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1. Introduction: the homotopy category

Homotopy theory is the study of continuous maps between topological spaces
up to homotopy. Roughly, two maps f, g : X → Y are homotopic if there is a
continuous family of maps Ft : X → Y , for 0 ≤ t ≤ 1, with F0 = f and F1 = g.
The set of homotopy classes of maps between spaces X and Y is denoted [X,Y ].
The goal of this course is to understand these sets, and introduce many of the
techniques that have been introduced for their study. We will primarily follow the
book “A concise course in algebraic topology” by Peter May [May]. Most of the
rest of the material comes from “Lecture notes in algebraic topology” by Jim Davis
and Paul Kirk [DK].

In this section we introduce the special types of spaces that we will work with
in order to prove theorems in homotopy theory, and we recall/introduce some of
the basic notions and constructions that we will be using. This section was typed
by Mathieu Gaudreau.

Conventions. A space X is a topological space with a choice of basepoint that we
shall denote by ∗X . Such a space is called a based space, but we shall abuse of
notation and simply call it a space. Otherwise, we will specifically say that the
space is unbased.

Given a subspace A ⊂ X, we shall always assume ∗X ∈ A, unless otherwise
stated. Also, all spaces considered are supposed path connected.

Finally, by a map f : (X, ∗X) → (Y, ∗Y ) between based space, we shall mean a
continuous map f : X → Y preserving the basepoints (i.e. such that f(∗X) = ∗Y ),
unless otherwise stated. Note that when it is clear from the context, we may refer
to the basepoint as simply ∗.

1.1. Basic constructions. In this subsection we remember some constructions
on topological spaces that we will use later.

Cartesian Product. Define the product of the based spaces (X, ∗X) and (Y, ∗Y ) by
(X × Y, ∗X×Y ), where X × Y has the product topology and ∗X×Y := (∗X , ∗Y ).
Throughout these notes, we will denote the projection on the ith component (i.e.
the map

X1 × · · · ×Xn → Xi

(x1, · · · , xn) 7→ xi
1
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We also have the diagonal map

∆: X → X ×X
x 7→ (x, x).

Moreover, given two continuous maps f : X → Y and g : X ′ → Y ′, define their
product f×g : X×Y → X ′×Y ′ by f×g(x, y) := (f(x), g(y)). Note that if f and g
are continuous, so is f×g (indeed, we have that (f×g)−1(U×V ) = f−1(U)×g−1(V )
is open if U and V are, because f and g are continuous).

Remark 1.1. Given two spaces X and Y , we can see the product X × Y as the
unique space such that the following diagram commutes and such that the following
property holds: for all pairs of continuous map f : A → X, g : A → Y , where A is
some space, there exists a unique continuous function (f, g) : A→ X×Y such that
p1 ◦ (f, g) = f and p2 ◦ (f, g) = g (the map is defined by (f, g) := f × g ◦∆). X×Y
can therefore be seen as the pull-back of the constant functions p∗ : X → {∗} and
p∗ : Y → {∗}, a notion that we will define later. This is an example of a universal
property defining the space X × Y , which for the product X × Y is a strange
perspective, but this point of view is the one which generalises.

A f

""
g

$$

(f,g)

##
X × Y

p1 //

p2

��

X

p∗
��

Y
p∗ // {∗}

Wedge Product. Given (X, ∗X) and (Y, ∗Y ) two based spaces, we define their wedge
product by

(X ∨ Y, ∗X∨Y ) := X ⊔ Y/(∗X ∼ ∗Y , [∗X ]),

whereX⊔Y/∗X ∼ ∗Y has the quotient topology induced by the canonical projection
q : X ⊔ Y → X ⊔ Y/∗X ∼ ∗Y , and [∗X ] denotes q(∗X) ( = q(∗Y )). Because X ∨ Y
has the quotient topology and by the factorization theorem, there exist a unique
injective continuous map i1 : X → X∨Y such that the following diagram commutes:

X //

i1

##G
GG

GG
GG

GG
X ⊔ Y

q

��
X ∨ Y

Namely, i1 is the map defined by i1(p) = q(p). Similarly, there exist a unique
injective map i2 : Y → X ∨ Y .

Remark 1.2. Given two spaces X and Y , we can see the wedge product X ∨ Y
as the unique space such that the following diagram commutes and such that the
following property holds: for all pairs of continuous map f : X → B, g : Y → B,
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where B is a space, there exists a unique continuous function {f, g} : X ∨ Y → B
such that {f, g} ◦ i1 = f and {f, g} ◦ i2 = g.

{∗} //

��

X

i1
�� f

��

Y
i2 //

g

//

X ∨ Y
{f,g}

##
B

X ∨ Y can therefore be seen as a push-out, a notion that we will also define later.

We call the map ∇ : X ∨ Y → X defined by ∇ = {Id, Id} the fold map. Note
also that there exists an inclusion map j : X ∨ Y → X × Y defined by

j([p]) :=

{
(p, ∗Y ), p ∈ X;

(∗X , p), p ∈ Y

Smash Product. Given two based spaces (X, ∗X) and (Y, ∗Y ), we define their smash
product by

(X ∧ Y, ∗X∧Y ) := ((X × Y )/j(X ∨ Y ), j(q(∗))),
where X ∧ Y has the quotient topology induced by the projection.

1.2. Homotopy.

Definition 1.3. Given maps f, g : X → Y , we write f ≃ g, meaning f is homotopic
to g if there exist a continuous map H : X × [0, 1] → Y such that H(x, 0) = f(x)
and H(x, 1) = g(x), and H(∗, t) = ∗, for all t. Moreover, we call H a (based)
homotopy from f to g. We will say it is an unbased homotopy if we allow ∗ to
move. Finally, we will denote the set of homotopy class of continuous maps from
X to Y by [X,Y ].

Definition 1.4. A category C is a collection of objects and a set of morphisms
Mor(A,B) between any two objects A,B ∈ C such that there is an identity mor-
phism IdA ∈ Mor(A,B) and a composition law ◦ : Mor(C,B) × Mor(A,B) →
Mor(A,C), for each triple of objects A,B,C ∈ C, satisfying:

(1) h ◦ (g ◦ f) = (h ◦ g) ◦ f , whenever it is defined (associativity);
(2) Id ◦f = f , f ◦ Id = f (neutrality of Id).

We say that C is small if the class of objects is a set.
Lemma 1.5.

(1) (Based Spaces, Based Maps) is a category called Top∗.
(2) (Based Spaces, Based Homotopy Classes of Maps) is a category called hTop∗.

The proof is left as an exercise.

Definition 1.6. Let (X,A) be a pair of spaces (i.e. ∗ ∈ A ⊂ X) and i : A→ X be
the inclusion map.
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(1) We call a continuous map r : X → A such that r(a) = a, for all a ∈ A, a
retraction, and when such an r exist, we say that A is a retract of X.

(2) Moreover, if i◦ r ≃ IdX , we call r a deformation retraction and we say that
A is a deformation retract of X.

(3) If the homotopy in (2) is fixed on A, we call r a strong deformation retrac-
tion and say that A is a strong deformation retract of X.

Example 1.7.

(1) Consider the inclusion Dn → Rn and define r : Rn → Dn by

r(x) :=

{
x, x ∈ Dn;
x

∥x∥ , x ̸∈ Dn.

Exercise: Show that this is a strong deformation retraction.

(2) Consider the inclusion Sn−1 → Dn\{0} and let r : Dn\{0} → Sn−1 be the
map defined by r(x) := x

∥x∥ .

Exercise: Show that this is a (strong) deformation retraction.

(3) On the other hand, Sn−1 is not a retract of Dn. Indeed, we know that
Hn−1(S

n−1) ∼= Z and Hn−1(D
n) = {0}. If there were a retraction r : Dn →

Sn−1, we would have the following commutative diagram:

Hn−1(S
n−1)

Id //

i∗
��

Hn−1(S
n−1)

Hn−1(D
n)

r∗
77nnnnnnnnnnnn

where Id is the identity and i∗ = 0 is the zero map. This give a contradic-
tion.

Definition 1.8. Given two spaces X and Y , we say that X is homotopy equivalent
to Y and write X ≃ Y if there exist continuous maps f : X → Y and g : Y → X
such that f ◦ g ≃ IdY and g ◦ f ≃ IdX . Moreover, we say that a space X is con-
tractible when it is homotopy equivalent to the basepoint. Note that contractible
can depend on the choice of basepoint. There exist spaces contractible (as unbased
space), but not with any basepoint.

Example 1.9. Given a pair of spaces (A,X) such that A is a deformation retract
of X with deformation retract r, if i denotes the inclusion, then r ◦ i = IdA and
i ◦ r ≃ IdX . Therefore, we have that A is homotopy equivalent to X.

2. Compactly generated spaces

This section was typed by Mathieu Gaudreau and Francis Beauchemin-Côté.
The reader who wants to learn about compactly generated spaces and their prop-
erties in more detail than described in these notes is referred to Steenrod’s well
written original source [Ste].
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Given a space Y , let Y I denote the set of unbased continuous maps f : I → Y .
If we define ∗ ∈ Y I as the path ∗(t) := ∗Y and put a topology on Y I we have a
based space (Y I , ∗). It is possible to reinterpret the notion of homotopy F : f ∼ g
as a map

F ′ : X → Y I

x 7→ γ : t 7→ F (x, t).

In fact, if we put the right topology on Y I we can show that this F ′ associated to
each homotopy F is continuous. Our purpose in the present subsection is to define
a topology on Y I giving us just that. Before continuing in this direction, let us
introduce two more basic constructions that we will need later.
Given a space X, we call the cone on X, written CX, the space

X × I/X × {0}.

We call the reduced cone of X, written C̃X, the space

X × I/X × {0} ∪ {∗} × I.

Finally, we call the path space of X, the space PX given by

{γ ∈ XI |γ(0) = ∗Y }.

We will topologize the path space with the subspace topology of XI (which will
make sense once we put a topology on XI).

Lemma 2.1. For any spaces X,Y , the cone CX and the path space PY are con-
tractible.

Proof. A homotopy between the identity on CX and the map to the basepoint is
given by:

F : CX × I → CX
([x, t], s) 7→ [x, (1− s)t].

A homotopy between the identity on PY and the map to the basepoint (the con-
stant path) is given by:

F : PY × I → PY
(γ, s) 7→

(
t 7→ p((1− s)t)

)
.

�

Now, let us formalise what we want. Given three spaces X, Y and Z, we would
like to topologize the sets of morphisms of Top∗ (i.e. the sets C(X,Y ) of continuous
maps from X to Y , for all spaces X and Y ), such that f : X×Y → Z is continuous
if and only if the adjoint of f , defined by

f : X → C(Y, Z)
x 7→ (y 7→ f(x, y))

,

is continuous, and moreover, we would like the adjoint to induce a homeomorphism
C(X × Y,Z)→ C(X, C(Y,Z)).

Definition 2.2. A topological space X is said to be compactly generated if:



MAT8232 ALGEBRAIC TOPOLOGY II: HOMOTOPY THEORY 6

(1) X is Hausdorff (i.e. for all pairs of points x ̸= y in X there exist disjoint
open neighbourhoods of each);

(2) A ⊂ X is closed if and only if A∩K is closed for every compact set K ⊂ X.

We denote the category of all compactly generated spaces by K.

Lemma 2.3. The following spaces are compactly supported:

(1) locally compact Hausdorff spaces (e.g. manifolds);
(2) metric spaces;
(3) CW complexes.

Proof (of (1)). First remember that a space is said to be locally compact if every
point admits a compact neighbourhood.
To show the lemma, we have to see part (2) of Definition 2.2. In one direction, if A
is closed in X and K is a compact set of X, then we have that K is closed, because
compact subsets of a Hausdorff space are closed. It follows that A ∩K is closed.
Therefore, all closed subsets in the topology of X are closed in the compactly
generated topology. In the other direction, suppose A ⊂ X is such that A ∩ K
is closed for every compact set K ⊂ X (i.e. suppose A is closed in the compactly
generated topology). We want to show that A is closed. To show this, we will
show that X\A is open in X. Let x ∈ X\A. By local compactness, there exist a
compact neighbourhood of x, say Kx. Let Ux be an open neighbourhood of x such
that x ∈ Ux ⊂ Kx. Because Kx∩A is closed by hypothesis, we have that X\Kx∩A
is open. Therefore, (X\Kx ∩ A) ∩ Ux = Ux\A =: Vx is an open neighbourhood of
x missing A. By generality of x ∈ X\A, we have X\A =

∪
x∈X\A

Vx and therefore

X\A is open. �

Definition 2.4. Let X be a Hausdorff space. Define k(X) as the same underlying
set X with the compactly generated topology (i.e. declare a set A in k(X) to be
closed if its intersection A ∩K with every compact subset K ⊂ X is closed in X).

Definition 2.5. In category theory, given two categories C and D, a covariant
functor is an assignment F : C → D sending each object A of C to an object F (A)
of D and each morphism f of Mor(A,B) to a morphism F (f) of Mor(F (A), F (B))
such that F (IdA) = IdB and F (f ◦ g) = F (f) ◦ F (g), whenever defined.

It can be shown that k(X) is a covariant functor from (Hausdorff spaces, con-
tinuous maps) to (compactly generated spaces, continuous maps).
Lemma 2.6.

(1) If X ∈ K, k(X) = X and for all Hausdorff spaces Y the identity k(Y )→ Y
is continuous.

(2) Let X and Y be two Hausdorff spaces. If f : X → Y is continuous, then
k(f) : k(X)→ k(Y ) also is.

(3) If X ∈ K, then k∗ : C(X, k(Y ))→ C(X,Y ) is a bijection.

Proof. (1) First, let us show that if X ∈ K, then k(X) = X. If A is closed in
X, since X is compactly generated, A ∩K is closed in X, for all compact subset
K ⊂ X. Therefore A is closed in k(X). Conversely, if A ⊂ X is closed in k(X),
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A∩K is closed in X, for all compact subset K ⊂ X. Hence, A is closed in X, since
X ∈ K.

Now, let Y be a Hausdorff space and let us show that Id: k(Y )→ Y is continu-
ous (i.e. that the topology of k(Y ) is finer or equal to the initial topology on Y ). If
A ⊂ Y is closed, since every compact set in Y is closed (because Y is Hausdorff),
we have that A∩K is closed for all compact subset K ⊂ Y . Therefore, A is closed
in k(Y ). Thus the map Id: k(X)→ X is continuous is desired.

(2) Suppose that f : X → Y is continuous. Let A ⊂ Y be a closed subset of
k(Y ) and C ⊂ X be a compact subset of X. Since f is continuous, f(C) is
compact. Hence, by definition of k(Y ), A ∩ f(C) is closed in Y . Therefore, by
continuity of f we have that f−1(A ∩ f(C)) is closed in X. Since we have that
f−1(A)∩ f−1(f(C)) = f−1(A∩ f(C)) is closed and that C is closed (being a com-
pact subset of a Hausdorff space), we have that their intersection is closed. Thus
the following is closed

f−1(A) ∩ C = (f−1(A) ∩ f−1(f(C))) ∩ C.

By generality of C ⊂ X compact, we have that f−1(A) is closed in k(X).

(3) By (1), we have that k∗, which is defined by k∗(f) = IdK ◦f , where IdK : k(Y )→
Y is the identity, is well-defined (i.e. it sends continuous map to continuous map).
We want to show that this is a bijection. The injectivity is trivial. We will there-
fore focus on showing that for all continuous maps f : X → Y , f : X → k(Y ) is
continuous or, in other words, that k∗ is surjective. Let A be a closed subset of
k(Y ). By hypothesis, we have that X ∈ K and consequently it suffices to show
that f−1(A) ∩ C is closed for every compact subset C ⊂ X. Let C be a compact
subset of X. Easily, we have f−1(A∩f(C))∩C = f−1(A)∩C. The fact that A is a
closed set in k(Y ) means in particular that A ∩ f(C) is closed in Y (because f(C)
is a compact set of Y , f being continuous by hypothesis). Therefore, by continuity
of f : X → Y , we have that f−1(A ∩ f(C)) is closed in X and consequently that
f−1(A)∩C is closed (because compact subspace of a Hausdorff space is closed and
the intersection of closed sets is closed). By generality of the compact subset C
and since X is compactly generated, this means that f−1(A) is closed in X.

�

Remark 2.7. By (3) of the preceding lemma, we have that the set of singular
chains onX and k(X) are the same, since ∆n (the standard n-simplex) is compactly
generated (being compact and Hausdorff). Therefore, applying k does not change
the singular homology of an Hausdorff space.

Remark 2.8. X × Y need not be compactly generated if X and Y are, but if X
is a locally compact Hausdorff space and Y is compactly generated, then X × Y is
compactly generated.

Proposition 2.9. If X is compactly generated and if π : X → Y is quotient by a
closed relation R ⊆ X ×X then Y is compactly generated.
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Definition 2.10 (Colimits). Let {Xi}i∈N with X1
f1−→ X2

f2−→ X3
f3−→ X4 → . . . be

such that each Xi is compactly generated and Xi
fi−→ Xi+1 has closed image. Then

the colimit, which can be constructed by

colim{Xi} := ⨿Xi /xi ∼ fi(xi),

is compactly generated.

3. Function spaces and their topology

The section was typed by Francis Beauchemin-Côté.

Definition 3.1 (Subbasis). A subbasis B for a topology T is a collection of sets
such that every open set of T is a union of finite intersections of elements in B. In
other words, B generates the topology T , i.e. T = T (B) is the smallest topology
containing B.

We want to give C(X,Y ) = {f : X → Y | f is continuous} a topology. For this,
we specify a subbasis

W (K,U) := {f : X → Y | f(K) ⊆ U}

where K ⊆ X is compact and U ⊆ Y is open. We then give C(X,Y ) the compact-
open topology, which is T (W (K,U)).

With the Compact-Open topology on C(X,Y ), we can now define the topological
space

Map(X,Y ) = Y X := k(C(X,Y )).

Theorem 3.2 (Adjoint theorem). Let X,Y and Z be compact generated spaces.
Then the map φ : Map(X × Y, Z)→ Map(X,Map(Y,Z)) defined by

f 7→ φ(f) : x 7→ (y 7→ f(x, y))

is a homeomorphism. We write ZX×Y = (ZY )X .

Remark 3.3. This implies that · × Y and Map(Y, ·) are adjoint functors.

Definition 3.4 (Adjoint functors). Functors F : C → D and G : D → C are
adjoint if there is a bijection

D(F (A), B)←→ C (A,G(B))

natural in A,B for all A ∈ ObC and B ∈ ObD .

The reader should draw the commuting diagrams that are invoked by the word
natural in the preceding definition. While we are thinking of the meaning of the
word natural, here is its principal meaning, in the context of natural transforma-
tions.
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Definition 3.5 (Natural transformation). A natural transformation θ : F → G
between functors F,G : C → D is a morphism θ(A) : F (A)→ G(A) for all objects
A ∈ ObC such that the following diagram commutes

F (A)
θ(A) //

F (f)
��

G(A)

G(f)
��

F (B)
θ(A)

// G(B)

for all f ∈ C (A,B).

Proposition 3.6. Let X,Y and Z be compactly generated spaces.

(1) The evaluation map e : Map(X,Y ) × X → Y defined by (f, x) 7→ f(x) is
continuous.

(2) The obvious map Map(X,Y ×Z) ∼= Map(X,Y )×Map(X,Z), (f, g) 7→ (f, g)
is a homeomorphism.

(3) The map Map(X,Y ) ×Map(Y, Z) → Map(X,Z) defined by (f, g) 7→ g ◦ f
is continuous.

Proposition 3.7. The topological spaces X and k(X) have the same compact sets.

Proof. Since k(X) → X is continuous, the compact sets in k(X) are compact in
X.

Now, let C ⊆ X be a compact set and C ′ be C with subspace topology in k(X).
Let B be a closed subset of C ′. Then ∃A ⊆ k(X) closed such that B = A ∩ C ′.
By definition, A ∩ C = A ∩ C ′ = B is closed in X since C is compact. Hence,
id : C → C ′ is continuous, so C ′ is compact. �

Lemma 3.8.

(1) The map e : C(X,Y ) ×X → Y defined by (f, x) 7→ f(x) is continuous on
compact sets.

(2) If X, Y are compactly generated, then e : Map(X,Y )×X → Y si continu-
ous.

Proof.

(1) It suffices to check continuity on sets of form F × A where F ⊆ C(X,Y )
compact and A ⊆ X compact.

Let (f0, x0) ∈ F × A and let U ⊆ Y be an open set containing f0(x0).
Since every Hausdorff compact space is normal and f0 is continuous, then
there exists N ∋ x0 an open neighbourhood N ⊆ A with f0(N) ⊆ U . So
(W (N,U) ∩ F )×N is open and contains (f0, x0).

(2) We apply k to e : C(X,Y )×X → Y .
If g : A→ B is continuous on all compact sets, then k(g) : k(A)→ k(B)

is continuous. Hence k(e) : Map(X,Y ) ×X → Y is continuous (X and Y
are compactly generated).

�
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4. Cofibrations

This section was typed by Francis Beauchemin-Côté.

Definition 4.1. A map i : A → X is a cofibration if it satisfies the homotopy
extension property (HEP):

For any space Y , for any map f : X → Y and for any homotopy h : A× I → Y
that starts with f ◦ i : A → Y , i.e. h(a, 0) = f ◦ i(a) for all a ∈ A, this can be

extended to a homotopy h̃ : X × I → Y starting from f : X → Y . That is, if for
every Y, f and h there exists a homotopy h̃ : X × I → Y such that the following
diagram commutes

A
i //

i0

��

X

i0

��

f

{{ww
ww
ww
ww

Y

A× I

h
;;xxxxxxx

i×id
// X × I

h̃
cc

where i0 : x 7→ (x, 0).

In general, a diagram like that in the definition above represents a problem, and
a resolution of the problem is a dotted map that makes the diagram commute. We
will consider such problems often in this course.

Proposition 4.2. If A ⊆ X is a deformation retract, then i : A→ X is a cofibra-
tion.

This will follow easily from Theorem 4.11 below, which characterises cofibrations,
but the reader could try to prove it directly now.

Definition 4.3.

• Q := X/i(A) is called the cofibre of i (cofibration).

• A i−→ X
a−→ Q is called a cofibre sequence.

Definition 4.4 (Pushout). Let f : A→ B and g : A→ C be two morphisms. The
pushout of f and g, denoted B ∪A C, is the unique space (up to isomorphism)
satisfying the following universal property:

For any space Y and maps iB : B → Y , iC : C → Y satisfying iB ◦ f = iC ◦ g,
there exists a unique map θ : D → Y such that the diagram

A
f //

g

��

B

jB

�� iB

��

C
jC

//

iC //

B ∪A C
θ

##G
G

G
G

G

Y



MAT8232 ALGEBRAIC TOPOLOGY II: HOMOTOPY THEORY 11

commutes.

Lemma 4.5. Push outs of cofibrations are cofibrations. That is, if i : A→ X is a
cofibration and g : A→ B is any map, then B → B ∪g X is a cofibration:

A
i //

g
��

X

��
B

cofibn
// B ∪g X

Proof of Lemma 4.5. First, we see that (B ∪g X)× I ∼= (B × I)∪g×id (X × I). We

want to find h̃ such that the following diagram commutes

B
i0 //

��

B × I
h

wwooo
ooo

ooo

��

Y

B ∪g X

f ::uuuuuu

i0
// (B ∪g X)× I.

h̃
gg

Consider the diagram

A
i0

..

i pushout

��

g

##G
GG

GG
GG

GG
GG

A× I

i×idpushout





g×idwwppp
ppp

ppp
ppp

p

B
i0 //

��

B × I

��

h

yyrrr
rrr

rrr
rrr

r

Y

B ∪g X
i0

//

f

;;xxxxxxxxxx

OO

(B ∪g X)× I

h̃

eeK
K
K
K
K
K

X i0 00

;;xxxxxxxxxx
X × I.

h̄

ffNNNNNNNNNNNN

If we ignore B and (B∪gX)×I, since i : A→ X is a cofibration, then there exists a
homotopy h̄ : X × I → Y . Then, the universal property of the right-hand pushout
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give a homotopy h̃ such that

B × I

��
h





A× I
g×idoo

��
(B × I) ∪g (X × I)
h̃

wwn n n n n n
X × Ioo

h̄

llY

commutes. Then h̃ is the required map. �

4.1. A universal test space.

Proposition 4.6. We can replace Y in the test diagram of cofibration by the
universal test space

Mi := X ∪A×{0} A× I = X ∪i A× I

where i : A→ X is cofibration.

The space Mi is called the mapping cylinder of i.

Proof. Suppose the problem is soluble for Mi, that is there exists a map r such
that

A
i0 //

i

��

A× I

{{www
www

ww

��

Mi

X

>>||||||

i0
// X × I

r
cc

commutes. Since Mi is the pushout of

A
i0 //

i
��

A× I

��
X // Mi
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for any maps f : X → Y and h : A× I → Y , there exists a unique map θ : Mi → Y
such that

A
i1 //

i

��

A× I
h

uullll
lll

lll
lll

l

incl

��		
		
		
		
		
		
		

i×id

��

Y

Mi

θ
``B
B
B
B

X

f

GG������������� incl

77nnnnnnnnnnnnn
i1

// X × I

r
cc

commutes. Then θ ◦ r is the desired map. �

Lemma 4.7. If (X × {0}) ∪ (i(A) × I) is a retract of X × I, then i : A → X is
a cofibration. On the other hand, if a solution to the HEP exists for all Y , then
certainly it exists for Y =Mi. This completes the proof of the proposition.

Remark 4.8. The map r in the last proof satisfies r ◦ j where j : Mi → X × I
is defined by (a, t) 7→ (i(a), t) and (x, 0) 7→ (x, 0) by definition of retraction. This
implies that a cofibration is injective with closed image.

4.2. Replacing a map by a cofibration. Any map f : X → Y factors as

X
f //

i !!B
BB

BB
BB

Y

Mf

r

>>|||||||

where Mf := Y ∪X×{1} X × I is the mapping cylinder of f and r : (x, t) 7→ f(x) is
a retraction of Mf onto Y .

If j : Y →Mf is the inclusion, then we have r ◦ j = idY and j ◦ r ≃ idMf
by the

homotopy Mf × I →Mf defined by

(y, s) 7→ y

((x, t), s) 7→ (x, (1− s)t).

Therefore Mf ≃ Y and using next theorem we can show that i : X → Mf is a
cofibration.

Remark 4.9. Hence, up to homotopy equivalence of the codomain, we can replace
any map by a cofibration.

4.3. Criteria for a map to be cofibration.

Definition 4.10. A pair (X,A) is an NDR-pair (neighbourhood deformation re-
tract) if there is a map u : X → I with u−1(0) = A and a homotopy h : X× I → X
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with

h(x, 0) = x, ∀x ∈ X
h(a, t) = a, ∀a ∈ A, t ∈ I and

h(x, 1) ∈ A if u(x) < 1.

If moreover u(x) < 1 for all x ∈ X, (X,A) is a DR-pair (A is deformation retract
of X).

The following theorem is due to Steenrod [Ste].

Theorem 4.11 (Characterisation of cofibrations.). Let A be a closed subspace of
X. Then the following are equivalent:

i) (X,A) is an NDR-pair.
ii) (X × I,X × {0} ∪A× I) is a DR-pair.
iii) X × {0} ∪A× I is a retract of X × I.
iv) i : A→ X is a cofibration.

Lemma 4.12. Suppose (X,A) and (Y,B) are NDR-pairs via (h, u) and (j, v)
respectively. Then (X × Y,X × B ∪ A × Y ) is an NDR-pair via w : (x, y) 7→
min(u(x), v(y)) and

k(x, y, t) =


(
h(x, t), j

(
y, tu(x)v(y)

))
if u(y) ≥ u(x)(

h
(
x, t v(y)u(x)

)
, j(y, t)

)
if u(y) ≤ u(x).

If (X,A) or (X,B) is a DR-pair, then so is (X × Y,X ×B ∪A× Y ).

Proof of Theorem 4.11. Since (I, {0}) is a DR-pair, by lemma 4.12, (i) ⇒ (ii),
(ii)⇒ (iii) is trivial and we saw earlier in mapping cylinder that (iii)⇔ (iv). We
need to show that (iii)⇒ (i).

Let r : X × I → X × {0} ∪A× I be a retraction and define u : X → I by

u(x) = sup{t− p2 ◦ r(∗, t) : t ∈ I}
and h : X × I → X by

h(x, y) = p1 ◦ r(x, t)
where p1 : X × I → X and p2 : X × I → I are projections.

Since r(a, t) = (a, t) and p2(r(a, t)) = t, we have t − p2 ◦ r(a, t) = 0 ∀a ∈ A,
hence A ⊆ u−1(0).

Suppose now u(x) = 0 for x ∈ X\A. Then t ≤ p2 ◦ r(x, t) ∀t ∈ I ⇒ for t ̸= 0,
r(x, t) ∈ A × I. Since A is closed, there exists an open set U ∋ x, U ⊆ X\A with
r−1(U) = U × {0} ⊆ X × I but this is not open, which contradicts the fact that r
is continuous. Therefore, u−1(0) ⊆ A⇒ u−1(0) = A. We also have

h(a, t) = p1(r(a, t)) = p1(a, t) = a

h(x, 0) = p1(r(x, 0)) = p1(x, 0) = x

and u(x) = 1 occurs only if r(x, 1) ∈ X × {0} ⊆ X × I. If u(x) < 1, h(x, 1) =
p2 ◦ r(x, 1) = p1(a, t) = a ∈ A for some a ∈ A, t ∈ I. So (h, u) present (X,A) as an
NDR-pair as claimed. �
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4.4. More properties of cofibrations.
Proposition 4.13.

(i) Let i : A → X be a map. There exists a homotopy equivalence h : Mi → X
such that

A

i

����
��
��
�� a 7→(a,1)

  A
AA

AA
AA

A

X Mf
hoo

commutes. (This is called a homotopy equivalence under A).
(ii) Suppose moreover that i is a cofibration. Then h is a homotopy equivalence

rel. A.

Proof. To prove (i), define h : Mf → X by h(a, t) = i(a) for a ∈ A and t ∈ I and
h(x) = x for x ∈ X. Note that this fits into the diagram above. To show that
h is a homotopy equivalence, we define the map g : X → Mf to be the inclusion,
and we note that h ◦ g = IdX . There is a homotopy F : g ◦ h ∼ IdMf

defined by
F ((a, t), s) = (a, st) and F (x) = x. This completes the proof of (i).

To prove (ii), we start by recalling that i being a cofibration implies that there
is a retraction

r : X × I → X × {0} ∪ i(A)× I,
expressing the mapping cylinder as a subset of X × I. Define maps

g : X → Mi

x 7→ r(x, 1)

and
h : Mf → X
(a, t) 7→ i(a)

x 7→ x
.

We claim that g and h are homotopy inverses relative to A×{1}. To see this, first
define H = h ◦ r : X × I → X. This satisfies H(x, 1) = h ◦ g(x), H(x, 0) = x and
H(i(a), t) = i(a) for all t ∈ I and for all a ∈ A. So H : h ◦ g ∼ IdX . Next, define

G : Mi × I → Mi

(x, t) 7→ r(x, t)
((a, s), t) 7→ r(i(a), st).

This satisfies G(x, 1) = r(x, 1) = g ◦h(x), G(x, 0) = r(x, 0) = x for all x ∈Mi, and
G(i(a), t) = i(a) for all a ∈ A and for all t ∈ I. So G : g ◦ h ∼ IdMi . Thus indeed
g, h are homotopy equivalences rel. A. �

Since Mi ≃ X rel. A, we may quotient by A and obtain a homotopy equivalence

Mi/A = Ci ≃ X/A.
Here Ci :=Mi/(A× {1}) is the mapping cone of i.

Here is another useful property of cofibrations:

Proposition 4.14. Let (X,A) be an NDR pair. Then H̃∗(X/A) ∼= H∗(X,A).
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Proof. Let W := u−1([0, 1)). Then (W,A) is a DR pair and W/A ≃ ∗. Thus we
have

H̃∗(X/A) ∼= H∗(X/A, ∗) ∼= H∗(X/A,W/A)

∼= H∗(X −A,W −A) ∼= H∗(X,W )

∼= H∗(X,A)

Here the isomorphisms are given respectively by the definition, by homotopy equiv-
alence, by excision, by excision, and finally by homotopy equivalence again. �

Overall, one should think of cofibrations as nice inclusions, which are sufficiently
general that most inclusions you would consider naturally are cofibrations, which
satisfy many useful properties, and such that any map can be replaced by a cofi-
bration up to a homotopy equivalence.

5. Fibrations

Fibrations, as suggested by the removal of the prefix “co,” are in some sense
dual to cofibrations. Whereas cofibrations are nice inclusions, fibrations are nice
projections. They can be thought of as generalisations of fibre bundles. For a fibre
bundle the fibre is well-defined up to homeomorphism, but in a fibration the fibre
is only well-defined up to homotopy equivalence.

In this section we will write XI for the space of free paths γ : I → X in X, and
we will use the map p0 : X

I → X that sends γ 7→ γ(0).

Definition 5.1 (Fibration). A surjective map p : E → B is a fibration if it sat-
isfies the Covering Homotopy Property (CHP), also called the Homotopy Lifting
Property (HLP) in the literature. This property is that, for any space Y and for

any maps f : Y → E and h : Y → BI with p ◦ f = p0 ◦ h, there is a lift h̃ : Y → EI

such that the diagram

E

p

��

EIp0oo

pI

��

Y

f
__????????

h

  A
AA

AA
AA

h̃

>>}
}

}
}

B BIp0oo

commutes. Here pI : EI → BI is the map induced from p by post-composition. An
equivalent formulation, which explains the HLP terminology is asking for a solution
to any diagram:

Y
f //

i0
��

E

p

��
Y × I

h
//

h̃

;;w
w

w
w

w
B.
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As a basic example, consider a product E = F × B and the projection p =
p2 : F ×B → B. This map is a fibration. To see this, consider the diagram

Y
f //

i0
��

F ×B
p2
��

Y × I
h

//

h̃
99t

t
t

t
t

B.

Write f(y) = (f1(y), f2(y)) ∈ F ×B. Define

h̃ : Y × I → F ×B
(y, t) 7→ (f1(y), h(y, t)).

The fact that p2(f(y)) = f2(y) = h(y, 0) implies that the diagram commutes as
required.

In the literature the fibrations we have defined are sometimes called Hurewicz
fibrations. You may also see Serre fibrations: these are weaker, only requiring the
CHP to hold for Y = In. This can be sufficient when working with CW complexes,
but we will not make use of this notion in this course.

Lemma 5.2 (Pullback of a fibration is a fibration). Suppose that p : E → B is a
fibration, and g : A→ B is a map. Consider the pullback

A×g E //

��

E

p

��
A

g // B.

The pull back A×gE can be thought of as a subset of A×E: {(a, e) ∈ A×E | p(e) =
g(a) ∈ B}. We have that the induced projection A×g E → A is a fibration for any
map g : A→ B.

To prove this, dualise the proof of the corresponding fact for cofibrations. This
is left as an exercise. We actually know many examples already.

Theorem 5.3. Let p : E → B be continuous. Suppose B is paracompact and there
exists an open cover {Uα} of B for which p| : p−1(Uα)→ Uα is a fibration for each
Uα. Then p : E → B is a fibration.

Since B is Hausdorff, recall that B is paracompact if and only if it admits a
partition of unity subordinate to any open cover. We will prove a more general
version of this theorem next time. The idea is to lift the homotopies on each
open set, and then patch the lifts together in a cunning fashion. For now, we just
remark that this means that any fibre bundle with paracompact base is a fibration.
In particular any covering map is a fibration.

Definition 5.4. For a fibration p : E → B, let F := p−1(∗) be the fibre, where
∗ ∈ B is the basepoint. Write F → E → B. This is a fibre sequence.
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5.1. Path space fibration.

Example 5.5 (Path space fibration). The path space fibration is a very important
example. Let X be a space. Then recall that PX = {γ : I → X | γ(0) = ∗X} is the
space of based paths. The map

e1 : PX → X
γ 7→ γ(1)

is a fibration. We need to solve the diagram:

PX

e1

��

PXIp0oo

eI1

��

Y

f
aaCCCCCCCC

h

""D
DD

DD
DD

D

h̃

<<z
z

z
z

z

B BIp0oo

The idea is as follows. For each y ∈ Y we are given two paths, f(y) and h(y),
such that the endpoint of f(y) is the start of h(y). We need a path of paths that
interpolates between f(y) and the concatenation f(y) · h(y). This is given by, for
example:

h̃(y)(s) =

{
t 7→ f(y)(t/(1− s/2)) 0 ≤ t ≤ 1− s/2
t 7→ h(y)(2(t− 1 + s/2)) 1 = s/2 ≤ t ≤ 1.

Since h(y)(0) = f(y)(1), this is well-defined.

The fibre of PX → X is e−1
1 (∗) = {γ : I → X | γ(0) = γ(1)} =: ΩX. The space

ΩX is called the loop space of X and will be very important in future. If we want
to emphasise the basepoint we might write Ω∗X. The path space fibration is then
written

ΩX → PX → X.

5.2. Universal test space. There is a universal test space for fibrations (anal-
ogous to the mapping cylinder for cofibrations). Instead of general Y in the test
diagram, we can let Y be the mapping path space

Np := E ×p B
I = {(e, γ) ∈ E ×BI | p(e) = γ(0)}.

That is, Np is the pullback in the square

Np //

��

E

p

��
BI

p0
// B.
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The maps in the test diagram are the projections p1 : Np→ E and p2 : Np→ BI .
Consider the test diagram:

E

p

��

EIp0oo

pI

��

Np

p1

ggOOOOOOOOOOOOOOO

p2

��2
22
22
22
22
22
22
2

s

=={
{

{
{

Y

f

WW///////////////

h

((QQ
QQQ

QQQ
QQQ

QQQ
QQ

g
>>||||||||

B BIp0oo

Suppose that a solution exists forNp. Then the map s exists as in the diagram. But
then by the universal property of pullbacks, for any Y, f, h as in the diagram, there
exists a map g : Y → Np such that the diagram commutes. Then s ◦ g : Y → EI

solves the problem.
The map s : Np → EI that solves the problem is called a path lifting function.

This is a function such that k ◦ s = Id, where k = (p0, p
I) : EI → Np. In other

words we require that s(e, γ)(0) = e and p ◦ (s(e, γ)) = γ.

5.3. Relationship between fibrations and cofibrations. Here is an appear-
ance of both notions in one lemma.

Lemma 5.6. Let i : A→ X be a cofibration, and let B be a space. Then

p := Bi : BX → BA

is a fibration.

Proof. First, we have

BMi = BX×{0}∪A×I ∼= BX ×p (B
A)I = Np.

The central homeomorphism here follows from (BA)I ∼= BA×I . Next, the fact that
i is a cofibration implies that there is a relation r : X × I →Mi. Then

s = Br : Np = BMi → BX×I ∼= (BX)I

is a path lifting function. �

5.4. Replacing a map by a fibration. Let f : X → Y be a map. We can factor
f as a homotopy equivalence followed by a fibration. Let Nf = X×f Y

I as before.
The map f coincides with the composition

X
ν−→ Nf

ρ−→ Y

where ν(x) = (x, cf(x)), with cy : I → Y the constant path at y ∈ Y , and ρ(x, γ) =
γ(1). We claim that ν is a homotopy equivalence and that ρ is a fibration.
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To see that ν is a homotopy equivalence, let p1 : Nf → X be the projection.
Then p1 ◦ ν = IdX and we have a homotopy

h : Nf × I → Nf
((x, γ), t) 7→ (x, s 7→ γ((1− t)s))

from ν ◦ ρ to IdNf .
Next, to see that ρ is a fibration, we need to solve the following diagram, for any

space A and any maps g, h.

Nf

ρ

��

Nf I
p0oo

ρI

��

A

f
``AAAAAAAA

h

!!C
CC

CC
CC

C

h̃
=={

{
{

{

Y Y Ip0oo

Write g(a) = (g1(a), g2(a)) ∈ X ×f Y
I = Nf , for a ∈ A. Then define h̃(a) =

(
t 7→

(g1(a), j(a, t))
)
with g1(a) ∈ X and j(a, t) ∈ Y I given by

j(a, t) : I → Y

s 7→

{
g2(a)(s+ st) 0 ≤ s ≤ 1

1+t

h(a, s+ ts− 1) 1
1+t ≤ s ≤ 1.

This map h̃ solves the problem, so ρ is a fibration as claimed.

5.5. Criterion for a map to be a fibration. Let U be an open cover of a space
B. We say that U is numerable if there are maps λU : B → I for each U ∈ U such
that λ−1

U ((0, 1]) = U , and the cover is locally finite, that is for each b ∈ B there is
a neighbourhood Vb ∋ b such that Vb ∩ U ̸= ∅ for at most finitely many U ∈ U .

Theorem 5.7. Let p : E → B be a map and let U be a numerable open cover of
B. Then p is a fibration if and only if p| : p−1(U) → U is a fibration for every
U ∈ U .

In particular, this implies that fibre bundles with paracompact base spaces are
fibrations.

Proof. First, pullbacks of fibrations are fibrations, so if E → B is a fibration then
the pullback along the inclusion U → B is a fibration for any subset U . This proves
the only if direction.

So from now on, let p : E → B be a map such that p| : p−1(U)→ U is a fibration
for every U ∈ U . Our aim is to construct a path lifting function s : Np = E×pB

I →
EI by patching together the path lifting functions

sU : p−1(U)×p U
I → p−1(U)I

that exist by hypothesis for each U . To do this consistently, we need some amount
of set up. In particular, we need a special open cover of the path space BI .
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Let λU : B → I be maps such that λ−1
U ((0, 1]) = U , that are given to us by the

assumption that U is numerable. For T = {U1, . . . , Un} a finite ordered subset of
U , write c(T ) = n, and define functions

λT : BI → I
β 7→ inf{λUi ◦ β(t) | (i− 1)/n ≤ t ≤ i/n, 1 ≤ i ≤ n}.

This is nonzero as long as β lies in Ui during the required time interval [(i −
1)/n, i/n]. Next define subsets of the path space BI as follows:

WT := λ−1
T ((0, 1]) = {β |β(t) ∈ Ui if t ∈ [(i− 1)/n, i/n]}.

We assert that {WT } is an open cover of BI .
Next we need to improve {WT } to a locally finite cover. However {WT | c(T ) = n}

is locally finite for each n. We will use this observation to construct a suitable
covering of BI . Suppose that c(T ) = n. Define a function

γT : BI → I
β 7→ max{0, λT (β)− n

∑
c(S)<n λS(β)}

and then define the sets
VT := {β ∈ BI | γT > 0}.

We assert that {VT } is a locally finite open cover of BI .
Next, choose a total ordering of all the finite ordered subsets T ⊆ U . Since p|U

is a fibration, there are path lifting functions

sU : p−1(U)×p U
I → (p−1(U))I

for each U ∈ U . Recall that our aim is to piece them together to get a global path
lifting function.

Fix T = {U1, . . . , Un}, and let β ∈ VT . Define the path β[u, v] := β|[u,v] : [u, v]→
B, the restriction of β to the interval [u, v], where 0 ≤ u ≤ v ≤ 1. Suppose that
u ∈ [(i − 1)/n, i/n] and v ∈ [(j − 1)/n, j/n], where 0 ≤ i ≤ j ≤ n. Suppose that
e ∈ p−1(β(u)).

Let sT (e, β[u, v]) : [u, v]→ E be the path starting at e and covering β[u, v] (that
is, p ◦ sT (t) = β(t) for all t ∈ [u, v], obtained by using:

• sUi to lift over [u, i/n];
• sUi+k

to lift over [(i+ k − 1)/n, (i+ k)/n];
• sUj to lift over [(j − 1)/n, v].

In order to do this, we need to rescale, since each sU is for paths I → B but we lift
on partial intervals only. Now define the lift we seek as follows. Define

s(e, β) ∈ EI

by concatenating the paths sTj (ej−1, β[uj−1, uj ]), for 1 ≤ j ≤ q, where:
• Ti, for i = 1, . . . , q are the sets of subsets of U , in order, for which β ∈ VT ;
• uj :=

∑j
i=1 γTi(β), 1 ≤ j ≤ q;

• e0 = e;
• ej is the endpoint of sTj (β[uj−1, uj ]), for 1 ≤ j < q.

We have that s(e, β)(0) = e and (p◦s(e, β) = β. Thus s is a path lifting function
as required. �
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5.6. Spaces over B and fibre homotopy equivalences. A space over B is a
map p : E → B. A map of spaces over B is a diagram:

D
f //

p

  @
@@

@@
@@

@ E
q

~~~~
~~
~~
~~

B

A homotopy over B is a map

D × I H //

p

""F
FF

FF
FF

FF
E

q

��~~
~~
~~
~~

B

where

D × {t}
H| //

p|

##G
GG

GG
GG

GG
E

q

����
��
��
��

B

is a map over B for all t ∈ I. Thus f : D → E is homotopy equivalent over B if
there exists g : E → D over B with f ◦ g, g ◦ f ∼ Id over B. The maps f and g are
called fibre homotopy equivalences.

Proposition 5.8. Let p : D → B, q : E → B be fibrations and let f : D → E be a
map over B. Suppose that f is a homotopy equivalence. Then f is a fibre homotopy
homotopy equivalence.

We will omit the proof, unfortunately.

5.7. Change of fibre. Let p : E → B be a fibration. Write Fb := p−1(b) for b ∈ B.
For b, b′ ∈ B we have Fb ≃ Fb′ . That is, for fibrations, all fibres are homotopy
equivalent. (By contrast, for fibre bundles all the fibres are homeomorphic.)

Theorem 5.9. Let p : E → B be a fibration, and suppose that B is path connected.
Any two fibres of p are homotopy equivalent. In general, a path lifting function along
a homotopy class rel. boundary of paths between b and b′ determines a homotopy
class of maps Fb → Fb′. Applied to loops, we get a homomorphism π1(B, b) →
π0(Aut(Fb)).

Proof. Let b, b′ ∈ B be Fb = p−1(b). Let ib : Fb → E be the inclusion. Let β : I → B

be such that β(0) = b and β(1) = b′. The HLP implies that there is a β̃ that fits
into the following diagram:

Fb × {0}
ib //

��

E

p

��
Fb × I //

β̃

66mmmmmmmm
I

β // B
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For each t ∈ I, we get a map β̃t : Fb × {t} → Fβ(t). In particular we obtain a map

β̃1 : Fb → Fb′ .

We claim that whenever β ∼ β′ rel. boundary, we have β̃1 ∼ β̃′1. Given the claim,

using the fact (̃cb)1 = Id and that (̃β · γ)1 = β̃1 ◦ γ̃1, we see that (̃β−1)1 is a

homotopy inverse β̃1.
It now remains to prove the claim. Let h : I×I → B be a homotopy from β ∼ β′

that fixes b, b′, that is h(1, s) = b′ and h(0, s) = b for all s ∈ I. Let β̃′ : Fb × I → E
cover β′ ◦ p2.

Write J2 = I × ∂I ∪ {0} × I ⊂ I2 = I × I. Note that there is a homeomorphism
of pairs (I2, J2) ∼= (I2, I × {0}). Thus with test space Y = Fb × I, we can apply
the HLP with the pair Fb×J2 → Fb× I2 instead of Fb× I×{0} → Fb× I2. Define
a map

f : Fb × J2 → E

(x, t, s) 7→


β̃(x, t) s = 0

β̃′ s = 1

ib(x) t = 0

Then apply the HLP to the following diagram:

Fb × J2 f //

��

E

p

��
Fb × I2

p2 //

h̃

66mmmmmmmm
I2

h // B

We obtain a map h̃ : Fb × I2 → E. The restriction h̃|Fb×{1}×I : Fb × I → E is a

homotopy β̃1 ∼ β̃′1, as required. �

5.8. Examples: Hopf fibrations and homogeneous spaces. Here are some
important examples of fibrations. First, the Hopf fibrations are:

S0 → Sn → RPn

S1 → S2n+1 → CPn

S3 → S4n+3 → HPn

These are given by expression the spheres as elements of Fn+1 with norm one, and
then considering a point in these coordinates as the same numbers in homogeneous
coordinates for the projective space. For n = 1, the Hopf fibrations reduce to:

S0 → S1 → S1

S1 → S3 → S2

S3 → S7 → S4

There is also an octonian fibration S7 → S15 → S8, but there are no higher
octonian versions of the Hopf fibrations.

Now we consider homogeneous spaces, which can produce fibre bundles.



MAT8232 ALGEBRAIC TOPOLOGY II: HOMOTOPY THEORY 24

Definition 5.10. A map p→ B has a local section at b ∈ B if there is U ∋ b open
and s : U → E with p ◦ s = i where i : U → B is the inclusion.

Any fibre bundle has a local section for all b ∈ B. Let G be a topological group,
and let H ≤ G be a closed subgroup. We will consider the left cosets G/H. This
coset space is sometimes called a homogeneous space.

Lemma 5.11. If p : G→ G/H has a local section at e, then it has a local section
for all points gH ∈ G/H.

Proof. Let e ∈ U be the open set and let s : U → G be the local section. Given
x = gH ∈ G/H, the translate gU is an open set containing x. Define

s : gU → G
gg′H 7→ gs(g′H)

where g′H ∈ U . This defines the desired local section. �
Now we see that a local section at the identity is in fact enough to prove that a

map is a fibre bundle.

Lemma 5.12. Let G be a topological group, let K ≤ H ≤ G be closed subgroups.
Suppose that G→ G/H has a local section. Then

H/K → G/K
p′−→ G/H

is a fibre bundle, where gK 7→ gH for all g ∈ G.

Proof. Let {Uα} be an open cover of G/H. By assumption we have a local section
sα : Uα → G for every α.

Define maps
ψα : Uα ×H/K → (p′)−1(Uα) ⊆ G/K

(gH, hK) 7→ sα(gH)hK

and
θα : (p

′)−1(Uα) → Uα ×H/K
gK 7→ (gH, (sα(gH))−1gK)

We claim that these are continuous maps inverse to one another, and therefore are
homeomorphisms. �

Now we move on to considering concrete examples. Recall that O(n) denotes the
orthogonal group of n× n matrices A such that AAT = ATA = Id. Such matrices

can be considered as living in Rn2
, and with the subspace topology O(n) is in fact

a compact manifold and a topological group. There is an inclusion O(k) ⊂ O(n),

with k < n, where A 7→
(
A 0
0 In−k

)
where In−k denotes the size n − k identity

matrix. We will show that O(k) → O(n) → O(n)/O(k) is a fibre bundle. In fact
we will prove a more general statement.

Definition 5.13. A k-frame in Rn is an ordered orthonormal set of k-vectors
{v1, . . . , vk} ⊂ Rn (i.e. vi · vj = δij .) Define Vk,n = {k-frames in Rn}. This can

be considered as a subset of Rnk, and with the subspace topology this becomes a
compact manifold, called the Stiefel manifold Vk,n.
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Lemma 5.14. There is a homeomorphism O(n)/O(n− k) ≃−→ Vk,n.

Proof. Define θ : A 7→ {v1 = Aen−k+1, . . . , vk = Aen}, where ei is the ith standard
basis vector. Since A is orthogonal,{v1, dots, vk} is an orthonormal set. Moreover

θ

((
B 0
0 Ik

)
A

)
= θ(A)

for any B ∈ O(n− k). Therefore θ descends to a well-defined map θ : O(n)/O(n−
k)→ Vn,k. If A,B have the same last k columns, then

A−1B = ATB =

(
C 0
0 Ik

)
,

which implies that θ is injective. Also note that θ is surjective. A continuous
bijection from a compact space to a Hausdorff space is a homeomorphism. �

Proposition 5.15. For 0 ≤ k ≤ l ≤ n

O(n− k)/O(n− l)→ O(n)/O(n− l) p−→ O(n)/O(n− k),

or equivalently

Vl−k,n−k → Vl,n → Vk,n,

is a fibre bundle.

Proof. We will show that there is a local section of Vn,n → Vk,n, where the map
sends an n-frame to the last k-vectors, at e = O(n−k). That is, we need an open set
U around e and a map s : U → O(n) such that p◦ s = Id. Define r((w1, . . . , wk)) =
(e1, . . . , en−k, w1, . . . , wk). Note that r(en−k+1, · · · , en) = (e1, . . . , en). There exists
an open set U ⊆ Vk,n around (en−k+1, . . . , en) with r(u) nondegenerate for all u ∈
U . Now for (v1, . . . , vk) ∈ U , take r(v1, . . . , vk) = e1, . . . , en−k, v1, . . . , vk, and apply
the Gram-Schmidt process to (vk, . . . , v1, en−k+1, . . . , e1), to obtain an orthonormal
set vk, . . . , v1, e

′
n−k+1, . . . , e

′
1. This gives an element (e′1, . . . , e

′
n−k+1, v1, . . . , vk) ∈

Vn,n. This completes the construction of the desired local section. �

Some key examples of Stiefel manifolds are Vn,n ∼= O(n) and V1,n ∼= Sn−1. Thus
as special cases we have fibre bundles

O(m)→ O(m+ 1)→ Sm

and

Sn−ℓ ∼= V1,n−ℓ+1 → Vℓ,n → Vℓ−1,n.

We will use these fibre bundles for homotopy computations later.
One more interesting example involved the Grassmannian. The Grassmannian

Gn,k is the set of k-dimensional vector subspaces of Rn. This can also be topologised
and becomes a manifold. There is a forgetful mapping π : Vk,n → Gk,n, which is
also a fibre bundle with fibre Vk,k. This fibre bundle is an exercise.

6. Exact sequences in homotopy sets and homotopy groups

This section was typed by Nima Hoda.
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6.1. Notation review/taking basepoints seriously. We recall that the spaces
we consider are, in general, based and compactly generated. We base the interval
(I, ∗) = ([0, 1], {1}) at the point 1. The reduced cone of a space X, then, is the
smash product X ∧ I. The reduced suspension ΣX of a space X is X ∧ S1. For a
space Y , we let Y+ denote the space (Y ⊔ {∗}, ∗). Note the identities

X ∧ Y+ = (X × Y )/(∗ × Y )

and
X+ ∧ Y+ = (X × Y )+.

We call X ∧ I+ the reduced cylinder of X. Note that a map X ∧ I+ → Y is a based
homotopy.

For a based map f : X → Y , we redefine Nf as the pullback of f and the map

Y I → Y sending γ to γ(1) (rather than γ(0)). That is,

Nf = {(x, γ) ∈ X × Y I | f(x) = γ(1)}.
Henceforth all cofibrations and fibrations are based and all basepoints of spaces

are nondegenerate.

Definition 6.1. We say that the basepoint of X is non-degenerate if ∗ → X is a
cofibration.

Remark 6.2. The map p : E → B is a fibration if and only if it is an unbased
fibration and p(∗E) = ∗B.

Remark 6.3. The map i : A → X is a cofibration if and only if it is an unbased
fibration and p(∗E) = ∗B.

Remark 6.4. The map i : A→ X is a cofibration if and only ifMi = X∪i (A∧I+)
is a retract of X ∧ I+.

From now on we will work without comment in the category K∗ of compactly
generated spaces with nondegenerate basepoints.

6.2. Exact sequences of mapping sets.

Definition 6.5. A sequence of functions of based sets

A
f−→ B

g−→ C

is exact if f(A) = g−1(∗C).

Theorem 6.6. Let p : E → B be a fibration, where B is path connected. Let
F = p−1(∗B) be the fibre. Let Y be any space. Based homotopy classes of maps
induce an exact sequence

[Y, F ]
i∗−→ [Y, F ]

p∗−→ [Y,B].

Proof. Take [g] ∈ [Y, F ]. Then

p∗ ◦ i∗([g]) = p ◦ i ◦ g : Y → B

y 7→ ∗B
and so i∗([Y, F ]) ⊆ p−1

∗ ([c∗B ]).
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Now, take [f ] ∈ p−1
∗ ([c∗B ]). So f : Y → E and p∗([f ]) = [p ◦ f ] = [c∗B ], i.e.,

p ◦ f : Y → B is homotopic to c∗B . Let G : Y × I → B be a homotopy witnessing
p ◦ f ≃ c∗B . Now, define H : Y × I → E via the homotopy lifting property, as in
the following commutative diagram.

Y × {0}
f //

i0
��

F ×B
p

��
Y × I

G
//

H
99s

s
s

s
s

B

Then p ◦H(y, 1) = G(y, 1) = ∗B so H(Y, 1) ⊆ F . So y 7→ H(y, 1) can be restricted
to a map f ′ : Y → F . But H(y, 0) = f(y) so we have f ≃ i ◦ f ′, i.e., [f ] = i∗([f

′])
and so [f ] ∈ i∗([Y, F ]). �
Theorem 6.7. Let i : A→ X be a cofibration and let q : X → X/A be the quotient
map to the cofibre. If Y is path connected then

[X/A, Y ]
q∗−→ [X,Y ]

i∗−→ [A, Y ]

is exact.

Proof. We have i∗q∗([g]) = [g ◦ q ◦ i] = [c∗] and so q∗([X/A, Y ]) ⊆ (i∗)−1([c∗]).
Now, suppose f : X → Y is such that f |A = f ◦ i : A → Y is nullhomotopic, i.e.,
[f ] ∈ (i∗)−1([c∗]). Let G : A×I → Y be nullhomotopy showing f |A ≃ c∗ and extend
it to H : X × I → Y using the homotopy extension property as in the following
commutative diagram.

A
i //

i0

��

X

i0

��

f

{{ww
ww
ww
ww

Y

A× I

G
;;xxxxxxx

i×id
// X × I

H
ccG
G
G
G

The map g : X → Y given by g(x) = H(x, 1) satistfies g(a) = H(a, 1) = G(a, 1) = ∗
for all a ∈ A and so descends to a map g′ : X/A→ Y . But H(x, 0) = f(x) and so
[f ] = [g] = q∗([g′]) ∈ q∗([X/A, Y ]). �
6.3. Fibration and cofibration exact sequences. Any map f : X → Y factors
through the fibration ν : Nf → Y : (x, γ) 7→ f(x) via the homotopy equivalence

X
≃−→ Nf : x 7→ (x, cf(x)). Letting Ff be the fibre of ν, we may similarly turn

Ff → Nf into a fibration and continue in this way to obtain a sequence associated
to f : X → Y .

Definition 6.8. For a map f : X → Y , the fibre Ff of Nf → Y is called the
homotopy fibre of f .

Remark 6.9. We may replace Nf → Y in the definition of homotopy fibre with
any fibration Z → Y through which f factors via a homotopy equivalence. The
resulting fibre F of Z → Y will be homotopy equivalent to Ff . To see this, note
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that Nf → Y factors through f via the homotopy inverse p1 : Nf → X of ν. So, by
Proposition 5.8, Z → Y and Nf → Y are fibre homotopy equivalent over Y and it
follows that F and Ff homotopy equivalent.

Proposition 6.10. Let F
i−→ E

p−→ B be a fibre sequence. Then the homotopy fibre
Fi of i is homotopy equivalent to ΩB.

With cofibrations we can do something similar. The homotopy cofibre of a map
f : A→ X is the cofibre of A→Mf , i.e., the mapping cone Cf of f .

Proposition 6.11. Let A
i−→ X

q−→ X/A be a cofibre sequence. Then the homotopy
cofibre Cq of q is homotopy equivalent to ΣA.

Proof of Proposition 6.10. Let ν : E
≃−→ Np be the map e 7→ (e, cp(e)), where

Np = E ×p B
I = {(e, γ) ∈ E ×BI | γ(1) = p(x)}.

Let ρ : Np → B be given by ρ(e, γ) = γ(0). Then ν is a homotopy equivalence, ρ is
a fibration and ρ ◦ ν = p. The fibre of ρ is

Fp = {(e, γ) | γ(0) = ∗B, γ(1) = p(e)}.

Recall the path space fibre sequence ΩB → PB
γ 7→γ(1)−−−−−→ B and note that

Fp
p2 //

p1
��

PB

γ 7→γ(1)
��

E
p // B

is a pull back square. Then, by Lemma 5.2, p1 : Fp → E is a fibration and we see
that its fibre is ΩB.

Now, ν is a map over B from the fibration p to the fibration ρ, so by Propo-
sition 5.8, ν is a fibre homotopy equivalence over B. It follows that ν|F→Fp is a
homotopy equivalence. We have the following commutative diagram

Fi

��

// Ni

≃p1
��

(f,γ) 7→γ(1)

  A
AA

AA
AA

F
i //

≃ν|F
��

E

ΩB // Fp

>>~~~~~~~~

where Ni → E and Fp → E are fibrations. We again apply Proposition 5.8 to
obtain that the map Fi → ΩB between their fibres is a homotopy equivalence. �
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In the following diagram the right triangle commutes and the left triangle com-
mutes up to homotopy.

ΩX

χ→(∗,χ) !!C
CC

CC
CC

CC
−Ωf // ΩY

≃
��

// Ff
p1 // X

f // Y

Fp1

π

>>||||||||

Applying the loop functor to this sequence or extending it to the left we obtain
two equivalent sequences as seen in the commutative diagram

Ω2Y

τ

��

// ΩFf

∼=
��

// ΩX
Ωf // ΩY

Ω2Y // FΩf
// ΩX

Ωf // ΩY

where τ switches the loop coordinates (s, t) 7→ (t, s).
This enables us to iterate the following procedure: (1) take homotopy fibre; (2)

Show the homotopy fibre is homotopy equivalent, with an appropriate homotopy
commutative diagram, to a space that is an iterated loop space of X, Y of Ff . We
construct the fibre sequence.

Definition 6.12. So, for a map f : X → Y , we obtain a sequence of maps

· · · → Ω2Ff
Ω2p1−−−→ Ω2X

Ω2f−−→ Ω2Y
Ωι−→ ΩFf

Ωp1−−→ ΩX
Ωf−−→ ΩY

ι−→ Ff
p1−→ X

f−→ Y

called the fibre sequence generated by f . Here

Ff = {(x, γ) ∈ X ×f PY | f(x) = γ(1), γ(0) = ∗Y }
and

(−Ωf)(γ)(t) = (f ◦ γ)(1− t).
For each pair of adjacent maps, the first is the inclusion of the homotopy fibre of
the next, up to homotopy equivalence. Furthermore, any such sequence of maps
ending with f is homotopy equivalent to the fibre sequence. That is, the fibre
sequence is unique up to homotopy equivalence.

Proposition 6.13. For any (based) space Z,

(1) [X,ΩX] = [ΣZ,X] is a group.
(2) [Z,Ω2X] = [Σ2Z,X] is an abelian group.

Theorem 6.14. For any based space Z, the fibre sequence induces an f : X → Y
induces an exact sequence

· · · → [Z,Ω2Ff ]→ [Z,Ω2X]→ [Z,Ω2Y ]→
→ [Z,ΩFf ]→ [Z,ΩX]→ [Z,ΩY ]→
→ [Z,Ff ]→ [Z,X]→ [Z, Y ]

of based sets and of groups left of [Z,ΩY ] and of abelian groups left of [Z,Ω2Y ].

Proof. This follows from Theorem 6.6 and the fibre sequence. �
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6.3.1. Cofibration version. Let f : X → Y be a based map. The homotopy cofibre
of f is the (based) mapping cone Cf . The inclusion i : Y → Cf is a cofibration so
we have the cofibre sequence

Y
i−→ Cf → Cf/Y ∼= ΣX.

Since Ci is the homotopy cofibre of i, we have Ci ≃ Cf/Y ∼= ΣX. Moreover,
Cf → Ci is a cofibration with cofibre Ci/Cf

∼= ΣY . We get the following diagram

X
f // Y

i // Cf
//

!!C
CC

CC
CC

C
ΣX

−Σf // ΣY

Ci

∼=

OO ==zzzzzzzzz

where (−Σf)(x∧ t) = f(x)∧ (1− t) and where the left triangle commutes and the
right triangle commutes up to homotopy.

We may continue this process starting from Σf rather than f . We may also apply
the functor Σ to this sequence but the two are equivalent up to τ : Σ2X → Σ2X
which switches the coordinates of Σ2.

ΣX
Σf // ΣY

��

// CΣf

∼=
��

// ΣX

τ

��
ΣX // ΣY // ΣCf

// Σ2X

Definition 6.15. Iterating this process we get the cofibre sequence

X
f−→ Y

i−→ Cf
π−→ ΣX

−Σf−−−→ ΣY
−Σi−−→ ΣCf

−Σπ−−−→ Σ2X
Σ2f−−→ Σ2Y

Σ2i−−→ Σ2Cf
Σ2π−−→ · · ·

generated by f : X → Y .

Theorem 6.16. For any based space Z,

· · · → [Σ2Cf , Z]→ [Σ2Y, Z]→ [Σ2X,Z]→
→ [ΣCf , Z]→ [ΣY,Z]→ [ΣX,Z]→
→ [Cf , Z]→ [Y, Z]→ [X,Z]

is an exact sequence of based sets, of groups left of [ΣX,Z] and of abelian groups
left of [Σ2X,Z].

Definition 6.17. Let X be a (based) space and let n ≥ 0. The nth homotopy
group of X is

πn(X) = [Sn, X],

where Sn is the (based) n-sphere. We have πn(X) = πn−1(ΩX) = π0(Ω
nX). When

n = 0, πn(X) is just a set.
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6.3.2. Relative homotopy groups. Let A ⊆ X (based subspace). Then the homo-
topy fibre of the inclusion A→ X is

P (X; ∗, A) = {γ ∈ PX | γ(1) ∈ A}.

Definition 6.18. The nth relative homotopy group of (X,A) is

∂n(X,A) = πn−1(P (X; ∗, A), c∗) = π0(Ω
n−1P (X; ∗, A)).

This is a group if n ≥ 2 and an abelian group if n ≥ 3.

One can think of πn(X,A) as the set of (based) homotopy classes [(Dn, Sn−1), (X,A)].

6.4. Long exact sequence in homotopy groups. Let A ⊆ X be a (based)
subspace and i : A → X its inclusion map. Then, as Fi = P (X; ∗, A), the fibre
sequence generated by i is

· · · → Ω2A
Ω2i−−→ Ω2X

Ωι−→ ΩP (X; ∗, A) Ωe1−−→ ΩA
Ωi−→ ΩX

ι−→ P (X; ∗, A) e1−→ A
i−→ X.

So applying the functor [S0,−] we obtain an exact sequence

· · · → π2(A)→ π2(X)→ π2(X,A)
∂−→ π1(A)→ π1(X)→ π1(X,A)

∂−→ π0(A)→ π0(X)

where ∂ restricts (based map of pairs) (Dn, Sn−1)→ (X,A) to Sn−1 → A.

6.5. Long exact sequence of a fibration. Now, let F
i−→ E

p−→ B be a fibre

sequence with B path connected. Let ϕ :
≃−→ Fp be the homotopy equivalence over

E given by ϕ(e) = (e, c∗) ∈ Fp, where Fp = E ×p PB is the homotopy fibre of p.
We learnt in the last section that applying the [S0,−] functor to the fibre se-

quence

· · · → Ω2F → Ω2E → ΩFi → ΩF → ΩE → Fi → F → E

generated by the inclusion Fi → F we obtain an exact sequence

· · · → π2(F )→ π2(E)→ π2(E,F )
∂−→ π1(F )→ π1(E)→ π1(E,F )

∂−→ π0(F )→ π0(E).

On the other hand, applying [S0,−] to the fibre sequence

· · · → Ω2Fp → Ω2E → Ω2B → ΩFp → ΩE → ΩB → Fp → E

generated by p we have the exact sequence

· · · → π2(Fp)→ π2(E)→ π2(B)→ π1(Fp)→ π1(E)→ π1(B)→ π0(Fp)→ π0(E).

However, the two fibre sequences are equivalent up to homotopy as the diagram

· · · // Ω2E

��

// ΩFi

−Ωp
��

// ΩF

Ωϕ

��

// ΩE // Fi

−p

��

// F

≃
��

// E

· · · // Ω2E // Ω2B // ΩFp
// ΩE // ΩB // Fp

// E,
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where p(γ) = p · γ, commutes up to homotopy. So, applying [S0,−] we get

πn+1(F )

∼=
��

// πn+1(E) // πn(Fi)

��

// πn(F )

∼=
��

// πn(E)

πn+1(Fp) // πn+1(E) // πn+1(B) // πn(Fp) // πn(E)

to which we may apply the 5-lemma to conclude that the middle arrow is also an
isomorphism.

So, we may replace πn(Fi) with πn+1(B) in the top sequence to obtain the long
exact sequence

· · · → π2(F )→ π2(E)→ π2(B)→ π1(F )→ π1(E)→ π1(B)→ π0(F )→ π0(E)→ π0(B) = {∗}
of the fibration p : E → B.

Example 6.19. Recall the Hopf fibre sequence S1 → S3 → S2. Then we obtain
the long exact sequence

· · · → π2(S
1)→ π2(S

3)→ π2(S
2)→ π1(S

1)→ π1(S
3)→ π1(S

2)→ {∗}.
Using the fact that π1(S

1) ∼= Z and that πn(S
1) = 0 for n > 1 we may use this

long exact sequence to show that π2(S
2) = Z and that πn(S

3) = πn(S
2) for n > 2.

6.6. Example: orthogonal groups. Recall that we have a fibration

O(m)→ O(m+ 1)→ Sm

Since πi(S
m) = 0 for 0 < i < m, the long exact sequence in homotopy groups

of the fibration implies that πi(O(m)) ∼= πi(O(m + 1)) for i < m − 1, and that
πm−1(O(m)) → πm−1(O(m + 1)) is surjective. Thus, for i fixed, πi(O(m)) is
constant for m sufficiently large. Define

O := colimmO(m).

The homotopy groups of O(m) stabilise, so the homotopy groups of the colimit are
the homotopy groups of O(m) form sufficiently large. In fact, the homotopy groups
of O are 8-periodic, Ω8O ≃ O, by the Bott periodicity theorem, and these homotopy
groups are given by: Z/2,Z/2, 0,Z, 0, 0, 0,Z. The nonzero groups are related to the
Hopf bundles. These homotopy groups are also related to the classification of vector
bundles on spheres.

6.7. Aside on H-spaces. Write j : Y → Y × Y , for i = 1, 2, y 7→ (y, ∗) and
y 7→ (∗, y) respectively.

Suppose that there is a map

m : Y × Y → Y

such that

mj1 ∼ Id ∼ mj2 : Y → Y.

Then (Y,m) is an H-space.
If in addition

m ◦ (m× Id) ∼ m ◦ (Id×m) : Y × Y × Y → Y
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then (Y,m) is a homotopy associative H-space. If moreover there is a map

i : Y → Y

such that

m ◦ (Id, i) ∼ ∗ ∼ m(i, Id) : Y → Y

i.e. y 7→ m(y, i(y)). Then (Y,m, i) is a grouplike space.
(Also, (Y,m) is homotopy commutative if

Y × Y → Y
(x, y) 7→ m(y, x)

is homotopic to m.
If (Y,m) is a grouplike space, then [X,Y ] has a group structure. For any space

X, ΩX is a grouplike space. We will see later that recognising a space a loop space
of something else can be extremely useful in homotopy theory.

6.8. Change of basepoint. Note that one can consider elements of πn(X,x) as
homotopy classes of maps [(Sn, ∗), (X,x)]. Since the inclusion ∗ → Sn is a cofibra-
tion, by Lemma 5.6 we have a fibration

p : XSn → X

given by evaluation at the basepoint. The fibre consists of based maps, and we can
identify π0(Fx) = πn(X,x), since a path in Fx corresponds to a based homotopy
of maps Sn → X. Now let ξ : I → X be a path in X with ξ(0) = x and ξ(1) =
x′. Since XSn → X is a fibration, the path lifting function induces a homotopy

equivalence ξ̃1 : Fx → Fx′ . This map induces a bijection:

π0(Fx)↔ π0(Fx′).

We claim that, using the identifications with πn(X,x) and πn(X,x
′), this is an

isomorphism of groups. We have to see that this map is a homomorphism.
For based maps f, g : Sn → X, we can consider the composition

f + g : Sn → Sn ∨ Sn f∨g−−→ X ∨X ∇−→ X,

with the first map given by pinching the equator to a point. This composition
defined the addition on πn(X,x). Since ∗ → Sn ∨ Sn is a cofibration, as above we
have a fibration XSn∨Sn → X. We have a map of fibrations

XSn∨Sn //

��

XSn

��
X

= // X.

The fibre of the left fibration is Fx × Fx. The diagram induces a map of fibres
Fx×Fx → Fx, which on π0 induces the additionm : πn(X,x)×πn(X,x)→ πn(X,x).
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Moreover, the map on fibres is natural, so we have a commutative square

Fx × Fx
//

��

Fx

��
Fx′ × Fx′ // Fx′ .

On π0, this induced the desired property that the change of basepoint map is a
homomorphism. Since it is a bijection, it is an isomorphism.

With a little more work, we could prove the following theorem.

Theorem 6.20. Let f : (X,A) → (Y,B) be a map of pairs and let α : I → A be
a path with α(0) = a and α(1) = a′. Then we have a commutative diagram with
vertical isomorphisms:

πn(X,A, a)
f∗ //

α̃1

��

πn(Y,B, f(a))

f̃◦α1
��

πn(X,A, a
′)

f∗ // πn(Y,B, f(a
′))

Suppose moreover that h : f ∼ f ′ is a homotopy of maps of pairs f : (X,A) →
(Y,B). Let h(a) : I → Y be the path given by h(a)(t) = h(a, t). Then there is a
commutative diagram with a horizontal isomorphism:

πn(X,A, a)

f∗vvnnn
nnn

nnn
nnn f ′

∗

((QQ
QQQ

QQQ
QQQ

Q

πn(Y,B, f(a))
h̃(a)1 // πn(Y,B, f

′(a)).

Corollary 6.21. A homotopy equivalence of spaces/pairs induces isomorphisms
on all homotopy groups (even if not a based homotopy equivalence).

In the next section, we will prove a remarkable converse to this statement for
CW complexes.

6.9. Action of fundamental group on higher homotopy groups. We saw
above that a path ξ : I → X, with γ(0) = x and γ(1) = x′ induces a map on the
fibres Fx, Fx′ of the fibration XSn → X.

ξ̃1 : π0(Fx)→ π0(Fx′).

With x = x′, ξ represents an element of π1(X,x), and we get a map

ξ̃1 : πn(X,x)→ πn(X,x).

This induces a map

π1(X,x)→ Aut(πn(X,x)).

With this action extended linearly, for n ≥ 2, πn(X,x) becomes a module over the
group ring Z[π1(X,x)]. When applied with n = 1, this does not extend linearly,
and gives the conjugation action.
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Recall that for n > 2, πn(X,x) ∼= πn(X̃, x̃). One can think of the action of
π1(X,x) as the action of the deck transformations on the universal covering space

X̃.
For example, for the space S1 ∨ S2, we have π2(S

1 ∨ S2) ∼= Z[Z]. It is finitely
generated as a module over Z[Z] = Z[π1(S1 ∨ S2)] = Z[π1(S1)], but infinitely
generated as an abelian group.

7. The HELP lemma and its consequences

The main goal of this section is to prove Whitehead’s theorem.

Theorem 7.1. Let f : X → Y be a map between CW complexes X,Y that in-
duces isomorphisms f∗ : πi(X) → πi(Y ) for every i ≥ 0. Then f is a homotopy
equivalence.

Consider the spaces S2 × RP3 and S3 × RP2. These spaces have isomorphic
homotopy groups for all i. However this isomorphism cannot be induced by any
map. One could try to see this directly, or if one believes Whitehead’s theorem,
then there cannot exist such a map, for the spaces are not homotopy equivalent,
as can be seen by computing that the second integral homology groups differ:
H2(S

2 × RP3;Z) ∼= Z whereas H2(S
3 × RP2;Z) = 0.

7.1. The HELP lemma. Whitehead’s theorem will follow quite easily once we
have established the following technical lemma, and the HELP (homotopy extension
and lifting property) lemma that follows quite easily from this technical lemma.

Definition 7.2 (n-equivalence). We say that a map e : Y → Z is n-connected if
e∗ : πq(Y, y)→ πq(Z, e(y)) is an isomorphism for q < n and a surjection for q = n.
The map e is said to be a weak equivalence if e is an n-equivalence for all n.

In the following lemma and its proof, we will consider the unreduced cone CX =
X×I/X×{1}. Also, let f, f ′ : (X,A)→ (Y,B) be maps of pairs such that f = f ′ on
A. We say that f is homotopic to f ′ rel. A if there is a homotopy h : X×I → Y such
that h(a, t) = f(a) = f ′(a) for all a ∈ A, t ∈ I. Then we can consider the homotopy
groups πn+1(X,x) as relative homotopy classes of maps (CSn, Sn)→ (X,x).

Lemma 7.3 (Technical lemma). Let e : Y → Z be a map. The following are
equivalent.

(i) For any y ∈ Y , the map e∗ : πq(Y, y) → πq(Z, e(y)) is an injection for q = n
and a surjection for q = n+ 1.

(ii) Given f : CSn → Z, g : Sn → Y and h : Sn × I → Z, such that f |Sn = h ◦ i0
and e ◦ g = h ◦ i1, there exist maps g̃, h̃ as in the diagram below making it
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commute:

Sn i0 //

��

Sn × I

��

h

zzuuu
uu
uu
uu
u

Sni1oo

g
||zz
zz
zz
zz
z

��

Z Ye
oo

CSn

f
==zzzzzzzz

i0
// CSn × I

h̃

ddI
I
I
I
I

CSn
i1

oo
g̃

bbD
D
D
D

(iii) The conclusion of (ii) holds for f |Sn = e ◦ g and h the constant homotopy.

Proof. (ii) implies (iii) trivially. Next we prove that (iii) implies (i). First consider
the case that n = 0 as a warm up. There just one map S0 → Z, which appears
as the restriction of f , e ◦ g, and h restricted to each time t. Here is the relevant
diagram:

S0 i0 //

��

S0 × I

��

h

{{vvv
vv
vv
vv
v

S0i1oo

g
}}{{
{{
{{
{{
{

��

Z Ye
oo

CS0

f
=={{{{{{{{

i0
// CS0 × I

h̃

ccH
H
H
H
H

CS0
i1

oo
g̃

aaC
C
C
C

Write g(−1) = y and g(1) = y′. Whenever e(y) and e(y′) can be connected by
a path in Z, we have a map f : CS0 = D1 → Z. The map g̃ : CS0 = D1 → Y .
Thus the map e∗ : π0(Y, y)→ π0(Z, e(y)) is injective. Now consider general n. Let
g : Sn → Y be a map based at y ∈ Y . This represents an element of πn(Y, y). The
map f says that e∗(g) ∈ πn(Z, e(y)) is null homotopic. Then the existence of the
map g̃ gives a null homotopy of g. This shows that

e∗ : πn(Y, y)→ πn(Z, e(y))

is injective. Next we want to show the required surjectivity. Let g be the constant
map g : Sn → {y} → Y . Then

f : (CSn, Sn)→ (Z, e(y))

is an element of πn+1(Z, e(y)). The map

g̃ : (CSn, Sn)→ (Y, y)

is an element of πn+1(Y, y) as remarked at before the statement of the lemma. This
shows that e∗ : πn+1(Y, y)→ πn+1(Z, e(y)) is surjective, which completes the proof
of (i) given (iii).

It now remains to prove that (i) implies (ii). So assume (i), namely that πn(Y )→
πn(Z) is injective and πn+1(Y )→ πn+1(Z) is surjective. The strategy of the proof
is as follows. Suppose we are given f : CSn → Z, g : Sn → Y , and h : Sn × I → Z.
First we will show that πn(F (e)) = 0. Then we will construct a map Sn → F (e)
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using f, g and h. Then, since this map is null homotopic, we can use the null

homotopy to show the existence of g̃ and h̃.
We begin by choosing basepoints carefully.

(i) Let ∗ ∈ Sn be a basepoint.
(ii) Let ⋄ ∈ CSn be the cone point.
(iii) Let y1 := g(∗).
(iv) Let z1 := e(y1).
(v) Let z0 := f(∗, 0).
(vi) Let z−1 := f(⋄).
For x ∈ Sn, let fx : I → Z be a path from f(x, 0) = h(x, 0) to z−1. Let hx : I → Z
be a path from h(x, 0) to h(x, 1) = e ◦ g(x).

Recall that the homotopy fibre of e is

F (e, y1) = {(y, ξ) ∈ Y × ZI | ξ(0) = z1 = e(y1) and e(y) = ξ(1)}.
The basepoint of F (e, y1) is w1 := (y1, cz1). The fibration sequence is

πn+1(Y, y1)
e∗−→ π(n+1)(Z, z1)→ πn(F (e, y1), w1)→ πn(Y, y1)

e∗−→ πn(Z, z1).

The assumptions (i) and exactness imply that πn(F (e, y1), w1) = 0. Next, define a
map

k0 : S
n → F (e, y1)
x 7→

(
g(x), hx · f−1

x · f∗ · h−1
∗

)
∈ Y × ZI .

The reader should check that the given path is indeed a path from e(g(x)) to
z1 = e(y1). Note that k0(∗) is not the basepoint w1, so k0 is not a based map.
However h∗ · f−1

∗ · f∗ · h−1
∗ is homotopic to a constant map, so k0(∗) is connected

to the basepoint by a path in F (e). Then the HEP for ∗ → Sn implies that k0 is
homotopic to a based map:

Sn k0 //

##H
H

H
H

H F (e, y1)

∗

OO

// F (e, y1)
I

p0

OO

Thus k0 is homotopic to a based map k̃0 ∈ πn(F (e, y1), w1) = 0. Since k̃0 is null
homotopic. Let

G : Sn × I → F (e, y1)

be a homotopy from k̃0 to the constant map cw1 . Write

G(x, t) = (g̃(x, t), ξ(x, t));

this defines g̃ and ξ. Note that g̃(x, 1) = y1 for all x. Define j : Sn× I × I → Z via
j(x, t, s) = ξ(x, t)(s). For each x ∈ Sn, the map j(x,−,−) is given by

cz1

cz1

e◦g̃x

hx·f−1
x ·f∗·h−1

∗
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We want a map h̃ : Sn × I × I that behaves as:

hx

e◦g̃x

h∗·f−1
∗

fx

This can be achieved by a reparametrisation of the square. Choose a suitable map
Θ: I2 → I2, and then

h̃ = j ◦ (Id×Θ): Sn × I2 → Z

gives the required homotopy h̃. �

The technical lemma will now be used to prove the HELP theorem.

Theorem 7.4 (HELP). Let (X,A) be a relative CW complex (start with a space A,
add cells to get the space X) of dimension ≤ n, let e : Y → Z be an n-equivalence.
Given f : X → Z, g : A → Y , and h : A × I → Z as in the diagram making it

commute, there are maps g̃, h̃ making the diagram commutes.

A
i0 //

��

A× I

��

h

||xx
xx
xx
xx
x

A
i1oo

g~~~~
~~
~~
~~

��

Z Ye
oo

X

f
??~~~~~~~~

i0
// X × I

h̃

bbF
F
F
F
F

X
i1

oo
g̃

``@
@
@
@

Proof. If e : Y → Z is an n-equivalence then πq(Y ) → πq(Z) is injective and
πq+1(Y ) → πq+1(Z) is surjective. Thus we can apply the technical lemma by
inducting on the cells of (X,A). Order the i cells for each i, and work in increasing
dimension of cells.

Let eq+1 be a (q + 1)-cell of (X,A). Suppose that the maps g̃, h̃ have been
defined on all previous cells in our ordering. Note that (eq+1, ∂eq) = (CSq, Sq).

Then let f |eq+1 be the f in the technical lemma, let h̃|∂eq+1 be the h from the
technical lemma, and let g̃|∂eq+1 be the g from the technical lemma.

Sn i0 //

��

Sn × I

��

h̃|∂eq+1

zzuuu
uu
uu
uu
u

Sni1oo

g̃|∂eq+1||zz
zz
zz
zz
z

��

Z Ye
oo

CSn

f |eq+1

==zzzzzzzz

i0
// CSn × I

h̃

ddI
I
I
I
I

CSn
i1

oo
g̃

bbD
D
D
D

Then there exist maps h̃ and g̃ as in the diagram, extending these maps to the cell
eq+1. This completes the induction step and therefore the proof. �
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7.2. Whitehead theorems. Whitehead’s theorems on CW complexes will now
follow relatively quickly from the HELP lemma. In the next theorem [−,−] denotes
unbased homotopy classes of maps.

Theorem 7.5 (Whitehead I). If X is a CW complex and e : Y → Z is an n-
equivalence, then

e∗ : [X,Y ]→ [X,Z]

is a bijection if dimX < n and is a surjection if dimX = n.

Proof. To show surjectivity, take (X, ∅) in the HELP theorem. That is, A = ∅.
The diagram of HELP reduces to:

Z Ye
oo

X

f
??~~~~~~~~

i0
// X × I

h̃

bbF
F
F
F
F

X
i1

oo
g̃

``@
@
@
@

That is, given f : X → Z, there is a map g̃ : X → Y and a homotopy from f to
e ◦ g̃ = e∗(g̃).

Next, to show injectivity, we apply HELP to (X×I,X×∂I), with h the constant
homotopy. Since the dimension of X × I is one more than that of X, we see why
injectivity holds only for dimX < n. The HELP diagram becomes

X × ∂I i0 //

��

X × ∂I × I

��

h

yysss
sss

sss
ss

X × ∂Ii1oo

g
{{vv
vv
vv
vv
v

��

Z Ye
oo

X × I

f
;;wwwwwwwww

i0
// X × I × I

h̃

eeK
K
K
K
K

X × I
i1

oo
g̃

ccH
H
H
H
H

That is, g represents two maps g0, g1 : X → Y , and f is a homotopy between e ◦ g0
and e ◦ g1. Then g̃ is a homotopy between g0 and g1. �

Now we are ready to prove the most well-known Whitehead theorem.

Theorem 7.6 (Whitehead II). An n-equivalence between CW complexes of di-
mension less than n is a homotopy equivalence. A weak equivalence between CW
complexes is a homotopy equivalence.

Proof. Suppose that e : Y → Z is either an n-equivalence for dimension of Y and
Z less than n, or e is an n equivalence for all n. Then e∗ : [Z, Y ] → [Z,Z] and
e∗ : [Y, Y ]→ [Y, Z] are both bijective. Start with Id ∈ [Z,Z]. Then by surjectivity
of the first e∗ there is a map f : Z → Y with e ◦ f ∼ Id. Then this implies that
e◦f◦e ∼ e : Y → Z. By injectivity of the second e∗, this means that f◦e ∼ Id. Thus
f and e are homotopy inverses, and e is a homotopy equivalence as claimed. �
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7.3. Cellular approximation. As another pay off for the work in establishing
the HELP lemma, we can also prove that maps between CW complexes can be
approximated by cellular maps.

Definition 7.7 (Cellular). A map f : X → Y between CW complexes X,Y is

cellular if f(X(n) ⊂ Y (n) for every n.

Recall that a pair (X,A) is said to be n-connected if the inclusion map A→ X
is an n-equivalence. A space X is n-connected if (X, ∗) is n-connected.

Lemma 7.8. A relative CW complex (X,A) with no m cells for m ≤ n is n-

connected. In particular (X,X(n)) is n-connected for any CW complex X.

Proof. Let f : (Iq, ∂Iq, Jq) → (X,A, a) represent an element of πq(X,A, a), for
q ≤ n. The image of f is compact so it hits finitely many cells. Induct on the
cells with decreasing dimension. Homotope f so that Iq misses the centre of each
cell er, with r > n, which can be achieved by smooth or simplicial approximation
and general position. Then homotopy f off er. By induction we arrange that
f(Iq) ⊂ A. �

Theorem 7.9 (Cellular approximation). Let f : (X,A)→ (Y,B) be a map between
relative CW complexes X,Y . Then f is homotopic to a cellular map.

Proof. The proof is again an induction proof. We induct on the skeleta X(k) of
X, for increasing k. First, the base case. Points of f(X(0) − A) are connected to

Y (0) by paths. This gives a homotopy from f |X(0) to a map g0 : X
(0) → Y (0). For

the induction step, suppose that we have defined a map gn : X
(n) → Y (n) and a

homotopy hn : f |X(n) ∼ ιn◦gn : X(n) → Y , where ιn : Y
(n) → Y (n+1) is the inclusion

of the n-skeleton.
We want to extend this to a cellular map gn+1 : X

(n+1) → Y (n+1) with a homo-
topy hn+1 : f |X(n+1) ∼ ιn+1 ∼ gn+1. We do this one cell at a time. Let j : Sn → X(n)

be the attaching map of a j̃ : Dn+1 → X, an (n + 1)-cell. By Lemma 7.8, ιn+1 is
an (n+ 1)-equivalence. We apply the HELP theorem:

Sn i0 //

��

Sn × I

��

h

zzuuu
uu
uu
uu
u

Sni1oo

gn◦j||yy
yy
yy
yy
y

��

Z Yιn+1

oo

Dn+1

f◦j̃
<<yyyyyyyy

i0
// Dn+1 × I

hn+1

ddI
I
I
I
I

Dn+1
i1

oo
gn+1

bbE
E
E
E

The HELP theorem yields the new gn+1 and hn+1 maps as required, for the new
cell. Inducting on the (n + 1)-cells of X yields the extension of the cellular map

to X(n+1), together with a homotopy hn+1 between gn+1 and the original map f
restricted to the (n + 1)-skeleton of X. This completes the proof of the cellular
approximation theorem. �
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8. Approximation by CW complexes

It will turn out to be very useful for proving several theorems in the near fu-
ture, to be able to approximate any space, or indeed pairs an triads, up to weak
equivalence, by a CW complex.

Theorem 8.1. For any space X, there is a CW complex ΓX and a weak equivalence
γ : ΓX → X. For any f : X → Y , there is a map Γf : ΓX → ΓY such that

ΓX
Γf //

γ

��

ΓY

γ

��
X

f // Y

commutes. If X is n-connected, then ΓX can be chosen so that there is one 0-cell
and no q-cells for 1 ≤ q ≤ n.

The proof is a “big construction,” so we would not hope that the resulting CW
complex is going to be easier to work with explicitly. However the approximation
by CW complexes will enable us to prove results about homotopy and homology
groups of spaces by proving them for weak equivalent CW complexes.

Proof. We want to construct ΓX as a colimit

X1
i1 //

γ1 !!C
CC

CC
CC

C X2
i2 //

γ2
��

X3
i3 //

γ3

}}{{
{{
{{
{{

· · ·
in−1 // Xn

in //

γn

tthhhh
hhhh

hhhh
hhhh

hhhh
hhhh

Xn+1
//

rrffffff
ffffff

ffffff
ffffff

ffffff
fff · · ·

X

with in : Xn → Xn+1 a cellular inclusion.
Assume that X is path connected, since we can repeat the construction given

below for each path component separately. The base case is X1 :=
∨

(q,j) S
q, q ≥ 1,

one sphere for each pair (j, q), where for a fixed natural number q, j : Sq → X runs
over a generating set for πq(X). The maps j determine a map γ1 : X1 → X, which
induces surjections on all homotopy groups. Inductively, suppose we have CW
complexes Xm such that im−1 : Xm−1 → Xm, γm : Xm → X with γm◦im−1 = γm−1

for m ≤ n, such that (γm)∗ : πq(Xm)→ πq(Xm) is surjective for all q and (γm)∗ is
a bijection for q < m.

Define

Xn+1 := Xn ∪
( ∨

(f,g)

(Sn ∧ I+)
)

where the wedge ranges over cellular maps (f, g) : Sn → Xn representing all possible
homotopy classes [f ], [g] ∈ πn(Xn) with [f ] ̸= [g] but [γn ◦ f ] = [γn ◦ g]. Recall that
a based homotopy is the same as a map from Sn ∧ I+. We identify (s, 0) ∈ Sn ∧ I+
with f(s) and (s, 1) ∈ Sn ∧ I+ with g(s). We have an inclusion map

in : Xn → Xn+1

of CW complexes. We have that (in)∗([f ]) = (in)∗([g]). We can therefore define a
new map γn+1 : Xn+1 → X, extending γn on Xn using the homotopies h : γn ◦ f ∼
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γn ◦ g to extend over the corresponding copy of Sn ∧ I+. Then

(γn+1)∗ : πq(Xn+1)→ πq(X)

is surjective for all q, and is bijective for q ≤ n, since we extended the previous
map, but we made all n-dimensional homotopy classes of Xn equal in Xn+1, if they
are equal in X. The n-skeleton is unchanged, so πq(Xn+1) = πq(Xn) for all q < n.

Recall that we define ΓX := colimXn. This is also a CW complex since all
the maps in the colimit construction are cellular. If X is n-connected, then the
construction, as promised, did not use any cells of dimension less that n.

Finally, we need to see existence and uniqueness of the map Γf .

[ΓX,ΓY ]↔ [ΓX,Y ]

is a bijection by the first Whitehead theorem. There is a map

ΓX
γX−−→ X

f−→ Y

and thus we obtain Γf : ΓX → ΓY by the bijection above. This Γf is unique up
to homotopy. �

There is also a relative version:

Theorem 8.2. Let (X,A) be a pair of spaces, and let γA : ΓA → A be a choice
of weakly equivalent CW complex. There exists a CW complex ΓX with a weak
equivalence γX : ΓX → X, such that ΓA ⊆ ΓX is a subcomplex, and the restriction
of γX to ΓA coincides with γA. Moreover, for any map of pairs f : (X,A)→ (Y,B),
there is an induced map

(ΓX,ΓA)
Γf //

(γX ,γA)
��

(ΓY,ΓB)

(γY ,γB)
��

(X,A)
f // (Y,B)

We will omit the proof of this theorem. The construction is again adding cells,
in a similar manner to the proof of the previous theorem.

We will want to prove a version of excision for homotopy groups, at least in a
certain range where it holds. This will be a key statement in our development of
the theory. A key first step in the homotopy excision theorem is the approximation
of excisive triads by CW triads, which we will do next.

Definition 8.3. An excisive triad (X;A,B) is a space X with subspaces A,B ⊆ X
such that X = IntA ∪ IntB. A CW triad (X;A,B) is a CW complex X with
subcomplexes A,B such that X = A ∪B.

Theorem 8.4. Let (X;A,B) be an excisive triad. Let C = A ∩ B. There is a
CW triad (ΓX; ΓA,ΓB) and a map γ : (ΓX; ΓA,ΓB) → (X;A,B) such that with
ΓC = ΓA ∩ ΓB, we have that

ΓC → C, ΓA→ A, ΓB → B, ΓX → X



MAT8232 ALGEBRAIC TOPOLOGY II: HOMOTOPY THEORY 43

are each weak equivalences. If (A,C) is n-connected, then (ΓA,ΓC) can be chosen
to have no q-cells for q ≤ n. Similarly for (B,C). As before, Γ is functorial and γ
is natural.

Proof. Start with γ : ΓC → C, and extend it to (ΓA,ΓC)→ (A,C) and (ΓB,ΓC)→
(B,C). Let ΓX = ΓA∪ΓC ΓB

γ−→ X; the map to X exists by the universal property
of push-outs. We need to show that γ : ΓX → X is a weak equivalence.

First, consider any two maps j : C → B and i : C → A. Form the double
mapping cylinder

M(i, j) = A ∪ C × I ∪B.

Lemma 8.5. Suppose that i : C → A is a cofibration and j : C → B is any map.
Then the collapse map M(i, j)→ A ∪C B is a homotopy equivalence.

To see the lemma, first we know that the collapse map Mi → A is a cofibre
homotopy equivalence under C.

C

}}||
||
||
||

��@
@@

@@
@@

@

Mi // A

Then the universal property of the pushout A ∪C B gives a map to M(i, j).

C //

��

����
��
��
��
��
��
��
�

B

��

""E
EE

EE
EE

EE
EE

EE
EE

EE
EE

EE

A / / A ∪C B

((RR
RRR

RRR
RRR

RR

Mi

≃

>>}}}}}}}}
// M(i, j) =M(i) ∪C B

The fact that the homotopy equivalence in the diagram is under C implies that
the induced map on the push outs in the diagram is a homotopy equivalence. This
completes the proof of the lemma.

Using the lemma, we can replace the CW triad (ΓX; ΓA,ΓB) by an excisive triad
(as ΓA,ΓB are subcomplexes, they are closed in ΓX so it is not an excisive triad).
Denote the subcomplex inclusions i : ΓC → ΓA, j : ΓC → ΓB, ΓX = ΓA ∪ΓC ΓB.
Take the double mapping cylinder as in the lemma, and then(

M(i, j); ΓA ∪ (ΓC × [0, 2/3)), (C × (1/3, 1] ∪ ΓB)
)
→ (ΓX; ΓA,ΓB)

is a homotopy equivalence of triads. Now, (ΓX; ΓA,ΓB) → (X;A,B) is a weak
equivalence of triads by the next more general theorem. The proof of approximation
of excisive triads is now complete, modulo the next theorem. �

Theorem 8.6. Suppose that (X;A,B)→ (X ′;A′, B′) is a map of excisive triads,
with C = A∩B and C ′ = A′∩B′, such that the maps induced by e, C → C ′, A→ A′

and B → B′ are all weak equivalences. Then X → X ′ is a weak equivalence.
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Proof. We need to solve the following diagram:

X
e // X ′

Sn

g

OO

// Dn+1

f

OO

g̃

bbF
F
F
F

where the top right triangle commutes up to homotopy. That is, we need a lift
g̃ : Dn+1 → X whose restriction to Sn is equal to g, and f ∼ e ◦ g̃ relative to Sn.
With g the trivial map, this solves surjectivity on πn+1. When g ∈ kerπq(e), this
solving this problem gives injectivity.

We may assume that there is an open subset Sn ⊂ U ⊂ Dn+1 such that g : Sn →
X is the restriction of a function ĝ : U → X with f |U = e ◦ ĝ. To see this, define

d : Dn+1 × I → Dn+1

(x, t) 7→

{
2x
2−t |x| ≤ 2−t

2
x
|x| |x| ≥ 2−t

2

Note that d0 = Id and d1(U) = Sn. Define U := {x | |x| > 1/2}, ĝ = g ◦ d1 and
f ′ = f ◦ d1. Then f ′ and ĝ satisfy the properties that f ′|U = e ◦ ĝ, ĝ|Sn = g, and
f ′ ∼ f . Therefore we can replace f by f ′. This completes the proof that we may
assume that there is an open subset Sn ⊂ U ⊂ Dn+1 such that g : Sn → X is the
restriction of a function ĝ : U → X with f |U = e ◦ ĝ.

Next, write

cA := g−1(Xr IntA) ∪ f−1(X ′rA′)

and
cB := g−1(Xr IntB) ∪ f−1(X ′rB′)

We have cA ∩ cB = ∅. To see this, first replace g by ĝ in the definitions to obtain:

ĉA := ĝ−1(Xr IntA) ∪ f−1(X ′rA′) ⊆ CA

and
ĉB := ĝ−1(Xr IntB) ∪ f−1(X ′rB′) ⊆ CB

We claim that ĉA ∩ ĉB = ∅. This claim implies that cA ∩ cB = ∅. Now we prove
the claim.

First ĝ−1(Xr IntA) ∩ ĝ−1(Xr IntB) consists of points of Sn that map to

(Xr IntA) ∩ (Xr IntB) = Xr(IntA ∪ IntB) = XrX = ∅.
Therefore ĝ−1(Xr IntA) ∩ ĝ−1(Xr IntB) = ∅. Similarly,

(X ′r IntA′) ∩ (X ′r IntB′) = X ′r(IntA′ ∪ IntB′) = X ′rX ′ = ∅.
Therefore

f−1(X ′r IntA′) ∩ f−1(X ′r IntB′) = ∅.
Since f−1(X ′rA′) ⊆ f−1(X ′r IntA′), and similarly for B′, we see that

f−1(X ′rA′) ∩ f−1(X ′rB′) = ∅.
It remains, without loss of generality, to investigate

ĝ−1(Xr IntA) ∩ f−1(X ′rB′) ⊂ ĝ−1(IntB) ∩ f−1(X ′rB′).
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We will show that the latter set is empty, to complete the proof of the claim. Recall
that we have the open set U ⊂ Dn+1 contains Sn, and we have the map ĝ : U →
X. Note that ĝ−1(

∫
B) is open. Suppose for a contradiction that ĝ−1(IntB) ∩

f−1(X ′rB′) is nonempty. We can therefore start with an element v ∈ ĝ−1(IntB)∩
f−1(X ′rB′), and then consider a small open set V containing v that is contained
in ĝ−1(

∫
B). Since v lies in the closure of f−1(X ′rB′), there is an element u ∈ V

in

ĝ−1(IntB) ∩ f−1(X ′rB′).

Then ĝ(u) ∈ IntB ⊂ B and f(u) /∈ B′. But f |U = e ◦ ĝ and e is a map of triads
therefore restricts to a map e : B → B′. Thus f(u) = e(ĝ(u)) and so f(u) ∈ B′.

This gives rise to a contradiction, thus ĝ−1(IntB) ∩ f−1(X ′rB′) = ∅ as desired.
This completes the proof of the claim that ĉA∩ĉB = ∅ and therefore that cA∩cB = ∅.

By subdivision of Dn+1 cells, and then further subdivision into small enough
cells, we can assume that no cell intersects both cA and cB. Define

KA := {cells σ | g(σ ∩ Sn) ⊆ IntA, f(σ) ⊆ IntA′}

and

KB := {cells σ | g(σ ∩ Sn) ⊆ IntB, f(σ) ⊆ IntB′}.

Note that Dn+1 = KA ∪KB. To see this, if σ does not intersect cA, then σ ⊂ KA,
while if σ does not intersect cB, then σ ⊂ KB. Therefore, since we subdivided so
that no cell intersects both cA and cB, it follows that every cell lies in at least one
of KA, KB, as required. Consider the following problem:

A ∩B e // A′ ∩B′

Sn ∩ (KA ∩KB)

g

OO

// KA ∩KB

f

OO

g

hhQ Q Q Q Q Q Q

The HELP theorem implies that there exists a map g : KA ∩ KB → A ∩ B as in
the diagram, and a homotopy

h : KA ∩KB × I → A′ ∩B′

with h : f ∼ e ◦ g a homotopy rel. Sn ∩KA ∩KB.
Now define

gA : KA ∩ (Sn ∪KB)→ A

by g on KA ∩ Sn and by g on KA ∩KB. These agree on the intersection by the
construction of g. Also define

f = e ◦ g : KA ∩ Sn → A′

By restricting we have a homotopy

hA : f |KA∩Sn∪KB
∼ e ◦ gA
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rel. Sn ∩KA. Then we apply the HELP theorem to the diagram:

KA ∩ (Sn ∪KB)
i0 //

��

(KA ∩ (Sn ∪KB))× I

��

hA

vvmmm
mmm

mmm
mmm

mm
KA ∩ (Sn ∪KB)

i1oo

gA
xxppp

ppp
ppp

ppp

��

A′ Ae
oo

KA

f

77ppppppppppppp

i0
// KA × I

h̃A

hhQ Q Q Q Q Q Q
KA

i1
oo

g̃A

ggN N N N N N N

to obtain a map g̃A : KA → A. Here we use that e : A→ A′ is a weak equivalence.
Similarly, we obtain a map g̃B : KB → B. These maps agree by construction on
KA ∩KB, and therefore induce maps

g̃A ∪ g̃B = g̃ : Dn+1 = KA ∪KB → X

and a homotopy h̃A ∪ h̃B : f ∼ e ◦ g̃ rel. Sn. This is the required maps to solve the
problems that show e : X → X is a weak equivalence, as desired. �

9. Homotopy excision

Definition 9.1. A map f : (A,C)→ (X,B) of pairs is an n-equivalence if

(f∗)
−1

(
im(π0(B)→ π0(X))

)
= im(π0(C)→ π0(A))

and
f∗ : πq(A,C)→ πq(X,B)

is a bijection for q < n and a surjection for q = n, for all basepoints ∗ ∈ C.

This section is about the homotopy excision, or Blakers-Massey theorem.

Theorem 9.2 (Homotopy excision). Let (X;A,B) be an excisive triad with C =
A ∩B. Suppose that (A,C) is (m− 1)-connected and (B,C) is (n− 1)-connected,
with m ≥ 2 and n ≥ 1. Then (A,C)→ (X,B) is an (m+ n− 2)-equivalence.

9.1. Consequences of homotopy excision. Before we prove the homotopy ex-
cision theorem, we investigate some of its main consequences.

Theorem 9.3. Let f : X → Y be an (n− 1)-equivalence between (n− 2)-connected
spaces, with n ≤ 2. The quotient map

q : (Mf,X)→ (Cf, ∗)
is a (2n− 2)-equivalence. In particular, Cf is (n− 1)-connected.

Proof. We define an excisive triad (Cf ;A,B) by taking A = Y ∪ (X× [0, 2/3]) and
B = (X × [1/3, 1])/X × {1}. Then C = A ∩ B = X × [1/3, 2/3]. The map q is
homotopic to the following sequence of maps:

(Mf,X)
≃−→ (A,C)

inc−−→ (Cf,B)
≃−→ (Cf, ∗)

The first and last maps are homotopy equivalences of pairs. We need to see that
the map inc is a (2n− 2)-equivalence. To see this, we will use homotopy excision.
First, the long exact sequence in homotopy groups of the pair (Mf,X), together
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with the fact that X is (n − 2)-connected, yields that (Mf,X) is an (n − 1)-
connected pair. Therefore (A,C) is (n − 1)-connected. On the other hand, the
cone CX is contractible, and X is (n − 2)-connected, so the long exact sequence
in homotopy groups of (CX,X) yields that (CX,X) is (n − 1)-connected. Then
(CX,X) ≃ (B,C), so (B,C) is (n−1)-connected. Then homotopy excision implies
that the map (A,C)→ (Cf,B) is an (2n− 2)-equivalence as required. �
Corollary 9.4. Let i : A→ X be a cofibration that is an (n−1)-equivalence between
(n− 2)-connected spaces. Then (X,A)→ (X/A, ∗) is a (2n− 2)-equivalence.

Proof. This follows from the previous theorem and the following diagram. Recall
that for cofibrations the vertical maps are homotopy equivalences.

(Mi,A)
q //

r ≃
��

(Ci, ∗)

≃
��

(X,A) // (X/A, ∗)

�
Now we come to a key result in homotopy theory, the Freudenthal suspension

theorem. Define the suspension homomorphism

Σ: πq(X) → πq+1(ΣX)
f 7→ f ∧ Id: Sq+1 = Sq ∧ S1 → X ∧ S1 = ΣX

Theorem 9.5 (Freudenthal suspension theorem). Let X be an (n − 1)-connected
space, with n ≥ 1. Then Σ is a bijection for q < 2n − 1 and a surjection for
q = 2n− 1.

Proof. Write C ′X := X ∧ I with I the pair (I, {0}), i.e. {0} as the basepoint of I.
Thus

C ′X = X × I/(X × {0} ∪ ∗ × I).
Represent a homotopy class in πq(X) by f : (Iq, ∂Iq)→ (X, ∗). Then f×Id : Iq+1 →
X × I induces a map

(Iq+1, ∂Iq+1, Jq)→ (C ′X,X, ∗)
Restricting to Iq × {1} gives f . If we quotient out by X × {1}, we obtain Σf . We
get a commutative diagram:

πq+1(C
′X,X, ∗)
∼=∂
��

ρ
((PP

PPP
PPP

PPP
P

πq(X)
Σ // πq+1(ΣX)

where the diagonal map ρ is induced by the quotient map that factors out X×{1}.
Since C ′X ≃ pt, we have that the vertical map ∂ is an isomorphism by the long
exact sequence of a pair. Next X → C ′X is a cofibration and an n-equivalence
between (n− 1)-connected spaces. Therefore ρ is a 2n-equivalence by the corollary
above. It follows that Σ is a bijection for q+1 < 2n and a surjection for q+1 = 2n,
as desired. �



MAT8232 ALGEBRAIC TOPOLOGY II: HOMOTOPY THEORY 48

Corollary 9.6. For all n ≥ 1, πn(S
n) ∼= Z, with the suspension map Σ: πn(S

n)→
πn+1(S

n+1) an isomorphism.

Proof. First recall from the Hopf fibration S1 → S3 → S2 and the associated long
exact sequence of a fibration that

0 = π2(S
3)→ π2(S

2)→ π1(S
1)→ π1(S

3) = 0

π2(S
2) ∼= π1(S

1) ∼= Z. Then consider Σ: π2(S
2) → π3(S

3). Here X = S2 is
1-connected so n = 2 in the Freudenthal theorem. Thus

Σ: πq(S
2)→ πq+1(S

3)

is an isomorphism for q < 2 · 2 − 1 = 3 and is a surjection for q = 3. Actually
π3(S

2) → π4(S
3) is a surjection Z → Z/2, but we do not yet have the machinery

to prove that πn+1(S
n) is nontrivial for n > 2. We will return to this later.

For higher spheres the isomorphism falls more easily within the range of the
Freudenthal theorem. �

The Freudenthal theorem allows us to define

πSq (X) = colimπq+n(Σ
nX)

The stable homotopy groups of X. The Freudenthal theorem guarantees that the
groups in the colimit eventually stabilise.

9.2. Proof of homotopy excision. Now we start on the proof of the homotopy
excision theorem. First we introduce triples of spaces (X,Y, Z). Note that this
means Z ⊆ Y ⊆ X, and is not a triad (X;A,B), which means X = IntA ∪ IntB
and so only in pathological situations is B ⊆ A.

Proposition 9.7. Let (X,Y, Z) be a triple of spaces. Then there is a long exact
sequence in homotopy groups

· · · → πq(Y, Z)→ πq(X,Z)→ πq(X,Y )→ πq−1(Y,Z)→ · · ·

Proof. Use the long exact sequences of the various pairs involved and chase dia-
grams heroically. All the rows and columns except for the middle row are exact,
and the diagram commutes. It follows from a diagram chase that the middle row



MAT8232 ALGEBRAIC TOPOLOGY II: HOMOTOPY THEORY 49

is exact.

0

��

// πq(Z) //

��

πq(Z) //

��

0

��
πq+1(X,Y ) //

��

πq(Y ) //

��

πq(X) //

��

πq(X,Y )

��
πq+1(X,Y ) //

��

πq(Y, Z) //

��

πq(X,Z) //

��

πq(X,Y )

��
0

��

// πq−1(Z) //

��

πq−1(Z) //

��

0

��
πq(X,Y ) //

��

πq−1(Y ) //

��

πq−1(X) //

��

πq−1(X,Y )

��
πq(X,Y ) // πq−1(Y, Z) // πq−1(X,Z) // πq−1(X,Y )

�

Definition 9.8. Let (X;A,B) be a triad. Define the triad homotopy groups

πq(X;A,B) = πq−1(P (X, ∗, B), P (A, ∗, C))

for q ≥ 0.

The long exact sequence of a pair yields an exact sequence

πq+1(X;A,B)→ πq(A,C)→ πq(X,B)→ πq(X;A,B).

Thus in order to prove homotopy excision, we have to show that πq(X;A,B) = 0
for 2 ≤ q ≤ m + n − 2. To understand elements of πq(X;A,B) better, note that
we can represent them by maps of triads

(Iq; Iq−2 × {1} × I, Iq−1 × {1}, Jq−2 × I ∪ Iq−1 × {0})→ (X;A,B, ∗)

The interior of the q-cube maps to X, and various subsets of its boundary map to
A,B,C = A ∩B and the basepoint ∗.

To prove the homotopy excision theorem, first approximate (X;A,B) by a CW
triad up to weak equivalence. Since we need to show that certain homotopy groups
vanish, working with a weakly equivalent space is sufficient. Thus from now on we
will assume that (X;A,B) is a CW triad, that (A,C) has no relative q-cells for
q < m, and (B,C) has not relative q-cells for q < n. Moreover we assume that X
has finitely many cells, since the image of the compact set Iq intersects at most
finitely many cells.

Claim. It suffices to prove the vanishing of πq(X;A,B) for 2 ≤ q ≤ m + n − 2
when (A,C) has a single cell.
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To see the claim, let A′ ⊂ A be a subcomplex of A with C ⊆ A′, such that
A can be obtained from A′ by attaching a single cell. Let X ′ = A′ ∪ B. Then
suppose for the induction hypothesis that the result holds for the triads (X ′;A′, B)
and (X;A,X ′). The latter triad has (A,C) = (A,A ∩ X ′) = (A,A′), consisting
of a single cell, therefore we also assume for now (we will prove it presently) that
homotopy excision holds for this triad. Then apply the five lemma to the diagram:

πq+1(A,A
′) //

��

πq(A
′, C) //

��

πq(A,C) //

��

πq(A,A
′) //

��

πq−1(A
′, C)

��
πq+1(X,X

′) // πq(X
′, B) // πq(X,B) // πq(X,X

′) // πq−1(X
′, B)

The top row is the long exact sequence associated to the triple (A,A′, C) and the
bottom row is associated to the triple (X,X ′, B). The vertical maps are isomor-
phisms by the assumption that homotopy excision holds for the triads (X ′;A′, B)
and (X;A,X ′). This completes the proof of the claim.

Claim. It suffices to prove the vanishing of πq(X;A,B) for 2 ≤ q ≤ m + n − 2
when (B,C) has a single cell.

Let B′ ⊂ B be a subcomplex with C ⊆ B′ such that B is obtained from B′

by adding a single cell. Write X ′ := A ∪ B′. Suppose that homotopy exci-
sion holds for (X ′;A,B′) and (X;X ′, B). The map (A,C) → (X,B) factors as
(A,C) → (X ′, B′) → (X,B), and so homotopy excision also holds for (X;A,B).
This completes the proof of the claim.

From now on we assume that A = C ∪Dm and B = C ∪Dn, with m ≥ 2 and
n ≥ 1. We are given a map

f : (Iq; Iq−2 × {1} × I, Iq−1 × {1}, Jq−2 × I ∪ Iq−1 × {0})→ (X;A,B, ∗)

and we want to show that this map is null-homotopic as a map of triads. Let
x ∈ Dm and y ∈ Dn be interior points. Consider the sequence of inclusions of
triads:

(A;A,Ar{x}) ⊂ (Xr{y};A,Xr{x, y}) ⊂ (X;A,Xr{x}) ⊃ (X;A,B).

The first and last inclusions induce isomorphisms on triad homotopy groups, since
we can homotope maps off Dn and Dm respectively, once we know that there is
at least one interior point that is not in the image. Also, πq(A;A,A

′) = 0 for any
A′ ⊂ A. Therefore the left-most group vanishes, and so it suffices to show that
the middle inclusion induces an isomorphism on triad homotopy groups. That is,
we have a map f into (X;A,Xr{x}) and we need to show that it is homotopic
to a map into (Xr{y};A,Xr{x, y}). That is, we have to miss a point y in the
interior of Dn with a map of Iq for 2 ≤ q ≤ n +m − 2. This will use simplicial
approximation in the argument.

LetDm
1/2 ⊂ D

m andDn
1/2 ⊂ D

n be subdiscs of radius 1/2. Subdivide Iq into small

enough subcubes Iqα such that each subcube has the property that f(Iqα) ⊂ Int(Dm)
if f(Iqα) intersects Dm

1/2, and holds the same for Dn. By simplicial approximation,

the map f is homotopic to a map g : Iq → X such that the restriction of g to the



MAT8232 ALGEBRAIC TOPOLOGY II: HOMOTOPY THEORY 51

(n−1)-skeleton of Iq, g|(Iq)(n−1) , does not cover all of Dn
1/2, and similarly g|(Iq)(m−1) ,

does not cover all of Dm
1/2. Here we use the skeleta of the subdivided Iq. Moreover,

simplicial approximation enables us to arrange that dim g−1(y) is at most q−n, for
some y ∈ Dn

1/2 that is not in the image of the (n−1)-skeleton of Iq. Here dimension

needs to be correctly interpreted, and we skip over the precise details of how we
use transversality. We could also use smooth approximation. Let π : Iq → Iq−1 be
projection on the the first q − 1 coordinated. Define

K := π−1(π(g−1(y))).

This is a prism. The dimension is no more that the dimension of g−1(y) plus one,
so

dimK ≤ q − n+ 1 ≤ m− 1.

Therefore g(K) cannot cover Dm
1/2. Choose x ∈ Dm

1/2 that does not lie in g(K).

Since

g(∂Iq−1 × I) ⊆ A,
we see that

(a) π(g−1(x)) ∪ ∂Iq−1 and
(b) π(g−1(y))

are disjoint. We can therefore define a homotopy of g as desired. Let v : Iq−1 → I
be a function such that v is zero on (a) and is one on (b). Such a function exists
by the Uryssohn lemma. Define a function h : Iq+1 → Iq by

h(r, s, t) = (r, s− st · v(r))

where s, t ∈ I and r ∈ Iq−1. Define

f ′ = g ◦ h1
where h1(r, s) = h(r, s, 1). Note that

h(r, s, 0) = (r, s) and h(r, 0, t) = (r, 0)

and

h(r, s, t) = (r, s)

if t ∈ ∂Iq−1. Thus g ◦ ht defines a homotopy of maps of triads. Then observe that

h(r, s, t) = (r, s)

if h(r, s, t) ∈ g−1(x) since r ∈ π(g−1(x)) implies that v(r) = 0, and

h(r, s, t) = (r, s− st)

if h(r, s, t) ∈ g−1(y), since r ∈ π(g−1(y)) means that v(r) = 1. Thus f ′ has image
in

(Xr{y};A,Xr{x, y})
i.e. the image has been moved off y. This completes the proof that the inclusion
of triads (Xr{y};A,Xr{x, y}) ⊂ (X;A,Xr{x}) induces an isomorphism of triad
homotopy groups, and thus completes the proof that πq(X;A,B) = 0 for 2 ≤ q ≤
m+ n− 2. This completes the proof of homotopy excision.
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9.3. Truncated long exact sequence in homotopy groups of a cofibration.

Theorem 9.9. Let A → X → Q be a cofibre sequence, with A → X a cofibration
and Q = X/A. Suppose that A is r-connected and Q is s-connected, with r, s ≥ 1.
Then there is a homomorphism ∂k : πk(Q)→ πk−1(A) such that

πr+s(A)→ πr+s(X)→ πr+s(Q)
∂r+s−−−→ · · · → π2(A)→ π2(X)→ π2(Q)→ 0

is exact.

Here is an example. Consider the Hopf map η : S3 → S2, and replace S2 by its
mapping cylinder Mη. Then S3 → Mη is a cofibration and the quotient is CP2.
Since S3 is 2-connected and S2 is 1-connected, we have an exact sequence

π3(S
3)

∼=−→ π3(S
2)→ π3(CP2)→ π2(S

3)→ π2(S
2)→ π2(CP2)→ 0

which implies that π3(CP2) = 0 and π2(CP2) ∼= Z.

Proof. Let i : A→ X be the inclusion. We have a long exact sequence in homotopy
groups associated to the map i:

πn(Fi)→ πn(A)→ πn(X)→ πn−1(Fi)→ · · ·
We want to replace πn(Fi) by πn+1(Ci) in the desired range.

Lemma 9.10. Let f : Y → X be a map with Y m-connected and f an n-equivalence.
Then p : (Mf, Y ) → (Cf, ∗) induces an isomorphism p∗ : πq(Mf, Y ) → πq(Cf, ∗)
for 2 ≤ q ≤ m+ n and a surjection for q = m+ n+ 1.

Now we prove the lemma. This is a slight variation on a theorem above. We
repeat the very similar argument to be careful. Define an excisive triad (Cf ;A,B)
by taking A = X∪(Y ×[0, 2/3]) and B = (Y ×[1/3, 1])/Y ×{1}. Then C = A∩B =
Y ×[1/3, 2/3]. As above, the map p is homotopic to the following sequence of maps:

(Mf, Y )
≃−→ (A,C)

inc−−→ (Cf,B)
≃−→ (Cf, ∗)

The first and last maps are homotopy equivalences of pairs. We need to see that
the map inc is a (m+ n+ 1)-equivalence. Since CY is contractible, the long exact
sequence of a pair yields that πq(CY, Y ) = πq(B,C) = πq−1(Y ) = 0 for q − 1 ≤ m
so for q ≤ m1. By assumption πq(A,C) = πq(Mf, Y ) = 0 for q ≤ n. Then
homotopy excision says that πq(Mf,X) ∼= πq(A,C)→ πq(X,B) ∼= πq(Cf, ∗) is an
isomorphism for 2 ≤ q ≤ m+n and a surjection for q = m+n+1. This completes
the proof of the lemma.

Let f : X → Y be a map as in the lemma. Recall that the homotopy fibre
Ff = X ×f PY , contains pairs consisting of a point x ∈ X together with a path
in Y from the basepoint of Y to f(x). Now define

η : Ff → ΩCf

(x, γ) 7→ t 7→

{
γ(2t) 0 ≤ t ≤ 1/2

(x, 2t− 1) 1/2 ≤ t ≤ 1

The map η induces a map on homotopy groups πn−1(Ff)→ πn(Cf). We need to
show that this map is an isomorphism in the required range.



MAT8232 ALGEBRAIC TOPOLOGY II: HOMOTOPY THEORY 53

Lemma 9.11. Let f : X → Y be a map, let j : X → Mf be the inclusion, let
r : Mf → Y be the retraction, and we have a quotient map Mf → Cf . The
following diagram commutes up to homotopy, where the map π is the canonical
map induced by the quotient Mf → Cf .

Fj = X ×j P (Mf)
Fr=Id×Pr //

π
((PP

PPP
PPP

PPP
P

X ×f PY = Ff
η

wwooo
ooo

ooo
oo

ΩCf

It is a straightforward exercise to prove the lemma. We now have the following
diagram.

πq+1(X) //

=

��

πq+1(Mf) //

∼=
��

πq+1(Mf,X) = πq(Fj) //

Fr
��

πq(X)= //

��

πq(Mf) //

∼=
��

· · ·

πq+1(X) // πq+1(Y ) // πq(Ff) //

η∗

��

πq(X)
f∗ // πq(Y ) //

��

· · ·

πq(ΩCf) = πq+1(Cf)

The top row is the long exact sequence of the pair (Mf,X). This sequence was
proven using the exact sequence for a fibration obtained from the map j : X →Mf .
Two out of three vertical maps are isomorphisms, so the map Fr is an isomorphism
by the five lemma. In the range of homotopy excision, namely for q + 1 ≤ m + n
the composition πq+1(Mf,X)→ πq+1(Cf) is an isomorphism. It follows from the
commutativity in Lemma 9.11 that η∗ : πq(Ff)→ πq+1(Cf) is an isomorphism.

We may therefore replace πq(Ff) with πq+1(Cf) in the bottom row, for q+1 ≤
mn. Now let apply this with i : A → X replacing f : Y → X, with r = m and
s = n. Since i is a cofibration, Ci ≃ X/A = Q, so we obtain the desired truncated
long exact sequence. �

10. Homology theories

This section was typed by Robert Graham. There are many different distinctions
that are made in the literature. We can talk about homology theories versus coho-
mology theories, generalised (co)homology theories versus ordinary (co)homology
theories and reduced (co)homology theories vs unreduced. For example DeR-
ham cohomology is an ordinary unreduced cohomology theory, whereas cobordism
theory, K theory and the stable homotopy functor are examples of generalised
(un)reduced homology theories. The homology theories we are most familiar with,
singular, cellular and simplicial are ordinary unreduced.

Let us explain these distinctions. Homology is covariant. So given f : (X,A)→
(Y,B) we have a map

Eq(f) : Eq(X,A)→ Eq(Y,B)
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On the other hand cohomology is contravariant (the notation will be explained
below in detail).

An ordinary homology theory satisfies the dimension axiom, which states

E0(∗) = π

Eq(∗) = 0, q ̸= 0

where π is some abelian group, known as the coefficient group. Generalised theories
need not satisfy this axiom.

The difference between reduced and unreduced is more substantial (at least at
first glance). We will see more about this later, but briefly, reduced theories work
well for based spaces, whereas unreduced theories do not require basepoints.

We will now define what a homology theory is.

Definition 10.1. Let π be an abelian group. An ordinary homology theory over π
is a collection of functors Eq from the homotopy category of pairs of spaces (X,A)
to abelian groups, together with natural transformations

∂ : Eq(X,A)→ Eq−1(A, ∅)
We write Eq(X) := Eq−1(X, ∅). The following axioms must hold:

(1) Dimension Axiom. E0(∗) = π and Eq(∗) = 0, i ̸= 0.
(2) Exactness Axiom. Given a pair (X,A) we have maps

(A, ∅)→ (X, ∅)→ (X,A)

Thus by applying Eq and using ∂ we have the following sequence

. . .→ Eq(A)→ Eq(X)→ Eq(X,A)→ Eq−1(A)→ . . .

The axiom says this is exact.
(3) Excision Axiom. Given an excisive triad (X;A,B), the natural map

Eq(A,A ∩B)→ Eq(X,B)

is an equivalence.
(4) Additivity Axiom. Given (X,A) =

⨿
i(Xi, Ai) then the map⊕

i

Eq(Xi, Ai)→ Eq(X,A)

induced by (Xi, Ai)→ (X,A) is an equivalence.
(5) Weak Equivalence Axiom. Eq sends weak equivalences to group isomor-

phisms.

Regular cellular homology is a homology theory as defined above with one caveat,
it is defined only for CW complexes. The next theorem makes this precise.

Theorem 10.2. Cellular homology is a collection of functors Hq(−;π) from CW
pairs (X,A) to abelian groups with natural transformations

∂ : Hq(X,A;π)→ Hq−1(A;π)

It satisfies and is determined by the dimension, exactness, excision and additivity
axioms. Moreover this theory is determined by and determines a theory Eq as
defined above.
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Proof. We shall not prove this, however we give one step. Fix a CW approximation
functor Γ. Then we can define Eq(X,A) := Hq(ΓX,ΓA;π). Different choices of Γ
give rise to isomorphic, but not identical theories. �

A very cool fact is that a particularly nice choice of CW approximation functor
arises from the geometric realisation of the underlying simplicial set of a space X.
This CW approximation functor gives rise to the singular homology of X.

Definition 10.3. A generalised reduced homology theory is a collection of functors

Ẽq from the homotopy category of nondegenerately based spaces to abelian groups
that satisfy the following:

(1) Exactness Axiom. For any cofibration A → X we have the following is
exact

Ẽq(A)→ Ẽq(X)→ Ẽq(X/A)

(2) Suspension Axiom. There are natural isomorphisms

Σ : Ẽq ≃ Ẽq+1(ΣX)

(3) Additivity Axiom. Given X =
∨

iXi the maps
⊕

i Ẽq(Xi) → Ẽq(X) in-
duced by Xi → X are equivalences.

(4) Weak Equivalence Axiom. Ẽq sends weak equivalences to group isomor-
phisms.

—

Of course this becomes an ordinary reduced homology theory if we add the
dimension axiom.

Theorem 10.4. A (generalized/ordinary) unreduced homology theory (Eq, ∂) de-
termines and is determined by a (generalized/ordinary) reduced homology theory

(Ẽq,Σ)

Note that the axioms of a reduced theory seem at first glance weaker than the
axioms of an unreduced theory, so one direction of this theorem is particularly
interesting.

Proof. First suppose we have an unreduced theory Eq. Define Ẽq(X) := Eq(X, ∗).
We need to show this satisfies all the axioms. The weak equivalence axiom and the
dimension axiom (if appropriate) are clear. To show exactness first note

Eq(A)→ Eq(X)→ Eq(X,A)

is exact. However Eq(X,A) ≃ Eq(X/A, ∗) by excision, moreover by exactness

Eq(A) ≃ Ẽq(A)⊕ Eq(∗) and similarly Eq(X) = Ẽq(X)⊕ Eq(∗). Therefore

Ẽq(A)⊕ Eq(∗)→ Ẽq(X)⊕ Eq(∗)→ Ẽq(X/A)

is exact, which implies the axiom.
To show suspension note ΣX = CX/X. Then by exactness of E, we have an

exact sequence

Ẽq(X)→ Ẽq(CX)→ Ẽq(CX/X)→ Ẽq−1(CX).
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The extremal terms vanish, so we get the required isomorphism (it is simply ∂−1).
Finally, to show additivity we compute:

Ẽq(
∨
i

Xi) = Ẽq(
⨿

Xi/
⨿
∗i)

≃ Eq(
⨿

Xi,
⨿
∗i)

≃
⊕

Eq(Xi, ∗i)

≃ Ẽq(Xi)

Now we show the other direction. Suppose we have a reduced homology theory

(Ẽ⋆,Σ). We define Eq(X) := Ẽq(X+). More generally Eq(X,A) := Ẽq(Ci+),
where i+ : A+ → X+ is defined by mapping the basepoint to the basepoint. Now
Ci+ ≃ M(i+)/A+ and so from the cofibre sequence of i+ we get an induced map

Ẽq(Ci+)→ Ẽq(ΣA+). By composing with Σ−1 we then get a map

Ẽq(M(i+)/A+)→ Ẽq−1(A+)

which will serve as our ∂.
The weak equivalence and dimension (if appropriate) axioms are clear. Exactness

for Eq follows immediately from exactness for Ẽq.
For excision consider a triad (X;A,B) and let (ΓX; ΓA,ΓB) be a CW triad

approximation. Denote C = A ∩ B and ΓC = ΓA ∩ ΓB. We then have the
following diagram.

(ΓA)+/(ΓC)+
≃ //

w.e

��

(ΓX)+/(ΓB)+

w.e
��

Mi+/C+ =Mi/C MiB+/B+ =MiB/B

From which we conclude (by the weak equivalence axiom) Ẽq(Mi/C) ≃ Ẽq(MiB/B).
The resulting

Finally to show the additivity axiom we proceed as follows:

Eq(
⨿
i

Xi) = Ẽq((
⨿
i

Xi)+)

= Ẽq(
∨
i

(Xi)+)

=
⊕
i

Ẽq(Xi)+

=
⊕
i

Eq(Xi)

�
Theorem 10.5. Let Eq be a general or ordinary homology theory. Then Eq com-
mutes with colimits. That is, colimiEq(Xi) ≃ Eq(colimiXi).
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Theorem 10.6 (Mayer Vietoris theorem). Given a triad (X;A,B) with C = A∩B
and i : C → A, j : C → B, k : A→ X and ℓ : B → X. Then we have the following
long exact sequence

. . . Eq(C)
(i∗ j∗) // Eq(A)⊕ Eq(B)

k∗−ℓ∗ // Eq(X)
∆ // Eq−1(C) . . .

where ∆ is given by

Eq(X) // Eq(X,B)
exc // Eq(A,C)

∂ // Eq−1(C)

The Mayer-Vietoris theorem can be deduced from the axioms of generalised
homology theories. Weave the long exact sequences of the various pairs into a
braid of interlocking exact sequences.

11. The Hurewicz theorem

In this section we return to ordinary homology (i.e. cellular or singular). For

every n ∈ N we have H̃n(S
n) = Z. Let in be the generator of H̃n(S

n). Now for

a based space X we can define the Hurewicz map h : πn(X)→ H̃n(X) by sending

f : Sn → X to H̃n(f)(in).
Before we get to the main theorem we will prove some basics results about this

map. First, h is a homomorphism. To show this let f, g : Sn → X, then f + g is
defined by

Sn collapse // Sn ∨ Sn f∨g // X ∨X ∇ // X

Therefore

h(f + g) = H̃n(f + g)(in) = H̃n(id, id) ◦ H̃n(f ∨ g) ◦ H̃n(∇)(in)

which maps

in 7→ (in, in) 7→ (H̃n(f)(in), H̃n(g)(in)) 7→ H̃n(f)(in) + H̃n(g)(in)

so h(f + g) = h(f) + h(g) as required.
We also claim that the Hurewicz map respects suspension, by which we mean

the following commutes.

πn(X)
h //

Σ

��

H̃n(X)

Σ
��

πn+1(ΣX)
h // H̃n+1(ΣX)
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This is proven by the following computation. Let [f ] ∈ πn(X). Then

h ◦ Σ([f ]) = h(Σf)

= Hn(Σf)(in+1)

= Hn(Σf)(Σin)

= Σ(Hn(f)(in))

= Σ(h(f))

= Σ ◦ h([f ])
We will now prove a special case of Hurewicz theorem when X is a wedge of

circles.

Lemma 11.1. Let X =
∨

α S
n. Then

h : πn(X)→ H̃n(X)

is an isomorphism for n > 1 and is the abelianisation for n = 1.

Proof. Next suppose X =
∨

α S
n, here π1(

∨
α S

n) = F (xα) the free group with
generators xα. whereas for n > 1 we have πn(

∨
α(S

n)) =
⊕

α πn(S
n) =

⊕
α Z.

In both cases we have πn(S
n) is generated by the maps iα : S

n →
∨

α S
n, but

H̃n(
∨

α S
n) =

⊕
α Z is generated by elements eα and iα(in) = eα. �

We end this section with the full Hurewicz theorem.

Theorem 11.2 (Hurewicz theorem). Let X be an n − 1 connected based space.
Then the Hurewicz map h is an isomorphism for n > 1 and is the abelianisation
homomorphism for n = 1.

Proof. By CW approximation, X is a CW complex with one 0-cell and no m-cells
for 1 ≤ m < n.

The inclusion map X(n+1) → X induces an isomorphism πn(X
(n+1)) → πn(X)

and another isomorphism H̃n(X
(n+1))→ H̃n(X).

Therefore it suffices to consider the case X = X(n+1). In this case X is the
homotopy cofibre of some ∨

β

Sn+1 →
∨
α

Sn → X

Denote K =
∨

β S
n+1 and L =

∨
α S

n.We have the following two exact sequences
connected by Hurewicz maps as pictured:

πn(K) //

��

πn(L)

��

// πn(X)

��

// 0

H̃n(K) // H̃n(L) // H̃n(X) // 0

For n > 1, since the first two downward arrows are isomorphism by the previous
lemma, we see that the final arrow is an isomorphism. For n = 1 a similar argument
holds where we replace the top row with its abelianisation. �
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12. Homology via homotopy theory

In this section we return to generalised homology theories, and explain their
connection to homotopy theory. Consider an Eilenberg-MacLane space K(π, n)
modelled by a CW complex. We have a homotopy equivalence

σ̃ : K(π, n)→ ΩK(π, n+ 1)

since ΩK(π, n+1) is homotopy equivalent to a CW complex by a result of Milnor,
and then usingWhitehead’s theorem. The map σ̃ is adjoint to a map σ : ΣK(π, n)→
K(π, n+ 1). There is a map

πq+n(X∧K(π, n))→ πq+n+1(Σ(X∧K(π, n))) = πq+n+1(X∧ΣK(π, n))
Id∧σ−−−→ πq+n+1(X∧K(π, n+1))

This enables us to make the following definition.

Theorem 12.1. Let X be a CW complex and let π be an abelian group, and let
n ≥ 0.

H̃q(X;π)
≃−→ colimn πq+n(X ∧K(π, n)).

Therefore

Hq(X;π) ∼= colimπq+n(X+ ∧K(π, n)).

Proof. We need to check that the right hand side satisfies the axioms of a homology
theory. Since ordinary homology is determined by the dimension axiom, this will
also show that the theories coincide.

First we claim that X ∧K(π, 3q) is (2q + 1)-connected. This follows easily by
using a CW structure for K(π, 3q) with no cells of dimension less than 3q, together
with cellular approximation of maps. The cofibration sequence for a cofibration in
homotopy theory shows that

π4q(A ∧K(π, 2q))→ π4q(X ∧K(π, 2q))→ π4q(X/A ∧K(π, 2q)).

Then since colimits preserve exactness, we obtain the corresponding exact sequence
for the colimits.

Next,

πq+n(S
0 ∧K(π, n)) = πq+n(K(π, n)) =

{
π q = 0

0 q > 0

which shows the dimension axiom.
To see the suspension axiom,

πq+n(X ∧K(π, n))
Σ−→ πq+n+1(Σ(X ∧K(π, n))) = π(q+1)+n(ΣX ∧K(π, n))

The first map is an isomorphism by the suspension theorem, provided n is high
enough. Therefore on passage to colimits, we obtain the suspension axiom.

Finally,

πq+n((
∨
Xi) ∧K(π, n)) = πq+n(

∨
(Xi ∧K(π, n)))

=
∑

πq+n(Xi ∧K(π, n))⊕
∑

πq+n+j(

ij∏
i=i1

Xi ∧K(π, n),
∨
Xi ∧K(π, n))
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The isomorphism arises from the decomposition of the homotopy groups of a wedge
as the homotopy groups of the product and a series of relative terms. The j can be
arbitrarily high, so the full colimit is required for these groups to vanish. They are
generated by Whitehead products. There are no q-cells of (Xi ∧K(π, n))× (Xi ∧
K(π, n)) for 0 < q ≤ 2n−1. Provided n is large enough, q+n+ j < 2n−1, so that
by cellular approximation, the homotopy groups vanish, and we are left with the
sum

∑
i πq+n(Xi ∧K(π, n)). This completes the proof of additivity, and therefore

completes the proof of the verification of the axioms. �
Now we show how to generalise this idea.

Definition 12.2. A spectrum is a sequence of spaces {Tn}, n ≥ 0, and based maps

ΣTn → Tn+1

Theorem 12.3. Let {Tn} be a spectrum with Tn, an (n−1)-connected space with Tn
homotopy equivalent to a CW complex for all n. Define Ẽq(X) = colimπq+n(X ∧
Tn). This is the colimit over the maps

πq+n(X ∧Tn)
Σ−→ πq+n+1(Σ(X ∧Tn)) ∼= πq+n+1(X ∧ΣTn)

Id∧σ−−−→ πq+n+1(X ∧Tn+1).

Ẽq(−) is a reduced (generalised) homology theory on based CW complexes (and
therefore determines a theory on all nondegenerately based compactly generated
spaces.)

We note that the dimension axiom is not required. An unreduced theory is then
given by colimπq+n(X+ ∧ Tn). The proof is analogous to the proof of the previous
theorem.

13. The Hilton-Milnor theorem

The product of two spheres Sp × Sq = e0 ∪ ep ∪ eq ∪ ep+q.

πp+q(S
p × Sq, Sp ∨ Sq) = πp+q(S

p+q) = Z→ ∂πp+q−1(S
p ∨ Sq).

Take the attaching map of ep+q generated the first group. Consider

∂(1) = θ : Sp+q−1 → Sp ∨ Sq.

We write θ = [ιp, ιq], where ιp and ιq are generators of πp(S
p) and πq(S

q). We can
generalise this to X ∨ Y . Let x ∈ πp(X) and let y ∈ πq(Y ). Write

[x, y] : Sp+q−1 [ιp,ιq ]−−−→ Sp ∨ Sq x∨y−−→ X ∨ Y.
These are called Whitehead products.

Theorem 13.1 (Hilton-Milnor theorem).

Ω(ΣX ∨ ΣY ) ≃
∏
w∈W

ΩΣ(X{wx} ∧ Y {wy})

where W is a basis for the free Lie algebra on x, y, the free algebra generated by x
and y with the Lie bracket [−,−] that satisfies [a, b] = −[b, a]. Also

X{i} = X ∧ · · · ∧X
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is the i-fold smash product of X,

Y {i} = Y ∧ · · · ∧ Y

is the i-fold smash product of Y , wx and wy are the number of appearances of x, y
in bracket w.

This theorem helps explain the homotopy type of a wedge. We will unfortunately
not provide a proof. To understand this let us do an example with X = Sp−1 and
Y = Sq−1. Then

πn(S
p ∨ Sq) = πn(ΣX ∨ ΣY )

= πn+1(Ω(ΣX ∨ ΣY ))

= πn+1(
∏
w∈W

ΩΣ(X{wx} ∧ Y {wy}))

=
⊕
w∈W

πn(Σ(X
{wx} ∧ Y {wy}))

=
⊕
w∈W

πn(Σ(S
wx(p−1) ∧ Swy(q−1)))

=
⊕
w∈W

πn(S
wx(p−1)+wy(q−1)+1)

For example

π3(S
2 ∨ S2) = π3(S

2)⊕ π3(S2)⊕ π3(S3)

corresponding to the generators x, y and [x, y] of the free Lie algebra. Also,

π4(S
2 ∨ S2) = π4(S

2)⊕ π4(S2)⊕ π4(S3)⊕ π4(S4)⊕ π4(S4)

corresponding to the generators x, y, [x, y], [x, [x, y]] and [y, [x, y]]. Outside of wedges
of spheres, the theorem is harder to apply, but it is certainly possible.

14. Cohomology and universal coefficients

We saw how to define cohomology using homotopy classes of maps in an exercise
sheet. We should also see how to define cohomology using homological algebra.

Let R be a commutative ring. Let (C∗, ∂i) be a chain complex of R-modules, that
is we have R-modules Ci for i ∈ Z, and R-module homomorphisms ∂i : Ci → Ci−1

with ∂i−1 ◦ ∂i = 0. The associated cochain complex is

∂i : Ci−1 := HomR(Ci−1, R) → Ci := HomR(Ci, R)
f 7→ (−1)i−1f ◦ ∂i.

Note that ∂i+1 ◦ ∂i = 0. The sign is not strictly necessary at this point, but
makes certain diagrams commute later on, so technically should be included in the
definition now.

Define

H i(C∗) := Hi(C
∗, ∂∗) = ker ∂i+1/ im ∂i.
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Let C∗ = C∗(X;R) be the singular/cellular chain complex of a space X. Then
H i(X;R) := H i(C∗). For example, H i(Sn;R) is equal to R for i = 0, n and
zero otherwise. Cohomology is of course closely related to homology. We aim to
understand the relationship next.

14.1. Universal coefficient theorem for cohomology.
Definition 14.1 (Left and right exact).

(1) A covariant functor F : R−mod → R−mod is called left exact if for any
short exact sequence

0→ A→ B → C → 0

we have that
0→ F (A)→ F (B)→ F (C)

is exact.
(2) A contravariant functor F : R−mod → R−mod is called left exact if for

any short exact sequence

0→ A→ B → C → 0

we have that
0→ F (C)→ F (B)→ F (A)

is exact.
(3) A covariant functor F : R−mod → R−mod is called right exact if for any

short exact sequence

0→ A→ B → C → 0

we have that
F (A)→ F (B)→ F (C)→ 0

is exact.
(4) A contravariant functor F : R−mod → R−mod is called left exact if for

any short exact sequence

0→ A→ B → C → 0

we have that
F (C)→ F (B)→ F (A)→ 0

is exact.

A functor that is both left and right exact is called exact.

For example, let N be an R-bimodule. Then:

(1) The functor M 7→ HomR(M,N) is left exact contravariant.
(2) The functor M 7→ HomR(N,M) is left exact covariant.
(3) The functor M 7→ N ⊗R M is right exact covariant.

As an explicit example, consider the chain complex:

0→ Z 2−→ Z→ Z/2→ 0.

Tensor this with Z/2, to obtain

Z/2 0−→ Z/2
∼=−→ Z/2→ 0.
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Tensoring is right exact. On the other hand applying Hom(−,Z) yields

0→ Hom(Z/2,Z) = 0→ Hom(Z,Z) f 7→2f−−−−→ Hom(Z,Z).
This is a left exact functor. We will focus on the case of Hom to begin with.

Definition 14.2. An R module I is said to be injective if the diagram

0 // M //

��

N
∃

~~|
|
|
|

I

for any R modules M and N .

Theorem 14.3. Any divisible module over a PID is injective.

A good exercise is to prove this for divisible abelian groups, since Z is a PID.
Here a module M is divisible if for any m ∈ M and for every n ∈ Zr{0} there
exists an m′ ∈M such that nm′ = m.

Proposition 14.4. Let P be a projective module, let I be an injective module, and
let 0→ A→ B → C → 0 be a short exact sequence. Then

0→ Hom(C, I)→ Hom(B, I)→ Hom(A, I)→ 0

and
0→ Hom(P,A)→ Hom(P,B)→ Hom(P,C)→ 0

are exact.

The proposition follows immediately from the definitions. Often in applications
the modules in question will not be projective or injective as required, and we want
a way to understand the failure of the previous proposition to hold in these cases.
For this we use Ext groups, which we will now work towards defining.

Definition 14.5. Given an R-module M , a projective resolution is an exact se-
quence

· · · → P2 → P1 → P0 →M → 0,

where Pi is a projective R-module for all i ∈ N ∪ {0}.
An injective resolution of M is an exact sequence

0→M → I0 → I1 → I2 → · · ·
where Ii is an injective R-module for all i ≥ 0.

The deleted resolutions are

P∗ = · · · → P2 → P1 → P0

and
I∗ = I0 → I1 → I2 → · · ·

which are exact apart from at P0 and I0.

We will focus to begin with on projective resolutions and the functor between
R-modules M 7→ HomR(M,N). This has what is called a “derived functor” called
Ext. We will obtain R-modules ExtiR(M,N), with i ≥ 0.
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Proposition 14.6. Let f : M → N be an R-module homomorphism. Then there
is a unique chain homotopy class of chain maps PM

∗ → PN
∗ induces the given map

f : M → N .

This uses what is called the fundamental lemma of homological algebra.

Lemma 14.7 (Fundamental lemma of homological algebra). Let P∗ be a projective
R-module chain complex, i.e. Pi is a projective module for all i, and let C∗ be an
acyclic R-module complex, that is Hi(C∗) = 0 for all i > 0. Both are assumed to
be nonnegative. Let φ : H0(P∗)→ H0(C∗) be a homomorphism. Then:

(1) there is a chain map fi : Pi → Ci (∂Cfi+1 = fi∂P ) such that f0 induces φ
on H0;

(2) any two such chain maps f and g are chain homotopic f ∼ g, that is there
exists a chain homotopy hi : Pi → Ci+1 such that ∂Chi + hi−1∂P = fi − gi.

Proof. We give an outline of the proof. Let M := H0(P∗) and M
′ := H0(C∗). First

construct, using the idea of the previous lemma, the vertical maps (apart from the
far right vertical map, which is given), in the following diagram, using the fact
that Pi is projective for all i and that the bottom row is exact, now it has been
augmented with M ′.

· · · // P2
∂P //

���
�
� P1

∂P //

���
�
� P0

//

���
�
� M //

φ

��

0

· · · // C2
∂C // C1

∂C // C0
// M ′ // 0

This shows (i). Now let f and g be two such chain maps as in (ii). Construct a
chain homotopy h, again using the idea of the proof of the lemma above, fitting
into the diagram:

· · · // P2
∂P //

f2−g2

��

h2

{{w
w
w
w
w
w
w

P1
∂P //

f1−g1

��

h1

{{w
w
w
w
w
w
w

P0
//

f0−g0

��

h0

{{w
w
w
w
w
w
w

M //

φ−φ=0

��

0

· · · // C2
∂C // C1

∂C // C0
// M ′ // 0

To do this one needs the following computation:

∂C((fn − gn)− hn−1∂P ) = (fn−1 − gn−1)∂P − ∂Chn−1∂P

=fn−1∂P − gn−1∂P − hn−2∂
2
P − fn−1∂P + gn−1∂P = 0.

We leave the details to the reader. They can be found, for example, in chapter 2
of [DK]. �

Now we define the Ext groups that are needed for the statement of the universal
coefficient theorem.

Definition 14.8 (ExtnR). Let M and N be R-modules and let P∗ → M →
0 be an R-module projective resolution, with P∗ the deleted resolution. Form
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HomR(P∗, N). Then

ExtnR(M,N) := Hn(HomR(P∗, N)).

Equivalently, let 0 → N → I∗ be an injective resolution of N , with I∗ the deleted
resolution. Then

ExtnR(M,N) := Hn(HomR(M, I∗))

It turns out that the definitions are equivalent with a projective resolution of the
first argument or an injective resolution of the second argument. Here are some
straightforward remarks.

(i) Ext0R(M,N) = ker(HomR(P0, N)→ HomR(P1, N) = HomR(M,N).
(ii) If M is projective then ExtiR(M,N) = 0 for all i > 0.
(iii) If N is injective then ExtiR(M,N) = 0 for all i > 0.

Now let 0 → A → B → C → 0 be a short exact sequence of chain complexes.
Each of these modules has a projective resolution, and the short exact sequence
lifts to a short exact sequence of chain complexes

0 // PA
∗ //

��

PB
∗ //

��

PC
∗ //

��

0

0 // A // B // C // 0

by the fundamental lemma of homological algebra. Apply Hom(N,−) to the top
row to obtain

0→ HomR(N,P
C
∗ )→ HomR(N,P

B
∗ )→ HomR(N,P

A
∗ )→ 0.

This is a short exact sequence of cochain complexes, which induces a long exact
sequence in cohomology:

0 → HomR(N,C) → HomR(N,B) → HomR(N,A) →
→ Ext1R(N,C) → Ext1R(N,B) → Ext1R(N,A) →
→ Ext2R(N,C) → Ext2R(N,B) → Ext2R(N,A) → · · ·

A similar argument with injective resolutions gives rise to the long exact sequence

0 → HomR(C,N) → HomR(B,N) → HomR(A,N) →
→ Ext1R(C,N) → Ext1R(B,N) → Ext1R(A,N) →
→ Ext2R(C,N) → Ext2R(B,N) → Ext2R(A,N) → · · ·

Here are some examples of the Ext groups. The Ext0 groups are equal to the
corresponding Hom groups, so we omit the discussion of them.

(1) ExtnZ(Z,Z/p) = 0 for n > 0.
(2) Ext1Z(Z/n,Z) = Z/n, and they Exti groups vanish for i > 1. In general,

Ext1Z(A,Z) ∼= HomZ(A,Q/Z), which picks up the torsion subgroup of A.
(3) If R is a field, ExtiR(M,N) = 0 for i > 0.
(4) If R is a PID, then ExtiR(M,N) = 0 for i > 1.
(5) ExtnR(⊕αAα, B) =

∏
α Ext

n
R(Aα, B).

(6) ExtnR(A,⊕αBα) =
∏

α Ext
n
R(A,Bα).
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Now we state and prove the universal coefficient theorem for cohomology, in the
case that R is a PID. In more generality for rings of homological dimension greater
than one, there is a universal coefficient spectral sequence. But we won’t cover
that here.

Theorem 14.9 (The universal coefficient theorem). Let R be a PID, let M be an
R-module and let (C∗, ∂) be a f.g. free R-module chain complex. Then

0→ Ext1R(Hr−1(C∗),M)
α−→ Hr(C∗;M)

β−→ HomR(Hr(C∗),M)→ 0

is an exact sequence of abelian groups, which is natural in chain maps of C∗ → C ′
∗,

and which splits, but the splitting is not natural. The map β sends [f ] 7→ ([c] 7→
f(c)). If M is an (R,S)-bimodule, then this is an exact sequence of S-modules.

Proof. This proof is essentially from [Br]. Note that the map β is well-defined since
f is a cocycle and c is a cycle.

Recall that for R a PID, any submodule of a free module is free. Also recall that
for any chain complex C∗ we let

Zp := ker(∂p : Cp → Cp−1)

the p-cycles, and

Bp = im(∂p+1 : Cp+1 → Cp),

the p-boundaries. Of course Hp(C∗) = Zp/Bp. There are two exact sequences of
R-modules, for each p.

(1) 0 → Zp
χ−→ Cp

θ−→ Bp−1 → 0. The submodule Bp−1 is free, whence projec-
tive, so the sequence splits. Let ϕ : Cp → Zp be a splitting.

(2) 0→ Bp
γ−→ Zp

q−→ Hp(C∗)→ 0.

The proof will follow from the next diagram, and some fun diagram chasing.

0

0 // Hom(Bp,M)
θ∗ // Hom(Cp+1,M) Ext1(Hp−1(C∗),M)

OO

0 Hom(Zp,M)

γ∗

OO

oo
ϕ∗

// Hom(Cp,M)

δ

OO

χ∗
oo Hom(Bp−1,M)

θ∗oo

OO

0oo

Hom(Hp(C∗),M)

q∗

OO

Hom(Cp−1,M)
χ∗

//

δ

OO

Hom(Zp−1,M)

γ∗

OO

// 0

0

OO

Here is some explanation of the diagram. The left 3 terms of the top row come
from the dual of (1), and Hom(−,M) is left exact so the part shown is exact. The
middle row is also the dual of (1). Here Zp is a submodule of a free module and
hence is free, since R is a PID. Thus Ext1R(Zp,M) = 0, so the middle row is exact.
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The left column is the dual of (2), and is left exact. The right three terms of the
bottom row also come from the dual of (1), which is exact as described above. The
middle column is the dual of the chain complex C∗. This is not exact, but δ

2 = 0.
The right hand column is part of the long exact sequence associated to the dual of
(2). The two squares commute.

Now the proof is a diagram chase. Let f ∈ Hom(Cp,M), with f ∈ ker δ. Go left
and up to get an element of Hom(Bp,M). By commutativity of the top left square,
and injectivity of θ∗, this is the zero element. Let g = χ∗(f) ∈ Hom(Zp,M). Then
there is an h ∈ Hom(Hp,M) with g = q∗h. We define β(f) := h. To see that this
is well defined note that if we replace f with f + δk, then by commutativity of the
bottom right square δk ∈ im(θ∗), so maps to zero in Hom(Zp,M), and therefore
does not change the element of Hom(Hp,M) by injectivity of q∗.

The composition ϕ∗ ◦ q∗ induces the splitting. This also shows surjectivity.
The map Ext1(Hp−1,M)→ Hom(Cp,M) is defined by lifting x ∈ Ext1(Hp−1,M)

to an element y ∈ Hom(Bp−1,M), then taking θ∗(y). More diagram chases show
that this is well defined and injective.

It remains to show exactness at Hp(C∗). This is also a straightforward diagram
chase that is left to the reader. �

14.2. Universal coefficient theorem for homology. There is an analogous
derived functor Tor for the tensor product. We give a less detailed treatment, but
give the main statements here. Given R-modules M and N let PM

∗ and PN
∗ be

projective resolutions. Then

TorRn (M,N) := Hn(P
M
∗ ⊗R N)

or

TorRn (M,N) := Hn(M ⊗R P
N
∗ ).

Note that TorR0 (M,N) =M⊗RN . Given an exact sequence 0→ A→ B → C → 0,
we have a long exact sequence

· · · → TorR2 (A,N) → TorR2 (B,N) → TorR2 (C,N) →
→ TorR1 (A,N) → TorR1 (B,N) → TorR1 (C,N) →
→ A⊗R N → B ⊗R N → C ⊗R N → 0

Theorem 14.10 (Universal coefficient theorem for homology). Let R be a PID,
let C∗ be a f.g. free R-module chain complex, and let M be an R-module. Then
there is a split natural short exact sequence of abelian groups

0→ Hr(C∗)⊗R M → Hr(C∗ ⊗R M)→ TorR1 (Hr−1(C∗),M)→ 0.

The splitting is not natural. If M is an (R,S)-bimodule, this is a split exact se-
quence of S-modules.

Remark 14.11. Both of the universal coefficient theorems are special cases of cor-
responding universal coefficient spectral sequences. In fact, there are more general
Künneth spectral sequences that imply the universal coefficient spectral sequences
and imply the ordinary Künneth theorem.
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Here is an application. Let W be a simply connected closed 4-manifold. Then
H3(M ;Z) = 0 = H1(M ;Z) and H2(M ;Z) is torsion-free. (We use Poincaré duality
here too. To see this we have H3(M) ∼= H1(M) ∼= Hom(H1(M),Z) = 0. The first
isomorphism is by Poincaré duality and the second is from the universal coefficient
theorem, since Ext1(H0(M),Z) = 0 as H0(M) is torsion-free. Then H1(M) = 0
since π1(M) = 0. Next, H3(M) = 0 implies that Ext1Z(H2(M),Z) ∼= H3(M), but
H3(M) ∼= H1(M) = 0, so Ext1(H2(M),Z) = 0, and H2(M) is torsion free as
claimed.

14.3. The Künneth theorem. An R module M is flat if M ⊗R − is an exact
functor. A chain complex is flat if every chain group is flat.

Let (C, ∂C) and (D, ∂D) be two chain complexes. The tensor product chain
complex C⊗D has

(C ⊗D)n :=
⊕

p+q=n

Cp ⊗Dq

with

∂⊗(cp ⊗ dq) = ∂C(c)⊗ d+ (−1)pc⊗ ∂(dq).
Note that for X and Y CW complexes, we have C∗(X × Y ) ∼= C∗(X)⊗C∗(Y ). To
see this, note that the product ep×eq of two cells is homeomorphic to a (p+ q)-cell
ep+q, and the boundary of a product is ∂(ep × eq) = ∂ep × eq ∪ ep × ∂eq.

Theorem 14.12. Let R be a PID, let C∗ be a flat chain complex. Let D∗ be any
chain complex. Then there is a short exact sequence

0→
⊕

p+q=n

Hp(C)⊗RHq(D)→ Hn(C ⊗RD)→
⊕

p+q=n−1

TorR1 (Hp(C),Hq(D))→ 0.

Take D∗ to be a chain complex that is nonzero only in degree 0, with D0 =M ,
to obtain the universal coefficient theorem for homology. We can use the Künneth
theorem to compute the homology of the product of two spaces.

15. Cup products

15.1. Algebraic definition. We have a diagonal map ∆: X → X ×X that send
x 7→ (x, x).

Given two chain complexes C,D, the tensor product chain complex C ⊗D has
chain groups

(C ⊗D)n =
⊕

p+q=n

Cp ⊗Dq

with boundary map

∂C⊗D(c⊗ d) = ∂C(c)⊗ d+ (−1)deg cc⊗ ∂D(d).

Note that C∗(X × Y ) = C(X) ⊗ C(Y ). To see this observe that the product
ep × eq = ep+q of two cells is a cell, and the boundary is

∂ep × eq ∪ ep × (−1)p∂eq.
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Let π and π′ be abelian groups. We have a map

w : Hom(C∗(X), π)⊗Hom(C∗(Y ), π′) → Hom(C∗(X)⊗ C∗(Y ), π ⊗ π′)
f ⊗ f ′ 7→

(
x⊗ x′ 7→ (−1)deg f ′ deg xf(x)⊗ f ′(x′)

)
The composition of w with the identification

Hom(C∗(X)⊗ C∗(Y ), π ⊗ π′) ∼= Hom(C∗(X × Y ), π ⊗ π′)

gives rise to a map on cohomology

H∗(X;π)×H∗(Y ;π′)→ H∗(X × Y ;π ⊗ π′).

Now we let X = Y and π = π′ = R a commutative ring. Then we obtain the
cup product maps

∪ : Hp(X;R)×Hq(X;R)→ Hp+q(X ×X;R)
∆∗
−−→ Hp+q(X;R)

by using the pullback of the diagonal map on cohomology. The cup product maps
make the cohomology H∗(X;R) into a graded ring, as well as a graded R-module.
The cohomology ring is unital, associative, and graded commutative, in the sense
that x ∪ y = (−1)deg x deg yy ∪ x.

These properties can be seen by passing to cohomology from the following dia-
grams. First, the proof of unital uses this diagram:

X

�� %%KK
KKK

KKK
KK

yysss
sss

sss
s

X × ∗ X ×X //oo ∗ ×X.

The proof of associativity uses this diagram:

X

∆
��

∆ // X ×X
∆×Id
��

X ×X Id×∆ // X ×X ×X.

Finally graded commutativity follows from this diagram:

X
∆

##H
HH

HH
HH

HH
∆

{{ww
ww
ww
ww
w

X ×X t // X ×X,

where t : X ×X → X ×X switched the coordinates, that is t(x, x′) = (x′, x). The
signs difference in commutativity arises from the signs in the definition of w.

Here are some examples of cohomology rings.

(a) The cohomology ring of the torus is

H∗(S1 × S1;Z) ∼= Z[x, y]/(x2, y2, xy = −yx),

where deg x = deg y = 1.
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(b) The cohomology ring of S2 × S2 is

H∗(S2 × S2;Z) ∼= Z[x, y]/(x2, y2, xy = yx),

where deg x = deg y = 2.
(c) The cohomology ring of CPn = Z[x]/(xn+1), with deg x = 2. We will provide

a spectral sequences computation of the cohomology ring of CPn in the final
chapter of these notes.

(d) The cohomology ring of RPn = Z/2[x]/(xn+1), with deg x = 1.

In singular cohomology, let x be a sum of singular n-simplices xi. Let p, q be
integers such that p+ q = n. A singular n-simplex xi : ∆

n → X has a front p-face

p⌊x : ∆p → ∆p+q x−→ X,

where the inclusion map ∆p → ∆p+q maps to the first p coordinates. There is also
a back q-face

x⌋q : ∆q → ∆p+q x−→ X,

where now the inclusion map goes to the last q coordinates. We then define

(f ∪ g)(x) = f
(
p⌊x

)
g
(
x⌋q

)
.

The front p-face and back q-face are part of the Alexander-Whitney diagonal ap-
proximation chain map. The problem is that the diagonal map is not cellular, so
one has to make a choice of cellular map that approximates it up to homotopy.
Sending a simplex

x 7→
∑

p+q=n

p⌊x⊗ x⌋q.

15.2. Axiomatic treatment of cohomology and spectra. Cohomology theo-
ries also have axiomatic treatment. That is we have functors (X,A) → Eq(X,A),
and coboundary maps δ : Eq(X,A) → Eq+1(X,A). There are reduced/unreduced
versions, and generalised/ordinary depending on whether one includes the dimen-
sion axiom. The unreduced theory has axioms: long exact sequence, additivity,
weak equivalence and excision, analogous to the homology versions. A reduced
cohomology theory has exactness, suspension, additivity and weak equivalence ax-
ioms. An ordinary cohomology theory is determined by a theory on CW complexes
and this is determined by the axioms (if dimension is included.)

We saw in the exercise sheet that

H̃n(X;π) = [X,K(π, n)]

is a reduced ordinary cohomology theory. To obtain unreduced cohomology, we
use:

Hn(X;π) = [X+,K(π, n)].

These coincide with singular or cellular cohomology because they both satisfy the
dimension axiom, and such theories are determined up to natural isomorphism.

Definition 15.1. An Ω-spectrum is a sequence of based space {Tn} with weak
equivalences σ̃ : Tn → ΩTn+1.
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This is stronger than the normal definition of spectra, since the maps are not
required to be weak equivalences. Note that whether σ̃ : Tn → ΩTn+1 is a weak
equivalence has rarely anything to do with whether the adjoint map σ : Tn → Tn+1

is a weak equivalence (like for suspension spectra).

Theorem 15.2 (Brown representability theorem). Every generalised cohomology
theory is represented by an Ω-spectrum, and every Ω-spectrum {Tn} gives rise to a

cohomology theory Ẽq(X) = [X,Tq].

The situation for homology is similar but a little more complicated, and we will
not go into it.

While homology commuted with colimits, it is not true in general that cohomol-
ogy commutes with limits. Given a sequence of spaces X0 ⊆ X1 ⊆ X2 · · · with∪
Xi = X there is a surjective map Ẽq(X)→ lim Ẽq(Xi). The kernel is measured

by the derived lim1 functor. We will not go into details here.

15.3. Homotopy theory definition of cap products. Let X and Y be spaces
and let A,B be abelian groups. We have a map

Hp(X;A)⊗Hq(Y,B) = [X,K(A, p)]⊗ [Y,K(B, q)]→ [X ∧ Y,K(A, p) ∧K(B, q)].

If we can find a map

ϕp,q : K(A, p) ∧K(B, q)→ K(A⊗B, p+ q),

then we can compose with this to get an element of

[X ∧ Y,K(A⊗B, p+ q)].

This will enable us to define the cup product with X = Y via the diagonal map
X → X ∧X and:

[X,K(A, p)]⊗ [X,K(B, q)]→ [X,K(A⊗B, p+ q)]

f ⊗ g 7→ ϕp,q ◦ (f ∧ g) ◦∆.

To find the maps ϕp,q, note that such a map is an element of H̃p+q(K(A, p) ∧
K(B, q);A⊗B), and consider the sequence of natural isomorphisms

H̃p+q(K(A, p) ∧K(B, q);A⊗B)

∼=Hom(H̃p+q(K(A, p) ∧K(B, q)), A⊗B)

∼=Hom(H̃p(K(A, p))⊗ H̃q(K(B, q)), A⊗B)

∼=Hom(πp(K(A, p))⊗ πq(K(B, q)), A⊗B)

∼=Hom(A⊗B,A⊗B)

The first three isomorphisms follow from the universal coefficient theorem, the
Künneth theorem and the Hurewicz theorem. To see that these theorems ap-
ply, observe that K(A, p) is (p − 1)-connected, K(B, q) is (q − 1)-connected, and
K(A, p)∧K(B, q) is (p+q−1)-connected. Define the map ϕp,q : K(A, p)∧K(B, q)→
K(A⊗B, p+q) to be the map associated to the cohomology class that is the preim-
age of the identity map IdA⊗B ∈ Hom(A⊗B,A⊗B) under the above sequence of
isomorphisms.
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The properties of cup products, that they are have a unit, are associative and
graded commutative, can also be proven from the homotopy theory definition. The
algebraic and more homotopy theoretic definitions coincide. To see this, it suffices
to convince oneself, by naturality, that they coincide on the Eilenberg Maclane
spaces.

16. Cap products

Another important product in cohomology is called the cap product. Cap prod-
uct with the fundamental class of a manifold M gives rise to the Poincaré duality
maps from cohomology to homology. Recall that

[X,Y ] = π0(Map(X,Y )).

We have the evaluation map

ε : Map(X,Y ) ∧X → Y,

and we saw long ago that this is a continuous map. Let A,B be coefficient abelian
groups. The cap product will be a map

∩ : H̃p(X;A)⊗ H̃n(X;B)→ H̃n−p(X;A⊗B)

In the case that X =M is an n-dimensional manifold, let [M ] ∈ Hn(M ;Z) be the
fundamental class. Then

x ∩ [M ] ∈ H̃n−p(M ;A)

is the Poincaré dual of x. Now we construct the cap product using homotopy theory.
Using our definition of homology and cohomology in terms of homotopy groups,
we will obtain a definition that easily generalises to homology and cohomology
theories defined using spectra. The disadvantage of this approach is that we need
our coefficients to be abelian groups, but cap products can also be defined for
twisted coefficients over a Z[π1(X)]-module. We want a map

π0(Map(X,K(A, p)))⊗colimq πq(X ∧K(B, q))→ colimr πn−p+r(X ∧K(A⊗B, r)).
Tensor products commute with colimits, so in fact we want a map

colimq π0(Map(X,K(A, p)))⊗πq(X∧K(B, q))→ colimq πn+q(X∧K(A⊗B, p+q)),
by setting r = p + q. So we define maps without the colimits, and then we will
simply pass to the colimit, to get the desired product. Here is a glorious sequence
of maps that gives the map we want.

π0(Map(X,K(A, p)))⊗ πq(X ∧K(B, q))

∧−→πn+q(Map(X,K(A, p)) ∧X ∧K(B, q))

Id∧∆∧Id−−−−−−→πn+q(Map(X,K(A, p)) ∧X ∧X ∧K(B, q))

ε∧Id−−−→πn+q(K(A, p) ∧X ∧K(B, q))

t∧Id−−−→πn+q(X ∧K(A, p) ∧K(B, q))

Id∧ϕ−−−→πn+q(X ∧K(A⊗B, p+ q)).
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In singular homology, we can define the cap product as follows. Let y ∈ Hn(X;B)
and x ∈ Hp(X;A). Apply a diagonal chain approximation map

∆(y) =
∑
i

biyip ⊗ yin−p +
∑
r ̸=p

biyir ⊗ yin−r

where bj ∈ B and y =
∑
bjf j , with f j : ∆n → Y a singular n-simplex, and the

diagonal map on an n simplex ∆(f j) =
∑
yir ⊗ yin−r. Then

x ∩ y =
∑
i

(x(yip)⊗ bi) · yin−p.

Here x(yip) ∈ A. Explicitly, one can use the Alexander-Whitney diagonal approxi-
mation with

∆(f j) =

n∑
i=0

(
i⌊f j

)
⊗

(
f j⌋i

)
.

The key property of cap and cup products is

⟨α ∪ β, x⟩ = ⟨β, α ∩ x⟩,

where α ∈ H̃p(X), β ∈ H̃q(X) and x ∈ H̃p+q(X). This is often very useful in the
study of Poincaré duality.

Here is the cool thing about the construction of cap and cup products that we
gave. If {Tn} is an Ω-spectrum, with a sequence of maps ϕp,q : Tp ∧ Tq → Tp+q,
then the associated generalised homology/cohomology theories have cap and cup
product maps, defined in exactly analogous ways.

17. Cohomology operations

We say that a contravariant functor k from spaces to sets is represented if there
is a space Z such that k(X) = [X,Z] for all X. Let k be a represented functor and
let k′ be another contravariant functor from spaces to sets.

Lemma 17.1 (Yoneda lemma). There is a bijection between the set of natural
transformations Φ: k → k′ and ϕ ∈ k′(Z).

Proof. Given Φ, let ϕ = Φ(Id) ∈ k′(Z), where Id ∈ k(Z) = [Z,Z]. Given ϕ ∈ k′(Z),
define Φ: k(X) = [X,Z]→ k′(X) by f 7→ f∗(ϕ). Note that f∗ : k′(Z)→ k′(X). �

Corollary 17.2. Suppose that both functors are represented. Then there is a bi-
jection between natural transformations Φ: [−, Z]→ [−, Z ′] and ϕ ∈ [Z,Z ′].

Definition 17.3. A cohomology operation of type q and degree n between coho-

mology theories Ẽ∗ and F̃ ∗ is a natural transformation Ẽq → F̃ q+n.

Definition 17.4. A stable cohomology operation of degree n is a sequence {Φq : Ẽq →
Ẽq+n} of cohomology operations of type q and degree n, such that for each based

space X we have Σ ◦ Φq = Φq+1 ◦ Σ: Ẽq(X)→ Ẽq+1+n(ΣX).

Unlike the cup product, cohomology operations can survive stabilisation.
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Theorem 17.5. Cohomology operations

H̃q(−, π)→ H̃q+n(−, π′)

are in canonical bijective correspondence with H̃q+n(K(π, q), π′).

Proof. Cohomology operations are natural transformations from [−,K(π, q)] to
[−,K(π′, n + q)], which by the Yoneda lemma correspond to [K(π, q),K(π′, q +
n)]. �

The Steenrod operations

Sqn : Hp(X;Z/2)→ Hp+n(X;Z/2)

are stable cohomology operations such that

(i) Sq0 = Id;
(ii) Sqn(x) = x2 = x ∪ x if n = deg x;
(iii) Sqn(x) = 0 if n > deg x; and
(iv) Sqm(xy) =

∑
i+j=n Sq

i(x) Sqj(x). This is called the Cartan formula.

These properties characterise the Steenrod operations Sqn. They correspond to
the cohomology ring

H∗(K(Z/2, p);Z/2),
which is a polynomial algebra generated by certain iterates of the Steedrod op-
erations. These operations are important operations in algebraic topology. For
example, they are used to define the Stiefel-Whitney classes of vector bundles.

Here is an example of a computation of Steedrod squares. Let X = RP∞ and
let y ∈ H2(RP∞;Z/2) be equal to x2, where x ∈ H1(RP∞;Z/2) is a generator of
the degree one cohomology. Then

Sq1(y) = Sq1(x2) = Sq1(x) Sq0(x)+Sq0(x) Sq1(x) = x∪x∪x+x∪x∪x = 2x∪x∪x = 0.

This example shows that not all of the Steenrod operations of RP∞ are nontrivial,
even though many of them are.

We finish this section be using the Steedrod operations to give a proof that the
first stable homotopy group is nontrivial.

Theorem 17.6. Let f : S3 → S2 represent a generator of π3(S
2) ∼= Z. Then

Σkf : S3+k → S2+k is nontrivial for all k. That is, πS1 ̸= 0.

Proof. The mapping cone Cf = D4 ∪f S2. The mapping cone of Σf CΣf
∼= ΣCf =

D5 ∪Σf S
3. Iterating this, we obtain that

ΣkCf = D4+k ∪Σkf S
2+k.

Note that 0 ̸= Sq2 : H2(Cf ;Z/2) → H4(Cf ;Z/2), because the cup product of

CP2 ≃ S2 ∪f D4 is nontrivial. Since the Steenrod operations are stable, we have

0 ̸= Sq2 : H2+k(ΣkCf ;Z/2)→ H4+k(ΣkCf ;Z/2).

Now if there is a k such that Σkf ∼ ∗, then there exists a retraction map r : ΣkCf →
Sk+2. This is because attaching D4+k is homotopy equivalent to wedging with a
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S4+k, and then the retraction map can identify this S4+k to the basepoint. By
naturality we have a commutative square

H2+k(S2+k;Z/2) r∗

∼=
//

��

H2+k(ΣkCf ;Z/2)

Sq2

��
H4+k(S4+k;Z/2) r∗ // H4+k(ΣkCf ;Z/2)

The bottom left group is zero, the others are all Z/2. The right then down com-
position is nontrivial, but it also factors through zero. This is a contradiction, so
we deduce that no retraction r can exist. �

18. Obstruction theory

Let (X,A) be a CW pair. In this section we try to solve the following problems.
The exposition follows [DK].

(1) The Extension problem. We are given a map f : A→ Y , for some space Y ,
and we want to know whether f can be extended to a map X → Y .

A
f //

��

Y

X

>>~
~

~
~

(2) Given two maps f0, f1 : X → Y and a homotopy of f0|A to f1|A, can we
extend this to a homotopy between f0 and f1?

X × {0, 1} ∪A× I //

��

Y

X × I

77ooooooo

Note that this is not the same as the HEP, since here we specify f1, whereas
in the HEP no f1 is specified.

(3) A lifting problem. Let p : E → B be a fibration. We have a map X → B,
and we want to know whether it can be lifted to a map X → E.

E

p

��
X

f //

>>}
}

}
}

B

(4) A relative lifting problem. This is the same as the previous case, but the
lift is already fixed for us on A.

A //

��

E

p

��
X

f //

>>}
}

}
}

B
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(5) The section problem. This is the lifting problem with X = B and f = Id.
It asks whether a fibration has a section.

For the relative lifting problem, if X = A× I, then the HLP for p : E → B says
that this problem is soluble.

Note that we assume A → X is a cofibration and E → B is a fibration. The
problems above are soluble for generic maps of CW complexes if and only if they
are soluble for A→Mf and Pp → B respectively, that is replacing maps by their
homotopy cofibre and fibre.

Here is the first main observation of obstruction theory. The strategy is to try to
extend maps cell by cell using the CW structure of X. At some point we will run
into an obstruction to extending the map, and this will be the primary obstruction
to solving the given problem. If the primary obstruction does not vanish, the map
cannot be extended, at least not without going back and altering the map as already
defined on earlier cells. If the primary obstruction vanishes, there are potentially
further obstructions, but we will not study them. In favourable cases, the primary
obstruction is the only obstruction, and we are able to determine whether the map
extends, or whether the map lifts.

Lemma 18.1. Let X be an n-dimensional CW complex and let Y be an n-connected
space. Then any map f : X → Y is null homotopic.

Proof. We aim to deform the map f on the k-skeleton to be null homotopic, induc-
tively. Suppose that f has been deformed so that the (k− 1)-skeleton maps to the

basepoint of Y . Then for k ≤ n, the composition Dk → X
f−→ Y , where Dk → X

is the characteristic map of a k-cell, factors through Dk → Dk/∂Dk = Sk → Y .
Moreover this map is null-homotopic, since Y is n-connected, so the map Sk → Y
extends to a map H : Dk+1 → Y . H can be thought of as a homotopy H : f ∼ ∗.
Define a homotopy on the k-skeleton using this map. We then have to extend this
to a homotopy of f . To achieve this, use that X(k) → X is a cofibration, so the
HEP gives

X(k) i //

i0

��

X

i0

��

f

{{xx
xx
xx
xx

Y

X(k) × I

H
::uuuuuuu

// X × I

H̃
bb

The map H̃ extends the homotopy to a homotopy of X, so f is homotopic to a
map that sends the k skeleton X(k) to the basepoint ∗. This completes the proof
of the inductive step. �

Now we define an obstruction to extending a map. Suppose that the problem

A
f //

��

Y

X

>>~
~

~
~
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has been solved over the n-skeleton X(n) of (X,A). So there is a map X(n) → Y
that agrees with the given map A → Y on A. For each n-cell en+1, consider the
composition

Sn → ∂en+1 → X(n) f (n)

−−→ Y ∈ πn(Y ).

This determines a cochain

θ(f (n)) ∈ Cn+1(X;πn(Y )).

We will show that ∂∗(θ(fn)) = 0, so that [θ(fn)] ∈ Hn+1(X;πn(Y )) = [X,K(πn(Y ), n+

1)]. We will show that if [θ(fn)] = 0 then one can modify f onX(n) and then extend

it to a map f̃ : X(n+1) → Y .
The homotopy problem is a special case of the extension problem. Let

(X ′, A′) := (X × I,X × ∂I ∪A× I).
This leads to the obstruction

Hn+1(X × I,X × {0, 1};πn(Y )) ∼= Hn(X;πn(Y )) = [X,K(πn(Y ), n)].

To see the isomorphism we use the long exact sequence of a pair

Hn(X×I) ∆−→ Hn(X×{0, 1})→ Hn+1(X×I,X×{0, 1})→ Hn(X×I) ∆−→ Hn+1(X×{0, 1})

In general coker(B
(f,f)−−−→ A ⊕ A) ∼= A ⊕ A/f(B). In this case f is the identity

map Id: Hn(X) → Hn(X). The diagonal map is also injective, so that the map
Hn+1(X × I,X × {0, 1}) → Hn(X × I) is the zero map. It follows that Hn(X ×
{0, 1})→ Hn+1(X × I,X × {0, 1}) is an isomorphism.

If Y = K(π, n) then these are precisely the obstructions. In general these are the
primary obstructions, but the complete obstruction theory is much less clean, when
the target is not an Eilenberg-Maclane space. Maps f, g ∈ [X,Y ] = [X,K(π, n)]
are homotopic if and only if they have equivalent classes in Hn(X;πn(K(π, n))) =
Hn(X;π). This explains how it was arrived at to define cohomology using spectra.

Recall that if {Tn} is a spectrum, such that ΣTn → Tn+1 is an Ω-spectrum i.e.
the adjoint Tn → ΩTn+1 is a weak homotopy equivalence.

Theorem 18.2. Let Tn be an Ω-spectrum. Then

Ẽn(X) ∼= [X,Tn]

is a generalised homology theory.

Suppose that Y is n-simple, that is [Sn, Y ] = πn(Y ), since π1(Y ) acts trivially
on πn(Y ). Let (X,A) be a relative CW complex and let n ≥ 1. Let g : Xn → Y be
a map. let

ϕi : (D
n+1, Sn)→ (X(n+1), Xn)

be the characteristic map of the ith (n+ 1)-cell en+1
i . Then the composition

g ◦ ϕi|nS : Sn → Y

gives an element of πn(Y ).

Definition 18.3. Define the obstruction cochain θn+1(g) ∈ Cn+1(X,A;πn(Y )) by
θn+1(g)(en+1

i ) = [g ◦ ϕi|Sn ], and extend linearly.
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Here is the main theorem of obstruction theory.
Theorem 18.4.

(1) The obstruction cocycle θn+1(g) = 0 if and only if g extends to a map

X(n+1) → Y .
(2) The obstruction cohomology class [θ(g)] = 0 ∈ Hn+1(X,A;πn(Y )) if and

only if the restriction g|X(n−1) : X(n−1) → Y extends to a map X(n+1) → Y .

The obstruction cohomology class vanishing says that we can alter the map on
the n-skeleton in such a way that it extends over the (n + 1)-skeleton. Before we
start the proof, we give another slightly more formal definition of θ(g).

The nth cellular chain group is

Cn(X,A) = Hn(X
(n), X(n−1))

with boundary map

∂ : Hn(X
(n), X(n−1))

∂−→ Hn−1(X
(n−1))→ Hn−1(X

(n−1), X(n−2)).

The Hurewicz map gives a surjective map

πn+1(X
(n+1), X(n))→ Hn+1(X

(n+1), X(n))

The kernel is

K = {x(α(x))−1 |x ∈ πn+1(X
(n+1), X(n)), α ∈ π1(X(n))}

Define

π+n+1(X
(n+1), X(n)) := πn+1(X

(n+1), X(n)) ∼= Hn(X
(n+1), X(n)).

There is a factorisation since Y is n-simple.

πn+1(X
(n+1), X(n))

∂ //

))TTT
TTTT

TTTT
TTTT

πn(X
(n))

g∗ // πn(Y )

π+n+1(X
(n+1), X(n))

g◦∂

77nnnnnnnnnnnn

We then have a map

Cn+1(X,A) = Hn+1(X
(n+1), X(n))

≃−→ π+n+1(X
(n+1), X(n))

g◦∂−−→ πn(Y ).

This defines θn+1(g) algebraically.

Proposition 18.5. θn+1(g) is a cocycle.
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Proof. Write h for the Hurewicz homomorphism. We have a commutative diagram

πn+2(X
(n+2), X(n+1))

h // //

∂
��

Hn+1(X
(n+2), X(n+1))

∂
��

πn+1(X
(n+1))

h //

��

Hn+1(X
(n+1))

��
πn+1(X

(n+1), X(n))
h //

∂
��

Hn+1(X
(n+1), X(n))

θn+1(g)

��
πn(X

(n))
g∗ // πn(Y )

The last two maps on of the left hand column are from the long exact sequence
of a pair, and so their composition vanishes. The entire composition of the right
hand column is the map ∂∗θn+1(g). Also the top Hurewicz map is surjective.
It follows that the composition of the right hand column vanishes, and therefore
∂∗θn+1(g) = 0, so θn+1(g) is a cocycle. �

The first part of the main theorem, that if the obstruction cocycle vanishes, then
the map extends over X(n+1), follows from the argument of Lemma 18.1. Since
the boundaries of the (n+1)-cells map trivially into πn(Y ), there are extensions of
these boundaries to maps of discs to Y . We need to show that if the cohomology
class vanishes, then we can change the map on Xn, fixing X(n+1), so that the
outcome extends over X(n+1), i.e. so that the outcome is has vanishing obstruction
cocycle.

Lemma 18.6. Let f0, f1 : X
(n) → Y be two maps such that f0|X(n−1) ∼ f1|X(n−1).

Then a homotopy determines a difference cochain

d ∈ Cn(X,A;πn(Y ))

satisfying ∂∗(d) = θn+1(f0)− θn+1(f1).

Proof. Let X̂ := X× I and let Â := A× I. Then (X̂, Â) is a relative CW complex,
with

X̂(k) = X(k) × ∂I ∪X(k−1) × I.
A map X̂(n) → Y is a pair of maps f0, f1 : X

(n) → Y , together with a homotopy
G : X(n−1) → Y between f0|X(n−1) and f1|X(n−1) , the restrictions to X(n−1). This
gives rise to an obstruction cocycle

θ(f0, G, f1) ∈ Cn+1(X̂, Â;πn(Y ))

that obstructs extending f0 ∪G∪ f1 to X̂(n+1). Take the restriction of this cocycle
to cells of the form en × I, to define the difference cochain

d(f0, G, f1) ∈ Cn(X,A;πn(Y ))

That is,
d(f0, G, f1)(e

n
i ) = (−1)n+1θ(f0, G, f1)(e

n
i × I).
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We have

0 = ∂∗θ(f0, G, f1)(e
n+1
i × I)

= θ(f0, G, f1)(∂(e
n+1
i × I))

= θ(f0, G, f1)(∂(e
n+1
i )× I + (−1)n+1(θ(f0, G, f1)(e

n+1
i × {1})− θ(f0, G, f1)(εn+1

i × {0})))
= (−1)n+1

(
∂∗d(f0, G, f1)(e

n+1
i ) + θn+1(f1)(e

n+1
i )− θn+1(f0)(ε

n+1
i )

)
Therefore

∂∗d(f0, G, f1)(e
n+1
i ) = θn+1(f0)(e

n+1
i )− θn+1(f1)(ε

n+1
i )

�
Corollary 18.7. If f0 is homotopic to f1, and f1 extends to X

(n+1), then θn+1(f1) =
0, and so θn+1(f0) is null homologous.

We want a converse to this corollary. That is, if θn+1(f0) is null homologous, then
there exists an extension to the n+ 1-skeleton up to homotopy on the n-skeleton.

Proposition 18.8. Let f0 : X → Y be a map and let G : X(n−1) × I → Y be a
homotopy with G0 = f0|X(n−1). Let d ∈ Cn(X,A;πn(Y )) be a cochain. Then there

exists a map f : X(n) → Y such that G1 = f1|X(n−1) and d = d(f0, G, f1).

We start the proof with a lemma.

Lemma 18.9. For any map f : Dn × {0} ∪ Sn−1 × I → Y and for any α ∈
[∂(Dn × I), Y ], there exists a map F : ∂(Dn × I) → Y such that F represents the
homotopy class α and restricts to f .

Proof. Let D := Dn×{0}∪Sn−1×I. Let K : ∂(Dn×I) be any map representing α.
We are given a map f : D → Y . Since D is contractible, f and K|D are homotopic
maps. Let h : D × I → Y be such a homotopy. Apply the HEP to the following
diagram:

D
i //

i0

��

∂(Dn × I)

i0

��

K

xxppp
ppp

ppp
p

Y

D × I

h
<<xxxxxxx

i×Id
// ∂(Dn × I)× I.

h̃
ff

We obtain a map h̃ : ∂(Dn × I) × I → Y , such that F := h̃1 restricts to f and is
homotopic to K, i.e. represents α. �
Proof of Proposition 18.8. Recall that we are given f0 : X

(n) → Y and G : X(n−1)×
I → Y such that G0 = f0|Xn−1 . We are also given a chain d ∈ Cn(X,A;πn(Y ).

Our task is to show that there exists a map f1 : X
(n) → Y such that G1 = f1|X(n−1)

and such that d = d(f0, G, f1).
Let eni be an n-cell of X, and let

φi : (D
n, Sn−1)→ (X(n), X(n−1))
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be its characteristic map. Let

f = f0 ◦ φi ∪G ◦ (φi|Sn−1 × IdI)

where
f0 ◦ φi : D

n × {0} → X → Y

and
G ◦ (φi|Sn−1 × IdI) : S

n−1 × I → X(n−1) × I → Y

Let α = d(eni ) ∈ πn(Y ). Note that α is represented by a map Sn = ∂(Dn×I)→ Y .
Apply the lemma to get a map

Fi : ∂(D
n × I)→ Y

representing α whose restriction to Dn × {0} ∪ Sn−1 × I is equal to f . Define

f1 : X
(n) → Y

by
f1(φi(x)) = Fi(x, 1)

for x ∈ eni ∼= Dn. Now
d(f0, G, f1)(e

n
i ) = d(eni )

and G1 = f1|X(n−1) by construction. �

Proof of Theorem 18.4. Let g : X(n) → Y and suppose that θ(g) = ∂∗(d). Define

G : X(n−1) × I → Y
(x, t) 7→ Y

for all t ∈ I. By the preceding proposition, there exists a map g′ : X(n) → Y such
that d = d(g,G, g′) and

G(−, 1) = g′|X(n−1) = g|X(n−1) .

Then θ(g) − θ(g′) = ∂∗(d). Therefore θ(g′) = 0 so g′ extends to X(n+1). This
completes the proof of the main theorem of obstruction theory. �

Next we examine some of the consequences. This obstruction is very useful when
there is exactly one potentially non-vanishing obstruction. But if there are more,
then the obstruction theory quickly becomes more complicated.

Let us consider the case of extending homotopies.

X × {0, 1} ∪A× I
f //

��

Y

X × I

77ooooooo

Recall that we define the pair

(X∗, A∗) := (X,A)× (I, ∂I) = (X × I,X × ∂I ∪A× I).
A map F : (X∗)(n) → Y is two maps f0, f1 : X

(n) → Y and a homotopy f0|X(n−1) ∼
f1|X(n−1) Recall that we have an obstruction

d(f0, f1) := θn+1(F ) ∈ Hn+1(X∗, A∗;πn(Y )) ∼= Hn(X,A;πn(Y )).
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Theorem 18.10. Let (X,A) be a relative CW complex, and let Y be n-simple.

Let f0, f1 : X → Y be maps with f0|A = f1|A, and let F : X(n−1) × I → Y be
a homotopy relative to A between f0|X(n−1) and f1|X(n−1). Then θn+1(F ) = 0 ∈
Hn(X,A;πn(Y )) if and only if F |X(n−2) extends to a homotopy f0|X(n) ∼ f1|X(n).

This theorem follows directly from the previous theorem, using the translation
with (X∗, A∗) given above.

Now we return to discussing the extension problem.

A
f //

��

Y

X

>>~
~

~
~

Note that if H(n+1)(X,A;πn(Y )) = 0 for all n, then we can always extend maps. If
Y is (n−1)-connected and f : A→ Y is a map, then the primary obstruction to ex-

tending f to X(n+1) is the obstruction γ(n+1)(f) = θ(n+1)(f) ∈ Hn+1(X,A;πn(Y )).

If H(n+1)(X,A;πn(Y )) ̸= 0 for exactly one n, then there is a single obstruction,
and obstruction theory works rather well.

Suppose that Y = K(π, n) is an Eilenberg-MacLane space. Then there is an

obstruction γ(n+1)(f) ∈ Hn+1(X,A;πn(Y )) = Hn+1(X,A;π) to extending f to

the (n + 1)-skeleton of X. Suppose that γ(n+1)(f) = 0. Then we can change f

relative to X(n−1) so that it extends to a map g : X(n+1) → Y . Then g extends to
a map X → Y since πk(Y ) = 0 for all k > n.

We can consider the indexing of possible choices of extension up to homotopy.
Let g, g′ : X → Y be maps. They are homotopic if and only if

d(g, g′) = 0 ∈ Hn(X,A;πn(Y )) = Hn(X,A;π).

In fact, homotopy classes are in one to one correspondence with Hn(X,A;π), there-
fore we see the identification of cohomology with [X,K(π, n)].

Example 18.11. Let X = S3rνK be the exterior of a knot K ⊂ S3, where νK is
a regular neighbourhood of K. The reader should compute the homology groups
of X as an exercise. Let

f : ∂(νK) = ∂X = S1 × S1 → S1

be given by the projection (x, y) 7→ x. We have a primary obstruction to extending
the map over all of X in

H2(X, ∂X;π1(S
1)) = H2(X, ∂X;Z) ∼= H1(X;Z)

where the last isomorphism is by Poincaré-Lefschetz duality. This obstruction
depends on the precise identification of ∂X with S1 × S1 used. To see whether it
vanishes, check that the boundary of 2-cells of X map to zero in π1(S

1) ∼= Z. The
homotopy classes of maps extending the given map correspond to H1(X, ∂X;Z) ∼=
H2(X;Z) = 0, so if an extension exists, if is unique.

On the other hand, if we have no requirement on the map on the boundary,
then there is no obstruction, since the primary obstruction lives in H2(X;Z) ∼=
H1(X, ∂X;Z) = 0. Make a choice of map on the 1-skeleton. Then it automatically
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extends to a map X → S1. The homotopy classes of maps are in one to one
correspondence with H1(X;Z) = [X,S1] ∼= Z.

Given a map X → S1, the inverse image of a regular value is a Seifert surface
for the knot K.

Now we consider the case of fibrations. Recall that this is following lifting prob-
lem:

E

p

��
X

f //

>>}
}

}
}

B

where p : E → B is a fibration. Suppose that F is n-simple, and suppose that g
is defined on the n-skeleton of X. Let en+1 be an (n + 1)-cell of X. Then the

boundary gives a map Sn → X(n) g−→→ E → B that is null homotopic, since f
gives an extension over the en+1 of the composite. Therefore Sn → X(n) → E is
homotopic to map Sn → F , by the HLP. Recall that path lifting gave us a map
π1(B)→ hAut(F ). We therefore have an induced map

(hα)∗ : [S
n, F ]→ [Sn, F ].

Note that [Sn, F ] ∼= πn(F ) since F is n-simple. We therefore have a representation
ρ : π1(B)→ Aut(πn(F )). The composition

π1(X)→ π1(B)→ Aut(πn(F ))

allows us to define the obstruction cochain with twisted coefficients in

θn+1(g) ∈ Cn+1(X;πn(F )ρ).

Theorem 18.12. Let X be a CW complex and let g : X(n) → E be a lift of f : X →
B on the n-skeleton. Suppose that F is n-simple. An obstruction class θn+1(g) ∈
Hn+1(X;πn(F )ρ) is defined, and if θn+1(g) = 0, then g can be changed on the
n-skeleton, relative to the (n − 1)-skeleton, and then extended over the (n + 1)-
skeleton.

This is essentially the same ideas as the previous theorems in this section. Finally
we apply the fibrations obstruction to the problem of finding sections for vector
bundles. Let E → B be an oriented n-dimensional vector bundle and let E0 :=
Er{0− section}. Finding a section of a vector bundle is the same as finding a lift
of in the following diagram.

E0

��
B

Id //

s
>>}}}}}}}}
B

The associated primary obstruction is

e(p) ∈ Hn(B;πn−1(Rnr{0})) = Hn(B;Z).
Note that Rnr{0} is n simple since π1(S

n−1) = 0 for n > 2. Also π1(B) acts
trivially on πn−1(S

n−1) since the transition functions in an oriented vector bundle
lie in GL(n,Rn)+. Therefore there is no twisting. The first obstruction to finding
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a section of a vector bundle is e(p) ∈ Hn(B;Z); this is called the Euler class of the
vector bundle.

Theorem 18.13. Let p : TB → B be the tangent bundle of an oriented manifold
B. Then

⟨e(p), [B]⟩ = χ(B).

For example, TS2 has no nonzero section, because χ(S2) = 2. This is the hairy
balls theorem.

19. Spectral sequences

19.1. Introduction. We finish the course with a brief introduction to spectral
sequences. Our goal is to give a formalism to compute the homology of a total
space of a fibration F → E → B in terms of the homology of B and F . This
will be via the Leray-Serre spectral sequence. This is one fantastic example of a
spectral sequence. There are many others. We will start with homology spectral
sequences, but then we will also later the cohomology version. As usual, the main
difference between the homology and cohomology versions is that the maps go in
the opposite direction.

A spectral sequence can be thought of as a book of modules. There are differ-
entials on each page, and we can take homology to turn the page of the book. At
the end of the book, all is revealed. The first or second page of the book might be
something that we can compute. Sometimes page k is equal to page k + 1, for all
k ≥ N , for some N . In this case we say that the sequence collapses at the Nth
page. After that nothing more interesting happens in the book. Like when the one
ring is destroyed 100 pages before the end of LOTR, and you think what is going
to happen now, and the answer is nothing. In such cases we have a chance of being
able to compute something.

19.2. Algebraic formalism of a spectral sequence arising from a filtration.
Let R be a commutative PID. A bigraded module E is a collection Es.t of Rmodules
s, t ∈ Z. A differential d of bidegree (−r, r − 1) is a homomorphism

d : Es,t → Es−r,t+r−1

for all s, t ∈ Z, such that d2 = 0. We can take homology via:

Hs,t(E) :=
ker(d : Es,t → Es−r,t+r−1)

im(Es+r,t−r+1)
.

Note that if Eq :=
⊕

s+t=q Es,t, then the differential defines a map ∂ : Eq → Eq−1

such that (Eq, ∂) is a chain complex with homology
⊕

s+t=qHs,t(E).

Definition 19.1. An Ek-spectral sequence (often we drop Ek-from the notation,
it just records the first page) is a sequence (Er, dr), with r ≥ k, such that Er is a
bigraded module, dr a differential of bidegree (−r, r − 1), and for r ≥ k we have
H(Er) ∼= Er+1.
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We can draw diagrams of pages, with a grid, and we show the differentials
with diagonal arrows that show the bidegree. The following simple observation is
nevertheless rather powerful.

Lemma 19.2. If Er
p,q = 0 for some r, then Es

p,q = 0 for all s > r.

Define Zk to be the bigraded module with Zk
s,t = ker(dk : Ek

s,t → Ek
s−k,t+k−1), and

define Bk to be the bigraded module with Bk
s,t = dk(Ek

s+k,t−k+1). Then Bk ⊆ Zk

and Ek+1 = Zk/Bk.

Next, let Z(Ek+1) be the bigraded module with Z(Ek+1)s,t = ker(dk+1 : Ek+1
s,t →

Ek+1
s−k−1,t+k). LetB(Ek+1) be the bigraded module withB(Ek+1

s,t ) = dk+1(Ek+1
s+k+1,t−k).

There exist bigraded submodules Zk+1, Bk+1 satisfying Bk ⊆ Bk+1 ⊂ Zk+1 ⊂ Zk

and such that Zk+1
s,t /Bk

s,t = Z(Ek+1)s,t and B(Ek+1)s,t = Bk+1
s,t /Bk

s,t. Iterating,
this yields a sequence of submodules

Bk ⊆ Bk+1 ⊆ · · · ⊆ Br−1 ⊆ Br ⊆ · · · ⊆ Zr ⊆ Zr+1 ⊆ · · ·Zk+1 ⊆ Zk.

Define Er+1 = Zr/Br, Z∞ =
∩
Zr and B∞ =

∪
Br. Then E∞ = Z∞/B∞ is the

limit of the spectral sequence.
An Ek-spectral sequence is said to converge if for all s, t there is an R(s, t) ≥ k

such that for r ≥ R, dr : Er
s,t → Er

s−r,t+r−1 is trivial. Then Er+1
s,t is a quotient

of Er
s,t, and we can write E∞

s,t = colimj E
R(s,t)+j
s,t . The sequence converges in the

strong sense if there is an N with R(s, t) ≤ N for all s, t.
An example to have in mind is the following. Let F → E → B be a fibration

with π1(B) = 0. Then E2
p,q = Hp(B;Q)⊗Hq(F ;Q) and

⊕
p+q=nE

∞
p,q = Hn(E;Q).

So there is a spectral sequence that computes the homology of the total space in
terms of the homology of the base and the fibre. This is a special case of the
Leray-Serre spectral sequence, that we will discuss in greater detail below.

Now we show how a spectral sequence can arise from filtrations.

Definition 19.3. A filtration of an R-module A is a sequence of submodules FsA,
with s ∈ Z, such that

· · · ⊆ Fs−1A ⊆ FsA ⊆ Fs+1A ⊆ Fs+2A ⊆ · · ·
If A is graded, A = {At}, then FsA is graded, with FsA = {FsAt}. The associated
graded module is

G(A)s = Fs(A)/Fs−1(A).

If A is graded then the associated graded becomes bigraded, with G(A)s,t =
FsAt/Fs−1At. The filtration FsA is said to be convergent if

∩
s FsA = 0 and∪

s FsA = A.

Note that G(A) does not determine A, only up to extension problems. If R is
a field, then G(A) determines A up to isomorphism. Also if ever G(A) = 0 then
A = 0.

A filtration is bounded below if for all t, there is an s(t) such that Fs(t)At = 0.
A filtration on a chain complex C is a filtration compatible with the differentials,

i.e. so that each term FsC is a chain complex FsCt. This gives a filtration of the
homology FsH∗(C) := im(H∗(FsC)→ H∗(C)). Then

∪
FsH∗(C) = H∗(C).
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Theorem 19.4. Let FsC be a convergent filtration on a bounded below chain com-
plex C. There is a convergent E1-spectral sequence with

E1
s,t
∼= Hs+t(FsC/Fs−1C)

such that d1 corresponds to the boundary operator of the triple (FsC,Fs−1C,Fs−2C),
that is

Hs+t(FsC/Fs−1C)→ Hs+t−1(Fs−1C)→ Hs+t−1(Fs−1C/Fs−2C),

and E∞ is isomorphic to the bigraded module GH∗(C) associated to the filtration

FsH∗(C) = im(H∗(FsC)→ H∗(C)).

That is, we compute the homology H∗(C) (well, a graded module that describes
the iterated quotients of some filtration of H∗(C)), in terms of the homology
H∗(FsC/Fs−1C) of quotients of a filtration of the chain complex. We just have
to take homology (turn the page) enough times until it stabilises. Then hope we
can solve the extension problem.

Often spectral sequences are first quadrant, meaning Er
s,t = 0 for s, t < 0. Then

such sequences automatically converge, since the differentials get longer and so
eventually land or originate outside the first quadrant.

We will not give the proof of this theorem due to time constraints. See [Sp,
p. 469] for the proof. We want instead to give some examples of computations
using this technology. The rough idea is that later differentials approximate the
actual differentials on C, and later modules Er better approximate ker ∂.

19.3. The spectral sequence of a fibration. Let p : E → B be a fibration, and
let π be a coefficient module. Suppose also that B is a CW complex. Define

E(s) = p−1(B(s))

for s ≥ 0, and E(s) = ∅ for s < 0. We have E(s) ⊂ E(s+1), so E(s) is a filtration on
E with

∪
E(s) = E. Let C∗ = C∗(E;π). This induces a filtration on C∗ by

Fs(C) = C∗(E
(s);π).

The filtration Fs(C) is bounded below and convergent. We have

Fs(C)/Fs−1(C) = C∗(E
(s), E(s−1)).

Then if we take homology, we get the E1 page of a spectral sequence. We have a
convergent spectral sequence, for any coefficient module π, with

E1
s,t
∼= Hs+t(E

(s), E(s−1);π)

with d1 the boundary operator of (E(s), E(s−1), E(s−2)). Then the E∞ page gives
a bigraded module associated to some filtration of H∗(E;π).
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Theorem 19.5. For all s ≥ 0, there are isomorphisms that fit into a commutative
diagram:

Hs(B
(s), B(s−1);Hn(F ;π))

∼= //

∂
��

Hs+n(E
(s), E(s−1);π)

∂
��

Hs−1(B
(s−1), B(s−2);Hn(F ;π))

∼= // Hs+n−1(E
(s−1), E(s−2);π)

Thus E1
s,t is isomorphic to the cellular chain complex of B, with coefficients in

Hn(F ;π). We take homology to get the E2-page. This yields the following theorem,
which is the main result of this section.

What we have done actually works for any generalised homology theory, so we
state the theorem in this generality.

Theorem 19.6 (Leray-Serre spectral sequence). Let h∗ be a generalised homology
theory, let p : E → B be a fibration with B a path connected CW complex. Let
F := p−1(B). There is a convergent E2-spectral sequence with

E2
s,t = Hs(B;ht(F ))

converging to h∗(E). That is, E∞ is a bigraded module associated to the filtration

of h∗(E) defined by Fsh∗(E) = im(h∗(E
(s))→ H∗(E)).

Recall that this means the following:

(1) There is a filtration

0 ≤ F0,n ⊆ F1,n−1 ⊆ · · · ⊆ Fn,n−p ⊆ · · · ⊆ hn(E)

with
∪

p Fp,n−p = hn(E).

(2) There is a spectral sequence Er
p,q with differentials dr : Er

p,q → Er
p−r,q+r−1

and ker drp,q/ im dr ∼= Er+1
p,q , with isomorphisms Er

p,q = Hp(B;hq(F )).
(3) For all p, q ≥ 0, there is an rp,q such that for all r ≥ rp,q we have that

dr : Er
p,q → Er

p−r,q+r−1 is the zero map. Then Er+1
p,q
∼= Er

p,q/d
r(Er

p+r,q−r+1),

so that E∞
p,q = colimr E

r
p,q
∼= Fp,q/Fp−1,q+1 = G(hn(E))p. That is, the E∞

terms give the steps in a filtration of hn(E).

19.4. Examples. We warn that these notes to not contain diagrams, and the
reader has to supply them for him or her self (or refer to class notes). Such
diagrams are almost essential for keeping track of the bidegrees when following or
making a spectral sequence computation.

Example 19.7. Consider the path space fibration ΩSk → PSk → Sk of the k-
sphere, with k ≥ 2. Since π1(S

k) = 0, the coefficients are untwisted in the E2

page

E2
p,q = Hp(S

k;Hq(ΩS
k)) =

{
Hq(ΩS

k) p = 0, k

0 else.

Since Hn(PS
n) = 0 for all n ̸= 0, we since the Leray Serre spectral sequence is first

quadrant, we have that E∞
p,q = 0 unless (p, q) = (0, 0).
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Since the differentials are of degree (−r, r + 1), the differentials either start or
end at 0, or we have r = k, and dk : Ek

k,q → Ek
0,q+k−1. Thus E2

p,q = · · · = Ek
p,q and

Ek+1
p,q = · · · = E∞

p,q = 0 for (p, q) ̸= (0, 0). But also

Ek+1
p,q =

{
ker(dk : Ek

k,q → Ek
0,q+k−1) (p, q) = (k, q)

coker(dk : Ek
k,q → Ek

0 , q + k − 1) (p, q) = (0, q + k − 1)
.

Thus each map in dk is an isomorphism. Therefore we obtain

Hq(ΩS
k) ∼= Hq+k−1(ΩS

k).

It follows that Hq(ΩS
k) = Z when q = a(k − 1) for some a ≥ 0 and vanishes

otherwise.

Example 19.8 (The Atiyah-Hirzebruch spectral sequence). Consider the fibration
pt → X → X and let h∗ be a generalised homology theory. Then we obtain a
spectral sequence with

E2
p,q = Hp(X;h∗(pt))⇒ hp+q(X).

This has untwisted coefficients. This enables us to compute generalised homology
theories in terms of ordinary homology, and knowledge of the theory of a point.
For example, with h∗ = Ω, the oriented bordism theory, we have Ω1 = Ω2 = Ω3 = 0
and Ω4 = Z = Ω0. The AHSS yields Ωi(X) = Hi(X) for i = 1, 2, 3. Note that the

map X → pt splits via pt→ X, so we get a splitting Ωi(X) ∼= Ωi(pt)⊕ Ω̃i(X). It
follows that any differential with image Er

0,n vanishes. We can therefore compute

Ω4(X) = H4(X)⊕ Ω4 = H4(X)⊕ Z.

Here (M,f) 7→ (f([M ]), σ(M)), the image of the fundamental class of M in the
fourth homology of X, and the signature of the intersection form on the second
real coefficient homology of X.

19.5. Gysin sequence.

Theorem 19.9. Let R be a commutative ring and let F → E → B be a fibration,
with F an R-homology sphere. Suppose that π1(B) acts trivially on Hn(F ;R) = R
if i = 0, n and 0 otherwise. There exists an exact sequence

Hr(E)
f∗−→ Hr(B)→ Hr−n−1(B)→ Hr−1(E)

f∗−→ Hr−1(B)→ . . .

Proof. Homology is with R coefficients if not mentioned.

E2
p,q =

{
Hp(B;R) q = 0, n

0 else.

The nontrivial differential is dn+1 : En+1
p,0 → En+1

p−n−1,n. Therefore

En+1
p,q
∼= E2

p,q
∼= Hp(B;Hq(F )) ∼=

{
Hp(B;R) q = 0, n

0 else.
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and

E∞
p,q =


0 q ̸= 0, n

ker(dn+1) q = 0

coker dn+1 q = n.

Thus Hr(E) is filtered by

0 ⊆ E∞
r−n,n

∼= Fr−n,n ⊆ Fr,0 = Hr(E).

Here Fr−n,n = coker dn+1 and Fr,0/Fr−n,n = ker dn+1. Therefore 0 → E∞
r−n,n →

Hr(E)→ E∞
r,0 → 0 is exact. The fact that we know the kernel and cokernel of dn+1

also tells us that

0→ E∞
p,0 → En+1

p,0
dn+1

−−−→ En+1
p−n−1,n → E∞

p−n−1,n → 0.

We get a map Hp(E)→ Hp(B) by combining

Hp(E)→ E∞
p,0 → En+1

p,0 = Hp(B),

and we get a map Hp(B) = E∞
p,0 → En+1

p−n−1,n = Hp−n−1(B). Finally we get a map

Hp−n−1(B)→ Hp−1(E) by

Hp−n−1(B) = En+1
p−n−1,n → E∞

p−n−1,n → Hp−1(E).

�

19.6. Cohomology spectral sequences. There are also cohomology spectral se-
quences. In particular, we have the Leray Serre cohomology spectral sequence of a
fibration, with hq a generalised cohomology theory, and

Ep,q
2 = Hp(B;hq(F ))⇒ hp+q(E).

The differentials have bidegree (r, 1− r, that is they go Ep,q
r → Ep+r,q+1−r

r . If the
generalised cohomology theory has products, then the spectral sequence also has
products:

Ep,q
ℓ × E

r,s
ℓ → Ep+r,q+s

ℓ .

If dt : Et → Et is a differential, and a ∈ Ep,q
t , b ∈ Er,s

t , we have

dt(a · b) = dt(a) · b+ (−1)p+qa · dt(b).
The induced product on E∞ coincides with the cup product on h∗(E).

Example 19.10. To finish, we start a computation of the cohomology ring of
K(Z, 2), which can be modelled with the complex projective space CP∞. We want
to show that the cohomology ring is isomorphic to the polynomial ring Z[c], where
c has degree 2. Use K(Z, 1) → ∗ → K(Z, 2), the path space fibration, and the
Leray Serre cohomology spectral sequence of it. The path space is contractible, so
the E∞ page vanishes away from (0, 0). The E2-page is H

p(K(Z, 2);Z) for q = 0, 1
and is zero otherwise. On the E2-page the differential is of degree (2,−1), and all
the other differential vanish. So the d2 differentials map by an isomorphism from
Hp(K(Z, 2);Z)→ Hp+2(K(Z, 2);Z). The homology of CP∞ is therefore Z in even
nonnegative dimensions and 0 in other dimensions. Next, we use the derivation
rule. If 1 ∈ E0,1

2 and c ∈ E2,1
2 are generators, then c · 1 ∈ E2,2 = 0. Therefore
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== d(0) = d(c·1) = d(c)·1+(−1)3c·d(1) = (gen of E4,0
2 )·1−c·c = (gen of E4,1

2 )−c·c.
Thus the generator of E4,1

2 is equal to c · c, with one c ∈ E2,1 and one in E2,0.
Therefore the cup product is nontrivial.

We can continue this type of argument.

d(c2,1 · c2,0) = d(c) · c+ (−1)3c · d(c) = gen of E4,0
2 · c− 0.

But we saw that c2,1 · c2,0 ∈ E4,1
2 is a generator, and the differential d(c2,1 · c2,0) is

the generator of E6,0
2 . Therefore c3 is also nontrivial. This type of argument can

be made into an induction to complete the proof that the cohomology ring is Z[c]
with deg c = 2.

The exercise sheet outlines extended examples to use spectral sequences to com-
pute the stable homotopy groups πS1

∼= Z/2 and πS2 = Z/2. While it is also possible
to compute these ones using framed bordism theory and the Pontryagin-Thom
construction, in general spectral sequences have been a huge tool in computations
of homotopy groups and related objects. The computations given in the example
sheet are but preliminary examples. Serre was able to use the spectral sequence
of a fibration to show that all the stable homotopy groups of spheres in positive
degree are finite groups.
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