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 AN'uA OF MATHEMATICS

 Vo1. 49, No. 4, October, 1948

 SOME WILD CELLS AND SPHERES IN

 THREE-DIMENSIONAL SPACE

 BY RALPH H. Fox AND EMIL ARTIN

 (Received April 1, 1948)

 A curved polyhedron' in spherical n-dimensional space Sn will be said to be
 tamely imbedded if there is a homeomorphism of S' on itself which transforms the
 imbedded polyhedron into a Euclidean polyhedron'; if no such homeomorphism
 exists we shall say that the polyhedron is wildly imbedded. It is a corollary of
 classical results in plane topology that every curved polyhedron in 2-dimensional
 space is tamely imbedded. On the other hand it was shown by Antoine2 that
 there are wild imbeddings in 3-dimensional space. A well-known example of
 this is the Alexander "horned sphere".3

 In all the known examples the wildness of the imbedding hinges on considera-
 tion of the fundamental group of the complement. We present here a series of
 examples, some of which may be regarded as simplifications of classical examples

 and some of which are such that their wildness can not be deduced from the
 fundamental group of the complement.

 Our basic examples are wild arcs. For them the projection method of knot
 theory is available, and this allows descriptions of greater precision than had
 previously been possible.

 1. Simple arcs

 To describe our examples we begin with a right circular cylinder C, mark on
 one base A three collinear points r_, s_, t_, and on the other base A+ three
 collinear points r+, s+, t+ . We construct in C three non-intersecting oriented
 simple polygonal arcs, K- joining s to r-, Ko joining tL to s+, and K+ joining
 r+ to t+ . These three arcs, which are to have only their end-points in common
 with the boundary C of C, are to be arranged as indicated in figure 1. Denote

 the union of K-, Ko and K+ by K.
 Divide the ellipsoid of revolution whose equation is x2 + 4y2 + 4Z2 _ 4 into

 an infinite number of sections by the family of parallel planes x = (2 -21),
 m = 0,1, * . . For each positive integer n denote by Dn the section 2-22n ?
 x < 2 - 21-n, and for each non-positive integer n denote by Dn the section
 -2 + 2-n ? x ? -2 + 2's. The observer is to be so situated that the
 ellipsoid appears as in figure 2, with Dn to the left of Dn+. Denote by p and q
 the vertices (-2, 0, 0) and (2, 0, 0) respectively.

 I By a Euclidean polyhedron we mean a subset of S' which is the union of a finite collec-
 tion of convex cells. By a curved polyhedron we mean any subset of Sn which is homeo-
 morphic to a Euclidean polyhedron. Cf. P. ALEXANDROFF and H. HoPF, Topologie, Berlin

 (1935) Chapter III.

 2 L. ANTOINE, C.R., Acad. Sci. Paris 171 (1920), p. 661 and Journ. Math. pures appl. (8)
 4 (1921), pp. 221-325.

 3 J. W. ALEXANDER, Proc., Nat. acad. sci. 10 (1924) pp. 8-10.

 979
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 980 RALPH H. FOX AND EMIL ARTIN

 For each integer n choose an orientation-preserving4 homeomorphism f" of
 C upon Dn in such a way that

 (i) the base A_ is mapped upon the left face of Dn, the base A+ upon the
 right face;

 (ii) the three points fn(r+), fn(s+) fn(t+) lie, in ascending order, on a vertical
 line through the x-axis and coincide with the three points fn+i(r), fn+l(&),

 fn+1(t_) respectively;
 (iii) fn(K) has a regular normed projection in the xz-plane similar to the one

 indicated in figure 3.

 K.

 FIG. 1 FIG. 2

 FIG. 3

 We shall also have occasion to refer to an orientation-reversing homeomor-

 phism gn of C upon DA which has the following properties:
 (i) A is mapped upon the right face fn(A+) of Dn and A+ upon the left

 face fn(A-);

 (ii) gn(r+) = fn(r-), gn(s+) = fM(S-), gn(t+) = fn(t-);
 (iii) g.(K) has a regular normed projection in the xz-plane similar to the

 mirror image of figure 3.
 EXAMPLE 1.1. A simple arc in 3-space whose complement is not simply

 connected.5

 The simple arc X to be considered is the set p u U?n=_ofn(K) u q. Its projec-
 tion in the xz-plane is shown in figure 4.

 4 C and D. are supposed to be oriented similarly in figures I and 2.
 5 An example of this sort is implicit in Alexander, ibid., p. 12.
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 SOME WILD CELLS AND SPHERES 981

 The fundamental group ir(S - X) of the complement of X is6 the direct limit
 of the direct homomorphism sequence

 G, - G2 -+G3 )***

 where Gm denotes the fundamental group of the complement of X u U 1n1 , DnX
 and G. -* Gm+, denotes the injection homomorphism. Each group Gm is thus
 the group of a certain knotted graph. Hence, using a standard method of
 calculation,7 a set of generators and defining relations for Gm may be written
 down explicitly. We find that Gm is generated by elements a., b,, cn

 A.-I~~~~4

 FIG. 4

 (-m ? n < m) indicated in the usual way in figure 4, and that a set of defining
 relations is the following:

 b-ma-,1c-la = I, (relation about the "vertex" Un?_mDn),
 cm-iamib-L = 1, (relation about the "vertex" Un~mDn),

 an+1 = C n+lCnlCn+l

 -1
 bn = cr,+,ancnn+

 Cn+1 = b-lb,(-nm ? n < m - 1).

 The injection homomorphism Gm ) Gm+, maps each generator an, bn X Cn of
 Gm into the same-named generator of Gm+, . Hence8 r(S - X) is generated by

 6 Direct limit is defined for example in N. STEENROD, Am. Jour. of Math. 58 (1936), p.

 669. We are making use of the following easily proved theorem: Let Ml C AM2 C ..,
 suppose that Mm is open in U nl Mn and choose a base point in M,. Then w(M) is the limit
 group of the direct homomorphism sequence 7r(Al) - 7r(M2) * *, where the homomorphism
 7r (Mm) -- 7r(Mlnm,,) is the injection.

 7 See, for example, K. REIDEMEISTER, Knotentheorie, Berlin (1932), Chapter III, ?3,
 and J. H. C. WHITEHEAD, Fund. Math. 32 (1939), p. 151 and p. 156. Our convention is such
 that an element g is represented by a path linking the segment marked g in such a way that
 it penetrates the plane of projection from above on the left-hand side of the (oriented)
 segment.

 8 If G1 > G2 > is a direct homomorphism sequence and if rn is generated by elements
 Xml X * * X m1X, subject to defining relations Rlmi(xmi , * * * XmX^) = 1, ... , Rmlim (Xmi **
 Xm)Nm) = 1, then the limit group G is generated by all the elements xmj (m = 1, 2, * *; i = 1, **,

 Xm) subject to the defining relations Rmi = 1 (m = 1, 2, ... ; i = 1, **m) and xmji= m(xmj)
 (m =1,2,.. ;j=1,--- ,Xm).
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 982 RALPH H. FOX AND EMIL ARTIN

 elements an, bn X cn oo < n < oo ), represented by loops which represent the
 same-named elements of Gm, and a set of defining relations is the following:

 cnanb7n - 1,

 (1n) an+1 = Cn+lCnCn+l1 n < o)
 bn = Cin+lancn+l
 Cn+1 = b;lbn+lbn.

 K. K.0

 FiG. 5

 A....~ ~ ~ ~ ~~~~~A

 FIG. 6

 Upon eliminating an and bn we obtain the single set of relations

 (2n) Cn-lCnCn+l =CnCn+lCn-lCn (- oo < n < oo )

 in the generating set *--, c.., co, cl, . This group is non-trivial because
 it has the representation

 cn (1 2 3 4 5) for n odd

 -(1 4 2 3 5) for n even

 into the permutation group on five letters.
 EXAMPLE 1.1* Another simple arc whose complement is not simply connected.
 A modification of the previous example is obtained by replacing the three arcs

 Kf, Io, K+ by three arcs K*, Ko , K+ situated in C as shown in figure 5.
 Proceeding as before, we construct the simple arc X*-p u Un=_ fn(K*) u q,
 where K* = K* u K* u K. Its projection in the xz-plane is shown in figure 6.9

 9 This is just the chain stitch of knitting extended indefinitely in both directions. The
 later examples based on 1.1 could just as well have been based on 1.1*.
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 SOME WILD CELLS AND SPHERES 983

 The group r(S - X*) is generated by the elements an, b n (- 00 < n < 0o)
 indicated in figure 6. A set of defining relations is

 an+ianb-' = 1

 ( bn = Cn+lancn+lX

 (ln) - - it ~~~~~~Cn+1 = bnlbn+lbn X
 an+2= an+lCn+la+ * (-00 < n < 0o)

 V~~~~~~~~~~~~ 0
 ;~~~~~~~~~ I

 A.~ ~ .
 * I
 1 I

 FIG. 7

 Elimination of bn and Cn leads to the single set of relation,

 (2*) anan+lan+2 0o < n < oo)
 in the generating set a.-, al, a0, al, *.. This group is non-trivial because
 it has the representation

 an -(12345) forn=_O(mod3)

 (1 2 5 3 4) for n 1 (mod 3)

 -(1 2453) forn 2 (mod3)

 into the permutation group on five letters.
 In these two examples the wildness of the imbedding is a consequence of the

 non-triviality of the fundamental group of the complement. In fact the comple-
 ment of a tame arc is necessarily an open 3-cell. However, even if the comple-
 ment of a wild arc is simply connected it need not be an open 3-cell. The next
 two examples show that such a simply-connected complement of a wild arc
 may or may not be an open 3-cell.

 EXAMPLE 1.2. A simple arc in 3-space whose imbedding is wild even though its
 complement is an open 3-cell.

 This simple arc, which will be denoted by Y, is the set fo(Ko) u fo(K+) u
 U'nmifn(K) u q. Its projection in the xz-plane is shown in figure 7.

 To show that its exterior is an open 3-cell we construct in C non-intersecting
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 984 RALPH H. FOX AND EMIL ARTIN

 closed tubular neighborhoods U_ of K_, Uo of Ko, and U+ of K+ in such a way
 that Un C = S_ uR_, Uo n C = Tu S+, U+ n C = R+ u T+, where
 R__ S__ T__ R+, S+, T+ are closed 2-cells on A_ u A+ containing respectively
 the points r_, s__ t_, r+, s+, t+ in their interiors. Denote U_ u Uo u U+
 by U. We may suppose that fn(R+) = fn+1(R-) = gn(R), fn(S+) = fn+1(S-) =
 gn(S-)fn(T-+) =f,+,(T-) = gM(T-).

 It is easy to see that Un=- fn(U) u q is a 3-cell and that there is a homeo-
 morphism sp of Un=1 fn(U) u q upon the 3-cell x2 + y2 + z2 < 1 which transforms
 q into the point (1, O, O) and Y into the segment O < x < 1,y = z = O. Now
 the 3-cell x2 + y2 + Z2 ? 1 can be mapped continuously upon itself in such a way
 that the points of the boundary remain fixed, the segment s(Y) is mapped into
 the point p(q), and the mappingisahomeomorphism over {x2 + y2 + z2 < 11 -( (Y).
 Therefore 3-space can be mapped continuously upon itself in such a way that the

 points on the boundary and in the exterior of Un1 ffn(U) u q remain fixed,
 the mapping is a homeomorphism over the exterior of Y, and Y itself is mapped
 into q. Thus the exterior of Y is mapped homeomorphically upon the exterior
 of q, and this is an open 3-cell.

 To show that Y is wildly imbedded we first develop a necessary condition for
 an imbedding of an arc to be tame. The prototype of a tamely imbedded arc is
 the segment L = {O < x < 1, y = z = O} . Let { Vn} be a sequence of closed
 neighborhoods of the end-point o = (0, 0, 0) of L such that V1 D V2 D ... and
 nl,1 Vn = o. Choose in succession a positive number e such that the 3-cell
 Cf :x2 + y2 + Z2 < - is a subset of V1 and an index N such that VN is a subset of
 Cf. Also choose a point in VN - L to serve as the base point for the three
 fundamental groups 7r(VN - L), r(Cf6 - L), 7r(Vi - L). Since the injection of
 7r(VN -L) into 7r(Vi - L) is compounded of the injection of 7r(VN - L) into
 -(Cf L) and the injection of 7r(Cf - L) into 7r(Vi - L) and since 7r(Cf - L)
 is trivial it follows that the injection of 7r(VN -L) into 7r(Vi - L) is trivial.
 Thus we have the following theorem:

 If o is an end-point of a tamely imbedded arc L and { Vn} is any sequence of
 closed neighborhoods of o such that V1 D V2 D ... and nl , Vn = o then there
 must exist an index N such that the injection 7r(VN - L) -- 7r(Vi - L) is trivial.

 Let {Vn} be a sequence of closed neighborhoods of the end-point q of the
 simple arc Y such that V1 D V2 D ... and nl, Vn = q. Let us choose Vn
 in such a way that Vn is convex and intersects the ellipsoid x2 + 4y2 + 4z2 < 4
 in the set Un=lfn(C) u q. The group 7r(VN - Y) is generated by the elements
 CN, CN+1,2 ... indicated in figure 7 subject to the defining relations (2n),
 N < n < oo. The base point for 7r(VN - Y) is to be chosen in VN -Y in the
 same general position with respect to Y as the original observer. Any element

 Cn(n > N) of Ir(VN - Y) is mapped by injection into the element cn of wr(Vi - Y).
 Hence if this injection were trivial the element cn of 7r(V1 - Y) w\Tould be trivial.
 However, the group 7r(Vi - Y) has the representation

 Cn (1 2 3 4 5) for n odd

 -*(1 4 2 3 5) for n even
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 SOME WILD CELLS AND SPHERES 985

 into the permutation group on five letters, in which no element cn is represented
 by the identity permutation. Therefore, according to the criterion developed
 above, the simple arc Y is wildly imbedded.

 We conjecture that every sufficiently small neighborhood of q which is homeo-
 morphic to a 3-cell is such that its boundary 2-sphere has an intersection with Y
 which consists of at least three components. A further conjecture is that the

 intersection of the complement of Y with any sufficiently small neighborhood of
 q has a non-trivial 1-dimensional homology group.

 We note however that Y is the intersection of a monotone decreasing sequence

 of tamely imbedded 3-cell neighborhoods of Y. Clearly every tamely imbedded
 arc has this property; however the simple arc X of 1.1 obviously does not.

 EXAMPLE 1.3. A simple arc in 3-space whose complement is simply connected

 but is not an open 3-cell.10

 0cslet*

 FIG. 8

 The simple arc Z now to be considered is the set

 p u Un=L00 gn(K) u go(K+) u go(Ko) u fi(Ko) u fi(K+) u Un=2fn(K) u q.
 The set go(K) u f1(K-) is a simple closed polygonal curve W disjoint to Z.
 Thus p u UOn. gn(K) u Un1 fn(K) u q consists of the simple arc Z and the
 simple closed curve W. The projection of Z and W in the xz-plane is shown in
 figure 8.

 That Z is wildly imbedded is clear from the previous examples. Although
 it is clear geometrically that the complement of Z is simply connected, this fact
 will be given a precise proof below. To show that the complement of Z is not

 an open 3-cell we shall require an analysis of the fundamental group
 7r(S - W u Z) of the complement of W u Z. This group is generated by the

 elements an X bnX cnX (n _ 0) and elements an, Oen , Yn(n _ 0) which are repre-
 sented by loops which are symmetric with respect to the plane x = 0 to loops

 representative of an, bn c, . A set of defining relations, read from figure 8 is the
 following:

 cnanb-1 = 1, nn n= (n 1 0)
 -1n~l = C ~ l n~n l ?t~ l = P n~^-1

 a,,= Cn+lCnCn+l, a1n? = 'Yn+1'YnYn?1,

 10 A closed subset of S3 whose complement is simply connected but is not an open 3-cell
 was constructed by M. H. A. NEWMAN and J. H. C. WHITEHEAD, Quart. Journal of Math.
 8 (1937), p. 14. In their example the closed set is rather pathological (it is not even locally
 connected).
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 986 RALPH H. FOX AND EMIL ARTIN

 bn = cn+ianCn+l On = 'Yn+11anYnl X

 cn+1 = blbn+ibn X z'n+1 = Itwl 1n+10n

 ao =ao bo = 30 co = yo.

 Elimination of an, an(n > 1) and bn X S(n ? 0) leads to the set of defining
 relations

 CnlCnCn+l = Cncn+lcn-lCn X

 (n ? 1)

 (3), 7Yn-lYn~n+l = Yn1'n+lYn-lYnX
 aoc, = cicoao, a0o7i = yiyYoaO,

 ao = to X CO = Yo0

 in the generating set ao, ao, co, I yo c, oyi, . This group has the repre-
 sentation

 Cn >(1 2 3 4 5) for n odd

 (1 4 2 3 5) for n even

 y-n >(1 2 3 4 5) for n odd
 (1 4 2 3 5) for n even

 arm (2 3)(4 5)

 ao (2 3)(4 5)

 in the permutation group on five letters. From (3) we see that the commutator
 quotient group of 7r(S - W u Z) is the abelian group generated by ace, ao, co,
 70, cl, 71, ... subject to the relations ao = ao, cn = 1, 'Yn = I(n > 0). Since
 we have represented cn non-trivially in the permutation group on five letters it
 follows that 7r(S - W u Z) is a non-abelian group.

 We note that the simple connectivity of the complement of Z can now be
 proved precisely. In fact the fundamental group of the complement of Z is
 obtained from 7r(S - W u Z) by adjoining the relation ao = 1. It follows from
 (3) that, as a consequence of this adjunction, ao = ao = 1 and c" =n = 1 (n > 0).
 Thus 7r(S - Z) is a trivial group.

 We now prove that the complement of Z is not an open 3-cell.
 Any compact subset of an open 3-cell is contained in a closed 3-cell whose

 complement is simply connected. Hence we need only prove that
 W is contained in no 3-cell subset J of S - Z whose complement in S - Z
 is simply connected.

 Suppose then that we had such a 3-cell J. Choose the base point for funda-
 mental groups in the complement of J u Z and so close to the point f1(L) (cf.
 Fig. 1) that there is a loop in S - J u Z which represents the element co = yo
 of 7r(S - W u Z). Since S - J u Z is simply connected this loop can be
 shrunk to the base point in the complement of J u Z and hence in the complement
 of W u Z. This is impossible as we have seen that the element co of 7r(S - W u Z)
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 SOME WILD CELLS AND SPHERES 987

 is not trivial. Since no such 3-cell J can be found S - Z cannot be an open

 3-cell.

 We may clarify the structure of the open 3-dimensional manifold S - Z by

 noting that any point in the complement of Z is contained in the interior of a

 3-cell disjoint to Z whose complement in S - Z is simply connected. Hence

 the remarkable property of W, proved above, may be restated as follows:
 There is a simple closed curve W in the open 3-dimensional manifold S - Z

 which is such that no homeomorphism of S - Z upon itself can transform W into a

 sufficiently small neighborhood of any point.

 It seems to us that the existence or non-existence of a closed simply connected
 3-dimensional manifold with this property would be a decisive point for the
 settling of the Poincare conjecture.

 K

 FIG. 9

 Since S - Z is an open subset of S it is locally connected in dimensions 1, 2
 and 3 and hence is an absolute neighborhood retract. Since S - Z is furthermore
 simply connected and acyclic in dimensions 1, 2 and 3 it follows that S - Z is
 contractible."

 Another way to prove that S - Z is not an open 3-cell is to prove that the

 hyperspace 2 of the decomposition of S into the closed set Z and the individual
 points of S - Z is not a 3-sphere. This can be made to follow from the non-
 abelian character of 7r(S - T u Z).

 EXAMPLE 1.4. A wildly imbedded arc which is the union of two tamely imbedded
 12

 arcs.

 Denote by K* and K' two arcs situated in C as shown in figure 9, joining L.
 to tr and r+ to r- respectively. The two arcs H = U=1 fn (K*) u q and
 Hb= Unlf,(K') u q intersect in their common end-point q. Their union is
 the simple arc H- = H' u H'. The projection of these three arcs on the
 xz-plane is shown in figure 10. From the fact that this projection of the arc H'

 11 A proof of this theorem will be found in the forthcoming book Topology of Deforma-
 tions by W. HUREWICZ and J. DUGUNDJI.

 12 An example which is virtually equivalent to 1.4 is furnished by a simple arc in which

 an infinite sequence of knots have been tied in such a way that they converge to a mid-
 point of the arc (cf. SEIFERT and THRELFALL, Lehrbuch der Topologie, p. 224, fig. 113).
 R. L. WILDER has considered such an example a number of times in lectures and has used
 it (Trans., Am. Math. Soc. 32 (1930), p. 634 footnotet) to disprove several conjectures of
 R. L. MOORE (Bull., Am. Math. Soc. 29 (1923), p. 302). It is easy to show that the arc
 would be tame if the sequence of knots converged to an end-point instead of a mid-point
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 988 RALPH H. FOX AND EMIL ARTIN

 has no double points it follows easily that it is tamely imbedded. Similarly the
 simple arc Hi is seen to be tamely imbedded.

 The point q is an interior point of the arc H. Proceeding as in 1.2 it is easy to
 prove the following theorem:

 If o is an interior point of a tamely imbedded arc L and Vn } is any sequence
 of closed neighborhoods of o such that V1 D V2 D ... and fl1 Vn = o then there
 must exist an index N such that the injection 7r(VN - L) -- 7r(V -L) has an
 abelian image group.

 As before choose { VnJ, a sequence of closed neighborhoods of q to satisfy
 V1 D V2 D ... and fl1 Vn = q and such that Vn is convex and intersects
 the ellipsoid X2 + 4y2 4Z2 ? 4 in the set U'n1 fn(C) u q. The group ir(VN- H#)

 FIG. 10 FIG. 11

 is generated by the elements a2N-l, a2NX ... indicated in figure 10 with the
 defining relations

 (4N) anan+1an = an+lanan+l (2N - 1 < n < oo).

 Any element an of 7r(VN - H#) is mapped by injection into the element
 a. of 7r(Vi - Hf ). Hence if the image of this injection were abelian the elements
 a2N4l, a2N, ... would commute in 7r(VI - lit). But it would then follow from
 (41) that a2N- = a2N = * X X . This is not possible because the group 7r(VI - Hf)
 has the representation

 an (1 2) for n odd

 (1 3) for n even

 into the permutation group on three letters. Thus the simple arc H# must be
 wildly imbedded.

 2. Simple Closed Curves.

 The two wildly imbedded simple closed curves considered in this section have a
 certain significance in connection with the (still unproved) Dehn's lemma.

 EXAMPLE 2.1. A simple closed curve which bounds a 2-cell although the funda-
 mental group of its complement is non-abelian.'3

 13 An example of this sort was constructed by ALEXANDER, IOc. cit., p. 12.
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 SOME WILD CELLS AND SPHERES 989

 Construct in the cylinder C three arcs K', Ko , K+ on the boundaries of
 U', Uo, U4 respectively, and parallel to and oppositely oriented to the three
 arcs K_ Ko, and K+ respectively. We may suppose that the end-points,
 rk and s' of K', s+ and tL' of K Xand t4 and r+ of K+ are so placed that
 fn(4+) = fn~l~r_ = gn(r-), f.(s4) = f.+1(sZ) = g(s_), f,(4) = fn+1(t1) = gn(tL)
 and the projection of K u K', where K' = K!' u So u K+ Xis as shown in figure
 11. Clearly X pi X', where X' = p u USA. ofn(K') u q, is a simple closed
 curve. It is equally clear that X u X' is the boundary of a 2-cell in p u n- o
 fn(U) u q. The fundamental group of the complement of X u X' maps homo-
 morphically by injection onto the fundamental group of the complement of X
 and is therefore non-abelian.

 FIG. 12

 EXAMPLE 2.2. A simple closed curve whose imbedding is wild even though it
 bounds a 2-cell and the fundamental group of its complement is infinite cyclic.

 The simple closed curve to be considered is obtained from the arc

 fo(Ko) ufo(K+) u fn(K) u q u U1 fn(K') ufo(K+) ufo(K%)
 by joining the two end-points fo(tL) and fo(L) by a segment on fo(A-). It is
 clearly wildly imbedded and the boundary of a 2-cell. It is easy to calculate the
 fundamental group of its complement and check that it is infinite cyclic.

 A simple closed curve 2.3 with the same properties may be obtained by apply-
 ing the same process to example 1.3. We do not know whether the comple-
 mentary domain of either 2.2 or 2.3 is an open tubular manifold.
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 990 RALPH H. FOX AND EMIL ARTIN

 3. 2-spheres.

 EXAMPLE 3.1. A 2-sphere whose exterior is not simply connected.14

 Such a 2-sphere is the boundary X0 of the 3-cell p u U'--. f.(U) u q. It
 would be very simple to obtain from this a 2-sphere with both interior and
 exterior non-simply connected (cf. below).

 EXAMPLE 3.2. A 2-sphere which is wildly imbedded even though both comple-
 mentary domains are open 3-cells.

 Such a 2-sphere is the boundary Y0 of the 3-cell

 fo(Uo) u fo(U+) u Un 1fn(U) u q.

 The proofs in 1.2 apply with a few mild changes in the wording. This example
 shows that the 3-sphere S may be decomposed into a closed 3-cell and a comple-
 mentary open 3-cell in several essentially distinct ways.

 EXAMPLE 3.3. A 2-sphere whose exterior though simply connected is not an open
 3-cell.

 For this example we choose Z0, the boundary of the 3-cell

 p U UUnto- gn(U) U go(U+ U UO) U f1(Uo u U+) u U'n2fn(U) u q.

 Its exterior is homeomorphic to the complement of Z. From this example it is
 easy to construct a 2-sphere both of whose complementary domains are simply
 connected (and hence contractible) open manifolds not homeomorphic to an
 open 3-cell. Such a one is shown in figure 12.

 PRINCETON UNIVERSITY

 '4 Such a 2-sphere was constructed by ALEXANDER, 10C. cit., p. 11 and pp. 8-10. Our
 example, which is a much simpler one, has only two singular points while the Alexander
 examples have an infinity of singular points.
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