
HOMOTOPY INVARIANCE FOR MICROBUNDLES

CARA HOBOHM

1 Homotopy Invariance for Microbundles
The whole content of this section very closely follows [Mil64], chapter 6. Our goal is to prove

the following.
Theorem 1.1. Let X be a microbundle with base space B, and let B′ be a paracompact space.
Let f ' g : B′ → B be homotopic maps. Then the induced microbundles are isomorphic, i.e.

f∗(X) ∼= g∗(X)
This has a well-known equivalent for fiber bundles. We’ll start by introducing a few notions

about map germs. Those will be put to use on microbundles to define bundle map germs. It
turns out that the proofs (e.g. Lemma 1.14) look a lot like their fiber bundle analogues once we
use those definitions.

1.1 Bundle germs

Definition 1.2. A map-germ from (X,A) to (Y,B) is an equivalence class of the elements of
the following set

{(f, U) | X ⊃ U ⊃ A a neighborhood and a map of pairs f : (U,A)→ (Y,B)}
with the equivalence relation (f, U) ∼ (g, V ) if and only if there is a neighborhood N ⊃ A with
f |V .

We denote map germs as capital letters F : (X,A)⇒ (Y,B).
Remember that we introduced microbundles with the goal to construct tangent bundles of

topological manifolds. One can think of those map-germs as workaround for derivatives.
First, observe that we can compose two map germs (X,A) F=⇒ (Y,B) G=⇒ (Z,C), by taking

representatives (f, U) and (g, V ) and defining a map g ◦ f |f−1(V ) : f−1(V )→ V → g(V ). Since
f−1(V ) is a neighborhood of A we can set F ◦G = [(f ◦ g|f−1(V ), f

−1(V ))].
Secondly, we observe that there is a standard identity map germ Id : (X,A)⇒ (X,A). This

enables us to make another definition:
Definition 1.3. A homeomorphism-germ (or homeo-germ) is a map germ with a two-sided
inverse, i.e. F : (X,A) ⇒ (Y,B) is a homeo-germ if there is G : (Y,B) ⇒ (X,A) such that
F ◦G = Id(Y,B) and G ◦ F = Id(X,A).

The following is a helpful observation to keep control of the definitions introduced so far.
Proposition 1.4. A map-germ F is a homeo-germ if and only if there is a representative
(f, U) ∈ F that maps U homeomorphically onto its image, and f(U) is a neighborhood of B.
Proof. "⇐= ": We take the inverse f−1 defined on f(U) as a representative for the map-germ
inverse G.

" =⇒ ": Let G be the map-germ inverse and take representatives (f, U), (g, V ) with U open,
such that f(U) ⊂ V and g ◦ f = IdU . We know there is an open subset V ′ ⊂ V such that
g(V ′) ⊂ U and f ◦ g|V ′ = IdV ′ . In particular g|V ′ and f |U are injective. Take U ′ := (f |U )−1(V ′),
which is open with U ′ ⊂ U . From injectivity follows f(U ′) = V ′, which is open and has the
continuous inverse g|V ′ . �
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Now let’s bring those map germs into the context of microbundles. Consider a microbundle X
consisting of

B
i−→ E

j−→ B.

Definition 1.5. The map germ J : (E, i(B)) ⇒ (B,B) induced by j is called the projection
germ.

To make our notation a little easier, we will write B instead of (B,B). Furthermore, we
identify i(B) with B, for example we just denote the projection germ as J : (E,B)⇒ B.

Now let’s introduce another microbundle X′ : B′ i
′
−→ E′

j′−→ B′. After all, we are interested in
maps between microbundles. This X′ has the projection germ J ′ : (E′, B′)⇒ B′.

Definition 1.6. Suppose B = B′. An isomorphism germ (or iso-germ) from X to X′ is a
homeo-germ F : (E,B)⇒ (E′, B) that is fibre preserving, i.e. J ′ ◦ F = J .

Indeed, this definition translates isomorphisms of microbundles into germ-language:

Proposition 1.7. An iso-germ exists from X to X′ exists if and only if X ∼= X′ as microbundles.

Proof. " =⇒ ": Take a representative (f, V ), which we choose with f : V
∼=−→ f(V ) using

Proposition 1.4 This means f(V ) is an open neighborhood of B in E′. Fiber preservation implies
j′ ◦ f |V = j|V . We get the diagram for microbundle isomorphisms:

V

B B

f(V )

∼=f

ji

i′ j′

.
"⇐= ": Given such a diagram, we take (f, V ) to represent the iso-germ. �

More generally, we want to consider maps between microbundles on different base spaces
B 6= B′ but with the same fiber dimension.

Definition 1.8. Let F : (E,B)⇒ (E′, B′) be a map germ, with some representative f : U → E′.
We say F is a bundle map germ from X to X′ if there is a neighborhood V ⊃ B with V ⊂ U
such that for every b ∈ B exists b′ ∈ B′ so that f maps V ∩ j−1(b) injectively to j′−1(b′).

f |V ∩j−1(b) : V ∩ j−1(b) � j′−1(b′)

We denote such a bundle map germ by F : X⇒ X′.

Let’s look at this definition for a moment. We should ensure that the existence of such a V
does not depend on the choice of representative (f, U). Well, any other representative (f ′, U ′)
can be restricted to some W ⊃ B so that f ′|W = f |W . Now V ∩W fulfills the definition for
(f ′, U ′).

Given a bundle map germ F : X⇒ X′, the definition above ensures that the following diagram
commutes:

(E,B) (E′, B′)

B B′

F

J J ′

F |B

We say that F |B is covered by a bundle map germ F . But be aware that the condition
f : V ∩ j−1(b) � j′−1(b′) is stronger than J ′ ◦ F = F |B ◦ J .
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Figure 1. Visualization of a bundle map germ

1.2 Proof of Homotopy Invariance

Remember that we are trying to prove Homotopy Invariance for microbundles.

Theorem 1.1. Let X be a microbundle with base space B, and let B′ be a paracompact space.
Let f ' g : B′ → B be homotopic maps. Then the induced microbundles are isomorphic, i.e.

f∗(X) ∼= g∗(X)

With the definitions above we have developed sufficient language to give a proof. We will
need two more ingredients.

Lemma 1.9. Suppose X and X′ are microbundles over the same base space B = B′, and suppose
F : X⇒ X′ is a bundle map germ covering IdB. Then F is an iso-germ.

Lemma 1.14. Let X be a microbundle over B× [0, 1], where B is paracompact. Then the standard
retraction

r : B × [0, 1]→ B × [1]

is covered by a bundle map germ R : X→ X|B×[1].

For now we assume those two lemmas hold and prove them later.

Proof of Theorem 1.1. Let X be a microbundle with base space B, and let B′ be a paracompact
space. LetH : B′×[0, 1]→ B be a homotopy fromH0 = f toH1 = g. Let R : H∗X⇒ H∗X|B′×[1]
be the bundle map germ covering the standard retraction from Lemma 1.14. Look at the following
diagram:

f∗X H∗X H∗X|B×[1] g∗X

B′ B′ × [0, 1] B′ × [1] B′

J

R

J

IdB ×(0)

IdB

r

Here the left and right bundle map germs are the obvious ones. Observe that the composition of
the bottom maps is IdB′ . Taking the composition of the bundle map germs on top therefore leads
to a bundle map germ f∗X⇒ g∗X that covers the identity. Lemma 1.9 finishes the proof. �
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1.3 Proof of Ingredients

Lemma 1.9. Suppose X and X′ are microbundles over the same base space B = B′, and suppose
F : X⇒ X′ is a bundle map germ covering IdB. Then F is an iso-germ.

Proof. It is clear from the definition (see diagram 1.1), that a bundle map germ covering
the identity is fiber preserving. We have to concern ourselves with showing that F is a
homeomorphism germ.

We start by proving a special case before we move on to the general case. Assume X and X′

are trivial, i.e. E = E′ = B × Rn. For x ∈ Rn and ε > 0 we will denote the open ball of radius
ε at x as Dε(x). We want to show any bundle map germ F : E → E′ covering the identity is
a homeo germ. Take a representative g : U → E′ with B ⊂ U ⊂ B × Rn open. The definition
of bundle map germ combined with the information that F covers IdB tells us that g maps
U ∩ j−1(b) injectively to j′−1(b). (W.l.o.g. we have chosen U small enough.) Hence g is injective
and fiber preserving.

Claim: Every map g : U → B × Rn that is injective and fiber preserving is an open mapping.
Observe first, that g can be expressed as g(b, x) = (b, gb(x)) for b ∈ B, with gb : Ub → Rn

defined on the open set Ub := j−1(b) ∩ U . By definition of the bundle map germ, gb is injective,
thus Invariance of domain implies that every gb is an open mapping. Now given some point
p0 := (x0, b0) ∈ B × Rn, we write gb0(x0) =: x1 and g(p0) = g(b0, x0) = (b0, x1) =: p1. In order
to show that g is open, we have to show that for any open neighborhood U0 of p0 there is an
open neighborhood U1 of p1 such that g(U0) ⊃ U1.

Given U0 we start by choosing ε > 0 so that Dε(x0) ⊂ projRn(U0). Since gb0 is an open map,
there is δ > 0 so that D2δ(x1) ⊂ gb0(Dε(x0)). There exists a neighborhood V of b0 in B such
that

|gb(x)− gb(x0)| < δ ∀b ∈ V, x ∈ Dε(x0)

Hence for each b ∈ V holds Dδ(x1) ⊂ gb(Dε(x0)), thus g(V ×Dε(x0)) ⊃ V ×Dδ(x1) =: U1.
A consequence of the Claim is that g is an embedding. It maps U homeomorphically onto

g(U) (which is open in E′) and we can apply Proposition 1.4 to see that F is a homeo-germ.

Now the general case. Let X and X′ be microbundles over B and let F : X⇒ X′ be a bundle
map germ covering IdB. Take a representative f : U → E′ of F , where we choose U small enough
to assume f is injective and fiber preserving.

For any b ∈ B exists a neighborhood Wb of i(b) in U such that X|Wb
is trivial. Set Cb := j(Wb).

Clearly the restriction F |X|Cb covers the identity on Cb. We can choose Wb small enough that
X′|Cb is trivial as well, and then we can apply the first case. This means f |Wb

is a homeomorphism
onto its image, with f(Wb) ⊂ E′ open.

Now we define W :=
⋃
b∈BWb and obtain f : W

∼=−→ f(W ), where f(W ) is open in E′.
Proposition 1.4 asserts that we get a homeo-germ. �

Corollary 1.10. If a map g : B → B′ is covered by a bundle map germ G : X ⇒ X′, then
X ∼= g∗X′.

Proof. The gist is that G induces a bundle map germ F : X⇒ g∗X′ that covers the identity IdB.
Then we can apply Lemma 1.9 above.

Let’s spell out how we get this F . Start with a representative g : V → E′ of G, such that for
any b ∈ B exists b′ ∈ B′ with g : j−1(b) ∩ V � j′−1(b′) injective. Remember that the induced
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bundle g∗X′ is the pullback in the following diagram:

V

g∗E′ E′

B B′

g

f

j|V g∗j′ j′

g

The universal property of pullbacks induces the dotted map f . Since j|V = g∗j′ ◦ f , we
immediately get that f |B is the identity. Also f represents a bundle map germ, because the
diagram reduces to the following when we start with {b′} ⊂ B′:

V ∩ j−1(b)

g∗j′−1(b) j′−1(b′)

{b} {b′}

g

f

j g∗j′ j′

g

In the diagram restrictions are left out for improved readability. Since the restriction of g is
injective, so is f . In conclusion is (f, V ) a representative for our bundle map germ F . �

For the second ingredient we have to make some observations about how to piece bundle maps
together before we can build one that covers the standard retraction.

Lemma 1.11. Let X be a microbundle over B, and let {Bα}α∈A be a locally finite collection of
closed sets that cover B. Suppose for all α ∈ A we have bundle map germs to some microbundle
N:

Fα : X|Bα ⇒ N

such that for any α, β ∈ A the restrictions of Fα and Fβ agree, i.e.:
Fα|X|Bα∩Bβ = Fβ|X|Bα∩Bβ

Then there is a bundle map germ F : X ⇒ N extending the Fα, i.e. F |X|Bα = Fα for all
α ∈ A.

Proof. Take fα : Uα → E′ some representative for Fα. By definition there are open neighborhoods
Uαβ of Bα ∩Bβ inside Uα ∩ Uβ such that fα|Uαβ = fβ|Uαβ . Define the following set:

U =
{

e ∈ E
∣∣∣∣∣ j(e) ∈ Bα =⇒ e ∈ Uα

j(e) ∈ Bα ∩Bβ =⇒ e ∈ Uαβ

}
.

Claim: This set U is open.
Take some e0 ∈ U . As {Bα} is a locally finite cover of B, we have some neighborhood V0 of

j(e0) that intersects only finitely many, let’s say Bα1 , . . . , Bαk . Look at W :=
⋂

1≤i<j≤k Uαiαj .
Since we only intersect finitely many sets W is open. Define V1 := j−1(V0) ∩W . This fulfills
e0 ∈ V1 ⊂ U and V1 is open.

We can define f : U → E′ that extends the fα. This is the representative for F . �

Proposition 1.12. Let X be a microbundle over B× [0, 1] such that both X|B×[0, 1
2 ] and X|B×[ 1

2 ,1]
are trivial. Then X is trivial.
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Figure 2. Visualization of the Uαβ

Proof. Look at the "obvious" restriction map f : B × [0, 1] → B × [1
2 ]. Since X|B×[0, 1

2 ] and
X|B×[ 1

2 ,1] are trivial, we can cover the maps f1 : B × [0, 1
2 ] and f2 : B × [1

2 , 1] with bundle map
germs:

F1 : X|B×[0, 1
2 ] ⇒ X|B×[ 1

2 ]

F2 : X|B×[ 1
2 ,1] ⇒ X|B×[ 1

2 ]

Now we can apply Lemma 1.11 to the locally finite covering B × [0, 1
2 ], B × [1

2 , 1] to obtain a
bundle map germ F : X⇒ X|B×[ 1

2 ] which covers the restriction f : B× [0, 1]→ B× [1
2 ]. Corollary

1.10 tells us X ∼= f∗X|B×[ 1
2 ]. Since X|B×[ 1

2 ] is trivial, we see that f∗X|B×[ 1
2 ] is trivial, and finally

deduce that X is trivial. �

The next lemma is important for finding the neighborhoods on which we can start building.

Lemma 1.13. Let X be a microbundle over B×[0, 1]. Then for every b ∈ B exists a neighborhood
V of b such that X|V×[0,1] is trivial.

Proof. Fix b ∈ B. For any t ∈ [0, 1] we choose an open neighborhood Vt × (t − εt, t + εt) of
(b, t) so that X is trivial on there. The compact set b× [0, 1] can now be covered with finitely
many of the sets (t − εt, t + εt). Let those sets be centered at 0 = t0 < t1 < · · · < tn = 1,
and define V =

⋂n
i=0 Vi. V ⊂ B is open because all Vti are open. Now we make a refinement

0 = t′0 < t′1 < · · · < t′m = 1 so that |t′j−1 − t′j | < mini=0,...,n εti for all 1 ≤ j ≤ m. This ensures
that X|V×[t′j−1,t

′
j ] is trivial for all j. Now we (repeatedly) apply Proposition 1.12 to see that

X|V×[0,1] is trivial. �

Finally we can prove the last ingredient.

Lemma 1.14. Let X be a microbundle over B × [0, 1], where B is paracompact. Then the
standard retraction

r : B × [0, 1]→ B × [1]
is covered by a bundle map germ R : X→ X|B×[1].

Proof. Lemma 1.13 gives us a covering {Vb}b∈B of B with every X|Vb×[0,1] trivial. Paracompact-
ness of B gives us a locally finite refinement {Vα}α∈A. Now we choose functions λα : B → [0, 1]
so that suppλα ⊂ Vα for all α ∈ A and maxα∈A λα(b) = 1 for all b ∈ B.

Define the retractions rα : B × [0, 1]→ B × [0, 1] by

rα(b, t) = (b,max{t, λα(b)}).
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If we assign some ordering to A and were to define r as the composition of all rα in that order, it
is well defined because locally we only have finitely many λα(b). In particular r is the standard
retraction:

r(b, t) = (b,max
α∈A
{t, λα(b)}) = (b, 1).

This gives us an idea of what our next steps for the construction of R are:
(1) Cover each rα with a bundle map germ Rα : X⇒ X.
(2) Choose an ordering of A and let the desired bundle map germ R : X⇒ X|B×[1] be the

composition of the Rα in that order.
Step (1): We can write B × [0, 1] as the union of the following closed sets:

Cα := (suppλα)× [0, 1]
Dα := {(b, t) | t ≥ λα(b)}

Since Cα ⊂ Vα × [0, 1] we have that X|Cα is trivial. Hence the identity map germ of X|Cα∩Dα
extends to a bundle map germ X|Cα ⇒ X|Cα∩Dα that covers rα|Cα . Piece this germ together
with the identity map germ on X|Dα by Lemma 1.11 to obtain Rα.

Step (2): We have to argue that taking an "infinite" composition makes sense. We use that
locally all but finitely many Rα are the identity.

More precisely, we define R on {Bβ}, some locally finite covering of B by closed sets,
and then glue. Each Bβ intersects only finitely many Vα, let’s say Vα1 , Vα2 , . . . , Vαk with
α1 < α2 < · · · < αk in our order. The bundle map germ Rαk · · ·Rα2Rα1 restricts to

R(β) := X|Bβ×[0,1] ⇒ X|Bβ×[1]

Lastly, we piece together these R(β) with the help of Lemma 1.11. �

1.4 Corollaries to Homotopy Invariance

The most important corollary is the most obvious:

Corollary 1.15. Every microbundle over a paracompact, contractible base space is trivial.

Another interesting result is the following:

Corollary 1.16. Assume we have a map f : A→ B with A paracompact. Denote the mapping
cone as Cf = B ∪f CA. Then a microbundle X over B can be extended to a microbundle over
Cf if and only if the induced microbundle f∗X is trivial.

Proof. " =⇒ ": The composition A
f−→ B

incl
↪−−→ Cf is always nullhomotopic since the image

lies in CA ' {∗}. If X extends to a microbundle X′ over Cf , then clearly X′|B ∼= X. Thus
f∗X ∼= (incl ◦f)∗X′, which must be trivial by Theorem 1.1.

"⇐= ": Consider the mapping cylinder Zf = B ∪f (A× [0, 1]), where we glue (a, 1) ∼= f(a)
for all a ∈ A. Because B is a retract of Zf we can extend X to a microbundle X′′ over Zf . Now
suppose that f∗X is trivial. This implies that X′′|A× [0] is trivial and thus X′′|A×[0, 1

2 ] is trivial as
well. This means we have some open set U ⊂ E(X′′|A×[0, 1

2 ]) such that U ∼= A× [0, 1
2 ]×Rn. Hence

we can remove a closed subset from E(X′′) and then assume E(X′′|A×[0, 1
2 ])

h−→ ∼=A× [0, 1
2 ]× Rn.

This homeomorphism h is compatible with the projections and inclusions.
Collapsing A × [0] in Zf to a single point yields Cf . We can create E(X′) by collapsing

h−1(A× [0]× {x}) for each x ∈ Rn in E(X′′). The microbundle structure of X′′ now induces a
microbundle structure on X′ over the basespace Cf . �

The application of this that comes to mind is taking A = Sn the sphere to extend microbundles
along a CW-structure. This corollary is essential for proving that stable isomorphism classes
form a group over finite CW-complexes (with the Whitney sum as operation).
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1.5 Proof using Kister’s Theorem

While one can use Kister’s Theorem to prove the Homotopy Invariance for the cases that
interest us most, it is unwise to do so. More specifically Corollary 1.15 is used in the proof of
Kister’s Theorem when we work over simplicial complexes, because it implies that a microbundle
over a single simplex is trivial. Still, it is a fun exercise.

Corollary 1.17. Assume Kister’s Theorem holds, and that Homotopy Invariance holds for fiber
bundles. Let X be a microbundle with base space B. Assume B is a topological manifold or a
finite simplicial complex and that B′ is paracompact. Let f ' g : B′ → B be homotopic maps.
Then the induced microbundles are isomorphic, i.e.

f∗(X) ∼= g∗(X)

Proof. Let E1 ⊂ E be so that E1 → B is a fiber bundle ξ (with Homeo0(Rn) as the structure
group). Clearly |ξ| ∼= X. Homotopy Invariance for fiber bundles tells us f∗ξ ∼= g∗ξ. That
means the underlying microbundles are isomorphic as well: |f∗ξ| ∼= |g∗ξ|. The rest is showing
that the underlying microbundles are isomorphic to the original induced microbundles, i.e.
|f∗ξ| ∼= f∗|ξ| ∼= f∗X. �

I can not claim with absolute certainty that triviality over simplices is the only instance of
Homotopy Invariance used in the proof of Kister’s Theorem, but this simpler statement can be
proven faster than our general statement.

Proposition 1.18. Let X be a microbundle over the standard n-simplex σ. Then X is trivial.

Proof. By definition, there are local trivialisations, i.e. we have open sets {Bα} covering σ such
that all X|Bα are trivial. Since σ is compact we can take a finite subcover B1, . . . , Bm. Now take
a barycentric refinement of σ so that any subsimplex σα is contained in some Brα . In particular,
we have bundle map germs X|σα ⇒ enσα that cover the identity. Now Lemma 1.11 tells us that we
get a bundle map germ X⇒ enσ covering the identity. Lemma 1.9 and Proposition 1.7 complete
the proof. �
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