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1 Introduction
In these notes we prove that for n ≥ 5 there exists a unique PL structure on Rn up to PL

isomorphism. The proof will be mostly based on the so called Engulfing Theorem, that is
presented in the second section. In the first section we recall some basic notions and results of
PL theory.
Conventions. We will usually omit the prefix PL: so for example manifold stands for PL
manifold, isomorphism for PL isomorphism and so on. We will explicitly state the category in
which we are working when it is necessary. When not explicitly stated, manifolds are supposed
to be without boundary, and they can be compact or not.

2 Basic notions and useful theorems in PL theory
In this section we recall some definitions and results regarding PL theory that will be needed

later. This section will contain no proof. We refer to [RS72], [Zee63] and [Buo] for details and
proofs.
Definition 2.1. Let n ≥ 0,m ≥ 0 be two natural numbers. An n-simplex A in some Euclidean
space Em is the convex hull of n linearly independent points, called vertices. A simplex B
spanned by a subset of vertices of A is called a face of A, and we write B < A. The number n is
called the dimension of A.
Definition 2.2. A (locally finite) simplicial complex K is a collection of simplices in some
Euclidean space E, such that:

− if A ∈ K and B is a face of A then B ∈ K.
− If A,B ∈ K then A ∩B is a common face, possibly empty, of both A and B.
− Each simplex of K has a neighbourhood in E which intersects only a finite number of

simplices of K.
We define the dimension of K to be the maximal dimension of a simplex in K.

Given a simplicial complex K we denote
|K| =

⋃
A∈K

A

its underlying topological space, and we call it a Euclidean polyhedron.
We say that K ′ is a subdivision of K if |K ′| = |K| and each simplex of K ′ is contained in

some simplex of K.
Definition 2.3. Let K,L be two simplicial complexes. We say that a map f : K → L is
simplicial if for each simplex A ∈ K its image f(A) is a simplex in L and the restriction of f on
A is linear. We say that f is piecewise linear, abbreviated PL, if there exists a subdivision K ′ of
K such that f maps each simplex of K ′ linearly into some simplex of L.
Remark 2.4. Notice that the map f in the previous definition is defined on the Euclidean
polyhedron |K| and |L|, but we write f : K → L as an abuse of notation to stress the dependence
on the simplicial complexes.
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Remark 2.5. Notice also that in the definition of PL map we do not ask for the map f : |K ′| → |L|
to be simplicial. However it is true that if K and L are finite complexes and f : |K| → |L| is a
PL map, then there exists subdivision K ′ of K and L′ of L such that f : K ′ → L′ is simplicial.
Definition 2.6. A triangulation of a topological space X is a simplicial complex K and a
homeomorphism t : |K| → X. A polyhedron is a pair (P,F), where P is a topological space and
F is a maximal collection of PL compatible triangulations; that is to say, given t1 : |K1| → P
and t2 : |K2| → P in F we have that t1 ◦ t−1

2 : K2 → K1 is a PL isomorphism.
GivenX1, X2 two polyhedra, we say that f : X1 → X2 is a PL map if there exists triangulations

of X1 and X2 such that f is PL with respect to these triangulations.
Fact: A theorem of Runge ensures that an open set U of a simplicial complex K, or more

precisely of |K|, can be triangulated, i.e. underlies a locally finite simplicial complex, in such
a way that the inclusion map is PL. Furthermore such a triangulation is unique up to a PL
isomorphism. For a proof see [AH35].

By virtue of the previous fact, it makes sense to give the following definition.
Definition 2.7. A (PL) manifold M of dimension n is a polyhedron such that every point
x ∈M has a neighbourhood (PL) isomorphic to an open set in Rn

≥0 = {x ∈ Rn|xn ≥ 0}.
Remark 2.8. In the previous definition the open sets in M and the open sets in Rn

≥0 are endowed
with the PL structure induced by the given PL structure on M and the standard PL structure
on Rn

≥0 respectively.
We denote with ∂M the set of points that are mapped to the boundary of Rn

≥0 by some (and
hence all) such local isomorphisms, and call it the boundary of M . We denote its complement
with Int(M) and call it the interior of M .

Recall that, unless explicitly stated, in these notes we will suppose that our manifolds are
without boundary.

2.1 Regular neighbourhoods

Definition 2.9. Let P be a polyhedron. A subset P0 ⊆ P is a subpolyhedron if there exists a
triangulation of P which restricts to a triangulation of P0.
Definition 2.10. Let K be a simplicial complex, and let K0 ⊆ K a subcomplex. Suppose that
there exists a simplex A = v ∗ B ∈ K (i.e. A is the cone with vertex v and base the face B)
where v ∈ A is a vertex such that K = K0 ∪ A and K0 ∩ A = v ∗ ∂B. In this case we say
that there is a elementary simplicial collapse from K to K0, and we denote it by K

e.s.
↘ K0. A

simplicial collapse is a finite number of elementary simplicial collapses, and if K has a simplicial
collapse to K0 we denote this by K

s
↘ K0.

Figure 1
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Figure 2. A sequence of elementary simplicial collapses.

Definition 2.11. Let P be a polyhedron, and let P0 ⊆ P a subpolyhedron. Suppose that there
exists, for some natural number m, a (PL) m-ball B ⊆ P such that P = P0 ∪B and K0 ∩B is a
(PL) (m− 1)-ball in ∂B. In this case we say that there is an elementary collapse from K to K0,
and we denote it by K

e
↘ K0. A collapse is a finite number of elementary collapses, and if K

collapses to K0 we denote this by K ↘ K0.

Figure 3

Figure 4. A sequence of elementary collapses.

Remark 2.12. The difference between the definition of collapse and simplicial collapse lies in the
fact that a polyhedron does not have a “canonical” triangulation. It is obvious that a simplicial
collapse is a collapse, but it is not true that if P ↘ P0 then for any triangulation (K,K0) of the
pair (P, P0) we have a simplicial collapse K

s
↘ K0. It is however true that it is possible to find

a subdivision (K ′,K ′0) of (K,K0) such that K ′
s
↘ K ′0.

Definition 2.13. Let M be a closed (PL) n-manifold and let X be a subpolyhedron in M . A
regular neighbourhood of X in M is any subpolyhedron N in M such that:

− N is an n-manifold with boundary,
− N is a topological neighbourhood of X in M ,
− N ↘ X
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For proofs of the following results we refer to [RS72].
Theorem 2.14. Any second derived neighbourhood of X in M is a regular neighbourhood of X
in M . Moreover any two regular neighbourhoods N1, N2 of X in M are ambiently isotopic in
M , keeping fixed any arbitrary regular neighbourhood N ⊆ N1 ∩N2 and the complement of any
arbitrary open set U ⊇ N1 ∪N2.
Lemma 2.15. Suppose X,Y are two subpolyhedra in a manifold M , and suppose that X ↘ Y .
Then any regular neighbourhood of X is a regular neighbourhood of Y .

As a corollary of the previous theorem and lemma we have the following.
Corollary 2.16. Suppose X,Y are subpolyhedra in a manifold M , and suppose that X ↘ Y .
Then any two regular neighbourhoods NX and NY of X and Y are ambiently isotopic in M ,
via an isotopy keeping fixed any arbitrary regular neighbourhood of Y in NX ∩ NY and the
complement of any arbitrary open set U ⊇ NX ∪NY .

One way to construct regular neighbourhood is the following. Suppose that X is a subpolyhe-
dron of a closed manifold M and consider a triangulation (T, T0) of the pair (M,X).

Define fX : T → [0, 1] to be the unique simplicial map defined by mapping each vertex of T0
to 0 and the other vertices to 1. We say that T0 is full in T if f−1

X (0) = T0. If T0 is full in M
then for any t ∈ (0, 1) the preimage f−1

X ([0, t]) is a regular neighbourhood of X in M .
Remark 2.17. It can happen that T0 is not full in T , but it is always possible to find a subdivision
(T ′, T ′0) of (T, T0) such that T ′0 is full in T ′. Also notice that f−1

X (1) is always full in T .
Since we will work also with non compact manifolds and non compact polyhedra it is important

to mention that regular neighbourhoods can be defined also in this setting and analogous results
hold. The main difference is that also infinite sequences of elementary collapses are allowed. We
refer to the paper [Sco67] for details.

Of course, in case of infinite regular neighbourhoods it is not possible in general to have
uniqueness up to ambient isotopy with compact support. In any case the following lemma will
be enough for our purposes.
Lemma 2.18. Suppose that X,Y are subpolyhedra of M and suppose that X ↘ Y (finite
collapse). If Y ⊆ U , where U is an open set in M , then there exists an ambient isotopy of M
with compact support that maps X in U .

We end this subsection stating a lemma that we will play a key role in the following section.
Lemma 2.19. Suppose that P0 ⊆ P are compact polyhedra and that P ↘ P0. Also suppose that
S ⊆ P is a subpolyhedron. Then there exists a subpolyhedron S+ ⊇ S such that P ↘ P0 ∪ S+

and dim S+ ≤ dim S + 1.

2.2 General position

We need the following theorem, which roughly states that it is possible, with a slight pertur-
bation, to promote a continuous map to a PL map that is “generic”, in the sense that the image
of this map has transverse self-intersections. Moreover it is possible to keep the map unchanged
on a subpolyhedron on which it is already PL and generic.

To quantify the amount of perturbation, we will fix any metric compatible with the topology
of our polyhedron. If (Z, d) is a metric space, we say that a map f : Y × I → Z is an ε-homotopy
if d(f(y, 0), f(y, t)) < ε for all y ∈ Y and t ∈ I.
Theorem 2.20. Let P0 ⊆ P p be a subpolyhedron with cl(PrP0) compact. Let f : P →Mm be a
closed and continuous map with p ≤ m such that f is a PL embedding when restricted to P0, and
let ε > 0 be given. Then there is an ε-homotopy rel P0 from f to a map g and a triangulation T
of P such that:
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− for every simplex A ∈ T the restriction g|A is a PL embedding;
− for every A,B ∈ T , we have that g−1(g(B)) ∩A = (A ∩B) ∪ S(A,B), where S(A,B) is

a subpolyhedron of A of dimension

dim(S(A,B)) ≤ dimA+ dimB −m.

Here are some comments to clarify the second condition in Theorem 2.20. The set g−1g(B)∩A
is by definition the set of points in A that share their image with some point in B. Since g is
an embedding when restricted to any simplex, this set parametrises the intersection between
g(A) and g(B) in M . The second condition then asks that this intersection (apart from the
obvious set g(A ∩ B)) is a polyhedron and is generic. The following figures should help the
comprehension of this request.

Figure 5

Remark 2.21. In general it is false that A∩B and S(A,B) are disjoint, since we require S(A,B)
to be a subpolyhedron. For instance, in the case depicted in Figure 6 the set S(A,B) contains
also two points in A ∩B.
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Figure 6

If we let A,B vary we can define the singular set of g:

S(g) =
⋃

A,B∈T

S(A,B).

It is not difficult to prove that S(g) is a subpolyhedron of dimension at most 2p−m and that
S(g) = cl{p ∈ P |g−1g(p) 6= p}. In particular g is injective on Pr S(g).

Details about general position arguments can be found in [Zee63] and [RS72].
In the following section we will need to use some collapses in the domain of a PL map to

induce collapses on the image. If we have a PL embedding of course it is possible to mirror such
a collapse on the image of the map. In general we are able to do so if the collapse takes place
away from the singular set of the map.

Lemma 2.22. Let P,Q be two polyhedra. Let g : P → Q be a PL map and suppose that S ⊇ S(g)
is a subpolyhedron of P that contains the singular set of g. Then if P ↘ S also g(P )↘ g(S).

For a proof of the previous lemma we refer to [Zee63].

3 The Engulfing Theorem
In this section we will state and prove the main theorem of these notes, the Engulfing Theorem.

The sense of this theorem is to promote an homotopical, and hence algebraic, statement into a
geometric one. As an example, consider the following question.

Question 3.1. Suppose that C is a compact set in a manifold Mn such that the inclusion
C ↪→M is nullhomotopic. Is C contained in an n-ball?

Of course if a set is contained in a ball then its inclusion is nullhomotopic, but at a first sight
it is very difficult to give an answer to Question 3.1. As a consequence of the Engulfing Theorem
we will improve our understanding of this problem and have a satisfying partial answer to this
question.

There are several versions of the Engulfing Theorem, which is a technique more than a theorem
in itself. We will present here the Stallings’ version of the theorem [Sta62], which is the one that
suits our needs.

Theorem 3.2 (Stallings’ Engulfing Theorem). Let Mn be a PL manifold, U an open subset of
M , P a subpolyhedron of M of dimension p. Suppose that:

− (M,U) is p-connected;
− P ∩ (Mr U) is compact;
− p ≤ n− 3.

Then there is a compact E ⊆M , and there is an isomorphism h : M →M , such that
P ⊆ h(U) and h|MrE = Id|MrE .
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Recall that (M,U) is said to be p-connected if the relative homotopy groups πi(M,U) all
vanish for i ≤ p. Notice that, since the polyhedron P has dimension p, the hypothesis of
p-connectedness is the sufficient algebraic condition to deduce that it is possible to homotope
the remaining part of P inside the open subset U , as the following lemma proves.

Lemma 3.3. Suppose that P is a subpolyhedron of dimension p of a manifold M . Suppose that
P0 ⊆ P is a subpolyhedron of P and that U is an open set in M such that P0 ⊆ U and (M,U)
is p-connected. Then there exists a homotopy f : P × I →M rel P0 such that f(P × {1}) ⊆ U .

Proof. The hypothesis that πk(M,U) = 0 means that each map of pairs (Dk, ∂Dk)→ (M,U)
can be homotoped, relative to the boundary, to a map Dk → U .

Assume inductively that the (k − 1)-skeleton of P is already contained in U and consider the
k-skeleton P (k) of P . Each simplex A in the k-skeleton can be homotoped into U rel ∂A, since
k ≤ p and (M,U) is p-connected. In this way we can define an homotopy on P0 ∪ P (k) that
is constant on P0 and that takes P0 ∪ P (k) into U . Since the pair (P, P0 ∪ P (k)) satisfies the
homotopy extension property, we are able to extend this homotopy on the whole P , completing
the inductive step. �

The Engulfing Theorem improves the previous lemma in the much stronger result that the
open set U can be enlarged to “engulf” the whole polyhedron P .

We will not start by proving the complete statement of the Engulfing Theorem, but we will
first give some proofs of it when the codimension of P is big enough and when P is compact for
the following reasons:

− the basic ideas of the final proof are already present in these simpler cases;
− the problems that one encounters when trying to generalise these simpler proofs to the

general case give enough motivation to endure some technicalities of the final proof.
Step 1: P compact, 2(p + 1)− n < 0.
Denote with P0 the biggest subcomplex of P contained in U . It follows from the hypotheses

and Lemma 3.3 that there exists a continuous homotopy f : P × I →M relative to P0 such that
f(P × {1}) ⊆ U . We can apply Theorem 2.20 to obtain a new map g : P × I →M that is a PL
map, that coincides with f on P × {0} and such that g(P × 1) ⊆ U .

Moreover the singular set S(g) has dimension at most 2(p+ 1)− n < 0 and therefore g is an
embedding. Since P × I ↘ P × 1 and g is a PL embedding, we have that g(P × I)↘ g(P × 1)
and therefore by Corollary 2.16 (or also Lemma 2.18) there exists an ambient isotopy of M with
compact support mapping P inside U . If we call h−1 the isomorphism at the end of this isotopy,
we have that P ⊆ h(U).
Step 2: P compact, p ≤ n− 4.
We try now to improve the hypothesis on the codimension. In this case it is not true a priori

that g is an embedding, because the dimension of its singular set can be positive. This is a
problem, because the collapse P × I ↘ P × {1} does not induce a collapse on the image. We
want to get rid of the singular set.
First good idea: We can suppose that by induction we are able to engulf subpolyhedra of

dimension p′ < p. If we are able to show that the dimension of S(g) is strictly smaller than p we
can engulf its image by induction. We have

dim(S(g)) = 2p+ 2− n < p ⇐⇒ p < n− 2

Therefore, if p ≤ n− 3 we can engulf the image of the singular set by inductive hypothesis.

Problem: It is not true in general that P × I ↘ P × {1} ∪ S(g).
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Second good idea: Using Lemma 2.19 we can find S+(g), such that S(g) ⊆ S+(g) and
P × I ↘ P × {1} ∪ S+(g). Since dim S+(g) ≤ dim S(g) + 1 we need

2p+ 3− n < p ⇐⇒ p < n− 3.
Since by hypothesis we have p ≤ n− 4 we can suppose that also the image of S+(g) is contained
in U .

At this point, since the collapse P × I ↘ P × {1} ∪ S+(g) takes place away from singular set,
we can use Lemma 2.22 to mirror this collapse on the image. Since the image of P ×{1}∪S+(g)
has been engulfed from U , we can conclude as in Step 1.

As a result of the previous discussion, we have that the Engulfing Theorem holds for compact
polyhedron P of codimension ≤ n− 4. We will now present the proof of the more general result,
that allows P to be non compact and of codimension ≤ n− 3.

We assert that it is not difficult to drop the compactness hypothesis, due to the hypothesis of
compactness of the set P ∩ (Mr U). What needs a more clever idea is to allow for codimension
n− 3. The key observation is that, in order to engulf P we only need to engulf g(P × {0}) and
not the whole image of P × I; if we pay attention to this and manage U to carefully select what
portion of g(P × I) to engulf, we will be able to prove the case p = n− 3.

Figure 7

Proof of Theorem 3.2. It is clear that we can suppose that Pr P0 has only one simplex ∆, by
using an induction argument on the number of simplices in P r P0. We denote with q the
dimension of ∆, and we notice that by hypothesis q ≤ p ≤ n− 3. The hypotheses of the theorem
yield a continuous map F : ∆ × I → M such that F|∆×{0} is the inclusion of ∆ in M and
F (∆× {1}) ⊆ U . Now we consider the polyhedron K = ∆× I ∪∆×{0} P and we can glue the
inclusion of P with the map F to obtain a map f : K → M . We can apply Theorem 2.20 to
obtain a map g that is PL and a triangulation T of K such that

− g is an embedding restricted to any simplex of T ;
− given simplices A and B, A∩g−1(g(B)) = (A∩B)∪S(A,B) where S(A,B) is a compact

subpolyhedron of A of dimension ≤ dimA+ dimB − n.
Moreover, up to passing to a subdivision, we can also suppose that T simplicially collapses
to K0 = P0 ∪ (∂∆ × I) ∪ (∆ × {1}). This follows from the fact that ∆ × I collapses to
(∂∆× I) ∪ (∆× {1}).
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In other words we have a finite number of simplices A1, . . . , As such that:

− K = K0 ∪A1 ∪ · · · ∪As,
− each Ai has a vertex vi and a face Bi such that Ai = vi ∗Bi and

(K0 ∪A1 ∪ · · · ∪Ai−1) ∩Ai = vi ∗ ∂Bi.

We denote with Ki the union (K0 ∪ A1 ∪ · · · ∪ Ai) and with Di its p-skeleton. Our aim is to
engulf g(Di). Notice that Di = Ki except when the simplex ∆ has dimension q = p, and that in
any case P ⊆ Ds, the p-skeleton of K.

We can suppose by induction that the statement of the Engulfing Theorem holds for q′ < q,
i.e. that the statement of the theorem holds for subpolyhedra of M of dimension q′ < q. Also
suppose by induction that g(Di−1) has already been engulfed. We now prove that it is possible
to engulf g(Di).

Exactly as in Step 2 we have the problem that the collapse of Di−1 ∪ Ai to Di−1 does not
induce a collapse of the images, since g is a priori not injective on Di−1 ∪ Ai. But exactly as
before we can consider the set

Σi = ∪{S(Ai, B)|B is a simplex in Di−1}.

The set Σi is the singular set of the map g restricted to Di−1 ∪ Ai and Σi is a compact
subpolyhedron of Ai of dimension

dimΣi ≤ dimAi + p− n ≤ q + 1 + (n− 3)− n ≤ q − 2.

Since dimΣi ≤ q−2, when we consider the set Σ+
i from Lemma 2.19 we have that dimΣ+

i ≤ q−1
and so we can apply the inductive hypothesis and obtain a compactly supported isomorphism
h : M → M such that U engulfs g(Di ∪ Σ+

i ). Since now Ai ↘ (vi ∗ ∂Bi) ∪ Σ+
i we can use

Lemma 2.22 to mirror this collapse on the image and deduce that there exists an isomorphism
h′ : M → M with compact support such that h(U) contains g(Ai ∪ Di−1). The composition
h′ ◦ h gives the engulfing of g(Di) from U .

Since P ⊆ Ds, we have proved the Engulfing Theorem. �

Remark 3.4. Notice that in the proof of the inductive step we actually managed to engulf the
whole image of the simplex Ai, so it could seem that at the end the open set U engulfed the
whole image of K. The important point is that when trying to engulf the image of the next
simplex Ai+1 we cannot impose that the open set keeps containing g(Ai) during the isotopy, but
only its p-skeleton.

So what happens is that at each step the open set U loses some pieces of what it has already
engulfed. This is not a problem as long as none of these pieces belongs to the p-skeleton of the
image of K and this is something we can control. The next figure is a schematic picture of what
can happen.
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Figure 8

As a corollary of the Engulfing Theorem we have

Corollary 3.5. Suppose that Mn is a contractible PL manifold and that C ⊆M is a compact
subpolyhedron in M of dimension ≤ n− 3. Then C is contained in an n-ball.

Proof. Take U to be any n-ball in M . Since both M and U are contractible, as a consequence
of the long exact sequence of homotopy groups of the pair we have that (M,U) is p-connected
for all p. Since C is compact, the set C ∩ (Mr U) is compact. Moreover the dimension of C is
≤ n−3 by hypothesis and therefore we can apply the Engulfing Theorem to find an isomorphism
h : M →M such that C is contained in the n-ball h(U). �

4 Uniqueness of PL structures on Rn

In this last section we will use the Engulfing Theorem to prove

Theorem 4.1 (Uniqueness of PL structure). Let n ≥ 5. Then there exists a unique PL structure
on Rn up to isomorphism.

Remark 4.2. It is proved with other techniques that Rn has a unique PL structure if n ≤ 3
[Moi52]. On the other hand, it can be showed that R4 has uncountably many different PL
structures [Tau87].

We recall the following definition.

Definition 4.3. A topological space X is said to be simply connected at infinity if for any
compact set C ⊆ X there exists a compact D such that C ⊆ D ⊆ X and Xr D is simply
connected.

Theorem 4.4. Let Mn be a connected and oriented manifold with possibly empty boundary.
Then any two cooriented embeddings of n-balls in Int(M) are ambiently isotopic.

Theorem 4.1 will be a corollary of the following proposition.

Proposition 4.5. Suppose that Mn, n ≥ 5, is a contractible manifold that is simply connected
at infinity. Then any compact subset of M is contained in an n-ball.

Proof of Theorem 4.1. Let Mn be contractible and simply connected at infinity. Then the
existence of a countable compact exhaustion of M and Proposition 4.5 imply thatM is the union
of {Fi}i∈N, where each Fi is a n-ball, and Fi ⊆ IntFi+1. We now prove that all the manifolds
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obtained in this way are isomorphic, and since Rn can be obtained in this way the theorem
follows.

Suppose that we have Fi ⊆ IntFi+1 and Gi ⊆ IntGi+1 two pair of nested n-balls and fix any
isomorphism fi : Fi → Gi. If we are able to show that there exists an isomorphism fi+1 : Fi+1 →
Gi+1 that extends fi we have finished, since we can iterate this process countably many times,
starting with a fixed isomorphism f1 : F1 → G1, to obtain an isomorphism

⋃
i∈N{Fi} →

⋃
i∈N{Gi}.

Suppose that we have fixed fi and consider any isomorphism f ′i+1 : Fi+1 → Gi+1 with the
property that its restriction to Fi is cooriented with fi. Then by Theorem 4.4 we know that
there exists an isomorphism H : Gi+1 → Gi+1 such that (H ◦ f ′i+1)|Fi

= fi. Simply define
fi+1 = H ◦ f ′i+1. �

Our aim now is to prove Proposition 4.5. We start with some simple lemmas.
Lemma 4.6. Suppose Mn is a manifold that is contractible and simply connected at infinity.
Then for any compact set C ⊆ M there exists a compact set D such that C ⊆ D ⊆ M and
(M,MrD) is 2-connected.
Proof. Consider D such that MrD is simply connected. Consider the long exact sequence of
homotopy groups of the pair

· · · → π2(M)→ π2(M,MrD)→ π1(D)→ π1(M)→ π1(M,MrD)→ . . .

Since M is contractible and M r D is simply connected, we deduce that (M,M r D) is 2-
connected. �

Lemma 4.7. Suppose Mn, n ≥ 5, is a manifold that is contractible and simply connected at
infinity. Let T (2) denote the 2-skeleton of a triangulation T of M and let C ⊆M be a compact
subset. Then there exists an isomorphism h : M →M whose support is compact and contains C
and such that Mr C engulfs T (2), i.e. T (2) ⊆ h(Mr C).
Proof. Consider a compact set D such that C ⊆ D ⊆M and (M,MrD) is 2-connected. Since
T (2) is a 2-dimensional polyhedron, n ≥ 5, and T (2) ∩D is compact, being D compact, we can
apply the Engulfing Theorem and find a compactly supported isomorphism h : M → M such
that T (2) ⊆ h(Mr D) ⊆ h(Mr C). If the support of h does not contain C we can simply
consider its union with C, that is still compact. �

Proof of Proposition 4.5. Consider C ⊆M a compact subset and consider T (2) the 2-skeleton
of some triangulation of M . We know that, up to isomorphism of M , we can suppose that
C ∩ T (2) = ∅. Define K as the polyhedron obtained by adding to T (2) all the closed simplices of
T that are contained in Mr C. Consider C(K), the complement of K. C(K) is defined in the
following way:

− consider the first barycentric subdivision of T and denote it by T̃ ;
− consider the unique simplicial map fK : T̃ → [0, 1] defined by mapping the vertices of T̃

that are in K to 0 and the other vertices in 1;
− define C(K) = f−1

K (1).
Claim. The subpolyhedron C(K) is compact and has dimension ≤ n− 3.

We postpone the proof of the claim to the end of the proof.
Since C(K) has dimension ≤ n− 3 and is compact, by virtue of Corollary 3.5 we can suppose

that C(K) is contained in an n-ball A.
To conclude the proof of the proposition it is sufficient to observe that since C(K) is compact

there exists t1 ∈ (0, 1) such that C(K) ⊆ f−1
K ([t1, 1]) ⊆ A. Moreover since C is compact and

contained in MrK there exists t2 ∈ (0, 1) such that C ⊆ f−1
K ([t2, 1]).

Since both f−1
K ([t1, 1]) and f−1

K ([t2, 1]) are regular neighbourhoods of C(K) in M , by virtue
of Theorem 2.14, it is possibile to find an isomorphism h : M →M such that C ⊆ h(A), which
is an n-ball. �
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Proof of the claim. It is easy to prove that C(K) contains only a finite number of vertices. In
fact its vertices are contained in the simplices of T that intersect the compact C, and therefore
are contained in a finite number of simplices. This implies the compactness of T .

The bound on the dimension of C(K) follows from the fact that any k-simplex of T̃ intersects
a (n− k)-simplex of T . In fact the operation of first barycentric subdivision can be described in
the following way:

− Step 0: Do nothing. Rename the 0-skeleton of T by T (0)
0

− Step 1: Add to each edge of T its barycenter and subdivide T (1) by taking the cones
with vertices these barycenters and base T (0)

0 . In this way we obtain a new triangulation
of the 1-skeleton of T . Denote the new 0-skeleton with T (0)

1 and the new 1-skeleton with
T

(1)
1 .

− Step 2: Add the barycenters of the 2-simplices of T and take the cones with vertices
these barycenters and base T (1)

1 . In this way we obtain a new triangulation of the
2-skeleton of T . Denote the new 0-skeleton, 1-skeleton and 2-skeleton with T (0)

2 , T (1)
2

and T (2)
2 .

− Iterate this process up to the n-skeleton. By construction T
(n)
n is the barycentric

subdivision T̃ .

Using this description it is easy to prove that:

− each simplex in T (1)
1 contains a vertex of T (0)

0 = T (0);
− each simplex of T (2)

2 contains an edge of T (1)
1 ;

− each 3-simplex of T (3)
3 contains a 2-simplex of T (2)

2 . Analogously each 2-simplex of T (2)
3

contains a 1-simplex of T (1)
2 and each 1-simplex of T (1)

3 contains a vertex of T (0)
2 ;

− by induction, each k-simplex of T (k)
m , with k ≤ m, contains a (k − h)-simplex of T (k−h)

m−h ,
with h ≤ k.

The schematic picture of Figure 9 should help to visualise this “cascade” situation.
In particular, each simplex of dimension ≥ n− 2 in T̃ = T

(n)
n must contain a simplex in T (2)

2 .
Since |T (2)

2 | = |T (2)| and K contains the 2-skeleton of T , it follows that any such simplex must
intersect K. This implies that any simplex of C(K) has dimension at most n− 3. �
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Figure 9

Remark 4.8. Notice that even if to prove the uniqueness of PL structures on Rn when n ≥ 5
it was crucial to engulf compact sets, we actually needed the full strength of Stallings’ version
of the Engulfing Theorem, since in Lemma 4.7 we needed to engulf T (2) that is a non compact
polyhedron.
Remark 4.9. Consider an exotic R4, i.e. a PL structure on R4 that is non isomorphic to the
standard one. In such a PL manifold there must exist a compact set C that is not contained in
any PL 4-ball, otherwise from the proof of Theorem 4.1 we would find an isomorphism with the
standard R4.

As a further corollary of what we have proven so far we have a proof of the so called weak
Poincaré conjecture in dimension ≥ 5.
Corollary 4.10 (High dimensional weak Poincaré conjecture). Suppose that Mn is a closed PL
manifold homotopy equivalent to Sn, with n ≥ 5. Then M ∼=T op S

n.
Proof. Consider a point p ∈ M . We can use Proposition 4.11 (which is proved later) to
deduce that Mr {p} is contractible and simply connected at infinity. By virtue of Theorem 4.1
Mr {p} ∼=P L Rn. Therefore M is the one-point compactification of Rn, and hence a topological
sphere. �

Proposition 4.11. Let n ≥ 3. Suppose that Mn is a closed topological manifold homotopy
equivalent to Sn and consider a point p ∈M . Then Mr {p} is simply connected at infinity and
contractible.
Proof. We divide the proof in two parts.

Part 1: By definition there exist continuous f : M → Sn and g : Sn →M such that gf ∼ IdM

and fg ∼ IdSn . Consider the north pole N = (0, . . . , 0, 1) ∈ Sn and without loss of generality we
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can suppose that p = g(N). Since any rotation of Sn is isotopic to the identity, we can compose
f with a rotation of Sn and suppose that g(p) = N . We now prove that it is possible to find
g′ : Sn →M and homotopies g′f ∼ IdM and fg′ ∼ IdSn that fix respectively p and N .

First consider an arbitrary homotopy Φ: M × I → M between gf and IdM . The image of
{p} × I via this homotopy is a continuous loop γ : I →M . We want to compose this homotopy
with an isotopy of M that at each time brings back the point γ(t) to p. To do this we consider
an ambient isotopy of M extending the curve γ, i.e. an isotopy χ : M × I → M such that
χt(p) = γ(t) and χ1 = IdM . The homotopy χ−1Φ: M × I →M defined by

(x, t) 7→ χ−1
t (Φt(x))

satisfies:
− (χ−1Φ)t(p) = χ−1

t (γ(t)) = p.
− (χ−1Φ)1(x) = χ−1

1 (Φ1(x)) = x for all x ∈M .
− (χ−1Φ)0(x) = χ−1

0 (Φ0(x)) = χ−1
0 (g(f(x)).

Since χ−1
0 (p) = p we can replace g with g′ = χ−1

0 g. Now g′ : Sn → M is such that g′f ∼ IdM

fixing p.
We now want to proceed analogously with f .
First of all, notice that since χ−1

0 is isotopic to the identity ofM , it is still true that fg′ ∼ IdSn .
Consider an arbitrary homotopy Ψ: Sn × I → Sn between fg′ and IdSn . Also in this case the
image of {N} × I is a continuous loop δ in Sn. In the same way as before, we want to find an
isotopy of Sn that at each time brings back the point δ(t) to N , but we can do this in a smarter
way. In fact there is a fibration π : SO(n+ 1)→ Sn defined by

A 7→ A(N).

Since the fibrations have the path lifting property, we can lift the path δ : I → Sn to a path
δ̃ : I → SO(n+ 1) such that δ̃(1) = Id.

We can now define a homotopy δ̃−1Ψ: Sn × I → Sn by

(y, t) 7→ δ̃−1
t (Ψt(y)).

This homotopy satisfies:
− (δ̃−1Ψ)t(N) = δ̃−1

t (δ(t)) = N
− (δ̃−1Ψ)1(y) = δ̃−1

1 (Ψ1(y)) = y for all y ∈ Sn.
− (δ̃−1Ψ)0(y) = δ̃−1

0 (Ψ0(y)) = δ̃−1
0 (f(g′(x))) for all y ∈ Sn.

So we have proven that there is a homotopy between IdSn and δ̃−1
0 fg′ keeping N fixed. Since

δ̃0 is a rotation of Sn that fixes N (it is a lifting via the fibration π of δ(0) = 0), of course we
deduce that there is also such a homotopy between IdSn and fg′, that is what we wanted to prove.

Part 2: It follows from Part 1 that Mr {p} is homotopy equivalent to Rn. This of course
implies that Mr {p} is contractible.

Notice that simply connectedness at infinity is not a homotopical invariant, since for example
R2 is not simply connected at infinity but is homotopy equivalent to R3, which is. However our
situation is way simpler. In fact consider a compact C ⊆ Mr {p} and consider a small open
n-ball in M containing p and not intersecting C. The complement of this ball in Mr {p} is
a compact D that contains C. By construction the complement of D is homeomorphic to a
punctured n-ball, which is simply connected if n ≥ 3. �
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