
ZEEMAN’S WORK ON UNKNOTTING

MARK POWELL

Abstract. I survey Zeeman’s work on knot theory, in particular his unknotting theorems. These are the
notes from the talk I gave at the Zeeman centenary conferenceZeeman centenary conference at the University of Warwick, on 17th
December 2025.
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1. Introduction

According to Zeeman, there are three fundamental problems of geometric topology:
(1) Homeomorphism; whether two given manifolds are homeomorphic, and whether we can classify a

sub-collection up to homeomorphism.
(2) Embedding; given two manifolds, whether there exists an embedding of one in the other.
(3) Isotopy; given two embeddings, whether they are isotopic, and whether we can classify embeddings

up to isotopy.
Zeeman made important, highly nontrivial contributions to all of these problems. His work on the

Poincaré conjecture [Zee61Zee61,Zee62aZee62a] contributed to (1). His work with Penrose and Whitehead [PWZ61PWZ61]
gave new embeddings of manifolds in Euclidean space, contributing to (2). However his most celebrated
contributions were to (3), and in particular to unknotting theorems. I will focus on these.

In this talk, a knot is an embedding Sn−k ⊆ Sn. The sphere Sm is a smooth manifold, but we can
consider it as a PL (Piecewise-Linear) manifold, namely a manifold with a triangulation such that the links
of all vertices are spheres. We can also just consider the underlying topological manifold. Corresponding to
each of these manifold categories, we consider embeddings that are smooth, PL locally flat, or topologically
locally flat.

Here, an embedding Mn−k ↪→ Nn is locally flat if for every point x of the image M ⊆ N , there is an
open set Ux ⊆ N containing x, and a homeomorphism of pairs (Ux, Ux ∩ M) ∼= (Rn,Rn−k) to the image
of the standard embedding of Rn−k in Rn, that sends x to the origin.

Definition 1.1. A (smooth/PL/Top) knot Sn−k ⊆ Sn is (smoothly/PL/topologically) unknotted if it
bounds a (smooth/PL/topological) disc Dn−k+1 ⊆ Sn.

In fact any two unknots are isotopic, and so we may speak of the unknot.

2. There are nontrivial codimension two knots in all dimensions

I will shortly be talking about unknotting theorems, namely results that characterise the unknot. First,
to put these results in the proper context, I would like to convince you that nontrivial knots are ubiquitous,
and indeed there exist nontrivial knots in all dimensions at least three.
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Figure 1. The trefoil knot K := T2,3 on the surface of the standard torus T 2 ⊆ S3. In
homology, it travels 2 times around the longitude of T 2 and 3 times around the meridian,
whence the name T2,3. On the right we recall that T 2 can be represented as a quotient of
I × I, identifying opposite edges, and we draw the same knot. In the right hand picture
it is easier to see that the complement T 2 \ K is homeomorphic to an annulus S1 × (0, 1).

2.1. Nontrivial knots via spinning.

Theorem 2.1 (Artin, [Art25Art25]). In each dimension n ≥ 3, there exists a nontrivial knot Sn−2 ⊆ Sn.

To prove this, we start with S1 ⊆ S3. Figure 11 shows a knot S1 ⊆ S3. To see it, consider a standard
unknotted torus T 2 ⊆ S3. On its surface, consider a simple closed curve that wraps two times around the
longitude and three times around the meridian. This gives the torus knot K := T2,3, otherwise known as
a trefoil. In fact, for any coprime integers p, q > 1, we have an analogous torus knot Tp,q ⊆ S3.

The complement of the torus knot is homeomorphic to a union
S3 \ K ∼= S1 × D2 ∪S1×(0,1) D2 × S1.

Up to homotopy, the curve S1 × {1/2} in the annulus S1 × (0, 1) wraps two times around the S1 factor of
S1 × D2 and three times around the S1 factor of D2 × S1. We can therefore use the Seifert-van Kampen
theorem to see that the fundamental group is

π1(S3 \ K) ∼= ⟨s, t | s2 = t3⟩.
This group is not isomorphic to Z, because it admits a surjective homomorphism to the symmetric group
S3, sending s 7→ (12) and t 7→ (123). Thus the trefoil K = T2,3 is a nontrivial knot.

We can now introduce Artin’s spinning construction. This takes an input a knotted arc A ∼= D1 in the
half-space H := R3

x1≥0, with endpoints on P := {x1 = 0} ⊆ R3, and produces a 2-knot S2 ⊆ S4. Such a
knotted arc A ⊆ H is shown in Figure 22, with the property that closing it up with an arc on P yields a
trefoil..

In 3-space, a rotation has a 1-dimensional axis, for example the x3 axis. Imagine an arc in the half-plane
{x1 ≥ 0, x2 = 0} ⊆ R3. If we rotate this plane through 2π about the z axis, the arc traces out a
2-sphere S2.

Similarly, if we rotated the half-space H in 4-space around the plane P , the arc A again traces out a
2-sphere, which will be the result of the spinning construction. More precisely, we consider

S4 ⊇ R4 ∼= (S1 × H/ ∼) ⊇ (S1 × A/ ∼) ∼= S2,

where (x, y) ∼ (x′, y′) if and only if (x = x′ and y = y′) or y = y′ ∈ P . We obtain a 2-knot S2 ⊆ S4.

Proposition 2.2. π1(S4 \ Spin(A)) ∼= π1(H \ A) ∼= π1(S3 \ T2,3).

Since π1(S3 \ T2,3) ≇ Z, it follows that Spin(A) is not the unknot. Indeed, the complement of the
trivial 2-knot is homeomorphic to S1 × R3, and so has fundamental group Z.

I will not give all the details of the proof of the proposition. The idea is as follows. The complement is
obtained as a quotient of S1 × (H \ A), which has fundamental group Z× π1(H \ A). Identifying S1 × {y}
to a point, for each y ∈ P , has the effect of killing the extra Z factor.



ZEEMAN’S WORK ON UNKNOTTING 3

plane 

A 

Figure 2. A knotted arc A in the half-space H, with endpoints on the plane P , such
that closing it up with an arc on P yields a trefoil.

We have now seen that there are nontrivial 2-knots. Next, the spinning procedure generalises to higher
dimensions, giving knots

Sn ⊇ Rn ∼= (Sn−3 × H/ ∼) ⊇ (Sn−3 × A/ ∼) ∼= Sn−2,

with the equivalence relation the same as before. We obtain a knot Sn−2 ⊆ Sn, and again we have that
π1(Sn \ Sn−2) ∼= π1(H \ A). Since the fundamental group of H \ A is not cyclic, it follows that the spun
knot is nontrivial, as before. This completes my discussion of the proof of Theorem 2.12.1, which stated that
there are nontrivial knots of codimension two in all dimensions n ≥ 3.

2.2. Nontrivial linking. There is also linking. To make this interesting, and not just an immediate
consequence of Theorem 2.12.1, one can require that the components be unknotted. This brings me to the
first theorem of Zeeman I would like to mention.

Theorem 2.3 (Zeeman [Zee60aZee60a]). For all n ≥ 3, there exists a nontrivial link Sn−2 ⊔ Sn−2 ⊆ Sn with
unknotted components.

Proof. Consider the pairs of arcs A1 ⊔A2 in H shown in Figure 33. Each arc is individually trivial. However
Zeeman computed that π1(H \ (A1 ⊔ A2)) is not isomorphic to the free group on two generators, F2. This
is a relatively straightforward computation, using the standard Wirtinger presentation of the fundamental
group of a link complement. Spin the arcs by Sn−3, as above, to obtain a link Sn−2 ⊔ Sn−2 ⊆ Sn, such
that the fundamental group of the complement is again not isomorphic to F2. Since the original arcs A1
and A2 are individually trivial, the components of the spun link are trivial. □

2.3. Twist spinning. I should mention one more result of Zeeman on spinning. There is a generalisation
of spinning called twist spinning. As we rotate a knotted arc around P , we can add k full twists to the
entire arc. This is rather like the Euler coordinates of the Lagrangian top in classical mechanics. The first
coordinate is precession. But the top can also spin on its own axis while it precesses, and that is what
happens with twist spinning. Zeeman [Zee65Zee65] showed that k-twist spun 2-knots have exteriors that fibre
over S1, and he described the fibre as the k-fold branched cover of S3, branched over the knot-closure of
the original arc, punctured. A consequence is the following beautiful result.

Theorem 2.4 (Zeeman, [Zee65Zee65]). The 1-twist spin of any arc in H is unknotted.

It follows that every knot of the form K#rK, where r denotes reversed string orientation and K is the
mirror image of K, appears as an equatorial cross-section J ∩ S3 of an unknotted 2-knot J ∼= S2 ⊆ S4.

Twist spinning is great for constructing examples. For instance, it was used to find examples of distinct
2-knots whose complements have isomorphic fundamental groups, but distinct second homotopy groups.
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Figure 3. A pair of arcs A1 ⊔ A2 in the half-space H, with endpoints on the plane P .
Each arc is individually trivial, but they are linked in an interesting way.

3. Knots in other codimensions

So far, all the examples I have presented have been in codimension two. This is with good reason, as I
shall now explain.

3.1. Codimension one. In codimension one, we have the following result, known as the Schoenflies
theorem.

Theorem 3.1. For n ̸= 4, every smooth/PL./Top knot is unknotted. For n = 4, this is true in the
topological category.

For n = 4, the smooth and PL versions remain open questions. In high dimension, the theorem follows
from the h-cobordism theorem in the smooth and PL cases. The topological case is due to Mazur [Maz59Maz59],
Morse [Mor60Mor60], and Brown [Bro60Bro60]. Thus there are no known nontrivial knots in codimension one, and
the only case in which they could possibly arise is S3 ⊆ S4.

3.2. Codimension at least three. On the other hand, in codimension at least three we have the
following theorem, which is one of Zeeman’s most well-known results. Zeeman proved the PL case,
and Stallings proved the topological case. Their proofs were obtained independently, and more or less
simultaneously. Neither implies the other.

Theorem 3.2 (Zeeman [Zee63Zee63] (PL), Stallings [Sta63Sta63] (Top)). Suppose k ≥ 3. Every Top/PL knot
Sn−k ⊆ Sn is Top/PL unknotted, respectively.

Zeeman’s publications on Theorem 3.23.2 are in fact as follows.
• 1960 – S2 ⊆ S5, half a page in the Bulletin of the AMS [Zee60cZee60c].
• 1960 – Sn−k ⊆ Sn for k > (n/3) + 1. Annals of Mathematics [Zee60bZee60b].
• 1962 – S3 ⊆ S6. Proc. AMS [Zee62bZee62b].
• 1963 – Sn−k ⊆ Sn for k ≥ 3. Again, in the Annals of Mathematics [Zee63Zee63].

The first article contains a short, beautiful proof that every knot S2 ⊆ S5 is trivial. Zeeman was so proud
of it that it appears in the background of his portrait in Hertford College, Oxford; see Figure 44. The proof
in the 1960 Annals paper [Zee60bZee60b] is essentially this proof, but made more rigorous.

The third article is also worthy of mention. When he wrote it, Zeeman already had the proof that
appeared in the Annals in 1963 [Zee63Zee63]. However this proof involves a long induction, that is not easy to
read. In [Zee60cZee60c], Zeeman had conjectured that knots of S3 ⊆ S6 can be nontrivial. In fact this is true in
the smooth category, as I shall discuss below. But in the PL world, all knots S3 ⊆ S6 are trivial. Since
this case is of particular interest, and out of a desire to write a proof that can be understood by a wider
audience, Zeeman decided to write up a shorter and more readable version of his general proof, just in
the case of 3-spheres in the 6-sphere. One can already see the importance he placed on communicating
mathematics, even during the time he focused on pure mathematics.
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Figure 4. Zeeman’s portrait from Hertford College, Oxford. The blackboard in the
background shows a five line version of his proof that every 2-sphere in S5 is unknotted.
He was particularly proud of this proof, and so when the painter suggested to have some
mathematics on the blackboard behind him, this was what Zeeman provided.

4. Zeeman’s proof for 2-spheres in the 5-sphere

Now I want to present Zeeman’s short and elegant proof from [Zee60cZee60c] that every 2-sphere in S5 is
unknotted.

The first step is to choose a vertex v, in some triangulation of S5, that is far away from S2, and in
general position with respect to S2. Consider the cone v · S2, consisting of all straight arcs between
the points of S2 and v. By general position, there are finitely many singular lines. The cone is three
dimensional, and the ambient dimension is five, so we expect one dimensional singularities.

Figure 5. The cone v · S2, with a single near and a single far point.

These singularities occur when there are two points in S2 that lie on the same ray from v. By general
position, there are no other singularities of v · S2. For each pair of points that lie on the same ray from v,
we call the point on S2 closest to v a near point, and the point farthest from v the far point. See Figure 55

Thus, on S2, there are two collections of points, the near points and the far points, of the same (finite)
cardinality. Choose a circle C ⊆ S2 separating the near points and the far points. Let A ⊆ S2 be the
closed disc containing the near points and let B be the closed disc containing the far points. So S2

decomposes as B ∪C A. See Figure 66.
Now comes the key observation:

v · C ∪C A = ∂(v · A).
That is, the cone v · A on A is a 3-ball, whose boundary is v · C ∪C A. Pushing A across v · A yields a PL
isotopy from B ∪C A to B ∪C v · C. There is no obstruction to performing the isotopy because we only
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Figure 6. The cone v · S2, and the sphere S2 divided into B ∪C A, where the disc A
contains the near points and the disc B contains the far points.

push the hemisphere containing the near points, and we push them closer to v. It remains to observe that
B ∪C v · C = ∂(v · B), because we no longer have any of the near points, and so arcs from the far points
can reach v unobstructed. In summary, we have

B ∪C A ∼ B ∪C v · C = ∂(v · B).
In words, B ∪C A is PL isotopic to B ∪C v · C, and B ∪C v · C bounds a PL ball, and hence is unknotted.
Since B ∪C A is isotopic to an unknotted sphere, it is itself unknotted (by isotopy extension [HZ64HZ64]).

This proof generalises to show unknotting whenever k > n/3 + 1, and this is what Zeeman’s first Annals
paper on unknotting achieved [Zee60bZee60b]. It is worth noting that this proof does not work for S3 ⊆ S6. The
singular arcs will give rise to circles in S3, which might link each other. It would then not be possible to
separate the near circles from the far circles with an S2. This led Zeeman to initially think that there
could be a knotted S3 ⊆ S6. His later proof in [Zee62bZee62b] is significantly more complicated than the one I
just explained, with a preliminary step to separate the circles.

Haelfiger’s work on nontrivial smooth knots S3 ⊆ S6, which I will discuss later, showed that the
question is indeed extremely subtle. The proofs of Zeeman and Stallings can only work in the PL and
Top cases, and must fail in the smooth category.

5. Comparison with codimension two

I should also mention the status of unknotting in codimension two.

5.1. Characterising the codimension two unknot. We have seen that there are nontrivial knots in
codimension two. Nevertheless, we can characterise the unknot as follows.

Theorem 5.1 (Stallings [Sta63Sta63], Levine [Lev65Lev65], Papakyriakopoulos [Pap57Pap57], Freedman-Quinn [FQ90FQ90]).
Suppose that n ̸= 4. Then a smooth/PL/Top knot Sn−2 ⊆ Sn is smoothly/PL/topologically unknotted if
and only if Sn \ Sn−2 ≃ S1. For n = 4, a topological 2-knot S2 ⊆ S4 is topologically unknotted if and only
if S4 \ S2 ≃ S1.

For n = 4, the homotopy equivalence S4 \ S2 ≃ S1 holds if and only if π1(S4 \ S2) ∼= Z. It is open in
the smooth and PL cases whether there is a nontrivial 2-knot in S4 with π1(S4 \ S2) ∼= Z.

5.2. Knotted surfaces in the 4-sphere. This discussion gives me the occasion to mention some of
my work on unknotting. With Conway, we considered closed, orientable surfaces Σg of genus g in the
4-sphere.

Theorem 5.2 (Conway-P. [CP23CP23]). For g ≥ 3, Σg ⊆ S4 is topologically unknotted (bounds a handlebody)
if and only if π1(S4 \ Σg) ∼= Z.

The theorem was proven for g = 0 be Freedman and Quinn, as noted above. It remains open for
g = 1, 2. In the smooth and PL categories, it is open for all g whether there are nontrivial knotted surfaces
with π1(S4 \ Σg) ∼= Z.

Later, with Conway and Orson, we proved analogous results for nonorientable surfaces F in S4 with
π1(S4 \ F ) ∼= Z/2, in the majority of cases [COP23COP23]. Here unknotted means isotopic to a standard
embedding, and there a multiple standard embeddings, depending on the Euler class of the normal bundle.
We proved that such surfaces are standard provided the normal Euler number is non-extremal in the
permitted range, which depends on the first Betti number of the surface F . The case of RP2 was already
proven by Lawson [Law84Law84]. The smooth version is not true: there are examples of nonorientable surfaces
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that are topologically but not smoothly isotopic to the standard surface. The most striking result in this
direction is rather recent, due to Miyazawa [Miy23Miy23], who showed that the standard RP2 connected sum
with a certain 2-knot (a roll-spun pretzel knot) yields an exotic embedding RP2 ⊆ S4.

6. Comparison with the smooth category

6.1. Nontrivial smooth knots in arbitrarily high codimensions. Theorem 3.23.2 contrasts starkly
with Haefliger’s work on smooth knots in codimension at least three. As mentioned before, this shows
that the proof of Theorem 3.23.2 must be rather subtle.

Theorem 6.1 (Haefliger, [Hae62bHae62b]). For every k ≥ 1, there is a smoothly nontrivial knot S4k−1 ⊆ S6k.

In fact, this result was improved to (2ℓ − 1) knots, for every ℓ ≥ 2. Moreover, if we consider the set of
oriented knots S2ℓ−1 ⊆ S3ℓ, up to isotopy, they form a group under the operation of connected sum (the
fact that there are inverses uses Theorem 7.17.1 below), which is isomorphic to Z if ℓ is even and ℓ ≥ 2, and
is isomorphic to Z/2 if ℓ is odd and ℓ ≥ 3.

For each ℓ, a generator of this group is called the Haefliger trefoil. In the classical dimension, if we
take a copy of the Borromean rings and band the components together to form a knot, in a standard way,
we obtain a trefoil, as shown in Figure 77.

Figure 7. The Borromean rings, which is a 3-component link, with the components
banded together to form a knot.

The Haefliger trefoil in S2ℓ−1 ⊆ S3ℓ arises by taking a higher-dimensional version of the Borromean
rings, consisting of a link S2ℓ−1 ⊔ S2ℓ−1 ⊔ S2ℓ−1 ⊆ S3ℓ, and then tubing the components together. It
is called a trefoil because of the analogue with the classical dimension. To generalise, first we consider
the ordinary Borromean rings in standard form, as ellipses living in the coordinate planes, as shown in
Figure 88: {

2x2 + y2 = 1, z = 0
}

∪
{

2z2 + x2 = 1, y = 0
}

∪
{

2y2 + z2 = 1, x = 0
}

⊆ R3 ⊆ S3.

Replacing each of x, y, z with vectors

x := (x1, . . . , xℓ), y := (y1, . . . , yℓ), z := (z1, . . . , zℓ) ∈ Rℓ,

we can express the (2ℓ − 1)-dimensional Borromean rings as{
2|x|2 + |y|2 = 1, z = 0

}
∪

{
2|z|2 + |x|2 = 1, y = 0

}
∪

{
2|y|2 + |z|2 = 1, x = 0

}
⊆ R3ℓ ⊆ S3ℓ.

Tubing the components together yields the Haefliger trefoil S2ℓ−1 ⊆ S3ℓ. This knot is smoothly nontrivial
but is unknotted if we consider it as a PL or a Top knot, by Theorem 3.23.2.

Let me briefly define Haefliger’s invariant, in the case that ℓ = 2, so S3 ⊆ S6. First, he showed that
every S3 ⊆ S6 bounds a framed 4-manifold V ⊆ D7, i.e. a 4-manifold whose tangent bundle is trivial. He
defined a homomorphism

λ : H2(V, ∂V ) → Z
x 7→ lk(x+, V ).
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Figure 8. The Borromean rings, represented as three ellipses in the coordinate planes.

That is, we can push x off V , and then compute its linking number with V . This yields a cohomology class

λ ∈ H2(V, ∂V ;Z) ∼= Hom(H2(V, ∂V ),Z).

Then Haefliger considered
λ2 ∈ H4(V, ∂V ;Z) ∼= H0(V ;Z) ∼= Z.

Haefliger proved that this integer is a knot invariant and computed that it is nonzero on the Haeflger
trefoil.

6.2. Smooth knots are trivial in Haefliger’s stable range. In contrast to the above beautiful
examples, smoothly nontrivial knots cannot occur for arbitrary (n, k).

Theorem 6.2 (Haefliger [Hae62aHae62a]). Suppose that k > (n/3) + 1. Then every smooth knot Sn−k ⊆ Sn is
smoothly trivial.

Note that this is the same as the range in Zeeman’s 1960 Annals paper [Zee60bZee60b]. It seems likely that
the PL proof of Zeeman that I explained, using near and far points, can be adapted to work in the smooth
category. As already noted, Haefliger’s examples show that Zeeman’s and Stallings’ 1963 proofs cannot in
general work smoothly in the range (n/3) + 1 ≥ k ≥ 3.

7. Concordance implies isotopy

I want to move on to discussing results that were inspired by Zeeman’s work. His unknotting theorems
are beautiful in their own right, but the mathematics they have inspired makes them even more impressive.

7.1. Statement. In Zeeman’s main unknotting theorem for codimension at least three (Theorem 3.23.2), he
introduced the method of ‘sunny collapsing’. This method was used to great effect by his student Hudson,
who proved the following theorem in the smooth and PL categories. The topological adaptation was done
later by Pedersen.

Theorem 7.1 (Concordance implies isotopy, Hudson [Hud70Hud70], Pedersen [Ped77Ped77]). Fix k ≥ 3, and
let Mn−k

0 , Mn−k
1 ⊆ Nn be smooth/PL/Top submanifolds such that M0 ∼= M1. Then M0 and M0 are

smooth/PL/Top concordant if and only if they are smooth/PL/Top isotopic.

Here, M0 and M1 are concordant if there is an embedding M × I ⊆ N × I such that

(M × I) ∩ (N × {i}) = Mi

for i = 0, 1.

7.2. An application. This theorem can be used retrospectively to give an alternative proof of Theorem 3.23.2.
Here is a nice application of this theorem to links.

Example 7.2. I will sketch a proof that two links L0, L1 : S3 ⊔ S3 ↪→ S7 are isotopic if and only if their
linking numbers are equal, i.e. lk(L0) = lk(L1) ∈ Z.

The linking number of Li is defined as follows. The first component bounds an orientable 4-manifold
W in S7 (in fact, a 4-disc, since all knots S3 ⊆ S7 are in Haefliger/Zeeman’s stable range). Count the
intersections, with sign, of the second component S3 with W . The resulting intersection count is the
linking number lk(Li). This is certainly an isotopy invariant, and so the ‘only if’ direction holds.
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Figure 9. A dimensionally-reduced version picture of a Whitney disc. The disc guides
an isotopy, called the Whitney move, that removed two algebraically cancelling double
points.

For the ‘if’ direction, first we note that, since π3(S7) = 0, we have that L0 and L1 are homotopic. By
general position, we can assume that the homotopy gives rise to a generic immersion

(S3 ⊔ S3) × I ↬ S7 × I,

whose singularities are isolated double points. Since lk(L0) = lk(L1), these double points can be assumed
to cancel algebraically, and hence they can be paired up by embedded, framed Whitney discs, as shown
in Figure 99. The Whitney discs guide an series of isotopies, called Whitney moves, that remove all the
double points. We are left with a concordance between L0 and L1. Then, using the concordance implies
isotopy theorem, we deduce that L0 and L1 are isotopic.

8. Disjunction theorems

In the modern context, Zeeman’s original questions about existence and uniqueness of embeddings can
be thought of as the starting point of the investigation of spaces of embeddings Emb(M, N), where M and
N are manifolds and dim M ≤ dim N . The existence question asks whether this space is nonempty, and
the isotopy question asks how many path components it has. What are the higher homotopy or homology
groups? What do generators look like, and can they be detected by computable invariants?

8.1. Embedding spaces. Concordance implies isotopy turns out to be an extremely useful statement for
investigating embedding spaces. It is a key ingredient for the proofs of so-called disjunction theorems.
Goodwillie, Klein, and Weiss [Wei99Wei99,GW99GW99,GKW01GKW01,GK15GK15] used disjunction theorems to develop em-
bedding calculus, which, especially for codimension at least three (the same range in which Theorems 7.17.1
and 3.23.2 apply), is a powerful tool for investigating the homotopy types of the spaces Emb(M, N).

I will mention two examples of results that are known about embedding spaces using these methods.
Let X be a 4-manifold with nonempty boundary, and consider the embedding space Emb(D1, X) of
embeddings of the arc D1 into X, where the embedding on S0 is fixed to be the same two points in ∂X.

(i) If X is simply-connected, then π1Emb(D1, X) ∼= π2(X) [Kos24Kos24]
(ii) If X is aspherical, then π1Emb(D1, X) ∼= Z[π1(X) \ {1}] [Gab21Gab21].

8.2. Spaces of smooth structures. Another famous disjunction theorem is the Morlet lemma of
disjunction, a comprehensive treatment of which was given in [BLR75BLR75]. The Morlet lemma is a crucial
part of modern efforts to understand the space of smooth structures on a given manifold (of dimension at
least five). It states that, for n = 5,

Ωn
0

Top(n)
O(n) ≃ BDiff∂(Dn).

The right hand side is the classifying space of the topological group of boundary-fixing diffeomorphisms of
the n-disc. One can sometimes obtain information about this space. For example, the fundamental group
can be identified with group of homotopy spheres θn+1. Recent impressive work on the higher homotopy
groups includes [Wat09Wat09,KRW21KRW21,KRW25KRW25].

The left hand side is the (identity path-component of the) n-fold loop space of the homotopy fibre of
the map BO(n) → BTop(n), and is therefore the space that controls the space of lifts of the topological
tangent bundle X → BTop(n), of a topological n-manifold X to a vector bundle X → BO(n). The main
theorem of Kirby and Siebenman’s smoothing theory [KS77KS77] states that this space of lifts is homotopy
equivalent to the space of smooth structures on X. So understanding the homotopy type of the universal
space Top(n)/O(n) can have wide ranging consequences for spaces of smooth structures on all n-manifolds.
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Again, the proof of the Morlet lemma makes crucial use of the concordance implies isotopy theorem,
proved first by Hudson, who was inspired by Zeeman’s unknotting theorems.
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