MATS8232 ALGEBRAIC TOPOLOGY II: HOMOTOPY THEORY

MARK POWELL

1. INTRODUCTION: THE HOMOTOPY CATEGORY

Homotopy theory is the study of continuous maps between topological spaces
up to homotopy. Roughly, two maps f,g: X — Y are homotopic if there is a
continuous family of maps Fy: X — Y, for 0 <t < 1, with Fy = f and F} = g.
The set of homotopy classes of maps between spaces X and Y is denoted [X,Y].
The goal of this course is to understand these sets, and introduce many of the
techniques that have been introduced for their study. We will primarily follow the
book “A concise course in algebraic topology” by Peter May [May]. Most of the
rest of the material comes from “Lecture notes in algebraic topology” by Jim Davis
and Paul Kirk [DK].

In this section we introduce the special types of spaces that we will work with
in order to prove theorems in homotopy theory, and we recall/introduce some of
the basic notions and constructions that we will be using. This section was typed
by Mathieu Gaudreau.

Conventions. A space X is a topological space with a choice of basepoint that we
shall denote by *x. Such a space is called a based space, but we shall abuse of
notation and simply call it a space. Otherwise, we will specifically say that the
space is unbased.

Given a subspace A C X, we shall always assume xx € A, unless otherwise
stated. Also, all spaces considered are supposed path connected.

Finally, by a map f: (X,*x) — (Y, *y) between based space, we shall mean a
continuous map f: X — Y preserving the basepoints (i.e. such that f(xx) = *y),
unless otherwise stated. Note that when it is clear from the context, we may refer
to the basepoint as simply .

1.1. Basic constructions. In this subsection we remember some constructions
on topological spaces that we will use later.

Cartesian Product. Define the product of the based spaces (X, *x) and (Y, *y) by
(X xY,*xxy), where X x Y has the product topology and *xxy := (xx,*y).
Throughout these notes, we will denote the projection on the ith component (i.e.
the map
Xix-ox X, = X
(X1, ,xp) +— T
1
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We also have the diagonal map

A X —» XxX
x = (x,z).

Moreover, given two continuous maps f: X — Y and g: X’ — Y’, define their
product fxg: X XY — X'xY' by fxg(x,y) = (f(z),9(y)). Note that if f and g
are continuous, so is f x g (indeed, we have that (f xg) Y (UxV) = f~}U)xg~ (V)
is open if U and V are, because f and g are continuous).

Remark 1.1. Given two spaces X and Y, we can see the product X x Y as the
unique space such that the following diagram commutes and such that the following
property holds: for all pairs of continuous map f: A - X, g: A = Y, where A is
some space, there exists a unique continuous function (f,g): A — X x Y such that
pio(f,g) = fand pao(f,g) = g (the map is defined by (f,g) := f xgoA). X xY
can therefore be seen as the pull-back of the constant functions p,: X — {x} and
p«: Y — {x}, a notion that we will define later. This is an example of a universal
property defining the space X x Y, which for the product X x Y is a strange
perspective, but this point of view is the one which generalises.

Yy P {*}

Wedge Product. Given (X, *x) and (Y, *y) two based spaces, we define their wedge
product by

(X\/Y, *XVY) = XUY/(*X ~ ky, [*X])7

where XY /#x ~ %y has the quotient topology induced by the canonical projection
¢: XUY — X UY/*x ~ %y, and [*x] denotes q(*xx) ( = ¢(*y)). Because X VY
has the quotient topology and by the factorization theorem, there exist a unique
injective continuous map 41 : X — X VY such that the following diagram commutes:

X —XUY
N
q

XVY

Namely, i; is the map defined by i1(p) = ¢(p). Similarly, there exist a unique
injective map i2: Y - X VY.

Remark 1.2. Given two spaces X and Y, we can see the wedge product X VY
as the unique space such that the following diagram commutes and such that the
following property holds: for all pairs of continuous map f: X — B, g: Y — B,
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where B is a space, there exists a unique continuous function {f,¢g}: X VY — B
such that {f, g} oiy = f and {f,g}0ia =g.

{x} ——X

Y

X V'Y can therefore be seen as a push-out, a notion that we will also define later.

We call the map V: X VY — X defined by V = {Id,Id} the fold map. Note
also that there exists an inclusion map j: X VY — X X Y defined by

. L (pv*Y)v pEX;
Iy '{(*x,p% PEY

Smash Product. Given two based spaces (X, *x) and (Y, *y ), we define their smash
product by

(X AY,xxay) = (X x Y) /(X VY),j(q(+))),
where X A'Y has the quotient topology induced by the projection.

1.2. Homotopy.

Definition 1.3. Given maps f,g: X — Y, we write f ~ g, meaning f is homotopic
to g if there exist a continuous map H: X x [0,1] — Y such that H(z,0) = f(x)
and H(x,1) = g(x), and H(x,t) = x, for all t. Moreover, we call H a (based)
homotopy from f to g. We will say it is an unbased homotopy if we allow * to
move. Finally, we will denote the set of homotopy class of continuous maps from
X toY by [X,Y].

Definition 1.4. A category C is a collection of objects and a set of morphisms
Mor(A, B) between any two objects A, B € C such that there is an identity mor-
phism Id4 € Mor(A, B) and a composition law o: Mor(C, B) x Mor(4,B) —
Mor(A, C), for each triple of objects A, B,C € C, satisfying:

(1) ho(go f) = (hog)o f, whenever it is defined (associativity);

(2) Idof = f, fold = f (neutrality of Id).
We say that C is small if the class of objects is a set.
Lemma 1.5.

(1) (Based Spaces, Based Maps) is a category called Top,.

(2) (Based Spaces, Based Homotopy Classes of Maps) is a category called hT ops.

The proof is left as an exercise.

Definition 1.6. Let (X, A) be a pair of spaces (i.e. x € AC X)andi: A — X be
the inclusion map.
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(1) We call a continuous map r: X — A such that r(a) = a, for all a € A, a
retraction, and when such an r exist, we say that A is a retract of X.

(2) Moreover, if ior ~ Idx, we call r a deformation retraction and we say that
A is a deformation retract of X.

(3) If the homotopy in (2) is fixed on A, we call r a strong deformation retrac-
tion and say that A is a strong deformation retract of X.
Example 1.7.

(1) Consider the inclusion D™ — R"™ and define r: R™ — D" by

() {1:, x e DY
r(x) =4 , n
W, ng

Exercise: Show that this is a strong deformation retraction.

(2) Consider the inclusion S"~t — D™\{0} and let r: D"\{0} — S™~! be the

map defined by r(x) := &

llll*
Exercise: Show that this is a (strong) deformation retraction.

(3) On the other hand, S™! is not a retract of D". Indeed, we know that
H, 1(S" 1) =7 and H,_1(D") = {0}. If there were a retraction r: D" —
S"~1 we would have the following commutative diagram:

Hn_l(sn71> i) Hn_l(Snfl)

H,_1(D"™)

where Id is the identity and ¢, = 0 is the zero map. This give a contradic-
tion.

Definition 1.8. Given two spaces X and Y, we say that X is homotopy equivalent
to Y and write X ~ Y if there exist continuous maps f: X - Y and g: Y — X
such that f og ~ Idy and go f ~ Idx. Moreover, we say that a space X is con-
tractible when it is homotopy equivalent to the basepoint. Note that contractible
can depend on the choice of basepoint. There exist spaces contractible (as unbased
space), but not with any basepoint.

Example 1.9. Given a pair of spaces (A, X) such that A is a deformation retract
of X with deformation retract r, if ¢ denotes the inclusion, then r o i = Id4 and
ior ~ Idyx. Therefore, we have that A is homotopy equivalent to X.

2. COMPACTLY GENERATED SPACES

This section was typed by Mathieu Gaudreau and Francis Beauchemin-Coté.
The reader who wants to learn about compactly generated spaces and their prop-
erties in more detail than described in these notes is referred to Steenrod’s well
written original source [Ste].
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Given a space Y, let Y/ denote the set of unbased continuous maps f: I — Y.
If we define x € Y! as the path #(t) := *y and put a topology on Y! we have a
based space (Y7, ). It is possible to reinterpret the notion of homotopy F: f ~ g
as a map

F':X — Y!
x = vt F(x,t).

In fact, if we put the right topology on Y we can show that this F’ associated to
each homotopy F' is continuous. Our purpose in the present subsection is to define
a topology on Y/ giving us just that. Before continuing in this direction, let us
introduce two more basic constructions that we will need later.
Given a space X, we call the cone on X, written C' X, the space

X xI/X x{0}.
We call the reduced cone of X, written CX , the space
X xI/X x{0}U{x} xI.
Finally, we call the path space of X, the space PX given by

{7y € XT7(0) = =y }.

We will topologize the path space with the subspace topology of X! (which will
make sense once we put a topology on X7).

Lemma 2.1. For any spaces X,Y, the cone CX and the path space PY are con-
tractible.

Proof. A homotopy between the identity on C'X and the map to the basepoint is
given by:
F:CXxI — CX

([.’IZ,t],S) = [.Z', (1_S)t]
A homotopy between the identity on PY and the map to the basepoint (the con-
stant path) is given by:

F:PY xI — PY
(7:8) = (= p((1 = s)t)).
O

Now, let us formalise what we want. Given three spaces X, Y and Z, we would
like to topologize the sets of morphisms of Top, (i.e. the sets C(X,Y") of continuous
maps from X to Y, for all spaces X and Y'), such that f: X xY — Z is continuous
if and only if the adjoint of f, defined by

X o C,2)
r = (y— flx,y)’

is continuous, and moreover, we would like the adjoint to induce a homeomorphism
C(X xY,Z)—C(X,C(Y,2)).

Definition 2.2. A topological space X is said to be compactly generated if:
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(1) X is Hausdorff (i.e. for all pairs of points z # y in X there exist disjoint
open neighbourhoods of each);
(2) A C X is closed if and only if ANK is closed for every compact set K C X.

We denote the category of all compactly generated spaces by K.

Lemma 2.3. The following spaces are compactly supported:

(1) locally compact Hausdorff spaces (e.g. manifolds);
(2) metric spaces;

(8) CW complexes.

Proof (of (1)). First remember that a space is said to be locally compact if every
point admits a compact neighbourhood.

To show the lemma, we have to see part (2) of Definition 2.2. In one direction, if A
is closed in X and K is a compact set of X, then we have that K is closed, because
compact subsets of a Hausdorff space are closed. It follows that A N K is closed.
Therefore, all closed subsets in the topology of X are closed in the compactly
generated topology. In the other direction, suppose A C X is such that AN K
is closed for every compact set K C X (i.e. suppose A is closed in the compactly
generated topology). We want to show that A is closed. To show this, we will
show that X\ A is open in X. Let z € X\ A. By local compactness, there exist a
compact neighbourhood of x, say K. Let U, be an open neighbourhood of x such
that © € U, C K,. Because K, N A is closed by hypothesis, we have that X\ K, NA
is open. Therefore, (X\K, N A)NU, = U;\A =: V,, is an open neighbourhood of
x missing A. By generality of x € X\ A, we have X\A = |J V. and therefore

zeX\A

X\A is open. O

Definition 2.4. Let X be a Hausdorff space. Define k(X) as the same underlying
set X with the compactly generated topology (i.e. declare a set A in k(X) to be
closed if its intersection A N K with every compact subset K C X is closed in X).

Definition 2.5. In category theory, given two categories C and D, a covariant
functor is an assignment F: C — D sending each object A of C to an object F(A)
of D and each morphism f of Mor(A, B) to a morphism F(f) of Mor(F(A), F(B))
such that F(Id4) = Idg and F(f o g) = F(f) o F(g), whenever defined.

It can be shown that k(X) is a covariant functor from (Hausdorff spaces, con-
tinuous maps) to (compactly generated spaces, continuous maps).
Lemma 2.6.

(1) If X € K, k(X) = X and for all Hausdorff spaces Y the identity k(Y) =Y
18 continuous.

(2) Let X and Y be two Hausdorff spaces. If f: X — Y is continuous, then
E(f): k(X) — k(Y) also is.

(3) If X € K, then ky: C(X,k(Y)) —» C(X,Y) is a bijection.

Proof. (1) First, let us show that if X € K, then k(X) = X. If A is closed in
X, since X is compactly generated, A N K is closed in X, for all compact subset
K C X. Therefore A is closed in k(X). Conversely, if A C X is closed in k(X),
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ANK is closed in X, for all compact subset K C X. Hence, A is closed in X, since
X ek.

Now, let Y be a Hausdorff space and let us show that 1d: k(Y') — Y is continu-
ous (i.e. that the topology of k(Y") is finer or equal to the initial topology on Y'). If
A C Y is closed, since every compact set in Y is closed (because Y is Hausdorff),
we have that AN K is closed for all compact subset K C Y. Therefore, A is closed
in £(Y). Thus the map Id: k(X) — X is continuous is desired.

(2) Suppose that f: X — Y is continuous. Let A C Y be a closed subset of
k(Y) and C C X be a compact subset of X. Since f is continuous, f(C) is
compact. Hence, by definition of k(Y), AN f(C) is closed in Y. Therefore, by
continuity of f we have that f~1(A N f(C)) is closed in X. Since we have that
YA N fYF(O) = F~HAN f(C)) is closed and that C is closed (being a com-
pact subset of a Hausdorff space), we have that their intersection is closed. Thus
the following is closed

A A nC = Anfife))nc.

By generality of C' C X compact, we have that f~!(A) is closed in k(X).

(3) By (1), we have that k., which is defined by k.(f) = Idx of, where Idi: k(Y) —
Y is the identity, is well-defined (i.e. it sends continuous map to continuous map).
We want to show that this is a bijection. The injectivity is trivial. We will there-
fore focus on showing that for all continuous maps f: X — Y, f: X — k(Y) is
continuous or, in other words, that k, is surjective. Let A be a closed subset of
k(Y). By hypothesis, we have that X € K and consequently it suffices to show
that f~1(A4) N C is closed for every compact subset C C X. Let C be a compact
subset of X. Easily, we have f~1(ANf(C))NC = f~1(A)NC. The fact that A is a
closed set in k(Y') means in particular that AN f(C) is closed in Y (because f(C)
is a compact set of Y, f being continuous by hypothesis). Therefore, by continuity
of f: X — Y, we have that f~1(A N f(C)) is closed in X and consequently that
f~H(A)NC is closed (because compact subspace of a Hausdorff space is closed and
the intersection of closed sets is closed). By generality of the compact subset C

and since X is compactly generated, this means that f~!(A) is closed in X.
O

Remark 2.7. By (3) of the preceding lemma, we have that the set of singular
chains on X and k(X)) are the same, since A,, (the standard n-simplex) is compactly
generated (being compact and Hausdorff). Therefore, applying k does not change
the singular homology of an Hausdorff space.

Remark 2.8. X x Y need not be compactly generated if X and Y are, but if X
is a locally compact Hausdorff space and Y is compactly generated, then X x Y is
compactly generated.

Proposition 2.9. If X is compactly generated and if m: X — Y is quotient by a
closed relation R C X x X thenY is compactly generated.
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Definition 2.10 (Colimits). Let {X;}ien with X1 2% Xo 2 X3 % X4 = ... be

such that each X; is compactly generated and X; iz—> X;+1 has closed image. Then
the colimit, which can be constructed by

colim{X;} =10 X, /z; ~ fi(x;),

is compactly generated.

3. FUNCTION SPACES AND THEIR TOPOLOGY

The section was typed by Francis Beauchemin-Coté.

Definition 3.1 (Subbasis). A subbasis B for a topology T is a collection of sets
such that every open set of 7" is a union of finite intersections of elements in B. In
other words, B generates the topology 7', i.e. T' = T'(B) is the smallest topology
containing B.

We want to give C(X,Y) = {f: X — Y| f is continuous} a topology. For this,
we specify a subbasis

W(K,U) = {f: X = Y| f(K) C U}

where K C X is compact and U C Y is open. We then give C'(X,Y’) the compact-
open topology, which is T(W (K, U)).

With the Compact-Open topology on C'(X,Y'), we can now define the topological
space

Map(X,Y) =Y* := k(C(X,Y)).

Theorem 3.2 (Adjoint theorem). Let X,Y and Z be compact generated spaces.
Then the map ¢: Map(X x Y, Z) — Map(X,Map(Y, Z)) defined by

f=elf): e (y= fz,y)
is a homeomorphism. We write ZX*Y = (ZY)X.
Remark 3.3. This implies that - x Y and Map(Y,-) are adjoint functors.

Definition 3.4 (Adjoint functors). Functors F': ¢ — 2 and G: ¥ — € are
adjoint if there is a bijection

9(F(A),B) «— ¢(A,G(B))
natural in A,B for all A € Ob% and B € Ob 2.

The reader should draw the commuting diagrams that are invoked by the word
natural in the preceding definition. While we are thinking of the meaning of the
word natural, here is its principal meaning, in the context of natural transforma-
tions.



MATS8232 ALGEBRAIC TOPOLOGY II: HOMOTOPY THEORY 9

Definition 3.5 (Natural transformation). A natural transformation 6: F — G
between functors F,G: ¢ — 2 is a morphism 6(A): F(A) — G(A) for all objects
A € Ob % such that the following diagram commutes

(4) 2 a

F(f) lc<
(B) - C(B)

!

)

=

for all f € €(A,B).

Proposition 3.6. Let XY and Z be compactly generated spaces.

(1) The evaluation map e: Map(X,Y) x X — Y defined by (f,z) — f(z) is
continuous.

(2) The obvious map Map(X,Y xZ) = Map(X,Y)xMap(X, Z), (f,g9) — (f,9)
is a homeomorphism.

(8) The map Map(X,Y) x Map(Y, Z) — Map(X, Z) defined by (f,g) — go f
18 continuous.

Proposition 3.7. The topological spaces X and k(X) have the same compact sets.

Proof. Since k(X) — X is continuous, the compact sets in k(X ) are compact in
X.

Now, let C' C X be a compact set and C’ be C' with subspace topology in k(X).
Let B be a closed subset of C’. Then 3A C k(X) closed such that B = AN C".
By definition, ANC = ANC’ = B is closed in X since C is compact. Hence,
id: C — (' is continuous, so C’ is compact. O

Lemma 3.8.

(1) The map e: C(X,Y) x X — Y defined by (f,x) — f(x) is continuous on
compact sets.

(2) If X, Y are compactly generated, then e: Map(X,Y) x X — Y si continu-
ous.

Proof.

(1) It suffices to check continuity on sets of form F' x A where F' C C(X,Y)
compact and A C X compact.
Let (fo,z0) € F x A and let U C Y be an open set containing fo(zp).
Since every Hausdorff compact space is normal and fy is continuous, then
there exists N > x an open neighbourhood N C A with fo(N) C U. So
(W(N,U)NF) x N is open and contains (fo, 7).
(2) We apply ktoe: C(X,Y)x X =Y.
If g: A — B is continuous on all compact sets, then k(g): k(A) — k(B)
is continuous. Hence k(e): Map(X,Y) x X — Y is continuous (X and Y
are compactly generated).

O
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4. COFIBRATIONS

This section was typed by Francis Beauchemin-Coté.

Definition 4.1. A map ¢ : A — X is a cofibration if it satisfies the homotopy
extension property (HEP):

For any space Y, for any map f: X — Y and for any homotopy h: Ax I — Y
that starts with foi: A — Y, ie. h(a,0) = foi(a) for all a € A, this can be
extended to a homotopy h: X x I — Y starting from f: X — Y. That is, if for
every Y, f and h there exists a homotopy h: X x I — Y such that the following
diagram commutes

A : X
e

10 Y 10
h/" N h

Ax]T Xx[

where ig: z — (z,0).

In general, a diagram like that in the definition above represents a problem, and
a resolution of the problem is a dotted map that makes the diagram commute. We
will consider such problems often in this course.

Proposition 4.2. If A C X is a deformation retract, then i: A — X is a cofibra-
tion.

This will follow easily from Theorem 4.11 below, which characterises cofibrations,
but the reader could try to prove it directly now.
Definition 4.3.
e () := X/i(A) is called the cofibre of i (cofibration).

e AL XY Q is called a cofibre sequence.

Definition 4.4 (Pushout). Let f: A — B and g: A — C be two morphisms. The
pushout of f and g, denoted B Uy C, is the unique space (up to isomorphism)
satisfying the following universal property:

For any space Y and maps ig: B — Y, ic: C — Y satisfying ipo f = icog,
there exists a unique map 6: D — Y such that the diagram
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commutes.

Lemma 4.5. Push outs of cofibrations are cofibrations. That is, if i: A — X is a
cofibration and g: A — B is any map, then B — B Uy, X is a cofibration:

A—" X
g |

Proof of Lemma 4.5. First, we see that (BUy X) x I = (B x I)Ugxiq (X x I). We
want to find & such that the following diagram commutes

J

i pushout Y pushout

\
A
/
/
/=
/

BU, X -~ (BU,X)x I

7

If we ignore B and (BU, X) x I, since i: A — X is a cofibration, then there exists a
homotopy h: X x I — Y. Then, the universal property of the right-hand pushout

> “
X <

b <
<
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give a homotopy & such that

gxid AxT

|

commutes. Then h is the required map. O

4.1. A universal test space.

Proposition 4.6. We can replace Y in the test diagram of cofibration by the
universal test space

M¢::XUAX{O}AXI:XU1AXI

where i: A — X is cofibration.

The space M; is called the mapping cylinder of i.

Proof. Suppose the problem is soluble for M;, that is there exists a map r such
that

commutes. Since M; is the pushout of

A AxT



MATS8232 ALGEBRAIC TOPOLOGY II: HOMOTOPY THEORY 13

for any maps f: X — Y and h: A x I — Y, there exists a unique map 6: M; — Y
such that

A “ AxI
/
Y incl
% N ixid
N
f M;
= T
incl
X : X xI
i1
commutes. Then 6 o r is the desired map. U

Lemma 4.7. If (X x {0}) U (i(A) x I) is a retract of X x I, then i: A — X is
a cofibration. On the other hand, if a solution to the HEP exists for all Y, then
certainly it exists for Y = M;. This completes the proof of the proposition.

Remark 4.8. The map r in the last proof satisfies r o j where j: M; — X x I
is defined by (a,t) — (i(a),t) and (z,0) — (x,0) by definition of retraction. This
implies that a cofibration is injective with closed image.

4.2. Replacing a map by a cofibration. Any map f: X — Y factors as
!

N

where My :=Y Ux, ) X x I is the mapping cylinder of f and r: (z,t) — f(x) is
a retraction of My onto Y.

If j: Y — My is the inclusion, then we have r o j =idy and jor ~idy;, by the
homotopy My x I — My defined by

X Y

(y,8) =y
((z,t),8) = (z, (1 — 9)t).

Therefore My ~ Y and using next theorem we can show that i: X — My is a
cofibration.

Remark 4.9. Hence, up to homotopy equivalence of the codomain, we can replace
any map by a cofibration.

4.3. Criteria for a map to be cofibration.

Definition 4.10. A pair (X, A) is an NDR-pair (neighbourhood deformation re-
tract) if there is a map u: X — I with u=!(0) = A and a homotopy h: X x I — X
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with
h(z,0) =z, Vo € X
h(a,t) =a, Ya€ A, t € I and
h(z,1) € Aif u(z) < 1.
If moreover u(z) < 1 for all z € X, (X, A) is a DR-pair (A is deformation retract
of X).
The following theorem is due to Steenrod [Ste].

Theorem 4.11 (Characterisation of cofibrations.). Let A be a closed subspace of
X. Then the following are equivalent:
i) (X, A) is an NDR-pair.
ii) (X xI,X x{0}UAx1I) is a DR-pair.
iii) X x {0} U A x I is a retract of X x I.
i) i: A— X is a cofibration.

Lemma 4.12. Suppose (X, A) and (Y,B) are NDR-pairs via (h,u) and (j,v)
respectively. Then (X x Y, X x BU A xY) is an NDR-pair via w: (z,y)
min(u(z),v(y)) and

P, t),d (%)) if uy) = ua)

h (255 ) D) if uly) < u().
If (X, A) or (X, B) is a DR-pair, then so is (X xY, X x BUAXY).
Proof of Theorem 4.11. Since (I,{0}) is a DR-pair, by lemma 4.12, (i) = (i),
(74) = (7i7) is trivial and we saw earlier in mapping cylinder that (iii) < (iv). We
need to show that (iii) = (4).

Let r: X x I — X x {0} UA x I be a retraction and define u: X — I by

u(x) =sup{t —pyor(xt):tel}

k(x,y,t) =

and h: X x I — X by
h(l‘? y) =p1° ’I”(l’, t)
where p1: X x I — X and py: X x I — I are projections.

Since r(a,t) = (a,t) and pa(r(a,t)) = t, we have t — pa o r(a,t) = 0 Va € A,
hence A C u~1(0).

Suppose now u(z) = 0 for z € X\A. Then ¢t < pyor(x,t) Vt € I = for t # 0,
r(z,t) € A x I. Since A is closed, there exists an open set U 5 x, U C X\ A with
r~1(U) = U x {0} C X x I but this is not open, which contradicts the fact that r
is continuous. Therefore, u=1(0) C A = u~1(0) = A. We also have

h(avt) =P1 (T(a7t)) = pl(avt) =a
h(x70) = pl(’l”(l‘,())) = pl(x>0) =T

and u(z) = 1 occurs only if r(z,1) € X x {0} C X x I. If u(z) < 1, h(z,1) =
peor(z,1) =pi(a,t) =a € A for somea € A, t € I. So (h,u) present (X, A) as an
NDR-pair as claimed. (Il



MATS8232 ALGEBRAIC TOPOLOGY II: HOMOTOPY THEORY 15

4.4. More properties of cofibrations.
Proposition 4.13.

(i) Let i: A — X be a map. There exists a homotopy equivalence h: M; — X
such that
A

/ Xﬁ(a,l)

X h M;

commutes. (This is called a homotopy equivalence under A).
(ii) Suppose moreover that i is a cofibration. Then h is a homotopy equivalence
rel. A.

Proof. To prove (i), define h: My — X by h(a,t) = i(a) for a € A and t € I and
h(z) = x for z € X. Note that this fits into the diagram above. To show that
h is a homotopy equivalence, we define the map g: X — M/ to be the inclusion,
and we note that hog = Idx. There is a homotopy F': g o h ~ Idy, defined by
F((a,t),s) = (a, st) and F(z) = x. This completes the proof of (i).

To prove (ii), we start by recalling that ¢ being a cofibration implies that there
is a retraction

r: X xI—Xx{0}Ui(A)x I,
expressing the mapping cylinder as a subset of X x I. Define maps
g: X — M;
x = r(z,1)

and
h: My — X
(a,t) — i(a) .
r =

We claim that g and h are homotopy inverses relative to A x {1}. To see this, first
define H = hor: X x I — X. This satisfies H(z,1) = ho g(x), H(z,0) = x and
H(i(a),t) =i(a) for all t € I and for alla € A. So H: ho g ~ Idx. Next, define
G: Mz xI — Mz
(z,t) = r(z,1)
((a,8),t) = r(i(a), st).
This satisfies G(z,1) = r(x,1) = goh(x), G(z,0) = r(x,0) = x for all z € M;, and
G(i(a),t) =i(a) for all a € A and for all t € I. So G: g o h ~ Idps,. Thus indeed
g, h are homotopy equivalences rel. A. O

Since M; ~ X rel. A, we may quotient by A and obtain a homotopy equivalence

Here C; := M, /(A x {1}) is the mapping cone of i.
Here is another useful property of cofibrations:

Proposition 4.14. Let (X, A) be an NDR pair. Then H,(X/A) = H,(X, A).
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Proof. Let W := u~1([0,1)). Then (W, A) is a DR pair and W/A ~ %. Thus we
have

H.(X/A) = H.(X/A, %) = H,(X/A, W/A)
= H (X — AW — A) = H (X, W)
~ H,.(X,A)

Here the isomorphisms are given respectively by the definition, by homotopy equiv-
alence, by excision, by excision, and finally by homotopy equivalence again. U

Overall, one should think of cofibrations as nice inclusions, which are sufficiently
general that most inclusions you would consider naturally are cofibrations, which
satisfy many useful properties, and such that any map can be replaced by a cofi-
bration up to a homotopy equivalence.

5. FIBRATIONS

Fibrations, as suggested by the removal of the prefix “co,” are in some sense
dual to cofibrations. Whereas cofibrations are nice inclusions, fibrations are nice
projections. They can be thought of as generalisations of fibre bundles. For a fibre
bundle the fibre is well-defined up to homeomorphism, but in a fibration the fibre
is only well-defined up to homotopy equivalence.

In this section we will write X' for the space of free paths v: I — X in X, and
we will use the map po: X! — X that sends  — ~(0).

Definition 5.1 (Fibration). A surjective map p: E — B is a fibration if it sat-
isfies the Covering Homotopy Property (CHP), also called the Homotopy Lifting
Property (HLP) in the literature. This property is that, for any space Y and for
any maps f:Y — FE and h: Y — B! with po f = pg o h, there is alift h: Y — E!
such that the diagram

E Ppo EI
N w7
7
7/
p Y pI
X
B po B[

commutes. Here p’: E! — B! is the map induced from p by post-composition. An
equivalent formulation, which explains the HLP terminology is asking for a solution
to any diagram:

v . g
- 7
. h -~
ml // p
Y xI——>B.

h
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As a basic example, consider a product ¥ = F x B and the projection p =
p2: ' x B — B. This map is a fibration. To see this, consider the diagram

y— ! Fr«B
l BT
20 // p2
Y x I B.
h

Write f(y) = (f1(y), f2(y)) € F x B. Define

h:YxI — FxB
(y,t) = (fi(y),h(y,t)).

The fact that pa(f(y)) = f2(y) = h(y,0) implies that the diagram commutes as
required.

In the literature the fibrations we have defined are sometimes called Hurewicz
fibrations. You may also see Serre fibrations: these are weaker, only requiring the
CHP to hold for Y = I"™. This can be sufficient when working with CW complexes,
but we will not make use of this notion in this course.

Lemma 5.2 (Pullback of a fibration is a fibration). Suppose that p: E — B is a
fibration, and g: A — B is a map. Consider the pullback

AxyE——F

|, )

A—2 . B

The pull back Ax 4 E can be thought of as a subset of AXE: {(a,e) € AXE|p(e) =
g(a) € B}. We have that the induced projection A x4 E — A is a fibration for any
map g: A — B.

To prove this, dualise the proof of the corresponding fact for cofibrations. This
is left as an exercise. We actually know many examples already.

Theorem 5.3. Let p: E — B be continuous. Suppose B is paracompact and there
exists an open cover {Uy} of B for which p|: p~1(Uy,) — Uy is a fibration for each
Uy. Then p: E — B is a fibration.

Since B is Hausdorff, recall that B is paracompact if and only if it admits a
partition of unity subordinate to any open cover. We will prove a more general
version of this theorem next time. The idea is to lift the homotopies on each
open set, and then patch the lifts together in a cunning fashion. For now, we just
remark that this means that any fibre bundle with paracompact base is a fibration.
In particular any covering map is a fibration.

Definition 5.4. For a fibration p: E — B, let F := p~!(x) be the fibre, where
* € B is the basepoint. Write F' — E — B. This is a fibre sequence.
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5.1. Path space fibration.

Example 5.5 (Path space fibration). The path space fibration is a very important
example. Let X be a space. Then recall that PX = {v: I — X |7(0) = *x} is the
space of based paths. The map

e1: PX — X
v o= (1)

is a fibration. We need to solve the diagram:

PX Po Px!
~ 7
\ h /
/
s
7
(&3] Y e{
\
B Po BI

The idea is as follows. For each y € Y we are given two paths, f(y) and h(y),
such that the endpoint of f(y) is the start of h(y). We need a path of paths that
interpolates between f(y) and the concatenation f(y) - h(y). This is given by, for
example:

Tiy)(s) = t— fly)(t/(1—5s/2)) 0<t<1-s5/2
=V s hy)2(t—1+5/2) 1=s/2<t<1.
Since h(y)(0) = f(y)(1), this is well-defined.
The fibre of PX — X is e; '(¥) = {y: I — X |7(0) = y(1)} =: QX. The space
QX is called the loop space of X and will be very important in future. If we want

to emphasise the basepoint we might write €2, X. The path space fibration is then
written

OX —- PX — X.

5.2. Universal test space. There is a universal test space for fibrations (anal-
ogous to the mapping cylinder for cofibrations). Instead of general Y in the test
diagram, we can let Y be the mapping path space

Np:= E x, B = {(¢,7) € E x B" | p(e) = 7(0)}.
That is, Np is the pullback in the square
Np——F

|

Bl — = B.
Po
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The maps in the test diagram are the projections p;: Np — E and py: Np — B,
Consider the test diagram:

E Po EI
7
\ s -
v
s
! Np
p V pI

Y p2

\
B Po BI

Suppose that a solution exists for Np. Then the map s exists as in the diagram. But
then by the universal property of pullbacks, for any Y, f, h as in the diagram, there
exists a map g: Y — Np such that the diagram commutes. Then sog: Y — E!
solves the problem.

The map s: Np — E! that solves the problem is called a path lifting function.
This is a function such that k o s = Id, where k = (po,p’): Ef — Np. In other
words we require that s(e,v)(0) = e and po (s(e,7y)) = 7.

5.3. Relationship between fibrations and cofibrations. Here is an appear-
ance of both notions in one lemma.

Lemma 5.6. Let i: A — X be a cofibration, and let B be a space. Then
p = B': BX - BA
s a fibration.
Proof. First, we have
BMi — gXx{0}UAXI ~ gX X (BYY! = Np.

The central homeomorphism here follows from (B4)! = BA*! Next, the fact that
1 is a cofibration implies that there is a relation r: X x I — M;. Then

s=DB": Np=BMi — pX*I = (pX)!

is a path lifting function. O

5.4. Replacing a map by a fibration. Let f: X — Y be a map. We can factor
[ as a homotopy equivalence followed by a fibration. Let Nf = X x YT as before.
The map f coincides with the composition

XL NfSy

where v(z) = (7, cf(y)), with ¢,: [ — Y the constant path at y € Y, and p(x,7) =
~v(1). We claim that v is a homotopy equivalence and that p is a fibration.
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To see that v is a homotopy equivalence, let p;: Nf — X be the projection.
Then p; o v = Idx and we have a homotopy

h: Nf xI — Nf
((1’,’}'),15) = (w,Sl—>’y(<1—t)S))
from v o p to Idyy.

Next, to see that p is a fibration, we need to solve the following diagram, for any
space A and any maps g, h.

Nf Po Nfl
X R7

p A/ ol
X

)% Po YI

Write g(a) = (g1(a), g2(a)) € X x5 Y! = Nf, for a € A. Then define h(a) = (t—
(91(a), j(a,t))) with g1(a) € X and j(a,t) € Y given by

jla,t): I — Y

N g2(a)(s + st) 0<s
hia,s +ts —1) - <s

This map I solves the problem, so p is a fibration as claimed.

5.5. Criterion for a map to be a fibration. Let % be an open cover of a space
B. We say that % is numerable if there are maps A\yy: B — I for each U € % such
that A;;'((0,1]) = U, and the cover is locally finite, that is for each b € B there is
a neighbourhood V;, 3 b such that V, N U # () for at most finitely many U € % .

Theorem 5.7. Let p: E — B be a map and let % be a numerable open cover of
B. Then p is a fibration if and only if p|: p~Y(U) — U is a fibration for every
Ueu.

In particular, this implies that fibre bundles with paracompact base spaces are
fibrations.

Proof. First, pullbacks of fibrations are fibrations, so if £ — B is a fibration then
the pullback along the inclusion U — B is a fibration for any subset U. This proves
the only if direction.

So from now on, let p: E — B be a map such that p|: p~}(U) — U is a fibration
for every U € % . Our aim is to construct a path lifting function s: Np = Ex,B! —
ET by patching together the path lifting functions

sy p H(U) xp UM = p~ 1 (U)'

that exist by hypothesis for each U. To do this consistently, we need some amount
of set up. In particular, we need a special open cover of the path space B.
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Let A\y: B — I be maps such that )\[}1((0, 1]) = U, that are given to us by the
assumption that % is numerable. For T' = {Uy,...,U,} a finite ordered subset of
U , write ¢(T) = n, and define functions

A Bl = T
B — inf{Ay,op(t)| (i —1)/n<t<i/n,1<i<n}.
This is nonzero as long as f lies in U; during the required time interval [(i —
1)/n,i/n]. Next define subsets of the path space B! as follows:

Wr = Ap ' ((0,1]) = {8 B(t) € Ui if t € [(i = 1)/, i/n]}.
We assert that {Wz} is an open cover of BY.

Next we need to improve {Wr} to a locally finite cover. However {Wr | ¢(T) = n}
is locally finite for each n. We will use this observation to construct a suitable
covering of B!. Suppose that ¢(T) = n. Define a function

YT ! Bl — I
B = maX{O? )‘T(ﬁ) -n ZC(S)<H )‘5(6)}
and then define the sets
Vr:={p € BI")/T > 0}.
We assert that {V7} is a locally finite open cover of B'.

Next, choose a total ordering of all the finite ordered subsets 7' C % . Since p|y
is a fibration, there are path lifting functions

suip  (U) xp U = (p~(U))
for each U € % . Recall that our aim is to piece them together to get a global path
lifting function.

Fix T'= {Ui,...,Uyn}, and let 8 € V. Define the path S[u, v] := B, [u,v] —
B, the restriction of 8 to the interval [u,v], where 0 < u < v < 1. Suppose that
u e [(i—1)/n,i/n] and v € [(j — 1)/n,j/n], where 0 < i < j < n. Suppose that
e € p(B(u)).

Let sr(e, Blu,v]): [u,v] — E be the path starting at e and covering SBlu, v] (that
is, po sp(t) = B(t) for all ¢ € [u,v], obtained by using:

e sy, to lift over [u,i/n];

* sy,,, tolift over [(i +k —1)/n, (i + k)/n];

e sy, to lift over [(j —1)/n,v].
In order to do this, we need to rescale, since each sy is for paths I — B but we lift
on partial intervals only. Now define the lift we seek as follows. Define

s(e,p) € E!
by concatenating the paths st (e;_1, B[uj_1,u;]), for 1 < j < g, where:

o T;, for i =1,...,q are the sets of subsets of %, in order, for which 3 € Vr;
o uj =3 (B, 1<j<q
® e =¢
e ¢; is the endpoint of st, (B[uj—1,u;]), for 1 < j <gq.
We have that s(e, 5)(0) = e and (pos(e, 8) = 5. Thus s is a path lifting function
as required. O
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5.6. Spaces over B and fibre homotopy equivalences. A space over B is a
map p: £ — B. A map of spaces over B is a diagram:

D ! E
\p\\ /
B
A homotopy over B is a map
DxI—1 E
X /
B
where
H
Dx {1y — 1 E
p| /
B

is a map over B for all t € I. Thus f: D — F is homotopy equivalent over B if
there exists g: £ — D over B with fog,go f ~ Id over B. The maps f and g are
called fibre homotopy equivalences.

Proposition 5.8. Let p: D — B, q: E — B be fibrations and let f: D — E be a
map over B. Suppose that f is a homotopy equivalence. Then f is a fibre homotopy
homotopy equivalence.

We will omit the proof, unfortunately.

5.7. Change of fibre. Let p: E — B be a fibration. Write [}, := p~*(b) for b € B.
For b,/ € B we have F, ~ F,. That is, for fibrations, all fibres are homotopy
equivalent. (By contrast, for fibre bundles all the fibres are homeomorphic.)

Theorem 5.9. Letp: E — B be a fibration, and suppose that B is path connected.
Any two fibres of p are homotopy equivalent. In general, a path lifting function along
a homotopy class rel. boundary of paths between b and V' determines a homotopy
class of maps F, — Fy. Applied to loops, we get a homomorphism 71 (B,b) —
mo(Aut(F)).

Proof. Let b,b' € Bbe Fy, = p~1(b). Let iy: F, — E be the inclusion. Let 3: I — B

be such that 4(0) = b and B(1) = ¥'. The HLP implies that there is a /3 that fits
into the following diagram:

Fy x {0} — " E

ﬁ//

// p
~
-

FypxI—I——B8B
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For each t € I, we get a map th: Fy x {t} = Fp. In particular we obtain a map
Bl: Fy, — Fy.

We claim that whenever 3 ~ 3 rel. boundary, we have 51 ~ B{ Given the claim,

—_— P —_—

using the fact (¢;); = Id and that (8-7v); = By o 71, we see that (B71), is a
homotopy inverse Bl.

It now remains to prove the claim. Let h: I X I — B be a homotopy from 3 ~ B
that fixes b,’, that is h(1,s) = b and h(0,s) =bforall s€ I. Let 8/: Fyx [ - FE
cover (3’ o ps.

Write J2 =1 x 91U {0} x I C I? = I x I. Note that there is a homeomorphism
of pairs (I12,.J%) = (I?,1I x {0}). Thus with test space Y = F}, x I, we can apply
the HLP with the pair F}, x J2 — F, x I? instead of I}, x I x {0} — F}, x I?. Define
a map

f:ExJ? - E

Blx,t) s=0
(z,t,8) — B s=1
ip(x) t=20
Then apply the HLP to the following diagram:
FyxJ2— 1 5
o

We obtain a map h: Fy, x I? — E. The restriction E|Fb><{1}><1: FpxI —- FEisa
homotopy 51 ~ 5’ 1, as required. O

5.8. Examples: Hopf fibrations and homogeneous spaces. Here are some
important examples of fibrations. First, the Hopf fibrations are:

S0 — S" — RP"
St — s+ — Cp”

§% — g — HP"

These are given by expression the spheres as elements of F**! with norm one, and
then considering a point in these coordinates as the same numbers in homogeneous
coordinates for the projective space. For n = 1, the Hopf fibrations reduce to:

S0 5t 8t
st — 83 — &2
g% — 87— 5
There is also an octonian fibration S — S — S8 but there are no higher

octonian versions of the Hopf fibrations.
Now we consider homogeneous spaces, which can produce fibre bundles.
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Definition 5.10. A map p — B has a local section at b € B if there is U 3 b open
and s: U — F with pos =1 where ¢: U — B is the inclusion.

Any fibre bundle has a local section for all b € B. Let G be a topological group,
and let H < G be a closed subgroup. We will consider the left cosets G/H. This
coset space is sometimes called a homogeneous space.

Lemma 5.11. If p: G — G/H has a local section at e, then it has a local section
for all points gH € G/H.

Proof. Let e € U be the open set and let s: U — G be the local section. Given
x = gH € G/H, the translate gU is an open set containing x. Define

s:gU — G
99 H — gs(g'H)
where ¢’ H € U. This defines the desired local section. (I

Now we see that a local section at the identity is in fact enough to prove that a
map is a fibre bundle.

Lemma 5.12. Let G be a topological group, let K < H < G be closed subgroups.
Suppose that G — G/H has a local section. Then

H/K - G/K % ¢/H
is a fibre bundle, where gK — gH for all g € G.

Proof. Let {U,} be an open cover of G/H. By assumption we have a local section
Sa: Uy — G for every a.
Define maps
Yo Ua x HIK = (p)"'(Ua) € G/K
(9H,hK) +— so(gH)hK

and

0a: (p)"'(Us) — Uy x H/K

9K = (9H, (sa(gH)) 'gK)

We claim that these are continuous maps inverse to one another, and therefore are
homeomorphisms. O

Now we move on to considering concrete examples. Recall that O(n) denotes the
orthogonal group of n x n matrices A such that AAT = AT A = Id. Such matrices
can be considered as living in R”Z, and with the subspace topology O(n) is in fact
a compact manifold and a topological group. There is an inclusion O(k) C O(n),

A 0
0 Ink
matrix. We will show that O(k) — O(n) — O(n)/O(k) is a fibre bundle. In fact

we will prove a more general statement.

with k& < n, where A — where I,,_; denotes the size n — k identity

Definition 5.13. A k-frame in R" is an ordered orthonormal set of k-vectors
{vi,...,v} C R" (i.e. v; - v; = §;5.) Define Vi, = {k-frames in R"}. This can
be considered as a subset of R™ and with the subspace topology this becomes a
compact manifold, called the Stiefel manifold V4 ,,.
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Lemma 5.14. There is a homeomorphism O(n)/O(n — k) = Vi .

Proof. Define 0: A — {v; = Aep_g41,. .., = Aep}, where e; is the ith standard
basis vector. Since A is orthogonal,{v1, dots, vy} is an orthonormal set. Moreover

(2 2)9)-na

for any B € O(n — k). Therefore 6 descends to a well-defined map 6: O(n)/O(n —
k) = V, i. If A, B have the same last k columns, then
cC 0
“1p_ ATp _
o= (G 1),

which implies that 6 is injective. Also note that 6 is surjective. A continuous
bijection from a compact space to a Hausdorff space is a homeomorphism. O

Proposition 5.15. For 0<k<I<n
O(n—k)/O(n—1) = On)/0O(n—1) L 0(n)/0(n — k),

or equivalently
Vifk,nfk — W,n — Vk,na
s a fibre bundle.

Proof. We will show that there is a local section of V;,,, — Vj ,, where the map
sends an n-frame to the last k-vectors, at e = O(n—Fk). That is, we need an open set
U around e and a map s: U — O(n) such that pos = Id. Define r((w1,...,wy)) =
(e1,...,€n_k,W1,...,wy). Note that r(ep_k+1, -+ ,en) = (€1,...,€,). There exists
an open set U C Vi, around (ep—g41, ..., en) with r(u) nondegenerate for all u €
U. Now for (v1,...,v;) € U, take r(v1,...,v) = €1,...,€n_k, V1, ..., Uk, and apply
the Gram-Schmidt process to (v, ..., V1, €p—g+1,---,€1), t0 obtain an orthonormal
set Vg,...,V1,€,_piq,---,€1. This gives an element (ey,...,e; ;. 1,v1,...,0) €
Vin- This completes the construction of the desired local section. O

Some key examples of Stiefel manifolds are V;, ,, =2 O(n) and V; 5, = S™~1. Thus
as special cases we have fibre bundles

O(m)—-O(m+1) - 9™
and
Sn—é = Vl,n—€+1 — ‘/ﬁ,n — ‘/(—1,7%

We will use these fibre bundles for homotopy computations later.

One more interesting example involved the Grassmannian. The Grassmannian
G,k is the set of k-dimensional vector subspaces of R". This can also be topologised
and becomes a manifold. There is a forgetful mapping m: Vi, — G, which is
also a fibre bundle with fibre V}, ;. This fibre bundle is an exercise.

6. EXACT SEQUENCES IN HOMOTOPY SETS AND HOMOTOPY GROUPS

This section was typed by Nima Hoda.
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6.1. Notation review/taking basepoints seriously. We recall that the spaces
we consider are, in general, based and compactly generated. We base the interval
(I,%) = ([0,1],{1}) at the point 1. The reduced cone of a space X, then, is the
smash product X A I. The reduced suspension ©X of a space X is X A S'. For a
space Y, we let Y denote the space (Y U {x},*). Note the identities

XANY=(XxY)/(xxY)

and
X_|_ /\Y+ = (X X Y)_|_
We call X AT, the reduced cylinder of X. Note that a map X Ay — Y is a based
homotopy.
For a based map f: X — Y, we redefine N; as the pullback of f and the map
Y! =Y sending v to (1) (rather than v(0)). That is,

Ny ={(x,7y) € X x Y| f(x) =~(1)}.
Henceforth all cofibrations and fibrations are based and all basepoints of spaces
are nondegenerate.

Definition 6.1. We say that the basepoint of X is non-degenerate if *+ — X is a
cofibration.

Remark 6.2. The map p: E — B is a fibration if and only if it is an unbased
fibration and p(xg) = *p.

Remark 6.3. The map i: A — X is a cofibration if and only if it is an unbased
fibration and p(xg) = *p.

Remark 6.4. The map i: A — X is a cofibration if and only if M; = X U; (AATy)
is a retract of X A L.

From now on we will work without comment in the category K, of compactly
generated spaces with nondegenerate basepoints.

6.2. Exact sequences of mapping sets.

Definition 6.5. A sequence of functions of based sets
Alpsc

is ezact if f(A) = g~ (*¢).

Theorem 6.6. Let p: £ — B be a fibration, where B is path connected. Let
F = p~(xp) be the fibre. Let Y be any space. Based homotopy classes of maps
induce an eract sequence

Y, F] & [v, F] 2 [v, B).
Proof. Take [g] € [Y, F]. Then
peoix(lg]) =poiog: Y = B
Y *B
and so i.([Y, F]) € p ' ([eap))-
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Now, take [f] € pyl([csp]). So f: Y — E and p.([f]) = [po f] = [cep), i€,
po f:Y — B is homotopic to ¢,. Let G: Y x I — B be a homotopy witnessing
po f =~ cyy. Now, define H: Y x I — E via the homotopy lifting property, as in
the following commutative diagram.

Yx {0} L ~FxB

-

. H -

zol // lp
-

Y x1 B

G
Then po H(y,1) = G(y,1) =*p so H(Y,1) C F. So y+— H(y,1) can be restricted
toamap f: Y — F. But H(y,0) = f(y) so we have f ~io f' ie. [f] = i([f'])
and so [f] € i ([Y, F]). O

Theorem 6.7. Leti: A — X be a cofibration and let q: X — X /A be the quotient
map to the cofibre. If Y is path connected then

(X/4,¥] 55 [X,Y] 55 [4,Y]
18 exact.
Proof. We have i*g*([g]) = [g0 g o] = [e.] and so ¢*([X/A,Y]) € (%) ([e.]).
Now, suppose f: X — Y is such that f|4 = foi: A — Y is nullhomotopic, i.e.,
[f] € (i*)7Y([e4]). Let G: AxI — Y be nullhomotopy showing f|4 ~ ¢, and extend

it to H: X x I — Y using the homotopy extension property as in the following
commutative diagram.

A ‘ X
e
20 Y 20
y ~_H
Ax]T X x1I

1 X1
The map g: X — Y given by g(x) = H(z, 1) satistfies g(a) = H(a,1) = G(a,1) = *
for all @ € A and so descends to a map ¢': X/A — Y. But H(z,0) = f(x) and so
[f1=lgl = ¢*(l¢]) € ¢"([X/A, Y)). m

6.3. Fibration and cofibration exact sequences. Any map f: X — Y factors
through the fibration v: Ny — Y: (x,7) — f(z) via the homotopy equivalence
" Ny:w = (z,¢4(,)). Letting Fy be the fibre of v, we may similarly turn
Fy — Ny into a fibration and continue in this way to obtain a sequence associated
tof: X =Y.

Definition 6.8. For a map f: X — Y, the fibre Fy of Ny — Y is called the
homotopy fibre of f.

Remark 6.9. We may replace Ny — Y in the definition of homotopy fibre with
any fibration Z — Y through which f factors via a homotopy equivalence. The
resulting fibre F' of Z — Y will be homotopy equivalent to Fy. To see this, note
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that Ny — Y factors through f via the homotopy inverse p;: Ny — X of v. So, by
Proposition 5.8, Z — Y and Ny — Y are fibre homotopy equivalent over ¥ and it
follows that F' and Fy homotopy equivalent.

Proposition 6.10. Let F S EL Bbea fibre sequence. Then the homotopy fibre
F; of i is homotopy equivalent to QB.

With cofibrations we can do something similar. The homotopy cofibre of a map
f: A — X is the cofibre of A — My, i.e., the mapping cone Cy of f.

Proposition 6.11. Let A x4 X/A be a cofibre sequence. Then the homotopy
cofibre Cy of q is homotopy equivalent to X A.

Proof of Proposition 6.10. Let v: E = N, be the map e + (e, Cp(e)), Where
N, = E x, B = {(e,7) € E x B [4(1) = p(x)}.

Let p: N, — B be given by p(e,v) = 7(0). Then v is a homotopy equivalence, p is
a fibration and p o v = p. The fibre of p is

Fp ={(e,7)[7(0) = *5,7(1) = p(e)}.

Recall the path space fibre sequence QB — PB m B and note that

F, 2~ PB

lpl lWHv(l)

E—r.pB

is a pull back square. Then, by Lemma 5.2, p;: F,, — E is a fibration and we see
that its fibre is 2B.

Now, v is a map over B from the fibration p to the fibration p, so by Propo-
sition 5.8, v is a fibre homotopy equivalence over B. It follows that v|p_p, is a
homotopy equivalence. We have the following commutative diagram

Fy ——N;

i \%j)'—w(l)
p1 |~

F—sE

o/

OB ——F,

where N; — F and F, — E are fibrations. We again apply Proposition 5.8 to
obtain that the map F; — Q2B between their fibres is a homotopy equivalence. [
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In the following diagram the right triangle commutes and the left triangle com-
mutes up to homotopy.

—Qf p1 f

0x Qv Fy X Y
xX—(*,X) :L /
Fpl

Applying the loop functor to this sequence or extending it to the left we obtain
two equivalent sequences as seen in the commutative diagram

P2y ——F; ——0ox gy
ax 1 gy

Q%Y —— Foy

where 7 switches the loop coordinates (s,t) — (t, s).

This enables us to iterate the following procedure: (1) take homotopy fibre; (2)
Show the homotopy fibre is homotopy equivalent, with an appropriate homotopy
commutative diagram, to a space that is an iterated loop space of X, Y of F'y. We
construct the fibre sequence.

Definition 6.12. So, for a map f: X — Y, we obtain a sequence of maps

2 2
o 2F S 2y Ty oop Loy Mgy L M x Ly

called the fibre sequence generated by f. Here
Fr={(z,7) € X xs PY | f(x) = 7(1),7(0) = *v}
and
(A (N®) = (for)(1 — 1),
For each pair of adjacent maps, the first is the inclusion of the homotopy fibre of
the next, up to homotopy equivalence. Furthermore, any such sequence of maps

ending with f is homotopy equivalent to the fibre sequence. That is, the fibre
sequence is unique up to homotopy equivalence.

Proposition 6.13. For any (based) space Z,
(1) [X,QX] =[XZ,X] is a group.
(2) 12,9%2X] = [¥2Z, X] is an abelian group.

Theorem 6.14. For any based space Z, the fibre sequence induces an f: X =Y
induces an exact sequence
= [Z,9°Ff) = [Z2,9°X] = [2,Q°Y] —
— [Z,QFf] = [Z,QX] — [Z,QY] —
= [Z,Ff] = [Z,X] = [Z,Y]
of based sets and of groups left of [Z,QY] and of abelian groups left of [Z, Q?Y].
Proof. This follows from Theorem 6.6 and the fibre sequence. O
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6.3.1. Cofibration version. Let f: X — Y be a based map. The homotopy cofibre
of f is the (based) mapping cone Cy. The inclusion i: Y — Cy is a cofibration so
we have the cofibre sequence

Y5 Cp— )Y 25X,

Since C; is the homotopy cofibre of i, we have C; ~ Cy/Y = ¥ X. Moreover,
Cy — C; is a cofibration with cofibre C;/Cy = XY. We get the following diagram

f i

X % —2

Cy X Sy

N7

C;

where (=X f)(x At) = f(z) A (1 —t) and where the left triangle commutes and the
right triangle commutes up to homotopy.

We may continue this process starting from X f rather than f. We may also apply
the functor ¥ to this sequence but the two are equivalent up to 7: £2X — X2X
which switches the coordinates of 2.

X vy Oy nX
b
X SY 2C ¥2X

Definition 6.15. Iterating this process we get the cofibre sequence

. B . ) ) ,
xLhyiLo Dex sy =2 2 i s20, 2,

2
w2x =1, s2y

=Cy

generated by f: X — Y.
Theorem 6.16. For any based space Z,
= (220, Z) = 22, Z) - (22X, Z) —

— [0, Z] = XY, Z]) = X, Z] —

= [Cr, 2] = [V, 2] = [X, Z]
is an exact sequence of based sets, of groups left of [XX,Z] and of abelian groups
left of 22X, Z].
Definition 6.17. Let X be a (based) space and let n > 0. The nth homotopy
group of X is

Wn(X) = [Sn’X]’

where S™ is the (based) n-sphere. We have m,(X) = 7m,—1(2X) = (22" X). When

n =0, m,(X) is just a set.
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6.3.2. Relative homotopy groups. Let A C X (based subspace). Then the homo-
topy fibre of the inclusion A — X is

P(X;*,A)={ye PX|~(1) € A}.
Definition 6.18. The nth relative homotopy group of (X, A) is
On(X,A) = 1 1 (P(X;%,A), c.) = mo(Q" LP(X; %, A)).
This is a group if n > 2 and an abelian group if n > 3.

One can think of 7, (X, A) as the set of (based) homotopy classes [(D", S"~1), (X, A)].

6.4. Long exact sequence in homotopy groups. Let A C X be a (based)
subspace and i: A — X its inclusion map. Then, as F; = P(X;x*, A), the fibre
sequence generated by i is

s 2A T2 X 2 ap(Xx A) 24 04 Bax L P(XGxA) S AL X
So applying the functor [S?, —] we obtain an exact sequence

c o ma(A) = ma(X) = ma(X, A) D mi(A) = m(X) = mi(X, A) D mo(A) = mo(X)
where O restricts (based map of pairs) (D", S" 1) — (X, A) to S"~! — A.

6.5. Long exact sequence of a fibration. Now, let F = E 2y B be a fibre
sequence with B path connected. Let ¢: = F}, be the homotopy equivalence over
E given by ¢(e) = (e, cs) € Fp, where F,, = E x,, PB is the homotopy fibre of p.

We learnt in the last section that applying the [S°, —] functor to the fibre se-
quence

= PF S OPE 5 QF, - QF - QE - F;, - F - F
generated by the inclusion F; — F' we obtain an exact sequence
o o(F) = mo(E) = ma(E, F) S 1 (F) = m(E) = m(E, F) % 10(F) — mo(E).
On the other hand, applying [S°, —] to the fibre sequence
= O’F, - Q*E - Q’B - QF, - QE - QB - F, - E
generated by p we have the exact sequence
cr = ma(Fy) = ma(E) = ma(B) = mi(F)y) = mi(E) = mi(B) = m(Fy) = mo(E).

However, the two fibre sequences are equivalent up to homotopy as the diagram

S Q2F QF; QF OF F; F E
| e e -l
i~ O2F — -~ O2B OF, QF QB F, E,
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where p(y) = p - 7, commutes up to homotopy. So, applying [S?, —] we get

(E)

(E)

to which we may apply the 5-lemma to conclude that the middle arrow is also an
isomorphism.

So, we may replace m,(F;) with m,11(B) in the top sequence to obtain the long
exact sequence

o= ma(F) = m(F) = m(B) = m(F) = mi(E) = m(B) — mo(F) = mo(E) — mo(B) = {*}
of the fibration p: £ — B.

Tnt1(F) ——= Tp41(E) —— mp(F) ——= m(F) ——m,

- L

Tn+1 (Fp) —— Tpy1(E) — 41 (B) — Wn(Fp) — Tn

Il

Example 6.19. Recall the Hopf fibre sequence S' — S3 — S2. Then we obtain
the long exact sequence

s = my(Sh) = ma(S%) = ma(S%) = (S = m(S?) = m(S?) = {x}.

Using the fact that m1(S') = Z and that m,(S') = 0 for n > 1 we may use this
long exact sequence to show that m3(S?) = Z and that 7,(S%) = 7,(5?) for n > 2.

6.6. Example: orthogonal groups. Recall that we have a fibration
O(m) - O(m+1) = 85"
Since m;(S™) = 0 for 0 < ¢ < m, the long exact sequence in homotopy groups
of the fibration implies that m;(O(m)) = m;(O(m + 1)) for i« < m — 1, and that
Tm—1(0(m)) = Tpm—1(O(m + 1)) is surjective. Thus, for ¢ fixed, m;(O(m)) is
constant for m sufficiently large. Define
O := colim,,, O(m).

The homotopy groups of O(m) stabilise, so the homotopy groups of the colimit are
the homotopy groups of O(m) for m sufficiently large. In fact, the homotopy groups
of O are 8-periodic, Q80 ~ O, by the Bott periodicity theorem, and these homotopy
groups are given by: Z/2,7./2,0,Z,0,0,0,Z. The nonzero groups are related to the
Hopf bundles. These homotopy groups are also related to the classification of vector
bundles on spheres.

6.7. Aside on H-spaces. Write j: Y — Y x Y, for i = 1,2, y — (y,*) and
y — (*,y) respectively.
Suppose that there is a map

m: Y xY =Y

such that
mj1~Id~mjo: Y =Y.
Then (Y, m) is an H-space.
If in addition

mo(mxId)~mo(Idxm): Y xY xY =Y
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then (Y, m) is a homotopy associative H-space. If moreover there is a map
Y =>Y

such that
mo (Id,i) ~ % ~m(i,Id): Y - Y

ie. y — m(y,i(y)). Then (Y, m,1) is a grouplike space.
(Also, (Y,m) is homotopy commutative if

YXxY — Y
(r,y) — m(y,z)

is homotopic to m.

If (Y, m) is a grouplike space, then [X,Y] has a group structure. For any space
X, QX is a grouplike space. We will see later that recognising a space a loop space
of something else can be extremely useful in homotopy theory.

6.8. Change of basepoint. Note that one can consider elements of 7, (X, x) as
homotopy classes of maps [(S™, *), (X, z)]. Since the inclusion x — S™ is a cofibra-
tion, by Lemma 5.6 we have a fibration

p:XSn — X

given by evaluation at the basepoint. The fibre consists of based maps, and we can
identify 7o(Fy) = mp (X, x), since a path in F, corresponds to a based homotopy
of maps S™ — X. Now let £&: I — X be a path in X with £(0) = x and £(1) =
z'. Since X°" — X is a fibration, the path lifting function induces a homotopy

equivalence 51: F, — F,,. This map induces a bijection:
7T0(Fx) <~ 7T0(F$/).

We claim that, using the identifications with 7, (X, z) and 7, (X, '), this is an
isomorphism of groups. We have to see that this map is a homomorphism.
For based maps f,g: S™ — X, we can consider the composition

Farg:smssnvst Y% xvyx Yox,

with the first map given by pinching the equator to a point. This composition
defined the addition on 7, (X, z). Since * — S™ vV S™ is a cofibration, as above we
have a fibration X°"V9" — X. We have a map of fibrations

XS"\/S" XS”

L

X — X.

The fibre of the left fibration is F, x F,. The diagram induces a map of fibres
F,xFy — Fy, which on 7y induces the addition m: m, (X, ) xm, (X, z) — (X, ).
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Moreover, the map on fibres is natural, so we have a commutative square

FoxFy——1F,

L

F:v’ X Fa;/ e Fa;/.

On 7y, this induced the desired property that the change of basepoint map is a
homomorphism. Since it is a bijection, it is an isomorphism.
With a little more work, we could prove the following theorem.

Theorem 6.20. Let f: (X, A) — (Y, B) be a map of pairs and let a: I — A be
a path with «(0) = a and (1) = a’. Then we have a commutative diagram with

vertical isomorphisms:

TI'n(X, A, CL) $‘ 7rn(Y7 B7 f((l))

&1\L ifoal

(X, A, ) — 70 (Y, B, f(d))

Suppose moreover that h: f ~ f' is a homotopy of maps of pairs f: (X,A) —
(Y,B). Let h(a): I — Y be the path given by h(a)(t) = h(a,t). Then there is a
commutative diagram with a horizontal isomorphism:

(X, A, a)

/\

(Y, B, f(a (Y, B, f'(a)).

Corollary 6.21. A homotopy equivalence of spaces/pairs induces isomorphisms
on all homotopy groups (even if not a based homotopy equivalence).

In the next section, we will prove a remarkable converse to this statement for
CW complexes.

6.9. Action of fundamental group on higher homotopy groups. We saw
above that a path £: I — X, with v(0) = z and (1) = 2’ induces a map on the
fibres F,, F, of the fibration X°" — X.

gl: 7T0(Fac) - 71—O(FQU/)'
With z = 2/, € represents an element of 7 (X, z), and we get a map
& (X, x) = T (X, 7).

This induces a map

T (X, z) — Aut(m, (X, z)).
With this action extended linearly, for n > 2, m,(X, z) becomes a module over the
group ring Z[m1(X,x)]. When applied with n = 1, this does not extend linearly,
and gives the conjugation action.



MATS8232 ALGEBRAIC TOPOLOGY II: HOMOTOPY THEORY 35

Recall that for n > 2, m,(X,2) = m,(X,Z). One can think of the action of
m1 (X, x) as the action of the deck transformations on the universal covering space
X.

For example, for the space S'V S%, we have mo(St Vv S?) = Z[Z]. It is finitely
generated as a module over Z[Z] = Z[r(S' Vv S?)] = Z[r1(SY)], but infinitely
generated as an abelian group.

7. THE HELP LEMMA AND ITS CONSEQUENCES

The main goal of this section is to prove Whitehead’s theorem.

Theorem 7.1. Let f: X — Y be a map between CW complexes X,Y that in-
duces isomorphisms fi: mi(X) — m(Y) for every i > 0. Then f is a homotopy
equivalence.

Consider the spaces S? x RP? and S® x RP2. These spaces have isomorphic
homotopy groups for all <. However this isomorphism cannot be induced by any
map. One could try to see this directly, or if one believes Whitehead’s theorem,
then there cannot exist such a map, for the spaces are not homotopy equivalent,
as can be seen by computing that the second integral homology groups differ:
Hy(S? x RP3;7Z) = Z whereas Ho(S? x RP?;Z) = 0.

7.1. The HELP lemma. Whitehead’s theorem will follow quite easily once we
have established the following technical lemma, and the HELP (homotopy extension
and lifting property) lemma that follows quite easily from this technical lemma.

Definition 7.2 (n-equivalence). We say that a map e: Y — Z is n-connected if
ex: mq(Y,y) = my(Z, e(y)) is an isomorphism for ¢ < n and a surjection for ¢ = n.
The map e is said to be a weak equivalence if e is an n-equivalence for all n.

In the following lemma and its proof, we will consider the unreduced cone CX =
X xI/Xx{1}. Also, let f, f": (X, A) — (Y, B) be maps of pairs such that f = f’ on
A. We say that f is homotopic to f’ rel. A if there is a homotopy h: X xI — Y such
that h(a,t) = f(a) = f'(a) for alla € A,t € I. Then we can consider the homotopy
groups mp+1(X, z) as relative homotopy classes of maps (CS™, S") — (X, z).

Lemma 7.3 (Technical lemma). Let e: Y — Z be a map. The following are
equivalent.

(i) For any y € Y, the map e: mg(Y,y) — m4(Z, e(y)) is an injection for g =n
and a surjection for g =n + 1.

(i) Given f: CS™ — Z,g: S" =Y and h: S" x I — Z, such that f|sn = h oy
and e o g = h o iy, there exist maps g, h as in the diagram below making it



MATS8232 ALGEBRAIC TOPOLOGY II: HOMOTOPY THEORY 36

commute:

g gnyg gn

h
g
7z v
J JURN
h g ~

csn | TSP % [~ osn

70 i1

(iii) The conclusion of (ii) holds for f|sn = eo g and h the constant homotopy.

Proof. (ii) implies (iii) trivially. Next we prove that (iii) implies (i). First consider
the case that n = 0 as a warm up. There just one map S — Z, which appears
as the restriction of f, e o g, and h restricted to each time t. Here is the relevant
diagram:

So—m>50><I “a S0
h
g
A
AN 7o~
Cso CSY x I CSO

) i1

Write g(—1) = y and g(1) = 3’. Whenever e(y) and e(y’) can be connected by
a path in Z, we have a map f: CS° = D' — Z. The map g: CS° = D' - Y.
Thus the map e,: mo(Y,y) — m0(Z, e(y)) is injective. Now consider general n. Let
g: S™ =Y be a map based at y € Y. This represents an element of 7, (Y,y). The
map [ says that e.(g) € m,(Z,e(y)) is null homotopic. Then the existence of the
map ¢ gives a null homotopy of g. This shows that

ex: (Y, y) = m(Z, e(y))

is injective. Next we want to show the required surjectivity. Let g be the constant
map ¢g: S™ — {y} = Y. Then

f:(CS",5") = (Z,e(y))
is an element of 7,11(Z,e(y)). The map
g: (CS™,S") = (Y,y)

is an element of 7, 11(Y, y) as remarked at before the statement of the lemma. This
shows that e,: m,+1(Y,y) = mh41(Z, e(y)) is surjective, which completes the proof
of (i) given (iii).

It now remains to prove that (i) implies (ii). So assume (i), namely that 7, (Y") —
mn(Z) is injective and m,+1(Y) — mp4+1(Z2) is surjective. The strategy of the proof
is as follows. Suppose we are given f: CS™ — Z, g: S" > Y,and h: S" x [ — Z.
First we will show that m,(F(e)) = 0. Then we will construct a map S™ — F(e)
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using f,g and h. Then, since this map is null homotopic, we can use the null
homotopy to show the existence of ¢ and h.
We begin by choosing basepoints carefully.
i) Let * € S™ be a basepoint.
(ii) Let © € C'S™ be the cone point.
(iii) Let yp := g(x).
(iv) Let z1 :=e(y1).
(v) Let zp := f(x,0).
(vi) Let z_1 := f(o).
For x € S", let f,: I — Z be a path from f(z,0) = h(x,0) to z_;. Let hy: [ — Z
be a path from h(z,0) to h(z,1) = eo g(x).
Recall that the homotopy fibre of e is

Fle,y1) = {(y.€) € Y x Z"[£(0) = 21 = e(y1) and e(y) = £(1)}.
The basepoint of F'(e,y1) is wy := (y1,¢s, ). The fibration sequence is

Tt (Y, 1) = Tns1)(Z, 21) = mn(Fle,yn), w1) = mu(Yoy1) < m(Z, 21).

The assumptions (i) and exactness imply that 7, (F(e,y1), w1) = 0. Next, define a
map
ko: S™ — Fle,y1)
T (g(:ﬂ),hw~f;1-f*-h;1) €Y x 7z~

The reader should check that the given path is indeed a path from e(g(x)) to
z1 = e(y1). Note that ko(x) is not the basepoint wi, so ko is not a based map.
However hs - fi1 - fi - hy! is homotopic to a constant map, so ko(*) is connected
to the basepoint by a path in F(e). Then the HEP for * — S™ implies that kg is
homotopic to a based map:

s *k())F(eayl)

~
~
~
- Po
Q

* —=F(e,y)!

Thus kg is homotopic to a based map /;:VO € m(F(e,y1),w;) = 0. Since I%;) is null
homotopic. Let
G:S"x1— F(e,y1)

be a homotopy from k~0 to the constant map c¢,,,. Write

G(z,t) = (9(x,1),&(x,1));
this defines g and £. Note that g(x,1) = y; for all . Define j: S" x I x [ — Z via
j(z,t,s) = &(x,t)(s). For each x € S™, the map j(z, —, —) is given by

Czq

Czq 60§z

ho fo b fuhi !
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We want a map h: 8™ x I x I that behaves as:

€ogy

o fi !

fx

This can be achieved by a reparametrisation of the square. Choose a suitable map
©: I? = I?, and then

h=jo(Idx0): S"x I? - Z
gives the required homotopy h. O
The technical lemma will now be used to prove the HELP theorem.

Theorem 7.4 (HELP). Let (X, A) be a relative CW complex (start with a space A,
add cells to get the space X ) of dimension < n, let e: Y — Z be an n-equivalence.
Gwen f: X — Z, gt A=Y, and h: Ax 1 — Z as in the diagram making it
commute, there are maps g, h making the diagram commutes.

A i AxT n A

) 11

Proof. If e:' Y — Z is an m-equivalence then my(Y) — m,(Z) is injective and
Tg+1(Y) — mg41(Z) is surjective. Thus we can apply the technical lemma by
inducting on the cells of (X, A). Order the i cells for each i, and work in increasing
dimension of cells. B

Let €9t be a (¢ + 1)-cell of (X, A). Suppose that the maps g, h have been
defined on all previous cells in our ordering. Note that (e?*! de?) = (CS9,S9).
Then let f|.o+1 be the f in the technical lemma, let E‘aeq+1 be the h from the
technical lemma, and let g|g.qa+1 be the g from the technical lemma.

gm0 gnyg gn

h|aeq+1
§|95(1 1
Z Y
~ e ~
IGV S l S
N AN

csm CS™ x 1 csm

10 21

Then there exist maps h and g as in the diagram, extending these maps to the cell
edt1. This completes the induction step and therefore the proof. O
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7.2. Whitehead theorems. Whitehead’s theorems on CW complexes will now
follow relatively quickly from the HELP lemma. In the next theorem [—, —] denotes
unbased homotopy classes of maps.

Theorem 7.5 (Whitehead I). If X is a CW complez and e: Y — Z is an n-
equivalence, then

et [X,Y] = [X, Z]
s a bijection if dim X < n and is a surjection if dim X = n.

Proof. To show surjectivity, take (X,() in the HELP theorem. That is, A = (.
The diagram of HELP reduces to:

e

20 11

That is, given f: X — Z, there is a map g: X — Y and a homotopy from f to
eog = e«(9).

Next, to show injectivity, we apply HELP to (X x I, X x 9I), with h the constant
homotopy. Since the dimension of X x [ is one more than that of X, we see why
injectivity holds only for dim X < n. The HELP diagram becomes

X x oI 10 X x Ol x I “n X x O
h
/ /
f Z\ Y
/ N l i
X x1 X xIx]I X x1I

20 21

That is, g represents two maps gg,g1: X — Y, and f is a homotopy between e o gg
and e o g;. Then ¢ is a homotopy between gg and ¢;. O

Now we are ready to prove the most well-known Whitehead theorem.

Theorem 7.6 (Whitehead II). An n-equivalence between CW complexes of di-
mension less than n is a homotopy equivalence. A weak equivalence between CW
complezes is a homotopy equivalence.

Proof. Suppose that e: Y — Z is either an n-equivalence for dimension of ¥ and
Z less than n, or e is an n equivalence for all n. Then e,: [Z,Y] — [Z, Z] and
e« [Y,Y] — [Y, Z] are both bijective. Start with Id € [Z, Z]. Then by surjectivity
of the first e, there is a map f: Z — Y with eo f ~ Id. Then this implies that
eofoe ~e: Y — Z. By injectivity of the second e,, this means that foe ~ Id. Thus
f and e are homotopy inverses, and e is a homotopy equivalence as claimed. O
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7.3. Cellular approximation. As another pay off for the work in establishing
the HELP lemma, we can also prove that maps between CW complexes can be
approximated by cellular maps.

Definition 7.7 (Cellular). A map f: X — Y between CW complexes X,Y is
cellular if f(X™ c Y™ for every n.

Recall that a pair (X, A) is said to be n-connected if the inclusion map A — X
is an n-equivalence. A space X is n-connected if (X, %) is n-connected.

Lemma 7.8. A relative CW complex (X, A) with no m cells for m < n is n-
connected. In particular (X, X(")) s n-connected for any CW complexr X .

Proof. Let f: (19,019,J9) — (X, A, a) represent an element of m (X, A,a), for
q < n. The image of f is compact so it hits finitely many cells. Induct on the
cells with decreasing dimension. Homotope f so that /¢ misses the centre of each
cell ", with r > n, which can be achieved by smooth or simplicial approximation
and general position. Then homotopy f off €. By induction we arrange that

f(19) C A. O

Theorem 7.9 (Cellular approximation). Let f: (X, A) — (Y, B) be a map between
relative CW complexes X,Y . Then f is homotopic to a cellular map.

Proof. The proof is again an induction proof. We induct on the skeleta X®*) of
X, for increasing k. First, the base case. Points of f(X ©) — A) are connected to
Y (©) by paths. This gives a homotopy from flx toamap go: X0 5 y©, For
the induction step, suppose that we have defined a map g,: X™ — Y and a
homotopy Ay : f|xm) ~ tnogn: XM Y where t,: Y — Y+ ig the inclusion
of the n-skeleton.

We want to extend this to a cellular map gp4q: X"t - vV with a homo-
topy hint1: flxmin ~ tne1 ~ gnt1. We do this one cell at a time. Let j: S — X (@)
be the attaching map of a :7V D" — X, an (n + 1)-cell. By Lemma 7.8, 1,41 is
an (n + 1)-equivalence. We apply the HELP theorem:

(n+1)

g o S x T D sn

h
gnoJ
= Y
n T
Pnt1 >~ nt1 N

Dn+1 Dn+1 x I Dn+1

20 21

The HELP theorem yields the new g,4+1 and hy,y1 maps as required, for the new
cell. Inducting on the (n + 1)-cells of X yields the extension of the cellular map
to X+ together with a homotopy hn+1 between g,4+1 and the original map f
restricted to the (n + 1)-skeleton of X. This completes the proof of the cellular
approximation theorem. O
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8. APPROXIMATION BY CW COMPLEXES

It will turn out to be very useful for proving several theorems in the near fu-
ture, to be able to approximate any space, or indeed pairs an triads, up to weak
equivalence, by a CW complex.

Theorem 8.1. For any space X, there is a CW complex I' X and a weak equivalence
v:TX = X. Forany f: X =Y, thereis a map I'f: T X — T'Y such that

rx oy
!
x— oy

commutes. If X is n-connected, then ' X can be chosen so that there is one 0-cell
and no q-cells for 1 < q < n.

The proof is a “big construction,” so we would not hope that the resulting CW
complex is going to be easier to work with explicitly. However the approximation
by CW complexes will enable us to prove results about homotopy and homology
groups of spaces by proving them for weak equivalent CW complexes.

Proof. We want to construct I'’X as a colimit

X1 n Xs P X3 i3 Lt X, in Xn_|_1
Y2
71
X

with i, X, = X,41 a cellular inclusion.

Assume that X is path connected, since we can repeat the construction given
below for each path component separately. The base case is Xy := \/(q7 ) S qg>1,
one sphere for each pair (7, q), where for a fixed natural number ¢, j: S7 — X runs
over a generating set for 7,(X). The maps j determine a map ;: X; — X, which
induces surjections on all homotopy groups. Inductively, suppose we have CW
complexes X, such that i,,—1: X;n—1 = X, Ym: Xin — X with v, 001 = Ym—1
for m < n, such that (vm)s«: mq(Xm) — m¢(X,y,) is surjective for all ¢ and (75, is
a bijection for ¢ < m.

Define

Xnt1 = X, U ( \/ (5" A I+)>
(f,9)
where the wedge ranges over cellular maps (f, g): S™ — X, representing all possible
homotopy classes [f], [g] € mn(X5) with [f] # [g] but [y, 0 f] = [yn 0 g]. Recall that
a based homotopy is the same as a map from S™ A I. We identify (s,0) € S" ALy
with f(s) and (s,1) € S™ A I with g(s). We have an inclusion map

in: Xn — Xn+1

of CW complexes. We have that (in)«([f]) = (in)«([g]). We can therefore define a
new map Yn+1: Xn+1 — X, extending v, on X,, using the homotopies h: v, o f ~
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Yn © g to extend over the corresponding copy of S™ A I,. Then
(Vnt1)x: Tg(Xnt1) — mg(X)

is surjective for all ¢, and is bijective for ¢ < n, since we extended the previous
map, but we made all n-dimensional homotopy classes of X, equal in X, 1, if they
are equal in X. The n-skeleton is unchanged, so 7y (Xy+1) = my(X,,) for all ¢ < n.
Recall that we define I'’ X := colim X,,. This is also a CW complex since all
the maps in the colimit construction are cellular. If X is n-connected, then the
construction, as promised, did not use any cells of dimension less that n.
Finally, we need to see existence and uniqueness of the map I'f.

X, TY] « ['X,Y]
is a bijection by the first Whitehead theorem. There is a map

rx 2% x Ly

and thus we obtain I'f: I'’X — I'Y by the bijection above. This I'f is unique up
to homotopy. O

There is also a relative version:

Theorem 8.2. Let (X, A) be a pair of spaces, and let y4: TA — A be a choice
of weakly equivalent CW complex. There exists a CW complex I'X with a weak
equivalence vx: TX — X, such that TA C T'X is a subcomplez, and the restriction
of vx toT'A coincides with y4. Moreover, for any map of pairs f: (X, A) — (Y, B),
there is an induced map

(I'X,TA) -~ (TY,T'B)
l (’YX 7’YA)
(X, 4)

L B

We will omit the proof of this theorem. The construction is again adding cells,
in a similar manner to the proof of the previous theorem.

We will want to prove a version of excision for homotopy groups, at least in a
certain range where it holds. This will be a key statement in our development of
the theory. A key first step in the homotopy excision theorem is the approximation
of excisive triads by CW triads, which we will do next.

Definition 8.3. An excisive triad (X; A, B) is a space X with subspaces A, B C X
such that X = Int AUInt B. A CW triad (X; A, B) is a CW complex X with
subcomplexes A, B such that X = AU B.

Theorem 8.4. Let (X; A, B) be an excisive triad. Let C = AN B. There is a
CW triad (I X;TA,TB) and a map v: (T X;TA,I'B) — (X; A, B) such that with
I'Cc =TANTB, we have that

Ic—-Cc,TA—- A I'B—-B,TI'X > X
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are each weak equivalences. If (A, C) is n-connected, then (I A,T'C) can be chosen
to have no q-cells for ¢ < n. Similarly for (B,C). As before, I is functorial and
s natural.

Proof. Start with v: I'C' — C, and extend it to (I'4,I'C') — (A, C) and (I'B,I'C) —

(B,C). Let TX =TAUpcI'B 2y X; the map to X exists by the universal property
of push-outs. We need to show that v: '’X — X is a weak equivalence.
First, consider any two maps j: ¢ — B and i: C — A. Form the double
mapping cylinder
M(i,j)=AUC xIUB.

Lemma 8.5. Suppose that i: C — A is a cofibration and j: C — B is any map.
Then the collapse map M (i,j) — AUc B is a homotopy equivalence.

To see the lemma, first we know that the collapse map Mi — A is a cofibre
homotopy equivalence under C'.

C

SN

Then the universal property of the pushout A Uc B gives a map to M (i, 7).

M7 A

C B
L
A—— AUc B
Mi M(i,j) = M(i) Uc B

The fact that the homotopy equivalence in the diagram is under C' implies that
the induced map on the push outs in the diagram is a homotopy equivalence. This
completes the proof of the lemma.

Using the lemma, we can replace the CW triad (I'’X;T'A,T'B) by an excisive triad
(as T'A,I'B are subcomplexes, they are closed in I'X so it is not an excisive triad).
Denote the subcomplex inclusions i: 'C —T'A, j: I'C - I'B, I'’X =T'A Urc I'B.
Take the double mapping cylinder as in the lemma, and then

(M(i, j); TAU (TC x [0,2/3)), (C x (1/3,1] UTB)) — (I'X;TA,T'B)

is a homotopy equivalence of triads. Now, (I'X;T'A,I'B) — (X; A, B) is a weak
equivalence of triads by the next more general theorem. The proof of approximation
of excisive triads is now complete, modulo the next theorem. O

Theorem 8.6. Suppose that (X; A, B) — (X'; A', B') is a map of excisive triads,
with C = ANB and C' = A'NB’, such that the maps induced by e, C — C', A — A’
and B — B’ are all weak equivalences. Then X — X' is a weak equivalence.
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Proof. We need to solve the following diagram:

X —°¢ . x/

N
QT \~\ Tf
g ~
S o Dn+1
where the top right triangle commutes up to homotopy. That is, we need a lift
g: D" — X whose restriction to S™ is equal to g, and f ~ e o g relative to S™.
With g the trivial map, this solves surjectivity on m,41. When g € ker my(e), this
solving this problem gives injectivity.
We may assume that there is an open subset S C U ¢ D"*! such that g: S™ —
X is the restriction of a function g: U — X with f|y = e o g. To see this, define

d: D"t x [ — pntl

75 o < %
o {H ol 2 25t
Note that dy = Id and d;(U) = S™. Define U := {z||z| > 1/2}, § = g o dy and
f'= fodi. Then f’ and g satisfy the properties that f'|;y = eo g, glsn = g, and
f' ~ f. Therefore we can replace f by f’. This completes the proof that we may
assume that there is an open subset S C U C D"*! such that g: S® — X is the
restriction of a function §: U — X with fly =eog.
Next, write
ca =g HX~NInt A) U f-L(X'NA)
and
cp =g H(X~Int B)U f~1(X'\B)
We have c4 Nep = (0. To see this, first replace g by ¢ in the definitions to obtain:
éa =g H(XNInt A)U f~1(X'NA) C Ca
and
ép =g H(X~Int B)U f~L(X'~B') C Cp
We claim that ¢4 Nég = (). This claim implies that cy Ncg = . Now we prove
the claim.
First g~ (X~ Int A) N g~ (X~ Int B) consists of points of S™ that map to

(XNIntA)N(X\Int B) = X~ (Int AUInt B) = X~ X = 0.

Therefore g~ (X~ Int A)N ¢~ (X~ Int B) = ). Similarly,
(X'\Int A) N (X'\Int B') = X'\(Int A’ UInt B') = X'\ X" = 0.
Therefore
FHUX'NInt A)n 7Y X'\ Int B') = 0.
Since f~1(X'\A’) C f~1(X'\ Int A), and similarly for B’, we see that
FHX'NA) N f~H(X'\B") = 0.

It remains, without loss of generality, to investigate

GHXNTInt A) N f~I(X'\B’) C g~ H(Int B) N f~1(X'\B).
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We will show that the latter set is empty, to complete the proof of the claim. Recall
that we have the open set U C D™ contains S”, and we have the map §: U —
X. Note that §~*([ B) is open. Suppose for a contradiction that g—'(Int B) N
f~Y(X’\B’) is nonempty. We can therefore start with an element v € g~!(Int B) N
f~HX'\B’), and then consider a small open set V' containing v that is contained
in g71(f B). Since v lies in the closure of f~'(X’\B’), there is an element u € V
in

g HInt B)n f~Y(X'\B).
Then g(u) € Int B C B and f(u) ¢ B'. But f|ly = eo g and e is a map of triads
therefore restricts to a map e: B — B’. Thus f(u) = e(g(u)) and so f(u) € B'.
This gives rise to a contradiction, thus §=*(Int B) N f~1(X'\B’) = () as desired.
This completes the proof of the claim that ¢4Nég = 0 and therefore that caNcg = 0.

By subdivision of D™ cells, and then further subdivision into small enough
cells, we can assume that no cell intersects both ¢4 and ¢g. Define

Ky :={cellsg|g(cNS™) CInt A, f(o) CInt A’}
and
Kp :={cells o|g(cNS™) CInt B, f(o) C Int B'}.

Note that D" = K4 U K. To see this, if ¢ does not intersect c4, then o C K4,
while if o does not intersect cp, then ¢ C Kp. Therefore, since we subdivided so
that no cell intersects both c4 and cp, it follows that every cell lies in at least one
of K4, Kp, as required. Consider the following problem:

ANB = A NB

V\
HT Tl Tf
g ~

Snﬂ(KAﬁKB)H\[(AﬂKB

The HELP theorem implies that there exists a map g: K4N Kp — AN B as in
the diagram, and a homotopy

h: KxNKpxI—AnNB

with h: f ~ eog a homotopy rel. S"N K4 N Kp.
Now define

ga: KaN(S"UKp) — A

by g on K4 N S™ and by g on K4 N Kp. These agree on the intersection by the
construction of g. Also define

f=ecog: Ka4nS™ — A
By restricting we have a homotopy

ha: flkansnuky ~ €0 ga
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rel. S N K 4. Then we apply the HELP theorem to the diagram:

0 i1

Kan(S"UKp)

(Kan(SPUKR)) x I

/
Al
V\ € V\
/ ~ ~
~ ~
-~ _~ 0~
ha ~ ga "~ _

KA KAXI KA

20 i1

Kan(S"UKp)

to obtain a map ga: K4 — A. Here we use that e: A — A’ is a weak equivalence.
Similarly, we obtain a map gp: Kp — B. These maps agree by construction on
K4 N Kpg, and therefore induce maps

GaUgp=g: D" =K, ,UKp = X

and a homotopy h AU h B: [ ~eogrel. S™. This is the required maps to solve the
problems that show e: X — X is a weak equivalence, as desired. O

9. HOMOTOPY EXCISION
Definition 9.1. A map f: (A,C) — (X, B) of pairs is an n-equivalence if

(f«)~" (im(mo(B) = mo(X))) = im(mo(C) — mo(A))
and
fe: mg(A,C) — my(X, B)

is a bijection for ¢ < n and a surjection for ¢ = n, for all basepoints x € C.
This section is about the homotopy excision, or Blakers-Massey theorem.

Theorem 9.2 (Homotopy excision). Let (X; A, B) be an excisive triad with C =
AN B. Suppose that (A,C) is (m — 1)-connected and (B,C) is (n — 1)-connected,
with m > 2 and n > 1. Then (A,C) — (X, B) is an (m + n — 2)-equivalence.

9.1. Consequences of homotopy excision. Before we prove the homotopy ex-
cision theorem, we investigate some of its main consequences.

Theorem 9.3. Let f: X — Y be an (n— 1)-equivalence between (n — 2)-connected
spaces, with n < 2. The quotient map

q: (Mf,X) = (Cf,*)
is a (2n — 2)-equivalence. In particular, Cf is (n — 1)-connected.
Proof. We define an excisive triad (C'f; A, B) by taking A =Y U (X x [0,2/3]) and
B = (X x[1/3,1])/X x {1}. Then C = AN B = X x [1/3,2/3]. The map q is

homotopic to the following sequence of maps:

(Mf,X) = (4,C) =% (Cf,B) = (Cf., %)
The first and last maps are homotopy equivalences of pairs. We need to see that
the map inc is a (2n — 2)-equivalence. To see this, we will use homotopy excision.
First, the long exact sequence in homotopy groups of the pair (M f, X), together
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with the fact that X is (n — 2)-connected, yields that (M f, X) is an (n — 1)-
connected pair. Therefore (A,C) is (n — 1)-connected. On the other hand, the
cone C'X is contractible, and X is (n — 2)-connected, so the long exact sequence
in homotopy groups of (CX, X) yields that (CX, X) is (n — 1)-connected. Then
(CX,X)~(B,C),so (B,C)is (n—1)-connected. Then homotopy excision implies
that the map (A,C) — (Cf, B) is an (2n — 2)-equivalence as required. O
Corollary 9.4. Leti: A — X be a cofibration that is an (n—1)-equivalence between
(n — 2)-connected spaces. Then (X, A) — (X/A,x) is a (2n — 2)-equivalence.

Proof. This follows from the previous theorem and the following diagram. Recall
that for cofibrations the vertical maps are homotopy equivalences.

(Mi, A) —L (Ci, %)
rlg lg
(X, A) — (X/A, )
O

Now we come to a key result in homotopy theory, the Freudenthal suspension
theorem. Define the suspension homomorphism
Yimg(X) — mg1(XX)
f = fAId:S9TL=8IA8 - XASI=3%X
Theorem 9.5 (Freudenthal suspension theorem). Let X be an (n — 1)-connected

space, with n > 1. Then X is a bijection for ¢ < 2n — 1 and a surjection for
q=2n—1.

Proof. Write C'X := X AT with I the pair (I,{0}), i.e. {0} as the basepoint of I.
Thus

C'X =X xI/(Xx{0}uxxI).
Represent a homotopy class in 7y (X) by f: (19,019) — (X, ). Then fxId: I9t1 —
X x I induces a map

(71,0191, J9) — (C'X, X, %)

Restricting to 19 x {1} gives f. If we quotient out by X x {1}, we obtain ¥f. We
get a commutative diagram:

7Tq+1(C/X, Xa *)

R

7g(X) 701 (EX)

where the diagonal map p is induced by the quotient map that factors out X x {1}.
Since C'X ~ pt, we have that the vertical map d is an isomorphism by the long
exact sequence of a pair. Next X — C’X is a cofibration and an n-equivalence
between (n — 1)-connected spaces. Therefore p is a 2n-equivalence by the corollary
above. It follows that X is a bijection for ¢+1 < 2n and a surjection for ¢+1 = 2n,
as desired. O
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Corollary 9.6. For alln > 1, m,(S™) & Z, with the suspension map : m,(S™) —
Tni1(S™TY) an isomorphism.

Proof. First recall from the Hopf fibration S* — S2 — S2 and the associated long
exact sequence of a fibration that

0= 7('2(53) — 71'2(52) — 7T1<Sl) — 7T1(S3) =0

m(S8?) = m(S') & Z. Then consider ¥: m3(S?) — w3(S3). Here X = S? is
1-connected so n = 2 in the Freudenthal theorem. Thus

PIN 7rq(52) — 7Tq+1(53)

is an isomorphism for ¢ < 2-2 —1 = 3 and is a surjection for ¢ = 3. Actually
73(5?) — m4(S3) is a surjection Z — Z/2, but we do not yet have the machinery
to prove that 7m,41(S™) is nontrivial for n > 2. We will return to this later.

For higher spheres the isomorphism falls more easily within the range of the
Freudenthal theorem. O

The Freudenthal theorem allows us to define

75 (X) = colim mg4pn (£ X)

The stable homotopy groups of X. The Freudenthal theorem guarantees that the
groups in the colimit eventually stabilise.

9.2. Proof of homotopy excision. Now we start on the proof of the homotopy
excision theorem. First we introduce triples of spaces (X,Y,Z). Note that this
means Z C Y C X, and is not a triad (X; A, B), which means X = Int AU Int B
and so only in pathological situations is B C A.

Proposition 9.7. Let (X,Y,Z) be a triple of spaces. Then there is a long exact
sequence in homotopy groups

o1 (Y Z) = my(X, Z) = mf(X,Y) = g1 (Y, Z) — -

Proof. Use the long exact sequences of the various pairs involved and chase dia-
grams heroically. All the rows and columns except for the middle row are exact,
and the diagram commutes. It follows from a diagram chase that the middle row
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is exact.
0 mq(Z) 7q(Z) 0
Tor1(X,Y) mg(Y) 7g(X) (X, Y)
Tt (X,Y) —= my(Y, Z) y(X, Z) (X, Y)
0— 7, 1(2) g 1(2) 0
Ty (X,Y) a1(Y) Tg1(X) — > 11 (X, Y)

1 X)Y) —— 1Y, Z) — 7141 (X, Z) —= 711 (X, Y)

Definition 9.8. Let (X; A, B) be a triad. Define the triad homotopy groups
¢(X; A, B) = mg_1(P(X,*,B),P(A,*,C))
for ¢ > 0.
The long exact sequence of a pair yields an exact sequence
Tg+1(X; A, B) = (A, C) — my(X, B) — mq(X; A, B).

Thus in order to prove homotopy excision, we have to show that m,(X; A, B) =0
for 2 < ¢ < m+n — 2. To understand elements of 7,(X; A, B) better, note that
we can represent them by maps of triads

(I 71972 x {1} x [T x {1}, 7972 x TU Tt x {0}) — (X; A, B, %)

The interior of the g-cube maps to X, and various subsets of its boundary map to
A, B,C = AN B and the basepoint x.

To prove the homotopy excision theorem, first approximate (X; A, B) by a CW
triad up to weak equivalence. Since we need to show that certain homotopy groups
vanish, working with a weakly equivalent space is sufficient. Thus from now on we
will assume that (X; A, B) is a CW triad, that (A, C) has no relative g-cells for
g < m, and (B, C) has not relative g-cells for ¢ < n. Moreover we assume that X
has finitely many cells, since the image of the compact set I? intersects at most
finitely many cells.

Claim. It suffices to prove the vanishing of my(X;A,B) for2 < g <m+mn—2
when (A, C) has a single cell.



MATS8232 ALGEBRAIC TOPOLOGY II: HOMOTOPY THEORY 50

To see the claim, let A’ C A be a subcomplex of A with C C A’, such that
A can be obtained from A’ by attaching a single cell. Let X’ = A’ U B. Then
suppose for the induction hypothesis that the result holds for the triads (X'; A’, B)
and (X; A, X’). The latter triad has (4,C) = (4,ANX') = (A, A), consisting
of a single cell, therefore we also assume for now (we will prove it presently) that
homotopy excision holds for this triad. Then apply the five lemma to the diagram:

7TQ+1(A7 A/) - WQ(A/a C) - WQ(Av C) - ﬂ-(I(A7 A,) - qul(Alv C)

| | | | |

7TQ+1(X7 X,) HWQ(XCB) HT(Q(X’ B) H'ﬂ-q(‘Xv X,) Hﬂq—l(leB)

The top row is the long exact sequence associated to the triple (A, A’,C') and the
bottom row is associated to the triple (X, X', B). The vertical maps are isomor-
phisms by the assumption that homotopy excision holds for the triads (X'; A’, B)
and (X; A, X'). This completes the proof of the claim.

Claim. It suffices to prove the vanishing of my(X;A,B) for2 < g <m+mn—2
when (B, C) has a single cell.

Let B’ C B be a subcomplex with C' C B’ such that B is obtained from B’
by adding a single cell. Write X’ := A U B’. Suppose that homotopy exci-
sion holds for (X’; A, B") and (X;X’,B). The map (A,C) — (X, B) factors as
(A,C) = (X', B') — (X, B), and so homotopy excision also holds for (X; A, B).
This completes the proof of the claim.

From now on we assume that A = CU D™ and B = C U D", with m > 2 and
n > 1. We are given a map

fr(IGT72 x {1} x LT x {1}, J72 x TU T x {0}) — (X; A, B, %)

and we want to show that this map is null-homotopic as a map of triads. Let
x € D™ and y € D" be interior points. Consider the sequence of inclusions of
triads:

(A; A, AN{z}) € (X~{y}; A, X~{z,y}) C (X; A, X~{z}) D (X;A,B).

The first and last inclusions induce isomorphisms on triad homotopy groups, since
we can homotope maps off D™ and D™ respectively, once we know that there is
at least one interior point that is not in the image. Also, m4(A; A, A’) = 0 for any
A’ C A. Therefore the left-most group vanishes, and so it suffices to show that
the middle inclusion induces an isomorphism on triad homotopy groups. That is,
we have a map f into (X; A, X~{z}) and we need to show that it is homotopic
to a map into (X~{y}; A, X~{z,y}). That is, we have to miss a point y in the
interior of D™ with a map of I? for 2 < ¢ < n+ m — 2. This will use simplicial
approximation in the argument.

Let D?}Q C D™ and D?/2 C D™ be subdiscs of radius 1/2. Subdivide I? into small
enough subcubes I¢ such that each subcube has the property that f(I&) C Int(D™)
if f(I2) intersects D?}Q, and holds the same for D". By simplicial approximation,

the map f is homotopic to a map g: I? — X such that the restriction of g to the
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n
1/2

does not cover all of D;’}Q. Here we use the skeleta of the subdivided 9. Moreover,

(n—1)-skeleton of 1Y, g|(1q)(n_1), does not cover all of D, and similarly g|(1q)(m_1),

simplicial approximation enables us to arrange that dim g~ (y) is at most ¢ —n, for
some y € D}, that is not in the image of the (n—1)-skeleton of 7. Here dimension

needs to be correctly interpreted, and we skip over the precise details of how we
use transversality. We could also use smooth approximation. Let 7: I¢ — 197! be
projection on the the first ¢ — 1 coordinated. Define

K =a" (n(g™ ()))-
This is a prism. The dimension is no more that the dimension of ¢g~!(y) plus one,
SO
dmK <g—-n+1<m-—1.
Therefore g(K) cannot cover DY)y Choose x € Dy, that does not lie in g(K).
Since
g(OI7! x I) C A,
we see that
(a) (g~ (x))uaIi—t and
(b) m(g™*(y))
are disjoint. We can therefore define a homotopy of ¢ as desired. Let v: 197! — T

be a function such that v is zero on (a) and is one on (b). Such a function exists
by the Uryssohn lemma. Define a function h: 19! — I by

h(r,s,t) = (r,s — st-v(r))
where s,t € I and r € 1971, Define
ff=goh
where hy(r,s) = h(r,s,1). Note that
h(r,s,0) = (r,s) and h(r,0,t) = (r,0)

and

h(r,s,t) = (r,s)
if t € 0I97!. Thus g o hy defines a homotopy of maps of triads. Then observe that

h(r,s,t) = (r,s)
if h(r,s,t) € g~1(x) since r € w(g~1(x)) implies that v(r) = 0, and

h(r,s,t) = (r,s — st)
(

if h(r,s,t) € g~ (y), since r € 7(g~!(y)) means that v(r) = 1. Thus f’ has image
in

(X{vh A X{z,y})
i.e. the image has been moved off . This completes the proof that the inclusion
of triads (X~{y}; 4, X~{z,y}) C (X; A, X~{z}) induces an isomorphism of triad
homotopy groups, and thus completes the proof that m,(X; A, B) =0 for 2 < ¢ <
m +n — 2. This completes the proof of homotopy excision.
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9.3. Truncated long exact sequence in homotopy groups of a cofibration.

Theorem 9.9. Let A — X — Q be a cofibre sequence, with A — X a cofibration
and Q = X/A. Suppose that A is r-connected and Q is s-connected, with r,s > 1.
Then there is a homomorphism Oy : (Q) — 7p—_1(A) such that

s (A) = Tris (X) = Tras(Q) 255 - 5 mp(A) — ma(X) = m(Q) — 0

1S exact.

Here is an example. Consider the Hopf map n: S — 52, and replace S? by its
mapping cylinder Mn. Then S® — Mp is a cofibration and the quotient is CP?.
Since S3 is 2-connected and S? is 1-connected, we have an exact sequence

m3(5%) =5 m3(5%) — 73(CP?) — 72(S?) — m2(S2) — m2(CP?) — 0
which implies that m3(CP?) = 0 and 72 (CP?) = Z.

Proof. Let i: A — X be the inclusion. We have a long exact sequence in homotopy
groups associated to the map 1:

Tn(Fi) = mp(A) = mp(X) = o1 (Fi) — - - -
We want to replace 7, (F'i) by m,+1(C%) in the desired range.

Lemma 9.10. Let f: Y — X be a map with Y m-connected and f an n-equivalence.
Then p: (M f,Y) — (Cf,*) induces an isomorphism py: mg(Mf,Y) — 7 (Cf,*)
for 2 < q <m+4mn and a surjection for g =m +n+ 1.

Now we prove the lemma. This is a slight variation on a theorem above. We
repeat the very similar argument to be careful. Define an excisive triad (C'f; A, B)
by taking A = XU(Y x[0,2/3]) and B = (Y x[1/3,1])/Y x{1}. Then C = ANB =
Y x[1/3,2/3]. As above, the map p is homotopic to the following sequence of maps:

(Mf,Y) 5 (A,C) % (Cf.B) = (Cf,%)

The first and last maps are homotopy equivalences of pairs. We need to see that
the map inc is a (m + n + 1)-equivalence. Since C'Y is contractible, the long exact
sequence of a pair yields that m,(CY,Y) = 7(B,C) = mg—1(Y) =0for g —1 <m
so for ¢ < my. By assumption m,(A,C) = 7y (Mf,Y) = 0 for ¢ < n. Then
homotopy excision says that my(M f, X) = m4(A,C) — my(X, B) = my(Cf,*) is an
isomorphism for 2 < ¢ < m +n and a surjection for ¢ = m +n+ 1. This completes
the proof of the lemma.

Let f: X — Y be a map as in the lemma. Recall that the homotopy fibre
Ff = X x; PY, contains pairs consisting of a point z € X together with a path
in Y from the basepoint of Y to f(z). Now define

n: Ff — QCf
) tH{'y(Qt) 0<t<1/2
(x,2t—1) 1/2<t<1
The map 7 induces a map on homotopy groups m,_1(F'f) — 7,(Cf). We need to
show that this map is an isomorphism in the required range.
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Lemma 9.11. Let f: X — Y be a map, let j: X — Mf be the inclusion, let
r: Mf — Y be the retraction, and we have a quotient map Mf — Cf. The
following diagram commutes up to homotopy, where the map © is the canonical
map induced by the quotient M f — Cf.

Fj=Xx; P(Mf) —Z8 X, PY = F¥

T T

QC'f

It is a straightforward exercise to prove the lemma. We now have the following
diagram.

Tg+1(X) —=Tgr1(M f) —=mg1 (M f, X) = mg(Fj) —=mg(X)T —= (M f) — -

F ) -

Tg+1(X) ——= mg1(Y) mo(F'f) mq(X)

im

m(QCF) = 7411 (Cf)

The top row is the long exact sequence of the pair (M f, X). This sequence was
proven using the exact sequence for a fibration obtained from the map j: X — M f.
Two out of three vertical maps are isomorphisms, so the map Fr is an isomorphism
by the five lemma. In the range of homotopy excision, namely for g +1 < m +n
the composition my41(M f, X) = mg+1(Cf) is an isomorphism. It follows from the
commutativity in Lemma 9.11 that 7, : my(F f) = mg41(Cf) is an isomorphism.
We may therefore replace 7y (F f) with 7411 (Cf) in the bottom row, for ¢ +1 <
my. Now let apply this with i: A — X replacing f: Y — X, with r = m and
s =n. Since i is a cofibration, C'i ~ X/A = @, so we obtain the desired truncated
long exact sequence. O

<7
1R

10. HOMOLOGY THEORIES

This section was typed by Robert Graham. There are many different distinctions
that are made in the literature. We can talk about homology theories versus coho-
mology theories, generalised (co)homology theories versus ordinary (co)homology
theories and reduced (co)homology theories vs unreduced. For example DeR-
ham cohomology is an ordinary unreduced cohomology theory, whereas cobordism
theory, K theory and the stable homotopy functor are examples of generalised
(un)reduced homology theories. The homology theories we are most familiar with,
singular, cellular and simplicial are ordinary unreduced.

Let us explain these distinctions. Homology is covariant. So given f: (X, A) —
(Y, B) we have a map

E.(f): E¢(X,A) = E,(Y,B)
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On the other hand cohomology is contravariant (the notation will be explained
below in detail).
An ordinary homology theory satisfies the dimension axiom, which states

Ey(x) =7

Eq(*) = 07 q 7é 0
where 7 is some abelian group, known as the coefficient group. Generalised theories
need not satisfy this axiom.

The difference between reduced and unreduced is more substantial (at least at
first glance). We will see more about this later, but briefly, reduced theories work
well for based spaces, whereas unreduced theories do not require basepoints.

We will now define what a homology theory is.

Definition 10.1. Let 7 be an abelian group. An ordinary homology theory over ©
is a collection of functors E, from the homotopy category of pairs of spaces (X, A)
to abelian groups, together with natural transformations

0: E¢(X,A) = E4—1(A,0)
We write Eq(X) := E;—1(X,0). The following axioms must hold:
(1) Dimension Axiom. Ey(x) = m and Ey(*) =0, i # 0.
(2) Exactness Axiom. Given a pair (X, A) we have maps
(A,0) = (X,0) = (X, A)
Thus by applying F, and using 0 we have the following sequence
. > Ey(A) 5 Ey(X) = Eg(X,A) > Eq_1(A) — ...
The axiom says this is exact.
(3) Excision Axiom. Given an excisive triad (X; A, B), the natural map
E,(A,ANB) = E (X, B)
is an equivalence.

(4) Additivity Axiom. Given (X, A) = [],(X;, A;) then the map
P Ey(Xi, Ai) — Ey(X, A)

induced by (X;, 4;) — (X, A) is an equivalence.
(5) Weak Equivalence Axiom. E, sends weak equivalences to group isomor-
phisms.

Regular cellular homology is a homology theory as defined above with one caveat,
it is defined only for CW complexes. The next theorem makes this precise.

Theorem 10.2. Cellular homology is a collection of functors Hq(—;m) from CW
pairs (X, A) to abelian groups with natural transformations

0: Hy(X,A;m) = Hy1(A; )
It satisfies and is determined by the dimension, eractness, excision and additivity

azioms. Moreover this theory is determined by and determines a theory E, as
defined above.
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Proof. We shall not prove this, however we give one step. Fix a CW approximation
functor I'. Then we can define E,(X, A) := H, (I'X,T"A; 7). Different choices of T
give rise to isomorphic, but not identical theories. Il

A very cool fact is that a particularly nice choice of CW approximation functor
arises from the geometric realisation of the underlying simplicial set of a space X.
This CW approximation functor gives rise to the singular homology of X.

Definition 10.3. A generalised reduced homology theory is a collection of functors
E, from the homotopy category of nondegenerately based spaces to abelian groups
that satisfy the following:

(1) Exactness Axiom. For any cofibration A — X we have the following is

exact _ _ _
Ey(A) = Eqo(X) = Ey(X/A)
(2) Suspension Axiom. There are natural isomorphisms
Y E,~ E;1(2X)

(3) Additivity Axiom. Given X = \/, X; the maps @, F,(X;) — E,(X) in-
duced by X; — X are equivalences.

(4) Weak Equivalence Axiom. FE, sends weak equivalences to group isomor-
phisms.

Of course this becomes an ordinary reduced homology theory if we add the
dimension axiom.

Theorem 10.4. A (generalized/ordinary) unreduced homology theory (Eq,0) de-
termines and is determined by a (generalized/ordinary) reduced homology theory
(Eq, %)

Note that the axioms of a reduced theory seem at first glance weaker than the
axioms of an unreduced theory, so one direction of this theorem is particularly
interesting.

Proof. First suppose we have an unreduced theory F,. Define Eq(X) = Eq(X, *).
We need to show this satisfies all the axioms. The weak equivalence axiom and the
dimension axiom (if appropriate) are clear. To show exactness first note

Ey(A) = Ey(X) — Ey(X, A)

is exact. However E,(X,A) ~ E,(X/A,x) by excision, moreover by exactness

Eq(A) ~ E4(A) @ Ey(x) and similarly Eq(X) = E4(X) @ Ey(*). Therefore
Eq(A) & By(x) = Eg(X) & Ey(x) = Ey(X/A)

is exact, which implies the axiom.
To show suspension note XX = CX/X. Then by exactness of F, we have an
exact sequence

Ey(X) = E(CX) = E,(CX/X) = E,1(CX).
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The extremal terms vanish, so we get the required isomorphism (it is simply 71).
Finally, to show additivity we compute:

Ey(\ X0) = By([T %/ T =)

~ Eq(H X, H *;)
>~ @ Eq (XZ, *z)
~ Ey(X;)

_Now we show the other direction. Suppose we have a reduced homology theory
(B, X). We define Ey(X) := E4(Xy). More generally E (X, A) = E,(Ci,),
where i, : AL — Xy is defined by mapping the basepoint to the basepoint. Now
C;, ~ M(it)/A+ and so from the cofibre sequence of iy we get an induced map

E.(Ci,) — Eq(2A+). By composing with £~ we then get a map
Ey(M(i1)/Ay) = Eq1(Ay)
which will serve as our 0.

The weak equivalence and dimension (if appropriate) axioms are clear. Exactness

for E, follows immediately from exactness for E,.

For excision consider a triad (X;A, B) and let (I'X;T"A,I'B) be a CW triad
approximation. Denote C = AN B and I'C = TANTB. We then have the
following diagram.

~

(FA)+1(PC)+ (PX)+1(FB)+
Mi,/Cy = Mi/C Mi% /B, = Mi®/B

From which we conclude (by the weak equivalence axiom) Eq(M i/C) ~ Eq(M i%/B).
The resulting
Finally to show the additivity axiom we proceed as follows:

E,([1%) = B[] %0-)
= q(\/(Xi)+)

D £+
Eq(Xi)

]

Theorem 10.5. Let E; be a general or ordinary homology theory. Then E, com-
mutes with colimits. That is, colim; Ey(X;) ~ E,(colim; X;).
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Theorem 10.6 (Mayer Vietoris theorem). Given a triad (X; A, B) with C = ANB
andi: C — A, j:C — B, k: A— X and £: B — X. Then we have the following
long exact sequence

L E(0) "L By 0 B,(B) B By(X) A~ B, (0)..

where A is given by

Eq(X) — Ey(X, B) ~“ Ey(A,C) —2~ E,1(C)

The Mayer-Vietoris theorem can be deduced from the axioms of generalised
homology theories. Weave the long exact sequences of the various pairs into a
braid of interlocking exact sequences.

11. THE HUREWICZ THEOREM

In this section we return to ordinary homology (i.e. cellular or singular). For
every n € N we have H,(S") = Z. Let i, be the generator of H,(S™). Now for
a based space X we can define the Hurewicz map h: m,(X) — H,(X) by sending
f:8" = X to Hy(f)(in).

Before we get to the main theorem we will prove some basics results about this
map. First, h is a homomorphism. To show this let f,¢g: S™ — X, then f + g is
defined by

collapse fVg v
_—

S" Snv .St

Therefore
h(f +g) = Hu(f + 9)(in) = Hy(id,id) o Hu(f V g) 0 Hy(V)(in)

which maps

so h(f + g) = h(f) + h(g) as required.
We also claim that the Hurewicz map respects suspension, by which we mean
the following commutes.
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This is proven by the following computation. Let [f] € m,(X). Then

ho 5([f]) = M(Xf)
= Hn(3f)(int1)
= Hn(zf)(zzn)
= X(h(f))
= Yo h([f])

We will now prove a special case of Hurewicz theorem when X is a wedge of
circles.

Lemma 11.1. Let X =\/_S™. Then
hi (X)) — Hy(X)
is an isomorphism for n > 1 and is the abelianisation for n = 1.

Proof. Next suppose X = \/_, 5", here m(\/,S") = F(z,) the free group with
generators x,. whereas for n > 1 we have m,(\/,(S")) = @, m™(S") = B, Z.
In both cases we have 7,(S™) is generated by the maps i,: S" — \/,S", but

f[n(\/a S™) =P, Z is generated by elements e, and iq(in) = €q. O
We end this section with the full Hurewicz theorem.

Theorem 11.2 (Hurewicz theorem). Let X be an n — 1 connected based space.
Then the Hurewicz map h is an isomorphism for n > 1 and is the abelianisation
homomorphism for n = 1.

Proof. By CW approximation, X is a CW complex with one 0-cell and no m-cells
for 1 <m <n.

The inclusion map X"+ — X induces an isomorphism m, (X "*+D) = m,(X)
and another isomorphism H,, (X ™) — H,(X).

Therefore it suffices to consider the case X = X+ In this case X is the
homotopy cofibre of some

Vst -\ s —x

B «
Denote K = \/4 Sl and L =/, S™.We have the following two exact sequences
connected by Hurewicz maps as pictured:

Tn(K) —— (L) —— mp(X) ——0

AR

H,(K) — Hy,(L) — H,(X) —=0

For n > 1, since the first two downward arrows are isomorphism by the previous
lemma, we see that the final arrow is an isomorphism. For n = 1 a similar argument
holds where we replace the top row with its abelianisation. O
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12. HOMOLOGY VIA HOMOTOPY THEORY

In this section we return to generalised homology theories, and explain their
connection to homotopy theory. Consider an Eilenberg-MacLane space K (m,n)
modelled by a CW complex. We have a homotopy equivalence

o: K(m,n) - QK(r,n+1)
since QK (m,n+ 1) is homotopy equivalent to a CW complex by a result of Milnor,

and then using Whitehead’s theorem. The map ¢ is adjoint to amap o: XK (7w, n) —
K(m,n+1). There is a map

Id
Tgn(XAK(m,n)) = Tgynt1(E(XAK (7, n))) = Tgynt+1(XAXK (7, n)) LA Tgtn+1(XAK (7, n+1))
This enables us to make the following definition.

Theorem 12.1. Let X be a CW complex and let m be an abelian group, and let
n > 0.

ﬁq(X;T() = colimy, Tgn (X A K(m,n)).
Therefore

H,y(X;m) = colim mgipn (X4 A K(m,n)).

Proof. We need to check that the right hand side satisfies the axioms of a homology
theory. Since ordinary homology is determined by the dimension axiom, this will
also show that the theories coincide.

First we claim that X A K(7,3q) is (2¢ 4+ 1)-connected. This follows easily by
using a CW structure for K (7, 3¢q) with no cells of dimension less than 3¢, together
with cellular approximation of maps. The cofibration sequence for a cofibration in
homotopy theory shows that

Taqg(ANK(7,2q)) = mag(X N K(7,2q)) = maq(X/AN K (7,2q)).

Then since colimits preserve exactness, we obtain the corresponding exact sequence
for the colimits.
Next,

Tgin(S° A K (m,n)) = T in(K (7, 1)) = {g Z i 8

which shows the dimension axiom.
To see the suspension axiom,

Tain(X A K(m,1)) D 701 (B A K(7,1))) = T(g41) n(EX A K (m,n))

The first map is an isomorphism by the suspension theorem, provided n is high
enough. Therefore on passage to colimits, we obtain the suspension axiom.
Finally,

Taan((\ Xi) A K (m,1)) = 71 (\/ (Xi A K (7,n)))

= mgn(Xi NE(m,0) © Y mgpnii ([ Xi A K(m,n),\/ Xi A K(,n))

=11
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The isomorphism arises from the decomposition of the homotopy groups of a wedge
as the homotopy groups of the product and a series of relative terms. The j can be
arbitrarily high, so the full colimit is required for these groups to vanish. They are
generated by Whitehead products. There are no g-cells of (X; A K(m,n)) x (X; A
K(m,n)) for 0 < ¢ < 2n—1. Provided n is large enough, ¢+n+j < 2n—1, so that
by cellular approximation, the homotopy groups vanish, and we are left with the
sum Y Tg4n(X; A K(m,n)). This completes the proof of additivity, and therefore
completes the proof of the verification of the axioms. O

Now we show how to generalise this idea.

Definition 12.2. A spectrum is a sequence of spaces {T,,}, n > 0, and based maps
ST — Thtt

Theorem 12.3. Let {T,,} be a spectrum with T,,, an (n—1)-connected space with T,

homotopy equivalent to a CW complex for all n. Define Eq(X) = colim mgy (X A
T,). This is the colimit over the maps

> Id
Tgtn (X ATn) = Tgrnt1(B(X AT)) = mgin1(X AXT,) LA Tgtnt1 (X ATnt1).

Eq(—) is a reduced (generalised) homology theory on based CW complexes (and
therefore determines a theory on all nondegenerately based compactly generated
spaces.)

We note that the dimension axiom is not required. An unreduced theory is then
given by colim 7y4,, (X4 AT},). The proof is analogous to the proof of the previous
theorem.

13. THE HILTON-MILNOR THEOREM

The product of two spheres SP x S? = e UeP Ue? U ePta,

Tp+q(SP x 81,57 v 87) = 7Tp+q(5p+q) =7 — Ompyq—1(SP Vv 57).
Take the attaching map of eP*9 generated the first group. Consider
(1) =9: Spra—t  §P v 89,

We write 6 = [1p, tq], where ¢, and ¢4 are generators of m,(S?) and m,(S?). We can
generalise this to X VY. Let z € m,(X) and let y € m(Y). Write

[, y]: Spra-t 12t oy ga Ty

These are called Whitehead products.
Theorem 13.1 (Hilton-Milnor theorem).

QEX VIY) ~ [ aux i pytedd)

weWw
where W is a basis for the free Lie algebra on x,y, the free algebra generated by x
and y with the Lie bracket [—,—| that satisfies [a,b] = —[b,a]. Also

XU =Xxn.AX
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1s the i-fold smash product of X,
Yl —vA...AY

is the i-fold smash product of Y, w, and wy are the number of appearances of x,y
in bracket w.

This theorem helps explain the homotopy type of a wedge. We will unfortunately
not provide a proof. To understand this let us do an example with X = SP~! and
Y = 8971, Then

Tn(SPV S8?) =, (EX VEY)

= Tn1(QEX V EY))
= moa( [] @B(x e Ay tendy)
wew

= @ T (DX e} A ylwshy)
wew

— @ T (B(SW= P~ A gwula—1)y)
weWw

- @ T (S (P=DFwy(a=1)+1)
weW

For example
73(5% v §%) = m3(S?) @ 13(S?) @ w3(S®)
corresponding to the generators z, y and [z, y| of the free Lie algebra. Also,

ma(S?V 5?) = m4(5?) ® 74(S?) @ 14(S?) ® ma(S*) @ ma(SY)

corresponding to the generators x, y, [z, y], [z, [z, y]] and [y, [z, y]]. Outside of wedges
of spheres, the theorem is harder to apply, but it is certainly possible.

14. COHOMOLOGY AND UNIVERSAL COEFFICIENTS

We saw how to define cohomology using homotopy classes of maps in an exercise
sheet. We should also see how to define cohomology using homological algebra.

Let R be a commutative ring. Let (Cx, 0;) be a chain complex of R-modules, that
is we have R-modules C; for ¢ € Z, and R-module homomorphisms 9;: C; — C;_1
with 9;_1 0 9; = 0. The associated cochain complex is

o 0= HOIIlR(CZ‘_l,R) — C:= HOH]R(CZ‘,R)
f — (—l)iflfoa,;.

Note that 0°t! 0 9" = 0. The sign is not strictly necessary at this point, but
makes certain diagrams commute later on, so technically should be included in the
definition now.

Define

HY(C,) := Hy(C*,0*) = ker ! /im &".
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Let Cy = C«(X;R) be the singular/cellular chain complex of a space X. Then
HY(X;R) := HYC,). For example, H'(S™;R) is equal to R for i = 0,n and
zero otherwise. Cohomology is of course closely related to homology. We aim to
understand the relationship next.

14.1. Universal coefficient theorem for cohomology.
Definition 14.1 (Left and right exact).

(1) A covariant functor F': R—mod — R—mod is called left exact if for any
short exact sequence
0—+A—=B—-C—=0
we have that
0— F(A) — F(B) — F(C)
is exact.

(2) A contravariant functor F': R—mod — R—mod is called left exact if for
any short exact sequence

0—-A—-B—-C—=0
we have that
0— F(C)— F(B) — F(A)
1s exact.

(3) A covariant functor F': R—mod — R—mod is called right exact if for any
short exact sequence

0—-—A—-B—-C—=0
we have that
F(A) - F(B)— F(C)—0
is exact.

(4) A contravariant functor F': R—mod — R—mod is called left exact if for
any short exact sequence

0+A—-B—-C—=0
we have that
F(C)— F(B)— F(A) —0
is exact.
A functor that is both left and right exact is called exact.

For example, let N be an R-bimodule. Then:

(1) The functor M — Homp(M, N) is left exact contravariant.
(2) The functor M — Homp(N, M) is left exact covariant.
(3) The functor M +— N ®pg M is right exact covariant.

As an explicit example, consider the chain complex:
0237 —7/2—0.
Tensor this with Z/2, to obtain

o)

725725 7/2 > 0.
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Tensoring is right exact. On the other hand applying Hom(—,Z) yields
0 — Hom(Z/2,Z) = 0 — Hom(Z, Z) 1=%%; Hom(Z, 7).

This is a left exact functor. We will focus on the case of Hom to begin with.

Definition 14.2. An R module I is said to be injective if the diagram
0——=M—>N

7
3
/s
¥

I
for any R modules M and N.

Theorem 14.3. Any divisible module over a PID is injective.

A good exercise is to prove this for divisible abelian groups, since Z is a PID.
Here a module M is divisible if for any m € M and for every n € Z~{0} there
exists an m’ € M such that nm’ = m.

Proposition 14.4. Let P be a projective module, let I be an injective module, and
let0 - A— B — C — 0 be a short exact sequence. Then
0 — Hom(C, I) — Hom(B,I) - Hom(A,I) — 0
and
0 — Hom(P, A) — Hom(P, B) — Hom(P,C) — 0
are exact.

The proposition follows immediately from the definitions. Often in applications
the modules in question will not be projective or injective as required, and we want
a way to understand the failure of the previous proposition to hold in these cases.
For this we use Ext groups, which we will now work towards defining.

Definition 14.5. Given an R-module M, a projective resolution is an exact se-
quence
o= PP =P =M -0,

where P; is a projective R-module for all i € NU {0}.
An injective resolution of M is an exact sequence
0O->M-—-Ig—=15 —>1Ih—- -

where I; is an injective R-module for all i > 0.
The deleted resolutions are
P*:'--—>P2—)P1—>P0
and
I*:IQ—>11—>IQ—>~'
which are exact apart from at Py and Ij.
We will focus to begin with on projective resolutions and the functor between

R-modules M +— Hompg(M, N). This has what is called a “derived functor” called
Ext. We will obtain R-modules Ext (M, N), with i > 0.
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Proposition 14.6. Let f: M — N be an R-module homomorphism. Then there

is a unique chain homotopy class of chain maps PM — PN induces the given map
f:M— N.

This uses what is called the fundamental lemma of homological algebra.

Lemma 14.7 (Fundamental lemma of homological algebra). Let P, be a projective
R-module chain complex, i.e. P; is a projective module for all i, and let Cy be an
acyclic R-module complex, that is H;(Cy) = 0 for all i > 0. Both are assumed to
be nonnegative. Let p: Ho(Py.) — Ho(Cx) be a homomorphism. Then:

(1) there is a chain map fi: P; — C; (Ocfiv1 = fiOp) such that fo induces ¢
on Hy;

(2) any two such chain maps f and g are chain homotopic f ~ g, that is there
exists a chain homotopy h;: P; — Cijy1 such that Och; + h;—10p = f; — g;.

Proof. We give an outline of the proof. Let M := Hy(Py) and M’ := Hy(C,). First
construct, using the idea of the previous lemma, the vertical maps (apart from the
far right vertical map, which is given), in the following diagram, using the fact
that P; is projective for all ¢ and that the bottom row is exact, now it has been
augmented with M.

P, p %, p, M 0
| | |

| | | @\L

\ F) Y F) Y

Co = Ch < Co M’ 0

This shows (i). Now let f and g be two such chain maps as in (ii). Construct a
chain homotopy h, again using the idea of the proof of the lemma above, fitting
into the diagram:

8P ap
P2 P1 P[) M 0
e e e
ha g h1 -~ g ho ~ g
s fa—g2 P < fi—q P -~ fo—go p—p=0
7
7 7

£ 4 oo 4 ac ,
: Ca 4 Co M 0

To do this one needs the following computation:
9c((fn = gn) = hn—10p) = (fn—1 — gn—1)9p — Ochn—10p
=f110p — gn_10p — hp_20% — fn_10p + gn_10p = 0.
We leave the details to the reader. They can be found, for example, in chapter 2

of [DK]. O

Now we define the Ext groups that are needed for the statement of the universal
coefficient theorem.

Definition 14.8 (Ext%). Let M and N be R-modules and let P, — M —
0 be an R-module projective resolution, with P, the deleted resolution. Form
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Hompg(Py, N). Then
Ext®(M,N) := H,(Hompg(Py, N)).

Equivalently, let 0 — N — I, be an injective resolution of N, with I, the deleted
resolution. Then

Ext’:(M, N) := H,(Hompg(M, I..))

It turns out that the definitions are equivalent with a projective resolution of the
first argument or an injective resolution of the second argument. Here are some
straightforward remarks.

(i) Ext% (M, N) = ker(Hompg(Py, N) — Hompg(Py, N) = Homg(M, N).

(ii) If M is projective then Exty (M, N) =0 for all i > 0.
(iii) If N is injective then Ext (M, N) =0 for all ¢ > 0.

Now let 0 = A — B — C — 0 be a short exact sequence of chain complexes.
Each of these modules has a projective resolution, and the short exact sequence
lifts to a short exact sequence of chain complexes

0 pPA PEB PC¢ 0
0 A B C 0

by the fundamental lemma of homological algebra. Apply Hom(N, —) to the top
row to obtain

0 — Hompg(N, PY) — Hompg(N, PP) — Hompg(N, P) — 0.

This is a short exact sequence of cochain complexes, which induces a long exact
sequence in cohomology:

0 — Homp(N,C) — Hompg(N,B) — Homp(N,A) —
—  Exth(N,C) — Exth(N,B) — Exth(N,4) —
—  Exti(N,C) — Ext4(N,B) — Exth(N,A) —

A similar argument with injective resolutions gives rise to the long exact sequence

0 — Homp(C,N) — Homp(B,N) — Hompg(A4,N) —
—  Bxth(C,N) — Exth(B,N) — Exth(4,N) —
—  Ext4(C,N) — Ext4(B,N) — Ext4(A,N) —

Here are some examples of the Ext groups. The Ext® groups are equal to the
corresponding Hom groups, so we omit the discussion of them.

(1) Exty(Z,Z/p) = 0 for n > 0.

(2) Ext}(Z/n,Z) = Z/n, and they Ext’ groups vanish for 4 > 1. In general,
Exti (A, Z) = Homgz(A, Q/Z), which picks up the torsion subgroup of A.
If R is a field, Ext% (M, N) =0 for i > 0.

If R is a PID, then Ext% (M, N) =0 for i > 1.
Exth(®ada, B) = [, Exth(Aq, B).
Exth(A, ®aBa) =[], Exth(A, Ba).

(3
(4
(
(

)
6

~ — ~— —
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Now we state and prove the universal coefficient theorem for cohomology, in the
case that R is a PID. In more generality for rings of homological dimension greater
than one, there is a universal coefficient spectral sequence. But we won’t cover
that here.

Theorem 14.9 (The universal coefficient theorem). Let R be a PID, let M be an
R-module and let (Cy,0) be a f.g. free R-module chain complex. Then

0 — ExthL(H,_1(C,), M) % H"(Cy; M) 2 Homp(H,(C.), M) — 0

is an ezact sequence of abelian groups, which is natural in chain maps of Cy, — C.,
and which splits, but the splitting is not natural. The map B sends [f] — ([¢] —
f(e). If M is an (R, S)-bimodule, then this is an exact sequence of S-modules.

Proof. This proof is essentially from [Br]. Note that the map 3 is well-defined since
f is a cocycle and c is a cycle.

Recall that for R a PID, any submodule of a free module is free. Also recall that
for any chain complex C, we let

Zy :=ker(0p: Cp — Cp_1)
the p-cycles, and
By = im(Jpt1: Cpr1 = Cp),

the p-boundaries. Of course H,(C,) = Z,/B,. There are two exact sequences of
R-modules, for each p.

(1) 0= 2, X Cy LN B,—1 — 0. The submodule B,_; is free, whence projec-

tive, so the sequence splits. Let ¢: C, — Z, be a splitting.

(2) 0= B, > Z, % H,(C,) — 0.

The proof will follow from the next diagram, and some fun diagram chasing.

0
0 Hom(B,, M) —%~ Hom(Cpy1, M) Ext!(H,_1(C,), M)
v Té
0 Hom(Z,, M) Z Hom(Cp, M) < Hom(B,_1, M) ~——0
q 5T v

Hom(H,(Cy), M)

0

Hom(Cp—1, M)

Hom(Zp,—1,M) ——0

Here is some explanation of the diagram. The left 3 terms of the top row come
from the dual of (1), and Hom(—, M) is left exact so the part shown is exact. The
middle row is also the dual of (1). Here Z, is a submodule of a free module and
hence is free, since R is a PID. Thus Ext}_—i(Zp, M) =0, so the middle row is exact.



MATS8232 ALGEBRAIC TOPOLOGY II: HOMOTOPY THEORY 67

The left column is the dual of (2), and is left exact. The right three terms of the
bottom row also come from the dual of (1), which is exact as described above. The
middle column is the dual of the chain complex C,. This is not exact, but 62 = 0.
The right hand column is part of the long exact sequence associated to the dual of
(2). The two squares commute.

Now the proof is a diagram chase. Let f € Hom(Cp, M), with f € kerd. Go left
and up to get an element of Hom(B,, M). By commutativity of the top left square,
and injectivity of 0*, this is the zero element. Let g = x*(f) € Hom(Z,, M). Then
there is an h € Hom(H,,, M) with g = ¢*h. We define 5(f) := h. To see that this
is well defined note that if we replace f with f + dk, then by commutativity of the
bottom right square dk € im(6*), so maps to zero in Hom(Z,, M), and therefore
does not change the element of Hom(H,, M) by injectivity of ¢*.

The composition ¢* o ¢* induces the splitting. This also shows surjectivity.

The map Ext!(H,_1, M) — Hom(C), M) is defined by lifting z € Ext!(H,_1, M)
to an element y € Hom(B,_1, M), then taking 0*(y). More diagram chases show
that this is well defined and injective.

It remains to show exactness at HP(C,). This is also a straightforward diagram
chase that is left to the reader. ]

14.2. Universal coefficient theorem for homology. There is an analogous
derived functor Tor for the tensor product. We give a less detailed treatment, but
give the main statements here. Given R-modules M and N let PM and PV be
projective resolutions. Then

Tor®(M,N) := H,(PM ®r N)

or
Tor®(M,N) := H,(M @, PY).

Note that ToroR(M, N) = M®gN. Given an exact sequence 0 - A — B — C' — 0,
we have a long exact sequence

— Torl(A,N) — Torf(B,N) — Torf(C,N) —
— Torf((A,N) — Torf(B,N) — Torf(C,N) —
4)

— ARQr N — B®r N — C®rN 0

Theorem 14.10 (Universal coefficient theorem for homology). Let R be a PID,
let Cy be a f.g. free R-module chain complex, and let M be an R-module. Then
there is a split natural short exact sequence of abelian groups

0— H,(C,) ®r M — H,(C, @ M) — Torf(H,_,(C,), M) — 0.

The splitting is not natural. If M is an (R, S)-bimodule, this is a split exact se-
quence of S-modules.

Remark 14.11. Both of the universal coefficient theorems are special cases of cor-
responding universal coefficient spectral sequences. In fact, there are more general
Kiinneth spectral sequences that imply the universal coefficient spectral sequences
and imply the ordinary Kiinneth theorem.
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Here is an application. Let W be a simply connected closed 4-manifold. Then
H3(M;Z)=0= H{(M;Z) and Hy(M;Z) is torsion-free. (We use Poincaré duality
here too. To see this we have H3(M) =2 H'(M) = Hom(H(M),Z) = 0. The first
isomorphism is by Poincaré duality and the second is from the universal coefficient
theorem, since Ext!(Ho(M),Z) = 0 as Ho(M) is torsion-free. Then Hy(M) = 0
since (M) = 0. Next, H3(M) = 0 implies that Extl (Hy(M),Z) = H3(M), but
H3(M) = Hy(M) = 0, so Ext'(Hy(M),Z) = 0, and Hz(M) is torsion free as
claimed.

14.3. The Kiinneth theorem. An R module M is flat if M ®i — is an exact
functor. A chain complex is flat if every chain group is flat.

Let (C,0c) and (D,0p) be two chain complexes. The tensor product chain
complex C®p has

(CeD),= P ¢, oD,
p+g=n
with
Do (cy @ dg) = Do (c) @ d + (~1)Pc @ D(d).
Note that for X and Y CW complexes, we have C,(X x Y) = Cy(X) ® C(Y). To

see this, note that the product e? x e? of two cells is homeomorphic to a (p+ g)-cell
ePT4 and the boundary of a product is 9(eP x e?) = JeP x e? U eP x del.

Theorem 14.12. Let R be a PID, let C be a flat chain complex. Let D, be any
chain complex. Then there is a short exact sequence

0= €P Hy(C)®rHy(D) — Hy(C®rD) — P Torf(H,(C), Hy(D)) — 0.
pt+g=n p+g=n—1

Take D, to be a chain complex that is nonzero only in degree 0, with Dy = M,
to obtain the universal coefficient theorem for homology. We can use the Kiinneth
theorem to compute the homology of the product of two spaces.

15. Cup PRODUCTS
15.1. Algebraic definition. We have a diagonal map A: X — X x X that send
x> (x,z).
Given two chain complexes C, D, the tensor product chain complex C' ® D has
chain groups

(€& D)y = @ Cp ® Dy
ptg=n
with boundary map
doep(c @ d) = do(c) @ d+ (~1)*8c® dp(d).

Note that Cu(X xY) = C(X) ® C(Y). To see this observe that the product
eP x el = ePT4 of two cells is a cell, and the boundary is

0eP x el Uel x (—1)Poel.
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Let m and 7’ be abelian groups. We have a map
w: Hom(Cy(X),7) ® Hom(Cy(Y), ") — Hom(Cy(X)® C*(Y), 7 ® 7')
fof — (z@aw— (—1)des f'degz £y ® f'(z'))
The composition of w with the identification
Hom(Cy(X) @ C*(Y), 7 @ ') 2 Hom(Cy(X x Y), 7 ® 7')
gives rise to a map on cohomology
H*(X;m) x H(Y;7') - H*(X x YV;m @ ).

Now we let X =Y and 7 = 7/ = R a commutative ring. Then we obtain the
cup product maps

U: HP(X; R) x HY(X; R) — H?Y(X x X;R) &5 HPT(X; R)

by using the pullback of the diagonal map on cohomology. The cup product maps
make the cohomology H*(X; R) into a graded ring, as well as a graded R-module.
The cohomology ring is unital, associative, and graded commutative, in the sense
that x Uy = (—1)de8@desyy g,

These properties can be seen by passing to cohomology from the following dia-
grams. First, the proof of unital uses this diagram:

/ | \
X xta=—XxX—xxX.
The proof of associativity uses this diagram:

X A

lA
Id xA

X xX—XxX xX.

X x X

leId

Finally graded commutativity follows from this diagram:

e

X xX X x X,

where t: X x X — X x X switched the coordinates, that is t(x,2') = (2/,x). The
signs difference in commutativity arises from the signs in the definition of w.
Here are some examples of cohomology rings.

(a) The cohomology ring of the torus is
H*(8' x S42) = Lz, y)/(«?, y*, 2y = —ya),

where degx = degy = 1.
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(b) The cohomology ring of S? x S? is
H*(S? x S*2) = Lz, y]/ (%, y*, xy = ya),

where degx = degy = 2.

(c) The cohomology ring of CP" = Z[x]/(z"*!), with degz = 2. We will provide
a spectral sequences computation of the cohomology ring of CP™ in the final
chapter of these notes.

(d) The cohomology ring of RP" = Z/2[z]/(z"!), with degz = 1.

In singular cohomology, let x be a sum of singular n-simplices x;. Let p,q be
integers such that p + ¢ = n. A singular n-simplex x;: A™ — X has a front p-face

plz: AP — APTT D, X

where the inclusion map AP — APt maps to the first p coordinates. There is also
a back ¢-face

2)g: AT = APTT L, X

where now the inclusion map goes to the last ¢ coordinates. We then define

(fUg)@) = fplz)g(2]a)-

The front p-face and back g-face are part of the Alexander-Whitney diagonal ap-
proximation chain map. The problem is that the diagonal map is not cellular, so
one has to make a choice of cellular map that approximates it up to homotopy.
Sending a simplex

x Z plz ®x]q.

ptg=n

15.2. Axiomatic treatment of cohomology and spectra. Cohomology theo-
ries also have axiomatic treatment. That is we have functors (X, A) — F4(X, A),
and coboundary maps §: E9(X, A) — E9t1(X, A). There are reduced /unreduced
versions, and generalised/ordinary depending on whether one includes the dimen-
sion axiom. The unreduced theory has axioms: long exact sequence, additivity,
weak equivalence and excision, analogous to the homology versions. A reduced
cohomology theory has exactness, suspension, additivity and weak equivalence ax-
ioms. An ordinary cohomology theory is determined by a theory on CW complexes
and this is determined by the axioms (if dimension is included.)
We saw in the exercise sheet that

ﬁn(X;ﬂ-) = [X,K(?T,n)]

is a reduced ordinary cohomology theory. To obtain unreduced cohomology, we
use:

HY(X:7) = [X3, K (7).
These coincide with singular or cellular cohomology because they both satisfy the
dimension axiom, and such theories are determined up to natural isomorphism.

Definition 15.1. An {-spectrum is a sequence of based space {T,} with weak
equivalences o: T, — QT 11.
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This is stronger than the normal definition of spectra, since the maps are not
required to be weak equivalences. Note that whether o: T,, — QT,11 is a weak
equivalence has rarely anything to do with whether the adjoint map o: T;, — T 41
is a weak equivalence (like for suspension spectra).

Theorem 15.2 (Brown representability theorem). FEvery generalised cohomology
theory is represented by an Q-spectrum, and every Q-spectrum {T,,} gives rise to a

cohomology theory E1(X) = [X, Ty

The situation for homology is similar but a little more complicated, and we will
not go into it.

While homology commuted with colimits, it is not true in general that cohomol-
ogy commutes with limits. Given a sequence of spaces Xo C X; C Xo--- with
U X; = X there is a surjective map F4(X) — lim F9(X;). The kernel is measured
by the derived lim' functor. We will not go into details here.

15.3. Homotopy theory definition of cap products. Let X and Y be spaces
and let A, B be abelian groups. We have a map
HP(X; A) © H(Y, B) = [X, K (A,p)] @ [Y, K(B,q)] = [X A Y, K(A,p) A K(B,q)].
If we can find a map
bpq: K(A,p) NK(B,q) - K(A® B,p+q),
then we can compose with this to get an element of
X AY,K(A® B,p+q).

This will enable us to define the cup product with X = Y via the diagonal map
X —- X A X and:

[X,K(A,p)®[X,K(B,q)] = [X,K(A® B,p+q)]
f@gm gpqo(fAg)oA.

To find the maps ¢, 4, note that such a map is an element of prJrq(K (A, p) A
K(B,q); A® B), and consider the sequence of natural isomorphisms

HPY(K (A, p) AK(B,q); A® B)

= Hom(Hp14(K(A,p) NK(B,q)),A® B)

=~ Hom(H,(K (A, p)) ® Hy(K(B,q)), A® B)
%Hom(wp(K(A,p)) ® Wq(K(Bv Q))7 A @ B)
~“Hom(A® B,A® B)

The first three isomorphisms follow from the universal coeflicient theorem, the
Kiinneth theorem and the Hurewicz theorem. To see that these theorems ap-
ply, observe that K(A,p) is (p — 1)-connected, K(B,q) is (¢ — 1)-connected, and
K(A,p)ANK (B, q) is (p+g—1)-connected. Define the map ¢, ,: K(A,p)ANK(B,q) —
K(A® B, p+q) to be the map associated to the cohomology class that is the preim-
age of the identity map Idagp € Hom(A ® B, A® B) under the above sequence of
isomorphisms.
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The properties of cup products, that they are have a unit, are associative and
graded commutative, can also be proven from the homotopy theory definition. The
algebraic and more homotopy theoretic definitions coincide. To see this, it suffices
to convince oneself, by naturality, that they coincide on the Eilenberg Maclane
spaces.

16. CAP PRODUCTS

Another important product in cohomology is called the cap product. Cap prod-
uct with the fundamental class of a manifold M gives rise to the Poincaré duality
maps from cohomology to homology. Recall that

[Xa Y] = WO(Map(Xa Y))
We have the evaluation map
e: Map(X,Y)ANX =Y,

and we saw long ago that this is a continuous map. Let A, B be coefficient abelian
groups. The cap product will be a map

N: H(X; A) ® H,(X; B) = H,_,(X; A® B)

In the case that X = M is an n-dimensional manifold, let [M] € H,,(M;Z) be the
fundamental class. Then N
xN[M] € Hy_p(M; A)

is the Poincaré dual of . Now we construct the cap product using homotopy theory.
Using our definition of homology and cohomology in terms of homotopy groups,
we will obtain a definition that easily generalises to homology and cohomology
theories defined using spectra. The disadvantage of this approach is that we need
our coefficients to be abelian groups, but cap products can also be defined for
twisted coefficients over a Z[m;(X)]-module. We want a map

mo(Map(X, K (A, p))) ®colimy my (X N K (B, q)) — colim, my—pir (X NK(A® B, 1)).
Tensor products commute with colimits, so in fact we want a map
colim, mo(Map(X, K(A,p)))@m(X ANK(B,q)) — colim, mp1¢(X NK(A®B,p+q)),

by setting r = p + ¢. So we define maps without the colimits, and then we will
simply pass to the colimit, to get the desired product. Here is a glorious sequence
of maps that gives the map we want.

mo(Map(X, K(A,p))) @ mq(X N K(B,q))

Do Trnq(Map(X, K (A, p)) A X A K (B, q))

Id AAAId
S Tq(Map(X, K (A,p)) A X A X AK(B,q))

(
N ia(K(A,p) A X A K(B,q))
ﬂ>7rn+q(X NK(A,p) NK(B,q))
Id A¢ (

——Tp1q(X NK(A® B,p+q)).
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In singular homology, we can define the cap product as follows. Lety € H,,(X; B)
and x € HP(X; A). Apply a diagonal chain approximation map

Aly) =) Yy @y, ,+> by oy, .,
i r#p
where b/ € B and y = Y_ b/ fI, with fI A™ = Y a singular n-simplex, and the
diagonal map on an n simplex A(f7) = > y. ®y!_,. Then

rNy=> (z(y) @b) -yl
i
Here x(y;,) € A. Explicitly, one can use the Alexander-Whitney diagonal approxi-

mation with
n

A(f) =) Gl @ (Fh).
i=0
The key property of cap and cup products is

(aUB,z) = (B,anx),

where a € HP(X), 8 € HY(X) and = € .F~Ip+q(X). This is often very useful in the
study of Poincaré duality.

Here is the cool thing about the construction of cap and cup products that we
gave. If {T},} is an Q-spectrum, with a sequence of maps ¢p4: T, A Ty = Tpiq,
then the associated generalised homology/cohomology theories have cap and cup
product maps, defined in exactly analogous ways.

17. COHOMOLOGY OPERATIONS

We say that a contravariant functor k£ from spaces to sets is represented if there
is a space Z such that k(X) = [X, Z] for all X. Let k be a represented functor and
let k' be another contravariant functor from spaces to sets.

Lemma 17.1 (Yoneda lemma). There is a bijection between the set of natural
transformations ®: k — k' and ¢ € k'(Z).

Proof. Given @, let ¢ = ®(Id) € k'(Z), where Id € k(Z) = [Z, Z]. Given ¢ € k'(Z),
define ®: k(X) = [X, Z] — K(X) by f ~ f*(¢). Note that f*: K'(Z) — k'(X). O

Corollary 17.2. Suppose that both functors are represented. Then there is a bi-
jection between natural transformations ®: [—, Z] — [—, Z'] and ¢ € [Z,7'].

Definition 17.3. A cohomology operation of type q and degree n between coho-
mology theories E* and F* is a natural transformation F — F4+n.

Definition 17.4. A stable cohomology operation of degree n is a sequence {P?: E9 —
E?t} of cohomology operations of type ¢ and degree n, such that for each based
space X we have ¥ 0 ®? = &7t o 3: FI(X) — EITI(TX).

Unlike the cup product, cohomology operations can survive stabilisation.
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Theorem 17.5. Cohomology operations
H(—,7) — H""(—, )
are in canonical bijective correspondence with HI" (K (m, q), ).

Proof. Cohomology operations are natural transformations from [—, K(7,q)] t
[—, K(7',n + q)], which by the Yoneda lemma correspond to [K(w,q), K(7',q +
n)]. O

The Steenrod operations

Sq™: HP(X;7Z/2) — HPT™(X;7/2)

are stable cohomology operations such that

(i) Sq° =1d;

(ii) S ()—xz—a:Uxifn—degx;

(iii) Sq"(z) =0 if n > degx; and
(iv) Sq (2y) = D it jmn Sd'(x )Sq’ (x). This is called the Cartan formula.

These properties characterise the Steenrod operations Sq™. They correspond to
the cohomology ring
H*(K(Z/2,p); Z/2),

which is a polynomial algebra generated by certain iterates of the Steedrod op-
erations. These operations are important operations in algebraic topology. For
example, they are used to define the Stiefel-Whitney classes of vector bundles.

Here is an example of a computation of Steedrod squares. Let X = RP* and
let y € H2(RP*;Z/2) be equal to 2, where z € H'(RP*>;Z/2) is a generator of
the degree one cohomology. Then

Sq' (y) = Sq' (z%) = Sq'(x) Sq°(x)+S¢° () Sq' (z) = 2UzUz+2UsUz = 22UzUz = 0.

This example shows that not all of the Steenrod operations of RP* are nontrivial,
even though many of them are.

We finish this section be using the Steedrod operations to give a proof that the
first stable homotopy group is nontrivial.

Theorem 17.6. Let f: S3 — S? represent a generator of n3(S?) = Z. Then
N f. 83tk 5 82+ is nontrivial for all k. That is, ﬂ'f #0.

Proof. The mapping cone Cy = D4 Uy 52. The mapping cone of ¥ f Csy =230y =
D> Usf S3. Tterating this, we obtain that

chf _ D4+k UEkf SQJrk:'

Note that 0 # Sq*: H*(Cy;Z/2) — H*(Cy;Z/2), because the cup product of
CP? ~ S%2u f D* is nontrivial. Since the Steenrod operations are stable, we have

0# Sq®: H*™*(2kCy;2/2) — HYH (200 2/2).

Now if there is a k such that ©¥ f ~ %, then there exists a retraction map r: EkC’f —
Sk+2 This is because attaching D*** is homotopy equivalent to wedging with a
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S4tE and then the retraction map can identify this S*** to the basepoint. By
naturality we have a commutative square

H2TR(S2h 7,/9) s g2k (SRCY; 7,/2)

| ¥

HATE(§44k 7,/9) o HATE(SRCY; 7,/2)

The bottom left group is zero, the others are all Z/2. The right then down com-
position is nontrivial, but it also factors through zero. This is a contradiction, so
we deduce that no retraction r can exist. (Il

18. OBSTRUCTION THEORY

Let (X, A) be a CW pair. In this section we try to solve the following problems.
The exposition follows [DK].

(1) The Extension problem. We are given a map f: A — Y, for some space Y,
and we want to know whether f can be extended to a map X — Y.

Aty
/’1
l )
/7
X

(2) Given two maps fo, fi: X — Y and a homotopy of fo|a to fi]a, can we
extend this to a homotopy between fy and f17

X x{0,1}UAXT—=Y

-
-
~
-
-

X x 1T

Note that this is not the same as the HEP, since here we specify f1, whereas
in the HEP no f; is specified.

(3) A lifting problem. Let p: E — B be a fibration. We have a map X — B,
and we want to know whether it can be lifted to a map X — F.

1
- lp
7
x-'.p

(4) A relative lifting problem. This is the same as the previous case, but the
lift is already fixed for us on A.
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(5) The section problem. This is the lifting problem with X = B and f = Id.
It asks whether a fibration has a section.

For the relative lifting problem, if X = A x I, then the HLP for p: £ — B says
that this problem is soluble.

Note that we assume A — X is a cofibration and E — B is a fibration. The
problems above are soluble for generic maps of CW complexes if and only if they
are soluble for A — M f and P, — B respectively, that is replacing maps by their
homotopy cofibre and fibre.

Here is the first main observation of obstruction theory. The strategy is to try to
extend maps cell by cell using the CW structure of X. At some point we will run
into an obstruction to extending the map, and this will be the primary obstruction
to solving the given problem. If the primary obstruction does not vanish, the map
cannot be extended, at least not without going back and altering the map as already
defined on earlier cells. If the primary obstruction vanishes, there are potentially
further obstructions, but we will not study them. In favourable cases, the primary
obstruction is the only obstruction, and we are able to determine whether the map
extends, or whether the map lifts.

Lemma 18.1. Let X be an n-dimensional CW complex and let Y be an n-connected
space. Then any map f: X — Y is null homotopic.

Proof. We aim to deform the map f on the k-skeleton to be null homotopic, induc-
tively. Suppose that f has been deformed so that the (k — 1)-skeleton maps to the

basepoint of Y. Then for k < n, the composition D¥ — X EN Y, where D¥ — X
is the characteristic map of a k-cell, factors through D* — D¥/9DF = Sk — v,
Moreover this map is null-homotopic, since Y is n-connected, so the map S* — Y
extends to a map H: D*¥*! — Y. H can be thought of as a homotopy H: f ~ .
Define a homotopy on the k-skeleton using this map. We then have to extend this
to a homotopy of f. To achieve this, use that X () — X is a cofibration, so the
HEP gives

X (k) . X
e
20 Y 20
X®) % T X x1

The map H extends the homotopy to a homotopy of X, so f is homotopic to a
map that sends the k skeleton X ¥ to the basepoint *. This completes the proof
of the inductive step. O

Now we define an obstruction to extending a map. Suppose that the problem

A#Y

7
v
7/
v

X
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has been solved over the n-skeleton X of (X, A). So there is a map X — Y
that agrees with the given map A — Y on A. For each n-cell "1, consider the
composition
(n)
S™ s 9en !t 5 XM Ly e (v,
This determines a cochain
0(f™) € C"TH (X (V).
We will show that 9*(0(f™)) = 0, so that [0(f")] € H"™ 1 (X; 7, (Y)) = [X, K(m,(Y), n+
1)]. We will show that if [f(f™)] = 0 then one can modify f on X (™ and then extend
it to a map f: X"t 5 Y,
The homotopy problem is a special case of the extension problem. Let
(X' A) = (X xI,X x0IUAXI).
This leads to the obstruction
H™H X < I, X % {0,1};ma(Y)) = HY(X;ma(Y) = [X, K (ma(Y), ).
To see the isomorphism we use the long exact sequence of a pair
HY(XxI) 2 H"(Xx{0,1}) — H" (X xI, X x{0,1}) — H"(XxI) = H" (X x{0,1})

In general coker(B YDy 4 @A) 2 Ap A/f(B). In this case f is the identity

map Id: H"(X) — H"(X). The diagonal map is also injective, so that the map
H"(X x I,X x{0,1}) = H"(X x I) is the zero map. It follows that H"(X x
{0,1}) = H™""(X x I, X x {0,1}) is an isomorphism.

If Y = K(m,n) then these are precisely the obstructions. In general these are the
primary obstructions, but the complete obstruction theory is much less clean, when
the target is not an Eilenberg-Maclane space. Maps f,g € [X,Y] = [X, K(7,n)]
are homotopic if and only if they have equivalent classes in H"(X; 7, (K (m,n))) =
H™(X ;7). This explains how it was arrived at to define cohomology using spectra.

Recall that if {T,} is a spectrum, such that X7,, — T},41 is an {-spectrum i.e.
the adjoint T,, — Q7,41 is a weak homotopy equivalence.

Theorem 18.2. Let T, be an Q-spectrum. Then
E"(X) = [X,T,]
18 a generalised homology theory.

Suppose that Y is n-simple, that is [S™, Y] = m,(Y), since m1(Y") acts trivially
on m,(Y). Let (X, A) be a relative CW complex and let n > 1. Let g: X,, = Y be
a map. let

bi: (Dn+175n) N (X(nJrl)’Xn)
be the characteristic map of the ith (n + 1)-cell €', Then the composition
gopi|g: S" =Y
gives an element of m,(Y).

Definition 18.3. Define the obstruction cochain §"*1(g) € C"*1(X, A; 7, (Y)) by
0" (g)(el™h) = [g © ¢pi|sn], and extend linearly.
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Here is the main theorem of obstruction theory.
Theorem 18.4.

(1) The obstruction cocycle 6"T(g) = 0 if and only if g extends to a map
X+ 5y,

(2) The obstruction cohomology class [0(g)] = 0 € H" (X, A;m,(Y)) if and
only if the restriction g|xm-1): X1 Y extends to a map XD Y.

The obstruction cohomology class vanishing says that we can alter the map on
the n-skeleton in such a way that it extends over the (n + 1)-skeleton. Before we

start the proof, we give another slightly more formal definition of 6(g).
The nth cellular chain group is

Co(X, A) = Hy (XM, x(=1))

with boundary map

9: Hy(X™, x=0y 2 g (x(=1) &5 g, (XD, x (=2,
The Hurewicz map gives a surjective map

7rn+1(X("+1),X(")) N Hn+1(X("+1),X("))
The kernel is
K = {z(a(2)) ™" & € M (X", X)) 0 € m(X ™M)}

Define

W;H(X(”H),X(”)) — 7Tn+1(X(n+1),X(”)) o~ Hn(X(”+1),X(")).
There is a factorisation since Y is n-simple.

o gx

T (X (HD, x () T (X M)

Ty (XD, X )

T (Y)

We then have a map

n n =~ n n god
Cpy1(X, A) = Hyp (XD X)) 55 b (x(HD ] x () 225 70 (7).

This defines §"1(g) algebraically.

Proposition 18.5. §"*1(g) is a cocycle.
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Proof. Write h for the Hurewicz homomorphism. We have a commutative diagram
7rn+2(X(n+2)7X(n+1)) _h n+1(X(n+2),X(n+1))

0 0

1 (X D) Hppq (XD

T (XOHD Xy g (x (1) x ()

i

9 0" (g)

T (X (™) I T (Y)

The last two maps on of the left hand column are from the long exact sequence
of a pair, and so their composition vanishes. The entire composition of the right
hand column is the map 9*0"!(g). Also the top Hurewicz map is surjective.
It follows that the composition of the right hand column vanishes, and therefore
0*0" 1 (g) = 0, so 6"1(g) is a cocycle. O

The first part of the main theorem, that if the obstruction cocycle vanishes, then
the map extends over X1 follows from the argument of Lemma 18.1. Since
the boundaries of the (n + 1)-cells map trivially into m,(Y"), there are extensions of
these boundaries to maps of discs to Y. We need to show that if the cohomology
class vanishes, then we can change the map on X", fixing X+ so that the
outcome extends over X ("t1 .. so that the outcome is has vanishing obstruction
cocycle.

Lemma 18.6. Let fo, fi: X™ =Y be two maps such that folxtm-1 ~ filxmn-1).
Then a homotopy determines a difference cochain

de C"X,A;mp(Y))
satisfying 0*(d) = 0"+ (fo) — 0" *(f1).

Proof. Let X := X x I and let A:= A x I. Then ()?, ;1\) is a relative CW complex,
with

X® = x® s grux®E=1 1.

A map XM 5 vVisa pair of maps fo, f1: X™ — Y, together with a homotopy
G: X1 Y between fo|ym-1 and fi|ym-1), the restrictions to X (=1, This

gives rise to an obstruction cocycle
0(f0.G, f1) € C"HH(X, Ay (V)

that obstructs extending fo UG U f1 to X (1) Take the restriction of this cocycle
to cells of the form e™ x I, to define the difference cochain

d(f():Gv fl) € Cn<X7A77Tn(Y))
That is,
d(fo, G, fi)(e}) = (=1)""0(fo, G, f1) (e} x I).
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We have

0=09%0(fo,G, f1) (el x I)
=0(fo,G, f1)(0(e} " x 1))
= 0(fo, G, f1)(O(ef 1) x T+ (=1)"1(0(fo, G, f1) (e x {1}) = 0(fo, G, f1)(] 7! x {0})))
— (=1)™H(0*d(fo, G, f1) (X + 07T (F1) (7 ) — 07T (fo) (7))

(3 K

Therefore

0*d(fo, G, f)(ef ™) = 0" (fo)(ef ™) — 0" TH(fu) (1)

)

O

Corollary 18.7. If f is homotopic to fi, and fi extends to X+ then 671 (f,) =
0, and so 0" 1(fo) is null homologous.

We want a converse to this corollary. That is, if #"!(fy) is null homologous, then
there exists an extension to the n + 1-skeleton up to homotopy on the n-skeleton.

Proposition 18.8. Let fo: X — Y be a map and let G: X"V x I - Y be a
homotopy with Go = fo|xn-1). Let d € C™(X, A;mp(Y)) be a cochain. Then there
ezists a map f: X™ =Y such that Gy = filxn—1 and d = d(fo,G, f1).

We start the proof with a lemma.

Lemma 18.9. For any map f: D" x {0} US" ! x I — Y and for any a €
[0(D"™ x I),Y], there exists a map F: O(D" x I) — Y such that F' represents the
homotopy class o and restricts to f.

Proof. Let D := D" x{0}uS" ! xI. Let K: 9(D" xI) be any map representing a.
We are given a map f: D — Y. Since D is contractible, f and K|p are homotopic
maps. Let h: D x I — Y be such a homotopy. Apply the HEP to the following
diagram:

D : (D" x I)
/
0 Y _ 10
s
DxT— A(D" x I) x I.
ixId

We obtain a map h: O(D"™ x I) x I =Y, such that F := hy restricts to f and is
homotopic to K, i.e. represents a. ([l

Proof of Proposition 18.8. Recall that we are given fo: X(™ — Y and G: X"~ x
I — Y such that Go = fo|xn-1. We are also given a chain d € C"(X, A; m,(Y).
Our task is to show that there exists a map fi: X(™ — Y such that G; = filxm-1)
and such that d = d(fo, G, f1).

Let e} be an n-cell of X, and let

@i (D", 8" 1) — (X x(=1))
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be its characteristic map. Let

f="foopiUGo(pign-1 x1dp)
where
foowi: D" x {0} - X =Y
and
Go (pilgn-1 x1dp): S" ' x T - XV x5y
Let o = d(e]') € m,(Y'). Note that « is represented by a map S™ = 9(D"xI) - Y.
Apply the lemma to get a map
F:9(D"xI)—>Y
representing a whose restriction to D™ x {0} U S"~! x I is equal to f. Define
fi: XM Ly
by
fi(pi(x)) = Fi(x,1)
for x € el'! = D". Now
d(f(]a Ga fl)(e’zn) = d(ezl)
and G1 = fi|xm-1 by construction. O
Proof of Theorem 18.4. Let g: X — Y and suppose that 6(g) = 9*(d). Define
G: X Dx] - Y
(x,t) — Y

for all t € I. By the preceding proposition, there exists a map ¢': X(™ — Y such
that d = d(g,G, ¢’) and
G(—1) = ¢|xm-1 = glxm-v-

Then 6(g) — 6(¢') = 9*(d). Therefore 8(¢') = 0 so ¢ extends to X"*+D . This
completes the proof of the main theorem of obstruction theory. O

Next we examine some of the consequences. This obstruction is very useful when
there is exactly one potentially non-vanishing obstruction. But if there are more,
then the obstruction theory quickly becomes more complicated.

Let us consider the case of extending homotopies.

Xx{O,l}UAxJ}—>Y
|
XxI
Recall that we define the pair
(X" A") = (X, A) x ([,0]) = (X xI,X x0IUAXI).

A map F: (X*)(”) — Y is two maps fo, f1: X — Y and a homotopy folxn—1) ~
J1lx -1 Recall that we have an obstruction

d(fo, f1) = 0""H(F) € H"H(X*, A% ma (V) = H™(X, A;ma(Y).
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Theorem 18.10. Let (X, A) be a relative CW complex, and let Y be n-simple.
Let fo,fi: X — Y be maps with fola = fila, and let F: XD x T — Y be
a homotopy relative to A between fo|xm-1) and fi|xm-1. Then 0"TH(F) =0 €
H"(X,A;mp(Y)) if and only if F|ym-2) extends to a homotopy fo|xm) ~ filxm) -

This theorem follows directly from the previous theorem, using the translation
with (X*, A*) given above.
Now we return to discussing the extension problem.

Aty

7
v
v
v

X

Note that if H™+1) (X, A;7,(Y)) = 0 for all n, then we can always extend maps. If
Y is (n—1)-connected and f: A — Y is a map, then the primary obstruction to ex-
tending f to X ("1 is the obstruction vtV (f) = V() € H"(X, A; 7, (Y)).

If H®+D(X, A; m,(Y)) # 0 for exactly one n, then there is a single obstruction,
and obstruction theory works rather well.

Suppose that Y = K(m,n) is an Eilenberg-MacLane space. Then there is an
obstruction "tV (f) € H" (X, A;m,(Y)) = H" (X, A;7) to extending f to
the (n + 1)-skeleton of X. Suppose that 4("*D(f) = 0. Then we can change f
relative to X (™1 so that it extends to a map ¢g: X"+ — ¥ Then ¢ extends to
amap X — Y since m;(Y) =0 for all & > n.

We can consider the indexing of possible choices of extension up to homotopy.
Let g,¢': X — Y be maps. They are homotopic if and only if

d(g,9") =0 € H"(X, A;m,(Y)) = H*(X, A; ).

In fact, homotopy classes are in one to one correspondence with H" (X, A; ), there-
fore we see the identification of cohomology with [X, K (7, n)].

Example 18.11. Let X = S3\ v K be the exterior of a knot K C S2, where vK is
a regular neighbourhood of K. The reader should compute the homology groups
of X as an exercise. Let

f:0(wK)=0X =8'x St —» st

be given by the projection (z,y) — x. We have a primary obstruction to extending
the map over all of X in

H?*(X,0X;m(S") = HX(X,0X;Z) = Hy(X; Z)

where the last isomorphism is by Poincaré-Lefschetz duality. This obstruction
depends on the precise identification of 9X with S! x S used. To see whether it
vanishes, check that the boundary of 2-cells of X map to zero in 71(S!) = Z. The
homotopy classes of maps extending the given map correspond to H*(X,0X;7Z) =
Hy(X;Z) =0, so if an extension exists, if is unique.

On the other hand, if we have no requirement on the map on the boundary,
then there is no obstruction, since the primary obstruction lives in H?(X;Z) =
Hy(X,0X;7Z) = 0. Make a choice of map on the 1-skeleton. Then it automatically
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extends to a map X — S!. The homotopy classes of maps are in one to one
correspondence with H'(X;Z) = [X, S| 2 Z.

Given a map X — 5!, the inverse image of a regular value is a Seifert surface
for the knot K.

Now we consider the case of fibrations. Recall that this is following lifting prob-

lem:
7
7
x-1.B

where p: E — B is a fibration. Suppose that F' is n-simple, and suppose that g
is defined on the n-skeleton of X. Let ¢"*! be an (n + 1)-cell of X. Then the
boundary gives a map S" — X ™ 9y E — B that is null homotopic, since f
gives an extension over the e"*! of the composite. Therefore S* — X — E is

homotopic to map S™ — F, by the HLP. Recall that path lifting gave us a map
71(B) — hAut(F'). We therefore have an induced map

(ha)«: [S™, F] — [S™, F).
Note that [S™, F] = m, (F') since F is n-simple. We therefore have a representation
p: m(B) = Aut(m,(F)). The composition
m(X) = m(B) = Aut(m,(F))
allows us to define the obstruction cochain with twisted coefficients in

0" (g) € C"TH(X; n(F)p)-

Theorem 18.12. Let X be a CW complex and let g: X™ — E be a lift of f: X —
B on the n-skeleton. Suppose that F is n-simple. An obstruction class 6" (g) €
H""Y (X7, (F),) is defined, and if 0" (g) = 0, then g can be changed on the
n-skeleton, relative to the (n — 1)-skeleton, and then extended over the (n + 1)-
skeleton.

This is essentially the same ideas as the previous theorems in this section. Finally
we apply the fibrations obstruction to the problem of finding sections for vector
bundles. Let £ — B be an oriented n-dimensional vector bundle and let Ey :=
E~{0 —section}. Finding a section of a vector bundle is the same as finding a lift
of in the following diagram.

Ey
.
B p

The associated primary obstruction is

e(p) € H"(B;mp—1(R"~{0})) = H"(B; Z).

Note that R"~{0} is n simple since 71(S"!) = 0 for n > 2. Also m(B) acts
trivially on m,_1(S™ —1) since the transition functions in an oriented vector bundle
lie in GL(n,R™)4. Therefore there is no twisting. The first obstruction to finding



MATS8232 ALGEBRAIC TOPOLOGY II: HOMOTOPY THEORY 84

a section of a vector bundle is e(p) € H™(B;Z); this is called the Euler class of the
vector bundle.

Theorem 18.13. Let p: TB — B be the tangent bundle of an oriented manifold
B. Then

{e(p), [B]) = x(B).

For example, T'S? has no nonzero section, because x(S2) = 2. This is the hairy
balls theorem.

19. SPECTRAL SEQUENCES

19.1. Introduction. We finish the course with a brief introduction to spectral
sequences. Our goal is to give a formalism to compute the homology of a total
space of a fibration F — E — B in terms of the homology of B and F. This
will be via the Leray-Serre spectral sequence. This is one fantastic example of a
spectral sequence. There are many others. We will start with homology spectral
sequences, but then we will also later the cohomology version. As usual, the main
difference between the homology and cohomology versions is that the maps go in
the opposite direction.

A spectral sequence can be thought of as a book of modules. There are differ-
entials on each page, and we can take homology to turn the page of the book. At
the end of the book, all is revealed. The first or second page of the book might be
something that we can compute. Sometimes page k is equal to page k + 1, for all
k > N, for some N. In this case we say that the sequence collapses at the Nth
page. After that nothing more interesting happens in the book. Like when the one
ring is destroyed 100 pages before the end of LOTR, and you think what is going
to happen now, and the answer is nothing. In such cases we have a chance of being
able to compute something.

19.2. Algebraic formalism of a spectral sequence arising from a filtration.
Let R be a commutative PID. A bigraded module E is a collection F,; of R modules
s,t € Z. A differential d of bidegree (—r,r — 1) is a homomorphism

d: Es,t — Es—r,t+7“—1
for all s,t € Z, such that d?> = 0. We can take homology via:

H (E) — ker(d: Es,t — ES,ntJrr,l)
st ' im(Es+r,tfr+1) ’

E ;, then the differential defines a map 0: E; — E4—1
H(E).

Note that if By := By,

such that (Eq,d) is a chain complex with homology @, ,_ q

Definition 19.1. An E*-spectral sequence (often we drop E*-from the notation,
it just records the first page) is a sequence (E",d"), with r > k, such that E" is a
bigraded module, d" a differential of bidegree (—r,r — 1), and for r > k we have
H( Er) o~ ET+1.
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We can draw diagrams of pages, with a grid, and we show the differentials
with diagonal arrows that show the bidegree. The following simple observation is
nevertheless rather powerful.

Lemma 19.2. If B} . =0 for some r, then E; , =0 for all s > 7.

Define Z* to be the bigraded module with nyt = ker(d*: Eﬁt — E?_k7t+k_1), and
define B¥ to be the bigraded module with Bf’t = dk(Ef+k7t_k+1). Then B* C ZF
and B¢l = Zk/BF,

Next, let Z(E*1) be the bigraded module with Z(E*1),,; = ker(d*+!: Efjl —

Efjlifl,wrk)' Let B(E**1) be the bigraded module with B(E}{!) = dF+! (Efiklﬂ,tik
There exist bigraded submodules Z*+1, B¥+1 gatisfying B¥ C B¢+l ¢ Zkt1 c ZF
and such that Zf’fl/Bf’t = Z(E*1),, and B(E*Y),, = Bf7;r1/B§7t. Iterating,

this yields a sequence of submodules
BkgBk+1 g."gBT‘—l gBTg ”‘gZTgZ’I‘-Fl g‘..Zk—f-l ng'

Define E"t! = Z"/B", Z*° = (N Z" and B® = |JB". Then E® = Z* /B> is the
ltimit of the spectral sequence.

An E*-spectral sequence is said to converge if for all s, there is an R(s,t) > k
such that for r > R, d": E{;, — E¢ ., 4 is trivial. Then E;’[l is a quotient

of Eg,, and we can write EJ; = colim; Eft(s’t)ﬂ . The sequence converges in the
strong sense if there is an N with R(s,t) < N for all s, ¢t.

An example to have in mind is the following. Let F' — E — B be a fibration
with 71 (B) = 0. Then E} , = Hy(B; Q) © Hy(F;Q) and @, ,_,, Ey% = Hu(E; Q).
So there is a spectral sequence that computes the homology of the total space in
terms of the homology of the base and the fibre. This is a special case of the
Leray-Serre spectral sequence, that we will discuss in greater detail below.

Now we show how a spectral sequence can arise from filtrations.

Definition 19.3. A filiration of an R-module A is a sequence of submodules F3A,
with s € Z, such that

"'ng—lAngAng+1Ang+2Ag"'

If Ais graded, A = {A;}, then F,;A is graded, with FsA = {F;A;}. The associated
graded module is

G(A)s = Fs(A)/Fs—l(A)'
If A is graded then the associated graded becomes bigraded, with G(A)s;
FoA;/Fs_1A;. The filtration FyA is said to be convergent if (|, FsA = 0 and
U, FsA = A.

Note that G(A) does not determine A, only up to extension problems. If R is
a field, then G(A) determines A up to isomorphism. Also if ever G(A) = 0 then
A=0.

A filtration is bounded below if for all ¢, there is an s(t) such that Fy;)A; = 0.

A filtration on a chain complex C'is a filtration compatible with the differentials,
i.e. so that each term F,C' is a chain complex F;C;. This gives a filtration of the
homology FsH.(C) := im(H,(FsC) — H(C)). Then |JFsH,.(C) = H.(C).
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Theorem 19.4. Let F,C be a convergent filtration on a bounded below chain com-
plex C. There is a convergent E'-spectral sequence with

E;,t = Hot(FoC/Fs—1O)

such that d* corresponds to the boundary operator of the triple (FsC, Fs_1C, Fs_2C),
that is

Hs-i—t(FsC/Fs—lC) — Hs—i—t—l(Fs—lC) — H8+t—1(Fs—10/F5—20)7
and E* is isomorphic to the bigraded module GH,.(C') associated to the filtration
FsH,.(C) =im(H.(FsC) — H.(C)).

That is, we compute the homology H,(C) (well, a graded module that describes
the iterated quotients of some filtration of H,(C)), in terms of the homology
H,(F;C/Fs_1C) of quotients of a filtration of the chain complex. We just have
to take homology (turn the page) enough times until it stabilises. Then hope we
can solve the extension problem.

Often spectral sequences are first quadrant, meaning E¢, = 0 for s,t < 0. Then
such sequences automatically converge, since the differentials get longer and so
eventually land or originate outside the first quadrant.

We will not give the proof of this theorem due to time constraints. See [Sp,
p. 469] for the proof. We want instead to give some examples of computations
using this technology. The rough idea is that later differentials approximate the
actual differentials on C, and later modules E” better approximate ker 0.

19.3. The spectral sequence of a fibration. Let p: E — B be a fibration, and
let ™ be a coefficient module. Suppose also that B is a CW complex. Define

B — p—l(B(S))

for s > 0, and E®) = for s < 0. We have E(®) ¢ E6TD 5o E() is a filtration on
E with EG) = E. Let C, = C, (E; ). This induces a filtration on C, by

F,(C) = C.(E®; ).
The filtration F5(C) is bounded below and convergent. We have
Fy(C)/Fe_1(C) = C(E®), B,

Then if we take homology, we get the E' page of a spectral sequence. We have a
convergent spectral sequence, for any coefficient module 7, with

B}, = Hyy(EW, B6Y; 1)

with d' the boundary operator of (E(*), EG=1) E(=2)) Then the E* page gives
a bigraded module associated to some filtration of H,(F;).
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Theorem 19.5. For all s > 0, there are isomorphisms that fit into a commutative
diagram:

o)

H,(B®, B H,(F;x)) Hy n(E®) EC—1, 1)

X N X

Hyy(BU™D, BS™2); Hy (Fym)) —— Hyn oy (BS7Y, BC~2)m)

Thus E;t is isomorphic to the cellular chain complex of B, with coefficients in
H,(F; 7). We take homology to get the E?-page. This yields the following theorem,
which is the main result of this section.

What we have done actually works for any generalised homology theory, so we
state the theorem in this generality.

Theorem 19.6 (Leray-Serre spectral sequence). Let h, be a generalised homology
theory, let p: E — B be a fibration with B a path connected CW complex. Let
F :=p~Y(B). There is a convergent E*-spectral sequence with

By = Hy(B; hy(F))

converging to h.(E). That is, E* is a bigraded module associated to the filtration
of hy(E) defined by Fyh,(E) = im(h,(E®)) — H,(E)).

Recall that this means the following:
(1) There is a filtration

OSFO,ngFl,nflg"'an,npr"'ghn(E)

with (U, Fpn—p = hn(E).

(2) There is a spectral sequence Ej, , with differentials d": B} , — EJ . 4
and kerd)  /imd" = EJt1, with isomorphisms Ej | = Hy(B; he(F)).

(3) For all p,qg > 0, there is an ry,, such that for all » > r,, we have that
d": Ep . — Ej_, ,+r_1 is the zero map. Then E;j;l 2By U (B gri1)s
so that EpS = colim, B \ = F, o /Fj—1 441 = G(hn(E))p. That is, the E>
terms give the steps in a filtration of A, (FE).

19.4. Examples. We warn that these notes to not contain diagrams, and the
reader has to supply them for him or her self (or refer to class notes). Such
diagrams are almost essential for keeping track of the bidegrees when following or
making a spectral sequence computation.

Example 19.7. Consider the path space fibration QS* — PS* — S* of the k-
sphere, with k& > 2. Since 71(S*) = 0, the coefficients are untwisted in the E?
page
H,(QS*) p=0,k
E; = Hy(S" Hy(QS5")) = ¢ ’
pa = Hp(S%5 Hy(Q57)) = 4 else.

Since H,(PS™) = 0 for all n # 0, we since the Leray Serre spectral sequence is first
quadrant, we have that ES = 0 unless (p,q) = (0,0).
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Since the differentials are of degree (—r,r + 1), the differentials either start or

end at 0, or we have r = k, and d*: E’,;q — E(’qurk_l, Thus Eiq — = Eﬁ,q and
k41 B
Epz =--=E) =0 for (p,q) # (0,0). But also
k+1 _ kel‘(dk: El]:,q — E(liq_’_k_l) (p7 q) = (k, q) .
P.a coker(d*: Ef  — Ef.q+k—1) (p.q) =(0,q+k—1)

Thus each map in d* is an isomorphism. Therefore we obtain
Hq(QSk) = Hq+k—1(QSk)'

It follows that H,(QS*) = Z when ¢ = a(k — 1) for some a > 0 and vanishes
otherwise.

Example 19.8 (The Atiyah-Hirzebruch spectral sequence). Consider the fibration
pt - X — X and let h, be a generalised homology theory. Then we obtain a
spectral sequence with

B2, = Hy(X; ha(pt)) = hpg(X).

This has untwisted coefficients. This enables us to compute generalised homology
theories in terms of ordinary homology, and knowledge of the theory of a point.
For example, with h, = €, the oriented bordism theory, we have 2, = 2 = Q3 =0
and Q4 = Z = Qp. The AHSS yields Q,;(X) = H;(X) for i = 1,2,3. Note that the
map X — pt splits via pt — X, so we get a splitting Q;(X) = Q;(pt) ® (NZl(X) It
follows that any differential with image Ej,, vanishes. We can therefore compute

Q4(X) = H4(X) oy = H4(X) @ 7.

Here (M, f) — (f([M]),0(M)), the image of the fundamental class of M in the
fourth homology of X, and the signature of the intersection form on the second
real coefficient homology of X.

19.5. Gysin sequence.

Theorem 19.9. Let R be a commutative ring and let F — E — B be a fibration,
with F' an R-homology sphere. Suppose that m1(B) acts trivially on H,(F; R) = R
if 1 = 0,n and 0 otherwise. There exists an exact sequence

Ho(E) L H.(B) = Hy_yy(B) — H,_1(E) L% H,_(B) — ...

Proof. Homology is with R coefficients if not mentioned.

P4 0 else.
The nontrivial differential is d"*1: Egé‘l — E;:}_l - Therefore

Ez?,jzrl = Ezz,q & Hy(B; Hy(F))

I

Hy(B;R) q¢=0,n
0 else.
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and
0 qg#0,n
Ey, = { ker(d"tt)  ¢=0
coker d" ¢ =n.
Thus H,(E) is filtered by

0C Eq?in7n = FT—n,n - FT,O = H’I‘(E>

Here F,_p, = cokerd"! and F,o/F,_,, = kerd""!. Therefore 0 — EX, . =

H,(E) — E2j — 0is exact. The fact that we know the kernel and cokernel of dntt
also tells us that

n—+1
0— ;% — E;L,—gl : E;j—r}—l,n — Eoop—n—l,n — 0.
We get a map H,(E) — H,(B) by combining

Hy(E) = By — Eyf' = Hy(B),

and we get a map Hy,(B) = E)f — ngﬁ_l’n = H,_,—1(B). Finally we get a map
Hyu1(B) = Hy1(E) by
prnfl(B) = Egi%l,fl,n - E;in—l,n - prl(E)'

O

19.6. Cohomology spectral sequences. There are also cohomology spectral se-
quences. In particular, we have the Leray Serre cohomology spectral sequence of a
fibration, with hA? a generalised cohomology theory, and

EP? = HP(B; hY(F)) = h"1(E).

The differentials have bidegree (r,1 — r, that is they go EX'? — EPTTOtITT T the
generalised cohomology theory has products, then the spectral sequence also has

products:
D59 T8 p+r,q+s
E" X E)° — E, .

If d;: By — E; is a differential, and a € Ef’q, be E:’S, we have
dt(a . b) = dt(a) -b + (—1)p+qa . dt(b)
The induced product on E*° coincides with the cup product on h*(E).

Example 19.10. To finish, we start a computation of the cohomology ring of
K(Z,2), which can be modelled with the complex projective space CP*°. We want
to show that the cohomology ring is isomorphic to the polynomial ring Z[c], where
¢ has degree 2. Use K(Z,1) — * — K(Z,2), the path space fibration, and the
Leray Serre cohomology spectral sequence of it. The path space is contractible, so
the E*° page vanishes away from (0,0). The Es-page is HP(K(Z,2);7Z) for ¢ = 0,1
and is zero otherwise. On the Fs-page the differential is of degree (2, —1), and all
the other differential vanish. So the dy differentials map by an isomorphism from
HP(K(Z,2);Z) — HP*2(K(Z,2);Z). The homology of CP* is therefore Z in even
nonnegative dimensions and 0 in other dimensions. Next, we use the derivation
rule. If 1 € Eg’l and ¢ € E22’1 are generators, then ¢-1 € E%? = 0. Therefore
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==d(0) = d(c-1) = d(c)-1+(—1)3c-d(1) = (gen of Eg’o)-l—c-c = (gen of Eg’l)—c-c.
Thus the generator of E;l’l is equal to c - ¢, with one ¢ € E>! and one in E?Y.
Therefore the cup product is nontrivial.

We can continue this type of argument.

d(ca1 - ca0) = d(c) - ¢+ (=1)3c-d(c) = gen of Eg’o -c—0.

But we saw that cp1 - ¢ € Eg’l is a generator, and the differential d(ca 1 - c20) is
the generator of ES’O. Therefore ¢? is also nontrivial. This type of argument can
be made into an induction to complete the proof that the cohomology ring is Z|c|
with degc = 2.

The exercise sheet outlines extended examples to use spectral sequences to com-
pute the stable homotopy groups 77 = Z/2 and 75 = Z/2. While it is also possible
to compute these ones using framed bordism theory and the Pontryagin-Thom
construction, in general spectral sequences have been a huge tool in computations
of homotopy groups and related objects. The computations given in the example
sheet are but preliminary examples. Serre was able to use the spectral sequence
of a fibration to show that all the stable homotopy groups of spheres in positive
degree are finite groups.
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