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Abstract. Given a link in S3 we will use invariants derived from
the Alexander module and the Blanchfield pairing to obtain lower bounds
on the Gordian distance between links, the unlinking number and various
splitting numbers. These lower bounds generalise results recently obtained by
Kawauchi.

We give an application restricting the knot types which can arise from a
sequence of splitting operations on a link. This allows us to answer a question
asked by Colin Adams in 1996.

1. Introduction

1.1. Lower bounds on the clasp number and the Gordian distance

In this paper, by an m-component link L ⊂ S3 we mean an embedding

L : ∪mi=1 S
1 × {i} → S3.

Given i = 1, . . . ,m we write Li = L(S1 × {i}) and we endow it with the orientation

inherited from the standard orientation of S1. By a slight abuse of notation we often

denote the union of the Li again by L. Throughout the paper we will identify two m-

component links L and J if there exists an isotopy through links from L to J . Slightly

more informally, anm-component link is an isotopy class of an oriented, ordered collection

of m disjoint circles in S3.

Let L and J be m-component links in S3. We are interested in the following measures

of how different L and J are.

1. The Gordian distance g(L, J) which is defined as the minimal number of crossing

changes required to turn a diagram representing L into a diagram for J . Here we

take the minimum over all diagrams of L.

2. The 4-dimensional clasp number c(L, J) which is the minimal number of double

points of an immersed concordance between L and J . An immersed concordance is

a proper immersion of m annuli fj : S
1× I # S3× I with fj(S

1×{0}) = Lj ×{0}

and fj(S
1 × {1}) = −Jj × {1}, for j = 1, . . . ,m. The only allowed singularities of

the immersion are ordinary double points.

Note that c(L, J) ≤ g(L, J) since a sequence of crossing changes and isotopies gives rise

to an immersed concordance, with one double point for each crossing change.

Our goal in this paper is to give lower bounds on the Gordian distance and the 4-

dimensional clasp number from the Alexander module and the Blanchfield pairing of a
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link. The relationship between the Alexander module and the unlinking number has

been explored in several earlier papers, see e.g. [BW84, Tra88, CFP13]. The first and

second authors undertook a systematic study of the relationship between the Blanchfield

pairing and the unknotting number of knots in [BF12, BF13].

Given an m-component link L we refer to the complement of an open tubular neigh-

bourhood of L as the exterior of L and we denote it by XL = S3 \ νL. We write

Λ = Z[t±1
1 , . . . , t±1

m ]. We can associate the Alexander module H1(XL; Λ) to L and we

denote the rank of the Alexander module by β(L) := rankΛ(H1(XL; Λ)). The Alexander

polynomial ∆L ∈ Λ of L is defined as the order of the Alexander module. Note that

∆L = 0 if and only if β(L) > 0. We also consider the torsion Alexander polynomial

∆tor
L as the order of the torsion submodule TorΛH1(XL; Λ). Note that ∆tor

L is always

non-zero.

Next we consider the Blanchfield form, which was first introduced for knots by Blanch-

field [Bl57] in 1957. Let S ⊂ Λ be the multiplicative subset generated by the polynomials

ti − 1, for i = 1, . . . ,m. By inverting the elements of S we obtain the ring

ΛS := Z[t±1
1 , . . . , t±1

m , (t1 − 1)−1, . . . , (tm − 1)−1].

Furthermore we denote the quotient field of Λ by Ω = Q(t1, . . . , tm). This is also the

quotient field of ΛS . The Blanchfield form

BlL : t̂H1(XL; ΛS)× t̂H1(XL; ΛS)→ Ω/ΛS

is a nondegenerate, hermitian, sesquilinear form defined on a certain quotient

t̂H1(XL; ΛS) of the torsion submodule TorΛS
H1(XL; ΛS); see Section 2 for details. We

say that a hermitian form λ : H ×H → Ω/ΛS is metabolic if it admits a metabolizer, i.e.

a submodule P of H with P = P⊥ := {h ∈ H |λ(p, h) = 0 for all p ∈ P}. The following

is our first main theorem.

Theorem 1.1. Let L and J be m-component links. Then |β(L) − β(J)| ≤ c(L, J).

Moreover, if c(L, J) = |β(L)−β(J)|, then the Witt sum of Blanchfield forms BlL⊕−BlJ
is metabolic.

In the following, given f = f(t1, . . . , tm) ∈ Λ we write f := f(t−1
1 , . . . , t−1

m ). Further-

more, we say that a polynomial n ∈ Λ is negligible if it is of the form

n = ±
m∏

i=1

trii ·
m∏

i=1

(1 − ti)
si

where ri, si ∈ Z for i = 1, . . . ,m; this is equivalent to saying that n is invertible in ΛS .

We can formulate the following straightforward corollary to Theorem 1.1.

Corollary 1.2. Let L and J be m-component links. If c(L, J) = |β(L)−β(J)|, then

∆tor
L · f f = ∆tor

J · g g · n for some non-zero f, g ∈ Λ and some negligible n ∈ Λ.

The inequality |β(L) − β(J)| ≤ c(L, J) in Theorem 1.1 and the statement of the

corollary are essentially the main result of a recent paper by Kawauchi [Ka13]. (Kawauchi

gives a slightly more precise version of the corollary in so far as he also determines the
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negligible element n.) In the case of single variable Alexander modules, the rank estimate

was previously given by Kawauchi in [Ka96]. The result on Blanchfield forms is to the

best of our knowledge a new result.

Our second main theorem gives a refinement of Corollary 1.2 when we replace the

clasp number by the Gordian distance. More precisely we have the following theorem.

Theorem 1.3. Let L and J be two m-component links. Then

|β(L)− β(J)| ≤ g(L, J).

Furthermore, if β(J) = β(L) + g(L, J), then

∆tor
L = ∆tor

J · f f · n

for some f ∈ Λ and some negligible n ∈ Λ.

Put differently, since Gordian distance is more specialized than 4-dimensional clasp

number, we are able to show that one torsion polynomial divides the other.

1.2. The splitting number and the weak splitting number

We now recall and introduce a few more link theoretic notions.

1. The unlinking number u(L) of an m-component link L is the Gordian distance to

the m-component unlink.

2. An m-component link L is a split link if there are m disjoint balls in S3 each of

which contains a component of L.

3. Following [BS13, CFP13], the splitting number sp(L) of a link L is the minimal

number of crossing changes between different components of L required on some

diagram of L to obtain a split link, where the minimum is taken over all diagrams.

4. The weak splitting number wsp(L) of a link L is the minimal number of crossing

changes required on some diagram of L to produce a split link, where the minimum

is taken over all diagrams.

Note that for the weak splitting number, unlike the splitting number considered above,

crossing changes of a component with itself are permitted. For example if L is the

Whitehead link then it is straightforward to see that wsp(L) = 1, but an elementary

linking number argument (see [CFP13, Section 2]) shows that sp(L) = 2. Somewhat

confusingly the weak splitting number is referred to as the splitting number in [Ad96,

Sh12, La14], but we decided to follow the convention used by Batson–Seed [BS13].

It is straightforward to apply Theorem 1.3 to the computation of unlinking numbers,

splitting numbers and weak splitting numbers. The precise statements are given in

Corollaries 4.2, 4.3 and 4.4. We note that the result on splitting numbers, Corollary 4.3,

considerably strengthens [CFP13, Theorem 4.2].

In Section 5 we give some examples of the use of these corollaries. Corollary 4.2

enables us to easily compute the unlinking numbers of the 3-component links with 9 or

fewer crossings. We also show that some, but not all, of the results on splitting numbers

from [CFP13] which were obtained using covering links, can also be obtained with the

algebraic methods of this paper.
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1.3. Knot types from weak splitting operations

Now we turn to an application of Theorems 1.1 and 1.3 to weak splitting numbers.

Let us introduce some notation. If a link J can be obtained from a link L by a sequence

of r crossing changes then we write L r J . A sequence of crossing changes culminating

in a split link is referred to as a splitting sequence. Given knots K1, . . . ,Km we denote

the split link comprising these knots by K1 ⊔ · · · ⊔ Km. We write U for the unknot

throughout this subsection.

In Section 6 we give a general condition in terms of Blanchfield forms and Alexander

polynomials restricting the knot types which can arise from a sequence of crossing changes

realising the weak splitting number; see Theorem 6.1.

In [Ad96] Adams gave some examples of 2-component links L with unknotted com-

ponents and wsp(L) = 1, such that whenever one turns L into a split link using a single

crossing change, the resulting split link has a knotted component. Put differently, for

the given link L one has to pay a price for splitting it with one crossing change, i.e. one

has to turn one of the unknotted components into a non-trivial knot.

Adams then asked whether there are occasions when the price to pay must be ‘arbi-

trarily high’. More precisely, the following question was asked by Adams [Ad96, p. 299].

Question 1.4. Let C be a complexity for knots, e.g. crossing number, hyperbolic

volume, span of some knot polynomial. Given any c ∈ N, does there exist a 2-component

link L with unknotted components such that for any splitting sequence L  1 K ⊔ U of

length one we have C(K) ≥ c?

We give an affirmative answer to Adams’ question for the crossing number.

Theorem 1.5. Fix c ∈ N. There exists a 2-component link L with unknotted compo-

nents such that such for any knot K with L  1 K ⊔ U , the crossing number of K is at

least c.

Next we give a quick summary of the proof of Theorem 1.5. Given c ∈ N we combine

constructions from [Ad96] and [Kon79] to obtain a link L with L  1 J ⊔ U where J is

a knot such that the degree of ∆J(t) is 2n and ∆J is irreducible, chosen so that n is

suitably high with respect to c. Then we find that for any K as in Theorem 1.5, we have

∆J |∆K , so that the degree of ∆K is forced to be at least 2n. The theorem follows since

the degree of the Alexander polynomial gives a lower bound on the crossing number.

In fact, it is straightforward to modify the proof of Theorem 1.5 to give an affirmative

answer to Adams’ question for the support of knot Floer homology and the 3-genus as

the complexity, since the Alexander polynomial provides a lower bound for these as well.

The paper is organized as follows. In Section 2 we recall the definitions and basic

properties of the Alexander module and the Blanchfield form of a link. In Section 3 we

provide the proof of Theorem 1.1 and Corollary 1.2. In Section 4 we will prove Theorem

1.3 and we will state several corollaries relating Alexander polynomials to the unlinking

number, the splitting number and the weak splitting number of a link. In Section 5

we give examples of unlinking and splitting number computations. In Section 6 we

investigate weak splitting numbers and the knot types arising from them; in particular

we give the proof of Theorem 1.5.
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Conventions.

All rings are commutative and all modules are finitely generated. Links are oriented

and ordered.
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2. The Alexander module and the Blanchfield form

2.1. Alexander modules

Throughout the paper we identify the group ring of Zm with the multivariable Laurent

polynomial ring Λ := Z[t±1
1 , . . . , t±1

m ] in the canonical way. (We suppress m from the

notation, but it will always be clear from the context which m we mean.) We denote by

f 7→ f the involution on Λ which is given by the unique Z-linear ring homomorphism

with ti 7→ t−1
i , i = 1, . . . ,m. Furthermore, given a Λ-module V we denote the Λ-module

with involuted Λ-module structure by V , i.e. the underlying additive group of V is the

same as for V , but the action of f on V is defined as the action of f on V .

Throughout the paper we will mostly be interested in the following Λ-modules:

1. the ring Λ itself,

2. the ring ΛS := Z[t±1
1 , . . . , t±1

m , (t1−1)−1, . . . , (tm−1)−1], which is the multivariable

Laurent polynomial ring with the monomials ti − 1 inverted,

3. the quotient field Ω of Λ, which is also the quotient field of ΛS .

In the following let X be a connected manifold and let ϕ : π1(X)→ Zm be a homo-

morphism. We denote the cover corresponding to ϕ by p : X̃ → X . Given Y ⊂ X we

write Ỹ := p−1(Y ). Note that the group Zm acts by deck transformations on C∗(X̃, Ỹ )

on the left. Thus we can view C∗(X̃, Ỹ ) as a (left) Z[Zm] = Λ-module. Now let M be a

(left) Λ-module. Then we consider the following (right) Λ-modules:

Hi(X,Y ;M) :=Hi

(
C∗(X̃, Ỹ )⊗Λ M

)
, and

Hi(X,Y ;M) :=Hi

(
HomΛ(C∗(X̃, Ỹ ),M)

)
.

As usual we write Hi(X ;M) = Hi(X,∅;M) and Hi(X ;M) = Hi(X,∅;M).

Now let L be an m-component link. We denote the exterior of L by XL. Note that

π1(XL) admits a canonical epimorphism φL onto Zm which is given by sending the i-th

oriented meridian to the i-th vector of the standard basis of Zm. In the following we will

refer to H1(XL; Λ) as the Alexander module of L.

We recall several basic properties of twisted homology and cohomology groups. The

following lemma is well-known; see e.g. [HS71, Section VI.3].
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Lemma 2.1. Let X be a connected CW-complex and let ϕ : π1(X)→ Zm be a homo-

morphism. Then for any Λ-module M we have

H0(X ;M) ∼= M/
{ m∑

i=1

ϕ(gi)vi − vi | v1, . . . , vm ∈M and g1, . . . , gm ∈ π1(X)
}
.

In particular, if M is a field and ϕ is non-trivial, then H0(X ;M) = 0.

The following theorem is a well-known instance of Poincaré duality and the Universal

Coefficient Theorem.

Theorem 2.2. Let X be a connected oriented k-manifold and let ϕ : π1(X) → Zm

be a homomorphism. Let ∂X = Y0 ∪ Y1 be a decomposition of the boundary into two

submanifolds with ∂Y0 = ∂Y1. Then for any Λ-module M we have an isomorphism

PD: Hi(X, ∂Y0;M)
∼=
−→ Hk−i(X, ∂Y1;M).

In particular, if M = Ω is the quotient field of Λ, then Hi(X, ∂Y0; Ω) ∼= Hk−i(X, ∂Y1; Ω).

2.2. Ranks and orders of modules

Let R be a domain with quotient field Q. Let M be an R-module. We then refer to

rankR(M) := dimQ(M ⊗R Q) as the rank of M . Now suppose that R is in fact a UFD

and that M is finitely generated. We pick a resolution

Rk A
−→ R l →M → 0

with k ∈ N ∪ {∞}. After adding possibly columns of zeros we can and will assume that

k ≥ l. The order ord(A) of M is defined as the greatest common divisor of the l × l-

minors of A. Note that the order is well-defined up to multiplication by a unit in R; see

[CF77] for details. Also note that ord(A) 6= 0 if and only if rank(A) = 0.

For future reference we record the following lemma. A proof can be found in [Hi12,

Chapter 3.3].

Lemma 2.3. Let R be a UFD and let

0→ A→ B → C → 0

be a short exact sequence of finitely generated R-modules. Then

ord(B) = ord(A) · ord(C).

In the following, given f, g ∈ R we write f
.
= g if f = ug for some unit u ∈ R.

We will mostly be interested in the rings R = Λ and R = ΛS . Note that the units in

Λ = Z[t±1
1 , . . . , t±1

m ] are precisely the monomials ±tn1

1 . . . tnm
m . Furthermore, the units in

ΛS = Z[t±1
1 , . . . , t±1

m , (t1 − 1)−1, . . . , (tm − 1)−1]

are precisely the products of monomials and powers of ti−1, i = 1, . . . ,m. Put differently,

the units in ΛS are the negligible elements from the introduction.
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Given an m-component link L we write

β(L) := rankΛ(H1(XL; Λ)).

Note that XL is compact, so in particular XL is homeomorphic to a finite CW-complex,

which in turn implies that the cellular chain complex C∗(X̃L) is finitely generated over Λ.

Since Λ is Noetherian it follows thatH1(XL; Λ) and TorΛH1(XL; Λ) are finitely generated

Λ-modules. We refer to

∆L := ord(H1(XL; Λ))

as the Alexander polynomial of L. Furthermore, we refer to

∆tor
L := ord(TorΛH1(XL; Λ))

as the torsion Alexander polynomial of L.

Recall that an m-component link is split if there exist m disjoint 3-balls in S3, each

of which contains a component of L. Later on we will need the following well-known

lemma.

Lemma 2.4. Let L be a split m-component link. Then β(L) = m − 1 and ∆tor
L

.
=

∆L1
(t1) · . . . ·∆Lm

(tm).

Proof. We just provide a short sketch of the well-known proof. By our hypothesis

there exist disjoint balls B1, . . . , Bm in S3, such that Li ⊂ Bi, i = 1, . . . ,m. We write

Si = ∂Bi, i = 1, . . . ,m and C := S3 \ ∪mi=1Bi.

Note that H1(Si; Λ) = H1(C; Λ) = 0 and H0(Si; Λ) = H0(C; Λ) = Λ. Also, a

straightforward argument shows that for j = 0, 1 and i ∈ {1, . . . ,m} we have

Hj(Bi \ νLi) ∼= Hj(S
3 \ νLi; Λ) ∼= Hj(S

3 \ νLi;Z[t
±1
i ])⊗

Z[t±1
i

] Λ.

It follows easily from Lemma 2.1 that H0(S
3 \ νLi;Z[t

±1
i ]) ∼= Z[t±1

i ]/(ti − 1)Z[t±1
i ].

Furthermore it follows from the definitions that Mi := H1(S
3 \ νLi;Z[t

±1
i ]) is a module

whose order equals ∆Li
(ti).

The Mayer–Vietoris sequence with Λ coefficients corresponding to the decomposition

S3 \ νL =
⋃m

i=1(Bi \ νLi) ∪ C gives rise to the following exact sequence:

0 //
⊕m

i=1 Mi ⊗Z[t±1

i
] Λ

// H1(S
3 \ νL; Λ) // Λm //

// Λ⊕
⊕m

i=1 Λ/(ti − 1)Λ // H0(S
3 \ νL; Λ) // 0.

By Lemma 2.1 the module H0(S
3 \ νL; Λ) is Λ-torsion. The lemma now follows immedi-

ately from the above observations and from elementary properties of ranks and orders.

We leave the details to the reader. �

2.3. The maximal pseudo-null submodule

Given a ring R and a module M over R we denote the torsion submodule by TM .

Furthermore we denote the maximal pseudo-null submodule of M by zM ; this is the

submodule of TM which is generated by the elements of M whose annihilator is not
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contained in any principal ideal of R. Following [Hi12, Section 2.3] we write

t̂M := TM/zM.

For future reference we record the following lemma, see [Hi12, Theorem 3.5].

Lemma 2.5. For any Λ-module M we have ord(TM) = ord(t̂M).

2.4. Linking forms

Let R be a ring with (possibly trivial) involution. We denote the quotient field of R

by Q. Here and throughout the paper we extend the involution on R to an involution on

Q. Let λ : H ×H → Q/R be a map.

• We say λ is sesquilinear if λ(au+ bv, w) = aλ(u,w) + bλ(v, w) and λ(u, av+ bw) =

λ(u, v)a+ λ(u,w)b for all a, b ∈ R and u, v, w ∈ H .

• We say λ is hermitian if λ(u, v) = λ(v, u) for all u, v ∈ H .

• We say that λ is nondegenerate if the assignment u 7→ (v 7→ λ(u, v)) defines an

injection of R-modules H → Hom(H,Q/R).

• A linking form over R is an R-module H together with a hermitian sesquilinear

nondegenerate form λ : H ×H → Q/R.

• We say that two linking forms λ : H × H → Q/R and µ : G × G → Q/R are

isomorphic if there is an isomorphism of R modules f : H
≃
−→ G such that λ(v, w) =

µ(f(v), f(w)) for all v, w ∈ H .

• We say that the linking form λ is metabolic if λ admits a metabolizer, i.e. a sub-

module P of H with P = P⊥ := {v ∈ H |λ(p, v) = 0 for all p ∈ P}.

• Given a linking form λ : H×H → Q/R we write −λ : H×H → Q/R for the linking

form which is defined by (−λ)(v, w) = −λ(v, w) for all v, w ∈ H .

• Given two linking forms λ : H ×H → Q/R and λ′ : H ′ ×H ′ → Q/R we refer to

λ⊕ λ′ : (H ⊕H ′)× (H ⊕H ′)→Q/R

((v ⊕ v′), (w ⊕ w′)) 7→ λ(v, w) + λ′(v′, w′)

as the Witt sum of λ and λ′.

• We say that two linking forms (H,λ) and (G,µ) are Witt equivalent, written as

(H,λ) ∼ (G,µ), if there exist metabolic forms (P, ϕ) and (Q,φ) such that

(H,λ) ⊕ (P, ϕ) ∼= (G,µ)⊕ (Q,φ).

• The Witt group of linking forms over R is defined as the set of Witt equivalence

classes of linking forms. The identity element of the Witt group is the equivalence

class of the linking form on the zero module and the inverse of [(H,λ)] is given by

[(H,−λ)].
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For the record we state the following well-known lemma which is proved in [Hi12,

Lemma 3.26], for example.

Lemma 2.6. Let R be a UFD with (possibly trivial) involution. If λ : H ×H → Q/R

is a metabolic linking form, then ord(H)
.
= f · f for some f ∈ R.

2.5. The Blanchfield form

In this section we sketch the definition of Blanchfield forms for 3-manifolds and we

summarize a few key properties. We refer to [Hi12, Section 2] for a thorough treatment

of Blanchfield forms.

LetN be a 3-manifold (with possibly nonempty boundary) and let ϕ : π1(N)→ Zm be

a homomorphism, which induces a homomorphism Z[π1(N)] → Z[Zm] = Λ. Recall that

Ω is the quotient field of Λ. Let R be a subring of Ω that contains Λ and that is closed

under involution. We denote the composition of the following sequence of R-module

homomorphisms by Φ:

TH1(N ;R)
(1)
−−→ TH1(N, ∂N ;R)

(2)
−−→ TH2(N ;R)
(3)
−−→ Ext1R(H1(N ;R), R)
(4)
−−→ Ext1R(TH1(N ;R), R)
(5)
−−→HomR(TH1(N ;R),Ω/R).

Here we used the following maps:

1. the inclusion induced map;

2. the Poincaré duality given in Theorem 2.2;

3. the Universal Coefficient Spectral Sequence (see [Hi12, Section 2.1 and 2.4]) gives

rise to a pair of exact sequences as in the following diagram, where V is some

R-module.

0

��

coker
(
Ext0R(H1(N,R), R)→ Ext2R(H0(N,R), R)

)

��

0 // V //

��

H2(N ;R) // Ext0R(H2(N,R), R)

ker
(
Ext1R(H1(N,R), R)→ Ext3R(H0(N,R), R)

)

��

0

Since Ext0R(H2(N,R), R) = HomR(H2(N,R), R) is torsion-free we obtain a map

TH2(N ;R)→ V , which we then compose with the map

V → ker
(
Ext1R(H1(N,R), R)→ Ext3R(H0(N,R), R)

)
→֒ Ext1R(H1(N,R), R).

4. The map induced by the restriction from H1(N ;R) to TH1(N ;R).
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5. The Bockstein long exact sequence arising from the short exact sequence of coeffi-

cients 0→ R→ Ω→ Ω/R→ 0:

// Ext0R(TH1(N ;R),Ω) // Ext0R(TH1(N ;R),Ω/R) //

// Ext1R(TH1(N ;R), R) // Ext1R(TH1(N ;R),Ω) //

has first and last terms vanishing, the first since TH1(N ;R) is R-torsion and

the last since Ω is an injective R-module. Thus there is a canonical map

Ext1R(TH1(N ;R), R)→ Ext0R(TH1(N ;R),Ω/R) = HomR(TH1(N ;R),Ω/R).

Hillman [Hi12, Chapter 2] shows that if Hi(∂N ;R) = 0 for i = 0, 1 and R contains ΛS ,

then the resulting map

TH1(N ;R)× TH1(N ;R)→Ω/R

(x, y) 7→Φ(x)(y)

descends to a linking form

BlN : t̂H1(N ;R)× t̂H1(N ;R)→ Ω/R

that we refer to as the R-Blanchfield form of N .

Later on we will make use of the following proposition that is proved on [Hi12, p. 40].

(See also [Let00, Proposition 2.8].)

Proposition 2.7. Let N be a closed 3-manifold and let ϕ : π1(N) → Zm be a ho-

momorphism. Let R be a subring of Ω which contains ΛS. Suppose that there exists a

4-manifold W with ∂W = N such that ϕ extends over π1(W ). We write

P := Im
{
TH2(W,N ;R)

∂
−→ TH1(N ;R)→ t̂H1(N ;R)

}
.

If the sequence

TH2(W,N ;R)
∂
−→ TH1(N ;R)→ TH1(W ;R)

is exact, then P⊥ is a metabolizer for the R-Blanchfield pairing of N .

The proof of this is contained in the proof of [Hi12, Theorem 2.4]. However the

situation of his Theorem 2.4 is different to ours, in that the 4-manifold Z in [Hi12] is the

exterior of a concordance between two links. Nevertheless the part of his proof on page

40, verbatim except for (Z, ∂Z) replaced with (W,N), provides a proof of Proposition 2.7.

There was a slight problem with this part of the proof in the first edition of Hillman’s

book, therefore the reader is advised to consult the second edition. A more detailed

version of the proof is also given in [Kim14, Section 5.1].

Now let L be anm-component link. It is straightforward to see thatH∗(∂XL; ΛS) = 0.

We then refer to

BlL := BlXL
: t̂H1(XL; ΛS)× t̂H1(XL; ΛS)→ Ω/ΛS

as the Blanchfield form of L. Given an m-component link L we denote by BlLi
(ti) the
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linking form which is given by tensoring the Blanchfield form of the knot Li over the ring

Z[t±1
i ] up to the ring ΛS . Now we can formulate the following well-known lemma, which

can be viewed as a generalization of Lemma 2.4.

Lemma 2.8. Let L be a split m-component link. Then β(L) = m − 1 and BlL ∼

BlL1
(t1)⊕ . . .⊕ BlLm

(tm).

Proof. We only provide a sketch of the proof. The proof of Lemma 2.4 shows that the

torsion part of H1(XL; Λ) is the direct sum of the Alexander modules of the components,

tensored up into Λ. Each component lives in a 3-ball. The lemma follows from the

observation that the Blanchfield form of a 3-manifold N is isomorphic to that of N with

a 3-ball removed. We leave the details to the reader. �

2.6. Brief review of Reidemeister torsion

In this section we remind the reader of the definition and some basic properties of

Reidemeister torsion, which we shall apply later to compute Λ coefficient homology. For

a comprehensive and readable introduction the reader is referred to [Tu01].

Let (C∗, {ci}) be a based finite chain complex of finitely generated free Ω-modules.

If C∗ is not acyclic, then we define τ(C∗, {ci}) = 0. Otherwise we pick a basis bi of each

Bi := Im(∂i : Ci+1 → Ci), and we pick a lift b̃i−1 of bi−1 to Ci. The Reidemeister torsion

of (C∗, {ci}) is defined as

τ(C∗, {ci}) :=
∏

det([bib̃i−1/ci])
(−1)i+1

∈ Ω× = Ω \ {0},

where [d/e] is the change of basis matrix between bases d and e. The torsion is indepen-

dent of the choices of bi and of the lifts b̃i−1.

Let X be a CW complex together with a homomorphism ϕ : π1(X) → Zm. Such a

representation induces a homomorphism of rings

Z[π1(X)]→ Λ→ Ω.

Choose an orientation of each cell and choose a lift of each cell to a cell in the cover X̃

corresponding to ϕ. This determines a basis {ci} for the chain complex

C∗(X ; Ω) = C∗(X̃)⊗Λ Ω.

By Chapman’s theorem [Ch74], the torsion:

τ(X) := τ(Cα
∗ (X ; Ω), {ci}) ∈ {0} ∪ Ω×/± tk1

1 . . . tkm
m

is a well-defined homeomorphism invariant of (X,ϕ), that is up to the indeterminacy in-

dicated it is independent of the choice of cellular decomposition, the choice of orientations

and the choice of lifts.

An important property of the torsion is multiplicativity in short exact sequences.

Theorem 2.9. Let

0→ C → D → E → 0
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be a short exact sequence of finite acyclic chain complexes of finitely generated Ω-modules.

Let {ci} and {ei} be bases for C and E respectively, let {ẽi} be a lift of {ei} to D, and

define the basis di = ciẽi. Then

τ(D, {di}) = ±τ(C, {ci})τ(E, {ei}).

Proof. See [Tu01, Theorem 1.5]. �

We will also need the following useful formula.

Lemma 2.10. Let X be any CW complex, and let α : π1(X × S1) → Zm be a homo-

morphism such that the composition π1(S
1)→ π1(X × S1)

α
−→ Zm → Z[Zm] = Λ sends a

generator of π1(S
1) to a non-trivial element z 6= 1 ∈ Λ. Then

τ(X × S1) = (z − 1)−χ(X).

Proof. See [Ni03, Example 2.7]. �

In particular this lemma implies that the torsion of a torus is τ(S1×S1) = 1, provided

at least one of the generators maps nontrivially to Zm.

3. Blanchfield forms and the 4-dimensional clasp number

For the reader’s convenience we recall Theorem 1.1.

Theorem 1.1. Let L and J be m-component links. Then |β(L) − β(J)| ≤ c(L, J).

Moreover, if c(L, J) = |β(L)−β(J)|, then the Witt sum of Blanchfield forms BlL⊕−BlJ
is metabolic.

Note that Corollary 1.2 is an immediate consequence of Theorem 1.1 and Lemmas

2.5 and (2.6).

The first part of the theorem has been shown by Kawauchi [Ka13], however our

argument will lead into the proof of the second part of the theorem, so we give a complete

argument.

Let L and J be m-component links. We write c := c(L, J). We start out by intro-

ducing notation, especially for the combinatorics of an immersed concordance.

• Let A1, . . . , Am # S3 × I be m properly immersed annuli giving an immersed

concordance between L and J with c double points. Define A :=
⋃m

i=1 Ai. to be

their union. So A ∩ (S3 × {0}) = Li and A ∩ (S3 × {1}) = −J . (Here we identify

L× {0} with L and similarly we identify J × {1} with J .)

• Define dij := |Ai ∩ Aj | to be the number of double points between Ai and Aj , for

i 6= j. Let dii be the number of self-intersections of Ai. Note that dij = dji. We

have
∑

i≤j dij = c.

• Let Γ be the graph defined by the combinatorics of the intersections of the Ai.

That is, take m vertices corresponding to each of the annuli Ai, and add dij edges

between the ith and jth vertices. There are c edges in total.
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W

A3

A2

A1

XL XJ

L1 J1

L2 J2

L3 J3

Figure 1. Left: an example of an immersed concordance. The picture

is a sketch in dimension 2. The annuli are represented by curves and

the links are represented as points. The manifold W is the part of the

picture outside the neighbourhood of the annuli. The dashed curves

represent P . Right: the corresponding graph Γ (the labelling of the

edges is not drawn).

• We introduce a labelling of edges of Γ. An edge corresponding to a positive double

point is labelled with “+”, while an edge corresponding to a negative double point

is labelled with “−”.

• Let E := β0(Γ) be the number of connected components of Γ and let D := β1(Γ)

be the first Betti number of Γ. We have χ(Γ) = E −D = m− c.

• Define W := S3 × I \ νA to be the exterior of the annuli A.

• The boundary of W decomposes as ∂W = XL ∪∂XL
P ∪∂XJ

XJ , where this defines

P . That is, P := cl(∂W \ (XL ∪XJ )), or equivalently P = ∂νA \ (νL ∪ νJ).

Some of the notation is sketched in Figure 1. We have three lemmata which lead to

the proof of Theorem 1.1. The first looks at the integral homology of P .

Lemma 3.1. The integral homology of P is given by H0(P ;Z) ∼= ZE, H1(P ;Z) ∼=

Z2m+D and H2(P ;Z) ∼= Z2m+D−E .

The next lemma computes the integral homology of W .

Lemma 3.2. The integral homology of W is given by

Hk(W ;Z) ∼=





Z k = 0

Zm k = 1

Zm+c−1 k = 2

0 otherwise.
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Furthermore there exists an isomorphism φW : H1(W ;Z)
≃
−→ Zm such that the diagram

below commutes, where the other maps are either induced by the inclusions or they are

given by the canonical isomorphisms φL and φJ induced by the orientations of the links:

H1(XL;Z)
∼= //

φL

∼=

%%▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲
H1(W ;Z)

∼= φW

��

H1(XJ ;Z)
∼=oo

φJ

∼=

yyrr
rr
rr
rr
rr
rr
rr
rr

Zm

In particular H1(W ;Z) is generated by the meridians to L, or to J , and the maps

H1(XL;Z)→ H1(W ;Z) and H1(XJ ;Z)→ H1(W ;Z) are isomorphisms.

For any subset V ⊆ W , a Λ coefficient system is defined with the representation

π1(V )→ H1(V ;Z)→ H1(W ;Z)
φW
−−→ Zm.

The third and final lemma needed for the proof of Theorem 1.1 looks at the Λ co-

efficient homology of P , where the coefficient system is defined with the representation

π1(P )→ H1(P ;Z)→ H1(W ;Z)
φW
−−→ Zm.

Lemma 3.3. The homology H∗(P ; Ω) is trivial. Moreover the order of the homology

ordH1(P ; Λ) is a negligible polynomial.

Next we give the proofs of the three lemmata above.

Proof of Lemma 3.1. The key observation is that since each P is a boundary of a tubular

neighbourhood of a surface with double points, it is a (possibly disconnected) plumbed

3-manifold; see [GS99, Example 4.6.2]. We remark that if we add, to each vertex in the

graph Γ, two edges ending in arrowhead vertices, then we obtain the plumbing diagram

for P in the sense of [Ne81, Appendix]. Note that the framings are irrelevant because none

of the plumbed components are closed. Also note that in our convention the plumbing

corresponding to a disconnected graph is a disjoint union of the plumbed manifolds

corresponding to the connected components of the graph. Elsewhere in the literature it

has been the connected sum instead of a disjoint union. Computation of H1(P ;Z) is a

standard procedure. We recall it for the reader’s convenience and for future reference in

the proof of Lemma 3.3.

Let Σ be a disjoint union of m annuli. If there are no double points, then P = Σ×S1.

Otherwise we construct P as follows; compare [Ne81, Section 1] and see Figure 2. For

each vertex of the graph Γ we take an annulus with as many discs removed, as is the

valency (number of incident edges) of the vertex. Let Y1, . . . , Ym be these punctured

annuli. The number of removed discs in Yj is ∆j := djj +
∑m

i=1 dij . Let ∂j1, . . . , ∂j∆j
be

the boundary components of Yj corresponding to these discs. The total number of these

boundary components is equal to 2c. (Note that each Yj has two additional boundary

components, namely the boundary of the annulus.)

In the reconstruction of P it is convenient to temporarily orient the edges of Γ, however

the output is independent of this orientation. For each edge of Γ take a torus S1 × S1.

Let T1, . . . , Tc be these tori. Then the manifold P is a union of the products Yj ×S1 and

thickened tori Ti × [−1, 1]. The glueing data is encoded in the graph Γ. Namely, if the
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A1

A2

T

Y2

Y2

Y1Y1

Figure 2. A schematic of the manifold P near a double point. Two

annuli, here A1 and A2, intersect at a single point in the middle. The

part of P near this point (denoted by T in the picture) is the com-

plement of the Hopf link, that is, of the link of the singularity of type

‘ordinary double point’.

edge corresponding to Ti starts at the vertex corresponding to Yj , we identify Ti×{−1}

with ∂jk × S1 ⊂ ∂Yj × S1, where k is determined by the combinatorics of the graph. If

the edge corresponding to Ti ends at the vertex corresponding to Yj , we identify Ti×{1}

with S1 × ∂jk. We remark that this time the coordinates are swapped. Moreover, if the

edge is marked with a “−”, the last identification reverses the orientation both of S1 and

of ∂jk; see [Ne81, Section 1].

Denote the canonical maps Ti → Ti×{±1} by ι±. The Mayer–Vietoris sequence thus

gives rise to the following long exact sequence

(3.1) . . . //
c⊕

i=1

H1(Ti;Z)
ι−−ι+

// H1

(
Y × S1;Z

)
// H1(P ;Z) //

//
c⊕

i=1

H0(Ti;Z)
ι−−ι+

// H0

(
Y × S1;Z

)
// H0(P ;Z) // 0

where Y :=
⋃m

i=1 Yi. Now we have the following claim.
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Claim. The homomorphism

c⊕

i=1

H1(Ti;Z)
ι−−ι+
−−−−→ H1

(
Y × S1;Z

)

splits.

A straightforward argument shows that the curves ∂11, . . . , ∂m∆m
(their number is

2c) freely generate a summand of H1(Y ;Z). In particular there is a splitting

s : H1(Y ;Z)→
⊕

i=1,...,m
j=1,...,∆i

Z∂ij .

It follows easily from the glueings that the map

c⊕

i=1

H1(Ti;Z)
ι−−ι+
−−−−→ H1

(
Y × S1;Z

)
→ H1(Y ;Z)

s
−→

⊕

i,j

Z∂ij

is an isomorphism. This concludes the proof of the claim.

The lemma is now an immediate consequence of the exact sequence (3.1), the defini-

tions and the fact that the above homomorphism splits. Indeed, the H0 terms in the exact

sequence are precisely the terms and maps which compute H0(Γ). Since H0(Γ;Z) ∼= ZE ,

the Mayer–Vietoris exact sequence (3.1) reduces to

Z2c → Z2c+2m → H1(P ;Z)→ Zc → Zm → ZE → 0

where the left hand homomorphism splits. We thus see that H1(P ;Z) ∼= Z2m⊕Zc−m+E .

By E − D = m − c it follows that H1(P ) ∼= Z2m+D. The statement that H2(P ;Z) ∼=
Z2m+D−E also follows from the Mayer–Vietoris sequence. Alternatively it follows from

an Euler characteristic argument and the observation that H2(P ;Z) ∼= H1(P, ∂P ;Z) =

Hom(H1(P, ∂P ;Z),Z) is torsion-free. �

Proof of Lemma 3.2. To compute the integral homology of W we use the Mayer–Vietoris

sequence associated to the decomposition S3 × I ∼= W ∪P νA. For H1(W ;Z), we have

an exact sequence:

H2(S
3 × I;Z)→ H1(P ;Z)→ H1(W ;Z)⊕H1(νA;Z)→ H1(S

3 × I;Z).

As νA strongly retracts onto A, there is an homotopy equivalence

νA ≃ ((Γ ∨ S1) ∨ S1) ∨ · · · ∨ S1,

where there are m copies of S1, one attached to each vertex of Γ. That is, we change the

basepoint for each wedge sum. Therefore H1(νA;Z) ∼= Zm+D and the exact sequence

above becomes:

0→ Z2m+D → H1(W ;Z)⊕ Zm+D → 0.

It follows that H1(W ;Z) ∼= Zm ∼= ker(H1(P ;Z) → H1(νA;Z)). This kernel is
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freely generated by the meridians to L (or to J). Therefore the inclusion induced

maps H1(XL;Z) → H1(W ;Z) and H1(XL;Z) → H1(W ;Z) are isomorphisms. It

is now straightforward to see that the maps H1(W ;Z)
∼=
←− H1(XL;Z)

φL
−−→ Zm and

H1(W ;Z)
∼=
←− H1(XJ ;Z)

φJ
−−→ Zm agree. We denote this isomorphism H1(W ;Z) → Zm

by φW . By Poincaré-Lefschetz duality, H3(W ;Z) ∼= H1(W ; ∂W ;Z), which fits into the

short exact sequence

0→ Ext1
Z
(H0(W,∂W ;Z),Z)→ H1(W,∂W ;Z)→ Ext0

Z
(H1(W,∂W ;Z),Z)→ 0

by the universal coefficient theorem. Since ∂W is connected we have an isomorphism

H0(∂W ;Z)
≃
−→ H0(W ;Z). Therefore H0(W,∂W ;Z) = 0 and the map H1(W ;Z) →

H1(W,∂W ;Z) is surjective. However we just saw that the meridians of L generate

H1(W ;Z). Since the meridians of L lie in ∂W , the image of the map H1(W ;Z) →

H1(W,∂W ;Z) is zero. Thus H1(W,∂W ;Z) vanishes, from which we see that H3(W ;Z) =

0.

Next note that H2(W ;Z) is torsion free. To see this, observe that the torsion sub-

group of H2(W ;Z) is a subgroup of H3(W ;Z) by the universal coefficient theorem,

but H3(W ;Z) ∼= H1(W,∂W ;Z) = 0 by Poincaré-Lefschetz duality. Therefore to find

H2(W ;Z) it suffices to know its rank.

Now we may compute with the Euler characteristic. First χ(S3 × I) = χ(S3) = 0.

Also by Lemma 3.1 we have χ(P ) = 0, so 0 = χ(S3 × I) = χ(W ) + χ(νA) − χ(P ) =

χ(W )+χ(νA). As above, νA is homotopy equivalent to a graph Γ′ with β0(Γ
′) = E and

β1(Γ
′) = m+D. Therefore χ(νA) = E−D−m, from which we see that χ(W ) = m+D−E.

Then note that χ(Γ) = E −D = m− c, computing in the first instance using the Betti

numbers of Γ and in the second instance using the fact that there are m 0-cells and c

1-cells in a cell decomposition of Γ. Thus

χ(W ) = m+D − E = m+ c−m = c.

From this we may compute the rank of H2(W ;Z). Since β0(W ) = 1 and β1(W ) = m, we

have c = χ(W ) = 1−m+ rankH2(W ;Z), so that H2(W ;Z) ∼= Zm+c−1 as claimed. �

Proof of Lemma 3.3. In the proof of Lemma 3.1 we constructed P as a union of

Y1 × S1, . . . , Ym × S1, where Y1, . . . , Ym are punctured annuli, and thickened tori

T1 × [−1, 1], . . . , Tc × [−1, 1]. In the present proof we use the same description of P .

First we show that H∗(P ; Ω) = 0. To this end, consider the short exact sequence of

chain complexes

0→
⊕

i=1,...,c
u=±1

C∗(Ti × {u}; Ω)→

→

m⊕

i=1

C∗(Yi × S1; Ω)⊕
⊕

i=1,...,c

C∗(Ti; Ω)→ C∗(P ; Ω)→ 0.

The Ω coefficient system for any subset V ⊆ P is defined via the map π1(V )→ π1(P )→

Λ→ Ω. All of these chain complexes are acyclic. To see this, note that by the associated

Mayer–Vietoris sequence, this will follow once we see that the Ω coefficient homology is

trivial for all complexes apart from C∗(P ; Ω). The homology H∗(S
1; Ω) = 0 whenever
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the generator of π1(S
1) maps nontrivially into Ω. Then H∗(X×S1; Ω) = 0 for any X by

Lemma 2.10. This accounts for all the remaining terms, and thus completes the proof of

the first part of the lemma, that H∗(P ; Ω) = 0.

Given that H∗(P ; Ω) = 0, we can compute the Reidemeister torsion of P ; from

this we will be able to deduce the order of the first homology with Λ coefficients. The

representation π1(P )→ H1(P ;Z)→ H1(W ;Z)→ Zm = 〈t1, . . . , tm〉 sends a meridian of

Ai to ti. Therefore we may apply Lemma 2.10 to see that

τ(Yi × S1) = (ti − 1)−χ(Yi) = (ti − 1)∆i

since Yi is an annulus with ∆i := dii+
∑m

j=1 dij punctures. Both S1×S1 and S1×S1×I

have Reidemeister torsion 1, by a further application of Lemma 2.10 with X = S1 and

X = S1 × I respectively.

As P is presented as a union of thickened tori T1 × [−1, 1], . . . , Tc × [−1, 1] and Y1 ×

S1, . . . , Ym × S1 along tori, the glueing formula of Theorem 2.9 yields the formula

(3.2) τ(P ) =

m∏

i=1

(ti − 1)∆i ,

in particular τ(P ) is negligible. By [Tu01, Theorem 4.7] we have

τ(P ) =

2∏

i=0

(ordHi(P ; Λ))(−1)i .

Thus it suffices to show that ordH0(P ; Λ) and ordH2(P ; Λ) are negligible.

It follows immediately from Lemma 2.1 and from the definitions that the order of

H0(P ; Λ) is 1 if m ≥ 2, and t− 1 if m = 1. In both cases ordH0(P ; Λ) is negligible. Now

we turn to H2(P ; Λ). Note that P is homotopy equivalent to a 2-complex P ′. Therefore

H2(P ; Λ) = H2(P
′; Λ) is a submodule of the free Λ-module C2(P

′; Λ). In particular

H2(P ; Λ) is torsion-free. By the first part of the lemma we know that H2(P ; Λ)⊗Λ Ω =

H2(P ; Ω) = 0. It follows that H2(P ; Λ) = 0, in particular ordH2(P ; Λ) = 1. �

Remark 3.4. Since (ti−1)
2 is a norm, and each self-intersection contributes (ti−1)

2,

we see the linking number differences between the two links L and J determine the

negligible terms up to norms, just as in [Ka13].

Now we have assembled the necessary ingredients, we throw them into the pre-heated

sizzling pan of long exact sequences that is the proof of Theorem 1.1.

Proof of Theorem 1.1. Let L and J be m-component links. We write c = c(L, J). We

begin by studying the ranks β(L) and β(J). Without loss of generality we can assume

that β(J) ≥ β(L). We then have the following claim which in particular proves the first

statement of the theorem.

Claim. We have β(J) ∈ {β(L), . . . , β(L) + c}.

Consider the long exact sequences of the pairs (W,XL) and (W,XJ ) with Ω coeffi-
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cients:

. . . −→H3(XL; Ω) −→ H3(W ; Ω) −→ H3(W,XL; Ω) −→

−→H2(XL; Ω) −→ H2(W ; Ω) −→ H2(W,XL; Ω) −→

−→H1(XL; Ω) −→ H1(W ; Ω) −→ H1(W,XL; Ω) −→ . . .

and

. . . −→H3(XJ ; Ω) −→ H3(W ; Ω) −→ H3(W,XJ ; Ω) −→

−→H2(XJ ; Ω) −→ H2(W ; Ω) −→ H2(W,XJ ; Ω) −→

−→H1(XJ ; Ω) −→ H1(W ; Ω) −→ H1(W,XJ ; Ω) −→ . . .

We investigate the dimensions of the terms in these sequences. Let

β := β(L) = dimH1(XL; Ω).

By Lemma 2.1 we have H0(XL; Ω) = 0. Since XL is homotopy equivalent to a 2-complex,

we have H3(XL; Ω) = 0. The Euler characteristic of XL is zero since XL is a 3-manifold

with a toroidal boundary. Therefore dimH2(XL; Ω) = β.

Next by Lemma 3.2 we haveHi(W,XL;Z) = 0 for i = 0, 1. ThereforeH1(W,XL; Ω) =

0 by [COT03, Proposition 2.10].

Claim. We have H3(W,XJ ; Ω) = 0.

By Theorem 2.2 the module H3(W,XJ ; Ω) is isomorphic to H1(W,∂W \XJ ; Ω) ∼=

H1(W,∂W \XJ ; Ω). Appealing again to [COT03, Proposition 2.10] we see that

H3(W,XJ ; Ω) = 0 if H1(W,∂W \XJ ;Z) = 0. To see that H1(W,∂W \XJ ;Z) = 0,

we consider the long exact sequence of the triple (W,∂W \XJ , XL):

H1(∂W \XJ , XL;Z)→ H1(W,XL;Z)→ H1(W,∂W \XJ ;Z)→ H0(∂W \XJ , XL;Z).

As we saw above, by Lemma 3.2, H1(W,XL;Z) = 0. Also ∂W \XJ is connected, so

H0(∂W \XJ , XL;Z) = 0. Thus H1(W,∂W \XJ ;Z) = 0, as desired. This concludes the

proof of the claim.

Using the exact sequence of the pair (W,XJ ) with Ω coefficients provided above and

the facts that H3(W,XJ ; Ω) = 0 ∼= H3(XJ ; Ω), we find that H3(W ; Ω) = 0. We may also

reverse the rôles of L and J , so that also H3(W,XL; Ω) = 0.

Suppose that dimH1(XJ ; Ω) = β + ℓ, where ℓ > 0: recall that without loss of

generality we supposed that β(J) ≥ β(L). It follows from H0(XJ ; Ω) = 0 and the usual

Euler characteristic argument that dimH2(XJ ; Ω) = β+ℓ. Next, since H1(W,XL; Ω) = 0

the map

H1(XL; Ω)→ H1(W ; Ω)
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is a surjection, so dimH1(W ; Ω) ≤ β. We also see that H3(W,XJ ; Ω) = 0 implies

H2(XJ ; Ω)→ H2(W ; Ω)

is an injection, so dimH2(W ; Ω) ≥ β + ℓ.

The only potentially nontrivial homology groups of W with Ω coefficients are

H1(W ; Ω) and H2(W ; Ω), since H0(W ; Ω) = 0, again by Lemma 2.1. The Euler charac-

teristic of W is χ(W ) = c by Lemma 3.2, from which it follows that dimH2(W ; Ω) =

dimH1(W ; Ω) + c. Combining this with the fact that dimH1(W ; Ω) ≤ β yields

dimH2(W ; Ω) ≤ β + c. Together the inequalities

β + ℓ ≤ dimH2(W ; Ω) and dimH2(W ; Ω) ≤ β + c

yield ℓ ≤ c, which says that β(J) − β(L) ≤ c. We assumed without loss of gener-

ality that β(J) ≥ β(L), so this completes the proof of the claim above that β(J) ∈

{β(L), . . . , β(L) + c}, and therefore also the proof of the first part of the theorem.

Now we turn to the proof of the second statement. First we note that the Witt sum

BlL⊕− BlJ is isomorphic to Bl∂W . Indeed, by Lemma 3.3 the homology of P with ΛS

coefficients is trivial. Using this observation, the argument on [Hi12, p. 39] carries over

to give the desired statement on Blanchfield forms. We leave the details to the reader.

Thus in light of Proposition 2.7, in order to see that the Witt sum of Blanchfield

forms of the links L and −J is metabolic, it suffices to prove the following claim.

Claim. If β(J) = c(L, J) + β(L), then the sequence

TH2(W,∂W ; ΛS)→ TH1(∂W ; ΛS)→ TH1(W ; ΛS)

is exact.

In the notation of our proof the assumption that β(J) = c(L, J) + β(L) implies that

β + ℓ = c+ β, so that c = ℓ. Therefore dimH2(W ; Ω) = β + c. The Euler characteristic

implies that dimH1(W ; Ω) = β. Now we consider (3.3), i.e. the long exact sequence of

the pair (W,∂W ) with Ω coefficients. Underneath each entry we write its dimension, for

the convenience of the reader, which we will then proceed to justify.

(3.3)

0 −→H3(W,∂W ; Ω)−→H2(∂W ; Ω)−→H2(W ; Ω)−→

β 2β + c β + c

H2(W,∂W ; Ω)−→H1(∂W ; Ω)−→H1(W ; Ω)−→ 0

β + c 2β + c β

By Theorem 2.2 and by the above calculations we have dimH3(W,∂W ; Ω) =

dimH1(W ; Ω) = β and dimH2(W,∂W ; Ω) = dimH2(W ; Ω) = β + c.

Finally we also have dimH1(∂W ; Ω) = 2β + c. Indeed, by Lemma 2.10 and Lemma

3.2 we have H∗(∂XL; Ω) = H∗(∂XJ ; Ω) = H∗(P ; Ω) = 0. The Mayer–Vietoris sequence

for ∂W = XL ∪ P ∪XJ with Ω coefficients then implies the desired equality

dimH1(∂W ; Ω) = dimH1(XL; Ω) + dimH1(XJ ; Ω) = 2β + c.
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A quick look at the dimensions in the long exact sequence (3.3) shows that the

long exact sequence splits into two short exact sequences. Now consider the following

commutative diagram:

0

��

0

��

0

��

TH2(W,∂W ; ΛS)

��

// TH1(∂W ; ΛS)

��

// TH1(W ; ΛS)

��

H2(W,∂W ; ΛS)

��

// H1(∂W ; ΛS)

��

// H1(W ; ΛS)

��

0 // H2(W,∂W ; Ω) // H1(∂W ; Ω) // H1(W ; Ω).

Note that the vertical sequences are exact. Also note that the middle horizontal sequence

is exact. Furthermore, we have just shown that the bottom horizontal sequence is also

exact. It follows from elementary diagram chasing (this is known as the sharp 3 × 3

lemma [FHH89, Lemma 2]) that the top horizontal sequence is also exact. �

4. The Gordian distance between links

4.1. Proof of Theorem 1.3

For the reader’s convenience we recall the statement of Theorem 1.3.

Theorem 1.3. Let L and J be two m-component links. Then

|β(L)− β(J)| ≤ g(L, J).

Furthermore, if β(J) = β(L) + g(L, J), then

∆tor
L = ∆tor

J · f f · n

for some f ∈ Λ and some negligible n ∈ Λ. In particular ∆tor
L divides ∆tor

J .

Proof. We write L′ = J . In light of Theorem 1.1 and the inequality c(L,L′) ≤ g(L,L′)

it suffices to prove the second statement. Let L and L′ be two m-component links with

β(L′) = β(L) + g(L,L′). We have to show that

∆tor
L = ∆tor

L′ · f f · n

for some f ∈ Λ and some negligible n ∈ Λ.

We first consider the case that g(L,L′) = 1. We start out with the following claim.

Claim. There exists a non-zero p ∈ Λ such that

∆tor
L = ∆tor

L′ · p.
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We write H = H1(S
3 \ νL; Λ), H ′ = H1(S

3 \ νL′; Λ) and β = β(L). By assumption

we have rankΛ(H) = β and rankΛ(H
′) = β + 1. In [CFP13, Proposition 4.1] we showed

that there exists a diagram

Λ

f
��

Λ
g

// M
p′

//

p

��

H ′ // 0

H

��

0

where M is some Λ-module and where the horizontal and vertical sequences are exact.

It follows from the horizontal exact sequence that rankΛ(M) ≥ β+1. On the other hand

from considering the vertical exact sequence we see that rankΛ(M) ≤ β + 1. Thus we

deduce that rankΛ(M) = β + 1. It then follows again from the vertical sequence that f

is injective, which in turn implies that TM → TH is a monomorphism. By Lemma 2.3

we have that

(4.1) ord(TM) | ord(TH).

Consider the following commutative diagram

0 // TM

p′|

��

// M

p′

��

// M ⊗Λ Ω

p′⊗id

��

0 // TH ′ // H ′ // H ′ ⊗Λ Ω.

The middle vertical map is an epimorphism and the right hand map is a monomor-

phism since p′ is a surjective homomorphism between two Ω-vector spaces of the same

dimension. Some mild diagram chasing shows that p : TM → TH ′ is an epimorphism.

Lemma 2.3 then implies that

(4.2) ord(TH ′) | ord(TM).

The combination of (4.1) and (4.2) implies that

ord(TH ′) | ord(TH).

But this is exactly the desired statement. This concludes the proof of the claim.

We just showed that ∆tor
L = ∆tor

L′ · p for some non-zero p ∈ Λ. Moreover by Corollary

1.2 we know that

∆tor
L · g g = ∆tor

L′ · g′ g′ · n

for some g, g′ ∈ Λ and some negligible n. If we combine these two statements we see that

g g divides g′ g′ · n. Since Λ is a UFD we have that g′ g′ · n = g g · f f ·m for some f ∈ Λ
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and some negligible m. Simplifying, we obtain ∆tor
L = ∆tor

L′ · f f ·m. This concludes the

proof of the theorem in the case g(L,L′) = 1.

Now suppose that g(L,L′) = g > 1. Then there exists a sequence L =

L0, L1, . . . , Lg = L′ of links such that each Li is obtained from the previous link by

a single crossing change. By Theorem 1.1 we have |β(Li+1) − β(Li)| ≤ 1 for each i.

It follows from the assumption β(L′) = β(L) + g(L,L′) that for each i we have in fact

β(Li+1) = β(Li)+1. The desired statement follows easily from applying the above result

to the g pairs of links. �

4.2. Applications of Theorem 1.3

In this section we will discuss applications of Theorem 1.3 to various special cases

of determining the Gordian distance between links. We start out with the following

well-known lemma.

Lemma 4.1. For an m-component link L we have β(L) ≤ m− 1.

Proof. The statement of the lemma is well-known to the experts, we will therefore just

provide a sketch of an argument. Let L be an m-component link. Consider the inclusion

of a wedge of m circles Y :=
∨

m S1 → XL which sends each circle to a meridian of a

different component of L. The induced map on zeroth and first homology is an isomor-

phism. In particular Hi(XL,
∨

m S1;Z) = 0 for i = 0, 1. It follows from [COT03, Propo-

sition 2.10] that H1(XL, Y ; Ω) = 0, which in turn implies that H1(Y ; Ω) → H1(XL; Ω)

is surjective. Thus it suffices to show that H1(Y ; Ω) ∼= Ωm−1. Note that by Lemma

2.1 we have H0(Y ; Ω) = 0, therefore an Euler characteristic argument shows that indeed

H1(Y ; Ω) ∼= Ωm−1. �

The following corollary to Theorem 1.3 says in particular that the gap between the

rank β(L) of the Alexander module and the maximal possible rank m− 1 gives a lower

bound on the unknotting number. Note that this particular corollary is in fact a special

case of [Ka13, Theorem 1.1].

Corollary 4.2. Let L be an m-component link. Then the following hold:

1. We have m− 1− β(L) ≤ u(L). In particular if ∆L 6= 0, then u(L) ≥ m− 1.

2. If ∆L 6= 0 and u(L) = m− 1, then

∆L = p p · n

for some p ∈ Λ and some negligible n.

Proof. We denote by J the unlink with m-components. It follows from Lemma 2.4 that

β(J) = m − 1 and ∆tor
J

.
= 1. The first statement of the corollary follows immediately

from the first statement of Theorem 1.1 together with Lemma 4.1.

Now suppose that u(L) = m− 1 and ∆L 6= 0. In this case β(L) = 0 and ∆tor
L = ∆L.

It thus follows that |β(L) − β(J)| = m − 1 = u(L) = g(L, J). The desired statement

follows immediately from Theorem 1.3 and ∆tor
J

.
= 1. �

We also have the following corollary which significantly strengthens [CFP13, Theo-

rem 4.2].
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Corollary 4.3. Let L be an m-component link. Then the following hold:

1. We have m− 1− β(L) ≤ sp(L). In particular if ∆L 6= 0, then sp(L) ≥ m− 1.

2. If ∆L 6= 0 and sp(L) = m− 1, then

∆L =

m∏

i=1

∆Li
(ti) · p p · n

for some p ∈ Λ and some negligible n.

The corollary is deduced from Theorem 1.3 in almost the same way as Corollary 4.2,

except that we now apply Lemma 2.4 to the split link whose components are precisely

the components of L when they are considered as individual knots.

Finally the following corollary is also proved in the same way as Corollary 4.2, except

here the knot types occurring in some putative split link, obtained by m − 1 crossing

changes on L, are unknown. We leave the details to the reader.

Corollary 4.4. Let L be an m-component link. Then the following hold:

1. We have m− 1− β(L) ≤ wsp(L). In particular if ∆L 6= 0, then wsp(L) ≥ m− 1.

2. If ∆L 6= 0 and wsp(L) = m− 1, then

∆L =

m∏

i=1

pi(ti) · p p · n

for some pi(ti) ∈ Z[t±1
i ], i = 1, . . . ,m, some p ∈ Λ and some negligible n.

The reader may compare Corollary 4.4 to [Ka13, Corollary 4.1].

5. Examples of unlinking and splitting number computations

5.1. Unlinking numbers

Kohn [Koh93] considered the unlinking numbers of 2-component links with 9 or fewer

crossings. For most 3-component links with 9 or fewer crossings, the deduction of the

unlinking number follows easily from elementary considerations of linking numbers, un-

knotting numbers of components, and certain sublinks being nontrivial. In this section we

show that Alexander modules enable a quick calculation of the unlinking numbers of the

remaining five 3-component links with 9 or fewer crossings. These five links are L6a4,

L8a16, L9a46, L9a53 and L9a54. We remark that the conclusions of this subsection

already follow from [Ka13], so we will be brief.

• The 3-component link L8a16 has unknotted components and Alexander polynomial

(t1 − 1)(t2 − 1)(t3 − 1)(t2t3 − 1).

Since t2t3−1 is not a norm it follows from Corollary 4.2 that the unlinking number

is at least three. In fact the unlinking number is equal to three.
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• We now consider the 3-component link L9a54, which has unknotted components.

Its Alexander polynomial is

(t3 − 1)(t2 − 1)(t1 − 1)(t23 − t3 + 1).

Again, since t23−t3+1 is not a norm it follows from Corollary 4.2 that the unlinking

number is at least three. In fact the unlinking number is equal to three.

• The 3-component links L6a4, L9a46 and L9a53 have nonzero Alexander polyno-

mial, hence unlinking numbers at least two by Corollary 4.2. In fact the unlinking

numbers of these links are equal to two.

• We also briefly consider one 2-component link, the link L9a1. It has two unknotted

components, and its Alexander polynomial is

(t2 − 1)(t1 − 1)(2t22 − 3t2 + 2).

So it follows from Corollary 4.2 that the unlinking number is at least two. In fact

the unlinking number is equal to two. This was already shown by Kohn [Koh93]

using other methods.

5.2. Band-claspings of split links

Let K ⊔ J be a 2-component split link. Pick an embedding f : D = D2 → S3 such

that f(D)∩K = f(∂D)∩K is an interval and such that f(D) intersects J transversally

in one point in the interior of f(D). Then we write

K ′ = K \ f(∂D) ∪ f(∂D) \K

and we refer to K ′ ∪ J as a band-clasping of K and J . See Figure 3.

JK

D

JK
′

Figure 3. Band-clasping.

In Figure 4 we show a band-clasping of two trefoils. If we can find a projection

onto a plane such that the projections of K and f(D) intersect only in the projection

of K ∩ f(D), then we say that K ′ ∪ J is the trivial band-clasping of K and J . It is

straightforward to see that in that case the resulting link does not depend on the choice

of f .

We have the following observation about Alexander polynomials of band-claspings.
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J

K

Figure 4. A band-clasping of two trefoils.

Proposition 5.1. Let L be a band-clasping of K and J , then

∆L(s, t) = ∆K(t) ·∆J (s) · g g

for some non-zero g ∈ Λ. Furthermore g = 1 if the band-clasping is trivial.

For example, using Kodama’s program knotGTK we can show that for the link L in

Figure 4 we have

∆L(s, t) = (1− s+ s2)(1− t+ t2)(s−1 − 1 + t)(s− 1 + t−1).

Note that band-claspings have splitting number 1. The lemma is thus a consequence of

Corollary 4.3, but we prefer to give a sketch of a proof which is particular to this class

of links.

Sketched proof of Proposition 5.1. First of all, it is well-known, and can be shown using

a Mayer–Vietoris argument, that the Alexander polynomial of the trivial band-clasping

of K and J equals ∆K(t) ·∆J (s). Furthermore the proof of [Mi98, Theorem 1.1] carries

over to show that any band-clasping L of K and J is in fact ribbon concordant to the

trivial band-clasping of K and J . (We refer to [Tri69] or alternatively [Sav02, p. 189] for

the definition of ribbon concordance.) It then follows from standard arguments, e.g. by

a variation on [Ka78, Theorem B], that

∆L(s, t) = ∆K(t) ·∆J (s) · g g

for some non-zero g ∈ Λ. �

It can be shown by an argument completely analogous to that of [Kon79, Theorem 1],

that any 2-component link with splitting number 1 is a band-clasping of its components.

Moreover it seems likely, but we will not provide a proof, that in Proposition 5.1 any

non-zero g can be realized by a band-clasping. If this is correct, then this will in partic-

ular show, except for determining the negligible factor precisely, that the conclusion of

Corollary 4.3 (2) is optimal.

5.3. Splitting numbers

In an earlier paper [CFP13], two of us together with Jae Choon Cha already discussed

splitting numbers in detail. In this section we will revisit some of the results from that

paper.
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Figure 5. The link L12n1320.

First we remind the reader that in the calculation of the splitting number, one only

allows crossing changes between different components. It is straightforward to show (see

[CFP13, Lemma 2.1]) that the splitting number has the same parity as the sum of all

linking numbers lk(Li, Lj) with i > j. For example, if L is a 2-component link with odd

linking number, then the splitting number is also necessarily odd.

In [CFP13] Alexander polynomial techniques were used to derive splitting number

conclusions for 2-component linking number one links with at least one knotted compo-

nent. When both components were unknotted, covering link calculus was used, in which

one studies the preimage of one component of the link in the covering space branched

along the other component; see [CK08, Cha09, CO93] for more on covering link calculus.

Some, but not all, of the conclusions obtained in [CFP13] using covering links can be

drawn using Corollary 4.3. For example, in [CFP13] we investigated the link L12n1320,

shown in Figure 5.

This is a 2-component link with linking number one and unknotted components.

It was shown in [CFP13, Section 5.2] that the splitting number is 3. According to

knotGTK [Kod], the Alexander polynomial is:

t31t
3
2 − 2t21t

3
2 − t31t

2
2 + t1t

3
2 + 5t21t

2
2 − 4t1t

2
2 − 4t21t2 + 5t1t2 + t21 − t2 − 2t1 + 1,

which factors as

(t1 − 1)(t2 − 1)(t21t
2
2 − t1t

2
2 + 3t1t2 − t1 + 1).

Since the last factor is not a norm, Corollary 4.3 says that the splitting number is greater

than 1. In fact by the observation above, the splitting number of L12n1320 has to be

odd, so it has to be at least 3. In fact it is easy to verify that it is precisely 3. The proof

of this fact in [CFP13, Section 5.2] used twisted Alexander polynomials to show that a

covering link is not slice, while [BS13] used a Khovanov homology spectral sequence.

Similarly, the links L8a16 and L9a46 were shown in [CFP13] to have splitting number

3 using covering links. They are 3-component links with nonzero Alexander polynomial,

hence we also get from Corollary 4.3 that the splitting number is at least 3.

Note that for 2- and 3-component links this approach can only show that the splitting

number is at least 3, whereas the covering link techniques were sometimes sufficient to
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Figure 6. The link L8a16.

show that the splitting number is 5.

5.4. Weak splitting numbers

The 3-component link L8a16, shown in Figure 6, has unknotted components and

Alexander polynomial

(t1 − 1)(t2 − 1)(t3 − 1)(t2t3 − 1).

As well as having unlinking number 3 we see that L8a16 also has weak splitting

number 3, by Corollary 4.4. Similarly, we can also apply Corollary 4.4 to prove that the

link L12n1320 considered in Section 5.3 does not have weak splitting number 1.

6. Knot types obtained from weak splitting operations

Recall the following notation from the introduction. If a link J can be obtained from a

link L by a sequence of r crossing changes then we write L r J . A sequence of crossing

changes culminating in a split link is referred to as a splitting sequence. Given knots

K1, . . . ,Km we denote the split link whose components are these knots by K1⊔· · ·⊔Km.

Also we write U for the unknot.

Given an m-component link L with weak splitting number wsp(L) = r, we investigate

the question of which knot types can arise in a splitting sequence of length r. Theorem 6.1

below concerns the case r = m− 1.

Theorem 6.1. Let L be an m component link with ∆L 6= 0 and wsp(L) = m − 1.

Then for any two splitting sequences L m−1 K1 ⊔ · · · ⊔Km and L m−1 J1 ⊔ · · · ⊔ Jm
we have

m⊕

i=1

BlKi
(ti) ∼

m⊕

i=1

BlJi
(ti),

where ∼ indicates equivalence in the Witt group of linking forms. In particular

m∏

i=1

∆Ki
(ti) · f f =

m∏

i=1

∆Ji
(ti) · g g · n

for some non-zero polynomials f, g and some negligible n ∈ Λ.
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Proof. In this proof write K := K1 ⊔ · · · ⊔Km and J := J1 ⊔ · · · ⊔ Jm. Since ∆L 6= 0

we have β(L) = 0, while

β(K) = β(J ) = r

by Lemma 2.4. By Theorem 1.1 we have that BlK⊕−BlL and BlJ ⊕−BlL are metabolic

and therefore both are zero in the Witt group. In particular they are equivalent in the

Witt group, from which it follows that BlK = BlJ in the Witt group. By Lemma 2.8

the Blanchfield forms of K and J are the Witt sums of the Blanchfield forms of their

constituent knots.

The second statement is now a consequence of Lemma 2.5 and Lemma 2.6. �

Adams [Ad96] gave the first example of a 2-component link L with unknotted

components and weak splitting number one, such that any crossing change which splits

L necessarily turns one of the two components of L into a nontrivial knot. In the final

paragraph of [Ad96] Adams asked (see Question 1.4) whether there exist such examples,

where in addition we may guarantee high complexity of a component arising from a

single splitting crossing change. The following theorem gives an affirmative answer to

Adams’ question.

Theorem 1.5. Fix c ∈ N. There exists a 2-component link L with unknotted components

such that such for any knot K with L 1 K ⊔U , the crossing number of K is at least c.

The proof of Theorem 1.5 will require the remainder of this section. The examples we

construct are inspired by the construction of Adams [Ad96], but we remark that we have

to change the links from [Ad96] slightly, since the links in [Ad96, Figure 4] are boundary

links and therefore have ∆L = 0 and β(L) = 1, whereas we require ∆L 6= 0 and β(L) = 0

in order to apply our results.

T T

Figure 7. Left: the box denotes a tangle T such that the diagram

is an unknotting number one knot with the unknotting crossing iso-

lated. Right: replace the strands outside the box as shown to get a

2-component link LT with unknotted components and weak splitting

number one.

Choose n to be such that 2n + 1 ≥ c. Choose an irreducible Laurent polynomial

∆(t) = a0(1 + t2n) + a1(t+ t2n−1) + · · ·+ an−1(t
n−1 + tn+1) + ant

n with ∆(1) = 1 and

degree 2n, where 2n = p−1 for p an odd prime. For example choosing n so that 2n = p−1

for p an odd prime greater than or equal to c, and taking a2i = 1 and a2i+1 = −1 for
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i = 0, . . . , ⌊n/2⌋ gives rise to such a polynomial, since this is a cyclotomic polynomial

and cyclotomic polynomials are irreducible.

According to the main theorem of [Kon79], there exists an unknotting number one

knot J with ∆J(t)
.
= ∆(t). Let T be a tangle such that the picture on the left hand

side of Figure 7 is a diagram for J , where we isolated a crossing, at which a crossing

change results in an unknot. If necessary, switch J for one of either its reverse rJ , its

mirror image J or rJ , in order to arrange that the orientations are as shown on the left

of Figure 7. (These orientations will soon be important for simplifying the construction

of a Seifert surface.) Replace the strands outside the box with the arrangement on the

right hand side of Figure 7, to obtain a 2-component link with unknotted components

which we call LT . Changing one crossing of LT , in the clasp on the right, yields J ⊔ U .

This construction is an adaptation of that of [Ad96, Figure 4].

Lemma 6.2. The links LT constructed above have nonzero Alexander polynomial

∆LT
6= 0.

Before giving the proof we recall the definition of the Sato-Levine invariant of a 2-

component link L = L1∪L2 with linking number zero [Sat84]. Pick two Seifert surfaces F1

and F2 in S3, with ∂Fi = Li, F1 ∩ L2 = F2 ∩ L1 = ∅ and F1 ⋔ F2. The intersection

F1 ∩ F2 is a link J ⊂ S3. Choose an orientation of J , a framing for the normal bundle

of J in F1 and a framing for the normal bundle of J in F2, such that the first two agree

with the orientation of F1, the first and the third agree with the orientation of F2, and all

three agree with the orientation of S3. Together the framings of the normal bundles to J

in F1 and F2 give a framing for the normal bundle of J in S3. The framed bordism class

of the link J then defines the Sato-Levine invariant. Recall that two framed links in S3

are framed bordant if and only if the sums of their framing coefficients are equal, since

we can use the Pontryagin-Thom construction to produce an element of π3(S
2) ∼= Z,

with the Hopf invariant yielding the isomorphism to Z.

Proof of Lemma 6.2. We start with the following claim.

Claim. The links LT above have Sato-Levine invariant −1.

To prove the claim, apply the Seifert algorithm to the left hand component of LT ,

on the right of Figure 7. Call this component L1 and the resulting Seifert surface F1.

Construct a Seifert surface F2 for the other component L2 by taking the obvious disc

and tubing along L1 where L1 hits the disc, passing the tube around the clasp. This

makes Seifert surfaces F1, F2 for L1, L2 respectively with F1 ∩ L2 = ∅ = F2 ∩ L1. The

orientation is important for ensuring that the Seifert algorithm gives a surface F1 disjoint

from L2. The intersection F1 ∩ F2 is a single circle and the self linking of F1 ∩ F2 from

the framing induced by the Seifert surfaces is −1; it can be seen that a full negative twist

in the induced framing arises when passing around the clasp. This completes the proof

of the claim.

As was shown in [Co85, Theorem 4.1], the Sato-Levine invariant of a 2-component

link L with linking number zero is equal to minus the coefficient of z3 in the Conway

polynomial ∇L(z). Thus the Conway polynomial is nonzero.
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According to Kawauchi [Ka96, Proposition 7.3.14] we may relate the multivariable

and single variable Alexander polynomials by:

∆L(t, t)(t− 1) = ∆L(t).

Thus, to show that the multivariable Alexander polynomial is nonzero it suffices to show

that ∆L(t) 6= 0. Suppose that V is anm×m Seifert matrix for L arising from a connected

Seifert surface. Then

t−m/2∆L(t)
.
= det(t1/2V − t−1/2V T ) = ∇L(t

1/2 − t−1/2) = ∇L(z);

the change of variables is z = t1/2 − t−1/2. Thus if ∆L(t) = 0 then ∇L(z) = 0. The fact

shown above that ∇L(z) 6= 0 therefore completes the proof of Lemma 6.2. �

The next result follows immediately from Alexander’s original definition; compare

also [Ro76, Exercise 8.C.12, page 208]. The proof is left to the reader. For a Laurent

polynomial p(t) =
∑

i∈Z
ait

i ∈ Z[t±1] we define deg(p(t)) to be the difference deg(p(t)) :=

max{j ∈ Z | aj 6= 0} −min{k ∈ Z | ak 6= 0}.

Lemma 6.3. Let K be a nontrivial knot and c be its crossing number. Then the degree

of the Alexander polynomial satisfies deg∆K ≤ c− 1.

Continuation of the proof of Theorem 1.5. Consider the links LT constructed above. We

have L  1 J ⊔ U , where deg(∆J ) = 2n and 2n + 1 ≥ c; recall that n was chosen to

satisfy this property with respect to c. For any knot K with Alexander polynomial

having degree 2n we have 2n ≤ k − 1, where k is the crossing number of K. Thus we

have c ≤ 2n + 1 ≤ k. It therefore suffices to show that any knot K arising from one

splitting crossing change on LT has Alexander polynomial containing ∆J(t) as a factor.

Since ∆LT
6= 0, we have that β(L) = 0, whereas β(J ⊔ U) = 1 by Lemma 2.4.

Therefore by Theorem 1.3 and another application of Lemma 2.4 we have that

∆LT
(t1, t2) = ∆tor

J⊔U · f f ·m = ∆J(t1) · f f ·m

for some f ∈ Λ and some negligible n ∈ Λ.

Now suppose that we have some other splitting crossing change on L yielding K ⊔U .

Then similarly to above we have

∆LT
(t1, t2) = ∆tor

K⊔U · g g ·m
′ = ∆K(t1) · g g ·m

′

for some g ∈ L and some negligible m′ ∈ Λ. Therefore

(6.1) ∆J (t1) · f f ·m = ∆K(t1) · g g ·m
′.

The ring Λ is a UFD and ∆J is irreducible. Therefore a non–negative number a∆K
such

that ∆
a∆K

J divides ∆K , but ∆
1+a∆K

J does not, is well–defined. Similarly we define af ,

af , ag, ag. As ∆J is symmetric, we infer that af = af and ag = ag. Notice that ∆J ,

being a non–trivial knot polynomial, does not divide negligible polynomials m and m′.

The maximal exponent a such that ∆J divides the left hand side of (6.1) is 1 + 2af .

For the right hand side it is a∆K
+ 2ag. This implies that a∆K

is odd, in particular ∆J
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divides ∆K . This shows that deg∆K ≥ deg∆J = 2n. Recall that n was chosen so that

2n+ 1 ≥ c, and by Lemma 6.3 this implies that the crossing number of K is at least c.

�

7. Questions

Kohn [Koh93] initiated the study of unlinking numbers for links with more than

one component. There are five 2-component 9 crossing links for which Kohn could not

compute the unlinking number, namely

923 = L9a30, 9215 = L9a15, 9227 = L9a17, 9231 = L9a2 and 9236 = L9a10,

where the names come from Rolfsen’s book [Ro76] and the Linkinfo tables [CL] respec-

tively. For each link the question is whether the unlinking number is two or three.

Kanenobu recently announced a proof that the unlinking number of L9a30 is 3. Unfor-

tunately the techniques of this paper do not help. It would be very interesting if it could

be shown that one of the four remaining links has unlinking number 3.
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