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The doubly slice genus of a knot in the 3-sphere is the minimal genus among unknotted

orientable surfaces in the 4-sphere for which the knot arises as a cross-section. We use the

classical signature function of the knot to give a new lower bound for the doubly slice genus.

We combine this with an upper bound due to C. McDonald to prove that for every nonneg-

ative integer N there is a knot where the difference between the slice and doubly slice genus

is exactly N , refining a result of W. Chen which says this difference can be arbitrarily large.

1 Introduction

In what follows all manifolds are topological, compact, and oriented, and embeddings are

locally flat, although our results also hold in the smooth category. A basic 4-dimensional

measurement for the complexity of a knot K ⊂ S3 is the slice genus g4(K), defined as the

minimal genus among connected properly embedded surfaces in D4 that have the knot as

boundary. Doubling such a surface along its boundary produces a closed connected surface

in S4 for which the knot appears as a cross section. This doubled surface will be genus

minimising among surfaces in S4 for which the knot appears as a cross section, but will in

general be a knotted surface embedding.

A connected surface in S4 is unknotted if it bounds an embedded 3-dimensional handlebody

in S4 . Unknotted surfaces with the knot K as cross section are easily produced by doubling

a Seifert surface for K that has been pushed in to D4 . The doubly slice genus gds(K), first

defined in [8, §5], is the minimal genus among unknotted surfaces in S4 for which the knot

arises as a cross-section. Writing g3(K) for the minimal genus among Seifert surfaces for K ,

it is immediate from the above discussion that

2g4(K) ≤ gds(K) ≤ 2g3(K).

Further comparison of these quantities is fairly subtle, but we will show in this article that

classical abelian knot invariants can be employed for this purpose.

A choice of Seifert surface for a knot K ⊂ S3 and a choice of basis for the first homology

gives rise to a Seifert matrix V . Then given ω ∈ S1 ⊂ C the ω -signature of K is defined as

the signature of the complex hermitian matrix

σω(K) := sgn
(
(1− ω)V + (1− ω−1)V T

)
.

Theorem 1.1 Let K be a knot in S3 . The doubly slice genus of K is at least

gds(K) ≥ max
ω∈S1\{1}

|σω(K)|.

http://www.ams.org/mathscinet/search/mscdoc.html?code=\@secclass 
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Let ∆K(t) denote the Alexander polynomial of K . A classical lower bound for the slice

genus is that for every ω ∈ S1 such that ∆K(ω) 6= 0, we have |σω(K)| ≤ 2g4(K) [4]. It

follows that |σω(K)| ≤ gds(K) for these ω . Our theorem refines this, since it also applies

when ω is a root of the Alexander polynomial of K . Given a slice knot K , in other words a

knot with g4(K) = 0, and for ω ∈ S1 such that ∆K(ω) 6= 0, we have σω(K) = 0. Therefore

the classical bound contains no information on the doubly slice genus for slice knots.

On the other hand, for every ν ∈ S1 \ {1} that is the root of some Alexander polynomial

there exists a slice knot K for which σω(K) is nontrivial exactly at ω = ν, ν [1, Corollary

2.1]. For any N ∈ N, Theorem 1.1 applied to the N -fold connected sum of such a knot with

itself immediately produces a slice knot with doubly slice genus at least N , recovering a

theorem of Chen [2], which we discuss below. In the following result we obtain a refinement

of such examples.

Theorem 1.2 For each N ∈ N there exists a slice knot KN with gds(KN ) = N . In fact,

we may take KN = #NJ , the N -fold connected sum of J with itself for some

J ∈ {820, 1087, 10140, 11a28, 11a58, 11a165, 12a189, 12a377, 12a979, 12n56,

12n57, 12n62, 12n66, 12n87, 12n106, 12n288, 12n501, 12n504, 12n582, 12n670, 12n721}.

Here we use the notation of KnotInfo [9].

Proof The 21 knots listed are slice knots, found by searching the KnotInfo tables, of at most

12 crossings, whose ω -signature equals 1 for some ω ∈ S1 with ∆J(ω) = 0. As the lower

bound of Theorem 1.1 is additive under connected sum we therefore have gds(KN ) ≥ N .

We will show in Proposition 4.2 that each of these knots admits a slice disc on which the

radial Morse function has two minima and one saddle point i.e. J arises from one band

move on the 2-component unlink. The following theorem of Clayton McDonald therefore

shows that each of the knots J has doubly slice genus at most 1, and that KN therefore

has gds(KN ) ≤ N .

Theorem 1.3 (McDonald [10, Theorem 3.2]) Let K ⊂ S3 be a knot and let Σ be a

smoothly embedded surface in D4 such that the radial Morse function restricts to a Morse

function on Σ with b saddle points and no maxima. Then gds(K) ≤ b.

Corollary 1.4 (to Theorem 1.2) Let M,N be nonnegative integers with M even and

M ≤ N . There exists a knot K with M = 2g4(K) and N = gds(K).

Proof Let J be the mirror image of the knot 52 . This has g4(J) = g3(J) = gds(J) = 1,

and σω(J) = 2 for ω := eπi/3 , which is not a root of the Alexander polynomial. The knot

L := 820 has g4(L) = 0, but σω(L) = 1 and gds(L) = 1. Taking

K :=
(
#M/2J

)
#
(
#N−ML

)
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yields a knot with 2g4(K) ≤ M and gds(K) ≤ N . Then σω(K) = N , so gds(K) = N

by Theorem 1.1. Since |σρ(K)| ≤ 2g4(K) except for finitely many values of ρ ∈ S1 , the

averaged signature function defined by

σeiπθ(K) :=
1

2

(
lim
ϕ→θ+

σeiπϕ(K) + lim
ϕ→θ−

σeiπϕ(K)

)
satisfies |σρ(K)| ≤ 2g4(K) for all ρ ∈ S1 . Then σω(K) = M so 2g4(K) = M .

Connections to previous work

A knot K is doubly slice if gds(K) = 0, and the doubly slice genus is a measure of how far

a knot is from being doubly slice. The first detailed study of doubly slice knots, and the

related algebra, was made by Sumners [13]. Further foundational algebraic studies, related

to the work in this article, are those of Stoltzfus [12] and Levine [7].

Instead of the doubly slice genus, a different measure of the failure of a knot to be doubly

slice was studied by Cherry Kearton [5]. Given a slice knot K , he considered the minimal

complex dimension of H1(S4 \ J ;C[t, t−1]) among all knotted 2-spheres J ⊂ S4 with cross-

section K . He gave lower bounds for his invariant arising from signature obstructions. The

signatures he considered are the (p, i)-signatures of the Blanchfield form (see [7]), and it is

known that these signatures can be used to compute the ω -signatures of K [7, Theorem 2.3],

tempting one to imagine a connection to the results of this paper. But despite the similar

flavour of the invariants he uses, Kearton’s complexity measure appears to be independent

of the doubly slice genus, so there is no clear dependency between his work and ours.

This article was partly inspired by work of Wenzhao Chen [2], who ingeniously applied

Casson-Gordon invariants to show that for every N ∈ N, there is a slice knot K with

gds(K) ≥ N . In particular he proved that gds(K)−2g4(K) can be arbitrarily large. Casson-

Gordon invariants rely on the existence of interesting metabelian representations of the knot

group π1(S3 \ K) and are thus less basic than the ω -signatures in this paper, which can

be thought of as arising from the abelianisation of the knot group π1(S3 \K) → Z. While

our method refines Chen’s theorem, with a more elementary invariant, we cannot recover

Chen’s examples. These examples, as the original Casson-Gordon examples, are constructed

using the Stevedore’s knot. With rational coefficients the Stevedore’s knot shares a Seifert

matrix with 946 , which is doubly slice. This means Chen’s examples have hyperbolic Seifert

matrices over the rational numbers, and so for all ω ∈ S1 \ {1} the ω -signature of his knots

vanish.

Outline

The paper is organised as follows. In Section 2 we recall the signature defect invariants of

a 3-manifold with a map to BZ, associated with a cobounding 4-manifold. We equate the

signature defect invariant with ω -signatures. In Section 3 we use this to prove Theorem 1.1.

In Section 4 we establish the upper bounds for the examples listed in Theorem 1.2.
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2 Signature defects

Let R be either the ring C with the involution given by complex conjugation, or the ring

of finite complex Laurent polynomials C[Z] ∼= C[t, t−1] with involution given by
∑
akt

k 7→∑
akt
−k . An R-module will mean a left R-module unless otherwise stated, and will

denote the use of the involution to switch a left R-module to a right R-module or vice-

versa.

A CW pair of connected topological spaces (X,Y ) is over Z if X is equipped with a ho-

momorphism ϕ : π1(X)→ Z. We write (X,Y, ϕ) for these data, or (X,ϕ) if Y = ∅. Write

p : X̃ → X for the cover corresponding to ϕ and Ỹ = p−1(Y ) for the corresponding cover

of Y . Given a map of rings with involution α : C[Z]→ R, the ring R becomes an (R,C[Z])-

bimodule, and there are associated twisted homology and cohomology modules over R

Hr(X,Y ;α) := Hr(R⊗α C∗(X̃, Ỹ ;C)),

Hr(X,Y ;α) := Hr(HomC[Z](C∗(X̃, Ỹ ;C), R)).

Note we are abusing notation in suppressing the particular ϕ being used, but for all appli-

cations in this article the choice of ϕ will be understood, so this should cause no confusion.

Setting α to be the identity map Id: C[Z]→ C[Z] returns the ordinary complex coefficient

homology and complex coefficient cohomology with compact support of the cover (X̃, Ỹ ).

We denote these by Hr(X,Y ;C[Z]) and Hr(X,Y ;C[Z]) respectively.

For each ω ∈ S1 \ {1} there is a map of rings with involution

αω : C[t, t−1]→ C; αω(t) = ω.

The map αω induces a (C,C[Z])-bimodule structure on C and we will write Cω when we

wish to emphasise this structure is being used. We will write

Hr(X,Y ;Cω) := Hr(X,Y ;αω), Hr(X,Y ;Cω) := Hr(X,Y ;αω).

Now consider (X,ϕ) where X is a compact, oriented n-dimensional manifold with (possibly

empty) boundary. Let PD : Hn−k(X;Cω) → Hk(X, ∂X;Cω) denote the Poincaré duality

isomorphism. Define a map of complex vector spaces

λω(X) : Hk(X;Cω)→ Hk(X, ∂X;Cω)
PD−1

−−−−→ Hn−k(X;Cω)
ev−→ HomC(Hn−k(X;Cω),C),
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where ev denotes the evaluation map given by ev([f ])([z ⊗ x]) = z · f(x). The map λω(X)

determines a pairing

Hn−k(X;Cω)×Hk(X;Cω)→ C; (x, y) 7→ λω(X)(y)(x),

which is hermitian and sesquilinear but in general is degenerate. In particular, when n = 2k ,

we may take the signature of this complex hermitian pairing, denoted σ(λω(X)) ∈ Z.

Definition 2.1 For W a compact, oriented 4-manifold with (possibly empty) boundary,

over Z, the (middle dimensional) Cω -coefficient intersection form is the hermitian sesquilin-

ear form (H2(W ;Cω), λω(W )).

Definition 2.2 Let (M,ϕ) be a closed, connected, oriented 3-manifold over Z. A null-

bordism of (M,ϕ) is a pair (W,ψ) consisting of a compact, connected, oriented 4-manifold W

with boundary ∂W = M and a homomorphism ψ : π1(W )→ Z such that ψ|∂W = ϕ.

Given a null-bordism (W,ψ) of (M,ϕ), we define the ω -signature defect

σω(M) := σ(λω(W ))− σ(W ).

(We are abusing notation in suppressing the particular ϕ and ψ .)

Proposition 2.3 Given a closed, connected, oriented 3-manifold (M,ϕ) over Z, and any

ω ∈ S1 \ {1}, the ω -signature defect σω(M) is defined and well-defined, independent of the

choice (W,ψ).

Proof Because Ω3(BZ) = 0, there always exists a null-bordism (W,ψ) for (M,ϕ). The

proof that the resultant ω -signature defect is independent of the choice of (W,ψ) is a

well-known Novikov additivity argument, as we now outline. First, write i : H2(M ;Cω) →
H2(W ;Cω) for the inclusion induced map. The image of i lies in the kernel of λω(X) by

exactness of the long exact sequence of the pair (W,M). The restriction of λω(X) to the quo-

tient H2(W ;Cω)/i(H2(M ;Cω)) determines a nonsingular pairing [11, Proposition 5.3 (i)].

Thus the signature of λω(W ) and the signature of its restriction to H2(W ;Cω)/i(H2(M ;Cω))

agree. We now refer the reader to the proof of [11, Proposition 5.3 (ii)] for the completion

of the argument.

Example 2.4 The main example we are interested in is the closed, oriented 3-manifold

MK obtained by 0-framed Dehn surgery on S3 along an oriented knot K . The orientation

on the knot determines a natural map ϕK : π1(MK)→ Z via abelianisation.

The associated C[Z]-coefficient homology H∗(MK ;C[Z]) is torsion; that is there exists a

Laurent polynomial p ∈ C[Z] such that p ·H∗(MK ;C[Z]) = 0.

Example 2.5 Let G ⊂ D4 be a properly embedded, connected genus g surface with one

boundary component, homeomorphic to Σg \D2 =: Σg,1 . Let νG be an open tubular

neighbourhood extending an open tubular neighbourhood of the boundary knot K ⊂ S3 .
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Let Hg denote the 3-dimensional handlebody of genus g and let Σg be its boundary. By

choosing a disc D2 ⊂ ∂Hg , decompose the boundary of Hg × S1 as

∂(Hg × S1) = (Σg,1 × S1) ∪S1×S1 (D2 × S1).

Glue the exterior of G to Hg × S1 , along Σg,1 × S1 to form

W := (D4 \ νG) ∪G×S1 (Hg × S1),

a compact, connected, oriented 4-manifold with boundary MK , the 0-surgery on K . Mayer-

Vietoris calculations give

Hk(W ;Z) ∼=


Z k = 0,

Z k = 1, generated by a meridian of G,

Z2g k = 2,

0 otherwise.

In particular, the abelianisation of ϕ : π1(MK) → Z extends to ψ : π1(W ) → Z so that

(W,ψ) is a null-bordism of (MK , ϕ). Note that the homology is independent of the choice

of identification of G with Σg,1 ⊂ ∂Hg .

Lemma 2.6 Let K ⊂ S3 be an oriented knot and let MK be the 0-surgery manifold. For

any ω ∈ S1 \ {1} and there is equality

σω(MK) = σω(K).

Proof As the ω -signature is well-defined, independent of choice of null-bordism, it suffices

to find a single null-bordism of MK over Z such that the signature of the Cω -coefficient

intersection form agrees with σω(K). Perform the construction of Example 2.5 on a pushed

in Seifert surface F for K . In this case it is shown in shown by Ko [6, pp. 538-9] (see

also Cochran-Orr-Teichner [3, Lemma 5.4]) that in some basis the resultant Cω -coefficient

intersection form of WF has matrix (1 − ω)V + (1 − ω−1)V T , where V is a Seifert matrix

associated to F . Moreover the ordinary signature σ(WF ) = 0, so the defect satisfies

σω(MK) = σ(λω(WF ))− σ(WF ) = σω(K).

3 A lower bound on gds

Let K ⊂ S3 be an oriented knot, let G1, G2 ⊂ D4 be locally flat, connected, compact,

orientable, embedded surfaces with boundary K , such that S = G1 ∪K G2 is an unknotted

surface in S4 of genus g .

Perform the construction described in Example 2.5 on each of G1 and G2 to obtain W1 and

W2 respectively. Define

V := W1 ∪MK
−W2.

Observe that V = (S4 \ νS)∪Σg×S1 (Hg ×S1), where Hg denotes the 3-dimensional handle-

body of genus g and Σg = ∂Hg .
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A straightforward Seifert-Van Kampen argument shows that π1(V ) ∼= Z. Various Mayer-

Vietoris calculations give

Hk(V ;Z) ∼=


Z k = 0,

Z k = 1, generated by a meridian of Σg,

Z2g k = 2,

0 otherwise.

We now derive a series of technical lemmas we will use in the proof of Theorem 1.1

Lemma 3.1 Let T be a finitely generated, torsion C[Z]-module, and let ω ∈ S1 \ {1}.
Then dimC Tor

C[Z]
1 (T,Cω) = dimC(Cω ⊗C[Z] T ).

Proof By the structure theorem for finitely generated modules over a principal ideal do-

main, there exists an injective map A : P1 ↪→ P0 such that T ∼= P0/A(P1) and so that P1, P0

are free C[Z]-modules of the same rank. The functor Cω ⊗C[Z] − induces an exact sequence

Tor
C[Z]
1 (P0,Cω)→ Tor

C[Z]
1 (T,Cω)→ Cω ⊗C[Z] P1

Id⊗A−−−→ Cω ⊗C[Z] P0 → Cω ⊗C[Z] T → 0.

The leftmost term is 0 because P0 is free. As P1 and P0 have the same free rank, Cω⊗C[Z]P1

and Cω ⊗C[Z] P0 have the same complex dimension. The sequence has vanishing Euler

characteristic because it is exact, so the claimed result follows.

Lemma 3.2 For a space X over Z with H0(X;C[Z]) ∼= C, and for ω ∈ S1 \ {1} we have

H0(X;Cω) = 0 and H1(X;Cω) ∼= Cω ⊗C[Z] H1(X;C[Z]).

Proof First, C ∼= C[t, t−1]/(t − 1) as a C[Z]-module, so that Cω ⊗C[Z] C = 0 since

ω 6= 1. This immediately gives Cω ⊗C[Z] H0(X;C[Z]) = 0 and by Lemma 3.1 we also

have Tor
C[Z]
1 (H0(X;C[Z]),Cω) = 0. The result now follows from the Universal Coefficient

Theorem.

Lemma 3.3 With V = W1 ∪MK
−W2 as described above and ω ∈ S1 \ {1},

H1(V ;Cω) = 0, H3(V ;Cω) = 0, and dimCH2(V ;Cω) = 2g,

so that the Mayer-Vietoris sequence for V with Cω coefficients becomes

0→ H2(MK) −→ H2(W1)⊕H2(W2)→ C2g → H1(MK) −→ H1(W1)⊕H1(W2)→ 0.

Proof Consider that Cω ⊗C[Z] H1(V ;C[Z]) = 0 since π1(V ) ∼= Z implies H1(V ;C[Z]) = 0.

Since H0(V ;C[Z]) ∼= C and ω 6= 1, this combines with Lemma 3.2 to give H1(V ;Cω) = 0.

Next, we have H3(V ;Cω) ∼= H1(V ;Cω) by Poincaré duality. By the Universal Coefficient

Theorem for cohomology, H1(V ;Cω) ∼= Ext1
C[Z](H0(V ;C[Z]),Cω). The projective C[Z]-

module resolution

0→ C[Z]
f−→ C[Z]→ H0(V ;C[Z])→ 0,
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where f : p(t) 7→ (t− 1)p(t), can be used to compute

Ext1
C[Z](H0(V ;C[Z]),Cω) = coker(HomC[Z](C[Z],Cω)

f∗−→ HomC[Z](C[Z],Cω)).

But f∗(ϕ) = (ω − 1)ϕ, and ω 6= 1, so this module vanishes as required.

Using the integral homology of V , we compute the Euler characteristic χ(V ) = 2g . We

shall compute it again with Cω -coefficients in order to find the dimension of H2(V ;Cω). By

Lemma 3.2 we have H0(V ;Cω) = 0, so also H4(V ;Cω) = 0 by Poincaré duality and the

Universal Coefficient Theorem. Therefore Hi(V ;Cω) = 0 for i 6= 2, and we have

2g = χ(V ) = χCω(V ) = dimCH2(V ;Cω).

Lemma 3.4 For i = 1, 2 there is equality

dimC Im(H2(MK ;Cω)→ H2(Wi;Cω)) = dimCH2(MK ;Cω)− dimCH1(Wi;Cω).

Proof The map H1(MK ;Cω) → H1(Wi;Cω) is surjective by Lemma 3.3. This implies

H1(Wi,MK ;Cω) = 0, since H0(MK ;Cω) = 0 by Lemma 3.2. Therefore

H3(Wi;Cω) ∼= H1(Wi,MK ;Cω) ∼= H1(Wi,MK ;Cω) = 0

by Poincaré duality and the Universal Coefficient Theorem. For the same reasons, we have

H3(Wi,MK ;Cω) ∼= H1(Wi;Cω) ∼= H1(Wi;Cω).

Since H3(Wi;Cω) = 0, the long exact sequence of the pair (Wi,MK) takes the form

0→ H3(Wi,MK ;Cω)→ H2(MK ;Cω)→ H2(Wi;Cω)→ · · · .

We deduce that

dimC Im(H2(MK ;Cω)→ H2(Wi;Cω)) = dimCH2(MK ;Cω)− dimCH3(Wi,MK ;Cω)

= dimCH2(MK ;Cω)− dimCH1(Wi;Cω).

as desired.

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1 Fix ω ∈ S1 \{1} and let W1 , W2 be as above. Define for i = 1, 2,

β := dimCH2(MK ;Cω),

ni := dimC(Cω ⊗C[Z] H2(Wi;C[Z])),

mi := dimC Tor
C[Z]
1 (H1(Wi;C[Z]),Cω).

By the Universal Coefficient Theorem

ni +mi = dimCH2(Wi;Cω) and β = dimC Tor
C[Z]
1 (H1(MK ;C[Z]),Cω),

where the latter equality also uses the fact that H2(MK ;C[Z]) = 0.



A lower bound for the doubly slice genus from signatures 9

The module H1(MK ;C[Z]) is C[Z]-torsion. As H1(V ;C[Z]) = 0, the map H1(MK ;C[Z])→
H1(W1;C[Z])⊕H1(W2;C[Z]) in the Mayer-Vietoris sequence is surjective. Hence H1(Wi;C[Z])

is torsion for i = 1, 2. By Lemma 3.1 we deduce

β = dimC(Cω ⊗C[Z] H1(MK ;C[Z])),

mi = dimC(Cω ⊗C[Z] H1(Wi;C[Z])).

For each of the spaces X = MK ,W1,W2 , Lemma 3.2 implies Cω ⊗C[Z] H1(X;C[Z]) ∼=
H1(X;Cω) so that we furthermore obtain

β = dimCH1(MK ;Cω),

mi = dimCH1(Wi;Cω).

By Lemma 2.6 we have |σω(K)| ≤ dimCH2(Wi;Cω). However, recall that the image of

H2(MK ;Cω)→ H2(Wi;Cω) lies in the kernel of λω(Wi), so that moreover

|σω(K)| ≤ dimCH2(Wi;Cω)− dimC Im(H2(MK ;Cω)→ H2(Wi;Cω))

= dimCH2(Wi;Cω)−
(

dimCH2(MK ;Cω)− dimCH1(Wi;Cω)
)

= (ni +mi)− (β −mi)

= ni + 2mi − β,

where in the second line we have used Lemma 3.4. Taking the sum for i = 1, 2 we obtain:

2|σω(K)| ≤ n1 + n2 + 2m1 + 2m2 − 2β. (∗)

We saw in Lemma 3.3 that H1(MK ;Cω)→ H1(W1;Cω)⊕H1(W2;Cω) is surjective, so that

m1 +m2 ≤ β.

It follows that 2m1 + 2m2 − 2β ≤ 0, so combining this with (∗) we have

2|σω(K)| ≤ n1 + n2 + 2m1 + 2m2 − 2β ≤ n1 + n2. (†)

Finally, we calculate the Euler characteristic for the section of the Mayer-Vietoris sequence

of V = W1 ∪MK
−W2 obtained in Lemma 3.3 as

0 = β − (n1 +m1 + n2 +m2) + 2g − β + (m1 +m2),

so that 2g = n1 + n2 . Substituting into (†) yields 2|σω(K)| ≤ 2g and hence |σω(K)| ≤ g .

Since this is true for all ω ∈ S1 \{1} and all pairs of slice surfaces that glue to be unknotted,

the claimed result follows.

4 Examples of band moves

A ribbon surface for a knot K ⊂ S3 is a smoothly embedded surface Σ ⊂ D4 with ∂Σ = K ,

such that the radial function D4 → [0, 1] restricts to a Morse function on Σ whose critical

points are of index either 0 or 1.
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Definition 4.1 The ribbon surface band number b(K) of a knot K is the minimal number

of index 1 critical points, among all ribbon surfaces Σ for K .

The following proposition, combined with Theorem 1.3 of McDonald, gives the promised

upper bounds on gds that complete the proof of Theorem 1.2.

Proposition 4.2 The ribbon surface band number b(J) = 1 for each of the knots

J ∈ {820, 1087, 10140, 11a28, 11a58, 11a165, 12a189, 12a377, 12a979, 12n56,

12n57, 12n62, 12n66, 12n87, 12n106, 12n288, 12n501, 12n504, 12n582, 12n670, 12n721}.

Proof It suffices to exhibit a single band move on J that produces a 2-component unlink.

The required band moves are shown in the diagrams of Figure 1 and Figure 2.
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Figure 1: Band moves for the proof of Proposition 4.2.
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Figure 2: More band moves for the proof of Proposition 4.2.
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