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1. Michaelmas term summary

The focus of Michaelmas semester is to develop homology. For each nonnegative
integer n, the homology Hn(X) of a topological space X is an abelian group.
Crucially, for homeomorphic spaces X and Y , we have that Hn(X) ∼= Hn(Y ) for
every n. So homology can be used to distinguish spaces. Homology is also highly
computable, and satisfies nice properties such as functoriality: a map f : X → Y
determines a map f∗ : Hn(X) → Hn(Y ) for every n. Our goal is to learn how to
compute homology, and then apply it to prove some cool things about topological
spaces, and sometimes also about algebra.

These notes are a record of what was covered in lectures, but are not exhaustive.
Where proofs can be found in Hatcher, you are also referred there.

I will write PNE in the margin for Proof Non-Examinable.

2. Definition of singular homology

Let {Ai}i∈J be a family of abelian groups. Here J could be uncountable. The
direct product is∏

i∈J
Ai := {maps f : J → ∪i∈JAi | f(i) ∈ Ai for every i ∈ J}.

We write elements as tuples (ai)i∈J .
The direct sum is⊕

i∈J
Ai := {(ai)i∈J ∈

∏
i∈J

Ai | finitely many ai 6= e}.

For finite families of abelian groups, the direct product and the direct sum co-
incide, but for infinite families the direct product contains many more elements.

Definition 2.1. A chain complex is a sequence of abelian groups {Ci}i∈Z and
homomorphisms ∂i : Ci → Ci−1 such that 0 = ∂i ◦ ∂i+1 : Ci+1 → Ci−1. The maps
∂i are called boundary maps.

Definition 2.2. The homology H∗(C) of a chain complex (C∗, ∂∗) is

Hi(C) :=
ker(∂i : Ci → Ci−1)

im(∂i+1 : Ci+1 → Ci)
.

The standard n-simplex ∆n is

{x ∈ Rn+1 | x0 + x1 + · · ·+ xn = 1}.

A singular n-simplex of a topological space X is a continuous map σ : ∆n → X.
For n ∈ N0, the singular n chains of X, Cn(X), is the free abelian group gener-

ated by the singular n-simplices.

Cn(X) := {n1σ1+· · ·nkσk | k ∈ N0, n1, . . . , nk ∈ Z, σ1, . . . , σk : ∆n → X sing. simplices}

Note that Cn(X) = 0 for n < 0.
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Let v0, . . . , vn be the standard basis of Rn+1. Note that each vi corresponds to a
vertex of ∆n. There are n+1 inclusion maps ιj : ∆n−1 → ∆n, j = 0, . . . , n, defined
by restricting the linear maps Rn → Rn+1 that send{

vi 7→ vi i < j

vi 7→ vi+1 i ≥ j.

We also write this map as

[v0, . . . , v̂j , . . . , vn].

Here, as is customary, the hat denotes the missing vertex / coordinate. Now we
can define

∂(σ) :=
n∑
j=0

(−1)jσ ◦ ιj .

Then we extend the boundary map ∂ by linearity to define it on formal sums of
singular simplices.

Lemma 2.3. ∂2 : Cn(X) → Cn−2(X) is the zero map, so (C∗(X), ∂) is a chain
complex.

Definition 2.4. The nth singular homology of X is

Hn(X) := Hn(C∗(X)) =
ker(∂i : Ci(X)→ Ci−1(X))

im(∂i+1 : Ci+1(X)→ Ci(X))
.

We also write Zn(X) := ker(∂i : Ci(X)→ Ci−1(X)), the n-cycles, and Bn(X) :=
im(∂i+1 : Ci+1(X)→ Ci(X)), the n-boundaries.

Example 2.5. When X is a point, H0(X) ∼= Z and Hi(X) = 0 for i 6= 0.

Proposition 2.6. Let A be the set of path components of X. Then H0(X) ∼=
⊕

A Z.
If X is path connected, then H0(X) = Z.

Higher homology groups cannot be directly computed from the definition. We
need to develop some tools and theory with which to compute. This means learning
about exact sequences, which we will do in the next chapter. So that you have some
intuition, here are some homologies of spaces.

Example 2.7.

(1) For X = Rn, the homology is the same as that of a point.

Hi(Rn) ∼=

{
Z, if i = 0

0, otherwise.

(2) The n dimensional sphere is defined as the subspace of Rn

Sn := {x ∈ Rn | ‖x‖ = 1}.
The homology is

Hi(S
n) =

{
Z, if i = 0, n

0, otherwise.
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(3) Products of spheres, Sn × Sm. First, if n = m we have:

Hi(S
n × Sn) =


Z, if i = 0, 2n

Z⊕ Z, if i = n

0, otherwise.

The torus S1 × S1 is a good first case to think about. On the other hand
if n 6= m we have

Hi(S
n × Sm) =

{
Z, if i = 0, n,m, n+m

0, otherwise.

What are the advantages of defining homology by considering the (usually) infi-
nite rank abelian groups generated by all possible continuous maps of an n-simplex
into X? The main advantage is that it is easy to prove that homology behaves well
with respect to maps between spaces i.e. that it is functorial.

Definition 2.8. A chain map F : C∗ → D∗ between chain complexes C∗ and D∗
is a collection of homomorphisms Fn : Cn → Dn such that

∂Dn+1 ◦ Fn+1 = Fn ◦ ∂Cn : Cn+1 → Dn

for every n ∈ Z.

In other words, the diagram

· · · // Cn+1

∂Cn+1 //

Fn+1

��

Cn
∂Cn //

Fn

��

Cn−1 //

Fn−1

��

· · ·

· · · // Dn+1
∂Dn+1

// Dn
∂Dn

// Dn−1 // · · ·

commutes.

Lemma 2.9. A chain map F : C∗ → D∗ induces a map on homology

F∗ : Hn(C∗) → Hn(D∗)
[c] 7→ [f(c)]

for every n ∈ N0.

In other words, this map is both defined, i.e. sends cycles to cycles, and well-
defined, meaning it sends boundaries to boundaries.

Proposition 2.10. Let f : X → Y be a homeomorphism of topological spaces.

Then the induced map f∗ : Hn(X)
∼=−→ Hn(Y ) is an isomorphism for every n ∈ N0.

3. Exact sequences

Definition 3.1. A sequence of abelian groups and homomorphisms

A
f−→ B

g−→ C

is exact at B if im(f) = ker g. A sequence · · · → Ai+1 → Ai → Ai−1 → · · · is exact
if Ai+1 → Ai → Ai−1 is exact at Ai for every i.
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Note that for chain complexes, ∂n ◦ ∂n+1 = 0 means that im ∂n+1 ⊆ ker ∂n. If a
chain complex C∗ is exact then Hn(C∗) = 0 for every n.

Definition 3.2.

(1) A short exact sequence is five-term exact sequence 0 → A
f−→ B

g−→ C → 0.
So f is injective, g is surjective, and im f = ker g. Note that C ∼= B/ ker g ∼=
B/ im f ∼= B/f(A).

(2) A short exact sequence of chain complexes is a sequence of chain maps

0→ C∗ → D∗ → E∗ → 0

with 0→ Cn → Dn → En → 0 a short exact sequence of abelian groups for
every n.

Theorem 3.3. A short exact sequence of chain complexes

0→ C∗
f−→ D∗

g−→ E∗ → 0

determines a long exact sequence in homology groups

· · · → Hn+1(E)
δ−→→ Hn(C)

f∗−→ Hn(D)
g∗−→ Hn(E)

δ−→ · · ·
PNE

Here is the definition of the map δ. Let [e] ∈ Hn+1(E), so e ∈ En+1 and ∂(e) = 0.
Since gn+1 is surjective, there exists d ∈ Dn+1 with gn+1(d) = e. Then

gn ◦ ∂D(d) = ∂E ◦ gn+1(d) = ∂E(e) = 0.

Therefore ∂D(d) ∈ ker(gn) ⊆ im fn. Since fn is injective, there is a unique c ∈ Cn
with fn(c) = ∂D(d). We define

δ([e]) = [c].

We need to see that this defines a homology class, that is ∂C(c) = 0, and that this
is well defined: we chose a representative e and we chose d. There are also six
things to show to check exactness. Details can be found in Hatcher pages 116–7.

4. Homotopies and homotopy equivalence

Definition 4.1. Let f, g : X → Y be continuous maps between topological spaces.
A homotopy from f to g is a continuous map h : X × I → Y with h|X×{0} =
f : X × {0} = X → Y and h|X×{1} = g : X × {0} = X → Y . We write f ∼h g or
just f ∼ g.

Lemma 4.2. If f, f ′ : X → Y are homotopic and g, g′ : Y → Z are homotopic then
g ◦ f ∼ g′ ◦ f ′ : X → Z are also homotopic.

Homotopy gives rise to an equivalence relation on maps X → Y .

Definition 4.3. A map f : X → Y is a homotopy equivalence if there exists a
map g : Y → X such that f ◦ g ∼ IdY and g ◦ f ∼ IdX . The map g is called the
homotopy inverse. We say that the spaces X and Y are homotopy equivalent, and
write X ' Y .

Homotopy equivalence is an equivalence relation on spaces. Please do not say or
write that two spaces X and Y are homotopic. There is no meaning attached to
such a phrase.



ALGEBRAIC TOPOLOGY IV ‖ LECTURE NOTES 6

Lemma 4.4. Any two homotopy inverses g1, g2 : Y → X for a homotopy equiva-
lence f : X → Y are homotopic.

Proof. We have a sequence of homotopies

g1 = IdY ◦g1 ∼ g2 ◦ f ◦ g1 ∼ g2 ◦ IdX = g2. �

A space X is contractible if X ' {pt}.
Here is the most important result for us about homotopy equivalences, which

will be proven in the next section..

Theorem 4.5. Let f : X → Y be a homotopy equivalence. Then f∗ : Hn(X) →
Hn(Y ) is an isomorphism for every n ∈ N0.

So spaces X and Y with different homology are not homotopy equivalent. In
particular we see that Hk(D

n) ∼= Hk(Rn) ∼= Hk({pt}), and also Hk(R2r{pt}) ∼=
Hk(S

1) for every k.
A similar result holds for fundamental groups, provided we are careful with base

points.

Theorem 4.6. Let f : (X,x)→ (Y, y) be a based homotopy equivalence with f(x) =
y. Then f∗ : π1(X,x)→ π1(Y, y) is an isomorphism.

Here are some important homotopy equivalent spaces.

Definition 4.7. Let f : X → Y be a continuous map. The mapping cylinder of f ,
Mf , is

X × I
∐

Y/(X × {1} ∼ f(x) for all x ∈ X).

Lemma 4.8. For every f : X → Y , we have that Mf ' Y .

Definition 4.9. The cone on a map f is

Cone(f) = Cf := Mf/X × {0}.

Lemma 4.10. For any space X, CIdX ' {pt}. i.e. the cone on the identity map
is contractible.

An important special case of homotopy equivalences is deformation retracts. Let
iA : A ⊆ X be a subspace.

Definition 4.11. A deformation retract of X onto A is a map f : X → A with
a homotopy H : X × I → X with IdX ∼H f such that H|A×{t} : A × {t} → X
coincides with iA for every t ∈ I.

Definition 4.12. A retraction is a continuous map r : X → X with r(X) = A and
r ◦ iA : A→ X equal to iA.

Every nonempty space X retracts to a point for all X, but this is not true for
deformation retracts.

A deformation retract determines a retract, but the converse does not hold.
A deformation retract is a homotopy equivalence, but homotopy equivalence is a
notion defined when neither space is a subspace of the other.
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5. Chain homotopies and chain homotopy equivalences

Chain homotopies are algebraic models of homotopies, and chain homotopy
equivalences model homotopy equivalences.

Definition 5.1. Two chain maps f, g : C∗ → D∗ are chain homotopic if there exists
a homomorphism Pn : Cn → Dn+1 for every n with

fn − gn = ∂ ◦ Pn + Pn−1 ◦ ∂ : Cn → Dn.

We write f ∼ g.

Proposition 5.2. If chain maps f ∼ g : C∗ → D∗ then f∗ = g∗ : Hn(C∗) →
Hn(D∗) for every n.

Proof. Let c ∈ Cn be a cycle, so ∂c = 0. Then fn(c)− gn(c) = ∂(P (c)) +P (∂(c)) =
∂(P (c)), so

[fn(c)] = [gn(c) + ∂(P (c))] = [gn(c)]. �

Theorem 5.3. If maps of spaces f, g : C∗(X)→ C∗(Y ) are homotopic, then f∗ ∼
g∗ : C∗(X)→ C∗(Y ) are chain homotopic.

PNE
The idea of the proof is to convert the product ∆n × I into a sum of simplices,

and use this to take the data of a homotopy and convert it into a chain homotopy.

Definition 5.4. A chain map f : C∗ → D∗ is a chain homotopy equivalence if there
is a chain map

g : D∗ → C∗

with g ◦ f ∼ IdC and f ◦ g ∼ IdD. We write C∗ ' D∗ and we say that C∗ and D∗
are chain homotopy equivalent. If C∗ ' 0 then we say that C∗ is chain contractible.

Lemma 5.5. If X ' Y then C∗(X) ' C∗(Y ).

Proof. Let f : X → Y and g : Y → X be maps witnessing the homotopy equiva-
lence. Then f ◦g ∼ Id and g ◦f ∼ Id imply that f∗ ◦g∗ ∼ Id∗ : C∗(Y )→ C∗(Y ) and
g∗ ◦ f∗ ∼ Id∗ : C∗(X)→ C∗(X) by Theorem 5.3. It follows that C∗(X) ' C∗(Y ) as
desired. �

Lemma 5.6. If C∗ ' D∗ then Hn(C∗) ∼= Hn(D∗) for every n.

Proof. By Proposition 5.2 we have that g∗ ◦ f∗ = Id∗ : Hn(C∗) → Hn(C∗) and
f∗ ◦ g∗ = Id∗ : Hn(D∗)→ Hn(D∗) for every n. �

By combining the above facts we obtain the following conclusion.

Corollary 5.7. If two spaces X and Y are homotopy equivalent via a homotopy
equivalence f : X → Y , then f∗ : Hn(X) → Hn(Y ) is an isomorphism for every
n ∈ N0.
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6. Mayer-Vietoris sequence

The next stage in computing homology groups is to develop the Mayer-Vietoris
long exact sequence. We know that a short exact sequence of chain complexes gives
rise to a long exact sequence in homology. So we need an auspicious choice of short
exact sequence.

Given a subset U ⊂ X let Ů denote its interior. Let U = {Ui}i∈I be a collection

of subsets Ui ⊆ X with {Ůi} an open cover of X. Let

CUn (X) := free abelian group on singular n− simplices
∑
j

njσj

where for every j, σj(∆
n) ⊆ Uij for some ij ∈ I.

Theorem 6.1. The inclusion CU∗ (X)→ C∗(X) is a chain homotopy equivalence.
PNE

The proof uses iterated subdivision of simplices by adding in the barycentre as
an extra vertex, to construct a chain homotopy inverse. See Proposition 2.21 of
Hatcher. We use this in the next theorem, giving the Mayer-Vietoris sequence.

Theorem 6.2 (Mayer-Vietoris long exact sequence). Let X = Ů ∪ V̊ where U, V
are subsets. Let U := {U, V }. There is a short exact sequence of chain complexes

0→ C∗(U ∩ V )
(ιU ,−ιV )−−−−−→ C∗(U)⊕ C∗(V )

jU+jV−−−−→ CU∗ (X)→ 0

inducing a long exact sequence of homology groups

· · · −→Hn+1(X)
δ−→

→ Hn(U ∩ V )
((ιU )∗,−(ιV )∗)−−−−−−−−−→ Hn(U)⊕Hn(V )

(jU )∗+(jV )∗−−−−−−−−→Hn(X)
δ−→ · · ·

We use Theorem 3.3 to convert the short exact sequence of chain complexes
into the long exact sequence in homology. The key step in the proof is to apply
Theorem 6.1 to equate Hn(CU∗ (X)) with Hn(X).

Using the Mayer-Vietoris sequence we can compute the homology groups of
the spheres Sm. This lets us deduce the following likely-sounding but nontrivial
theorem.

Theorem 6.3. The spaces Rn and Rm are homeomorphic if and only if n = m.

The next theorem is rather more surprising.

Theorem 6.4. Let n ≥ 0 and let f : Dn → Dn be a continuous map. Then f has
a fixed point, i.e. there is a point x ∈ Dn with f(x) = x.

7. Reduced homology

Define the augmented chain complex of a space X to be

C̃∗(X) :=
(
· · · → Cn(X)

∂−→ Cn−1(X)
∂−→ · · · ∂−→ C1(X)

∂−→ C0(X)
ε−→ Z→ 0

)
where

C0(X) → Z∑
niσi 7→

∑
ni.
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Note that ε ◦ ∂ = 0. Define the reduced homology to be

H̃n(X) := Hn(C̃∗(X))

for every n ∈ N0.
This homology makes many statements much cleaner, and will be a useful tool.

Proposition 7.1.

(1) If f : X → Y is a map, then there is an induced chain map f∗ : C̃∗(X) →
C̃∗(Y ) and thus homomorphisms

f∗ : H̃n(X)→ H̃n(Y ), n ∈ N ∪ {0,−1}.
(2) If f ∼ g : X → Y then

f∗ ∼ g∗ : C̃∗(X)→ C̃∗(Y )

and

f∗ = g∗ : H̃∗(X)→ H̃∗(Y ).

(3) H̃k(∅) =

{
Z k = −1

0 else.

(4) If X is nonempty, then Hk(X) =

{
H̃k(X) k > 0

H̃0(X)⊕ Z k = 0.
In particular, if n

has n path components, then H̃0(X) ∼= Zn−1.

Proof.

(1) The diagram

C0(X)
f∗ //

ε

��

C0(Y )

ε

��
Z = // Z

commutes, so f∗ gives rise to a chain map C̃∗(X)→ C̃∗(Y ) as claimed.
(2) Let P : Ck(X) → Ck+1(Y ) be the prism operator defined in the proof of

homotopy invariance, Theorem 5.3. Extend this by 0: Z → C0(Y ). The
result is chain homotopy between the maps f and g. To see this, note that
f∗ − g∗ = ∂ ◦ P = ∂ ◦ P + 0 ◦ ε : C0(X) → C0(Y ). Also Id− Id = 0 =
ε ◦ 0: Z→ Z, so the conditions for a chain homotopy are met.

(3) The reduced chain complex of the empty set consists of the groups Ci(∅) =
0 for i ≥ 0 and C−1(∅) = Z. Take homology of this.

(4) The end of the chain complex is C1(X)
∂−→ C0(X)

ε−→ Z. This gives rise to
a short exact sequence

0→ H̃0(X)→ H0(X)→ Z→ 0.

We will show below in Lemma 8.2 that any such sequence splits, so that

H0(X) ∼= H̃0(X)⊕ Z.

�
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8. Split short exact sequences

A short exact sequence of abelian groups

0→ A
f−→ B

g−→ C → 0

is split if there is a homomorphism s : C → B with Id = g ◦ s : C → C.

Proposition 8.1. The following are equivalent:

(1) There is a homomorphism p : B → A with Id = p ◦ f : A→ A.
(2) There is a homomorphism s : C → B with Id = g ◦ s : C → C.
(3) There is an isomorphism θ : A⊕ C → B such that

A⊕ C
p2

##
θ∼=

��

0 // A

i1
;;

f ##

C // 0

B

g

;;

commutes, where i1 : a 7→ (a, 0) and p2 : (a, c) 7→ c.

Proof. First we prove that (1) implies (3). We claim that the map

ϕ : B → A⊕ C
b 7→ (p(b), g(b))

is an isomorphism. Then φ will be the inverse of θ as in the picture. It is clearly a
homomorphism. To see that it is surjective, take (a, c) ∈ A⊕C, and choose b ∈ B
with g(b) = c. Then

ϕ(b+f(a−p(b))) = (p(b) +pf(a−p(b)), g(b) +gf(a−p(b))) = (p(b), g(b)) = (a, c).

To see injectivity, (p(b), g(b)) = 0 implies that g(b) = 0 so b = f(a) for some a ∈ A.
Then 0 = p(b) = pf(a) = a, so b = f(a) = 0. Also it is easy to check that the
diagram

A⊕ C
p2

##
0 // A

i1
;;

f ##

C // 0

B

g

;;ϕ ∼=

OO

commutes.
To prove that (3) implies (1), let p1 : A⊕C → A be the projection. Then define

p := p1 ◦ ϕ : B → A. Note that p1 ◦ i1 = Id. So

p ◦ f = p1 ◦ ϕ ◦ f = p1 ◦ i1 = Id .

The proof that (2) and (3) are equivalent is left as an exercise. �
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Lemma 8.2. Consider abelian groups A and B fitting into a short exact sequence
0→ A→ B → Zm → 0, for some m > 0. Then this short exact sequence splits, so
B ∼= A⊕ Zm.

Proof. For each ei ∈ Zm, choose bi ∈ B mapping to ei. Then define s (
∑m

i=1 niei) =∑m
i=1 nibi. This is a splitting as in (2) of Proposition 8.1. �

9. Relative homology

We want to define cellular homology, since this is another excellent tool for
computing homology groups. In order to do this we need relative homology groups.

Let A ⊆ X be a subspace of X. Let i : A → X be the inclusion. This induces
i∗ : Cn(A)→ Cn(X). Identify Cn(A) with i∗(Cn(A)) ⊂ Cn(X) for every n ∈ N0.

Definition 9.1. Define

Cn(X,A) :=
Cn(X)

Cn(A)
n ∈ N0

as the quotient group, factoring out by singular chains with image in A ⊂ X. The
boundary map in C∗(X) induces a boundary map on these chains:

∂ : Cn(X,A) → Cn−1(X,A)
c+ Cn(A) 7→ ∂c+ Cn−1(A).

This is well-defined since if x ∈ Cn(A) then ∂(c + x + Cn(A)) = ∂(c) + ∂(x) +
Cn−1(A) = ∂(c) + Cn−1(A), as ∂(x) ∈ Cn−1(A). Define

Hn(X,A) := Hn(C∗(X,A)) n ∈ N0.

Remark 9.2.

(1) Hn(X,∅) ∼= Hn(X) canonically for every n ∈ N0.

(2) Let x0 ∈ X be a point. Then Hn(X, {x0}) ∼= H̃n(X) for every n ∈ N0.

Example 9.3. Leta, b ∈ R2 be distinct points. We have that Hn(R2, {a}) = {0}
for every n ∈ N0. On the other hand

Hn(R2, {a, b}) ∼=

{
Z n = 1

0 else.

Note that in both cases H0 vanishes. We will prove this using the next theorem.

Theorem 9.4 (Long exact sequence of a pair). Let A ⊆ X.

(1) There is a short exact sequence of chain complexes

0→ C∗(A)
i∗−→ C∗(X)

q−→ C∗(X,A)→ 0

with associated long exact sequence in homology

· · · q∗−→Hn+1(X,A)
δ−→

→ Hn(A)
i∗−→ Hn(X)

q∗−→Hn(X,A)
δ−→ · · ·

→ H0(A)
i∗−→ H0(X)

q∗−→H0(X,A)→ 0.
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(2) (Naturality) If f : (X,A) → (Y,B) is a map of pairs, that is f(A) ⊆ B,
then there is an induced map f∗ : Hn(X,A) → Hn(Y,B) for all n ∈ N0

such that

· · · // Hn+1(X,A)
δ //

f∗
��

Hn(A)
i∗ //

(f |)∗
��

Hn(X)
q∗ //

f∗
��

Hn(X,A)
δ //

f∗
��

· · · // Hn+1(Y,B)
δ // Hn(B)

i∗ // Hn(Y )
q∗ // Hn(Y,B)

δ //

PNE

Proof. (1) is immediate from Theorem 3.3. See p. 127 of Hatcher for details of
(2). �

Example 9.5.

Hk(D
n, Sn−1) ∼=

{
Z k = n

0 else.

10. Excision

One of the key properties of relative homology, which is also very useful trick
for computations, is called excision. It means that if you have a pair (X,A) and
Z ⊂ A, under some mild technical restrictions you can remove Z from A and X
without changing the relative homology.

Theorem 10.1 (Excision). Let Z ⊆ A ⊆ X be subsets such that the closure of Z
is contained in the interior of A. Then the map of pairs (XrZ,ArZ) → (X,A)
induces an isomorphism

Hn(XrZ,ArZ)→ Hn(X,A)

for every n ∈ N0.
PNE

This is equivalent to the following version of excision.

Theorem 10.2 (Excision Version II). Let U, V ⊆ X be subsets of X such that
IntU ∪ IntV = X. Then the map of pairs (V,U ∩V )→ (X,U) induces an isomor-
phism

Hn(V,U ∩ V )→ Hn(X,U)

for every n ∈ N0.
PNE

Definition 10.3. Let A ⊆ X be a closed subset with A 6= ∅. Suppose A is a
deformation retract of some neighbourhood V ⊆ X of A, so A ⊆ V . Then (X,A)
is a good pair.

Theorem 10.4. Let (X,A) be a good pair. Then the quotient map q : (X,A) →
(X/A,A/A) = (X/A, {pt}) induces an isomorphism q∗ : Hn(X,A)

∼=−→ Hn(X/A, {pt}) ∼=
H̃n(X/A) for every n ∈ N0.
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11. Axioms for homology

Many of the theorems we have proven so far about singular homology can be
made into axioms for homology theories.

Definition 11.1. An ordinary homology theory G∗ is, for each n ∈ N0, an assign-
ment (i.e. a functor) from pairs of spaces (X,A) to abelian groups, whose output
we write as Gn(X,A) such that, writing Gn(X) for Gn(X,∅):

(1) (Dimension) Gn({pt}) = {0} for n 6= 0.
(2) (Additivity) Gn(

∐
i∈I Xi) ∼=

⊕
i∈I Gn(Xi).

(3) (Functoriality and homotopy invariance) A map of pairs (X,A) → (Y,B) in-
duces a map on homology f∗ : Gn(X,A)→ Gn(Y,B). These maps satisfy that
Id∗ = Id, (f ◦ g)∗ = f∗ ◦ g∗, and if f ∼ g then f∗ = g∗.

(4) (Excision) Let Z ⊆ A ⊆ X be subsets such that the closure of Z is contained
in the interior of A. Then the map of pairs (XrZ,ArZ)→ (X,A) induces an
isomorphism

Gn(XrZ,ArZ)→ Gn(X,A)

for every n ∈ N0.
(5) (Long exact sequence of a pair) For a pair (X,A) there is a natural map

δ : Gn(X,A)→ Gn−1(A), that fits into a natural long exact sequence of homol-
ogy groups

· · · q∗−→ Gn+1(X,A)
δ−→ Gn(A)

i∗−→ Gn(X)
q∗−→Gn(X,A)

δ−→ Gn−1(A)→ · · ·

Remark 11.2.

(i) G0({pt}) is called the coefficients of the homology theory.
(ii) The Mayer-Vietoris sequence can be deduced from the axioms.

(iii) Two other famous homology theories, defined for smaller classes of spaces, are
simplicial homology (for simplicial complexes) and cellular homology (for CW
complexes). We will discuss CW complexes and cellular homology shortly.

(iv) A generalised homology theory is characterised by the same set of axioms bar
one: the dimension axiom is removed. Moreover it is permitted for n ∈ Z
instead of just nonnegative integers.

(v) Bordism Ωn(X,A) and topological K-theory are two of the most famous ex-
amples of generalised homology theories.

Theorem 11.3. An ordinary homology theory is characterised by the axioms in
Definition 11.1. In particular if G0({pt}) ∼= Z then Gn coincides with singular
homology.

12. CW complexes

Given a sequence of spaces and inclusions

X0 ⊆ X1 ⊆ X2 ⊆ · · ·
we define the colimit

X := colimnXn :=
⋃
n∈N0

Xn.
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with the topology that U ⊆ X is open if and only if U ∩ Xn is open for every
n ∈ N0. This is called the weak topology on X.

Definition 12.1 (CW complex). A CW complex is a space X together with data

(1) a filtration of spaces

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · ·
and

(2) a collection of maps {ϕi : Sn−1 → Xn−1}i∈In called the attaching maps,

satisfying the following properties.

(i) For every n ∈ N0,

Xn =
Xn−1 t qi∈InDn

i

ϕi(x) ∼ x, i ∈ In, x ∈ ∂Dn
i
∼= Sn−1

;

(ii) X = colimnXn, with the associated weak topology.

Note that X0 is a discrete set. The set Xn is called the n-skeleton of X.

Definition 12.2.

(1) A CW structure on a space Y is a CW complex X and a homeomorphism
X ∼= Y .

(2) The dimension of X is −1 if X = ∅, is n if this is the largest n with
Xn−1 6= X, if such an n exists, and is dimX =∞ if no such n exists.

(3) A CW complex X is called finite dimensional if dimX <∞.
(4) A CW complex of dimension ≤ n is called an n-complex.

(5) The image of each copy of Dn is called a (closed) n-cell, and D̊n is called
an open n-cell.

(6) A CW complex is finite if it has finitely many cells.
(7) The maps ϕi : D

n → X extending the attaching maps are the characteristic
maps.

Example 12.3. The nonorientable surface RP2 = R3r{0}/x ∼ λx, where λ ∈
Rr{0}, can be thought of as S2/x ∼ −x or D2/y ∼ −y for y ∈ S1. It can be
decomposed into a 0-cell, a 1-cell, and a 2-cell. In homogeneous coordinates, these
are:

RP2 = {[1 : 0 : 0]} ∪ {[x : 1 : 0] | x ∈ R} ∪ {[x : y : 1] | x, y ∈ R}.

A subcomplex of a CW complex X is a subset Y ⊆ X that is the union of cells
of X.

Definition 12.4.

(1) A space X is Hausdorff if for all x, y ∈ X, there exist open subsets U 3 x
and V 3 y with U ∩ V = ∅.

(2) A space X is normal if for every pair of closed sets S, T ⊆ X, there exist
open subsets U ⊆ S and V ⊆ T with U ∩ V = ∅.

Theorem 12.5 (Topological properties of CW complexes). Let X be a CW complex
and let A be a subcomplex.

(1) Every point of X is closed.
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(2) The CW complex X is Hausdorff and normal.
(3) Every cell of X is closed and compact.
(4) A CW complex is compact if and only if it is finite.
(5) A CW complex is connected if and only if it is path connected.
(6) The subcomplex A is closed and there is a neighbourhood V ⊇ A that de-

formation retracts to A, that is (X,A) is a good pair.
PNE

13. Degrees of maps

In Example 2.7 we computed the homology of Sn the n-sphere:

Hi(S
n) =

{
Z, if i = 0, n

0, otherwise.

Definition 13.1. Given a map f : Sn → Sn, the induced map on nth homology,
f∗ : Hn(Sn)→ Hn(Sn) is a homomorphism from Z to Z, hence f∗(a) = da for some
integer d depending only on f . We call this integer the degree of f , denoted deg(f).

Remark 13.2.

(1) deg(IdSn) = 1 since IdSn∗ is the identity map on homology.
(2) If f is not surjective then deg(f) = 0. To show this suppose f misses

x ∈ Sn then f factors as a composition Sn → Snr{x} ↪→ Sn, so f∗
factors as composition Hn(Sn) → Hn(Snr{x}) → Hn(Sn). Since Snr{x}
is contractible Hn(Snr{x}) = 0 so the map on homology must be 0.

(3) If f ∼ g then f∗ = g∗ so deg(f) = deg(g).
(4) (f ◦ g)∗ = f∗ ◦ g∗ so deg(f ◦ g) = deg(f) deg(g).
(5) If f is a homotopy equivalence deg(f) = ±1, since if g is its homotopy

inverse then deg(f) deg(g) = deg(Id) = 1

Definition 13.3 (Suspension). Given a topological space X, the suspension SX
is the quotient topological space X× [0, 1]/X×{0, 1}. Given a map f : X → Y the
suspension map S f is the map S f : SX → SY defined by sending (p, t) ∈ X×[0, 1]
to (f(p), t) ∈ Y × [0, 1] then taking quotients.

Exercise 13.4. Show that SSn ∼= Sn+1 and CSn = Dn+2.

Proposition 13.5. For i ≥ 0 there is a natural isomorphism H̃i+1(SX)
∼=−→ H̃i(X),

in the sense that for any map f : X → Y the following diagram commutes:

H̃i+1(SX)
∼= //

S f∗
��

H̃i(X)

f∗
��

H̃i+1(SY )
∼= // H̃i(X)

(13.6)

PNE

Proof. For a topological space X define CX by CX = X × [0, 1]/X ×{0}, and for
a map f : X → Y define C f : CX → CY by sending (x, t) to (f(x), t). Taking
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q : CX → SX to be the obvious quotient, the following diagram commutes:

(SX, {pt})

S f

��

(CX,X × {1})
qoo

C f

��
(SY, {pt)}) (CY, Y × {1})

qoo

So does the corresponding diagram in homology.
Since C f is a map of pairs as above, we use the long exact sequence and natu-

rality in Theorem 11.3 to obtain the following commutative diagram:

· · · H̃i+1(CX) //

C f∗
��

H̃i+1(CX,X × {1}) δ //

C f∗
��

H̃i(X)
i∗ //

f∗
��

H̃i(CX) · · ·

C f
��

· · · H̃i+1(CY ) // H̃i+1(CY, Y × {1}) δ // H̃i(Y )
i∗ // H̃i(CY ) · · ·

Since CX and CY are contractible, δ is an isomorphism for i ≥ 0.
Combining these two commutative diagrams gives:

H̃i+1(SX)

S f∗
��

H̃i+1(CX,X × {1})
q∗
∼=
oo δ

∼=
//

C f∗
��

H̃i(X)

f∗
��

H̃i+1(SY ) H̃i+1(CY, Y × {1})
q∗
∼=
oo δ

∼=
// H̃i(Y )

The homomorphisms q∗ are isomorphisms by Theorem 10.4, so δ ◦ q−1∗ gives the
desired isomorphism. �

Corollary 13.7. For f : Sn → Sn we have S f : Sn+1 → Sn+1 and deg(S f) =
deg(f)

PNE

Exercise 13.8. Let Rn : Sn → Sn be the reflection through Sn−1 living on the
equator. Show for n ≥ 1 that SRn = Rn+1.

Note also that R1 is SR0, where R0 : {−1, 1} → {−1, 1} is the map that swaps

the points. The reduced chain complex C̃({−1, 1}) is easy to understand:

· · · → C̃1
d1−→ C̃0

ε−→ Z→ 0

has C̃i ∼= Z ⊕ Z for every i ∈ N0. The boundary map d1 is the zero map. C̃0 =
Zσ−1 ⊕ Zσ1 where σp is the zero simplex mapping to the point p. Hence

H̃0({−1, 1}) = {(a, b) | a+ b = 0} = Z〈(1,−1)〉.

Since (R0)∗((1,−1)) = (−1, 1) = −(1,−1) we see that deg(R0) = −1.

Remark 13.9.

(1) Reflections have degree −1 since

deg(Ri) = deg(SRi−1) = deg(Ri−1) = · · · = deg(R0) = −1.
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(2) The antipodal map a : Sn → Sn has degree (−1)n+1 since it is the composi-
tion of n+1 reflections, in each of the hyperplanes {xi = 0}, for i = 0, . . . , n.

(3) If f has no fixed points then f ∼ a, so deg(f) = (−1)n+1

To see (3) note that ht : S
n → Sn defined by

ht(x) =
(1− t) f(x)− tx
‖(1− t) f(x)− tx‖

,

with addition performed in Rn+1, gives a homotopy from f to a. Note that the path
(1− t) f(x)− tx from f(x) to −x passes through 0 only if f(x) = x, contradicting
the condition of no fixed points. Thus ht(x) 6= 0 for all x ∈ Sn and for all t ∈ [0, 1],
so ht is a well-defined homotopy. We can use this to prove the following.

Theorem 13.10 (Hairy Ball theorem). If n is even, then for every continuous
vector field v on Sn, there is a point of Sn at which v vanishes.

Proof. Suppose x 7→ v(x) is a nonvanishing vector field on Sn. By viewing Sn ⊂
Rn+1 we may view v(x) as a vector in Rn+1. Let w(x) = v(x)/‖v(x)‖. Now
ht : S

n → Sn defined by ht(x) = cos(t)x + sin(t)v(x) for t ∈ [0, π] is a homotopy
from IdSn to the antipodal map a; note that w(x) is a tangent to Sn at x, so is
orthogonal to x, so ||ht(x)|| = 1. But since n is even, deg(a) = −1 6= deg(IdSn),
which yields a contradiction. Hence no such v exists, and all vector fields on f have
at least one point where they vanish. �

14. Local degree

We require a technique for computing the degrees of maps. Suppose n > 0 and
f : Sn → Sn is a map, and for some point y ∈ Sn that f−1(y) consists of finitely
many points x1, . . . , xm. Let U1, . . . , Um be disjoint n-disc neighbourhoods of the
xi, and let V be an n-disc neighbourhood of y so that f(Ui) ⊂ V for each i. Then
we have the following diagram:

Hn(Ui, Uir{xi})
∼=

uu

f∗ //

ki
��

Hn(V, Vr{y})
∼=
��

Hn(Sn, Snr{xi}) Hn(Sn, Snrf−1(y))
f∗ //pioo Hn(Sn, Snr{y})

Hn(Sn)

∼=
ii

f∗ //

j

OO

Hn(Sn).

∼=

OO

All maps are induced by inclusions, the obvious quotient or by f . The top two
isomorphisms are by excision, the bottom two by the long exact sequence of the
pairs.

Definition 14.1. Since the groups Hn(Ui, Uir{xi}) and Hn(V, Vr{y}) can be
canonically identified with Hn(Sn) ∼= Z as above, we call the degree of the map

Hn(Ui, Uir{xi})
f∗−→ Hn(V, Vr{y}) the local degree at Xi, denoted deg(f |xi).

Proposition 14.2. deg(f) =
∑

i deg(f |xi)
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PNE

Proof. Identify Hn(Sn) with Z. Now identify all outer groups Hn(Sn) by the
isomorphisms above, hence identifying them all with Z, making all isomorphisms
in the diagram the identity. Identify Hn(Sn, Snrf−1(y)) with ⊕iHn(Ui, Uirxi) =
Zm by excision. The upper triangle commutes so ki(1) = (0, . . . , 0, 1, 0, . . . , 0)
with the 1 in the ith position. The lower triangle commutes so pi(j(1)) = 1 for
each i, so j(1) = (1, . . . , 1) =

∑
i ki(1). Commutativity of the top square says

f∗(ki(1)) = deg(f |xi). Commutativity of the bottom square says deg(f) = f∗(1) =
f∗(1, . . . , 1) = f∗(

∑
i ki(1)) =

∑
i f∗(ki(1)) =

∑
i deg(f |xi). �

Example 14.3.

(1) If f is a homeomorphism, then every arrow on the diagram becomes an
isomorphism, so we can diagram chase to show that deg(f) = deg(f |x), for
all x ∈ X.

(2) Considering S1 ⊂ C we can define f : S1 → S1 by fk(z) = zk for k > 0.
Setting y = 0 above, we have ` pre-image points x1, . . . , xn. For each i
the restriction f |Ui : Ui → V is homotopic to rθ|Ui : Ui → V , where rθ is a
rotation of S1 through angle θ. Hence deg(fk|xi) = deg(rθ|xi) = 1, since
rθ is a homeomorphism; note these maps are not globally homotopic, just
their local restrictions, which means they induce the same maps on local
homology. By the theorem we have deg(fk) = k. We can also prove this
for k < 0 by noting that f−k = R1 ◦ fk so deg(f−k) = −deg(fk).

(3) Taking repeated suspensions of the above map we can construct a map of
any degree from Sm → Sm, for every m.

15. Cellular homology

For any CW complex X we wish to construct a chain complex for which CCWn (X)
is the free abelian group generated by the n-cells, and for which we can understand
the boundary maps using the theorems of the previous section. Motivated by this
we prove the following lemma, 2.34 of Hatcher.

Lemma 15.1. For X a CW complex, and Xn the n-skeleton:

(1) Hk(X
n, Xn−1) = 0 for k 6= n, and free abelian for k = n with generators

in one to one correspondence with the n-cells;
(2) Hk(X

n) = 0 for k > n;
(3) The map Hk(X

n) → Hk(X) induced by inclusion, is an isomorphism for
k < n.

PNE

We can now define the cellular chain group

CCWn (X) = Hn(Xn, Xn−1).

We define the boundary map dn : CCWn (X)→ CCWn−1(X) as the composition

Hn(Xn, Xn−1)→ Hn−1(X
n−1)→ Hn−1(X

n−1, Xn−2)

where the first map comes from the long exact sequence of the pair (Xn, Xn−1)
and the second map comes from the long exact sequence of the pair (Xn−1, Xn−2).
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Lemma 15.2. dn ◦ dn+1 = 0, so (CCW∗ (X), d∗) is a chain complex.
PNE

Definition 15.3. The CW homology or cellular homology of X is HCW
n (X) :=

Hn((CCW∗ (X), d∗)) = ker dn/ im dn+1.

Theorem 15.4. For every CW complex X, we have an isomorphism Hn(X) ∼=
HCW
n (X). In particular, the CW homology of a space X that admits a CW structure

is independent of the choice of CW structure.
PNE

For applications, we need to be able to compute the cellular boundary maps.
We can do this using degrees of maps between spheres.

Proposition 15.5. Let {eni } be the n-cells of X, corresponding to a basis for

CCWn (X). Let {en−1j } be the n-cells of X, corresponding to a basis for CCWn−1(X).

The boundary map dn : CCWn (X)→ CCWn−1(X) is given by

dn(eni ) =
∑
j

cije
n−1
j

where the integer cij is the degree of the composition

Sn−1
αi−→ Xn−1 → Xn−1/Xn−2 =

∨
j

Sn−1
qj−→ Sn−1

where αi is the attaching map for eni and the final map qj identifies to the basepoint

all wedge summands Sn−1 other than the jth summand, that is the image of en−1j .
PNE

Example 15.6. We can compute the homology of spaces such as T 2 = S1 × S1,
RPn, and the Klein bottle rather easily using CW homology.

Example 15.7. The product of spheres Sn×Sm, has a cell decomposition e0∪en∪
em ∪ en+m. The (max{n,m})-skeleton is Sn ∨Sm, so Sn×Sm ∼= Sn ∨Sm ∪Dn+m.
The attaching maps are such that all the boundary maps in the cellular chain
complex are zero. One can easily compute the homology of Sn × Sm using this
information.

Example 15.8. Let n ≥ 1 and let G be an abelian group. There exists a connected,
simply-connected space M(G,n) whose reduced homology is isomorphic to G in
degree n and vanishes otherwise. If n ≥ 2 we can assume that M(G,n) is simply
connected. The idea is to find a free abelian group F with a surjection φ : F → G,
let K := kerφ, and realise the inclusion map K → F as the CW boundary map

CCWn+1(X)
dn+1−−−→ CCWn (X).

By taking wedge products

M(G1, 1) ∨M(G2, 2) ∨ · · ·
we can realise any sequence G1, G2, . . . of abelian groups as the reduced homology
of some CW complex. Note that the Gi need not be finitely generated and the
resulting CW complex need be neither finite nor finite dimensional.

Definition 15.9. A map f : X → Y between CW complexes is said to be cellular
if f(Xn) ⊆ Y n.
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Lemma 15.10. A cellular map f : X → Y between CW complexes X and Y
induces a chain map CCW∗ (X)→ CCW∗ (Y ).

PNE

Theorem 15.11. Every map X → Y between CW complexes is homotopic to a
cellular map.

PNE
This is the end of the Michaelmas term notes.

16. Epiphany term summary

In the second term we have the following aims.

(1) Study covering spaces, and how to classify them.
(2) Learn about cohomology of spaces, and its relation to homology via the

universal coefficient theorem.
(3) Homology with different abelian groups as coefficients.
(4) Study the homology and cohomology of manifolds. Poincaré duality places

restrictions on these groups.
(5) The cup product makes the cohomology groups of a space into a ring. The

ring structure contains a lot of information about the space. We will put a
fair amount of effort into being able to calculate the cup product.

17. Covering spaces

Definition 17.1. Let X be a space. A covering space is a space X̃ and a map

p : X̃ → X such that for every x ∈ X, there is an open neighbourhood U 3 x for
which the inverse image p−1(U) is a disjoint union of open sets {Vi}, with each

Vi ⊆ X̃ and p|Vi : Vi → U a homeomorphism.

The open set U is called evenly covered and the sets Vi are called the sheets of

X̃ over U . The map p is called a covering map.

Example 17.2.

(1) Let X and Y be discrete spaces and let f : Y → X be a surjective map.
Then f is a covering map.

(2) The map p : R→ S1 sending t 7→ e2πit is a covering map.
(3) The map pn : S1 → S1 sending z 7→ zn is a covering map.
(4) The map tmS1 → S1 sending each component to S1 via the identity map,

is a covering map.

If X is connected and X̃ is connected and simply connected, then X̃ is called
the universal cover of X. We will discuss the universal cover in more detail later.

Definition 17.3. Let A = {ai} be a set. The free group on A, FA, is the set of
reduced words in the symbols ai and a−1i , plus the empty word (the identity ele-
ment). The multiplication is concatenation. Here reduced means that all instances
of aia

−1
i have been deleted.

The fundamental group of a graph is free. In particular the fundamental group
of S1∨S1 is free. The covering spaces of S1∨S1 are a fascinating source of examples
worth contemplating. See class notes, Hatcher page 58, and ET problem sheet 1.
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Theorem 17.4 (Homotopy lifting property). Let p : X̃ → X be a covering space.

Let ft : Y → X a homotopy, starting with f0 : Y → X. Let f̃0 : Y → X̃ be a lift of

f0, that is p ◦ f̃0 = f0. Then there exists a unique homotopy f̃t : Y → X̃ of f̃0, with

p ◦ f̃t = ft.
PNE

Proposition 17.5. Let p : X̃ → X be a covering space. Let x0 ∈ X be a basepoint,

and let x̃0 ∈ p−1(x0) ⊆ X̃ be a choice of lift of x0. The map p∗ : π1(X̃, x̃0)→ π1(X)
is injective.

PNE

So the image p∗(π1(X̃, x̃0)) is abstractly isomorphic to the fundamental group

of X̃. This subgroup p∗(π1(X̃, x̃0)) is important for the classification of connected

covering spaces. The image p∗(π1(X̃, x̃0)) is the subgroup of loops in X that lift
to loops in x̃0.

Proposition 17.6. Let p : X̃ → X be a covering space. Let x0 ∈ X be a basepoint,

and let x̃0 ∈ p−1(x0) ⊆ X̃ be a choice of lift of x0. Suppose that X̃ and X are path
connected. The number of sheets of the covering space equals the index

[π1(X,x0) : p∗(π1(X̃, x̃0))].
PNE

In particular, the number of sheets at every point in X is the same.

Definition 17.7. A space Y is locally path connected if for every y ∈ Y and for
every neighbourhood U of y, there exists an open neighbourhood V ⊆ U such that
y ∈ V and V is path connected.

A space Y is semi-locally simply connected if for every y ∈ Y , there exists a
neighbourhood U of y with π1(U, y)→ π1(Y, y) the trivial map.

Theorem 17.8 (Lifting criterion). Let p : X̃ → X be a covering space, with f : Y →
X path connected and locally path connected. There exists a lift f̃ : Y → X̃ if and
only if

f∗(π1(Y, y0)) ⊆ p∗(π1(X̃, x̃0)).
If Y is connected and f̃1,f̃2 are lifts of f that agree at one point y ∈ Y , then f̃1 = f̃2.

PNE

Theorem 17.9. Let X be a path connected, locally path connected, and semi-locally
simply connected space. Then X has a connected and simply connected covering

space X̃, called the universal covering space of X.
PNE

We can now work towards the classification of connected covering spaces.

Proposition 17.10. Let X be a path connected, locally path connected, and semi-
locally simply connected space with basepoint x0. Let H ≤ π1(X,x0) be a subgroup.
There exists a covering space p : XH → X with p∗(π1(XH , x0)) = H for some
x̃0 ∈ XH .

PNE

The idea of the proof is to define XH as a quotient of the universal cover.

Definition 17.11. Covering space p1 : X̃1 → X and p2 : X̃2 → X are isomorphic

if there is a homeomorphism f : X̃1
∼=−→ X̃2 such that p1 = p2 ◦ f .
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Proposition 17.12. Consider covering space p1 : X̃1 → X and p2 : X̃2 → X, with

base points x1 ∈ X1, x2 ∈ X2, x̃1 ∈ p−11 (x1) ⊆ X̃1 and x̃2 ∈ p−12 (x2) ⊆ X̃2, are
isomorphic if and only if

(p1)∗(π1(X̃1, x̃1)) = (p2)∗(π1(X̃2, x̃2)).
PNE

Note that connected and locally path connected implies path connected, so we
could assume connected instead of path connected. We will do this in the statement
of the main classification result.

Theorem 17.13 (Classification of connected covering spaces). Let X be a con-
nected, locally path connected, and semi-locally simply connected space. Sending a

covering space p : (X̃, x̃0)→ (X,x0) to p∗(π1(X̃, x̃0)) induces a bijection

{Connected covering spaces p : (X̃, x̃0)→ (X,x0)}
basepoint preserving isomorphism

↔ {Subgroups of π1(X,x0)}.

Moreover, the same correspondence induces a bijection between

{Connected covering spaces p : (X̃, x̃0)→ (X,x0)}
isomorphism

↔ {Subgroups of π1(X,x0)}
conjugacy

.

PNE
This gives a beautiful correspondence between algebra and topology.

18. Cohomology

We introduce groups of homomorphisms.
Let A be a group, and let G be an abelian group. Define an abelian group

Hom(A,G) := ({group homomorphisms A→ G},+, 0).

The group structure is defined by (f + g)(a) = f(a) + g(a) ∈ G. The identity is
0(a) = 0 ∈ G for all a ∈ A.

Let f : A → B be a group homomorphism. There is a homomorphism induced
by f :

f∗ : Hom(B,G) → Hom(A,G)
(ϕ : B → G) 7→ (ϕ ◦ f : A→ B → G).

Let g : G→ H be a homomorphism of abelian groups. Then g induces a homo-
morphism

g∗ : Hom(A,G) → Hom(A,H)
(ϕ : A→ G) 7→ (g ◦ ϕ : A→ G→ H).

Example 18.1.

(1) Hom(Z, G) ∼= G for all G, with the map ϕ 7→ ϕ(1) giving an isomorphism.
(2) Hom(Z/n,G) ∼= ker(·n : G→ G).
(3) Hom(Z/n,Z/m) ∼= Z/ gcd(n,m).

Lemma 18.2. Let {Ai}i∈I be a sequence of abelian groups and let G be an abelian
group. Then

Hom(
⊕
i∈I

Ai, G) ∼=
∏
i∈I

Hom(Ai, G)

via the map f 7→
∏
i∈I f |Ai.
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Note the change between direct sum and direct product. What is the difference?
The elements of both are tuples (ai)i∈I , and the addition and the identity are the
same, but the sets are different: in the direct product any tuples are allowed but
in the direct sum only {(ai)i∈I | finitely many ai 6= eAi}.

Lemma 18.3. Let 0 → A → B → C → 0 be a short exact sequence of abelian
groups and let G be an abelian group. Suppose that C is free abelian. Then

0→ Hom(C,G)→ Hom(B,G)→ Hom(A,G)→ 0

is also short exact.

Lemma 18.4. Hom(Zn,Z) ∼= Zn.

Proof. For I finite,
⊕

I and
∏
I coincide. Therefore

Hom(Zn,Z) ∼= Hom(
n⊕
i=1

Z,Z) ∼=
n∏
i=1

Hom(Z,Z) ∼=
n∏
i=1

Z ∼=
n⊕
i=1

Z = Zn.

�

Definition 18.5. A cochain complex is a sequence of abelian groups

0→ D0 δ0−→ D1 δ1−→ D2 δ2−→ · · · → Dn δn−→ · · ·

with δi+1 ◦ δi = 0 for all i.
We call the δi the coboundary maps.
The cohomology groups of a cochain complex are

Hn(D∗) :=
ker(δn : Dn → Dn+1)

im(δn−1 : Dn−1 → Dn)
.

Here ker(δn : Dn → Dn+1) are the cocycles and im(δn−1 : Dn−1 → Dn) are the
coboundaries.

Definition 18.6. A cochain map f : C∗ → D∗ consists of a homomorphism fi : C
i →

Di for each i such that

Ci
fi //

δCi��

Di

δDi��
Ci+1

fi+1 // Di+1

commutes for all i, meaning that both routes round the square give the same
outcome for every element of Ci.

Definition 18.7. A cochain homotopy between cochain maps f, g : Ci → Di con-
sists of homomorphisms hi : C

i → Di−1 for all i with fi − gi = hi+1 ◦ δi + δi−1 ◦ hi
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for all i.

· · · // Ci−1
δi−1 //

fi−1−gi−1

��

Ci
δi //

fi−gi

��

hi

}}

Ci+1
δi+1 //

fi+1−gi+1

��

hi+1

}}

· · ·

· · · // Di−1 δi−1 // Di δi // Di+1
δi+1 // · · ·

The proof of the next lemma is directly analogous to the corresponding lemma
for homology groups.

Lemma 18.8.

(i) Let f : C∗ → D∗ be a cochain map. Then

f∗ : Hn(C) → Hn(D)
[c] 7→ [fn(c)]

is a well-defined map.
(ii) If f ∼ g : C∗ → D∗ are two cochain homotopic cochain maps then f∗ =

g∗ : Hn(C∗)→ Hn(D∗) for all n ∈ N0.

Let (C∗, ∂∗) be a chain complex, with ∂n : Cn → Cn−1. Let G be an abelian
group. For n ∈ N0, define

δn := ∂∗n+1 : Hom(Cn, G)→ Hom(Cn+1, G).

We obtain a cochain complex Hom(C∗, G) given by

Hom(C0, G)
δ0−→ Hom(C1, G)

δ1−→ Hom(C2, G)
δ2−→ · · ·

→ Hom(Cn, G)
δn−→ Hom(Cn+1, G)

δn+1−−−→ · · ·

This is the cochain complex dual to (C∗, ∂∗). The cohomology of C∗ with coefficients
in G is

Hn(C;G) := ker(δn)/ im(δn−1).

Lemma 18.9.

(i) Let f∗ : C∗ → D∗. Then

f∗ : Hom(Dn, G) → Hom(Cn, G)
(ϕ : Dn → G) 7→ (ϕ ◦ f : Cn → G)

is a cochain map, and therefore induces a map f∗ : Hn(D∗)→ Hn(C∗).
(ii) Two chain homotopic chains map f, g : C∗ → D∗ induce cochain homotopic

cochain maps

f∗, g∗ : Hom(D∗, G)→ Hom(C∗, G),

so that

f∗ = g∗ : Hn(D)→ Hn(C).
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Now we define the singular cohomology of a topological space. Let (X,A) be a
pair of spaces. Usually we will have A = ∅, and then we write X = (X, ∅). Define
the singular cochain group to be

Cn(X,A;G) := Hom(Cn(X,A), G)

and

δn := ∂∗n+1 : Hom(Cn(X,A), G)→ Hom(Cn+1(X,A), G).

We call

ker(δn : Cn(X,A;G)→ Cn+1(X,A;G))

the singular cocycles and

im(δn−1 : Cn−1(X,A;G)→ Cn(X,A;G))

the singular coboundaries. The singular cochain complex is

C0(X,A;G)
δ0−→ C1(X,A;G)

δ1−→ C2(X,A;G)
δ2−→ · · ·

→ Cn−1(X,A;G)
δn−1−−−→ Cn(X,A;G)

δn−→ Cn+1(X,A;G)→ · · ·

We then define the singular cohomology

Hn(X,A;G) := Hn(C∗(X,A;G)) = ker δn/ im δn−1.

When G = Z, we will often omit the coefficients and simply write Hn(X,A).

We also have CW cohomology. Let X be a CW complex. Recall that there is
the cellular chain complex

(CCW∗ (X), ∂CW∗ ).

Let G be an abelian group. Define the CW cochain groups to be

CiCW (X;G) := Hom(CCWi (X), G).

The CW coboundary maps are given by

δCWi := (∂CWi+1 )∗ : Hom(CCWi (X), G)→ Hom(CCWi+1 (X), G).

Then the CW cohomology is

Hn
CW (X;G) := ker(δCWn )/ im(δCWn−1).

Theorem 18.10. For every CW complex X, for every abelian group G, and for
every n ∈ N0, we have Hn(X;G) ∼= Hn

CW (X;G).
PNE

19. Ext groups

Lemma 19.1. Let G be an abelian group and let 0→ A→ B → C → 0 be a short
exact sequence of abelian groups. Then

0→ Hom(C,G)→ Hom(B,G)→ Hom(A,G)

is exact.
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Proof. Let

0→ A
f−→ B

g−→ C → 0

be exact. Then consider the sequence of maps

0→ Hom(C,G)
g∗−→ Hom(B,G)

f∗−→ Hom(A,G).

We want to show that this is an exact sequence. Let ϕ ∈ ker g∗. That is, ϕ◦g : B →
G is the zero map. Let c ∈ C. Then there is a b ∈ B such that g(b) = c. Then
ϕ(c) = ϕ ◦ g(b) = 0, so ϕ = 0. Thus g∗ is injective.

To show exactness at Hom(B,G), suppose that θ = g∗(ϕ) ∈ Hom(B,G). Then
f∗ ◦ g∗(ϕ)(a) = ϕ ◦ g ◦ f(a) = ϕ(0) = 0 for all a ∈ A. Therefore f∗ ◦ g∗ = 0. Now
let θ ∈ ker f∗ ⊆ Hom(B,G). That is, θ ◦ f : A → G is the zero map. We want
to show that θ = g∗(ϕ) for some ϕ : C → G. Define ϕ(c), for c ∈ C, by taking
b ∈ B with g(b) = c and defining ϕ(c) = θ(b). Suppose that b′ ∈ B with g(b′) = c
too. Then θ(b)− θ(b′) = θ(b− b′). Since b− b′ ∈ ker g, we have that b− b′ = f(a)
for some a ∈ A. Then θ(b − b′) = θ(f(a)) = 0, so θ(b) = θ(b′). Therefore ϕ(c) is
well-defined, and does not depend on the choice of b. This shows that the sequence
is exact at Hom(B,G). �

Example 19.2. Consider the short exact sequence

0→ Z ·p−→ Z→ Z/p→ 0

for p > 1 an integer. Then taking Hom(−,Z) yields

0→ Hom(Z/p,Z)→ Hom(Z,Z)
·p−→ Hom(Z,Z)→ 0

Now Hom(Z/p,Z) = 0 and Hom(Z,Z) ∼= Z, so this yields

0→ 0→ Z ·p−→ Z→ 0.

This is not exact, since multiplication by p is not onto.

To measure the failure of Hom(−, G) to be right exact, we define the Ext groups.

Definition 19.3. Now we define the Ext groups of a pair of abelian groups H,G.
An exact sequence

0→ F1
f1−→ F0

f0−→ H → 0

with Fi a free abelian group for i = 0, 1 is called a free resolution of H. Then

Ext0(H,G) := ker(f∗1 : Hom(F0, G)→ Hom(F1, G)).

and

Ext1(H,G) := coker(f∗1 : Hom(F0, G)→ Hom(F1, G)).

That is replace H by 0, apply Hom(−, G) to the resulting chain complex, and then
take cohomology, to get Hn(Hom(F∗, G)) for n = 0, 1.

We shall be principally concerned with Ext1 and Ext0, since for abelian groups
these are the only ones that are nonzero, as we will soon see.
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Let H be a finitely generated abelian group. Then by the classification of finitely
generated abelian groups,

H ∼= Zn ⊕
k⊕
i=1

Z/pni
i

for some n, for some k, for some primes p1, . . . , pk, and for some integers n1, . . . , nk.
There is a resolution of length one

0→
k⊕
i=1

Z
(
0,
⊕k

i=1 p
ni
i

)
−−−−−−−−→ Zn ⊕

k⊕
i=1

Z→ H → 0.

The next lemma is a baby version of what is often called the fundamental lemma
of homological algebra. It will be sufficient to prove that the groups Ext1(H,G)
are well-defined.

Lemma 19.4. Given two resolutions

0→ F1 → F0 → H → 0

and

0→ F ′1 → F ′0 → H → 0

of H, and a homomorphism ϕ : H → H, we have the following.

(1) There is a chain map between the resolutions inducing ϕ.
(2) Any two such chain maps are chain homotopic.

PNE

Proof. We need to construct a map as shown in the next diagram.

F1
f1 // F0

f0 //

ϕ0

��

H //

ϕ

��

0

F ′1
f ′1 // F ′0

f ′0 // H // 0

Let x ∈ F0 be an element of a generating set. Note that ϕ(f0(x)) ∈ H. Choose
x′ ∈ F ′0 with f ′0(x

′) = ϕ(f0(x)) ∈ H. Define ϕ0(x) = x′. Do this for all the free
generators of F0, and then extend by linearity. This defines ϕ0 : F0 → F ′0. Now we
want to define the map ϕ1 as shown in the next diagram.

F1
f1 //

ϕ1

��

F0
f0 //

ϕ0

��

H //

ϕ

��

0

F ′1
f ′1 // F ′0

f ′0 // H // 0

Let y ∈ F1. Then f0 ◦ f1(y) = 0, so ϕ ◦ f0 ◦ f1(y) = 0. By commutativity,
f ′0 ◦ ϕ0 ◦ f1(y) = 0. By exactness, there exists y′ ∈ F ′1 with f ′1(y

′) = ϕ0 ◦ f1(y).
Define

ϕ1(y) = y′.

Do this for a generating set of F1, and extend by linearity. This defines ϕ1 : F1 →
F ′1. The map ϕ∗ : F∗ → F ′∗ is a chain map by construction.
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Now we want to show that any two such maps are chain homotopic.

F1
f1 //

ϕ1ϕ′1

��

F0
f0 //

ϕ0ϕ′0

��

g

��

H //

ϕ

��

0

��

0

F ′1
f ′1 // F ′0

f ′0 // H // 0

We want to define the chain homotopy g shown. Let x ∈ F0. Then

f ′0(ϕ0(x)− ϕ′0(x)) = ϕ(f0(x))− ϕ(f0(x)) = 0.

Therefore there exists a y′ ∈ F ′1 with f ′1(y
′) = ϕ0(x)− ϕ′0(x). Define

g(x) = y′.

Do this for a generating set of F0, and extend by linearity. This defines g : F0 → F ′1.
It has the property that f ′1 ◦ g = ϕ0 − ϕ′0, so satisfies the requirement for a chain
homotopy at F0. Now, let y ∈ F1. We want to show that

ϕ1(y)− ϕ′1(y) = g ◦ f1(y).

Since f ′1 is injective, it is enough to show that

f ′1(ϕ1(y)− ϕ′1(y)) = f ′1 ◦ g ◦ f1(y).

Now we compute:

f ′1(ϕ1(y)− ϕ′1(y)) = f ′1 ◦ ϕ1(y)− f ′1 ◦ ϕ′1(y) = ϕ0 ◦ f1(y)− ϕ′0 ◦ f1(y)

= (ϕ0 − ϕ′0)(f1(y)) = f ′1 ◦ g ◦ f1(y),

as required. Therefore g is a chain homotopy. �

Now let F∗, F
′
∗ be two resolutions of H. With ϕ = Id, let ϕ∗ : F → F ′ be a

chain map inducing ϕ, and let ψ∗ : F ′∗ → F∗ be a chain map inducing ψ = Id. Then
ϕ∗◦ψ∗, Id and ψ∗◦ϕ∗, Id are two chain maps inducing Id on H. Then for both pairs,
the two chain maps are chain homotopic. Therefore ϕ∗ ◦ψ∗ ∼ Id and ψ∗ ◦ϕ∗ ∼ Id,
so F∗ → H → 0 and F ′∗ → H → 0 are chain homotopy equivalent. It follows, since
applying Hom(−, G) to a chain equivalence yields a chain equivalence, that the Ext
groups

Ext1(H,G),Ext0(H,G)

are well-defined, for every abelian group G. That is, for any two chain resolutions
of H we obtain the same group Exti(H,G), i = 0, 1, up to canonical isomorphism.

Proposition 19.5. The groups Exti(H,G) are independent of the choice of free
resolution of H.

PNE
Now that we know the Ext groups Ext0 and Ext1 are well-defined, let us see

some examples.

Example 19.6.
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(1) We compute Extn(Z,Z). There is a free resolution

0→ F1 = 0→ F0 = Z→ Z→ 0.

So F∗ = 0→ Z→ 0, supported in degree zero. Taking Hom(−,Z) yields

0→ Hom(Z,Z)→ 0.

So

Ext0(Z,Z) ∼= Hom(Z,Z) ∼= Z

and

Exti(Z,Z) = 0 for i > 0.

(2) We compute Extn(Z/p,Z). There is a free resolution

0→ F1 = Z ·p−→ F0 = Z→ Z/p→ 0.

So F∗ = 0 → Z ·p−→ Z → 0, supported in degrees zero and one. Taking
Hom(−,Z) yields

0→ Hom(Z,Z)
·p−→ Hom(Z,Z)→ 0.

So

Ext0(Z/p,Z) = 0,

Ext1(Z/p,Z) ∼= Z/p,

and

Exti(Z/p,Z) = 0 for i > 1.

The fact that Ext1(Z/p,Z) ∼= Z/p is nonzero corresponds to the failure of
Hom(−,Z) to be right exact observed in Example 19.2.

Next, we list some of the main important properties of the Ext groups.

Proposition 19.7. Let G and H be abelian groups.

(1) Ext0(H,G) ∼= Hom(H,G).
(2) If H is a free abelian group, then Ext1(H,G) = 0.
(3) If H is a finitely generated abelian group, then Ext1(H,Z) is the torsion

subgroup of H, that is TH := {h ∈ H | ∃n ∈ Nr{0} with nh = 0}.
(4) Ext1(H,Q) = 0 for any H.
(5) Let H1, . . . ,Hk and G1, . . . , Gk be abelian groups. Then

Ext1(
k⊕
i=1

Hi, G) ∼=
k⊕
i=1

Ext1(Hi, G)

and

Ext1(H,

k⊕
i=1

Gi) ∼=
k⊕
i=1

Ext1(H,Gi).
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20. The universal coefficient theorem for cohomology

One of the maps in the theorem is the evaluation map, so let us define it.

Definition 20.1. Let (C∗, ∂) be a chain complex of free abelian groups, and let G
be an abelian group. The evaluation map is

ev : Hn(C;G) → Hom(Hn(C), G)

[ϕ : Cn → G] 7→
(
Hn(C) → G

[c] 7→ 〈[ϕ], [c]〉 = ϕ(c).

)
Here the pairing 〈[ϕ], [c]〉 = ϕ(c) is often called the Kronecker pairing. It simply
means evaluate a representative cocycle of a homology class on a representative
cycle of a homology class.

We should show that ev is well-defined.

Lemma 20.2. The map ev is a well-defined group homomorphism.

Proof.

(ϕ+ δψ)(c+ ∂d) = ϕ(c) + δψ(c) + ϕ(∂d) + δψ(∂d)

= ϕ(c) + ψ(∂c) + δϕ(d) + ψ(∂2d) = ϕ(c).

Here ∂c = 0 because c is a cycle and δϕ = 0 because ϕ is a cocycle. Then ∂2 = 0,
so the last term vanishes as well. �

The universal coefficient theorem for spaces will follow directly from the following
purely algebraic statement.

Theorem 20.3. Let (C∗, ∂) be a chain complex of free abelian groups, and let G be
an abelian group. For each n ∈ N0, there is a natural (in C∗) short exact sequence

0→ Ext1(Hn−1(C), G)→ Hn(C;G)
ev−→ Hom(Hn(C), G)→ 0

that splits, i.e.

Hn(C;G) ∼= Ext1(Hn−1(C), G)⊕Hom(Hn(C), G).

PNE

Proof. Let (C∗, ∂) be a chain complex of free abelian groups, and let G be an
abelian group. Write Zn := ker ∂n and Bn := im ∂n+1. Both are also free abelian
groups. We have a short exact sequence of chain complexes. That is the rows are
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exact of the next diagram.

...

��

...

��

...

��
0 // Zn //

0
��

Cn
∂n //

∂n
��

Bn−1 //

0
��

0

0 // Zn−1 //

��

Cn−1
∂n−1 //

��

Bn−2 //

��

0

...
...

...

Apply Hom(−, G) to obtain the next diagram. The rows are again exact because
Bn is free abelian.

...
...

...

0 // Hom(Bn−1, G)
∂∗n //

OO

Hom(Cn, G) //

OO

Hom(Zn, G) //

OO

0

0 // Hom(Bn−2, G) //

0

OO

Hom(Cn−1, G) //

∂∗n

OO

Hom(Zn−1, G) //

0

OO

0

...

OO

...

OO

...

OO

By the snake lemma, we obtain a long exact sequence in cohomology. However the
left and right vertical sequences have all coboundary maps trivial, so the cohomol-
ogy is equal to the cochain groups. We therefore have a long exact sequence:

· · · → Hom(Zn−1, G)
dn−1−−−→ Hom(Bn−1, G)→ Hn(C;G)→ Hom(Zn, G)

dn−→ Hom(Bn, G)→ · · ·
Here dn, dn−1 denotes the connecting homomorphism. For m = n, n− 1 we assert
that dm = i∗m, where im : : Bm → Zm is the inclusion. This is a straightforward
check using the definition of the connecting homomorphism. We therefore have a
short exact sequence

0→ coker(dn−1)→ Hn(C;G)→ ker(dn)→ 0.

There is a resolution

0→ Bn−1
in−1=d∗n−1−−−−−−−→ Zn−1 → Hn−1(C)→ 0.

Therefore
coker(dn−1) = Ext1(Hn−1(C), G).

Similarly there is a resolution

0→ Bn
in=d∗n−−−−→ Zn → Hn(C)→ 0.
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Therefore

ker(dn) = Ext0(Hn(C), G) ∼= Hom(Hn(C), G).

Putting this together yields a short exact sequence

0→ Ext1(Hn−1(C), G)→ Hn(C;G)→ Hom(Hn(C), G)→ 0

as desired. We omit the proof that this is a split sequence, and that it is natural,
for time reasons. �

If Hn(C) is finitely generated and G = Z, then Hom(Hn(C), G) is a finitely
generated free abelian group, so the short exact sequence must split.

21. Tensor products and Tor

Let A and B be abelian groups. Then the tensor product is a quotient of the
free abelian group generated by symbols of the form ai ⊗ bi, with ai in A and bi in
B

A⊗B = {
n∑
i=1

ai ⊗ bi}/ ∼

where the relations ∼ are generated by

(a+ a′)⊗ b = a⊗ b+ a′ ⊗ b

and

a⊗ (b+ b′) = a⊗ b+ a⊗ b′.
Note that a⊗ 0 + a⊗ b = a⊗ (0 + b) = a⊗ b so a⊗ 0 = 0. Similarly 0⊗ b = 0.

The identity element in either factor gives the trivial element. Here are some facts
on tensor products.

(1) A⊗B ∼= B ⊗A.
(2) A⊗ (B ⊗ C) ∼= (A⊗B)⊗ C.
(3) Z⊗A ∼= A.
(4) Z/k ⊗A ∼= A/kA.
(5) Z/n⊗ Z/m ∼= Z/n/(mZ/m) ∼= Z/ gcd(m,n).
(6) If A is a finitely generated abelian group and A ∼= Zr⊕TA, then Q⊗A ∼= Qr.

The Tor groups are to tensor product as Ext groups are to Hom. If 0 → A →
B → C → 0 is a short exact sequence, then

A⊗G→ B ⊗G→ C ⊗G→ 0

is exact. The failure for A⊗G→ B⊗G to be exact is measured by the Tor groups.

Definition 21.1. Let A and B be abelian groups. Let

0→ F1 → F0 → A→ 0

be a free resolution of A. Then

Torn(A,B) := Hn(F∗ ⊗B)

for n = 0, 1. That is, replace A by 0, tensor with B, then take homology.
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The proof that Torn is well-defined uses the fundamental lemma of homological
algebra, that we showed for length one resolutions above in order to show that Ext
is well defined. The next proposition is the analogue of the fact that Ext0(G,H) ∼=
Hom(G,H).

Proposition 21.2. Tor0(A,B) ∼= A⊗B.

22. Universal coefficient theorem for homology

Tensor product appears in two important places: in the universal coefficient
theorem for homology and in the Künneth theorem.

Theorem 22.1 (Universal coefficient theorem for homology). Let X be a topolog-
ical space and let G be an abelian group. For all n ∈ N0, there is a natural short
exact sequence

0→ Hn(X)⊗G→ Hn(X;G)→ Tor1(Hn−1(X);G)→ 0

that splits.
PNE

Corollary 22.2. For every space X and for n ∈ N0, we have that Hn(X;Q) ∼=
Hn(X;Z)⊗Q.

Proof. Let H := Hn−1(X). There is a resolution:

0→
k⊕
i=1

Z
(
0,
⊕k

i=1 p
ni
i

)
−−−−−−−−→ Zn ⊕

k⊕
i=1

Z→ H → 0.

for some integers n, k, pi, ni. To compute Tor1(H,Q) we tensor with Q to obtain

0→
k⊕
i=1

Q
(
0,
⊕k

i=1 p
ni
i

)
−−−−−−−−→ Qn ⊕

k⊕
i=1

Q→ 0

Since the pi are nonzero, the first homology of this chain complex is trivial, so
Tor1(H,Q) = 0. The corollary then follows from the universal coefficient theorem
exact sequence. �

Example 22.3. Let us consider the homology of RP3. With Z coefficients, we
have H0(RP3;Z) ∼= H3(RP2;Z) ∼= Z, H2(RP3;Z) = 0 and H1(RP3;Z) = Z/2. We
can compute the homology with Z/2 coefficients using the cellular chain complex
CCWi (RP3) ∼= Z for i = 0, 1, 2, 3 and boundary maps

0→ CCW3 (RP3) ∼= Z 0−→ CCW2 (RP3) ∼= Z 2−→ CCW1 (RP3) ∼= Z 0−→ CCW0 (RP3) ∼= Z→ 0.

Tensor with Z/2 to obtain, using that Z⊗ Z/2 ∼= Z/2, the chain complex:

0→ Z/2 0−→ Z/2 0−→ Z/2 0−→ Z/2→ 0.

Therefore Hi(RP3;Z/2) ∼= HCW
i (RP3;Z/2) ∼= Z/2 for i = 0, 1, 2, 3, and is otherwise

trivial.
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Now let us compute with the universal coefficient theorem for homology in-
stead. What is Tor1(H,Z/2)? For H free abelian, Tor1(H,Z/2) = 0. However
Tor1(Z/2,Z/2) ∼= Z/2. To see this, note that Z/2 has a resolution

Z 2−→ Z→ Z/2→ 0.

Forget the right Z/2 and tensor with Z/2 to get

Z/2 0−→ Z/2
supported in degrees 0 and 1. The H1 of this is Tor1(Z/2,Z/2) = Z/2. Now, by
the universal coefficient theorem for homology, this means that

Hi(RP3;Z/2) = Hi(RP3;Z)⊗ Z/2 ∼= Z/2
for i = 0, 1, 3, since Z ⊗ Z/2 ∼= Z/2 for i = 0, 3, and since Z/2 ⊗ Z/2 ∼= Z/2 for
i = 1. For H2(RP3;Z/2), we have H2(RP3;Z) = 0 so

H2(RP3;Z/2) ∼= Tor1(H1(RP3;Z),Z/2) ∼= Tor1(Z/2,Z/2) = Z/2.

So once again we compute that Hi(RP3;Z/2) ∼= Z/2 for i = 0, 1, 2, 3, and is other-
wise trivial.

23. Understanding cohomology

Recall that

Cn(X;G) ∼= Hom(Cn(X), G) ∼= {maps {∆n → X} to G}
In particular,

C0(X;G) ∼= Hom(C0(X), G) ∼= Map({∆0 → X}, G) ∼= {functions X → G}.
Now,

C1(X;G) ∼= Hom(C1(X), G) ∼= Map({∆1 → X}, G)

and the coboundary map is given by

C0(X;G) → C1(X;G)
(ϕ : X → G) 7→ (δϕ : {∆1 → X} → G)

where δϕ(ψ) := ϕ(ψ(1))− ϕ(ψ(0)). Therefore

H0(X;G) = ker δ = {ϕ : X → G | ϕ(x) = ϕ(y)

whenever there is ψ : ∆1 → X with ψ(0) = x, ψ(1) = y}
= {ϕ : {connected components of X} = π0(X)→ G}

=
∏
|π0(X)|

G

An analogous computation holds for the zeroth CW cohomology of CW complexes.
So zeroth cohomology is not too hard to understand: functions on X that are
constant on path components.

For further discussion of an intuitive idea behind cohomology, I recommend
reading the beginning of Chapter 3 of Hatcher. As an alternative, we give an
explicit generator for the first cohomology of the circle S1.
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Example 23.1. Consider the real line R. Consider the function

αZ : R→ Z
x 7→ bxc

Let µ : ∆1 → R be a singular 1-simplex. Recall that ∆1 = {(1 − t, t) ∈ R2 | t ∈
[0, 1]}. Denote a point in ∆1 by the value of t. Then

δαZ(µ) = αZ(∂µ) =

{
|{n ∈ Z | µ(0) < n ≤ µ(1)}| if µ(0) ≤ µ(1)

−|{n ∈ Z | µ(1) < n ≤ µ(0)}| if µ(1) ≤ µ(0).

This counts how many integers µ crosses from left to right, with sign, so that
crossing an integer from right to left counts as −1.

Example 23.2. Now consider the circle S1. Let p : R → S1 be the function
sending t→ e2πit ∈ S1 ⊂ C. Given a 1-simplex σ : ∆1 → S1, it lifts to a 1-simplex
in C1(R;R)

σ̃ : ∆1 → R

such that p ◦ σ̃ = σ : ∆1 → S1. Such a lift is not unique; any two lifts differ by an
integer σ̃(x)− σ̃′(x) ∈ Z.

Define an element of C1(S1;Z) by

θZ(σ) := δαZ(σ̃) =

{
|{n ∈ Z | σ̃(0) < n ≤ σ̃(1)}| if σ̃(0) ≤ σ̃(1)

−|{n ∈ Z | σ̃(1) < n ≤ σ̃(0)}| if σ̃(1) ≤ σ̃(0).

You should check that this is well-defined i.e. does not depend on the choice of lift
σ̃.

Now, consider the 1-simplex µ : ∆1 → S1 defined by µ(t) = e2πit. Lift it, to

obtain for example µ̃(t) = t. Then µ̃(1)− µ̃(0) = 1, so

θZ(µ) = 1.

In the next lemma, we will show that θZ represents a nontrivial cohomology class
in H1(S1;Z). Since it evaluates to 1 on µ = [S1], the generator of H1(S

1;Z), this
will imply that it generates the cohomology group.

Lemma 23.3.

(1) The singular 1-cochain θZ is a cocycle, so represent an element θZ ∈ H1(S1;Z).
(2) [θZ] is not a coboundary δc for any c ∈ C0(S1;Z).

Proof.

(1) We will show that θZ is a cocycle, that is δ1θZ = 0 ∈ C2(S1;Z). Let
σ : ∆2 → S1. We want that (δ1θZ)(σ) = θZ(∂σ) = 0. Recall the function
p : R → S1 sending t → e2πit ∈ S1 ⊂ C. Then σ lifts to σ̃ : ∆2 → R and,
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with ιj : ∆1 → ∆2 the jth face inclusion, we have

θZ(∂σ) = θZ
( 2∑
j=0

(−1)jσ ◦ ιj
)

= (δαZ)
( 2∑
j=0

(−1)j σ̃ ◦ ιj
)

= αZ(∂ ◦ ∂σ̃) = αZ(0) = 0.

(2) To show that θZ is not a coboundary, let β : C0(S1;Z). We can think of
β as a function β : S1 → Z. Consider the 1-chain µ : ∆1 → S1 sending
t 7→ e2πit. Then

δ0(β)(µ) = β(∂µ) = β(µ(1)− µ(0)) = β(1)− β(1) = 0.

But θZ(µ) = 1, so these cannot be the coboundaries of any 0-chain.

�

The cohomology class θZ ∈ H1(S1;Z) ∼= Z is a generator.

24. Manifolds and orientations

Definition 24.1. An n-dimensional smooth manifold is a second countable, Haus-
dorff topological space together with a collection of charts A, called an atlas, namely
open subsets Ui ⊆M and homeomorphisms {ϕi : Ui → Vi ⊆ Rn}i∈I , where Vi ⊆ Rn
is an open subset, satisfying:

(i) For every p ∈M , there exists a Ui with p ∈ Ui.
(ii) For every i, j, the function ϕj ◦ ϕ−1i | : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj) is a smooth

map from an open subset of Rn to another open subset of Rn.
(iii) The collection of charts is maximal, meaning that if A′ is a collection of charts

{ϕ′i : U ′i → V ′i } satisfying (i) and (ii), and A∪A′ is also a collection of charts
satisfying (i) and (ii), then A′ ⊆ A.

A manifold is called closed if it is compact and has empty boundary. But since
we have not defined manifolds with boundary yet, closed and compact mean the
same thing.

Example 24.2.

(1) The sphere Sn is an n-dimensional manifold.
(2) A product of spheres Sn1×· · ·×Snk is a manifold of dimension n1+· · ·+nk.
(3) The surface of genus g, Σg.
(4) Real projective space, RPn is an n-dimensional manifold.
(5) Complex projective space

CPn := Cn+1/C×

is a 2n-dimensional manifold.
(6) The orthogonal group O(n) is a manifold of dimension n(n− 1)/2.
(7) If a group G acts on Sn or Rn freely, smoothly, and properly, then the orbit

space Sn/G or Rn/G is a manifold. We define these adjectives next.
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(a) An action of a group G on a manifold X is free if g·x = x implies that g = e ∈ G
for every x ∈ X.

(b) An action of a group G on a manifold X is proper if for all x, y ∈ X, there
exist open sets U 3 x and V 3 y such that

{g ∈ G | gU ∩ V 6= ∅}

is finite.
(c) A group action is smooth if the map x 7→ g · x is a smooth map X → X for all

g ∈ G.

Here are some examples of manifolds arising by group actions as in the last item
of the previous list. All but the last example already appears in the list above.

(i) The group Z acts on R by n · x := x+ n. The quotient is R/Z ∼= S1.
(ii) The group Z2 acts on R2 by

(n,m) · (x, y) = (x+ n, y +m).

The quotient R2/Z2 ∼= T 2.
(iii) The group Z/2 acts on Sn by 1 · x = −x. The quotient Sn/(Z/2) ∼= RPn.
(iv) The group S1 acts on S2n+1 as follows. Consider S2n+1 ⊂ Cn+1 as the set of

points with |z0|2 + · · · |zn|2 = 1. Then define

e2πiθ · (z0, . . . , zn) := (e2πiθ · z0, . . . , e2πiθ · zn).

The quotient is S2n+1/S1 ∼= CPn.
(v) The group Z/p acts on S3 as follows. Let p and q be coprime positive integers.

Consider S3 ⊂ C2 with |z|2 + |w|2 = 1. Write Z/p ∼= Cp where Cp is the cyclic

group generated by ξ = e2πi/p ∈ S1. Then

ξj · (z, w) := (ξ · z, ξq · w).

The quotient is S3/Cp = L(p, q), the lens space.

Next we define the important notion of an orientation of a manifold.

Lemma 24.3. Hi(Rn,Rnr{0}) ∼=

{
Z i = n

0 else.

Proof. Compute using the long exact sequence of a pair. �

Let p ∈M and let U 3 p be a neighbourhood. Then

(Rn,Rnr{0})→ (U,Ur{p})→ (M,Mr{p})

induces an isomorphism

Hi(Rn,Rnr{0}) ∼= Hi(M,Mr{p})

for every i ∈ N0, by excision.

Definition 24.4.

(i) A local orientation for M at p ∈M is a choice of generator Op for

Hn(M,Mr{p}) ∼= Z.
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(ii) Consider a choice of local orientation at every point p ∈ M , {Op}p∈M . Such
a choice of local orientations is continuous at p if there exists an open set
U 3 p and a class α ∈ Hn(M,MrU) such that α is sent to Op under the
inclusion-induced map

Hn(M,MrU)→ Hn(M,Mr{p})
for every p ∈ U .

(iii) If {Op}p∈M is continuous at every p in M , then we say that {Op}p∈M is
continuous.

(iv) A homological orientation for a manifold M (which need not exist) is a con-
tinuous choice of local orientation {Op}p∈M . Sometimes we refer to it as an
orientation.

(v) An n-dimensional manifold is said to be orientable if it admits a homological
orientation. An n-manifold together with a choice of orientation is called
oriented.

Definition 24.5. A manifold is called closed if it is compact and has empty bound-
ary.

In fact, in our definition, every manifold has empty boundary, but one often
expands the definition of manifold to allow boundary points. The adjective closed
emphasises that there is no boundary.

There are some important restrictions on the homology of manifolds.

Theorem 24.6. Let M be a closed, connected n-dimensional manifold.

(i) The top dimensional homology satisfies

Hn(M ;Z) ∼=

{
Z M orientable

0 M not orientable.

Moreover, Hi(M ;Z) = 0 for i > n.
(ii) In the case that M is orientable, let {Op}p∈M be an orientation, so that

(M, {Op}p∈M ) is an oriented manifold. Then Hn(M ;Z) ∼= Z is generated by
a class [M ] that maps to Op under the map

Hn(M ;Z)→ Hn(M,Mr{p};Z)

for every p ∈ M . The homology class [M ] is called the fundamental class
of M .

PNE
We also have that Hn(M ;Z) ∼= Z. We call the generator [M ]∗ with the property

that 〈[M∗], [M ]〉 = 1 the dual fundamental class. For example in the previous
section we constructed θZ = [S1]∗ ∈ H1(S1;Z).

For every closed manifold M , there is an analogous result for Z/2 coefficients.
This does not require that M be orientable.

Theorem 24.7. Let M be a closed, connected n-dimensional manifold. Then
Hn(M ;Z/2) ∼= Z/2 and Hi(M ;Z/2) = 0 for i > n. Thee top-dimensional homology
Hn(M ;Z/2) ∼= Z/2 is generated by a class [M ]Z/2 that maps to a generator under
the map

Hn(M ;Z/2)→ Hn(M,Mr{p};Z/2) ∼= Z/2
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for every p ∈ M . The homology class [M ]Z/2 is called the Z/2-fundamental class
of M .

PNE
There is another very important relation between the homology and the coho-

mology of a manifold, called Poincaré duality.

Theorem 24.8 (Poincaré duality). Let M be an n-dimensional closed, oriented
manifold. Then for any abelian group G, and for every k ∈ Z,

Hn−k(M ;G) ∼= Hk(M ;G).
PNE

Again, there is a Z/2-coefficient version where one does not need orientability.

Theorem 24.9 (Z/2-coefficient Poincaré duality). Let M be an n-dimensional
closed manifold. Then for every k ∈ Z,

Hn−k(M ;Z/2) ∼= Hk(M ;Z/2).
PNE

We will return to Poincaré duality later after we have defined the cap product.
The notion of degrees of maps between manifolds will be useful.

Definition 24.10. Let M and N be closed, oriented, connected n-dimensional
manifolds with fundamental classes [M ] and [N ] and let f : M → N . The map
f induces a map on homology f∗ : Hn(M ;Z) → Hn(N ;Z). Since Hn(M ;Z) ∼=
Hn(N ;Z) ∼= Z, f∗([M ]) = k[N ] for some k ∈ Z. We refer to this integer k as the
degree of f , and write deg(f) = k.

Proposition 24.11. Let M be a closed, oriented n-dimensional manifold, and let
k ∈ Z. There exists a degree k map fk : M → Sn.

Proof. If k = 0 then map all of M to a single point in Sn. For n 6= 0, the proof
constructs a degree 1 map f1 : M → Sn. To obtain a degree k map, post-compose
f1 with the degree k map Sn → Sn constructed in Example 14.3. �

25. Cup products

As advertised previously, one of the great advantages of cohomology is that it
admits a beautiful multiplicative structure. Whereas homology associates to a
topological space a sequence of abelian groups, in cohomology these abelian groups
are collected together to produce a single ring. The multiplication in this ring is
called the cup product, which we shall now define. In order to make cohomology
into a ring, we will need to work with coefficients that are themselves a ring. So let
R be a commutative ring. For example we will typically use R = Z,Q,R or Z/n
for some n. This looks similar to before, since these are all abelian groups. Indeed
any ring is an abelian group. But now we shall also use the ring structure on these
abelian groups.

Here is our goal. For a space X, we want to define a map

^ : H i(X;R)×Hj(X;R)→ H i+j(X;R).

To define such a map, we will define a map on cochains ^ : Ci(X;R)×Cj(X;R)→
Ci+j(X;R), and then we will check that this induces a well-defined map on coho-
mology groups.
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Let us recall and introduce some notation for singular simplices. A singular i-
simplex of X is a continuous map ∆i → X. We write label the vertices 0, 1, . . . , i.
We write [v0, . . . , vj ] for the face of ∆i spanned by the vertices v0, . . . , vj , with
vk ∈ {0, . . . , i} for k = 0, . . . , j.

We write
bj : [0, . . . , j]→ [0, . . . , i] = ∆i

for the front j face of ∆i. We write

cj : [i− j, . . . , i]→ [0, . . . , i] = ∆i

for the back j face of ∆i. Given a singular i+ j-simplex σ : ∆i+j → X, we can
consider its composition with bi and cj :

σ ◦ bi : ∆i → ∆i+j → X

and
σ◦cj : ∆j → ∆i+j → X.

Now we can define:

^ : Ci(X;R)× Cj(X;R) → Ci+j(X;R)
(ϕ,ψ) 7→ ϕ(σ ◦ bi)ψ(σ◦cj)

= ϕ(σ|[0,...,i])ψ(σ|[i,...,i+j]).
That is, we evaluate ϕ on the front i-face and ψ on the front j face. Note that in
the last line we think of σ ◦ bi as the restriction of σ to a face, σ|[0,...,i].

Theorem 25.1.

(1) Given two cocycles ϕ ∈ Ci(X;R) and ψ ∈ Cj(X;R) with δϕ = 0 and
δψ = 0, then ϕ ^ ψ ∈ Ci+j(X;R) is also a cocycle, and therefore represents
a cohomology class [ϕ ^ ψ] ∈ H i+j(X;R).

(2) Cup product is well-defined on cohomology. That is, for any θ ∈ Ci−1(X;R)
and for any χ ∈ Cj−1(X;R), we have that(

(ϕ+ δθ) ^ (ψ + δχ)
)
− ϕ ^ ψ

is a coboundary. Therefore

[(ϕ+ δθ) ^ (ψ + δχ)] = [ϕ ^ ψ] ∈ H i+j(X;R).
PNE

We need the following lemma to prove Theorem 25.1.

Lemma 25.2. Let ϕ ∈ Ci(X;R) and ψ ∈ Cj(X;R). Then

δ(ϕ ^ ψ) = δϕ ^ ψ + (−1)iϕ ^ δψ ∈ Ci+j+1(X;R).
PNE

Proof. Let σ : ∆i+j+1 → X. Then we have the following computations. Here k̂
indicates that the number is missed out.

(25.3) (δϕ ^ ψ)(σ) =
i+1∑
k=1

(−1)kϕ(σ|
[0,...,k̂,...,i+1]

) · ψ(σ[i+1,...,i+j+1])

(25.4) (−1)i(ϕ ^ δψ)(σ) =

i+j+1∑
k=i

(−1)kϕ(σ[0,...,i]) · ψ(σ
[i,...,k̂,...,i+j+1]

)
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The sum of the left hand sides of these two equations equals the right hand side
of the equation we want to prove. In the sum of the right hand sides of these two
equations, the last term of (25.3) cancels with the first term of (25.4). The rest of
the terms sum to

(25.5) δ(ϕ ^ ψ)(σ) = (ϕ ^ ψ)(∂σ)

where ∂σ =
∑i+j+1

k=0 σ
[0,...,k̂,...,i+j+1]

. �

Proof of Theorem 25.1. First we prove that the cup product of two cocycles is a
cocycle. Suppose that δϕ = 0 and δψ = 0, so that both are cocycles. Then

δ(ϕ ^ ψ) = δϕ ^ ψ + (−1)iϕ ^ δψ = 0 ^ ψ + (−1)iϕ ^ 0 = 0 + 0 = 0.

So ϕ ^ ψ is a cocycle.
Next, by the lemma we have that

ϕ ^ δχ = ±δ(ϕ ^ χ)− (δϕ ^ χ) = ±δ(ϕ ^ χ).

Similarly

δθ ^ ψ = ±δ(θ ^ ψ)± (θ ^ δψ) = ±δ(θ ^ ψ).

So both are coboundaries. Finally

δθ ^ δχ = ±δ(θ ^ δχ)± (θ ^ δ2ψ) = ±δ(θ ^ δχ),

which is also a coboundary. We make no effort to get the signs right because they
are irrelevant. Therefore(

(ϕ+ δθ) ^ (ψ + δχ)
)
− ϕ ^ ψ

=ϕ ^ ψ + ϕ ^ δχ+ δθ ^ ψ + δθ ^ δχ− ϕ ^ ψ

=± δ(ϕ ^ χ)± δ(θ ^ ψ)± δ(θ ^ δχ)

=δ(±ϕ ^ χ± θ ^ ψ ± θ ^ δχ)

which is a coboundary, as desired. Therefore the cup products are well-defined on
cohomology, and so define maps

^ : H i(X;R)×Hj(X;R)→ H i+j(X;R),

as promised. �

26. Cup products on the torus

Example 26.1. One of the most instructive examples of cup product is the torus
T 2 = S1 × S1. We explicitly compute the cup product of the torus

^ : H1(S1 × S1;Z)×H1(S1 × S1;Z)→ H2(S1 × S1;Z).

Recall that H1(S1 × S1;Z) ∼= Z⊕ Z and H2(S1 × S1;Z) ∼= Z. So the cup product
corresponds, after having chosen generating cohomology classes, to a pairing Z2 ×
Z2 → Z. Such a pairing can be represented by a 2× 2 matrix A, in the sense that
the pairing of x = (x1, x2) ∈ Z2 and y = (y1, y2) ∈ Z2 is given by

xAyT ,

as you may recall from bilinear forms or inner product spaces in linear algebra.
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We shall choose natural bases for the cohomology of the torus, and with respect
to these bases the cup product is represented by(

0 1
−1 0

)
.

In order to compute the cup product of the torus, first we need to define some
singular simplices and some singular cochains.

In Figure 1, we draw the torus, we draw the projections p, q : S1 × S1 → S1 to
the first and second factors respectively. We also show the images of two singular
simplices with the property that −σ1 + σ2 represents a fundamental class, that is

[−σ1 + σ2] = [T 2] ∈ H2(S
1 × S1;Z) ∼= Z.

The figure indicates which 1-simplices correspond to the images of the 3 summands
in the boundaries ∂σi. Then note that

∂(−σ1 + σ2) = −(σ1|[0,1] + σ1|[1,2] − σ1|[0,2]) + (σ2|[0,1] + σ2|[1,2] − σ2|[0,2])
= −σ1|[0,1] − σ1|[1,2] + σ1|[0,2]) + σ2|[0,1] + σ2|[1,2] − σ2|[0,2]
= −σ1|[0,1] − σ1|[1,2] + σ1|[0,2]) + σ1|[1,2] + σ1|[0,1] − σ1|[0,2]
= 0.

Note that it is important here that, for example σ1|[0,1] shows up twice here
with opposite signs in the formal sum. What emphatically does not happen is
that σ1|[0,1] and σ1|[1,0] show up, both with a positive sign. In the singular chain
complex, recall that these two do not cancel. (This is a popular misapprehension,
so I am trying to highlight it. In cellular homology, and in the simplicial theory,
such cancellation does occur. But we are not working in those theories.)

Now, some more notation for the upcoming cup product computation. Let
µ : ∆1 → S1 be a 1-simplex given by t 7→ e2πit, and let ν : ∆1 → S1 be the constant
1-simplex t 7→ 1 ∈ S1. Let θ ∈ C1(S1;Z) be a cocycle with θ(µ) = 1 and θ(ν) = 0,
so that [θ] ∈ H1(S1;Z) ∼= Z is a generator. For example, we could use the cocycle
θZ constructed in Example 23.2.

The cohomology classes [p∗(θ)] and [q∗(θ)] ∈ H1(S1×S1;Z) provide a generating
set for H1(S1 × S1;Z) ∼= Z2, and the dual class [T 2]∗ = [−σ1 + σ2]

∗ is a generator
for H2(S1 × S1;Z) ∼= Z. Now we can compute the cup product. We focus on
the computation of p∗(θ) ^ q∗(θ), since this is the most exciting one. All other
cup products p∗(θ) ^ p∗(θ), q∗(θ) ^ q∗(θ) and q∗(θ) ^ p∗(θ) can be computed
similarly, but also we will soon be able to deduce them from the computation below
and the graded commutativity property of the cup product. We compute the cup
product p∗(θ) ^ q∗(θ) evaluated on σ1 and evaluated on σ2 separately.(

p∗(θ) ^ q∗(θ)
)
(σ1) = p∗(θ)(σ1|[0,1]) · q∗(θ)(σ1|[1,2])

= θ(p ◦ σ1|[0,1]) · θ(q ◦ σ1|[1,2])
= θ(ν) · θ(ν) = 0 · 0 = 0.
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Figure 1. A diagram of the torus. Identify the vertical edges with
each other and the horizontal edges with each other to get the torus.
The projections p, q : S1 × S1 → S1 are shown. The images of
two singular 2-simplices are shown. At the bottom, a standard
2-simplex ∆2 is drawn. The orientation is anticlockwise, and the
dot indicates the vertex 0. Going anticlockwise round the edges we
come to vertex 1, then vertex 2, then back to vertex 0. The dots
and the orientation arrows in the main diagram of T 2 indicate how
the singular 2-simplices σi : ∆2 → T 2 are defined. This enables us
to label the boundary 1-simplices, such as σ1|[0,1].

Here, to identify p ◦ σ1|[0,1] = ν = q ◦ σ1|[1,2] we look at Figure 1, and note that
these 1-simplice indeed project to points. On the other hand, we have:(

p∗(θ) ^ q∗(θ)
)
(σ2) = p∗(θ)(σ2|[0,1]) · q∗(θ)(σ2|[1,2])

= θ(p ◦ σ2|[0,1]) · θ(q ◦ σ2|[1,2])
= θ(µ) · θ(µ) = 1 · 1 = 1.

Therefore

[p∗(θ) ^ q∗(θ)]([T 2]) =
(
p∗(θ) ^ q∗(θ)

)
(−σ1 + σ2) = 0 + 1 = 1.
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So we have a nontrivial cup product. This corresponds to the top right entry of
the matrix (

0 1
−1 0

)
claimed earlier. The remaining entries can be calculated with analogous computa-
tions, or as mentioned above can be deduced from the fact, to be proven shortly,
that ϕ ^ ψ = −ψ ^ ϕ ∈ H2(T 2;Z) ∼= Z for ϕ,ψ ∈ H1(T 2;Z).

27. The cohomology ring

Let us return to the theory of cup products.

Proposition 27.1. Let R be a commutative ring and let X be a topological space.

(1) The cup product is R-bilinear and associative.
(2) The conglomerate H∗(X;R) :=

⊕
n∈N0

Hn(X,R), with the operations +
and ^, forms a ring:

H∗(X;R) :=
( ⊕
n∈N0

Hn(X,R),+,^
)
.

The unit of the ring is 1X , the cohomology class in H0(X;R) represented
by the constant map X → R that sends x 7→ 1 ∈ R for every x ∈ X.

Proof. Let ϕ ∈ Ci(X;R), let ψ ∈ Cj(X;R) and let χ ∈ Ck(X;R). Let (σ : ∆i+j+k →
X) ∈ Ci+j+k(X;R) be a singular simplex. We prove associativity:

(ϕ ^ ψ) ^ χ(σ) = (ϕ ^ ψ)(σ|[0,...,i+j]) · χ(σ|[i+j,...,i+j+k])
= ϕ(σ|[0,...,i]) · ψ((σ|[i,...,i+j])) · χ(σ|[i+j,...,i+j+k])
= ϕ(σ|[0,...,i]) · (ψ ^ χ)(σ|[i,...,i+j+k])
= ϕ ^ (ψ ^ χ)(σ).

The R-bilinearity is easy and is left to the reader.
Now let us check that 1X is a unit. Let [ϕ] ∈ Hn(X;R) and let σ : ∆n → X be

an n-simplex in Cn(X;R). Then

(ϕ ^ 1X)(σ) = ϕ(σ) · 1X(σ|[n]) = ϕ(σ) · 1 = ϕ(σ).

Thus [ϕ ^ 1X ] = [ϕ] ∈ Hn(X;R). Similarly 1X ^ ϕ = ϕ. So 1X is an identity.
Therefore H∗(X;R) is a ring as asserted. �

Theorem 27.2. Let f : X → Y be a continuous map of topological spaces. Then
f∗ : H∗(Y ;R)→ H∗(X;R) is a ring homomorphism.

Proof. Let ϕ ∈ Ck(Y ;R) and let ψ ∈ C`(Y ;R). Let σ : ∆k+` → X be a singular
(k + `)-simplex. Then

(f∗(ϕ) ^ f∗(ψ))(σ) = f∗(ϕ)(σ|[0,...,k]) · f∗(ψ)(σ|[k,...,k+`])
= ϕ(f ◦ σ|[0,...,k]) · ψ(f ◦ σ|[k,...,k+`])
= (ϕ ^ ψ)(f ◦ σ)

= f∗(ϕ ^ ψ)(σ)
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So f∗(ϕ) ^ f∗(ψ) = f∗(ϕ ^ ψ). Since we already know that f∗ is a homomor-
phism of the underlying abelian groups H∗(Y ;R) → H∗(X;R), it follows that f∗

is a ring homomorphism as claimed. �

Recall that if f ∼ g : X → Y are homotopic maps, then f∗ = g∗ : Hk(X;R) →
Hk(Y ;R) for all k ∈ N0.

Corollary 27.3. Suppose that X ' Y are homotopy equivalent spaces. Then
H∗(X;R) ∼= H∗(Y ;R) are isomorphic rings.

Proof. Let F : X → Y and G : Y → X be maps realising the homotopy equivalence.
Then f ◦ g ∼ Id and g ◦ f ∼ Id implies that g∗ ◦ f∗ = Id and f∗ ◦ g∗ = Id as ring
homomorphisms. Therefore f∗ and g∗ are inverse ring homomorphisms to one
another. �

Now we sketch the proof that cup product is graded commutative on the level of
cohomology. Note that this certainly does not hold in general on the chain level,
only after passing to cohomology.

Theorem 27.4 (Graded commutativity). Let [ϕ] ∈ Hk(X;R) and let [ψ] ∈ H`(X;R).
Then

[ϕ ^ ψ] = (−1)k`[ψ ^ ϕ] ∈ Hk+`(X;R).
PNE

Proof. We give a sketch of the proof. Please read [Hat] or [Fr] for the details.
Define

ρ : Cn(X) → Cn(X)
σ 7→ εnσ

where

εn := (−1)n(n+1)/2.

Here σ(i) = σ(n− i), so σ is the composition

[0, . . . , n]→ [n, . . . , 0]
σ−→ X.

The corresponding permutation of the vertices can be written as a product of
n(n + 1)/2 transpositions, whence the definition of ε. We claim that ρ is a chain
map and that ρ ∼ Id. We omit the proof of the claim, which is the main difficulty
in the proof. See Page 211–2 of Hatcher, for example.

Now, assuming the claim, we prove the theorem. We have

ρ∗(ϕ) ^ ρ∗(ψ)(σ) = ϕ(εkσ|[k,...,0]) · ψ(ε`σ|[k+`,...,k])

ρ∗(ψ ^ ϕ) = εk+`ψ(σ|k+`,...,k) · ϕ(σ|[k,...,0]).
It follows that

εkε`(ρ
∗(ϕ) ^ ρ∗(ψ)) = εk+`ρ

∗(ψ ^ ϕ).

It is trivial to check that

εk+` = (−1)k`εkε`.

Therefore

ρ∗(ϕ) ^ ρ∗(ψ) = (−1)k`ρ∗(ψ ^ ϕ).
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Since ρ ∼ Id, on passing to cohomology this yields

[ϕ] ^ [ψ] = (−1)k`[ψ ^ ϕ]

as desired. �

28. More examples of cup products

Example 28.1. We compute the cup product of RP2 with F2 coefficients. The
interesting cup product is

^ H1(RP2;F2)×H1(RP2;F2)→ H2(RP2;F2)

which is a function F2 × F2 → F2. We have to compute the image of (1, 1). The
answer is 1, so the cup product is nontrivial. We have to compute this though.

See Figure 2 for a depiction of the image of some 2-simplices that sum to a
fundamental class over F2 for RP2. That is,

[RP2]F2 := σ1 + σ2 + τ1 + τ2 ∈ C2(RP2;F2)

generates H2(RP2;F2) ∼= F2.

Figure 2. A diagram of RP2. Identify the edges with each other
to get RP2. The images of four singular 2-simplices σ1, σ2, τ1 and
τ2 are shown.

In the figure, which shows a disc, opposite points on the boundary circle are
identified, as shown by the arrows. The convention for drawing σ1 and σ2 is the
same as in our example of the torus above, and shown in Figure 1. The conven-
tion for drawing τ1 and τ2 is different, since these look like bigons, not triangles.
Remember that we are describing the images of maps ∆2 → RP2, not subsets
homeomorphic to ∆2. The τi are degenerate 2-simplices: one of the edges of each
of the 2-simplices τi is mapped entirely to a single point, the vertex labelled with
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a ×. In both cases this edge is τi|[0,2]. Note that every singular 1-simplex appears
exactly twice in ∂(σ1 + σ2 + τ1 + τ2), with the same orientation. Coming up with
such a diagram is not so easy, as you will discover if you try to do it yourself for
the Klein bottle.

We want to define a generator α ∈ H1(RP2;F2) such that (α ^ α)([RP2]F2) =
1 ∈ F2. Let us explicitly define an element α of H1(RP2;F2), then we will show it
has these properties. Consider the function

S2 → F2

(x, y, z) 7→

{
1 if (z > 0) or (z = 0 and y > 0) or (z = 0 = y and x = 1).

0 else.

Note that for p ∈ S2, f(−p) = 1 − f(p). Let σ : ∆1 → RP2 be a 1-simplex. Let
π : S2 → RP2 be the projection that sends p ∈ S2 to [p] ∈ RP2 = S2/{p ∼ −p}.
Pick a lift σ̃ : ∆1 → S2, in the sense that π ◦ σ̃ = σ. Then define a 1-cochain α by

α(σ) := f(σ̃(1))− f(σ̃(0)) ∈ F2.

There are choices of lifts. However the end point σ̃(1) changing to its antipodal
point would also change the endpoint σ̃(0) to its antipodal point, by continuity and
the fact that σ̃ is a lift. Since f(−p) = 1 − f(p), making both these changes does
not affect α(σ). We note that α is a cocycle, as can be seen by lifting a 2-simplex
to S2: α applied to the boundary of a 2-simplex in RP2 is computed by applying
f to the image of the vertices 2-simplex under the lifted map to S2. Each vertex
appears twice, since it is the vertex of two different edges, so in F2 all contributions
vanish and so δα = 0.

Let µ : ∆1 → RP2 be defined by t 7→ eπit ⊂ S1 ⊂ S2 → RP2, with S1 sitting
inside S2 as the equator {z = 0}. Then µ is a cycle and

α(µ) = f(eπi)− f(e0) = 1 ∈ F2.

Therefore α is a generator of H1(RP2;F2) and µ is a generator of H1(RP2;F2).
Now that we have defined all our cycles and cocycles, we can proceed to compute

the cup product. We have:

α ^ α(σ1) = α(σ1|[0,1]) · α(σ1|[1,2]).

To compute α on 1-simplices, think of the disc we have drawn in Figure 2 as the
northern hemisphere of S2, that is the points {z ≥ 0}. Then f(p) = 1 everywhere
in the interior of the disc, everywhere on the upper boundary arc, excluding the
endpoints. f(p) = 0 on the lower boundary arc, excluding the endpoints. Finally
f(p) = 1 for p the right hand vertex on the boundary, and f(p) = 0 for p the
left hand vertex on the boundary. We assign to a 1-simplex the difference in the
values of f at its endpoints. So any 1-simplex in Figure 2 with an endpoint at the
left hand vertex has α evaluating to 1 on it, while the other 1-simplices have α
evaluating to 0. This makes computing α now relatively straightforward. So we
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have

α ^ α(σ1) = α(σ1|[0,1]) · α(σ1|[1,2]) = 0 · 1 = 0

α ^ α(σ2) = α(σ2|[0,1]) · α(σ2|[1,2]) = 1 · 0 = 0

α ^ α(τ1) = α(τ1|[0,1]) · α(τ1|[1,2]) = 1 · 1 = 1

α ^ α(τ2) = α(τ2|[0,1]) · α(τ2|[1,2]) = 0 · 0 = 0.

Therefore

(α ^ α)([RP2]F2) = (α ^ α)(σ1 + σ2 + τ1 + τ2)

= (α ^ α)(σ1) + (α ^ α)(σ2) + (α ^ α)(τ1) + (α ^ α)(τ2)

= 0 + 0 + 1 + 0 = 1.

So we have a nontrivial cup product as asserted above.

Example 28.2. We describe the cohomology ring of a sphere Sn. We have that
H i(Sn;R) ∼= R if i = 0, n, and is 0 otherwise. The cohomology ring is

H∗(Sn;R) ∼= R[x]/(x2),

the quotient of the polynomial ring R[x] by the ideal (x2). This is known as
a truncated polynomial ring. Here x is the generator of Hn(Sn;R) ∼= R. So
H∗(Sn;R) = {a+ bx | a, b ∈ R}.

Next we show that cup products in wedges of spheres are pretty boring. This
will provide a good source of examples of spaces with a certain set of cohomology
groups, and when we show that for certain other spaces, cup products are nontrivial,
this will enable us to show that these spaces are not homotopy equivalent.

Proposition 28.3. Consider a wedge of spheres

Sn1 ∨ Sn2 ∨ · · · ∨ Snk .

Here ni ≥ 1 and i = 1, . . . , k. Then all cup products of degree at least one are zero.

The analogue actually holds for general wedges, but we will not give the proof.

Proof. Let pi : S
n1 ∨ Sn2 ∨ · · · ∨ Snk → Sni be the projection map, sending all

spheres other than the ith sphere to the basepoint. For all n ∈ N0, we have an
isomorphism

p∗1 ⊕ · · · ⊕ p∗k : Hn(Sn1 ;R)⊕ · · · ⊕Hn(Snk ;R)
∼=−→ Hn(Sn1 ∨ · · · ∨ Snk ;R).

The statement means that we need to show that

p∗i ([S
ni ]∗) ^ p∗j ([S

nj ]∗) = 0 ∈ Hni+nj (Sn1 ∨ · · · ∨ Snk ;R)

for all i, j = 1, . . . , k. For i 6= j, let

gij : Sn1 ∨ · · · ∨ Snk → Sni ∨ Snj

be the projection, and let
qi : S

ni ∨ Snj → Sni

and
qj : Sni ∨ Snj → Snj
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also be projections. Note that qi ◦ gij = pi and qj ◦ gij = pj . We then compute:

p∗i ([S
ni ]∗) ^ p∗j ([S

nj ]∗) = g∗ij(q
∗
i ([S

ni ]∗)) ^ g∗ij(q
∗
j ([S

nj ]∗))

= g∗ij
(
q∗i ([S

ni ]∗) ^ q∗j ([S
nj ]∗)

)
= g∗ij(0) = 0

where we use that q∗i ([S
ni ]∗) ^ q∗j ([S

nj ]∗) ∈ Hni+nj (Sni ∨Snj ;R) = 0 since ni ≥ 1

for all i, so certainly q∗i ([S
ni ]∗) ^ q∗j ([S

nj ]∗) = 0. For i = j, we have

p∗i ([S
ni ]∗) ^ p∗i ([S

ni ]∗) = p∗i ([S
ni ]∗ ^ [Sni ]∗) = p∗i (0) = 0.

Since [Sni ]∗ ^ [Sni ]∗ ∈ H2ni(Sni ;R) = 0. �

29. Cap products

In this section we define cap products. Let R be a commutative ring. The cap
product is an R-bilinear function

_ : Hk(X;R)×H`(X;R)→ H`−k(X;R)

As with cup product, we define the cap product on the chain and cochain level, then
we show that these maps induce well-defined maps on homology and cohomology.
Then we show that these maps have the certain useful properties, in particular the
cap and cup product interact in a useful way. As mentioned above, the Poincaré
duality map is defined in terms of cap products.

Definition 29.1. Let ϕ ∈ Ck(X;R) be a singular cochain. Let σ : ∆` → X with
k ≤ `. Then we define

ϕ _ σ = ϕ(σ|[0,...,k])⊗ σ|[k,...,`] ∈ R⊗ Ck−`(X) = Ck−`(X;R).

Extend to all of C`(X;R) by linearity. This gives rise to a product

_ : Ck(X;R)× C`(X;R)→ C`−k(X;R)

when ` ≥ k and if k > ` then we take the cap product to be the zero map by
definition.

To remember what is happening, you can think that the cochain is hungry, with
appetite k, and the ` simplex is food. The cochain eats up k of the simplex, leaving
an `− k simplex left.

The next lemma will be key for showing that the cap product descends to a
well-defined map on homology/cohomology.

Lemma 29.2. Let ϕ ∈ Ck(X;R) and let σ ∈ C`(X;R). Then

∂(ϕ _ σ) = (−1)k(−δϕ _ σ + ϕ _ ∂σ) ∈ C`−k−1(X;R).
PNE
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Proof. Assume that k ≤ `, or else this just says that 0 = 0. Let σ : ∆` → X be a
singular `-simplex. We compute the three terms individually:

ϕ _ ∂σ =

k∑
i=0

(−1)iϕ(σ|[0,...,̂i,...,k+1])σ|[k+1,...,`] +
∑̀
i=k+1

(−1)iϕ(σ|[0,...,k])σ|[k,...,̂i,...,`];

(29.3)

δϕ _ σ = δϕ(σ|[0,...,k+1])σ|[k+1,...,`] = ϕ(∂σ|[0,...,k+1])σ|[k+1,...,`]

(29.4)

=

k+1∑
i=0

(−1)iϕ(σ|[0,...,̂i,...,k+1])σ|[k+1,...,`];(29.5)

(−1)k∂(ϕ _ σ) = (−1)k∂(ϕ(σ|[0,...,k])σ|[k,...,`]) = (−1)kϕ(σ|[0,...,k])∂σ|[k,...,`]
(29.6)

=
∑̀
i=k

(−1)iϕ(σ|[0,...,k])σ|[k,...,̂i,...,`].(29.7)

When i = k + 1 in the (29.5) cancels with i = k in (29.7). Then we are left with
(29.5) + (29.7) = (29.3). That is,

ϕ _ ∂σ = δϕ _ σ + (−1)k∂(ϕ _ σ),

which rearranges to the statement of the lemma. �

Lemma 29.8. The cap product induces a defined and well defined map

Hk(X;R)×H`(X;R) → H`−k(X;R)
([ϕ], [σ]) 7→ [ϕ _ σ]

for all k, ` ∈ N0.
PNE

Proof. Let ϕ ∈ Ck(X;R) be a cocycle, so that δϕ = 0, and let σ ∈ C`(X;R) a
cycle with ∂σ = 0. Then

∂(ϕ _ σ) = (−1)k(−δϕ _ σ + ϕ _ ∂σ) = (−1)k(−0 _ σ + ϕ _ 0) = 0.

So ϕ _ σ is a cycle. Then we want to check that cap product is well-defined.

[(ϕ+ δχ) _ (σ + ∂τ)] = [ϕ _ σ + δχ _ σ + δχ _ ∂τ + ϕ _ ∂τ ]

=[ϕ _ σ ± χ _ ∂σ ± ∂(χ _ σ)± χ _ ∂2τ ± ∂(χ _ ∂τ)± δϕ _ ∂τ + ∂(ϕ _ τ)]

=[ϕ _ σ ± χ _ 0± ∂(χ _ σ)± χ _ 0± ∂(χ _ ∂τ)± 0 _ ∂τ + ∂(ϕ _ τ)]

=[ϕ _ σ + ∂(±χ _ σ ± χ _ ∂τ ± ϕ _ τ)]

=[ϕ _ σ].

So the homology class produced does not depend on the cocycle representative for
[ϕ], nor does it depend on the cycle representative for σ. �

Here are two basic lemmas on cap product: the identity of cohomology acts
as identity on homology, and a special case where cap product is the same as
evaluation.
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Lemma 29.9. Let σ ∈ Hk(X;R) and let 1X ∈ H0(X;R) be the identity in the
cohomology ring. Then 1X _ σ = σ.

PNE

Proof.
1X _ σ = 1X(σ[0])σ|[0,...,k] = 1 · σ = σ.

�

Lemma 29.10. Suppose that X is connected. Then

_ : Hk(X;R)×Hk(X;R) → H0(X;R) ∼= R
([ϕ], [σ]) 7→ 〈ϕ, σ〉.

PNE

Proof. Let IX denote a 0-simplex that generates H0(X;R). We compute:

[ϕ _ σ] = [ϕ(σ|[0,...,k])σ[k]]
= 〈ϕ, σ〉IX 7→ 〈ϕ, σ〉 ∈ R.

�

30. An example of cap products

Example 30.1. We compute some cap products in T 2 = S1 × S1. We use the
same conventions as in Example 26.1. We repeat our diagram of the torus, and
we use the same singular 2-simplices σ1 and σ2. We also show the projections
p, q : S1 × S1 → S1.

Let θ ∈ C1(S1;Z) represent a generator [θ] ∈ H1(S1;Z). We have singular
1-simplices µ, ν : ∆1 → S1, with [µ] ∈ H1(S

1;Z) a generator (i.e. a fundamental
class) and [ν] = 0 ∈ H1(S

1;Z). We also have that [−σ1 + σ2] = [T 2] ∈ H2(T
2;Z)

is a fundamental class.
We compute the cap product of a generating set of H1(T 2;Z) with the funda-

mental class [T 2].

p∗(θ) _ σ1 = p∗(θ)(σ1|[0,1])σ1|[1,2]
= θ(p ◦ σ1|[0,1])σ1|[1,2]
= θ(ν)σ1|[1,2] = 0

On the other hand

p∗(θ) _ σ2 = p∗(θ)(σ2|[0,1])σ2|[1,2]
= θ(p ◦ σ2|[0,1])σ2|[1,2]
= θ(µ)σ2|[1,2] = σ2|[1,2] = [1× S1].

Putting these together we obtain

[p∗(θ)] _ [T 2] = −p∗(θ) _ σ1 + p∗(θ) _ σ2 = [1× S1].

Similarly, we can compute that

[q∗(θ)] _ [T 2] == −[S1 × 1].

The map
−_ [T 2] : H1(T 2;Z)→ H1(T

2;Z)
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Figure 3. A diagram of the torus. Identify the vertical edges with
each other and the horizontal edges with each other to get the torus.
The projections p, q : S1 × S1 → S1 are shown. The images of two
singular 2-simplices are shown. At the bottom, a standard 2-simplex
∆2 is drawn.

is an isomorphism, with

p∗(θ) 7→ [1× S1]

q∗(θ) 7→ −[S1 × 1].

This map is in fact the Poincaré duality map, so it had to have been an isomorphism.

31. Properties of cap product

An important formula will be the following formula involving both the cup and
the cap product.

Theorem 31.1 (Cup-cap formula). Let X be a topological space, and let R be a
commutative ring. Let ϕ ∈ Ck(X;R), let ψ ∈ C`(X;R) and let σ ∈ Cn(X;R).
Then

ϕ _ (ψ _ σ) = (ψ ^ ϕ) _ σ ∈ Cn−k−`(X;R).
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PNE
Note that the order of the ϕ and the ψ switch. We could change them back, but

then we would have to introduce a sign (−1)k`.

Proof. Suppose that k + ` ≤ n, otherwise the statement is trivial since both sides
are zero. Let σ : ∆n → X be a singular n-simplex. Then:

ϕ _ (ψ _ σ) = ϕ _
(
ψ(σ|[0,...,`]) · σ|[`,...,n]

)
= ψ(σ|[0,...,`]) · ϕ(σ|[`,...,`+k]) · σ|[`+k,...,n]
= (ψ ^ φ)(σ|[0,...,`+k]) · σ|[`+k,...,n]
= (ψ ^ ϕ) _ σ.

Extending this by linearity to general σ ∈ Cn(X;R) gives the result. �

We will also need to know the behaviour of cap product with respect to maps
between spaces.

Theorem 31.2. Let f : X → Y be a map of spaces. Let ϕ ∈ Ck(Y ;Z) and let
σ ∈ Cn(X;Z). Then

f∗(f
∗(ϕ) _ σ) = ϕ _ f∗(σ).

PNE

Proof. Let σ : ∆n → X. As usual we prove the theorem for this σ and extend by
linearity. We compute:

f∗(f
∗(ϕ) _ σ) = f∗(f

∗(ϕ)(σ|0,...,k)σ|[k,...,n]
= f∗ϕ(f ◦ σ|0,...,k)σ|[k,...,n]
= ϕ(f ◦ σ|0,...,k)f ◦ σ|[k,...,n]
= ϕ _ f∗(σ).

�

32. Applications to manifolds

One of the main reasons for introducing the cap product is its rôle in the formu-
lation of the Poincaré duality theorem.

We can now state a more precise version of Poincaré duality.

Theorem 32.1 (Poincaré Duality). Let M be a closed, oriented n-dimensional
manifold. Let [M ] ∈ Hn(M ;Z) be a fundamental class. Then for every r ∈ N0, the
map

PD : Hr(M ;Z)
∼=−→ Hn−r(M ;Z)

[ϕ] 7→ [ϕ _ [M ]]

is an isomorphism.
PNE

Theorem 32.2 (Poincaré Duality with Z/2-coefficients). Let M be a closed n-
dimensional manifold. Let [M ]Z/2 ∈ Hn(M ;Z/2) be a Z/2-fundamental class.
Then for every r ∈ N0, the map

PD : Hr(M ;Z/2)
∼=−→ Hn−r(M ;Z/2)

[ϕ] 7→ [ϕ _ [M ]Z/2]
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is an isomorphism.
PNE

Example 32.3.

(1) For Sn, we have

−_ [Sn] : Hn(Sn;R) = R
∼=−→ H0(S

n;R) ∼= R

is an isomorphism.
(2) We also computed the cap product with the fundamental class of the torus:

−_ [T 2] : H1(T 2;Z) ∼= Z2

(
0 −1
1 0

)
−−−−−−−→ Z2 ∼= H1(T

2;Z)

which is also an isomorphism.

Now we start to discuss some applications of the whole theory. It has been quite a
lot of work to develop homology, cohomology, cup and cap products, together with
universal coefficients and Poincaré duality. So now we start to get some rewards
for our labour.

Proposition 32.4. Let f : M → N be a degree one map between n-dimensional
manifolds. Then for all k ∈ N0 there is a direct summand of Hk(M ;Z) isomorphic
to Hk(N ;Z).

Proof. Consider the following diagram.

Hn−k(M ;Z)

∼= −_[M ]

��

Hn−k(N ;Z)
f∗oo

∼= −_[N ]

��
Hk(M ;Z)

f∗ // Hk(N ;Z).

We claim that it commutes. To see this let ϕ ∈ Hn−k(N ;Z). Then

f∗(f
∗(ϕ) _ [M ]) = ϕ _ f∗([M ]) = ϕ _ [N ].

The first equality is the functoriality for cap product (Theorem 31.2), and the
second is that f is degree one so f∗([M ]) = [N ]. Let

f ! : Hk(N ;Z)→ Hk(M ;Z)

be defined by the composition f ! := (−_ [M ]) ◦ f∗ ◦ (−_ [N ])−1. By commuta-
tivity of the diagram above we have that f∗ ◦ f ! = Id.

Now consider the short exact sequence

0→ ker f∗ → Hk(M ;Z)
f∗−→ Hk(N ;Z)→ 0.

The map f ! : Hk(N ;Z)→ Hk(M ;Z) is a homomorphism and satisfies f∗ ◦ f ! = Id,
so is a splitting. It follows that

Hk(M ;Z) ∼= ker f∗ ⊕ f !(Hk(N ;Z)).

�
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In particular the existence of a degree one map M → N implies that there is a
surjective homomorphism Hk(M ;Z)→ Hk(N ;Z) for every k ∈ N0.

Example 32.5.

(i) There is no degree one map S3 → RP3. Here H1(S
3) = 0 whereas H1(RP3) ∼=

Z/2, so there can be no surjection H1(S
3)→ H1(RP3).

(ii) There is no degree one map S1 × S2 → RP3. Here H1(S
1 × S2) ∼= Z and

H1(RP3) ∼= Z/2, and Z/2 is not a direct summand of Z.
(iii) There is no degree one map from a surface of genus one to a surface of genus

two, since there can be no surjective homomorphism on first homology, which
would be a surjection Z2 → Z4.

Now we combine cup and cap products with Poincaré duality to compute cup
products.

Recall that the complex projective plane CP2 is by definition

CP2 :=
C3r{(0, 0, 0)}

(z0, z1, z2) ∼ (λz0, λz1, λz2); λ ∈ Cr{0}
.

This has a CW decomposition with three cells, one cell of dimension 0,2 and 4.
That is

CP2 = e0 ∪ e2 ∪ e4 = S2 ∪η D4.

It is a 4-dimensional, oriented manifold. Let ϕ := [CP1]∗ ∈ H2(CP2;Z) ∼= Z be a
generator. Let [CP2] ∈ H4(CP2;Z) be a fundamental class. Let ψ ∈ H2(CP2;Z).
Then

〈ϕ ^ ψ, [CP2]〉 = (ϕ ^ ψ) _ [CP2] = ψ _ (ϕ _ [CP2])

Now, since the map (− _ [CP2] : H2(CP2;Z) → H2(CP2;Z) is an isomorphism
by Poincaré duality, we have that ϕ _ [CP2] is a generator of H2(CP2;Z), so
ϕ _ [CP2] = ±[CP1].

Next, note that Ext1(H1(CP2;Z),Z) = Ext1(0,Z) = 0, so

ev : H2(CP2;Z)→ Hom(H2(CP2;Z),Z)

is an isomorphism by the universal coefficient theorem. We have that

〈ϕ ^ ψ, [CP2]〉 = ψ _ (ϕ _ [CP2]) = ev(ψ)(ϕ _ [CP2])

Taking ψ = ϕ, we have

〈ϕ ^ ϕ, [CP2]〉 = ev(ϕ)(ϕ _ [CP2]) = [CP1]∗(±[CP1]) = ±1

It follows that ϕ ^ ϕ = ±[CP2]∗ is a dual fundamental class. In particular the cup
product

^ : H2(CP2;Z)×H2(CP2;Z)→ H4(CP2;Z)

is nontrivial. In general, ψ = nϕ for some n ∈ Z, and so

〈ϕ ^ ψ, [CP2]〉 = ev(nϕ)(ϕ _ [CP2]) = n · [CP1]∗(±[CP1]) = ±n.
Proposition 32.6. The spaces S2 ∨ S4 and CP2 are not homotopy equivalent.

Note that the homology and cohomology of these spaces coincide, namely a Z in
degrees 0,2, and 4. So one really needs cup products to distinguish the homotopy
types of these spaces.
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Proof. Suppose that there is a homotopy equivalence f : S2 ∨ S4 → CP2. Then we
have a commutative diagram as follows:

H2(CP2)×H2(CP2)
^ //

f∗×f∗

��

H4(CP2)

f∗

��
H2(S2 ∨ S4)×H2(S2 ∨ S4)

^ // H4(S2 ∨ S4)

This commutes by functoriality of the cup product. Since f is a homotopy equiva-
lence, the vertical maps are isomorphisms. Start with (1, 1) ∈ Z×Z ∼= H2(CP2)×
H2(CP2). This maps to ±1 ∈ H4(CP2) and therefore to ±1 in H4(S2 ∨ S4). On
the other hand (1, 1) maps to ±(1, 1) ∈ H2(S2 ∨ S4)×H2(S2 ∨ S4). Since the cup
product of wedges of spheres vanishes, this maps to 0 ∈ H4(S2∨S4). This violates
f∗(ϕ) ^ f∗(ϕ) = f∗(ϕ ^ ϕ), i.e. the commutativity of the diagram. So no such
homotopy equivalence f can exist. �

Recall that CP2 = S2 ∪η D4. The 4-cell D4 is attached by a map η : S3 → S2.
This is a famous map called the Hopf map. If this map were null homotopic, then
we would have that S2 ∪η D4 ' S2 ∨ S4. Since we just showed this is not the case,
we must have that the map η : S3 → S2 is nontrivial. The set of (based) homotopy
classes of maps from S3 to S2 form a group, a higher dimensional analogue of the
fundamental group, called π3(S

2). We have just shown that π3(S
2) is nontrivial.

In fact π3(S
2) ∼= Z, and η is a generator, but we shall not prove that here.

Example 32.7. We compute the cup products of S2 × S2.

^ : H2(S2 × S2) ∼= Z2 ×H2(S2 × S2) ∼= Z2 → H4(S2 × S2) ∼= Z
This can be represented by a 2×2 matrix. Let pi : S

2×S2 → S2 be the projection to
the ith factor and let θ ∈ H2(S2) be a generator. Then p∗1(θ), p

∗
2(θ) are generators

of H2(S2 × S2) ∼= Z2. We have that

p∗i (θ) ^ p∗i (θ) = p∗i (θ ^ θ) = p∗i (0) = 0.

So the matrix looks like (
0 x
x 0

)
.

We need to find x. We know that the off-diagonal entries are equal by the symmetry
of the cup product. Let ϕ = (1, 0) and let ψ = (0, 1) in H2(S2 × S2) ∼= Z2. Then

(ϕ ^ ψ) _ [S2 × S2] = ψ _ (ϕ _ [S2 × S2]) = ev(ψ)(ϕ _ [S2 × S2]) = m

for some m ∈ Z, that we shall determine. This m is such that

ϕ _ [S2 × S2] = n · [S2 × pt] +m · [pt×S2].

Note that

0 = (ϕ ^ ϕ) _ [S2 × S2] == ev(ϕ)(ϕ _ [S2 × S2] = n.

So ϕ _ [S2 × S2] = m · [pt×S2]. Since ϕ is a generator of Z2, and − _ [S2 ×
S2] : H2(S2 × S2) → H2(S

2 × S2) is an isomorphism, then m · [pt×S2] must also
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be a generator. For the vector (m, 0) to be part of a generating set of Z2, there
must be a (y, z) ∈ Z2 with (

m y
0 z

)
having determinant ±1. But the determinant is my, and for this to be ±1 we must
have m = ±1. So

ϕ ^ ψ = ±[S2 × S2]∗

and the matrix for the cup product, with respect to the chosen basis p∗i (θ), is(
0 ±1
±1 0

)
.

We could change our choice of fundamental class to its negative, if we want to
remove minus signs that might appear here.

Proposition 32.8. The spaces S2×S2 and CP2#CP2 are not homotopy equivalent.

Proof. Both spaces are closed, orientable 4-manifolds with homology Z, 0,Z2, 0Z.
With respect to the usual bases, the cup product on S2 × S2 is represented by(

0 1
1 0

)
while the cup product on CP2 is represented by

(
1 0
0 1

)
. Suppose that

there is a homotopy equivalence S2×S2 → CP2#CP2. Let β = (1, 0) ∈ H2(CP2#CP2)
be a generator: then β ^ β = ±[CP2#CP2]∗. Therefore

f∗(β) ^ f∗(β) = f∗(β ^ β) = f∗(±[CP2#CP2]∗) = ±[S2 × S2]∗.

This is an odd multiple ±1 of the dual fundamental class. Suppose that f∗(β) =
(a, b) for some (a, b) in H2(S2 × S2) ∼= Z2. Then f∗(β) ^ f∗(β) is computed by(

a b
)(0 1

1 0

)(
a
b

)
=
(
b a

)(a
b

)
= 2ab.

This is even for every (a, b), so can never equal an odd multiple of the dual fun-
damental class. This contradiction yields that S2 × S2 and CP2#CP2 are not
homotopy equivalent. �

Example 32.9. Here is an application of cup products on CPn. We want to show
that there is no retract r : CPm → CPn, when m > n ≥ 1. For a subspace X ⊆ Y ,
with i : X → Y the inclusion map, a retract is a continuous map r : Y → X with
r ◦ i = Id: X → X.

Assume for a contradiction that there is a retract r : CPm → CPn. Then r◦i = Id
implies that

i∗ ◦ r∗ = Id∗ : H2(CPn)
r∗−→ H2(CPm)

i∗−→ H2(CPn).

Since i∗ and Id are isomorphisms on second cohomology, we deduce that so is r∗.
Let x := [CP1]∗n ∈ H2(CPn) ∼= Z be a generator. Then r∗(x) = ±[CP1]∗m is a
generator of H2(CPm). Therefore, since xm ∈ H2m(CPn) = 0, we have

0 = r∗(0) = r∗(xm) = r∗(x)m = (±[CP1]∗)m = ±[CPm]∗ 6= 0 ∈ H2m(CPm).

This is a contradiction, so no retraction r exists, as desired.
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33. The Borsuk-Ulam Theorem

The Borsuk-Ulam theorem is a beautiful theorem that combines a lot our exper-
tise. See Hatcher p. 174-6 for the full exposition, that I explained in the lecture.
We start with a proposition.

Proposition 33.1. Let f : Sn → Sn be such that f(−x) = −f(x). Then deg f ∈ Z
is odd.

PNE

We will need the short exact sequence associated to a 2-sheeted covering space

p : X̃ → X:

0→ C∗(X;Z/2)
τ−→ C∗(X̃;Z/2)

p∗−→ C∗(X;Z/2)→ 0.

Here the map τ is a transfer map, sending a simplex σ : ∆n → X to the sum σ̃1+ σ̃2
of the lifts σ̃i of σ to X̃.

Sketch of proof. To prove the proposition, apply the resulting long exact sequence
in homology with Z/2-coefficients to p : Sn → RPn and the map between the long
exact sequences induced by f . One proves by induction that f induces an isomor-
phism f̄∗ : Hi(RPn;Z/2) → Hi(RPn;Z/2) for every 0 ≤ i ≤ n, and then deduces
that f∗ : Hn(Sn;Z/2)→ Hn(Sn;Z/2) is an isomorphism. It follows that the degree
of f is odd. �

Theorem 33.2 (Borsuk-Ulam Theorem). Let g : Sn → Rn be a map. There exists
a point x ∈ Sn with g(x) = g(−x).

PNE
The classical illustration of this theorem is that there is a pair of antipodal

points on the earth’s surface that have exactly the same temperature and pressure
(assuming these are both constant functions S2 → R.

Proof. Define

f : Sn → Rn

x 7→ g(x)− g(−x)

Note that f(−x) = −f(x). If there is an x ∈ Sn with f(x) = 0, then we are done.
Suppose not, and define

f̄ : Sn → Sn−1

x 7→ f(x)/‖f(x)‖.

Restrict this to Sn−1, to obtain f ′ : Sn−1 → Sn−1. Note that f ′ also satisfies
f ′(−x) = −f ′(x). Therefore f ′ has odd degree by Proposition 33.1. On the other
hand, f ′ was obtained by restriction, so it extends over a disc Dn, for example the
northern or southern hemispheres of Sn. It follows that f ′ is null homotopic, that
is homotopic to a constant map, and therefore has degree zero. Since 0 is even, we
have a contradiction, which proves the Borsuk-Ulam theorem. �
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34. Proof of F2 coefficient Poincaré duality

This section did not appear in lectures and is included for interest only. We shall
outline a proof of the Poincaré duality theorem with F2 coefficients, using simplicial
structures. This gives a nice intuition of the idea behind Poincaré duality, without
having to go into cohomology with compact supports, as in e.g. Hatcher. For the
full proof we refer to [Hat] or [Br].

Theorem 34.1. Let M be a closed n-dimensional manifold. For every k ∈ N0,
there is an isomorphism

PD : Hn−k(M ;F2)
∼=−→ Hk(M ;F2).

PNE
Before we give a detailed sketch of the proof we introduce some notation, as well

as the notion of barycentric subdivision. Recall that the m-simplex is

∆m := {(t0, . . . , tm) ∈ Rm+1 |
∑
i

ti = 1}.

Definition 34.2.

(1) The barycentre of ∆m is

Bm := (
1

m+ 1
, . . . ,

1

m+ 1
) ∈ ∆m.

(2) Let P0, . . . , Pk ∈ ∆m be a collection of points. Then we define a map

[P0, . . . , Pk] : ∆k → ∆m

(t0, . . . , tk) 7→
∑k

i=0 tiPi

(3) Let 〈P0, . . . , Pk〉 ⊆ ∆m denote the image of the map [P0, . . . , Pk].
(4) Let 0 ≤ n1 < · · · < nr ≤ m. Then 〈vn1 , . . . , vnr〉 an r-dimensional face of

∆m.
(5) The image of Br under [vn1 , . . . , vnr ] : ∆r → ∆m is the barycentre of the

face. Given a face τ we write τ for the barycentre of τ .
(6) The set of singular simplices{

[σ0, . . . , σk] : ∆k → ∆m | σ0 ⊂ σ1 ⊂ · · · ⊂ σk ⊂ σ
}

is the barycentric subdivision of ∆m.

Note that the barycentric subdivision of a face is equal to the barycentric sub-
division of ∆m restricted to a face.

Let M be a closed, oriented n-manifold. Then M admits a simplicial structure
{ϕi : ∆ni →M}i∈I . By definition, this is a collection of maps with:

(1) ϕi : ∆ni →M injective.
(2) For all x ∈M , there exists a unique i with x in the interior of the image of

ϕi.
(3) Every face of a simplex is again a simplex.
(4) If ϕi and ϕj intersect, they do so in a face.

Given P0, . . . , Pk ∈ ϕi(∆ni), define

[P0, . . . , Pk] := ϕi ◦ [ϕ−1i (P0), . . . , ϕ
−1
i (Pk)] : ∆k → ∆ni

ϕi−→M.
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Figure 4. Barycentric subdivision of a 2-simplex.

Proof of Theorem 34.1. Here is a detailed sketch of a proof. Let M be a closed,
oriented n-manifold. Choose a simplicial structure {ϕi : ∆ni → M}i∈I for M . We
have a barycentric subdivision of this simplicial structure, obtained by applying
the barycentric subdivision defined above to every simplex in M . This makes sense
by the observation made above that the barycentric subdivision of a face is equal
to the barycentric subdivision of ∆m restricted to a face.

Now let σ be a k simplex of M . Then define the dual cell to σ as the union

σd :=
⋃

σ=σ0⊂σ1⊂···⊂σs
〈σ0, σ1, · · · , σs〉.

The boundary of the dual cell is

∂σd :=
⋃

σ⊂σ1⊂···⊂σs
〈σ1, · · · , σs〉.

There are two claims in this proof, whose proofs we shall omit. These omissions
are why this is just a sketch of the proof.

Claim.

(σd, ∂σd) ∼= (Dn−k, Sn−k)
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Figure 5. A triangulation of a hexagon and its barycentric subdi-
vision are shown. A 0-simplex σ and a 1-simplex τ are chosen, and
their dual cells are depicted.

The proof of this claim uses crucially that M is a manifold. It is not too hard
to construct topological spaces with a simplicial structure where this claim would
fail.

Claim. Suppose that σ and τ are simplices. Then τ is a face of σ if and only if
σd ⊂ τd.

We have two CW complex structures on M . Let Sk(M) be the set of k-simplices
in {ϕi}. Then the CW complex X is the space M with CW structure having as
k-cells the elements of Sk(M). On the other hand the CW complex Y is the space
M with k-cells

{σd | σ an (n− k)-simplex in Sn−k(M)}.
This is a CW structure by the two claims above.

Given a k-cell e in Y , its dual ed is the simplex σ = ed with σd = e.
Now let σ ∈ Sk(M) and define

PD(σ) : CCWn−k(Y )→ F2

to be the map determined by sending σd to 1 and all other (n− k)-cells to 0.

Claim. The map

PD : CCWk (X)⊗ F2 → Hom(CCWn−k(Y ),F2)∑m
i=1 σi ⊗ ai 7→

∑m
i=1 aiPD(σi)

induces isomorphisms

HCW
k (X;F2)

∼=−→ Hn−k
CW (Y ;F2)

for every k ∈ N0.
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By the claim,

Hk(M ;F2) ∼= HCW
k (X;F2)

∼=−→ Hn−k
CW (Y ;F2) ∼= Hk(M ;F2)

since singular and CW homology are isomorphic. This completes the proof of
Poincaré duality modulo the claims.

We indicate the proof of this last claim. The inverse to the map is

Hom(CCWn−k(Y ),F2) → CCWk (X)⊗ F2

f 7→
∑

σ∈Sk(M) σ ⊗ f(σd).

You should check that this indeed an inverse. Therefore the maps are isomorphisms
between the chain groups. To see that they induce a chain isomorphism, we need
to see that the following diagram commutes.

CCWk (X)⊗ F2
PD //

∂
��

Hom(CCWn−k(Y ),F2)

∂∗

��
CCWk−1 (X)⊗ F2

PD // Hom(CCWn−(k−1)(Y ),F2)

Then the map PD is chain map and an isomorphism on chain groups, so is a chain
isomorphism and so induces an isomorphism between homology and cohomology.

To see that the diagram commutes, let σ ∈ Sk(M). We want to show that

PD(∂σ) = ∂∗(PD(σ)) ∈ Hom(CCWn−(k−1)(Y ),F2).

That is, for every τ ∈ Sk−1(M), we have an (n− (k− 1))-cell τd, and we want that

(34.3) PD(∂σ)(τd) = PD(σ)(∂τd) ∈ F2.

Let y1, . . . , ym be the (n−k)-cells in the boundary of τd, which is an (n−k+1)-cell.
The only possible (n− k)-cells in τd are in its boundary. Then we have:

PD(∂σ)(τd) = 1⇔τ is a face of σ

⇔ there is an i with yi = σd

⇔ there is an i with ydi = σ

⇔PD(σ)(∂τd) = 1.

This proves (34.3), which completes the proof of the claim, and therefore completes
our sketch proof of F2 coefficient Poincaré duality. �
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