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Abstract We show that the following unlinking strategy does not always yield an optimal
sequence of crossing changes: first split the link with the minimal number of crossing changes,
and then unknot the resulting components.

Keywords Link · Crossing change · Unlinking number · Splitting number

Mathematics Subject Classification 57M25 · 57M27

The unlinking number u(L) of a link L in S3 is the minimal number of crossing changes
required to turn a diagram of L into a diagram of the unlink. Here we take the minimum over
all diagrams of L . Similarly, the splitting number sp(L) is the minimal number of crossing
changes required to turn a diagram of L into a diagram of a split link. Once again the minimum
is taken over all diagrams of L .1 Here recall that an m-component link L is split if there are
m disjoint balls in S3, each of which contains a component of L .

The detailed study of unlinking numbers and splitting numbers of links was initiated by
Kohn [9,10] in the early 1990s, and was continued by several other researchers, see e.g.
[1,2,5,7,8,12]. See also [3,13] for some early work. Somewhat to our surprise, these are still
relatively unstudied topics, and many basic questions remain unanswered.

1 This definition was first introduced by Adams [1]. Unfortunately the term ‘splitting number’ was used with
a slightly different meaning in [2,4,5].
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Fig. 1 The link L from the proof of Theorem 2

In our investigations we wondered whether the computation of unlinking numbers can be
separated into the two problems of splitting links and unknotting of knots. More precisely,
the following question arose.

Question 1 Is the following always the most efficient strategy for unlinking? First split the
link with the minimal number of crossing changes, and then unknot the resulting knots.

In this short note we will give a negative answer to the above question. More precisely,
we have the following theorem.

Theorem 2 The link (L) in Fig. 1 has the property that any sequence of crossing changes for
which the initial sp(L) crossing changes turn L into a split link S, and where the remaining
crossing changes unknot the components of S, has length greater than u(L).

The remainder of this note comprises the demonstration of this theorem. First we check
that the link is not already split.

Lemma 3 The sublinks L1 ∪ L2 and L1 ∪ L3 of L are not split links. In particular L is not
a split link.

Before we provide the proof of Lemma 3 we introduce one more definition. Given knots
K1, . . . , Km we denote the split link whose components are K1, . . . , Km by K1 � · · · � Km .

Proof First we claim that if J is a 2-component split link J1�J2, then any band sum of its com-
ponents to form a knot K will have determinant satisfying det(K )·n2 = ± det(J1) det(J2)·�2,
for some nonzero integers n, � ∈ Z \ {0}. To see this claim, note that by [11], a knot arising
from any band sum of a 2-component split link is concordant to the connected sum of the
components. Since det(K ) = �K (−1), where �K is the Alexander polynomial of K , the
Fox-Milnor [6] condition on Alexander polynomials of concordant knots2 implies, by substi-
tuting t = −1, that det(K ) ·n2 = ± det(J1#J2) ·�2 for some nonzero integers n, � ∈ Z\ {0}.
Then the identity det(J1#J2) = ± det(J1) det(J2) completes the proof of the claim.

Now we use the claim to prove that L1 ∪ L2 is not split. The proof for L1 ∪ L3 is identical
since the two sublinks are isotopic: L1 ∪ L2 ∼= L1 ∪ L3. In our case, J1 = L1 is the unknot
and J2 = L2 is a trefoil. Thus det(J1) det(J2) = �31(−1) = (t2 − t + 1)|t=−1 = 3, since
the determinant of the unknot is one.

2 If K and J are concordant then there are Laurent polynomials with integral coefficients f and g with
f (1) = ±1 and g(1) = ±1 such that �K (t) f (t) f (t−1)

.= �J (t)g(t)g(t−1). Working modulo 2, we see that
the conditions on f and g imply that f (−1) �= 0 �= g(−1).
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Apply the Seifert algorithm to the diagram of the knot L2 to obtain a genus one Seifert
surface. There is a genus one Seifert surface for the knot L1, disjoint from the Seifert surface
for L2, consisting of a long untwisted band and a +1 twisted ‘bridge’ at the clasp. Add a
band between the two which misses both Seifert surfaces. This produces a knot K . From the
boundary connect sum of the two Seifert surfaces, using the band, we obtain a Seifert surface
for K . We compute a Seifert matrix for K to be:

V =

⎛
⎜⎜⎝

0 0 1 0
1 1 0 0
1 0 −1 0
0 0 1 −1

⎞
⎟⎟⎠ .

From this we see that det(K ) = det(V + V T ) = 13. There do not exist any nonzero integers
n, � such that 13 · n2 = ±3 · �2, by the uniqueness of prime factorisations, in which the
parities of the exponents of 3 and 13 will never be equal. We deduce that L1 ∪ L2 cannot be
a split link, as desired. ��

Now we use Lemma 3 to prove that the link L of Fig. 1 indeed has the properties claimed
in Theorem 2.

Proof of Theorem 2 The component labelled L1 is an unknot, while the components L2 and
L3 are trefoils. Observe that a single crossing change on L1, undoing the clasp, yields a split
link L1 � L2 � L3. Therefore, since the splitting number is nonzero by Lemma 3, the splitting
number of L is one: sp(L) = 1.

Since the unknotting number of the trefoil is one, we require at least one (L2, L2) crossing
change and at least one (L3, L3) crossing change to turn L into the unlink. Therefore the
unlinking number of L is at least two. Observe that the unlinking number is exactly two,
since we may undo the clasps of L2 and of L3 and thus obtain the unlink: u(L) = 2.

We need to see that any unlinking sequence which begins by splitting the link with a single
crossing change must include at least two further crossing changes, making a total of three
changes. For then splitting before unknotting will be less efficient than an optimal crossing
change sequence for unlinking.

We claim that splitting L with one crossing change is only possible with an (L1, L1)

crossing change. To see the claim, first note that a single crossing change between different
components changes the corresponding pairwise linking number, which is originally zero.
Links with nonzero linking number cannot be split. Therefore we need to consider a single
(L2, L2) change and a single (L3, L3) change. However an (L2, L2) crossing change does
not alter the link type of L1 ∪ L3, which by Lemma 3 is not split. Similarly an (L3, L3)

crossing change does not alter the link type of L1 ∪ L2, which again by Lemma 3 is not split.
The only remaining case is that of an (L1, L1) change, which proves the claim.

However any (L1, L1) crossing change does not alter the knot type of L2, nor that of L3.
Any split link resulting from one crossing change on L is the split union of two trefoils and
another knot (almost certainly the unknot, but we do not need this nor do we claim it.) The
two trefoils require one further crossing change each to unknot them. This completes the
proof of Theorem 2. ��

We conclude this paper with the following question.

Question 4 Is there an example where all the components begin as unknots?

Note that even when all the components of a link are unknots, the optimal splitting can
still necessarily produce knots [1,4].
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