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1. Introduction. A central role in the theory of smoothing combinatorial manifolds
is played by the Cairns—Hirsch Theorem, which may be expressed (in a weak form)
as follows:

If M is a combinatorial manifold and if M x II has a differentiable structure a, com-
patible with its combinatorial structure then M has a differentiate structure y, such that
(M x R)a is diffeomorphic with My x R.

The analogous theorem for topological manifolds would be extremely useful for
the theory of smoothing topological manifolds.

We will prove the following:
THEOREM. Let Mn be a closed l-connected topological manifold of dimension n 5= 5.

IfMxRisa differentiable (combinatorial) manifold, then M is h-cobordant to a smooth
(combinatorial) manifold N, and M xR is diffeomorphic (combinatorially equivalent) to
N x R. Further, such an N is unique.

COROLLARY 1. If M is a closed, l-connected manifold of dimension ^ 5 which is not
the homotopy type of a smooth manifold, (e.g. see (6) or (12)), then M xR does not have a
differentiable structure.

COROLLARY 2. / / Mn is a closed, l-connected n-manifold, n ^ 5, and if M xRk is
differentiable (combinatorial), k > 2, then MxSk~1 is h-cobordant to a differentiable
(combinatorial) manifold.

For if M x Rk is differentiable then M x Sk~x x R is differentiable, being an open
subset of M x Rk (similarly for combinatorial), and the theorem applies.

We now proceed to the proof of the theorem. We will consider the combinatorial
case, and indicate any changes necessary for the differentiable case. The differentiable
case may actually be derived from the combinatorial one, using results of (3) and (8).

Consider the projection map form M xR->R and choose a simplicial approximation
/ with respect to the combinatorial structures of M x R and R. Consider a point a e R
between vertices of R and let K = / - 1(a) <= MxR. Then K is a combinatorial mani-
fold, piecewise linearly embedded in MxR with a product neighbourhood
KxRcMxR (see, for example, (19)). (In the differentiable case choose a regular
point of a smooth approximation/, using Sard's Theorem; see (11).) By choosing an
appropriate component of K in case K is not connected, we may assume that K is
connected, compact (since/is proper being an approximation to a proper map) and
K divides MxR into two manifolds A and B with boundary K = Ar\B.



338 WILLIAM BROWDEB

Now the idea of the proof is as follows:
The inclusion of K <= M x R followed by the projection M x R^-M is shown to be

a map of degree + 1 . I t follows that this map g has the property that kernel g* is
a direct summand of H*{K) which satisfies Poincare duality. We proceed to reduce
kernel g* by doing surgery on K inside MxR (cf. (l), (9) and (16)).

More precisely assuming g* is an isomorphism for i < k, onto for i = k,k < \n, we
show that we may find for each xe (kernel g*)k a handle H = Dk+1 x Bn~k contained
either in A or B (say A) with H nK = Skx Dn~k and with S 'xO representing the
homology class x. Then we define A' = A — interior of H,B' = Bu H, and A' n B' = K'
where K' is obtained from K by the surgery associated with Sk x Dn~k <= K. We show
that this process kills (kernel g* )k for k < \n. We call this process 'exchanging handles'.

If n = 2k +1, g^ is then an isomorphism for i < k, hence by Poincare duality for
all i. I t follows that K, A, B and Mx R are all homotopy equivalent, and then it
follows from the A-cobordism theorem ((13)) or from the engulfing theorem ((14)) that
M x Ris equivalent to K x R, and the theorem follows.

In case n = 2k, the above process makes g%: Ht(K) -> H^M) isomorphic for i < k.
Then we consider A = closure of A in M x I, where R is considered as the interior of/.
Then A is a cobordism between K and M, and we make it an fe-cobordism by attaching
handles to A along K. Then from the engulfing theorem ((14)) it follows that K' x Ris
equivalent to M x R and the result follows.

The details follow.

2. Algebra. In this section we deduce some facts about the homology of our
situation which we will need.

Let KcMxR = AvB,K = AnB, everything connected, A and B combinatorial
(smobth) manifolds with boundary K. Let MxR — interior of MxI, A, B the
closures of A and B in M x I, so that A and B are cobordisms between K and M
(= M x 1 or M x 0). Letp: M x I->M be projection, inducing retractions A, B to M,
andamapgr:iL->--M. l^et a: K ^- A,b:K ^- B, oc,:A->M xR, fi:B-+ M x i? be inclusions
and the same letters with bars (a, b,a,ft) the corresponding inclusions with A,B,MxI,
replacing A,B, MxR.

LEMMA 2-1. g*:H*(K)^H*{M) is of degree 1.
Proof. Let /tK,fiM be the generators of Hn(K), Hn(M) respectively given by the

orientation of MxR. Then 8A = K\JM and if veHn+1(A,8A) is the orientation
generator, dv = /J'M—/J'K, so that /iM and fiK have the same image /* in Hn(A). But

LEMMA 2-2. There are mapsy: Hg(M)->Hq(K),y*: H^{K)^-H^{M) such that g^y = 1,
y*g* = 1, and (kernelg*)q ^ (kernely*)«-«.

Proof. Define y, y* as follows:
If xeHq(M), x = yn/iM, then yx = g*ynfiK. If x'eHn-Q(K), y*x = z, where

z r\fiM =gst.{x' r\fiK). Then it is easy to check using properties of cap product, that
= 1 and y*g* = 1. If x'c(kernel y*)»-a then g%(x' n/iK) = 0 so

n fiK: (kernel y*)»-«-»(kernel g#)r
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It only remains to show it is onto. But if z e (kernel gr*)g, z = wnfiK and y*w = 0,
so that n

(kernel y*)n~Q—^ (kernel g#)q.

LEMMA 2-3. (I) kernel g% = kernel a* + kernel b#.

(II) a* | kernel &„. and b* | kernel a* are mono.

(Ill) a*(kernel b%) = kernel a* and

b* (kernel a*) = kernel /?*.

Proof. Since M is a retract of A (or B), a* (or /?„.) is onto, so that we get from the
Mayer-Viettoris sequence for M x R = A u B,

0^Hg(K)a-^Hq(A) + Hq(B)^ Hq(MxR)->0.

Now fir* = a* a* = /?*6* (using the isomorphism of H^(M) and H*(MxR)). If
xekernel</„. then a*a*a; = 0, so that (a*— /^ (a^x ) = 0 and a*a; = (a*+6H!)(z),
zeH^(K), and zekernelft^.. Similarly &*£ = (a^ + 6#)(z'), z'e kernel a*. Then
(a^ + b^^x) = (a!^ + bit.)(z + z') and since a* + b* is mono, x = z + z'. But

kernel a* A kernel b* c kernel (a* + &„.) = 0

so they are disjoint, which proves (II), and thus we have a direct sum

kernel g* = kernel a* + kernel b#,
and (I) is proved.

To prove (III), we note that if xekernel b*, then

(a*-/?*) (a* a;) = ( a < I - ^ ) ( o # + 6:|[)(x) = 0

so a*xekernel a*. But if ?/ekernel a,, c ^ . ( 4 ) , then (a* — fi*)(y) = 0 so

y = (at. + b^.)(z)€H^(A), so 6*z = 0 and y = a*z.

LEMMA 2-4. Let jA:M->A. Then r\/iK induces an isomorphism of a*(kernel£|)9

with (kernel a%)n_g and similarly with A in place of A.

Proof. Since A ^ A are the same homotopy type, it suffices to prove it for A.
Consider the commutative diagram with exact rows (see (2))

y y y

'Hn+1-q(A, 8A) -±+ Hn_q{8A)^+ H^A) -

where /i = 8veHn(8A) is the fundamental class. I t follows that n/i induces an iso-
morphism of (imagei*)9 with (kernel i^)n^. Now 8A = KvM (disjoint union), so
that i# = a^ +J*, j:M->A is inclusion, and i* = a*+j*. Now for the fundamental
class JleHn(8A) = Hn{K) + Hn{M), JL = fiM-fiK, and nfiK = 0 on H*(M) and

= 0 on H*(K). Hence n/i sends H*(K) into H*(K) and H*{M) into H+(M). It



340 W I L L I A M B R O W D E B

follows that r\Ji\H*(K) = r\/iK induces an isomorphism between (imagei*)9 r> H*(K)
and (kernel i*) n H*(K). But

(imagei*) n H*(K) = a*(kernel j%) and (kernel^) n H#(K) = kernela*,

which proves the lemma.

LEMMA 2-5. The sequences of the pair {A, K) are the sum of short exact sequences:

0^Hk+1(A,K) ^U Hk(K) %

0+-Hk+1(A,K) J±-Hk(K)

Proof. Consider the commutative diagram with exact rows:

-+HM{A,K) - ^ Hk{K) -ULy Hk(A)-

-> Hk+1(M x R, B) -±+ Hk(B) J±+ Hk(M x R) ->

Now k is an excision so k* is an isomorphism. Now /?* is onto, since B => M xt for
some t (hence ft* splits). Hence d2 is mono. Then b^.d1 = d2k^ is mono, so dx is mono
and the upper sequence breaks into short exact sequences. The case of cohomology is
treated similarly.

LEMMA 2-6. ke rne l^ ~ cokera*, and kernel a* £ coker^*.

Proof. M J±+ A - 1 > MxR

and composition ajA is a homotopy equivalence. The lemma follows.

PROPOSITION 2-7. (kernel a*)q ~ (coker a*)n~^, and similarly for b,fi.

Proof. By (2-4) (kernel a*)q ~ a*(kevnelj^)n~qa,nda* is a monomorphism by (2-5).
HsHCG

(kernel a*)g ~ (kernel j ^ ) n ~ a ^ (coker <x*)n~q

by (2-6).
3. Finding discs, handles, etc. In this section we prove various lemmas about

embedding spheres and discs which we will need. Also we show how to kill the
fundamental group.

LEMMA 3-1. Let Kn be a manifold embedded in Wn+1, with 7ix{W) = 0 and n^K)
finitely generated, with W = AuB, AnB = K, n ^ 4. Then by exchanging 2-discs
between A and B we may get K' e W, A'\> B' = W, A' r, B' = K' such that

n^K') = n^A') = n^B') = 0.

Proof. Choose a set of generators gv ...,gk for n-^K), and disjoint 2-discs dv ...,dk

in general position with respect to K, such that ddi <= K is in the homotopy class gt.
Then dx r, K is a collection of disjoint simple closed curves in dlt and we choose an
innermost one q, which bounds a disc S, with 8 <= A or S <= B. Adding a neighbourhood
N of a 2-disc S to A (or B) is adding a 2-dimensional handle to A (or B), and the differ-
ence V = (AvN) — A is a cobordism of K with K' = 8(A\JN), where A\JN is a
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regular neighbourhood of A <J N, containing A VJ N in its interior. Now V ^ KuS, so

= Trx{K)l(d8). But V s K'vS', where 8' is an (n-l)-disc, and since n S= 4,
= 7r1(F). Hence exchanging a 2-disc reduces ux(K), so that in liT' (ddx),..., {ddk)

are still a set of generators for TT̂ -fiT') (parentheses indicate homotopy classes). Hence
we may continue exchanging the subdiscs which bound innermost curves of inter-
section of K n dx until finally we exchange d1 and we have killed a generator gx oiirx(K).
We continue this way until all gr/s are killed so that the resulting K' is simply con-
nected, and then it follows from van Kampen's theorem that A' and B' are simply
connected.

Thus we may assume that we have M xR = A\J B, Ar>B = K. A,B are com-
binatorial manifolds with boundary K, and nx(K) = nx(A) = nx(B) = 0, and K is
closed.

Now let us assume that the inclusion i: K -*• M x R is such that i% • Hj(K) -> Hj{M x R)
is an isomorphism for^' < k, onto in all dimensions by Lemma 2.2.

LEMMA 3-2. Let h:nk(K)->Hk(K) be the Hurewicz homorphism. Then

kernel i% = ^(kernel i#)

in dimension k, where i # is the map of homotopy groups.
This follows easily from the exact sequence of the map i and the relative Hurewicz

theorem.

LEMMA 3-3. kernel a* = ^(kernel a#), kernel b* = ^(kernel 6#).
The proof is the same as the previous lemma.

LEMMA 3-4. Ifk^ \n, n > 4, then a map f:Sk->Kn is homotopic to a piecewise linear
(smooth) embedding.

Proof. If k < \n this follows easily from a general position argument. If k = \n
(n even), then an argument following ((10)) (or (7) in smooth case) yields the result.

LEMMA 3-5. Let 24 + 1 ^ n, Sk c Kn, Sk homotopic to zero in A. Then there is a disc
Dk+i c ^ pk+inK = 8Dk+^ = Sk which meets K transversally.

Proof. Since 8k is homotopic to zero in A, there is a map/:Dfc+1->^4 which has all
the properties required, except that it is not an embedding in the interior of Dk+1.
Since dim .4 > Ik + 2 the arguments of Lemma 3-4 apply to get an embedding homo-
topic to/modulo Sk.

LEMMA 3-6. Let Sk <= K2k (k > 2), Sk homotopic to zero in A, all smoothly. Then
Sk bounds an immersed disc Dk+1 <= A2k+1, so that its normal bundle is trivial.

This follows from the argument of Whitney in (17) that the map of Dfc+1->- A2k+1

which is an embedding in a neighbourhood of dDk+1 into dA, is homotopic
(modulo dDk+1) to an immersion.

LEMMA 3-7. Let Sk <= K2k (k > 2), Sk homotopic to a constant in A. Then a homotopic
sphere Sk has a product neighbourhood SkxDk <= K2k, Sk arbitrarily close to Sk.

Proof. In the smooth case, this follows at once from Lemma 3'6. In the combina-
torial case we map a disc Dk+1 into A in general position with dDk+1 = Sk. Then the
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singularities of the map are at most 1-dimensional so that the singular disk A = image
of Dk+1, has no homology above dimension 2. Let U be a regular neighbourhood of A,
which therefore has the same homology as A. Then the obstructions to smoothing U
arein H9(U; F ^ ) and since Ff = Ofori < 4, Z7issmoothable,i.e. U has a differentiable
structure compatible with the triangulation (see (4) and (5)). Then the lemma follows
from the differentiable case.

4. Exchanging handles to kill homology. Now we are in a position to kill homology
by exchanging handles. This is sufficient to prove the Theorem when n is odd, but
for even n, we will use another step to get the result.

Recall that we have M x R = A u B, A n B = K, K, A, B, M all 1-connected, by
Lemma 3-1.

PROPOSITION 4-1. By exchanging handles between A and B we may make
MxR = A'uB',A'nB' = K' withn^M xR,K') = 0 for 0 ^j< k+l,fork< \n.

Proof. By induction, we suppose n^M xR,K') = 0 for j < k. By the relative
Hurewicz theorem, n^M xR,K) = Ht(M x R, K) for j < k, and since

is onto by Lemma 2-1 (i* = g^) we have

i i> Hk_x{M)->0.

By (2-2) and (2-3), kernel g* is a direct summand of £ffc_1(iT) and kernel g% = kernel a% +
kernel b*. By Lemmas 3-2-3-5, if xe. (kernel a#)fc-i there is a disc Dk <= A meeting K
transversally in Sk~1 = 8Dk <= K and the homology class of S1*-1 represents x. If we
exchange a neighbourhood D of Dk (a handle) from A to B, then in B' = B u D, b% x is
killed, i.e. Hk_xB' = H^B/ib* x), while H^B' = H^ioxj <k-l. Now A' = A - interior
D is homotopy equivalent to A — Dk, and since co-dimension Dk in A is n + 1 — k > k,
since k < \n, and it follows that HjA' = HjA for j 4,k—\. Hence we have reduced
kernel a*, since by (2-3) b'% is mono on kernel a% and kept kernel^ = kernel6^, and
thus we may continue until (kernel a*)k_1 and (kernel b'% ) k _ 1 are both 0 so that by
Lemma 2-3 (kernel <7*)fc_i = 0 and hence Hk{M x R, K') = 0 for this new K'.

PROPOSITION 4-2. Let n = 2k+l. Then we may exchange handles to make
K' c: M x R so that K' is homotopy equivalent to M x R.

Proof. By Proposition 4-1 we may assume gr*: Hj{K) -»• H^M) is an isomorphism for
j < k. If we can make it an isomorphism on Hk, then it follows since kernel g* satisfies
Poincare duality (Lemma 2-2) that g+ is mono, and epi by (2-2), so that g* is an iso-
morphism and hence g is a homotopy equivalence.

We may proceed as in (4-1) to transfer neighbourhoods of (k + 1) discs from B to A
to make (kernel 6,,.)̂  = 0.

Then we will show that (kernel a#)k is free. First (kernel a*)fc s (coker a*)k+1 by
(2-7). Now (kernel b* )3- = Oforj ^ k implies a*: Hj(A) ^-Hj(M xR) is an isomorphism
for j s? k by (2-3,111) and onto for all j , so Hk+1{M x R,A) = 0. But

(coker a*)*^1 = Hk+2(M xR,A) = Horn (Hk+2(M xR,A),Z) + Ext (Hk+1(M xR,A)Z)
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by the Universal Coefficient Theorem. Since Hk+1(MxR,A) = 0 and Hom(G,Z) is
free for any G, it follows that (coker a*)fc+1 is free and hence (kernel aif)k is free.

Since (kernel a%)k is free when we add handles as before to B (transferring them from
A) if we add the handles to kill exactly a basis of (kernel a*)fc, then if B' = Bv (handles),
HkB' = HkB ^(kernel a*)k and HjB' = HjB for j #= k, and WB' = WB for j =j= k.

Now by (2-7), (kernel b^)k s (coker p*)k+x and (kernel b*)k = 0, hence

(coker ^*)k+1 = 0.
Since WB' = WB for j 4= k,

(coker fi*)k+1 = (coker /?'*)*+! = 0, and Hk+\M x R, B') = 0.

By excision Hk+2(M x i?, J3') ~ #fc+2(4', IT) = 0.

Hence fl^^', IT) is a torsion group = torsion subgroup of #fc+3(.4',.fi''). But

i r ) ~ (coker^'*)fc+2 ~ (kernel6;)fc_1 = 0

so that Hk+2(A',K') = 0. Hence a'if:Hi(K')-*-Hi(A') is an isomorphism for i < k+1.
Since kernel '̂̂  = kernel a'* + kernel b'% and (kernel g'i^)i = 0 for i > k+ 1, and â . is
onto by (2-5), it follows that a* is an isomorphism. Hence it follows that g'% is an iso-
morphism and the proposition is proved.

COROLLARY 4-3. K' is h-cobordant to M.
For A' above is an A-cobordism, since A' ~ K' so H*(A',K') = 0 = H*(A',M) by

the Poincare duality theorem (see (2)).

PROPOSITION4-4. Letn = 2k > 4, and assume MxR = A\JB,Ar\B = K as above,
with g%: H^K) ->• H^M) isomorphism for i =1= k. Then we may add handles to A along
K <= 8A to get an h-cobordism A' between M and a new manifold K', dA' = M\J K',
K' a combinatorial (or smooth) manifold.

Proof. Since (kernel <?„.) satisfies Poincare duality and g% is an isomorphism for
i =|= k, it follows that (kernel g^)k is free, so that (kernelaif)k and (kernel6*)k are free.

By (3-4) we may represent a basis for (kernel b%)k by embedded ^-spheres, Sk. By
(2-4), the Poincare duals of elements in (kernel 6*) are in image b*, so it follows that
if x, y e kernel b*, their intersection number x. y = 0. Hence using Whitney's theorem
((18) or (7)) the spheres {Sk} representing a basis for (kernel b*)k may be embedded
disjointly. By (3-7), the spheres Sk may be chosen to have disjoint product neighbour-
hood Sk xDk c K. Then we may attach disjoint handles Dk+1 x Dk to A along K by
identifying dDk+1 x Dk with Sk x Dk. This gives us a new manifold

A' = Au\jDk+1xDk,
i

with dA' = Myj K', A' — M a combinatorial (or smooth) manifold with boundary K'.
Then A' ^ l u U Dk+1, and since the homology classes of Sk are a basis for (kernel b%)

i

which is free, and kernelb# ~ cokerjAt. by (2-3) and (2-6) it follows that

for j + k and Hk(A') ~ (imaged J * c H\A).
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Hence the inclusion j':M->A' is such that j'+: H+ M-*H%A' is an isomorphism. It
follows that A' is an A-cobordism between M and K'.

Then the proof of the theorem is completed by using the following theorem due to
Stallings ((15)).

THEOREM. Let Wn be an h-cobordism between M and N, M, N, W compact, and
suppose W — M is a combinatorial manifold, n ^ 5. Then W — N is homeomorphic to
M x [0,1) and W — M is combinatorially equivalent to N x [0,1), so that W — dW is
combinatorially equivalent to N x (0,1) and homeomorphic to M x (0,1).

We indicate an outline of the proof:
Take collars M x [0, aK) <= W around M, and using the engulfing theorem ((14)) in

W — dW and the fact that W is an A-cobordism we may find a piecewise linear equiva-
lence fk of W — dW fixed on fk^M x [0, ak_1\) a neighbourhood of M which contains
M x [0, ak_1), which takes M x [0, ak) onto the complement of a small collar Ck around
N, where nCk = N, at < ai+1, lim an = 1. Define / = \imfk, which is only a finite

iterate at any point, and hence piecewise linear. Then / i s the desired map. A similar
argument gives the other part.

I t follows that, if An is an A-cobordism between M and a combinatorial manifold K,
such that A — M is combinatorial, n ^ 5, A — 8A is piecewise linearly equivalent to
K x R. But M x Mis contained as a combinatorial open submanifold of

A-8A =KxB,

as a deformation retract. Applying the engulfing theorem again, we get KxR piece-
wise linearly equivalent (combinatorially equivalent) to M x R.

In the differentiate case, we apply the theory of Munkres ((8)) to show that KxR
and M x R are diffeomorphic.

To show the uniqueness of K, we note that KxR equivalent to K' xR implies
they are A-cobordant (as smooth or combinatorial manifolds) and hence K is equivalent
to K' by the A-cobordism theorem (see (13)), which has been shown to hold under the
same hypotheses for piecewise linear manifolds.
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