this description.

Proposition 4.2. The top of the concordance σ+(g) is the diffeomorphism of M×[−1, 1]
given by g (shifted down by 1) on M × [−1, 0] and εg on M × [0, 1]. In particular, g∪ εg
is pseudoisotopic to the identity on M × [−1, 1]. See Figure 3.

Figure 3. The positive suspension σ+(g) is given by taking each arrow,
considered as a copy of M × I, applying the function g, then putting it
back. It is the identity on the shaded region. The diffeomorphism at the
top is g and the upside-down version of g, i.e., g ∪ ε(g).

4.2. The stable retraction invariant. In order to define the second obstruction on
g ∪ ε(g) we need to define it in a compatible way on D−(M) and D+(M). This is
done by multiplying by a sign. We also need to compose with the retraction map
Wh+1 (π1M ;Z2 ⊕ π2M)→ Wh+1 (π1M ;Z) to make sure it is well defined. The result will
be the “stable retraction invariant”.

Let Dk0(M) denote the space of marked lens-shaped models for an n-manifold M in
indices k, k+1 where n ≥ 3 and k, n−k ≥ 1 so that O(n+1)/SO(k)×O(n−k) is simply
connected making π0Dk0(M) into a group. We define the stable second obstruction to be
homomorphism λs0 = (−1)kλ0 where

λ0 : π0Dk0(M)→ Wh+1 (π1M ;Z2 ⊕ π2M)
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is the standard second obstruction homomorphism. This invariant has the property of
being compatible with positive suspension σ+ : Dk0(M)→ Dk0(M×I) since λ0 commutes
with σ+, but λs0 is anti-compatible with σ− : Dk0(M)→ Dk+1

0 (M×I) since σ− changes the
parity of k: λs0◦σ− = −λs0. This sign convention makes λs0 compatible with stabilization:

P(M) = colim C(M × Im)

since stabilization is taken by iterating the positive suspension σ+. It is well known that
σ− is equal to −σ+ on the level of homotopy groups σ− = −σ+ : π0C(M)→ π0C(M×I).

For the case at hand, we have the following diagram.

π0D+
0 (M) = π0D2

0(M)
σ+ //

λs0

11
π0D2

0(M × I)
λs0 // Wh+1 (π1M ;Z2 ⊕ π2M)

π0D−0 (M) = π0D1
0(M)

−σ− //

ε

OO

λs0

11
π0D2

0(M × I)
λs0 // Wh+1 (π1M ;Z2 ⊕ π2M)

Lemma 4.3. Given that λ0(g) = α[σ] for g ∈ D−0 (M), we obtain: λs0(g) = −α[σ] and
λs0(ε(g)) = −α[σ−1].

Proof. As in the case of 4-manifolds [9], the involution changes the second obstruction
of g to λ0(ε(g) = −α[σ−1]. However, the involution also changes the index of the critical
points as indicated in the diagram above. So, ε(g) ∈ D+

0 (M). The stable invariant λs0
keeps the same sign on π0D+

0 (M) givinb λs0(ε(g) = −α[σ−1]. However, λs0 changes the
sign of λ0(g). So, λs0(g) = −α[σ]. �

When the first Postnikov invariant k1M = 0 we can use this lemma to compute the
second obstruction for g ∪ ε(g):

λs0(g ∪ ε(g)) = −λ0(σ−g) + λ0ε(σ+g) = −α[σ]− α[σ−1] 6= 0.

In the general case we need to stabilize and use a well-defined “stable retraction invari-
ant” defined as follows.

For M = S1 × S2#M ′ as above, let

ρ : π0Dk0(M × Im)→ Wh+1 (π1M ;Z)

be the homomorphism given by ρ(g) = r∗(λ
s
0(g)) where r∗ : Wh+1 (π1M ;Z2 ⊕ π2M) →

Wh+1 (π1M ;Z) is the map induced by the retraction r : M → S2. By the exact sequence

π0Dk0(M × Im)→ π0P(M)→ Wh2(π1M)→ 0

and the fact that r∗ is zero on the image of χ : Wh3(π)→ Wh+1 (π1M ;Z2⊕π2M), ρ gives a
well defined homomorphism from the kernel of the first invariant π0P(M)→ Wh2(π1M)
to Wh+1 (π1M ;Z). We call this the stable retraction invariant.

Theorem 4.4. The stable retraction invariant is realized on the 3-manifold M = S1 ×
S2#M ′ and, on our examples g and g ∪ ε(g) takes the nonzero values

ρ(g) = −[σ], ρ(g ∪ ε(g)) = −[σ]− [σ−1].
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◦

−1

Figure 4. The well-known formula ε(σ+g) = σ−ε(g) follows from the fact
that the outcome of both operations give the same result, illustrated by the
figure above. Composition with the inverse of the bottom diffeomorphism
appears in the the formula for both ε and σ−.

5. Product with a circle

Suppose that g ∈ C(M) is the identity on M × 1. Then we can identify top and
bottom to obtain a diffeomorphism g of M × S1. We believe the following is a known
argument. We call it “closing the clam.”

Lemma 5.1. For M a closed manifold the mapping Diff(M × Irel∂)→ Diff(M ×S1)
given by identifying top of bottom of M × I is a monomorphism on components.

Proof. Since the map on π0 is a homomorphism of groups, it suffices to show that the
kernel is zero. Let g be a diffeomorphism of M×I which is the identity on the boundary
and let g be the corresponding diffeomorphism of M × S1 and suppose g is isotopic to
the identity on M×S1. Then we will construct an isotopy of g to the identity on M×I.

We are given an isotopy of g to the identity on M × S1. We compose with the map
M × I � M × S1, then lift the composite map to M × R. The result is an embedding
g̃ : M × I → M × R which is isotopic to the inclusion map. Moreover, throughout the
isotopy g̃t has the property that, for all t ∈ I,

(5.1) g̃t(x, 1) = τ g̃t(x, 0)

where τ is the deck transformation of M ×R over M × S1 given by τ(x, t) = (x, t+ 1).
Since M × I is compact, we may assume that the image of the isotopy g̃t stays

inside M × [−N,N ] for some large N . By the ambient isotopy theorem, this family of
embedding g̃t extends to a family of diffeomorphisms ht of M × [−N,N ] which is the
identity on its boundary for all t ∈ I. By construction, h0 is the identity on M × [−N, 0]
and on M × [1, N ]. At t = 1, h1 will be the identity on M × I.

Let ft : M × [−N, 0] → M × [−N,N ] and f ′t : M × [1, N ] → M × [−N,N ] be the
restrictions of ht to these two subsets of M×[−N,N ] with images At = im ft, Bt = im f ′t .
By (5.1), the bottom of Bt is the translation τ of the top of At. This resembles a “clam”.
(See Figure 5.) When the clam closes, the top and bottom fit neatly together to form

At ∪ τ−1Bt = M × [−N,N − 1].

The interiors of At and τ−1Bt do not meet since g̃t(M × 0) is a separating surface.
An isotopy of h0 to the identity on M × [−N,N ] can now be given by:

id∪ g̃∪ id ' ft ∪ g̃t ∪ f ′t ' f1 ∪ id∪ f ′1 ' f1 ∪ τ−1f ′1τ ∪ id ' ft ∪ τ−1f ′tτ ∪ id ' idM×[−N,N ]
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as shown in Figure 5. �

g̃

id

id

' ' '

the “clam”

At = im ft

Bt = im f ′t

im g̃t

f1

f ′1

idM×I

closed clam

ft

τ−1 ◦ f ′t ◦ τ

idM×[N−1,N ]

Figure 5. The top and bottom portions (At and Bt) of the diffeomor-
phism ht = ft ∪ g̃t ∪ f ′t fit together to give a diffeomorphism ft ∪ τ−1f ′tτ of
M×[−N,N−1]. The closed clam is isotopic to the identity onM×[−N,N ]
since the middle portion g̃t is missing. Not shown is the isotopy

f1 ∪ idM×I ∪ f ′1 ' f1 ∪ τ−1 ◦ f ′1 ◦ τ ∪ idM×[N−1,N ]

given by sliding f ′1 down to τ−1f ′1τ .

Theorem 5.2. The pseudoisotopy g ∪ ε(g) gives a diffeomorphism g of M × S1 which
is pseudoisotopic to the identity but no power of which is isotopic to the identity.
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