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Abstract. We prove a localization theorem for exotic diffeomorphisms, showing that
every diffeomorphism of a compact simply-connected 4-manifold that is isotopic to the
identity after stabilizing with one copy of S2 × S2, is smoothly isotopic to a diffeomor-
phism that is supported on a contractible submanifold. For those that require more
than one copy of S2 ×S2, we prove that the diffeomorphism can be isotoped to one that
is supported in a submanifold homotopy equivalent to a wedge of 2-spheres, with null-
homotopic inclusion map. We investigate the implications of these results by applying
them to known exotic diffeomorphisms.

1. Introduction

This article concerns exotic diffeomorphisms of simply-connected 4-manifolds, and our
main goal is to investigate to what extent they can be localized.

Let X be a compact, simply-connected, smooth 4-manifold. We say that a diffeo-
morphism f : X → X is exotic if it is topologically but not smoothly isotopic to the
identity IdX . If X has a nonempty boundary then we will assume that diffeomorphisms
and isotopies are boundary fixing, that is they restrict to Id∂X , for all time in the case of
isotopies. We say that a diffeomorphism f : X → X is supported on a submanifold C ⊆ X
if f restricts to the identity on the complement of its interior X \ C̊. We say that f is
n-stably isotopic to Id if f#Id: X#nS2 × S2 → X#nS2 × S2 is smoothly isotopic to the
identity. A diffeomorphism f : X → X is topologically isotopic to Id if and only if f is
n-stably isotopic to Id for some n; see Section 2.32.3 for details and citations.

The Cork Theorem [CFHS96CFHS96,Mat96Mat96], states that any exotic pair of compact, simply-
connected, smooth 4-manifoldsX andX ′ are related by a cork twist, i.e. there is a compact,
contractible, smooth codimension zero submanifold C ⊆ X, the eponymous cork, with an
involution τ : ∂C → ∂C, such that X \ C̊ ∪τ C ∼= X ′. The first cork was discovered by
Akbulut [Akb91Akb91], and they have been studied extensively, e.g. [AM98AM98,AY08AY08,AY09AY09,AY13AY13,
Gom17Gom17]. The Cork Theorem was extended to any finite collection of smooth structures
by Melvin-Schwartz [MS21MS21].

Our main result is an analogue of the cork theorem for diffeomorphisms.

Theorem 1.1 (Diffeomorphism cork theorem). Let X be a compact, simply-connected,
smooth 4-manifold, and let f : X → X be a boundary fixing diffeomorphism such that f is
1-stably isotopic to Id. Then there exists a compact, contractible submanifold C ⊆ X, and
a boundary fixing isotopy of f to a diffeomorphism f ′ : X → X that is supported on C.

A more detailed statement, Theorem 4.24.2, strengthens the result in two ways. Namely,
we show that any finite collection of diffeomorphisms that are 1-stably isotopic to Id can
be localized to a compact, contractible submanifold C. Moreover, C can be chosen to be
a 4-manifold that admits a handle decomposition into 0-, 1-, and 2-handles.

A diff-cork is a pair (C, g) consisting of a smooth, compact, contractible 4-manifold C
together with a diffeomorphism g : C → C such that g|∂C = Id∂C . In the terminology
of Theorem 1.11.1, g = f ′|C . Note that for any diff-cork, the diffeomorphism g : C → C is
topologically isotopic to the identity by [Per86Per86,Qui86Qui86].
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Remark 1.2. The contractible 4-manifold C of a diff-cork is not a cork in the sense of
[Kir96Kir96,AM98AM98,AY08AY08], as C does not come with the data of an involution of the boundary,
although this would arguably be unnatural to expect in this context.

The proof of the classical cork theorem involves analyzing the structure of an h-cobordism
from X to X ′, decomposing it into a contractible sub-h-cobordism and a product cobor-
dism. Our proof of Theorem 1.11.1 is somewhat analogous, where a pseudo-isotopy plays
the role of the h-cobordism. Recall that a pseudo-isotopy of X is a diffeomorphism
F : X × I → X × I such that F restricts to the identity on X × {0} ∪ ∂X × I. We
say that f := F |X×{1} is pseudo-isotopic to Id.

A diffeomorphism of a compact, simply-connected 4-manifold that is stably isotopic to
Id is pseudo-isotopic to Id; see Theorem 2.52.5 for a detailed discussion and citations. A result
by Gabai [Gab22Gab22] implies that if the diffeomorphism is 1-stably isotopic to the identity
then the pseudo-isotopy can be assumed to have one eye. This means that it admits an
associated Cerf graphic with one eye, corresponding to a birth and subsequent death of
a single pair of critical points of indices 2 and 3 (see Section 22 for further details). So to
prove Theorem 1.11.1 it suffices to study one-eyed pseudo-isotopies. We analyze the structure
of a one-eyed pseudo-isotopy and show that it can be decomposed into a pseudo-isotopy
supported on C × I ⊆ X × I, where C is a contractible submanifold of X.

Remark 1.3. Our method can be contrasted with that of Gay [Gay21Gay21] (in the case of S4)
and Krannich-Kupers [KK22KK22] (for arbitrary simply-connected 4-manifolds). They charac-
terized exotic diffeomorphisms via embedding spaces. Their proofs also employed pseudo-
isotopy theory, but the outcomes are rather different.

When f must be stabilized by more than one copy of S2 × S2 in order to smoothly
trivialize it, we do not know whether there is a cork theorem. We can instead localize
the diffeomorphism to a 4-manifold homotopy equivalent to a wedge of 2-spheres, whose
inclusion in X is null-homotopic.

Theorem 1.4. Let X be a smooth, compact, simply-connected 4-manifold, and let f : X →
X be a diffeomorphism that is n-stably isotopic to identity. Then there exists k ≤ n(n− 1)
and a compact 4-manifold B and a smooth embedding ι : B → X, such that ι : B → X is
null-homotopic, ∨kS2 ≃ B, and such that f is smoothly isotopic to a diffeomorphism
supported on ι(B).

It would be interesting to know whether this result is optimal. To this end, consider a 4-
dimensional Dehn twist δ along the separating 3-sphere inK3#K3. This diffeomorphism is
topologically isotopic to the identity [Kre79Kre79,Per86Per86,Qui86Qui86,GGH+23GGH+23], not smoothly isotopic
to the identity [KM20KM20], and not 1-stably isotopic to the identity [Lin23Lin23]. This leads to the
following question.

Question 1.5. Can δ be isotoped to a diffeomorphism of K3#K3 supported on a con-
tractible 4-manifold?

More examples of non 1-stably isotopic exotic diffeomorphisms were constructed in
[KMT23KMT23], and the same question applies to these diffeomorphisms as well.

Applications of the Diffeomorphism Cork Theorem. The first examples of exotic
diffeomorphisms of simply-connected 4-manifolds are due to Ruberman [Rub98Rub98,Rub99Rub99].
These examples were shown to be 1-stably isotopic to the identity by Auckly-Kim-Melvin-
Ruberman [AKMR15AKMR15, Theorem C]. We check in Examples 7.57.5 and 7.67.6 that this also holds
for the examples of Baraglia-Konno from [BK20BK20] and those of Auckly from [Auc23Auc23].

Then, as a consequence of Theorem 1.11.1, each of these examples admits a diff-cork (C, g),
and g is an exotic diffeomorphism of C.
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We note that the existence of exotic diffeomorphisms on contractible 4-manifolds was
first shown by Konno-Mallick-Taniguchi [KMT23KMT23]. However our construction allows us to
take finite collections of Ruberman’s diffeomorphisms, and obtain the following result.

Theorem 1.6. For each m ≥ 1 there exists a contractible, compact, smooth 4-manifold Cm
and a collection {g1, . . . , gm} of boundary-fixing diffeomorphisms of Cm that generate a
subgroup of π0Diff∂(Cm) that abelianizes to Zm.

Here the subscript ∂ indicates that all maps fix the boundary pointwise. Theorem 1.61.6
produces subgroups of mapping class groups of contractible 4-manifolds that determine
arbitrarily large but finite rank subgroups of the abelianization, by localizing families
of diffeomorphisms of closed 4-manifolds with nonzero second Betti number. Konno-
Mallick [KM24KM24] proved that localizing cannot produce infinite rank subgroups, so Theo-
rem 1.61.6 is in this sense optimal.

Now we come to our final application of Theorem 1.11.1. Galatius and Randal-Williams
[GRW23GRW23, Theorem B] proved that for dimension n at least 6, and C a contractible, com-
pact, smooth n-manifold, the extension map Diff∂(D

n) → Diff∂(C) is a weak equivalence,

for any embedding Dn ↪→ C̊ of the n-dimensional disc into the interior of C. We show
that this does not hold in dimension 4.

Theorem 1.7. There exists a smooth, compact, contractible 4-manifold C and a smooth
embedding D4 ⊆ C such that the extension map Diff∂(D

4) ↪→ Diff∂(C) is not surjective
on path components, so is not a weak equivalence.

Galatius and Randal-Williams also show that Homeo∂(D
n) → Homeo∂(C) is a weak

equivalence for n ≥ 6 [GRW23GRW23, Theorem A]. It is unknown whether this holds in di-

mension 4. However we do have an isomorphism π0Homeo∂(D
4)

∼=−→ π0Homeo∂(C) for
any contractible compact 4-manifold C by [Qui86Qui86, Proposition 2.2] together with [Per86Per86],
[Qui86Qui86, Theorem 1.4].

Following a suggestion of David Gabai, we prove the following result. In contrast with
Theorem 1.71.7, it shows every exotic diffeomorphism of ♮nS2 ×D2 is induced from D4. We
will recall the definition of barbell diffeomorphisms in Section 99.

Theorem 1.8. For the 4-manifold Xn := ♮nS2 ×D2, n ≥ 1, there is an exact sequence

π0Diff∂(D
4) → π0Diff∂(Xn) → π0Homeo∂(Xn) → 0.

Moreover, π0Homeo∂(Xn) is generated by standard barbell diffeomorphisms ϕi,j for 1 ≤
i < j ≤ n.

Remark 1.9. Theorem 1.81.8 implies that if there exists an exotic diffeomorphism of ♮nS2×D2

for some n, this would immediately produce an exotic diffeomorphism of the 4-ball.

Organization. In Section 22 we recall the necessary background on pseudo-isotopies and
their connections to 1-parameter families of Morse functions on X× I, as well as to stable
diffeomorphisms. In Section 33 we analyse the structure of pseudo-isotopies, introducing
the Quinn core, and we prove several key lemmas. Then in Section 44 we prove Theorem 1.11.1.
Section 55 recalls Quinn’s sum square move and defines a collection of elements of π2(X)
determined by a nested eye Cerf family. In Section 66, making use of these methods, we
prove Theorem 1.41.4. Section 77 gives a unified treatment of several examples of exotic
diffeomorphisms of simply-connected 4-manifolds from the literature that are 1-stably
isotopic to the identity, and proves Theorem 1.61.6. Section 88 shows that these examples
give rise to diffeomorphisms of contractible 4-manifolds with nontrivial family Seiberg-
Witten invariants, and proves Theorem 1.71.7. Finally Section 99 proves Theorem 1.81.8.
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2. Pseudo-isotopies and Cerf families of generalized Morse functions

Let X be a smooth, compact 4-manifold. A pseudo-isotopy on X is a diffeomorphism

F : X × I
∼=−→ X × I that restricts to the identity on X × {0} ∪ ∂X × I. If such a

diffeomorphism preserves level sets X × {s} for all s ∈ I, then it is a smooth isotopy.

2.1. From pseudo-isotopies to Cerf families. From a pseudo-isotopy F , we obtain a
family of functions and gradient-like vector fields denoted by {(qt, vt)} and constructed as
follows. Let q0 : X × I → I be the projection q0(x, s) = s, and let v0 be the unit vector
field ∂/∂s on X × I. Define

(q1, v1) := (q0 ◦ F−1, DF (v0)).

Both q0 and q1 are Morse functions without critical points.
There is a generic 1-parameter family of generalized Morse functions qt : X × I → I,

along with an associated family of gradient-like vector fields vt, interpolating between
(q0, v0) and (q1, v1) [Cer70Cer70, Section 4]. Here, a generalized Morse function is permitted,
unlike a Morse function, to have isolated degenerate critical points, however, they are
singularities of codimension at most 1, corresponding to births and deaths of critical
points. We call such a family {(qt, vt)}t∈[0,1] a Cerf family.

Since q1 is a Morse function with no critical points, we can integrate v1 to obtain a
diffeomorphism of X × I. In fact, this recovers the pseudo-isotopy F , as we explain in the
next lemma.

Lemma 2.1. The diffeomorphism X × I → X × I obtained by flowing upwards from
X × {0} along the vector field v1 is precisely the diffeomorphism F : X × I → X × I.

Proof. Recall that q1 := q0 ◦ F : X × I → I and v1 := DF (v0). Fix p ∈ X × {0}, and let
αp : I → X × I be the integral curve of v1. That is, αp is the unique solution to the ODE

d

ds
αp(s) = v1(αp(s)) ∈ Tαp(s)(X × I)

with initial condition αp(0) = p. Observe that s 7→ F (p, s) satisfies the same differential
equation, i.e.

d

ds
F (p, s) = DF(p,s)(v0) =: v1(F (p, s)) ∈ TF (p,s)(X × I).

Then uniqueness of solutions to ODEs implies that αp(s) = F (p, s) for all s ∈ I. □

Remark 2.2. Similarly, the diffeomorphism X × I → X × I obtained by flowing upwards
from q−1

0 (0) along v0 is the identity IdX×I .
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Remark 2.3. If qt has no critical points for all t, then by Lemma 2.12.1 and Remark 2.22.2,
integrating vt yields a family of diffeomorphisms Ft : X×I → X×I interpolating between
IdX×I and F . By the smooth dependence of the solutions of ODEs on initial conditions,
this is a smooth family, i.e. a smooth isotopy. The restriction of Ft to the top slice, X×{1},
gives an isotopy ft : X → X, with f0 = Id and f1 = f . However, typically qt will have
critical points for some t.

Let t ∈ (0, 1) and let p ∈ X× I be a critical point of qt. Let Yp,t ⊆ X×{0} be the set of
points x ∈ X × {0} such that the trajectory of vt starting at x limits to p. The following
lemma will be used in the discussion of the Quinn core in Section 33.

Lemma 2.4. Let F : X × I → X × I be a pseudo-isotopy and let (qt, vt) be a Cerf family

for F . Let Y ⊆ X̊ × {0} be a compact codimension zero submanifold such that⋃
t∈(0,1), p crit. pt. of qt

Yp,t ⊆ Y̊ .

Then F is isotopic to a pseudo-isotopy that is supported in Y × I.

Proof. Define Z := X \ Y̊ . If X has nonempty boundary, then ∂X × I ⊆ Z × I since
Y lies in the interior of X. Since, for all t, qt has no critical points in Z, the flow along
vt gives a family of embeddings φt : Z × I → X × I with φt(Z × {0}) = Z × {0} and
φt(Z×{1}) ⊆ X×{1}. We can fix qt and vt to be such that φt restricts to the identity on
Z×{0}∪∂X×I. Note that φ0 : Z×I → X×I is the standard embedding, by definition of
q0 and v0. Using the isotopy extension theorem, extend φt to a family of diffeomorphisms
Gt : X × I → X × I with G0 = Id and Gt ◦ φ0 = φt for all t. Using the relative version of
the isotopy extension theorem, we can further arrange that Gt restricts to the identity on
X × {0} for all t ∈ [0, 1]. Then

F ′ := G−1
1 ◦ F : X × I → X × I

is a pseudo-isotopy, with an isotopy G−1
t ◦ F from F = G−1

0 ◦ F to F ′ = G−1
1 ◦ F .

Moreover, F ′ is supported in Y̊ × I. To see this, note that by Lemma 2.12.1 we have that
F |Z×I = φ1. Since G1 ◦ φ0 = φ1 we have that G−1

1 ◦ φ1 = φ0. Hence

F ′|Z×I = G−1
1 ◦ F |Z×I = G−1

1 ◦ φ1 = φ0 = IdZ×I .

It follows that F ′ is supported in the complement of Z × I, namely Y̊ × I. □

2.2. Nested eye graphics. Hatcher and Wagoner [HW73HW73] introduced the secondary
Whitehead group Wh2(π) of a group π, and defined an obstruction Σ(F ) ∈ Wh2(π1(X))
of a pseudo-isotopy of X.

When Σ(F ) vanishes, Hatcher andWagoner showed that one can deform the 1-parameter
family (qt, vt) until its Cerf diagram is a nested eye diagram with critical points of index
2 and 3 only. Here, for each t, all critical points are assumed to have distinct critical
values, and apart from birth and death times critical points of index 2 have critical values
below those of critical points of index 3. Moreover, a nested eye diagram has the following
features.

(i) There are n birth points, of canceling index 2 and 3 pairs of critical points.
(ii) There are no rearrangements, and then all n pairs cancel against one another.
(iii) There are no handle slides, and independent birth and death points.

For π the trivial group, Wh2({e}) = 0, and so the Hatcher-Wagoner obstruction Σ(F )
necessarily vanishes when X is a simply-connected 4-manifold. Consequently, there is
always a deformation of (qt, vt) to a nested eye family with indices 2 and 3. Throughout
the rest of this article all Cerf families will be assumed to be in nested eye position.
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Figure 1. A Cerf graphic for a family in nested eye position. The hori-
zontal direction is the t-axis and the vertical direction is the [0, 1] direction,
recording the critical values of the critical points in the Cerf family.

2.3. Stable diffeomorphisms. We explain some results on stable diffeomorphisms of
4-manifolds used in follow-up sections.

The main results of this paper, in particular Theorems 1.11.1 and 1.41.4, are stated for
diffeomorphisms that are stably isotopic to the identity. The main applications of these
results are to exotic diffeomorphisms, namely those that are topologically but not smoothly
isotopic to the identity. Indeed, for a simply-connected 4-manifold X, a diffeomorphism
f : X → X is topologically isotopic to Id if and only if f is n-stably isotopic to Id for
some n. We recall how to deduce this from the literature in the following theorem, and
we elucidate the relationship with smooth and topological pseudo-isotopy.

Theorem 2.5. Let f : X → X be a diffeomorphism of a simply-connected, compact,
smooth 4-manifold, and if ∂X ̸= ∅ then assume that f |∂X = Id∂X . The following are
equivalent:

(i) f is topologically isotopic rel. boundary to Id;
(ii) f is smoothly pseudo-isotopic rel. boundary to Id;
(iii) f is smoothly stably isotopic rel. boundary to Id;
(iv) f is topologically pseudo-isotopic rel. boundary to Id.

Proof. Suppose (ii), that f is topologically isotopic to Id. Then f acts trivially on the
integral homology of X. If X is closed, it was shown by Kreck [Kre79Kre79], and later by
Quinn [Qui86Qui86] (with a correction by Cochran-Habegger [CH90CH90]), that f is smoothly
pseudo-isotopic to the identity. For X with nonempty, connected boundary, one also
observes that f has trivial Poincaré variation, and it was shown by Saeki [Sae06Sae06] that f is
smoothly pseudo-isotopic to the identity. This was generalized to arbitrary boundary by
Orson-Powell [OP22OP22] by also noting that f acts trivially on relative spin structures. This
proves that (ii) implies (iiii).

Then, assuming (iiii) it follows from Quinn [Qui86Qui86] (with a correction in [GGH+23GGH+23]),
and independently Gabai [Gab22Gab22, Theorem 2.5], that f is smoothly stably isotopic to the
identity (rel. boundary). This proves that (iiii) implies (iiiiii).

Now suppose that (iiiiii) holds, namely that f is smoothly stably isotopic to the identity.
Then, the invariants of f from the first paragraph vanish, and by [Kre79Kre79], [Qui86Qui86], and
[OP22OP22], f is smoothly pseudo-isotopic to the identity. So (iiii) and (iiiiii) are equivalent.

It is immediate that (iiii) implies (iviv). So it remains to see that (iviv) implies (ii). For this,
Perron [Per86Per86] and Quinn [Qui86Qui86] (with a different correction to the latter in [GGH+23GGH+23])
showed that if f is topologically pseudo-isotopic to the identity then it is topologically
isotopic to the identity. □

The following theorem of Gabai gives a quantitative version of Theorem 2.52.5 (iiii)⇐⇒(iiiiii).
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Theorem 2.6 ([Gab22Gab22, Theorem 2.5 and Corollary 2.10]). Let f : X → X be a diffeo-
morphism with f |∂X = Id. Then

f#Id: X#n(S2 × S2) → X#n(S2 × S2)

is smoothly isotopic to the identity rel. boundary if and only if f is pseudo-isotopic to the
identity via an n-eyed pseudo-isotopy.

Remark 2.7. Note that in order to define f#Id one has to make a choice of an isotopy
of f to a diffeomorphism that fixes a 4-ball. It was shown in [AKMR15AKMR15, Theorem 5.3] that
all choices give rise to isotopic stabilized diffeomorphisms, i.e. that f#Id is well-defined
up to isotopy.

3. The structure of a pseudo-isotopy

In this section we discuss the structure of the middle-middle level and its relation to
the rest of the pseudo-isotopy.

3.1. The Quinn core. Let F : X×I → X×I be a pseudo-isotopy of a simply-connected
4-manifold with a nested eye family (qt, vt). For each t such that qt is a Morse function
(which holds for all but the finitely many values of t where births and deaths occur),
the data (qt, vt) determines a handle decomposition of X × I obtained by attaching 5-
dimensional 2- and 3-handles to X × [0, ε]. We describe the properties of this family of
handle structures.

Assume that there are n nested eyes, and that all births happen before t = 1/4 and all
deaths happen after t = 3/4. Using Cerf’s uniqueness of birth and death lemmas [Cer70Cer70,
Chap. III], after a deformation of the family we assume that the Cerf data is given by
the standard model births and deaths for a small interval of time around the births and
deaths, t ∈ (1/4 − δ, 1/4) and t ∈ (3/4, 3/4 + δ) respectively. The standard model births
or deaths take place in respective 5-balls in X × I, and after a deformation we assume
that (qt, vt) is constant away from these balls for t ∈ (1/4− δ, 1/4) and t ∈ (3/4, 3/4 + δ).

For each t ∈ [1/4, 3/4], let Mt := q−1
t (1/2) denote the middle level set between the 2-

and 3-handles. We call M1/2 the middle-middle level.

Let At := {At
1, . . . , A

t
n} denote the ascending spheres of the 2-handles and let Bt :=

{Bt
1, . . . , B

t
n} denote the descending spheres of the 3-handles, all in Mt. For each t ∈

[1/4, 3/4], the middle level Mt is diffeomorphic to

M := X#nS2 × S2.

Construction 3.1. Throughout this paper we will use the following identification of Mt

with M for 1/4 ≤ t ≤ 3/4. A closely related argument was given in [Gay21Gay21, Proof of The-
orem 9], for the case X = S4.

Consider the framed attaching circles αt := ⊔n
i=1α

t
i : ⊔n S1 × D3 → X × {ε} of the

2-handles at time t. Use the product structure on X × [0, ε] to view the circles αt as
embeddings ⊔iα

t
i : ⊔n S1 ×D3 → X × {0}.

It is convenient to introduce the notation

γ := α1/4 : ⊔n S1 ×D3 → X

for the embeddings of thickened circles at time t = 1/4. We sometimes abuse notation
and conflate γ and αt with their images, which are n disjointly embedded framed circles
γ = ⊔iγi ⊆ X. Let Xγ denote the result of surgering X along the framed circles γ

Xγ := X \ γ(⊔nS1 × D̊3) ∪γ|∂ (⊔nD2 × S2). (3.1)

Since there are embedded discs in X, with boundaries the γi, across which the framing
extends, it follows that the result of the surgery is diffeomorphic to M = X#nS2 × S2.
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We use a fixed choice of such discs to fix once and for all an identification

M = Xγ .

Let φt be an isotopy of X ×{0}, t ∈ [1/4, 3/4], that for each t takes γ to αt. We obtain
this by applying the isotopy extension theorem to the isotopy of embeddings αt. For each
t, the diffeomorphism φt induces a diffeomorphism

X \ γ(⊔nS1 × D̊3)
∼=−→ X \ αt(⊔nS1 × D̊3). (3.2)

Next, the flow of vt induces a diffeomorphism X \ αt(⊔nS1 × D̊3)
∼=−→ Mt \ N (A),

where N (A) is an open tubular neighborhood of A diffeomorphic to ⊔nS2×D̊2. We obtain
a diffeomorphism because we removed neighborhoods of the ascending and descending
manifolds of the index 2 critical points, so the flow encounters no critical points. Combining
these two diffeomorphisms, we obtain:

X \ γ(⊔nS1 × D̊3)
∼=−→ X \ αt(⊔nS1 × D̊3)

∼=−→Mt \ N (A).

Attaching ⊔nD2×S2 to the domain yields Xγ , as in (3.13.1). We extend the diffeomorphism
from (3.23.2) over ⊔nD2 × S2. The manifold Mt is obtained from M by surgery along αt,
and hence using the flow of vt and the standard fact that passing a critical point gives rise
to a surgery, we obtain an identification

M = Xγ
∼=−→Mt

for each t ∈ [1/4, 3/4]. This concludes the construction of an identification of M with Mt.

We continue the discussion of the geometric data in the middle level. At t = 1/4 and
t = 3/4, the spheres intersect transversely with |At

i ⋔ Bt
j | = δij . As t varies from 1/4 to

3/4, we see a regular homotopy of At ∪ Bt that restricts to an isotopy of the A-spheres
and to an isotopy of the B-spheres. During this regular homotopy, new intersection points
are introduced by finger moves, and removed by Whitney moves. We can assume, after
a deformation, that all finger moves are performed at time t = 3/8 and all the Whitney
moves are performed at time t = 5/8. The finger and Whitney moves are guided by two
collections of disjointly embedded discs in the middle-middle level M1/2, pairing excess

intersections among A1/2 and B1/2, the finger discs V and the Whitney discs W . Since a
finger move with time reversed is a Whitney move, both collections of discs can be used
as the data for a collection of Whitney moves to cancel excess intersections between A1/2

and B1/2. The moves corresponding to V are performed with time reversed at t = 3/8,
while the moves corresponding to W are performed at t = 5/8. Each of the collections V
and W consists of framed Whitney discs. For ease of notation, at t = 1/2 we will suppress
the mention of t and denote the collections of spheres in M1/2 by A = {A1, . . . , An} and
B = {B1, . . . , Bn}.

Define the Quinn core to be a regular neighborhood of A ∪ B ∪ V ∪W in the middle-
middle level,

Q := N (A ∪B ∪ V ∪W ) ⊆M1/2 = X#nS2 × S2. (3.3)

Considering the trajectories of v1/2 in X × I at t = 1/2 that intersect the Quinn core,
together with the trajectories starting from the index 3 critical points or ending at index
2 critical points, determines a sub-h-cobordism P ⊆ X × I. This h-cobordism is obtained
from Q× [−ε, ε] ⊆M1/2 × [1/2− ε, 1/2 + ε] by attaching two collections of 3-handles: to
Q× {ε} along B, and to Q× {−ε} along A. For i = 0, 1 we define

Qi := P ∩ (X × {i}).

The following statement is implicit in [Qui86Qui86], and will be used to establish conventions
and describe the framework used to prove Theorem 1.11.1.
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Lemma 3.2 (Quinn Core Lemma). Let F : X× I → X× I be a smooth pseudo-isotopy of
a simply-connected 4-manifold. Then there is a smooth isotopy F ≃ F ′ such that F ′ = Id
on (X \ Q̊0)× I.

Proof. Recall from Construction 3.13.1 thatMt is identified withM for 1/4 ≤ t ≤ 3/4, and as
discussed in Section 3.13.1, for some small δ the times t ∈ (1/4−δ, 1/4) and t ∈ (3/4, 3/4+δ)
correspond to standard births and deaths.

Next we focus on the main part of the proof, stating that after a deformation of the
pseudo-isotopy, the isotopy of A and B spheres is confined to Q. For 3/8 ≤ t ≤ 5/8 the
union A ∪ B moves by an isotopy, but the topology of A ∪ B changes at times t = 3/8
and t = 5/8 when finger and Whitney moves take place, respectively. For 1/4 ≤ t ≤ 3/8
it is convenient to consider the union Qt

V := N (At ∪ Bt ∪ υt), a regular neighborhood
of the union of At, Bt, and arcs υt guiding the finger moves that will occur at t = 3/8.
Reversing time, a Whitney move becomes a finger move, so for 5/8 ≤ t ≤ 3/4 there are
analogous arcs which we denote by ωt, shown in Figure 22, and we consider the regular
neighbourhood of the corresponding union Qt

W := N (At ∪Bt ∪ ωt).

At Bt

W t
ωt

At Bt

Figure 2. Left: a schematic illustration of At ∪Bt ∪W t for t just before
the Whitney move time 5/8. Right: At ∪Bt ∪ ωt for t right after 5/8.

0 00 0 0

∼=

Figure 3. The regular neighborhoods N (At ∪Bt ∪W t), t = 5/8− ε, and
N (At ∪ Bt ∪ ωt), t = 5/8 + ε, are diffeomorphic. In terms of Kirby dia-
grams, a diffeomorphism is implemented by sliding the 0-framed 2-handle
corresponding to either At or Bt (the left-most and right-most handles re-
spectively) twice over the central 2-handle corresponding to W t, and then
canceling a 1-, 2-handle pair.

For t ∈ [1/2, 5/8], we letQt
W := N (At∪Bt∪W t), using a family of regular neighborhoods

that vary smoothly with respect to t. Similarly for t ∈ [3/8, 1/2] we define Qt
V := N (At ∪

Bt ∪ V t).

Observe that the two a priori different versions of Q
5/8
W at the Whitney move time are

in fact (modulo making judicious choices of regular neighborhoods) equal codimension
zero submanifolds of M5/8. For this, Figure 33 shows that the regular neighborhoods

are diffeomorphic. Hence it makes sense to use the same notation Qt
W to describe a

codimension zero submanifold of Mt for all t ∈ [1/2, 3/4], and similarly for Qt
V and t ∈

[1/4, 1/2].
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We give the rest of the argument for Qt
W and t ≥ 1/2. The same argument applies,

with time reversed, for Qt
V and t ≤ 1/2.

Using the identification Mt = M in Construction 3.13.1, for t ∈ [1/2, 3/4], we con-
sider Qt

W ⊆ M . This determines an isotopy of N (A ∪ B ∪W ) in M , and using isotopy

extension we obtain a corresponding isotopy φt of M . The effect of the inverse φ−1
t of this

isotopy is that Qt
W becomes constant in M =Mt for all t ∈ [1/2, 3/4].

Next we extend this to an isotopy Φt ofX×I, t ∈ [1/2, 3/4], supported in a neighborhood
of ∪t∈[1/2,3/4]Mt. Such a neighborhood is illustrated as the shaded region labeled (i) in
Figure 44.

(ii)

φ−1
t

(i)

(iii)

1/2 3/4 3/4 + δ 1

Figure 4. The isotopy is given by Φ−1
t in the preimage under qt of the

shaded region labeled (i), its reverse in region (iii), and it is constant (as a
function of t) in region (ii). The isotopy is the identity on the left, top, and
bottom boundary arcs of the shaded rectangle (i), i.e. the dashed boundary
arcs. The picture is symmetric for t ≤ 1/2.

For t ∈ [3/4, 3/4 + δ], we assume that the family (qt, vt) consists of n elementary paths
of death [Cer70Cer70] (where as usual n is the number of eyes), each of which is supported in
an arbitrarily small neighborhood of the corresponding death point.

Apply the inverse Φ−1
t of this isotopy on X × I for t in [1/2, 3/4], apply the constant

isotopy for t ∈ [3/4, 3/4+ δ], and then undo Φ−1
t , i.e. apply Φ−1

r(t) for t ∈ [3/4+ δ, 1], where

r : [3/4+ δ, 1] → [1/2, 3/4] is the unique decreasing linear bijection. We are not concerned
with the effect of Φt for t ∈ [3/4 + δ, 1] since all deaths occur before then. Note that the
overall result can be deformed to not having applied any isotopy. By differentiating, we
obtain a deformation of the family of gradient-like vector fields {vt}t≥1/2.

The outcome of this operation is that Qt
W becomes constant in M = Mt for all t ∈

[1/2, 3/4], and because we made the corresponding modification of vt we still have that

At ∪Bt ⊆ Qt
W for all t ∈ [1/2, 3/4]. Then since Qt

W = Q
1/2
W ⊆ Q, we have that

At ∪Bt ⊆ Q ⊆M =Mt

for all t ∈ [1/2, 3/4]. As stated above, by reversing time we apply the analogous de-
formation of vt for t ≤ 1/2, to arrange that Qt

V is constant and At ∪ Bt ⊆ Qt
V for all

t ∈ [1/4, 1/2]. This completes the argument for our claim that, after a deformation, we
can assume that the isotopy of A and B spheres in M is confined to the Quinn core Q.

These deformations ensure that for all t ∈ [1/4, 3/4] the trajectories starting or ending
at the critical points of qt are such that their intersection with the middle level lies in Q.
Hence for every critical point of qt the downward flow along vt lands in Q0. We claim that
this holds for all t ∈ [0, 1], or equivalently for all t ∈ [1/4− δ, 3/4 + δ], since there are no
critical points outside this range.

By the above considerations, we know that for t = 3/4 the downwards trajectories of
all critical points of X × I land in Q0 ⊆ X × {0}. By choosing the neighborhood for each
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elementary path of death to be sufficiently small, we guarantee that these trajectories land
in Q0 for all t ∈ [3/4, 3/4 + δ] as well. By symmetry the same conclusion holds for all
t ∈ [1/4− δ, 1/4].

We then apply Lemma 2.42.4 to deduce that the pseudo-isotopy F is isotopic to a pseudo-
isotopy F ′ : X × I → X × I that is supported on Q0 × [0, 1]. This concludes the proof of
Lemma 3.23.2. □

3.2. The homotopy type of the Quinn core and the arc condition. Consider two
spheres Ai and Bj . Choose the orientations of Ai and Bi to be such that the algebraic
intersection number λ(Ai, Bj) = δij . We write Vij (respectively Wij) for the collection
of the finger (respectively Whitney) discs pairing intersections of Ai with Bj . Assuming
genericity, the intersection (∂Vij∪∂Wij)∩Ai is the image of a generic immersion ⊔CijS1 ↬
Ai, for some integers Cij ∈ N0, and if i = j then there is also a generically immersed arc
I ↬ Ai. Similarly (∂Vij ∪ ∂Wij) ∩ Bj is the image of a generic immersion ⊔CijS1 ↬ Bj ,
and if i = j a generically immersed arc I ↬ Bi. Note that the number of circles in Ai and
Bj is the same, so using Cij to denote both quantities is justified.

Lemma 3.3. We can assume without loss of generality that Q is path-connected.

Proof. If Q were not connected, there would exist an index i such that the spheres Ai∪Bi

are disjoint from Aj ∪ Bj for all j ̸= i. We consider the corresponding ith eye in the
Cerf graphic. By the independent trajectories principle of Hatcher-Wagoner [HW73HW73, §7],
there is a deformation of the family moving this eye away from all the others. Move this
eye so it appears before all the others in the Cerf graphic, and then merge it with the
outermost eye, similar to the deformation depicted in Figure 88, but assuming the leftmost
family has only one eye. Repeat this process while Q remains disconnected. Since the
process reduces the number of eyes and Q is path-connected if the family has one eye, the
algorithm terminates. □

Remark 3.4. We could also have arranged for Q to be path-connected by adding extra
trivial finger and Whitney moves between Ai and Bj (or between Bi and Aj). In keeping
with the ethos of this article, we chose the method of proof of Lemma 3.33.3 in order to
minimize the complexity of Q, in particular to minimize N in the next lemma.

Lemma 3.5. Let n denote the number of eyes, i.e. the number of spheres Ai and the
number of spheres Bj. Let Cij, for i, j = 1, . . . , n, be the number of immersed circles

corresponding to intersections of Ai with Bj, as above. Let m := |V̊ ⋔ W̊ | denote the
number of intersection points between the interiors of the V discs and the interiors of the
W discs. Assume, using the proof of Lemma 3.33.3 if necessary, that Q is path connected.
Then

Q ≃
N∨
S2 ∨

M∨
S1 (3.4)

where
N := 2n+

∑
i,j

Cij and M := m+
∑
i,j

Cij − n+ 1. (3.5)

Proof. To analyze the homotopy type of the Quinn core, we study its 2-complex spine
Qsp := A∪B ∪V ∪W , noting that since Q is by definition a regular neighborhood of Qsp,
we have that Qsp ≃ Q. Consider the construction of Qsp as a three step process. We
record a presentation of the fundamental group given at each step. First, the fundamental
group of the union of the spheres A∪B is free, generated by double point loops, cf. [FQ90FQ90]
or [BKK+21BKK+21, 11.3]. Note that a single path is chosen from the base point in M1/2 to each
2-sphere, and the same collection of paths is used in the definition of all double point loops.
Not all double points contribute generators of the fundamental groups, as some of them
(one intersection point Ai ∩Bi for each i, and one intersection point (Ai ∪Bi)∩ (Aj ∪Bj)
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for i ̸= j) reduce the number of connected components. Let p1, . . . , pk be the remaining
double points, and let gi denote the free generator corresponding to pi.

Next, abstractly attach the finger and Whitney discs, with interiors disjoint from each
other, to A∪B. The attaching curve of each disc passes through exactly two double points,
say pi and pj , i ̸= j. The effect of attaching this 2-cell to A∪B on the fundamental group

is the relation gig
−1
j = 1. Note that the boundaries of V,W may intersect on A and B,

however, this is immaterial for writing down a presentation of the fundamental group.
The result of attaching all finger and Whitney discs is a 2-complex with free fundamental

group. Finally, the spine of the Quinn core Qsp is obtained by introducing intersections
between V and W , giving rise to additional free generators h1, . . . , hm. The resulting
presentation is

π1(Q
sp) ∼= ⟨g1, . . . , gk, h1, . . . , hm | gi1g

−1
j1
, . . . , giℓg

−1
jℓ
, 1, . . . , 1⟩ (3.6)

Here ℓ is the total number of finger and Whitney discs, and there are 2n trivial relations,
corresponding to the spheres A and B. Given two generators gi, gj and a relation gig

−1
j ,

one of the generators, say gj , and the relation may be removed from the presentation using
Tietze moves. Any other appearance of gj in a relation gjg

−1
r is replaced with gig

−1
r . Note

that if r = i, this leads to the trivial relation gig
−1
i . We refer to [HAM93HAM93] for a discussion

of group presentations and 2-complexes; to be specific the moves we used are all of the
form (26) - (28) in that reference. They are called Q∗∗ transformations in [HAM93HAM93] and
sometimes they are referred to as the Andrews-Curtis moves; they are all of the Tietze
moves with the exception of adding a trivial relation. An inductive application of these
moves reduces the presentation to

π1(Q
sp) ∼= ⟨g1, . . . , gk′ , h1, . . . , hm | 1, . . . , 1⟩. (3.7)

In addition to the 2n trivial relations in Equation (3.63.6), a trivial relation 1 (equal to gig
−1
i

for some i) appears as the result of Tietze moves for each immersed circle corresponding to
intersections of Ai with Bj , showing that there are a total of N relations in Equation (3.73.7).
The fact that the number of generators k′+m equalsM may be deduced from the fact the
Euler characteristic ofQsp equals 3n−m, and it is unaffected by the Andrews-Curtis moves.
Note that (3.73.7) is also a presentation for the fundamental group of the 2-complex on the
right-hand side of (3.43.4). The equivalence classes of group presentations up to Andrews-
Curtis moves are in bijective correspondence with 3-deformation types of 2-complexes, cf.
[HAM93HAM93, Theorem 2.4]. Here a 3-deformation refers to a simple homotopy equivalence
given as a composition of elementary expansions and collapses through cells of dimensions
at most 3. It follows that Qsp and the 2-complex on the right-hand side of (3.43.4) are
homotopy equivalent. □

The following condition will be important in our proofs. We see from Lemma 3.53.5 that
controlling the integers Cij allows us to control the homotopy type of Q.

Definition 3.6. We say that Quinn’s arc condition holds if for each i we have that Cii = 0,
so there are no immersed circles corresponding to Ai, Bi intersections, and if in addition
for each i both (∂Vii ∪ ∂Wii) ∩Ai ⊆ Ai and (∂Vii ∪ ∂Wii) ∩Bi ⊆ Bi are embedded arcs.

In [Qui86Qui86, Section 4] Quinn proved the following lemma.

Lemma 3.7 (Quinn). There is a deformation such that Quinn’s arc condition holds.

Quinn’s proof just does this for the innermost eye, but we can apply the proof to each
of the eyes individually to obtain the same conclusion. This will likely create new Ai, Bj

intersections for i ̸= j.

Corollary 3.8. Suppose that there is a single eye and that Quinn’s arc condition holds.
Let m := |V̊ ⋔ W̊ | denote the number of intersection points between the interiors of the V
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discs and the interiors of the W discs. Then

Q ≃ S2 ∨ S2 ∨
m∨
S1. (3.8)

Proof. In this case, n = 1 and Cij = 0 for all i, j, so the corollary follows from Lemma 3.53.5.
□

3.3. A handle decomposition. The following result, cf. [CFHS96CFHS96, p. 344], will be used
in the proofs of Theorems 1.41.4 and 4.14.1. Let S be a connected, compact, codimension zero
submanifold in the interior of a compact simply-connected 4-manifold M , such that M \S
is connected, and π1(S) is a free group of some rank m. Consider a handle structure H
on M \ S without 0-handles, relative to ∂S, and let S′ := S ∪ (all 1-handles of H). The
fundamental group π1(S

′) is free, of rank n equal to m plus the number of 1-handles of
H; let g1, . . . , gn be a set of free generators. Let H′ be the resulting handle decomposition
of M \ S′, relative to ∂(M \ S′), consisting of the 2-, 3-, and 4-handles of H.

Lemma 3.9. In the set-up described above, stabilize H′ by introducing n canceling 2-, 3-
handles pairs in a 4-ball near the boundary of S′. After a sequence of 2-handle slides, the
attaching circles of the newly introduced 2-handles h1, . . . , hn may be assumed to represent
the conjugacy classes of the free generators g1, . . . , gn of π1(S

′).

Proof. Consider the presentation of the trivial group π1(M), given by the generators
g1, . . . , gn and relations corresponding to the 2-handles. (Here the basepoint is connected
to the attaching circle of each 2-handle by an arc; then the attaching circle gives rise to
a relation, i.e. a word in the free group.) Since π1(M) = {1}, each generator gi is in the
normal closure of the relations, in other words, gi equals a product of conjugates of the
relations. In other words, the trivial element, multiplied by a product of conjugates of
the relations, equals gi. Starting with the ith newly introduced 2-handle hi (whose at-
taching circle is trivial), implement handle slides guided by the equation in the free group
described in the preceding sentence. The result is the desired collection of 2-handles. □

We will apply this lemma to S = Q in order to augment Q with 2-handles, and obtain
a simply-connected submanifold of M1/2 containing Q. We will also use the lemma in the
proof of Theorem 1.61.6.

4. A cork theorem for 1-stably trivial exotic diffeomorphisms

In this section we prove the following theorem. Let X be a compact, simply-connected
smooth 4-manifold, and let F : X × I → X × I be a smooth pseudo-isotopy. We consider
X × I as a trivial h-cobordism from X to itself.

Theorem 4.1 (Corks for one-eyed pseudo-isotopies). If F admits a Cerf family with one
eye, then there exists a compact, contractible, codimension zero, submanifold C ⊆ X and
a smooth isotopy of F rel. X ×{0} ∪ ∂X × I to a pseudo-isotopy F ′ : X × I → X × I that
is supported on C × I.

Proof of Theorem 4.14.1. The proof is inspired by the proof of the cork theorem for h-
cobordisms [CFHS96CFHS96,Mat96Mat96]; see also the exposition in [Kir96Kir96]. We start with the subman-
ifold Q in the middle-middle level M1/2

∼= X#(S2 × S2), defined in (3.33.3). By Lemma 3.73.7
we may assume that V andW satisfy Quinn’s arc condition. Recall that the finger discs V
are disjointly embedded in X#S2 × S2, and so are the Whitney discs W . If the interiors
of V,W are disjoint, Q is simply-connected. In general, the interiors of V,W intersect,
and the homotopy type of the Quinn core is given in Corollary 3.83.8 to be S2 ∨S2 ∨

∨m S1,
where m is the number of intersections between the interiors of the V and W discs. Next
we apply the construction of Section 3.33.3 to S = Q, obtaining S′ = Q ∪ 1-handles, with
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S′ ≃ S2 ∨ S2 ∨
∨m′

S1 for some m′ ≥ m. Let {γi} be a collection of loops in S′ corre-
sponding to the S1 wedge summands. Applying Lemma 3.93.9 to S′ we find a collection of
2-handles {Hi}mi=1 in M1/2 \ S′ with attaching curves homotopic to the {γi}. Define the
submanifold

R := S′ ∪m′
i=1 Hi.

During the process of adding extra 2-handles, no new second homology is introduced and
all of the generators of π1(S

′) are canceled. Hence it follows from Corollary 3.83.8 that R is
simply-connected and R ≃ S2 ∨ S2. Flowing along v1/2 downwards surgers R along the
sphere A and flowing upwards surgers R along the sphere B. This gives a simply-connected
cobordism U ⊆ X × I. The cobordism U is obtained from R ≃ S2 × S2 by attaching two
5-dimensional 3-handles, homotopically attaching one 3-handle to each of the S2 wedge
summands. Hence U ≃ D3 ∨D3 ≃ {∗}, i.e. U is contractible. Note that U contains the
critical points of q1/2 by construction and the critical points are algebraically canceling, so
U is an h-cobordism. Hence C := U ∩ (X × {0}) is contractible. In fact, U is a trivial h-
cobordism, because using the Whitney discs W (or the V ) we can arrange that all critical
points are in geometrically canceling position. Hence C = U ∩ (X×{0}) ∼= U ∩ (X×{1}).

By construction, Q ⊆ U , and Q0 ⊆ C ⊆ X × {0}. We can therefore apply Lemma 3.23.2

to obtain a smooth isotopy from F to F ′ such that F ′ = Id on (X \ C̊) × I. We have

succeeded in decomposing X × I into (C × I)∪ ((X \ C̊)× I), and isotoping F to F ′, such
that F ′ is supported on the contractible piece C × I. □

As a consequence of Theorem 4.14.1 along with Theorem 2.62.6 we deduce Theorem 1.11.1. It
is the special case m = 1 of the following more general theorem.

Theorem 4.2 (Diffeomorphism cork theorem, version for finite collections). Let X be a
compact, simply-connected, smooth 4-manifold, and let {fi}mi=1 be a collection of boundary-
fixing diffeomorphisms of X such that fi is 1-stably isotopic to Id for each i. Then there
exists a compact, contractible, codimension zero, smooth submanifold C ⊆ X, and for each
i = 1, . . . ,m there is a boundary fixing isotopy of fi to a diffeomorphism f ′i : X → X such
that f ′i is supported on C.

Moreover, C can be chosen to be a 4-manifold that admits a handle decomposition into
0-, 1-, and 2-handles.

Proof. By Theorem 2.62.6, for each i there is a pseudo-isotopy Fi : X × I → X × I from fi
to the identity of X that admits a Cerf family with one eye. We have that Fi|X×{0} = Id
and Fi|X×{1} = f . By Theorem 4.14.1, there is a compact, contractible submanifold Ci ⊆ X

such that Fi is isotopic rel. boundary to F ′
i , where F

′
i = Id on X \ C̊i × I. Restricting this

isotopy to X × {1} yields an isotopy from fi to f
′
i such that f ′i = Id on (X \ C̊i)× {1}.

Next we show that for each i, Ci can be constructed from 0-, 1-, and 2-handles. Our
proof is analogous to Matveyev’s proof of the analogous fact for corks of h-cobordisms.
The starting point is a handle decomposition of the Quinn core Q which has handles of
index at most 2. A detailed analysis of the Kirby diagram of a regular neighborhood of
A∪B∪W is given in [Mat96Mat96, Figures 3-6]; see also Figure 33 above. In the present context
there is a second collection V of Whitney discs; it is incorporated in a Kirby diagram
analogously to W . A key feature of the Kirby diagram for this handle decomposition
is that the 0-framed unknotted 2-handle corresponding to A, taken together with the
dotted components corresponding to all 1-handles, forms an unlink. The 4-manifold Ci is
obtained by surgering A, and hence a Kirby diagram for Ci is obtained by replacing the
0-framed 2-handle by a dotted circle. We obtain a handle decomposition of Ci with only
0-, 1-, and 2-handles, as desired.

Next we show that all of the f ′i can be isotoped so as to be supported on a single diff-
cork. We use that each Ci is built out of 0-, 1-, and 2-handles. By transversality we may
assume that the Ci only intersect in their 2-handles. To see this note that an ambient
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isotopy ht : X → X of the support Ci of a diffeomorphism f ′i can be realized by an isotopy

ht ◦ f ′i ◦ h
−1
t of the diffeomorphism. Hence we may assume that

⋃m
i=1Ci ≃

∨k S1, for
some k. Note that

⋃m
i=1Ci still admits a handle decomposition with 0-, 1-, and 2-handles

only.
Apply the method of Section 3.33.3 and Lemma 3.93.9 to S :=

⋃m
i=1Ci. That is, consider

S′ = S ∪ 1-handles, so that S′ ≃
∨ℓ S1 for some ℓ ≥ k. Then find a collection of 2-

handles of X \ S′, precisely canceling free generators of π1(
∨l S1) ∼= π1(S

′). The union
C := S′ ∪ 2-handles is a contractible manifold, by the same argument as in the proof of
Theorem 4.14.1. Since each Ci is contained in C, each diffeomorphism f ′i is supported on C,
as asserted. □

5. The sum square move and the associated π2(X) element

In this section, in preparation for the proof of Theorem 1.41.4, we recall Quinn’s sum
square move, and we note its effect on certain elements of π2(X) determined by a Cerf
family.

5.1. The sum square move. Quinn’s sum square move [Qui86Qui86, Section 4.2] gives rise to
a deformation of a pseudo-isotopy. We consider a 1-parameter family in nested eye form.
In the middle-middle level X#n(S2×S2) we have the data of two collections of embedded
spheres A and B, which intersect each other transversely. We have finger discs V and
Whitney discs W , such that each collection of discs cancels all the excess intersections
between the A and B spheres.

We describe the sum square move in the middle-middle level. Quinn [Qui86Qui86, Section 4.2]
justified why the sum square move gives a deformation of the pseudo-isotopy. The move
alters either the finger or Whitney discs, and their boundaries. We will explain the version
that alters the Whitney discs.

To implement the sum square move, we need a framed embedded square S in the middle-
middle level, with the interior of S disjoint from A ∪ B ∪W . The square must have two
edges on two distinct W discs (labeled W1 and W2 in Figure 55), one edge on A, and one
on B. New W discs are obtained by cutting W1 and W2 along the boundary edges of the
sum square S, and gluing in two parallel copies of S. In one possible arrangement, the
effect of the move on the boundaries of the discs, on A and B spheres, is illustrated in
Figure 66. Note that + and − intersection points are still paired up after the move.

B

A

W1

W2S

Figure 5. The sum square move along the sum square S shown in purple.

Figure 55, closely following Quinn’s figure in [Qui86Qui86, Section 4.2], depicts a 3-dimensional
model for the sum square. Here we see A, W1, and W2, together with a neighborhood of
the arc of ∂S in B lie in R3 × {0} ⊆ R3 ×R. The rest of B extends into the past and the
future. The framing of S along its boundary is determined in the 3-dimensional model by
a non-vanishing vector field on ∂S which is normal to S and tangent to A, B, and the W
discs. This framing has to admit an extension over S for the move to yield embedded W
discs.
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+

−

−

+

∂W1

∂S

∂V1 ∂W2 ∂V2

Figure 6. Rearranging the boundaries of the finger and Whitney discs,
on A and on B, using the sum square move.

In applications, one has to work to find a sum square S satisfying the conditions laid
out above. Making use of dual spheres, which one can always find in a pseudo-isotopy,
Quinn [Qui86Qui86, Section 4.2] shows how to obtain a sum square produced from an arbitrary
choice of null-homotopy of the boundary square. From this one can produce an embedded
sum square that is framed and whose interior is disjoint from A ∪B ∪ V ∪W as desired.

5.2. Creating a single circle. Here is an initial use of the sum square move. Consider
two spheres Ai and Bj with i ̸= j fixed. We write Vij (respectively Wij) for the collection
of finger (respectively Whitney) discs pairing intersections of Ai and Bj . The algebraic
intersection number λ(Ai, Bj) vanishes, since i ̸= j. It follows, assuming genericity, that
the intersection (∂Vij ∪ ∂Wij) ∩ Ai (and similarly (∂Vij ∪ ∂Wij) ∩ Bj) is the image of a

generic immersion ⊔kS1 ↬ Ai (respectively ⊔kS1 ↬ Bj), for some k ≥ 0.

Lemma 5.1. After a deformation of the family, we can arrange that k = 1.

Proof. Consider two generically immersed circles γ1 and γ2 on Ai, which are a subset of
(∂Vij ∪ ∂Wij) ∩Ai. Each of these circles γℓ, for ℓ ∈ {1, 2}, comprises a union of disjointly
embedded arcs γVℓ from ∂Vij and a union of disjointly embedded arcs γWℓ from ∂Wij . We

also have that γV1 ∩ γV2 = ∅ and γW1 ∩ γW2 = ∅. There can be an uncontrolled number of
intersections between γVi and γWj , for each nonempty subset {i, j} ⊆ {1, 2}.

By taking the union of the finger and Whitney discs corresponding to γ1 ∪ γ2, and
considering their intersection with Bj , we have an analogous situation on Bj , consisting
of generically immersed circles δ1 and δ2, expressed as a union of arcs δℓ = δVℓ ∪ δWℓ .

We will show how to combine γ1 and γ2 into a single circle using the sum square move.
Since ∂Wij ∩Ai is a disjoint union of embedded arcs in Ai, we have that Ai \ (∂Wij ∩Ai)
is path connected. Hence we can join a point in the interior of one arc in γW1 , to a point
in the interior of an arc in γW2 , via a smoothly embedded arc σA in Ai whose interior lies
in Ai \ ∂W , and which abuts to γW1 ∪ γW2 transversely. Similarly, we can find an arc σB
on Bj , joining the other boundary arcs of the same pair of Whitney discs.

These arcs σA and σB form two sides of the boundary of a sum square. By Section 5.15.1, or
[Qui86Qui86, Section 4.2], we can complete this to a sum square S that is framed and embedded
with interior disjoint from A ∪ B ∪ W . We choose the arcs σA and σB in such a way
that after the sum square move, we obtain Whitney discs pairing + and − double points
of Ai ∩ Bj . Then performing the sum square move yields a deformation of the family to
one where (∂Vij ∪ ∂Wij) ∩ Ai and (∂Vij ∪ ∂Wij) ∩ Bj both consist of one fewer circles
than before the move. Iterating the procedure we reduce to the case of a unique circle,
i.e. k = 1. □

5.3. An element of π2(X) associated to each circle. We describe the π2 elements
associated to the circles γi as described in Section 5.25.2 and we show how they add when
we do the sum square to combine two circles.

Each disc Uk in the union V ∪W has an arc ∂AUk that lies on an A-sphere and an
arc ∂BUk on a B sphere. The arcs ∂AUk and ∂BUk intersect at their endpoints, which lie
in A ⋔ B.
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Suppose we have a collection of discs {Uk1 , . . . , Ukm} taken from the finger and Whitney
discs {Uk}, such that

γA :=

m⋃
ℓ=1

∂AUkℓ

is an immersed circle γA that lies on some sphere in the middle-middle level, Ai ⊆M1/2 =

X#n(S2 × S2). Recall that the arcs on Ai coming from V discs are mutually disjoint, as
are the arcs coming from W discs. However, the two collections of arcs may meet on Ai.
The Ukℓ all pair up intersections with the same B sphere, Bj say, and the union

γB :=
m⋃
ℓ=1

∂BUkℓ

is an immersed circle γB ⊆ Bj .
Using that Ai is simply-connected, choose a null-homotopy

∆A : D2 → Ai

for γA, and a null-homotopy

∆B : D2 → Bj

for γB. We consider a map

ψi,j : S
2 → X#n(S2 × S2)

of a 2-sphere in the middle-middle level, obtained by gluing ∆A : D2 → Ai and ∆B : D2 →
Bj to the union

⋃m
ℓ=1 Ukℓ , as described in Figure 77.

Let us describe this in more detail. We take a union ⊔mD2 corresponding to {Ukℓ}mℓ=1,
identify (0, 1) in the ℓth disc with (−1, 0) in the (ℓ + 1)st, for ℓ = 1, . . . ,m and do the
same with the mth and the 1st. Then we embed this quotient space ⊔mD2/ ∼ around the
equator of S2 by a map E : ⊔mD2 → S2, in such a way that the complement of the image
consists of two open discs. We define the map ψi,j on the image of E by the composite:
first send E(x) to x ∈ ⊔mD2 (or some other y ∈ E−1(E(x))), and then use the map

⊔mD2 → (⊔mD2/ ∼) →
m⋃
ℓ=1

Ukℓ ⊆ X#n(S2 × S2),

where the last map sends the ℓth disc to Ukℓ . We extend the map ψi,j to all of S2 using ∆A

and ∆B. This completes the description of the map ψi,j .

∆A

∆B

Figure 7. S2 = ∪m
ℓ=1Ukl ∪∆A ∪∆B. The discs Ukℓ are shaded.

Note that there are many choices for the null-homotopies ∆A and ∆B, and altering the
choice made can change the homotopy class of ψi,j .

Now consider the degree one map

J : X#n(S2 × S2) → X
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defined by sending #n(S2 × S2) \ D̊4 → D4. The induced map J∗ : π2(X#n(S2 × S2)) →
π2(X) has the effect of sending the homotopy classes that are supported in #n(S2 × S2)
to 0. Define

θi,j := J ◦ ψi,j : S
2 → X.

To fully determine this map we need to fix an orientation convention. Fix once and for
all an orientation of S2, and as before use the orientations of each sphere Ai and Bj , such
that the intersection numbers λ(Ai, Bi) = +1 for each i. Each finger or Whitney disc,
pairs two double points, one with + intersection sign and one with − intersection sign.
We fix an orientation of each finger or Whitney disc Uk by orienting the tangent space
at the + intersection point, denoted p+k . For the first tangent vector, choose a nonzero
vector in Tp+k

∂AUk ⊆ Tp+k
A, pointing into the interior of ∂AUk. For the second tangent

vector, choose a nonzero vector in Tp+k
∂BUk ⊆ Tp+k

B, pointing into the interior of ∂BUk.

This determines an orientation of TUk. These orientations are consistent for each disc Ukℓ
used in the construction of the map ψi,j , and hence we fix θi,j on the nose, and not just
up to sign.

Lemma 5.2. The homotopy class of θi,j ∈ π2(X) is independent of the choice of ∆A

and ∆B.

Proof. The difference in any two choices for ∆A represents a multiple of the class of
[A] ∈ π2(X#n(S2 × S2)), and similarly for ∆B and B. However [A] and [B] belong to
kerF∗, so the image F∗(ψi,j) is unaffected by the choices. □

Now we suppose that there are two circles γ1A and γ2A on Ai and two circles γ1B and γ2B
on Bj corresponding to the boundaries of distinct collections of discs in V ∪W . Assume
that γ1A and γ1B cobound a collection of discs, {U1

k1
, . . . , U1

km
}, and similarly γ2A and γ2B

cobound a collection of discs {U2
k1
, . . . , U2

kp
}. We also choose null-homotopies ∆1

A : D2 →
Ai for γ

1
A ⊆ Ai, ∆

1
B : D2 → Bj for γ

1
B ⊆ Bj , ∆

2
A : D2 → Ai for γ

2
A ⊆ Ai, and ∆2

B : D2 → Bj

for γ2B ⊆ Bj . Let θi,j,1 and θi,j,2 denote the resulting elements of π2(X), with θi,j,1
corresponding to γ1A and γ1B, and θi,j,2 corresponding to γ2A and γ2B.

Without loss of generality, suppose that we do the sum square move using a Whitney
disc W1 in the first collection of discs, and a Whitney disc W2 in the second collection.
Let θi,j ∈ π2(X) denote the element corresponding to the single circle of finger/Whitney
arcs (on each of Ai and Bj) that arises after the sum square move.

Lemma 5.3. We have that θi,j = θi,j,1 + θi,j,2 ∈ π2(X).

Proof. We assume the null-homotopies ∆i
A and ∆i

B are chosen such that, near the bound-
ary, and with respect to the model sum square in Figure 55, they move away from W1

and W2 in the opposite direction to S. This can be arranged by changing the choice of
null-homotopies for γkA and γkB, k = 1, 2, if necessary.

The sum square move removes a square from the disc W1 (a neighborhood of the close
edge in Figure 55, the one that lies in W1, and removes a square from the disc W2 (a
neighborhood of the far edge in Figure 55, the edge that lies in W2). The sum square move
also combines the null-homotopies ∆1

A and ∆2
A with a strip in Ai (near the lower edge of

the sum square in Figure 55), and it combines the null-homotopies ∆1
B and ∆2

B with a strip
in Bj (near the upper edge of the sum square in Figure 55). The union of these two strips
and two copies of the sum square form a tube (with square cross section), ∂I2 × I. The
result of the sum square is therefore exactly to perform an ambient connected sum of the
two 2-spheres representing θi,j,1 and θi,j,2.

A careful analysis of the orientation convention and the model sum square move in
Figure 55 yields that the classes add (rather than taking their difference). □

Remark 5.4. IfX were not simply-connected, then a proof of Lemma 5.35.3 would presumably
need a careful analysis of basing paths.
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6. Many-eyed diffeomorphisms are supported in a null-homotopic
homotopy wedge of 2-spheres

When f : X → X must be stabilized by more than one copy of S2 × S2 in order to
smoothly trivialize it, equivalently when all pseudo-isotopies for f must have more than
one eye, we do not know how to find a contractible diff-cork, but we can prove the following
theorem.

Theorem 1.4. Let X be a smooth, compact, simply-connected 4-manifold, and let f : X →
X be a diffeomorphism that is n-stably isotopic to identity. Then there exists k ≤ n(n− 1)
and a compact 4-manifold B and a smooth embedding ι : B → X, such that ι : B → X is
null-homotopic, ∨kS2 ≃ B, and such that f is smoothly isotopic to a diffeomorphism
supported on ι(B).

Remark 6.1. Kronheimer-Mrowka [KM20KM20] showed that the Dehn twist D : K3#K3 →
K3#K3 on the connect-sum S3 in K3#K3 is not isotopic to the identity, and Jianfeng
Lin [Lin23Lin23] showed that this continues to hold even after one stabilization by S2×S2. This
diffeomorphism is stably isotopic to the identity by [Qui86Qui86,Gab22Gab22] and is topologically iso-
topic to the identity by work of Kreck, Perron, and Quinn [Kre79Kre79,Per86Per86,Qui86Qui86,GGH+23GGH+23]
(see Theorem 2.52.5). But we cannot apply Theorem 1.11.1 to this diffeomorphism, whereas
Theorem 1.41.4 does apply to it.

Here is a related observation. Suppose that D becomes isotopic to the identity after
connected summ with n copies of S2 × S2 (we are not sure what the minimal n is). Then
D#Id: K3#K3#

n−1(S2×S2) admits a diff-cork. It is not clear that this diff-cork can be
isotoped into the K3#K3 summands.

The following statement will be used in the proof of Theorem 1.41.4; here we use the
notation θk,ℓ ∈ π2(X) introduced in Section 5.35.3.

Lemma 6.2. Let x ∈ π2(X), let n ∈ N0, and fix i ̸= j in {1, . . . , n}. There exists a
trivial pseudo-isotopy with n eyes such that θi,j = x and Ak ∩Bℓ = ∅ (and hence θk,ℓ = 0)
for (k, ℓ) ̸= (i, j) and k ̸= ℓ. We also require that Ak ⋔ Bk is exactly one point, for
each k. Moreover, we can assume that in the middle-middle level |Ai ⋔ Bj | = 3, and the
boundaries of the V and W discs form a circle on Ai and a circle on Bj.

Proof. We start by constructing a particular pseudo-isotopy satisfying the conditions of
Lemma 6.26.2. First consider a trivial pseudo-isotopy with n eyes, where n pairs Ai, Bi are
born and then die. No intersections between Ak, Bl occur in this family, for any k, ℓ. For
the given indices i, j introduce a finger move between Ai, Bj and immediately reverse it
with a Whitney move where the Whitney disc W is a parallel copy of the finger disc V .

It is not immediately clear that the following modification is a deformation of the trivial
pseudo-isotopy. This will be justified at the end of the proof. Consider an immersed
sphere S representing the element x ∈ π2(X), and implement an ambient connected sum
of W with S along an embedded arc connecting them. We continue denoting by W the
resulting disc. Use boundary twisting, cf. [FQ90FQ90, Section 1.3] or [BKK+21BKK+21, Section 15.2.2],
to correct the framing of W while introducing additional intersections between W and A
or B. Recall from [Qui86Qui86, Section 4.3] that A and B have duals (framed, embedded
geometrically dual spheres) that are disjoint from W but intersect V . Use these duals to
makeW embedded and its interior disjoint from A∪B, while preserving the framing ofW .
These V,W determine the desired pseudo-isotopy. Note that it satisfies the requirements
of the lemma by construction, except that we still need to justify that this pseudo-isotopy
is trivial.

To show the triviality of the pseudo-isotopy, we cancel the eyes, innermost first, working
outwards. There are no obstructions to doing so; indeed, there are no extra intersections
between Ak and Bk for any index k. Suppose i < j, so the i-th eye is located in the interior
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of the j-th one. Closing the Ai, Bi eye certainly does not create any extra intersections
between Ak and Bk for any k > i, k ̸= j, because (Ai ∪Bi) ∩ (Ak ∪Bk) = ∅.

Next observe that this does not create any intersections between Aj and Bj either. A
crucial ingredient here is the fact that while Ai intersects Bj in the pseudo-isotopy con-
structed above, Aj is disjoint from Bi. Canceling the i-th eye corresponds to a deformation
of the 1-parameter family of gradient-like vector fields. Consider the restriction of this
deformation to the middle level t = 1/2. Within the Cerf graphic at t = 1/2, consider the
5-dimensional cobordism supported in a neighborhood of Ai∪Bi: it is a 5-ball D5 obtained
from a neighborhood of Ai ∪Bi by attaching two 5-dimensional 3-handles. A deformation
of the gradient-like vector field canceling the i-th eye is supported in this 5-ball. While
there are flow lines of the gradient-like vector field connecting Bj and D5, there are no
such flow lines for Aj . It follows that after the deformation, no new intersection points are
created in the middle-middle level between Aj and Bj . This shows that the constructed
pseudo-isotopy is trivial, concluding the proof of the lemma. □

Proof of Theorem 1.41.4. As in the proof of Theorem 1.11.1 in Section 44, the starting point
is the fact that f is pseudo-isotopic to Id by Theorem 2.52.5. Using Theorem 2.62.6, for the
remainder of the proof we will work with a pseudo-isotopy F admitting a Cerf graphic
with precisely n eyes.

Apply Lemma 3.73.7 to arrange that each eye satisfies Quinn’s arc condition, and apply
Lemma 5.15.1 to arrange that for each 1 ≤ i ̸= j ≤ n the boundary arcs of the finger and
Whitney discs pairing up intersections between Ai and Bj form a single circle on each of
Ai and Bj .

We consider the elements θi,j ∈ π2(X) introduced in Section 5.35.3. Given a pair (i, j)
with i ̸= j and θi,j ̸= 0, use Lemma 6.26.2 to construct a trivial pseudo-isotopy with x :=
−θi,j ∈ π2(X) and θk,ℓ = 0 for any (k, ℓ) ̸= (i, j), k ̸= ℓ. Concatenate it with the
given pseudo-isotopy using the “uniqueness of birth” move from [HW73HW73, Chapter V] or
[Cer70Cer70, Chapter III]. As illustrated on the right in Figure 88, after this merge there are
still two instances of finger and Whitney move times: tf , tw corresponding to the original
pseudo-isotopy, and t′f , t

′
w for the constructed one. By general position, finger move

times t′f can be pushed to the left in the Cerf diagram and Whitney move times tw to
the right. The result is a single time when finger moves take place, shortly after the
birth of all A,B spheres, and a single Whitney move time shortly before their death. By
Lemma 5.15.1, we can again use the sum square move to arrange that the boundaries of finger
and Whitney discs form at most a single circle in Ai and in Bj , i.e. Cij ≤ 1. Moreover, by
Lemma 5.35.3 we have arranged that θi,j = 0.

Implementing this step sequentially, we achieve θi,j = 0 and Cij ≤ 1 for all pairs (i, j)
with i ̸= j.

tf tw t′f t′w tf tw t′f t′w

Figure 8. Concatenation of pseudo-isotopies

Recalling that n denotes the number of eyes, the middle-middle level contains the
spheres Ai, Bi, for 1 ≤ i ≤ n. The homotopy type of the Quinn core Q was determined in
Lemma 3.53.5.

An application of Lemma 3.93.9 shows that 1- and 2-handles may be added to Q in M1/2

to make the resulting submanifold R simply-connected. Moreover, H2(R) ∼= H2(Q) since
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each new 2-handle produced in the proof of Lemma 3.93.9 cancels a corresponding generator
of the free fundamental group.

The spine of R is obtained from Qsp by adding an S1 wedge summand for each new
1-handle of R, and then adding a 2-cell to each S1 wedge summand of the result. So
R ≃

∨N S2. The number of 2-spheres is N = 2n +
∑

i,j Cij . Here 2n corresponds to the
n pairs of 2-spheres Ai, Bi, and Cij is the number of circles formed by the boundaries of
the finger and Whitney discs in Ai and Bj , equal to 0 or 1 for each pair i, j in the present
context. Since Quinn’s arc condition holds, note that Cii = 0 for i = 1, . . . , n.

By construction, the homotopy classes θi,j represented by the S2 summands correspond-
ing to the intersections Ai ∩Bj , i ̸= j are trivial in π2(X). Therefore the image of π2(R)
in π2(M1/2) consists of the hyperbolic pairs represented by the spheres A,B.

Consider the 5-dimensional h-cobordism X × I × {1/2}. The 4-manifold X at the top
is obtained by attaching 5-dimensional 3-handles to the middle-middle level M1/2 along
the spheres B; the copy of X at the bottom is obtained by attaching 5-dimensional 3-
handles (upside-down 2-handles) along the spheres A. We consider the sub-h-cobordism Y
obtained by attaching these 3-handles to R× [1/2− ε, 1/2 + ε].

Denote the resulting 4-manifolds Y ∩ (X × {1} and Y ∩ (X × {1}) at the top and at
the bottom both by B. Because the 2- and 3-handles of Y geometrically cancel, Y is a
product cobordism and the manifolds at either end are diffeomorphic, hence it makes sense
to denote both by B.

The sub-h-cobordism Y is obtained by attaching 2n 3-handles to R × [1/2 − ε, 1/2 +

ε] ≃
∨N S2, with attaching maps homotopic in

∨N S2 to the first 2n wedge summands.

Hence Y has homotopy type Y ≃
∨N−2n S2. Thus since Y is an h-cobordism, we also

have

B ≃
N−2n∨

S2 ≃

∑n
i,j=1 Cij∨

S2.

Since Cii = 0 and Cij ≤ 1 for i ̸= j, it follows that
∑

i,j Cij ≤ n(n − 1), so taking

k :=
∑

i,j Cij we have B ≃
∨k S2 for some k ≤ n(n− 1), as desired.

Since B is obtained from R by surgering out the spheres A,B, the remaining copies of
S2 in the wedge sum are those with homotopy classes determined by θi,j = 0 ∈ π2(X). It
follows that the inclusion B → X is null-homotopic, as claimed in the theorem.

The conclusion of the proof mirrors that of Theorems 1.11.1 and 4.14.1 in Section 44. In
more detail, by Lemma 3.23.2 our pseudo-isotopy F is isotopic to F ′ such that F ′ = Id
on (X \ B̊) × I. Restricting this isotopy to X × {1} gives an isotopy from f to f ′ such

that f ′ = Id on (X \ B̊)× {1}. □

7. Examples of diffeomorphisms that are 1-stably trivial

We give an exposition of examples of exotic diffeomorphisms of simply-connected 4-
manifolds that are 1-stably isotopic to the identity. The first examples of exotic diffeomor-
phisms are due to Ruberman [Rub98Rub98], in 1998. A year later, in [Rub99Rub99], he produced an in-

finitely generated subgroup of π0Diff(Zn), for each n ≥ 2 where Zn := #2nCP 2#10n+1CP 2

for n odd and Zn := #2nCP 2#10n+2CP 2
for n even. Ruberman used Donaldson invari-

ants to prove that his diffeomorphisms are nontrivial. In 2020, using Seiberg-Witten
theory Baraglia, and Konno [BK20BK20], constructed more examples of exotic diffeomor-
phisms on closed 4-manifolds. Later, Iida, Konno, Taniguchi, and the second-named
author [IKMT22IKMT22] detected exotic diffeomorphisms on 4-manifolds with nonempty bound-
aries using Kronheimer-Mrowka’s invariant.

The material in this section is known to the experts, however it has not all appeared in
writing, and we want to give a self-contained description of the examples to which one can
apply Theorem 1.11.1. We will adapt an argument of Auckly-Kim-Melvin-Ruberman [AKMR15AKMR15,
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Theorem C] (cf. [Auc23Auc23, p. 6]) to check that the examples are 1-stably smoothly isotopic
to the identity, and hence Theorem 1.11.1 applies nontrivially to all of these exotic diffeo-
morphisms.

Our exposition of the construction of the diffeomorphisms will be similar to that in
Baraglia-Konno [BK20BK20], but we need a description of the ‘reflection’ maps in terms of
surfaces, in order to prove the existence of 1-stable isotopies.

7.1. Construction of diffeomorphisms. Let X0, X1, . . . be a (possibly infinite) fam-
ily of closed, smooth, simply-connected 4-manifolds. Let W be another closed, smooth,
simply-connected 4-manifold. Suppose that for all p > 0 there are orientation preserving
diffeomorphisms

φp : Xp#W
∼=−→ X0#W.

We suppose also that there are smoothly embedded 2-spheres ξ+ and ξ− inW , with normal
Euler number either ±1 or ±2. We can consider these spheres in Xp#W , and then we
denote them as ξp±, for any p ≥ 0.

For each p > 0 we require that

[φp(ξ
p
±)] = [ξ0±] ∈ H2(X0#W ;Z).

In practice this can usually be arranged using Wall’s results in [Wal64Wal64], because the explicit
X0#W we use will satisfy the hypotheses of Wall’s theorem, and in particular will have
an S2 × S2 connected summand.

Given a smoothly embedded ±1- or ±2-sphere ζ in a 4-manifold M , there is a diffeo-
morphism

RM
ζ : M →M

whose definition we explain now. The integer ±1- or ±2 is the Euler number of the normal
bundle of the sphere. In all cases, we will define an orientation-preserving diffeomorphism
of a closed regular neighborhood νζ. The boundary ∂νζ is either S3 or RP 3, for normal
Euler number ±1 or ±2 respectively.

In both cases, the diffeomorphism of νζ will restrict to a diffeomorphism isotopic to the
identity on the boundary by Cerf [Cer59Cer59] and Bonahon [Bon83Bon83] respectively. Hence, after
an isotopy in a collar neighborhood of the boundary the diffeomorphism may be assumed
to be the identity in a neighborhood of the boundary of νζ. The choice of isotopy to
achieve this is not unique, because π1Diff+(S3) ∼= Z/2 and π1Diff+(RP 3) ∼= Z/2 × Z/2,
by [HKMR12HKMR12, BK19BK19, Hat83Hat83]. In the case of a ±1 sphere, this choice will not affect the
isotopy class of the resulting diffeomorphism of νζ. In the case of a ±2 sphere we will
carefully choose an isotopy to uniquely specify a diffeomorphism. To define RM

ζ , we then

extend by the identity on M \ νζ.
(1) Suppose the normal Euler number of ζ is ±1. Then νζ is diffeomorphic to a

punctured CP 2 or CP 2
, via a diffeomorphism identifying ζ with CP 1. We focus on

the Euler number −1 case. Complex conjugation on all homogeneous coordinates

defines a diffeomorphism CP 2 → CP 2
, that restricts to the antipodal map on CP 1.

Isotope this to fix a ball, remove the ball, and we obtain a diffeomorphism of CP 2\
D̊4. This determines the desired diffeomorphism of νζ, uniquely up to isotopy. A
priori the choice of isotopy to fix a ball matters, but in fact this choice of isotopy

is irrelevant, because there is a circle action on CP 2
that undoes a Dehn twist on

the S3 boundary of CP 2 \ D̊4; see [Gia08Gia08, Theorem 2.4], [AKMR15AKMR15, Theorem 5.3].
(2) Suppose the normal Euler number of ζ is ±2. Then νζ is diffeomorphic to TS2

or to T ∗S2 respectively. Now we will apply a symplectic Dehn twist [Arn95Arn95].
The symplectic version is defined on the cotangent bundle T ∗S2, but we focus
on TS2, following the smooth description by Auckly [Auc23Auc23]. Let α : S2 → S2

be the antipodal map, which is degree −1. Then dα : TS2 → TS2 restricts to a
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diffeomorphism dα| : DTS2 → DTS2 of the unit disc bundle. Consider the sphere
bundle STS2, which can be identified with SO(3) by considering STS2 = {(u, v) ∈
R3×R3 | ∥u∥ = ∥v∥ = 1, u · v = 0}, and sending (u, v) ∈ STS2 to the orthonormal
frame (u, v, u×v). We can describe the action of the map dα|STS2 via an action on
SO(3), and it acts as multiplication by the 3× 3 diagonal matrix Diag(−1,−1, 1).
Acting by  cos(π(1 + t)) sin(π(1 + t)) 0

− sin(π(1 + t)) cos(π(1 + t)) 0
0 0 1

 ,

for t ∈ [0, 1], interpolates between acting by Diag(−1,−1, 1) and by the 3 × 3
identity matrix I3. We insert this isotopy into an interior collar of DTS2, to
obtain a diffeomorphism DTS2 → DTS2 that acts as the antipodal map on the
zero section and is the identity on STS2 = ∂DTS2.

A similar construction using the pullback d∗α : T ∗S2 → T ∗S2 yields the sym-
plectic Dehn twist when the normal Euler number is −2.

This completes our description of the reflection maps RM
ζ : M →M . The induced maps

on second homology are as follows [Rub98Rub98,Rub99Rub99,Auc23Auc23].

(1) For ζ a ±1 sphere, we have that

(RM
ζ )∗ : H2(M ;Z) → H2(M ;Z)

x 7→ x∓ 2(x · ζ)ζ.

(2) For ζ a ±2 sphere, we have that

(RM
ζ )∗ : H2(M ;Z) → H2(M ;Z)

x 7→ x∓ (x · ζ)ζ.

Now we consider these maps for M = Xp#W and ζ = ξp±. For each p ≥ 0 we define

ρp := R
Xp#W

ξp+
◦RXp#W

ξp−
: Xp#W → Xp#W.

Note that ρp is supported in the W summand of Xp#W . For p > 0 we define

fp := φp ◦ ρp ◦ φ−1
p ◦ (ρ0)−1 : X0#W → X0#W.

For suitable choices of {Xp}p≥0, we will show that these provide examples of 1-stably
trivial exotic diffeomorphisms, and hence Theorem 1.11.1 applies nontrivially to them.

7.2. Topological and 1-stable isotopy. The following computation will be useful in
this section.

φp ◦ ρp ◦ φ−1
p = φp ◦R

Xp#W

ξp+
◦ φ−1

p ◦ φp ◦R
Xp#W

ξp−
◦ φ−1

p

∼ RX0#W
φp(ξ

p
+)

◦RX0#W
φp(ξ

p
−)

: X0#W → X0#W.
(7.1)

This relies on the observation that conjugating a reflection map R
Xp#W

ξp±
defined using the

tubular neighborhood of an embedded sphere by the diffeomorphism φp, is the same as
applying the analogous reflection map to the image of that tubular neighborhood, which
by uniqueness of tubular neighborhoods is isotopic to applying the reflection map using
any preferred tubular neighborhood.

Lemma 7.1. For each p > 0, fp : X0#W → X0#W acts as the identity on H2(X0#W ;Z),
and hence is homotopic, pseudo-isotopic, topologically isotopic, and smoothly stably iso-
topic to the identity.



24 V. KRUSHKAL, A. MUKHERJEE, M. POWELL, AND T. WARREN

Proof. Since [φp(ξ
p
±)] = [ξ0±] ∈ H2(X0#W ;Z), we have that

(RX0#W
φp(ξ

p
±)

)∗ = (RX0#W
ξ0±

)∗ : H2(X0#W ;Z) → H2(X0#W ;Z),

and hence using (7.17.1)

(φp ◦ ρp ◦ φ−1
p )∗ = (RX0#W

φp(ξ
p
+)

)∗ ◦ (RX0#W
φp(ξ

p
−)

)∗ = (RX0#W
ξ0+

)∗ ◦ (RX0#W
ξ0−

)∗ = ρ0∗.

It follows that (fp)∗ = IdH2(X0#W ;Z). Thus fp is homotopic to the identity by [CH90CH90],
topologically isotopic to the identity by Perron-Quinn [Per86Per86,Qui86Qui86], and smoothly stably
isotopic to the identity by Quinn-Gabai [Qui86Qui86,GGH+23GGH+23,Gab22Gab22]. □

Definition 7.2. For a closed, orientable 4-manifold M , we say that a homology class
ζ ∈ H2(M ;Z) is characteristic if ζ · x ≡ x · x mod 2 for all x ∈ H2(M ;Z). If ζ is not
characteristic, then we say that ζ is ordinary.

For any diffeomorphism g : M →M , let

ĝ := g#IdS2×S2 : M#(S2 × S2) →M#(S2 × S2).

This notation will be useful in the proof of the next lemma, which gives hypotheses im-
plying our diffeomorphisms are 1-stably isotopic to Id. The proof is essentially the same
as that in [Auc23Auc23].

Lemma 7.3. Suppose that [ξ0±] = [φp(ξ
p
±)] ∈ H2(X0#W ;Z) is ordinary, and that π1(W \

ξ±) = {1}. Then for each p > 0, fp : X0#W → X0#W is 1-stably isotopic to the identity.

Proof. By the main result of Auckly-Kim-Melvin-Ruberman-Schwartz [AKM+19AKM+19], and
since [ξ0±] = [φp(ξ

p
±)] is ordinary and the complement of these spheres is simply-connected,

we have that ξ0± and φp(ξ
p
±) are smoothly isotopic in X0#W#(S2×S2). Hence using (7.17.1)

fp#IdS2×S2 = f̂p = φ̂p ◦ ρ̂p ◦ φ̂−1
p ◦ (ρ̂0)−1

= R̂X0#W
φp(ξ

p
+)

◦ R̂X0#W
φp(ξ

p
−)

◦ (R̂X0#W
ξ0−

)−1 ◦ (R̂X0#W
ξ0+

)−1

∼ R̂X0#W
ξ0+

◦ R̂X0#W
ξ0−

◦ (R̂X0#W
ξ0−

)−1 ◦ (R̂X0#W
ξ0+

)−1 = ÎdX0#W

= IdX0#W#(S2×S2) : X0#W#(S2 × S2) → X0#W#(S2 × S2). □

7.3. Examples. The first examples of exotic diffeomorphisms of 4-manifolds were given in
[Rub98Rub98]. This paper does not specify particular 4-manifolds, so we consider the examples
in [Rub99Rub99] instead.

Example 7.4 (Ruberman). For some n ≥ 2, let X0 := #2n−1CP 2#10n−1CP 2
if n is odd,

and let X0 := #2n−1CP 2#10nCP 2
if n is even. Let W := CP 2#CP 2

#CP 2
. Let ξ± ⊆ W

be the standard embedded sphere representing (1,±1, 1) ∈ H2(W ;Z) ∼= Z3, with the basis
corresponding to the connected sum decomposition. We have that ξ± · ξ± = −1, and that
π1(W \ ξ±) = {1}. Since X0 is not spin, it follows that ξ± is ordinary. For p ≥ 1, let
Xp := E(n; p+1), the result of a multiplicity p log transform on the elliptic surface E(n).

Then for Zn := #2nCP 2#10n+1CP 2
if n is odd, and Zn := #2nCP 2#10n+2CP 2

if n
is even, we have, as shown by Ruberman [Rub99Rub99], an infinitely generated subgroup of
π0Diff+(Zn), generated by {fp}∞p=1. All of these diffeomorphisms are topologically and
1-stably isotopic to IdZn by Lemmas 7.17.1 and 7.37.3; note that this was already known and
due to [AKMR15AKMR15]. Hence by Theorem 1.11.1 they each admit a diff-cork. The same strategy
works for the examples of exotic diffeomorphisms on compact 4-manifolds with nonempty
boundaries from [IKMT22IKMT22].
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Example 7.5 (Baraglia-Konno). We present the Baraglia-Konno examples of exotic
diffeomorphisms [BK20BK20]. For some n ≥ 2, let X0 := #n−1(S2 × S2)#nE(2). Let
X1 := E(2n). Let W := S2 × S2, and let ξ± ⊆ W be an embedding representing
(1,±1) in H2(S

2 × S2;Z) ∼= Z2 with the standard basis. Then ξ± · ξ± = ±2. We can
choose ξ± such that S2 × {pt}, which is embedded with trivial normal bundle, intersects
ξ± exactly once, and hence ξ± is ordinary and has π1(W \ ξ±) = {1}. With this data,
f1 : #

n(S2 × S2)#nE(2) → #n(S2 × S2)#nE(2) is a diffeomorphism that is topologically
and 1-stably isotopic to the identity by Lemmas 7.17.1 and 7.37.3. Baraglia-Konno proved that
f1 is not smoothly isotopic to the identity. By Theorem 1.11.1 they each admit a diff-cork.

Example 7.6 (Auckly). Further examples were given by Auckly [Auc23Auc23], also making use
of [BK20BK20, Theorem 4.1], using X0 = E(2) and Xp := E(2; 2p + 1) for p ≥ 1. This yields
a family of exotic and 1-stably isotopic diffeomorphisms, similarly to Example 7.47.4, that
generate an infinite rank subgroup in the abelianization of the mapping class group. By
Theorem 1.11.1 they each admit a diff-cork.

We note that our description of the Rζ diffeomorphisms differs from that in [BK20BK20].
However this does not affect our ability to apply the results of [BK20BK20]. The key property
of the Rζ diffeomorphisms is their action on homology, which is such that the Stiefel-
Whitney class w1(H

+) appearing in the Baraglia-Konno gluing formula is nonzero [BK20BK20,
Theorem 4.1]. This nonvanishing in the Baraglia-Konno formula enables one to express the
Family Seiberg-Witten invariants of the diffeomorphisms fp in terms of the Seiberg-Witten
invariants of the manifolds {Xp}p≥0. Since the manifolds {Xp}p≥0 have pairwise distinct
Z/2-Seiberg-Witten invariants, we can deduce that the diffeomorphisms in question are
pairwise not smoothly isotopic. However Theorem 1.11.1 applies to them all.

Theorem 1.6. For each m ≥ 1 there exists a contractible, compact, smooth 4-manifold Cm
and a collection {g1, . . . , gm} of boundary-fixing diffeomorphisms of Cm that generate a
subgroup of π0Diff∂(Cm) that abelianizes to Zm.

Proof. Consider f1, . . . , fm : Zn → Zn, the firstm of Ruberman’s family of diffeomorphisms
from Example 7.47.4. Let TDiff(Zn) ⊆ Diff+(Zn) be the Torelli subgroup of diffeomor-
phisms acting trivially on integral homology. Ruberman defined a group homomorphism
D : π0TDiff(Zn) → R[[H2(Zn)

∗]] valued in a power series ring, and showed that {D(fp)}mp=1

is a linearly independent set in R[[H2(Zn)
∗]].

By Theorem 4.24.2, there is a compact, contractible, smooth, codimension zero submani-
fold Cm such that each fi, for i = 1, . . . ,m, can be isotoped to a diffeomorphism gi that is
supported on Cm. We consider gi as a diffeomorphism of Cm. Now consider the composition

π0Diff∂(Cm)
ι−→ π0TDiff(Zn)

D−→ R[[H2(Zn)
∗]].

Since ι(gi) ∼ fi, the set {D ◦ ι(gi)}mi=1 is linearly independent. It follows that {gi}mi=1
generates a subgroup of π0Diff∂(Cm) that abelianizes to Zm. □

Remark 7.7. One can also use the diffeomorphisms from Example 7.67.6 to prove Theo-
rem 1.61.6, by combining with [KL23KL23, Proposition 5.4].

8. Monopole Floer homology, family Seiberg-Witten invariants, and
applications

In this section we recall the monopole Floer cobordism maps, the family Seiberg-Witten
invariant, and a gluing formula of Lin [Lin22Lin22]. We then prove Theorem 1.71.7, and we show
that the family cobordism maps associated with the diff-corks arising from Examples 7.47.4
to 7.67.6 are nontrivial.
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8.1. Monopole Floer cobordism maps. Our exposition here follows that of Jianfeng
Lin in [Lin22Lin22].

First, recall that given a closed, oriented 3-manifold Y with a spinc structure, Kron-
heimer and Mrowka [KM07KM07] defined abelian groups called themonopole Floer (co)homology

of (Y, s). These groups come in various flavors. We will use the homology ĤM∗(Y, s) and̂

HM ∗(Y, s) and the corresponding cohomology groups ĤM
∗
(Y, s) and

̂

HM ∗(Y, s). Follow-
ing Lin, since we need to use his gluing formula, we will work over Q. So these groups are
Q-vector spaces.

From now on assume that Y is an integral homology 3-sphere. Then these groups are
Z-graded Q-vector spaces [KM07KM07, 28.3.3], and moreover there is a graded module structure
over the polynomial ring Q[U ]. For homology the action of U has degree −2, while for
cohomology the action of U has degree 2.

An integral homology sphere Y admits a unique spinc structure, and so in such cases
we will omit s from the notation. With this in mind, we have an isomorphism of graded

Q[U ]-modules ĤM∗(S
3) ∼= Q[U ]⟨−1⟩, where ⟨−1⟩ denotes a grading shift, and implies

that the constants live in degree −1. Since U has degree −2, it follows that ĤM∗(S
3)

consists of a copy of Q in each odd negative degree. We let 1̂ denote the canonical
generator in degree −1. On the other hand, we have an isomorphism of graded Q[U ]-

modules

̂

HM ∗(S
3) ∼= Q[U,U−1]/U ·Q[U ], so there is a copy of Q in each nonnegative even

degree.

The cohomology

̂

HM ∗(S3) is isomorphic to

̂

HM ∗(S
3) as a graded vector space, but

now the action of U has degree 2, and so instead we have an isomorphism of graded Q[U ]-

modules

̂

HM ∗(S3) ∼= Q[U ]. We let 1̌ denote the canonical generator of

̂

HM ∗(S3), which lies

in degree 0. Similarly, the cohomology ĤM
∗
(S3) is isomorphic to Q[U,U−1]⟨−1⟩/U ·Q[U ],

with a copy of Q in each negative odd degree.

Remark 8.1. Every graded homomorphism

̂
HM ∗(S3) → ĤM

∗
(S3) of nonnegative degree

is trivial, because every nonzero element of

̂

HM ∗(S3) lies in positive grading, hence the

image in ĤM
∗
(S3) is positively graded. But ĤM

∗
(S3) only has nontrivial groups in

negative degrees.

Now let M be a smooth, closed, oriented 4-manifold with b+2 (M) > 2, and let g ∈
Diff(M) be a diffeomorphism that induces the identity map on homology H∗(M), and

that fixes a 4-ball ∆ ⊆ M pointwise. Consider the M -bundle p : M̃ → S1 obtained by

taking the mapping torus of g. Assume that the bundle M̃ admits a decomposition

M̃ = M̃0 ∪Y×S1 M1 × S1

into an M0-bundle over S1 and a trivial M1-bundle over S1, where ∂M0 = Y is an
oriented integral homology 3-sphere, b+2 (M1) > 1, and ∂M1 = −Y . Assume additionally

that ∆ ⊆ M0, so M̃0 has a trivial sub-bundle ∆× S1. Removing ∆̊× S1 from M̃0 yields

a bundle of cobordisms W̃0 from S3 to Y , over S1. Removing a 4-ball from M1 yields a
cobordism W1 from Y to S3.

We consider a family spinc structure s̃ on M̃ → S1, and restrict it to a family spinc

structure s̃0 on W̃0 and to a spinc structure on s1 on W1. There is an induced family
cobordism map

ĤM∗(W̃0, s̃0) : ĤM∗(S
3) → ĤM∗(Y )

on monopole Floer homology [Lin22Lin22, Proposition 4.5], and there is an induced cobordism
map

#      »

HM∗(W1, s1) :

̂

HM ∗(S3) → ĤM
∗
(Y )
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on monopole Floer cohomology [KM07KM07, Section 3.5]. For the proof of Theorem 1.71.7, we
need to investigate the effect of the latter map on gradings.

Remark 8.2. Note that given a diffeomorphism of g′ : M → M , there is a choice of an
isotopy of g′ to a diffeomorphism g fixing a 4-ball ∆ ⊆ M . The family cobordism map

ĤM∗(W̃0, s̃0) a priori depends on these choices. While the analysis of this dependence is
outside the scope of this paper, the results below hold for any choice.

Lemma 8.3. The map
#      »

HM∗(W1, s1) is a graded homomorphism of degree −d(W1, s1),
where

d(W1, s1) :=
c1(s)

2[W1]− 2χ(W1)− 3σ(W1)

4
.

Here c1(s1) is the first Chern class, χ(W1) is the Euler characteristic, and σ(W1) is the
signature of the intersection pairing.

Proof. This fact is contained in [KM07KM07]; for non-experts we explain how to extract it.
The degree of the map on cohomology is the negative of the map on homology, so it

suffices to see that
#      »

HM∗(W1, s1) : ĤM∗(Y ) →

̂

HM ∗(S
3) has degree d(W1, s1). By [KM07KM07,

Theorem 3.5.3], there is a map j∗ :

̂

HM ∗(Y ) → ĤM∗(Y ) of degree 0 [KM07KM07, p. 52] such
that

#      »

HM∗(W1, s1) ◦ j∗ =

̂

HM ∗(W1, s1) :

̂

HM ∗(Y ) →

̂

HM ∗(S
3).

So it suffices to see that

̂

HM ∗(W1, s1) has degree d(W1, s1).

By [KM07KM07, Equation (28.3), p. 588], the degree of

̂

HM ∗(W1, s1) is d :=
1

4
c1(s1)

2[W1]−

ι(W1)− 1

4
σ(W1), where ι(W1) :=

1

2
(χ(W1) + σ(W1) + β1(S

3)− β1(Y )) (see [KM07KM07, Defi-

nition 25.4.1]). A straightforward calculation shows that d = d(W1, s), as required. □

Corollary 8.4. If Y = S3 and d(W1, s1) ≤ 0, then
#      »

HM∗(W1, s1) :
̂

HM ∗(S3) → ĤM
∗
(S3)

is the zero map.

Proof. If d(W1, s1) ≤ 0 then −d(W1, s1) ≥ 0, so by Lemma 8.38.3 the degree of
#      »

HM∗(W1, s1)
is nonnegative. The corollary then follows from Remark 8.18.1. □

8.2. The family Seiberg-Witten invariant. We continue with the notation and as-
sumptions from the previous subsection. In addition, assume that the family expected

dimension of (M̃, s̃) vanishes, that is:

d(M̃, s̃) :=
c1(s̃|M )2[M ]− 2χ(M)− 3σ(M)

4
+ 1 = 0. (8.1)

In this context, in particular given M with b+2 (M) > 2, a diffeomorphism g : M →M that

acts trivially on homology, and a family spinc structure s̃ with d(M̃, s̃) = 0, one can define
the family Seiberg-Witten invariant, [Rub98Rub98,LL01LL01], [Lin22Lin22, Section 2],

FSW(g, s̃) ∈ Z.
If g is smoothly isotopic to the identity in Diff(M), then FSW(g, s̃) = 0 for any family

spinc structure s̃ with d(M̃, s̃) = 0 by [Rub98Rub98, Lemma 2.7]. (If d(M̃, s̃) ̸= 0, then this also
holds, by definition.) Our applications of family Seiberg-Witten theory are based on the

following gluing formula of Jianfeng Lin. Let ⟨−,−⟩ : ĤM∗(Y ) × ĤM
∗
(Y ) → Q denote

the Kronecker pairing. After an isotopy we assume that g fixes a 4-ball ∆, giving rise to

a family cobordism map ĤM∗(W̃0, s̃0); see Remark 8.28.2.

Theorem 8.5 ([Lin22Lin22, Theorem L]). Considering FSW(g, s̃) as a rational number, we
have

FSW(g, s̃) = ⟨ĤM∗(W̃0, s̃0)(1̂),
#      »

HM∗(W1, s1)(1̌)⟩ ∈ Q.
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8.3. Proof of Theorem 1.71.7. Consider a compact, contractible n-manifold C. Fix an
embedding Dn ↪→ C̊, and let En : Diff∂(D

n) → Diff∂(C) be the map given by extend-
ing diffeomorphisms of Dn by the identity over C \ Dn. Galatius and Randal-Williams
[GRW23GRW23, Theorem B] showed that En is a weak equivalence for n ≥ 6. Our next result,
whose statement we recall for the convenience of the reader, shows that E4 is not a weak
equivalence for suitable choices of C.

Theorem 1.7. There exists a smooth, compact, contractible 4-manifold C and a smooth
embedding D4 ⊆ C such that the extension map Diff∂(D

4) ↪→ Diff∂(C) is not surjective
on path components, so is not a weak equivalence.

Proof. Let f : X → X be a diffeomorphism of a closed, simply connected 4-manifold that

is 1-stably isotopic to IdX , together with a family spinc structure s̃ with d(X̃, s̃) = 0,

where X̃ is the mapping torus of f , and FSW(f, s̃) ̸= 0. Baraglia-Konno [BK20BK20] and
Auckly [Auc23Auc23] proved that all of the examples from Examples 7.47.4 to 7.67.6 satisfy these
conditions.

By Theorem 1.11.1, f is isotopic to a diffeomorphism supported on a contractible codimen-
sion zero submanifold C. Let h : C → C be the restriction. Suppose for a contradiction
that there is an embedding D4 ⊆ C such that h is isotopic to a diffeomorphism supported
on D4. Then f is isotopic to a diffeomorphism f ′ : X → X such that f ′ is supported on
D4. Let g := f ′| : D4 → D4.

Now, consider the decomposition X = D4 ∪S3 X ′, where X ′ := X \ D̊4. Let W0 denote

D4 with a further D̊4 removed from the interior, the closure of which we may assume is
fixed by g. Let W1 denote X \ (D̊4 ⊔ D̊4), namely X ′ with a further puncture. Let s̃0 be

the restriction of s̃ to W̃0 and let s1 be the restriction to W1. Then the gluing formula for
the family Seiberg-Witten invariant (Theorem 8.58.5) implies that

FSW(f ′, s̃) = ⟨ĤM∗(W̃0, s̃0)(1̂),
#      »

HM∗(W1, s1)(1̌)⟩ ∈ Q.
Let s be the restriction of s̃ to X, and note that in our case b+2 (X) > 2 , so in particular

b+2 (W1) > 1. Since d(X̃, s̃) = 0, it follows from (8.18.1) that the ordinary expected dimension

d(X, s) =
c1(s)

2[X]− 2χ(X)− 3σ(X)

4
= −1.

Replacing X with W1, we have that c1(s)
2[X] = c1(s1)

2[W1] and σ(X) = σ(W1), but

χ(W1) = χ(X)− 2. Hence d(W1, s1) = d(X, s) + 1 = 0. By Corollary 8.48.4,
#      »

HM∗(W1, s1) is
the zero map. Hence by the gluing formula, FSW (f ′, s̃) = 0. Isotopy invariance of FSW
and the fact that FSW(f, s̃) ̸= 0 yields the desired contradiction. □

Remark 8.6. It is a fact known to experts in gauge theory that an exotic diffeomorphism
detected by 1-parameter family Seiberg-Witten invariants cannot be isotopic to one sup-
ported in a 4-ball. We thank David Auckly and Danny Ruberman for mentioning this fact
to us, and particularly Hokuto Konno for a detailed discussion of a proof. Since a proof
has not yet appeared in the literature, we used a different, more specific argument in the
previous proof that suffices for our purposes. See also [LM21LM21, Theorem 1.6] for a related
statement on the Bauer-Furuta invariant.

8.4. A diff-cork with nontrivial family monopole Floer cobordism map. In this
section we prove the following result on the nonvanishing of a closely related monopole
Floer family cobordism map.

Theorem 8.7. There exists a compact, contractible, smooth 4-manifold C and a diffeo-
morphism g′ : C → C with g′|∂C = Id, such that for any choice of isotopy of g′ to a
diffeomorphism g fixing a 4-ball (see Remark 8.28.2), the family cobordism map

ĤM∗(W̃0, s̃0) : ĤM∗(S
3) → ĤM∗(∂C)
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is nontrivial. Here W0 := C \ D̊4, W̃0 is the mapping torus of g|W0, and s̃0 is the family

spinc structure on W̃0 coming from restricting the unique spinc structure on C and gluing
using g.

Proof. In Examples 7.47.4 to 7.67.6, we observed that there exists, due to Ruberman [Rub99Rub99],
Baraglia-Konno [BK20BK20], Auckly [Auc23Auc23], and [AKMR15AKMR15, Theorem C], a smooth, closed,
simply-connected 4-manifold X and a diffeomorphism f : X → X that becomes smoothly
isotopic to the identity after a single stabilization with S2 × S2. In fact there are many
possible choices for X and f .

Thus by Theorem 1.11.1, there exists a contractible codimension zero submanifold C ⊆
X such that f is smoothly isotopic to a diffeomorphism f ′ supported on C. Let g :=
f ′|C : C → C. Baraglia-Konno [BK20BK20, Theorem 9.7] proved that there exists a family

spinc structure s̃ on the mapping torus X̃ of f such that the virtual dimension d(X̃, s̃) = 0
and such that FSW(f, s̃) ̸= 0, and hence FSW(f ′, s̃) ̸= 0.

Let W̃0 and s̃0 be as in the statement of the theorem. LetW1 := X \(C̊⊔D̊4) and let s1
denote the restriction of s̃ toW1. Note that for these examples b+2 (X) > 2 and b+2 (W1) > 1.
Theorem 8.58.5 implies that

FSW(f ′, s̃) = ⟨ĤM∗(W̃0, s̃0)(1̂),
#      »

HM∗(W1, s1)(1̌)⟩.

Since FSW(f ′, s̃) ̸= 0, it follows that the family cobordism map ĤM∗(W̃0, s̃0) is nontrivial,
as desired. □

Remark 8.8. One might attempt to cap off the examples from this theorem to create new
examples of closed 4-manifolds with exotic diffeomorphisms, using Theorem 8.58.5. However,
this capping-off process often leads to vanishing family Seiberg-Witten invariant. It would
be intriguing to be able to realise this, or to make analogous arguments using family
Bauer-Furuta theory [LM21LM21, Theorem 1.8], but we have not been able to achieve either.

9. Barbell diffeomorphisms

The aim of this section is to prove the following result, which contrasts with Theo-
rem 1.71.7, since it gives an example of a 4-manifold where every exotic diffeomorphism (if
any exist, which we do not know) can be isotoped to one supported in a 4-ball. We thank
David Gabai for suggesting to us to try to prove this statement.

Theorem 1.8. For the 4-manifold Xn := ♮nS2 ×D2, n ≥ 1, there is an exact sequence

π0Diff∂(D
4) → π0Diff∂(Xn) → π0Homeo∂(Xn) → 0.

Moreover, π0Homeo∂(Xn) is generated by standard barbell diffeomorphisms ϕi,j for 1 ≤
i < j ≤ n.

Before proving the theorem, we describe barbell diffeomorphisms, and investigate their
Poincaré variations. Let x1, . . . , xn ∈ D3 be disjoint points in the interior and let Bn be
D3 with n disjoint open 3-balls, with centres the xi, removed. After smoothing corners,
Bn× I ∼= ♮nS2×D2 = Xn. We can think of Bn× I as obtained by removing disjoint open
tubular neighborhoods of the arcs γi := xi×I ⊆ D3×I, for i = 1, . . . , n. We also note that
∂Xn

∼= #nS2 × S1. Consider n pairwise disjoint arcs d1, . . . , dn in D3, where di connects
xi to ∂D

3. Consider the discs Di := (di ∩Bn)× I ⊆ Bn × I ∼= Xn. The relative homology
is H2(Xn, ∂Xn) ∼= Zn generated by the classes [Di]. Also H2(Xn) ∼= Zn, generated by the
linking spheres [Si] to the arcs γi, i.e. Si is the boundary of the ith 3-ball removed from
D3 when forming Bn.

For 1 ≤ i ̸= j ≤ n, we now recall the barbell diffeomorphisms ϕi,j : Xn → Xn, defined
by Budney and Gabai in [BG19BG19]. Fill in the neighborhood of the ith arc γi to obtain
Bn−1 × I. Consider the loop Υi,j ∈ π1(Emb∂(I,Bn−1 × I), γi) obtained by taking γi and
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lassooing the jth linking sphere Sj . The connecting homomorphism in the long exact
sequence in homotopy groups of the fibration

Diff∂(Bn × I) → Diff∂(Bn−1 × I)
−◦γi−−−→ Emb∂(I,Bn−1 × I)

is a homomorphism δ : π1(Emb∂(I,Bn−1 × I), γi) → π0(Diff∂(Bn × I)). It can be defined
directly using the parametrized isotopy extension theorem. We define

ϕi,j := δ(Υi,j) : Xn → Xn.

In H2(Xn) we have

[Di − ϕi,j(Di)] = [Sj ], [Dj − ϕi,j(Dj)] = −[Si], and [Dk − ϕi,j(Dk)] = 0 for k ≥ i, j.

This determines the Poincaré variation in Hom(H2(Xn, ∂Xn), H2(Xn)) associated with ϕi,j .
For readers not familiar with it, let us recall some of the theory of Poincaré variations.

Given a boundary-fixing homeomorphism f : X → X of a compact 4-manifoldX, there is a
Poincaré variation [Sae06Sae06], which is represented by an element of Hom(H2(X, ∂), H2(X))
given by [y] 7→ [y − f(y)]. Saeki [Sae06Sae06] defined a group structure on a specified subset of
Hom(H2(X, ∂), H2(X)), giving the group of Poincaré variations of X. We will not recall it
here; see also [OP22OP22]. If f acts trivially on H2(X), then the group of Poincaré variations is
isomorphic to ∧2H1(∂X)∗ i.e. the group of skew-symmetric forms κ : H1(∂X)×H1(∂X) →
Z. Let κ† denote the adjoint of κ. Then the Poincaré variation associated with κ is the
composite

H2(X, ∂X) → H1(∂X)
κ†
−→ H1(∂X)∗

ev−1

−−−→ H1(∂X)
PD−−→ H2(∂X) → H2(X). (9.1)

By [OP22OP22], for compact simply-connected 4-manifolds with connected boundary, the topo-
logical boundary-fixing mapping class group π0Homeo∂(X) is isomorphic to the group of
Poincaré variations.

Proof of Theorem 1.81.8. In the case ofXn, sinceH2(∂Xn) → H2(Xn) is onto, every boundary-
fixing homeomorphism of Xn acts trivially on H2(Xn), and hence the group of Poincaré
variations, and as a consequence π0Homeo∂(Xn), is isomorphic to ∧2H1(∂Xn)

∗. One can
check using (9.19.1) that the variation of the barbell diffeomorphism ϕi,j is described by

ei ∧ ej ∈ ∧2H1(∂Xn)
∗ ∼= ∧2Zn,

where e1, . . . , en are the standard generators of H1(∂Xn)
∗ ∼= Zn. It follows that the

topological mapping class group π0Homeo∂(Xn) ∼= ∧2Zn is generated by the barbell dif-
feomorphisms {ϕi,j}, proving the last statement of the theorem.

Now let f ∈ ker(π0Diff∂(Xn) → π0Homeo∂(Xn)). It follows that f has trivial Poincaré
variation. Using the Hurewicz theorem, this implies that Di is homotopic rel. boundary
to f(Di) for i = 1, . . . , n.

Note that D1 and f(D1) have a common dual sphere in the boundary, S2 × {x}, for
some x ∈ ∂D2. By the light bulb theorem [Gab20Gab20,KT23KT23], we obtain a smooth isotopy
between f(D1) and D1. By the isotopy extension theorem and the fact that boundary-
fixing diffeomorphisms of the 2-disc are all isotopic rel. boundary to one another, we can
isotope f so that it fixes D1 pointwise. By uniqueness of tubular neighborhoods, we can
assume that f fixes a tubular neighborhood of D1 setwise. For a disc in a 4-manifold with
a framing of the normal bundle restricted to its boundary, if the framing extends to the
entire disc then it does so essentially uniquely, because π2(O(2)) = 0. Thus we can assume
after a further isotopy that f fixes a tubular neighborhood of D1 pointwise.

Cutting along this tubular neighborhood of D1 leaves a diffeomorphism of Xn−1 re-
stricting to the identity on the boundary. By induction, and writing X0

∼= D4, we obtain
a diffeomorphism of Xn that is supported on a 4-ball D4, as desired. □
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