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1. Introduction. A central role in the theory of smoothing combinatorial manifolds
is played by the Cairns-Hirsch Theorem, which may be expressed (in a weak form)
as follows:

If M is a combinatorial manifold and if M x R has a differentiable structure o com-
patible with its combinatorial structure then M has a differentiable structure vy, such that
(M x R), is diffeomorphic with M, x R.

The analogous theorem for topological manifolds would be extremely useful for
the theory of smoothing topological manifolds.

We will prove the following:

THEOREM. Let M™ be a closed 1-connected topological manifold of dimension n > 5.
If M x R is a differentiable (combinatorial) manifold, then M is h-cobordant to a smooth
(combinatorial) manifold N, and M x R is diffeomorphic (combinatorially equivalent) to
N x R. Further, such an N is unique.

CoroLLARY 1. If M is a closed, 1-connected manifold of dimension > 5 which is not
the homotopy type of a smooth manifold, (e.g. see (6) or (12)), then M x R does not have a
differentiable structure.

CoROLLARY 2. If M™ is a closed, 1-connected n-manifold, n > 5, and if M x R* is
differentiable (combinatorial), k > 2, then M x S¥=1 45 h-cobordant to a differentiable
(combinatorial) manifold.

For if M x R* is differentiable then M x S*-1x R is differentiable, being an open
subset of M x R* (similarly for combinatorial), and the theorem applies.

We now proceed to the proof of the theorem. We will consider the combinatorial
case, and indicate any changes necessary for the differentiable case. The differentiable
case may actually be derived from the combinatorial one, using results of (3) and (8).

Consider the projection map form M x R — R and choose a simplicial approximation
f with respect to the combinatorial structures of M x R and R. Consider a point « € R
between vertices of R and let K = f~1(a) < M x R. Then K is a combinatorial mani-
fold, piecewise linearly embedded in 3 xR with a product neighbourhood
K x BR<M x R (see, for example, (19)). (In the differentiable case choose a regular
point of a smooth approximation f, using Sard’s Theorem; see (11).) By choosing an
appropriate component of K in case K is not connected, we may assume that K is
connected, compact (since f is proper being an approximation to a proper map) and
K divides M x R into two manifolds 4 and B with boundary K = 4 n B.
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Now the idea of the proof is as follows:

The inclusion of K < M x R followed by the projection M x R— M is shown to be
a map of degree + 1. It follows that this map g has the property that kernel g, is
a direct summand of H,(K) which satisfies Poincaré duality. We proceed to reduce
kernel g, by doing surgery on K inside M x R (cf. (1), (9) and (16)).

More precisely assuming g, is an isomorphism for 4 < k, onto fori =k, k < in, we
show that we may find for each z e (kernel g,), a handle H = D¥+! x D»—* contained
either in A or B (say A) with H ~n K = 8% x D** and with 8% x 0 representing the
homology class z. Then we define A’ = A —interiorof H, B’ = BuH,andA'n B'=K’
where K’ is obtained from K by the surgery associated with S* x D*—* < K. We show
that this processkills (kernel g, ), for £ < 3n. We call this process ‘exchanging handles’.

If n = 2k+1, g, is then an isomorphism for ¢ < k, hence by Poincaré duality for
all 7. It follows that K, 4, B and M x R are all homotopy equivalent, and then it
follows from the A-cobordism theorem ((13)) or from the engulfing theorem ((14)) that
M x R is equivalent to K x R, and the theorem follows.

In case n = 2k, the above process makes g,.: H;(K)—> H/(M) isomorphic for ¢ < k.
Then we consider 4 = closure of 4 in M x I, where R is considered as the interior of 1.
Then A is a cobordism between K and M, and we make it an h-cobordism by attaching
handles to 4 along K. Then from the engulfing theorem ((14)) it follows that K’ x R is
equivalent to M x R and the result follows.

The details follow.

2. Algebra. In this section we deduce some facts about the homology of our
situation which we will need.

Let K « M xR = Au B, K = 4 n B, everything connected, 4 and B combinatorial
(smobth) manifolds with boundary K. Let M x R = interior of M xI, A, B the
closures of 4 and B in M x I, so that A and B are cobordisms between K and M
(= M x1or M x0). Let p: M x I-> M be projection, inducing retractions 4, B to M,
andamapg:K—M. Leta: K> A4,b:K—-B,a: A— M x R, f: B> M x R be inclusions
and the same létters with bars (@, b, @, ) the corresponding inclusions with 4, B, M x I,
replacing 4, B, M x R.

Lemma 2-1. g, H (K)—> H, (M) is of degree 1.

Proof. Let pg,py be the generators of H,(K), H,(M) respectively given by the
orientation of M x R. Then 04 = Ku M and if veH,, (4,04) is the orientation
generator, &v = f; — fig, SO that u, and ur have the same image u in H,(4). But
DPyOyu b = Hp1;, SO Py Qg Qe g = G flor = Mag-

LemMmA 2-2. There are mapsy: H(M)—> H(K), y*: H(K)—>HYM) suchthatg,y = 1,
v*g* = 1, and (kernelg,), ~ (kernel y*)»—2,

Proof. Define v, y* as follows:

If xeH(M), x =ynpy, then yr = g*ynpg. If '€ H*4K), y*z =z, where
znpyr =04(%" npux). Then it is easy to check using properties of cap product, that
gxv = 1 and y*g* = 1. If 2’ e (kernel y*)»2 then g, (z' n pg) = 0 so

n pg: (kernel y*)»—2— (kernel g,.),.
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It only remains to show it is onto. But if ze (kernel g,),, 2 = wn px and y*w = 0,
so that Ao
(kernel y*)»—2—— (kernel g,),.

LevMma 2-3. (I) kernel g, = kernel a, +kernel b,,.
(IT) a,|kernel b, and b,|kernel a, are mono.
(IIT) a,(kernel b,) = kernel a, and
by (kernel a,) = kernel g,.

Proof. Since M is a retract of 4 (or B), ., (or f,) is onto, so that we get from the
Mayer-Viettoris sequence for ¥ x R = Au B,

0-> Hy(K) “*% H(A)+ H(B) =% H(M x R) > 0.

Now g, = 2, a, = by (using the isomorphism of H, (M) and H,.(M x R)). If
zekernelg, then a,a,xz =0, so that (x,—pf.)(a,x) =0 and a,z = (a4 +b)(2),
zeH (K), and zeckernelb,. Similarly b,z = (a4+by)(z'), 2 ekernela,. Then
(a4 +0.) (@) = (ay +b,) (2+2’) and since ay, + by is mono, z = z+2'. But

kernel a, n kernel b, < kernel (a, +b,) =0
so they are disjoint, which proves (I1), and thus we have a direct sum

kernel g, = kernel a, +kernel b,
and (I) is proved.

To prove (III), we note that if z e kernel b, then
Oy Oy & = (Xg — P} (@4 ) = (g — ) (a4 +by) () = O
s0 a, x ekernel a,. But if yekernel o, = H,(4), then (o, — f4)(y) = 0 s0
Y= (as+by)(2)e Hy(4), s0 byz=0 and y=a,z.
Lemma 2-4. Let j,:M->A. Then npg induces an isomorphism of a*(kernelj%)?
with (kernela,),_, and similarly with A in place of A.

Proof. Since A < A are the same homotopy type, it suffices to prove it for 4.
Consider the commutative diagram with exact rows (see (2))

.>Hydy X,  Heod)Ls H (4, 04)~ ...

o (l |~

>H,,y (A,04) 2> H, (04)—2> H, (A)—...

where z = dve H,(94) is the fundamental class. It follows that % induces an iso-
morphism of (imagei*)? with (kernel i,),_,. Now 04 = K v M (disjoint union), so
that i, = d, +7j,, j: M > A is inclusion, and * = a* +j*. Now for the fundamental
class peH,(04) = H(K)+H, (M), = pp—px, and apg=0 on H*(M) and
Apy = 0on H*(K). Hence nji sends H*(K) into H,(K) and H*(3) into H (M). It
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follows that nz|H*(K) = ~ pg induces an isomorphism between (image i*)? n H*(K)
and (kernel ¢,) n H (K). But

(imagei*) n H*(K) = a*(kernel %) and (kerneli,)n H,(K) = kernela,,
which proves the lemma.
LemMMA 2:5. The sequences of the pair (A, K) are the sum of short exact sequences:
0> H,,,(4,K) %5 H(K) > H,(A)->0
0« Hi+(4, K) < HEK) <~ HHA)<0.
Proof. Consider the commutative diagram with exact rows:

>H, (4, K) s H(K) - Hy(4)->
M
—H,. (M x R,B) -5 H(B) -5 H(M x R)~
Now k is an excision so k, is an isomorphism. Now f, is onto, since B> M x ¢ for
some ¢ (hence g, splits). Hence 9, is mono. Then b, 8, = &,%, is mono, so ¢, is mono

and the upper sequence breaks into short exact sequences. The case of cohomology is
treated similarly.

Lemma 2-6. kernel j% ~ coker a*, and kernel a, ~ coker j 4.

Proof. M 34,4 %, MxR
and composition «j , is a homotopy equivalence. The lemma follows.

ProposiTION 2:7. (kernel a,), ~ (coker a*)"4, and similarly for b, B.

Proof. By (2-4) (kernel a,), ~ a*(kernel j%)"~?and a* is & monomorphism by (2-5).
Hence
by (2-6).

3. Finding discs, handles, etc. In this section we prove various lemmas about

embedding spheres and discs which we will need. Also we show how to kill the
fundamental group.

(kernel a,), =~ (kernel 5%)*~2 =~ (coker a*)"~¢

Lemma 3-1. Let K™ be a manifold embedded in Wn+, with m (W) = 0 and 7,(K)
finitely generated, with W = AuB, AnB=K, n>4. Then by exchanging 2-discs
between A and B we may get K' <« W, A’v B’ =W, A’ n B’ = K’ such that

m(K') = m(4") = m(B’) = 0.

Proof. Choose a set of generators ¢,, ...,¢, for m(K), and disjoint 2-discs d,, ..., d,,
in general position with respect to K, such that dd; < K is in the homotopy class g;.
Then d, n K is a collection of disjoint simple closed curves in d;, and we choose an
innermost one ¢, which bounds a disc §, with d < 4 or § < B. Adding a neighbourhood
N of a 2-disc 6 to 4 (or B) is adding a 2-dimensional handle to 4 (or B), and the differ-

ence V=(4uN)—A is a cobordism of K with K’ = 9(4 v N), where A/U\Z/V is a
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regular neighbourhood of 4 u N, containing 4 u N in its interior. Now V =~ K v d, so
m (V) = my(K)[(@5). But V ~ K'ué’, where §’ is an (n— 1)-disc, and since n > 4,
7(K') = m,(V). Hence exchanging a 2-disc reduces m,(K), so that in K’ (2d,), ..., (2d,)
are still a set of generators for 7,(K’) (parentheses indicate homotopy classes). Hence
we may continue exchanging the subdiscs which bound innermost curves of inter-
section of K  d, until finally we exchange d, and we have killed a generator g, of 7, (K).
We continue this way until all g;’s are killed so that the resulting K’ is simply con-
nected, and then it follows from van Kampen’s theorem that 4’ and B’ are simply
connected.

Thus we may assume that we have M x R=AuB, AnB =K. 4,B are com-
binatorial manifolds with boundary K, and 7, (K) = m(4) = m(B) =0, and K is
closed.

Now let us assume that the inclusion ¢: K — M x Ris such that i, : Hy(K)— H,(M x R)
is an isomorphism for § < k, onto in all dimensions by Lemma 2.2.

Levma 3-2. Let h:mp(K)—> H(K) be the Hurewicz homorphism. Then
kernel ¢, = h(kernel ¢,)

in dimension k, where i, 1s the map of homotopy groups.
This follows easily from the exact sequence of the map 7 and the relative Hurewicz
theorem.

Lremma 3-3. kernel a, = h(kernel a,), kernel b, = h(kernel b,,).
The proof is the same as the previous lemma.

LemMa 3-4. If k < §n, n > 4, then a map f: 8% K» is homotopic to a piecewise linear
(smooth) embedding.

Proof. If k < 4n this follows easily from a general position argument. If &k = {n
(n even), then an argument following ((10)) (or (7) in smooth case) yields the result.

Lemma 3-5. Let 2k+1 < n, 8% < K», 8% homotopic to zero tn A. Then there is a disc
Dkl < A, D1 K = D%+ = Sk which meets K transversally.

Proof. Since S* is homotopic to zero in A4, there is a map f: D¥**—> 4 which has all
the properties required, except that it is not an embedding in the interior of D*+1,
Since dim 4 > 2k + 2 the arguments of Lemma 3-4 apply to get an embedding homo-
topic to f modulo S*.

Lemma 3-6. Let §* < K2k (k > 2), S* homotopic to zero in A, all smoothly. Then
8% bounds an tmmersed disc D¥*1 < A2+ so that its normal bundle is trivial.

This follows from the argument of Whitney in (17) that the map of D*+1—» 42k+1
which is an embedding in a neighbourhood of 4D**! into 84, is homotopic
(modulo dD*+1) to an immersion.

LEMl\_t_IA 3-7. Let 8k < K% (k > 2), 8k homotopic to a constant in A. Then a homotopic
sphere S* has a product neighbourhood Sk x Dk < K2, 8k arbitrarily close to Sk.

Proof. In the smooth case, this follows at once from Lemma 3-6. In the combina-
torial case we map a disc D*+! into 4 in general position with dD*+1 = S%. Then the

L
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singularities of the map are at most 1-dimensional so that the singular disk A = image
of D¥+1, has no homology above dimension 2. Let U be a regular neighbourhood of A,
which therefore has the same homology as A. Then the obstructions to smoothing U
arein HY(U; T,_,)andsince I'; = 0 fori < 4, U issmoothable, i.e. U has a differentiable
structure compatible with the triangulation (see (4) and (5)). Then the lemma follows
from the differentiable case.

4. Exchanging handles to kill homology. Now we are in a position to kill homology
by exchanging handles. This is sufficient to prove the Theorem when #n is odd, but
for even n, we will use another step to get the result. ]

Recall that we have M xR =AuB, AnB =K, K, A4, B, M all 1-connected, by
Lemma 3-1.

Prorosition 4-1. By exchanging handles between A and B we may make
MxR=A'vB,A nB' =K' withm(MxR,K')=0for 0<j<k+]1, fork < }n.

Proof. By induction, we suppose (M x R,K') = 0 for j < k. By the relative
Hurewicz theorem, m;(M x B,K) = H{M x R, K) for j < k, and since

i Hy(K) > Hy(M x R)
is onto by Lemma 2-1 (¢, = g,) we have
0—>H,(MxR,K)>H, (K)-2> H, ,(M)-0.

By (2-2) and (2-3), kernel g, is a direct summand of H,,_,(K) and kernel g,, = kernel a,, +
kernel b,. By Lemmas 3-2-3-5, if z € (kernel a),_, there is a disc D* = 4 meeting K
transversally in 8% = dD* < K and the homology class of §%-1 represents x. If we
exchange a neighbourhood D of D¥ (a handle) from 4 to B, thenin B’ = Bu D, b,z is
killed, i.e. H,, ; B'=H,_, B/(b, x), while H; B'= H; B forj <k —1. Now A’ =4 —interior
D is homotopy equivalent to 4 — D, and since co-dimension D¥in 4 isn+1-% > k,
since k < in, and it follows that H;A’' = H;A for j < k—1. Hence we have reduced
kernel a,, since by (2-3) b, is mono on kernel a} and kept kernel b}, = kernelb,, and
thus we may continue until (kernelay,),_, and (kerneld)),_, are both 0 so that by
Lemma 2-3 (kernelgy);_; = 0 and hence H (M x R, K') = 0 for this new K'.

PRrROPOSITION 4-2. Let n = 2k+1. Then we may exchange handles to make
K' = M x R so that K’ is homotopy equivalent to M x R.

Proof. By Proposition 4-1 we may assume g, : H;(K)— H,(M) is an isomorphism for
j < k. If we can make it an isomorphism on H,, then it follows since kernel g, satisfies
Poincaré duality (Lemma 2-2) that g, is mono, and epi by (2-2), so that g, is an iso-
morphism and hence g is a homotopy equivalence.

We may proceed as in (4-1) to transfer neighbourhoods of (k£ + 1) discs from B to 4
to make (kernel b,), = 0.

Then we will show that (kernel a,), is free. First (kernel a,), =~ (coker a*)¥+! by
(2-7). Now (kernel b,); = 0 for j < kimplies a,.: Hy(4A) - H,(M x R) is an isomorphism
for j < k by (2-3,III) and onto for all j, so H, (M x R, A) = 0. But

(coker a*)etl = HE+3(M x R, A) = Hom (H, (M x R, A), Z)+ Ext (H, (M x R, 4)Z)
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by the Universal Coefficient Theorem. Since H, (M x R, 4) = 0 and Hom (G, Z) is
free for any G, it follows that (coker a*)*+! is free and hence (kernel a, ), is free.

Since (kernel a, ), is free when we add handles as before to B (transferring them from
A)if we add the handles to kill exactly a basis of (kernel a, ), then if B’ = By (handles),
H.B’ = H, Blb,(kernela,), and H;B’ = H;B for j + k, and H'B' = H'B for j + k.

Now by (2-7), (kernel b,);, ~ (coker f*)¥+1 and (kernel b,),, = 0, hence

(coker f¥)k+l = 0.
Since H'B' = HiB forj + k,

(coker f*)k+1 = (coker f'*)¥+1 = 0, and HE}(M x R,B’) = 0.
By excision H*+¥(M x R, B’) ~ H**?(4',K') = 0.
Hence H, _,(4’,K’) is a torsion group ~ torsion subgroup of H*+3(4’, K'). But
H*+3(A’, K') ~ (coker f'*)%+2 ~ (kernel by),_, = 0

so that H, ,(A', K’) = 0. Hence aj,: H(K’')+H,(A4’) is an isomorphism for 2 < b+ 1.
Since kernel g; = kernel a} +kernel b} and (kernel g); = 0 for ¢ > k+1, and a is
onto by (2-5), it follows that a is an isomorphism. Hence it follows that g}, is an iso-
morphism and the proposition is proved.

CoroLLARY 4:3. K’ is h-cobordant to M.
For A’ above is an h-cobordism, since 4’ ~ K’ so H,(4',K') = 0 = H*(4', M) by
the Poincaré duality theorem (see (2)).

ProrosiTioN 4:4. Letn = 2k > 4, and assume M x R = Au B, A~ B = K as above,
with g,: H(K)— H(M) isomorphism for i + k. Then we may add handles to A along
K < 34 to get an h-cobordism A’ between M and a new manifold K’', 94’ = M v K',
K’ a combinatorial (or smooth) manifold.

Proof. Since (kernelg,) satisfies Poincaré duality and g, is an isomorphism for
i + k, it follows that (kernel g,), is free, so that (kernela,), and (kernelbd,), are free.

By (3-4) we may represent a basis for (kernel ), by embedded k-spheres, 8%. By
(2-4), the Poincaré duals of elements in (kernel b,) are in image b*, so it follows that
if x, y ekernel b,,, their intersection number x.y = 0. Hence using Whitney’s theorem
((18) or (7)) the spheres {S¥} representing a basis for (kernel b,), may be embedded
disjointly. By (3-7), the spheres S¥ may be chosen to have disjoint product neighbour-
hood 8% x Dk = K. Then we may attach disjoint handles D+ x D¥ to 4 along K by
identifying aD%+1 x D¥ with S¥ x D*. This gives us a new manifold

A’ = Av U Di1 x Dk,
7
with 84’ = M v K’, A’ — M a combinatorial (or smooth) manifold with boundary K’.
Then A’ ~ A v U D¥*1, andsince the homology classes of 8¥ are a basis for (kernel b,)
which is free, and kerneld, ~ cokerj,, by (2-3) and (2-6) it follows that
H(A')y~ H(A) for j+k and HyA')~ (imagej.), < HA).
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Hence the inclusion j': M - A’ is such that j,: H, M - H, A’ is an isomorphism. It
follows that 4’ is an k-cobordism between M and K.

Then the proof of the theorem is completed by using the following theorem due to
Stallings ((15)).

TrEOREM. Let W™ be an h-cobordism between M and N, M, N, W compact, and
suppose W —M is a combinatorial manifold, n > 5. Then W — N is homeomorphic to
M x[0,1) and W —M 1is combinatorially equivalent to N x[0,1), so that W —oW 1is
combinatorially equivalent to N x (0, 1) and homeomorphic to M x (0, 1).

We indicate an outline of the proof:

Take collars M x [0,ax) < W around M, and using the engulfing theorem ((14)) in
W — oW and the fact that W is an h-cobordism we may find a piecewise linear equiva-
lence f, of W —0W fixed on f,,_;(M %[0, a,_,]) a neighbourhood of M which contains
M x [0, a,_,), which takes M x [0, a;) onto the complement of a small collar C;, around
N, where nC;, =N, a; < a;,;, lim a,=1. Define f=limf,, which is only a finite

n—>00

iterate at any point, and hence piecewise linear. Then f is the desired map. A similar
argument gives the other part.

It follows that, if 4™ is an h-cobordism between M and a combinatorial manifold X,
such that 4 — M is combinatorial, » > 5, A — 84 is piecewise linearly equivalent to
K x R. But M x R is contained as a combinatorial open submanifold of

A—-04 = KxR,

as a deformation retract. Applying the engulfing theorem again, we get K x R piece-
wise linearly equivalent (combinatorially equivalent) to M x R.

In the differentiable case, we apply the theory of Munkres ((8)) to show that K x B
and M x R are diffeomorphic.

To show the uniqueness of K, we note that K x R equivalent to K’ x R implies
they are h-cobordant (as smooth or combinatorial manifolds) and hence K is equivalent
to K’ by the h-cobordism theorem (see (13)), which has been shown to hold under the
same hypotheses for piecewise linear manifolds.

This work was partially supported by the National Science Foundation.
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