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Abstract. We study cosmetic crossings in knots of genus one and ob-
tain obstructions to such crossings in terms of knot invariants deter-
mined by Seifert matrices. In particular, we prove that for genus one
knots the Alexander polynomial and the homology of the double cover
branching over the knot provide obstructions to cosmetic crossings. As
an application we prove the nugatory crossing conjecture for twisted
Whitehead doubles of non-cable knots. We also verify the conjecture
for several families of pretzel knots and all genus one knots with up to
12 crossings.

1. Introduction

A fundamental open question in knot theory is the question of when a
crossing change on an oriented knot changes the isotopy class of the knot.
A crossing disc for an oriented knot K ⊂ S3 is an embedded disc D ⊂ S3

such that K intersects int(D) twice with zero algebraic intersection number.
A crossing change on K can be achieved by twisting D or equivalently by
performing appropriate Dehn surgery of S3 along the crossing circle ∂D.
The crossing is called nugatory if and only if ∂D bounds an embedded disc
in the complement of K. A non-nugatory crossing on a knot K is called
cosmetic if the oriented knot K ′ obtained from K by changing the crossing
is isotopic to K. Clearly, changing a nugatory crossing does not change the
isotopy class of a knot. The nugatory crossing conjecture (Problem 1.58 of
Kirby’s list [Kir97]) asserts that the converse is true: if a crossing change
on a knot K yields a knot isotopic to K then the crossing is nugatory. In
other words, there are not any knots in S3 that admit cosmetic crossings.

In the case that K is the trivial knot an affirmative answer follows from
a result of Gabai [Gab87] and work of Scharlemann and Thompson [ST89].
The conjecture is also known to hold for 2-bridge knots by work of Torisu
[Tor99], and for fibered knots by work of Kalfagianni [Kal11]. For knots
of braid index three a weaker form of the conjecture, requiring that the
crossing change happens on a closed 3-braid diagram, is discussed by Wiley
in [Wil08].
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In this paper we study cosmetic crossings on genus one knots and we
show that the Alexander polynomial and the homology of the double cover
branching over the knot provide obstructions to cosmetic crossings.

Theorem 1.1. Given an oriented genus one knot K let ∆K(t) denote the
Alexander polynomial of K and let YK denote the double cover of S3 branch-
ing over K. Suppose that K admits a cosmetic crossing. Then

(1) K is algebraically slice. In particular, ∆K(t)
.
= f(t)f(t−1), where

f(t) ∈ Z[t] is a linear polynomial.
(2) The homology group H1(YK) := H1(YK ,Z) is a finite cyclic group.

For knots that admit unique (up to isotopy) minimal genus Seifert surfaces
we have the following stronger result.

Theorem 5.4. Let K be an oriented genus one knot with a unique minimal
genus Seifert surface, which admits a cosmetic crossing. Then ∆K(t)

.
= 1.

Given a knotK letD+(K,n) denote the n-twisted, positive-claspedWhite-
head double of K and let D−(K,n) denote the n-twisted, negative-clasped
Whitehead double of K. Theorems 1.1 and 5.4 can be used to prove
the nugatory crossing conjecture for several classes of Whitehead doubles.
For example, Theorem 5.4, combined with results of Lyon and Whitten
[Lyo74, Whi73], gives the following. (See Section 7 for more results in this
vein.)

Corollary 1.2. If K is a non-cable knot, then, for every n ̸= 0, D±(K,n)
admits no cosmetic crossings.

Combining Theorem 1.1 with a result of Trotter [Tro73], we prove the
nugatory crossing conjecture for all the genus one knots with up to twelve
crossings (Theorem 6.2) and for several families of pretzel knots (Corollary
7.2).

The paper is organized as follows: In Section 2 we use a result of Gabai
[Gab87] to prove that a cosmetic crossing change on a knotK can be realized
by twisting along an essential arc on a minimal genus Seifert surface of K
(Proposition 2.3). For genus one knots such an arc will be non-separating
on the surface. In subsequent sections this will be our starting point for
establishing connections between cosmetic crossings and knot invariants de-
termined by Seifert matrices.

Sections 3 and 4 are devoted to the proof of Theorem 1.1. The proof of
this theorem shows that the S-equivalence class of the Seifert matrix for a
genus one knot provides more refined obstructions to cosmetic crossings:

Corollary 1.3. Let K be a genus one knot. If K admits a cosmetic crossing,

then K has a Seifert matrix V of the form

(
a b

b+ 1 0

)
which is S–equivalent

to

(
a+ ϵ b
b+ 1 0

)
for some ϵ ∈ {−1, 1}.
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Figure 1. Left: a positive crossing. Right: a negative crossing.

In Section 5 we study the question of whether the S–equivalence class
of the Seifert matrix of a genus one knot contains enough information to
resolve the nugatory crossing conjecture (Question 5.2). Using Corollary
1.3 we prove Theorem 5.4 which implies the nugatory crossing conjecture
for genus one knots with non–trivial Alexander polynomial with a unique
minimal genus Seifert surface. We also construct examples showing that
Corollary 1.3 is not enough to prove the nugatory crossing conjecture for all
genus one knots with non–trivial Alexander polynomial (Proposition 5.5).

In Sections 6 and 7 we provide examples of knots for which Theorems 1.1
and 5.4 settle the nugatory crossing question. In Section 6 we combine The-
orem 1.1 and Corollary 1.3 with a result of Trotter to settle the conjecture
for all the 23 genus one knots with up to 12 crossings. The examples we
discuss in Section 7 are twisted Whitehead doubles and pretzel knots.

Throughout the paper we will discuss oriented knots in an oriented S3

and we work in the smooth category.

Acknowledgement. CB and EK thank Matt Hedden and Matt Rathbun
for helpful discussions. Part of this work completed while MP was a visitor
at WWU Münster, which he thanks for its hospitality.

2. Crossing changes and arcs on surfaces

Let K be an oriented knot in S3 and C be a crossing of sign ϵ, where ϵ = 1
or −1 according to whether C is a positive or negative crossing (see Figure
1). A crossing disc of K corresponding to C is an embedded disc D ⊂ S3

such that K intersects int(D) twice, once for each branch of C, with zero
algebraic intersection number. The boundary L = ∂D is called a crossing
circle. Performing (−ϵ)-surgery on L, changes K to another knot K

′ ⊂ S3

that is obtained from K by changing the crossing C.

Definition 2.1. A crossing supported on a crossing circle L of an oriented
knot K is called nugatory if L = ∂D also bounds an embedded disc in
the complement of K. This disc and D form an embedded 2-sphere that
decomposes K into a connected sum where some of the summands may
be trivial. A non-nugatory crossing on a knot K is called cosmetic if the
oriented knot K ′ obtained from K by changing C is isotopic to K; that is,
there exists an orientation-preserving diffeomorphism f : S3 −→ S3 with
f(K) = K ′. �
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Figure 2. The crossing arc α = S ∩D.

For a link J in S3 we will use η(J) to denote a regular neighborhood

of J in S3 and we will use MJ := S3rη(J) to denote the closure of the
complement of η(J) in S3.

Lemma 2.2. Let K be an oriented knot and L a crossing circle supporting
a crossing C of K. Suppose that MK∪L is reducible. Then C is nugatory.

Proof. An essential 2-sphere in MK∪L must separate η(K) and η(L). Thus
in S3, L lies in a 3-ball disjoint from K. Since L is unknotted, it bounds a
disc in the complement of K. �

Let K be an oriented knot and L = ∂D a crossing circle supporting a
crossing C. Let K ′ denote the knot obtained from K by changing C. Since
the linking number of L and K is zero, K bounds a Seifert surface in the
complement of L. Let S be a Seifert surface that is of minimal genus among
all such Seifert surfaces in the complement of L. Since S is incompressible,
after an isotopy we can arrange so that the closed components of S ∩D are
homotopically essential in DrK. But then each such component is parallel
to ∂D on D and by further modification we can arrange so that S ∩D is a
single arc α that is properly embedded on S as illustrated in Figure 2. The
surface S gives rise to Seifert surfaces S and S′ of K and K ′, respectively.

Proposition 2.3. Suppose that K is isotopic to K ′. Then S and S′ are
Seifert surfaces of minimal genus for K and K ′, respectively.

Proof. If the crossing is nugatory then L bounds a disc in the complement of
S and the conclusion is clear. Suppose the crossing is cosmetic; by Lemma
2.2, MK∪L is irreducible. We can consider the surface S properly embed-
ded in MK∪L so that it is disjoint from ∂η(L) ⊂ ∂M . The assumptions
on irreducibility of MK∪L and on the genus of S imply that the foliation
machinery of Gabai [Gab87] applies. In particular, S is taut in the Thurston
norm of MK∪L. The manifolds MK and MK′ are obtained by Dehn filling
of MK∪L along ∂η(L). By [Gab87, Corollary 2.4], S can fail to remain taut
in the Thurston norm (i.e. genus minimizing) in at most one of MK and
MK′ . Since we have assumed that C is a cosmetic crossing, MK and MK′

are homeomorphic (by an orientation-preserving homeomorphism). Thus S
remains taut in both of MK and MK′ . This implies that S and S′ are Seifert
surfaces of minimal genus for K and K ′, respectively. �
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By Proposition 2.3, a crossing change of a knot K that produces an iso-
topic knot corresponds to a properly embedded arc α on a minimal genus
Seifert surface S of K. We observe the following.

Lemma 2.4. If α is inessential on S, then the crossing is nugatory.

Proof. Recall that α is the intersection of a crossing disc D with S. Since
α is inessential, it separates S into two pieces, one of which is a disc E.
Consider D as properly embedded in a regular neighborhood η(S) of the
surface S. The boundary of a regular neighborhood of E in η(S) is a 2-
sphere that contains the crossing disc D. The complement of the interior of
D in that 2-sphere gives a disc bounded by the crossing circle L = ∂D with
its interior disjoint from the knot K = ∂S. �

3. Obstructing cosmetic crossings in genus one knots

A knot K is called algebraically slice if it admits a Seifert surface S such
that the Seifert form θ : H1(S)×H1(S) −→ Z vanishes on a half-dimensional
summand of H1(S); such a summand is called a metabolizer of H1(S). If S
has genus one, then the existence of a metabolizer for H1(S) is equivalent
to the existence of an essential oriented simple closed curve on S that has
zero self-linking number. If K is algebraically slice, then the Alexander
polynomial ∆K(t) is of the form ∆K(t)

.
= f(t)f(t−1), where f(t) ∈ Z[t] is

a linear polynomial with integer coefficients and
.
= denotes equality up to

multiplication by a unit in the ring of Laurent polynomials Z[t, t−1]. For
more details on these and other classical knot theory concepts we will use
in this and the next section, the reader is referred to [BZ03] or [Lic97].

Theorem 3.1. Let K be an oriented genus one knot. If K admits a cos-
metic crossing, then it is algebraically slice. In particular, there is a linear
polynomial f(t) ∈ Z[t] such that ∆K(t)

.
= f(t)f(t−1).

Proof. Let K ′ be a knot that is obtained from K by a cosmetic crossing
change C. By Proposition 2.3, there is a genus one Seifert surface S such
that a crossing disc supporting C intersects S in a properly embedded arc
α ⊂ S. Let S′ denote the result of S after the crossing change. Since C is
a cosmetic crossing, by Lemma 2.4, α is essential. Further, since the genus
of S is one, α is non-separating. We can find a simple closed curve a1 on
S that intersects α exactly once. Let a2 be another simple closed curve so
that a1 and a2 intersect exactly once and the homology classes of a1 and
a2 form a symplectic basis for H1(S) ∼= Z ⊕ Z. Note that {a1, a2} form a
corresponding basis of H1(S

′). See Figure 3.
The Seifert matrices of S and S′ with respect to these bases are

V =

(
a b
c d

)
and V′ =

(
a− ϵ b
c d

)
respectively, where a, b, c, d ∈ Z and ϵ = 1 or −1 according to whether C is
a positive or a negative crossing. The Alexander polynomials of K, K ′ are
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a1 a2

α

Figure 3. A genus one surface S with generators a1 and a2
of H1(S) and a non-separating arc α.

given by

∆K(t)
.
= det(V − tV T ) = ad(1− t)2 − (b− ct)(c− tb),

∆K′(t)
.
= (a− ϵ)d(1− t)2 − (b− ct)(c− tb).

Since K and K ′ are isotopic we must have ∆K(t)
.
= ∆K′(t) which easily

implies that d = lk(a2, a2) = 0. Hence K is algebraically slice and

∆K(t)
.
= (b− ct)(c− tb) = (−t)(b− ct)(b− ct−1)

.
= (b− ct)(b− ct−1).

Setting f(t) = b − ct we obtain ∆K(t)
.
= f(t)f(t−1) as desired. Note that

since |b− c| is the intersection number between a1 and a2, by suitable ori-
entation choices, we may assume that c = b+ 1. �

Recall that the determinant of a knotK is defined by det(K) = |∆K(−1)|.
As a corollary of Theorem 3.1 we have the following.

Corollary 3.2. Let K be a genus one knot. If det(K) is not a perfect square
then K admits no cosmetic crossings.

Proof. Suppose thatK admits a cosmetic crossing. By Theorem 3.1 ∆K(t)
.
=

f(t)f(t−1), where f(t) ∈ Z[t] is a linear polynomial. Thus, if K admits cos-
metic crossings we have det(K) = |∆K(−1)| = [f(−1)]2. �

4. Further obstructions: homology of double covers

In this section we derive further obstructions to cosmetic crossings in
terms of the homology of the double branched cover of the knot. More
specifically, we will prove the following.

Theorem 4.1. Let K be an oriented genus one knot and let YK denote the
double cover of S3 branching over K. If K admits a cosmetic crossing, then
the homology group H1(YK) is a finite cyclic group.

To prove Theorem 4.1 we need the following elementary lemma. (Here,
given m ∈ Z we denote by Zm = Z/mZ the cyclic abelian group of order
|m|.)
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Lemma 4.2. If H denotes the abelian group given by the presentation

H ∼=
⟨

c1, c2 2xc1 + (2y + 1)c2 = 0
(2y + 1)c1 = 0

⟩
,

then we have

(1) H ∼= 0, if y = 0 or y = −1.
(2) H ∼= Zd ⊕ Z (2y+1)2

d

, if y ̸= 0, −1 and gcd(2x, 2y + 1) = d where

1 ≤ d ≤ 2y + 1.

Proof. If y = 0 or y = −1, clearly we have H ∼= 0. Suppose now that y ̸=
0, −1 and gcd(2x, 2y+1) = d where 1 ≤ d ≤ 2y+1. Then there are integers
A and B such that 2x = dA, 2y+1 = dB, and gcd(A,B) = 1. Let α and β

be such that αA+ βB = 1. Since

(
dA dB
dB 0

)
is a presentation matrix of H

and

(
α β
−B A

)
is invertible over Z, we get that

(
α β
−B A

)(
dA dB
dB 0

)
=(

d dαB
0 −dB2

)
is also a presentation matrix for H. So

H ∼=
⟨

c1, c2 dc1 + dαBc2 = 0
dB2c2 = 0

⟩
Now letting c3 = c1 + αBc2, we have

H ∼=
⟨

c2, c3 dc3 = 0
dB2yc2 = 0

⟩
Hence H1(Y+) ∼= Zd ⊕ ZdB2 = Zd ⊕ Z (2y+1)2

d

. �

Proof of Theorem 4.1. Suppose that a genus one knot K admits a cosmetic
crossing yielding an isotopic knot K ′. The proof of Theorem 3.1 shows that
K and K ′ admit Seifert matrices of the form

(1) V =

(
a b

b+ 1 0

)
and V ′ =

(
a+ ϵ b
b+ 1 0

)
respectively, where a, b ∈ Z and ϵ = 1 or −1 according to whether C is a
negative or a positive crossing. In particular we have

(2) ∆K(t)
.
= ∆K′(t)

.
= b(b+ 1)(t2 + 1)− (b2 + (b+ 1)2).

Presentation matrices for H1(YK) and H1(YK′) are given by

(3) V + V T =

(
2a 2b+ 1

2b+ 1 0

)
and V ′ + (V ′)T =

(
2a+ 2ϵ 2b+ 1
2b+ 1 0

)
,

respectively. It follows that Lemma 4.2 applies to bothH1(YK) andH1(YK′).
By that lemma, H1(YK) is either cyclic or H1(YK) ∼= Zd ⊕ Z (2b+1)2

d

, with

b ̸= 0, −1 and gcd(2a, 2b+1) = d where 1 < d ≤ 2b+1. Similarly, H1(YK′) is
either cyclic or H1(Y

′
K) ∼= Zd′⊕Z (2b+1)2

d′
, with gcd(2a+2ϵ, 2b+1) = d′ where
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1 < d′ ≤ 2b+ 1. Since K and K ′ are isotopic, we have H1(YK) ∼= H1(YK′).
One can easily verify this can only happen in the case that gcd(2a, 2b+1) =
gcd(2a+ 2ϵ, 2b+ 1) = 1 in which case H1(YK) is cyclic. �

It is known that for an algebraically slice knot of genus one every minimal
genus surface S contains a metabolizer (compare [Liv04, Theorem 4.2]).
After completing the metabolizer to a basis of H1(S) we have a Seifert
matrix V as in (1) above.

Corollary 4.3. Let K be an oriented, algebraically slice knot of genus one.
Suppose that a genus one Seifert surface of K contains a metabolizer leading
to a Seifert matrix V as in (1) so that b ̸= 0,−1 and gcd(2a, 2b + 1) ̸= 1.
Then K cannot admit a cosmetic crossing.

Proof. Let d = gcd(2a, 2b + 1). As in the proof of Theorem 4.1, we use
Lemma 4.2 to conclude that H1(YK) ∼= Zd⊕Z (2b+1)2

d

and hence is non-cyclic

unless d = 1. Now the conclusion follows by Theorem 4.1. �

Theorems 3.1 and 4.1 and the proof of Theorem 4.1 immediately yield
Theorem 1.1 stated in the introduction.

5. S–equivalence of Seifert matrices

We begin by recalling the notion of S-equivalence.

Definition 5.1. We say that an integral square matrix V is a Seifert matrix
if det(V − V T ) = 1. We say that two Seifert matrices are S–equivalent if
they are related by a finite sequence of the following moves or their inverses:

(1) replacing V by PV P T , where P is an integral unimodular matrix,
(2) column expansion, where we replace an n× n Seifert matrix V with

an (n+ 2)× (n+ 2) matrix of the form:
0 0

V
...

...
0 0

u1 · · · un 0 0
0 · · · 0 1 0

 ,

where u1, . . . , un ∈ Z,
(3) a row expansion, which is defined analogously to the column expan-

sion, with the rôles of rows and columns reversed.

�

Note that W is a row expansion of V if and only if W T is a column
expansion of V T . In the following, given two Seifert matrices V and W we
write V ∼ W if they are S–equivalent, and we write V ≈ W if they are
congruent.

The proof of Theorem 3.1 immediately gives Corollary 1.3 stated in the
introduction. This in turn leads to the following question.
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Question 5.2. Let a, b and d be integers and ϵ ∈ {−1, 1}. Are the matrices(
a b

b+ 1 d

)
and

(
a+ ϵ b
b+ 1 d

)
S–equivalent?

Now we focus on Question 5.2. A first trivial observation is that if d = 0
and b = 0, then the two given matrices are congruent and, in particular,
S–equivalent. We therefore restrict ourselves to matrices with non–zero
determinant, or equivalently, to knots of genus one such that the Alexander
polynomial ∆K(t) = det(V − tV T ) is non–trivial.

5.1. Knots with a unique minimal genus Seifert surface. In this sub-
section we prove an auxiliary algebraic result about congruences of Seifert
matrices. As a first application of it we prove the nugatory crossing conjec-
ture for genus one knots with non–trivial Alexander polynomial and with a
minimal genus Seifert surface which, up to isotopy, is unique.

Proposition 5.3. Suppose that the matrices(
a b

b+ 1 0

)
and

(
c b

b+ 1 0

)
,

where a, b, c ∈ Z, are congruent over Z. Then there is an integer n such that
a+ n(2b+ 1) = c.

Before we proceed with the proof Proposition 5.3 we explain one of its
consequences. If K is a knot with, up to isotopy, a unique minimal genus
Seifert surface, then the Seifert matrix corresponding to that surface only
depends on the choice of basis for the first homology. Put differently, the
integral congruence class of the Seifert matrix corresponding to the unique
minimal genus Seifert surface is an invariant of the knot K. Assuming
Proposition 5.3, we have the following theorem.

Theorem 5.4. Let K be an oriented genus one knot with a unique minimal
genus Seifert surface, which admits a cosmetic crossing. Then ∆K(t)

.
= 1.

Proof. Let K be a genus one knot with a unique minimal genus Seifert
surface, which admits a cosmetic crossing. It follows from Corollary 1.3 and
from the discussion preceding the statement of this theorem that K admits

a Seifert matrix

(
a b

b+ 1 0

)
which is S–equivalent to

(
a+ ϵ b
b+ 1 0

)
for some

ϵ ∈ {−1, 1}. For b ̸= 0, Proposition 5.3 precludes such congruences from
being possible. If b = 0, then the Alexander polynomial is 1. �

We now proceed with the proof of Proposition 5.3.

Proof of Proposition 5.3. To begin, we suppose that an integral unimodular
congruence exists as hypothesized. That is, suppose that there exist integers
x, y, z, t such that(

x y
z t

)(
a b

b+ 1 0

)(
x z
y t

)
=

(
c b

b+ 1 0

)
.
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The left hand side multiplies out to give

(4)

(
x2a+ xy(2b+ 1) xza+ yz(b+ 1) + xtb

xza+ xt(b+ 1) + zyb z2a+ zt(2b+ 1)

)
.

Solving the bottom right entry equal to zero implies that either z = 0, or
(for a ̸= 0) z = −t(2b+ 1)/a. We required that z was an integer, so it must
also be the case that t is such that a divides t(2b+1), but we shall not need
this. In the case that a = 0 and z ̸= 0, we then have t = 0.

First, if z = 0, then (4) becomes(
x2a+ (2b+ 1)xy xtb

xt(b+ 1) 0

)
.

We require that x = t = 1 or x = t = −1 for the top right and bottom left
entries to be correct. But then setting n = xy proves the proposition in this
case.

Next, suppose z ̸= 0 and a = 0. Then t = 0, and (4) becomes(
(2b+ 1)xy yz(b+ 1)

zyb 0

)
.

The equations zyb = b+1 and zy(b+1) = b imply that b2 = (b+1)2, which
has no integral solutions.

Now in the general case, i.e. z ̸= 0 and a ̸= 0, we substitute z = −t(2b+
1)/a into (4), to yield (

xk −t(b+ 1)k/a
−tbk/a 0

)
,

where k := ax+ y(2b+ 1). Setting this equal to(
c b

b+ 1 0

)
,

the equations

−t(b+ 1)k/a = b

and

−tbk/a = b+ 1

imply again that (b + 1)2 = b2. Since this does not have integral solutions,
we also rule out this case. The only congruences possible are therefore those
claimed, which occur when z = 0 and x = t = ±1. This completes the proof
of Proposition 5.3. �

5.2. Other algebraically slice genus one knots. In this subsection we
will show that, in general, the answer to Question 5.2 can be affirmative,
even for matrices with non–zero determinant. This implies that the S–
equivalence class of the Seifert matrix of a genus one knot with non–trivial
Alexander polynomial does not in general contain enough information to
resolve the nugatory crossing conjecture. In fact we will prove the following
proposition:
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Proposition 5.5. For any b > 4 such that b ≡ 0 or 2 mod 3, there exists
an a ∈ Z such that

V =

(
a b

b+ 1 0

)
and V′ =

(
a+ 1 b
b+ 1 0

)
are S–equivalent.

Since any Seifert matrix V can be realized as the Seifert matrix of a knot
it follows that the S–equivalence class of Seifert matrices cannot resolve the
nugatory crossing conjecture for genus one knots with non–trivial Alexander
polynomial.

We will need the following elementary lemma to prove Proposition 5.5.

Lemma 5.6. Let a, b, k ∈ Z, then the matrices(
a b

b+ 1 0

)
,

(
a+ k(2b+ 1) b

b+ 1 0

)
and

(
ab2 b
b+ 1 0

)
are S–equivalent.

Proof. It is obvious that the first two matrices are congruent. It remains
to show that the first and the third matrix are S–equivalent. This follows
immediately from the following sequence of S–equivalences:

(
a b

b+ 1 0

)
⇒


a b 1 0

b+ 1 0 0 0
0 0 0 1
0 0 0 0

 ⇒


a 0 1 0

b+ 1 0 0 −b
0 0 0 1
0 0 0 0



⇒


a 0 1 0
0 0 0 0
0 1 0 0

b+ 1 −b 0 0

 ⇒


a 0 1 0
0 0 0 0
1 1 0 0
1 −b 0 0

 ⇒


a ab 1 0
ab ab2 b 0
0 1 + b 0 0
1 0 0 0



⇒


0 1 + b 0 0
b ab2 ba 0
1 ab a 0
0 0 1 0

 ⇒
(
0 1 + b
b ab2

)
⇒

(
ab2 b
b+ 1 0

)
.

�
Using this lemma we can now prove the proposition:

Proof of Proposition 5.5. Let b > 4 and such that b ≡ 0 or 2 mod 3. It is
then straight–forward to see 1 + b is coprime to 2(b + 1) − 1 = 2b + 1 and
that b− 1 is coprime to 2(b− 1) + 3. In particular 1− b2 = (1− b)(1 + b) is
coprime to 2b+ 1. We can therefore find an a ∈ Z such that

a(1− b2) ≡ −1 mod (2b+ 1),

by the Chinese Remainder Theorem. Put differently, we can find a k ∈ Z
such that

a+ 1 = ab2 + k(2b+ 1).
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It follows from the above lemma that(
a b

b+ 1 0

)
and

(
a+ 1 b
b+ 1 0

)
are S–equivalent. �

6. Low crossing knots

In this section we combine Theorem 1.1 and Corollary 1.3 with the fol-
lowing result of Trotter [Tro73] to prove the nugatory crossing conjecture
for all genus one knots with up to 12 crossings.

Theorem 6.1. [Tro73, Corollary 4.7] Let V be a Seifert matrix with | det(V )|
a prime or 1. Then any matrix which is S-equivalent to V is congruent to
V over Z.

Theorem 6.2. Let K be a genus one knot that has a diagram with at most
12 crossings. Then K admits no cosmetic crossings.

Proof. Table 1, obtained from KnotInfo [CL11], gives the 23 knots of genus
one with at most 12 crossings, with the values of their determinants. We
observe that there are four knots with square determinant. These are 61,
946, 103 and 11n139 which are all known to be algebraically slice. Thus
Corollary 3.2 excludes cosmetic crossings for all but these four knots. Now 61
and 103 are 2-bridge knots; by [Tor99] they do not admit cosmetic crossings.
The knot K = 946 is isotopic to the pretzel knot P (3, 3,−3) of Figure

5 which has Seifert matrix

(
3 2
1 0

)
since the pretzel knot P (p, q, r) has a

Seifert matrix given by 1
2

(
p+ q q + 1
q − 1 q + r

)
; see [Lic97, Example 6.9]. The

homology H1(YK) is represented by

(
6 3
3 0

)
(compare Corollary 7.2 below).

Thus by Lemma 4.2, H1(YK) ∼= Z3 ⊕ Z3, and by Theorem 4.1, K cannot
have cosmetic crossings.

K det(K) K det(K) K det(K)
31 3 92 15 11a362 39
41 5 95 23 11a363 35
52 7 935 27 11n139 9
61 9 946 9 11n141 21
72 11 101 17 12a803 21
74 15 103 25 12a1287 37
81 13 11a247 19 12a1166 33
83 17 11a343 31 - -

Table 1. Genus one knots with at most 12 crossings.
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The only remaining knot from Table 1 is the knot K = 11n139. This knot
is isotopic to the pretzel knot P (−5, 3,−3). There is therefore a genus one
surface for which a Seifert matrix is

V =

(
−1 2
1 0

)
,

again by [Lic97, Example 6.9]. Using this Seifert matrix we calculateH1(YK)
∼= Z9. Thus Theorem 1.1 does not work for the knot 11n139. Next we turn
to Corollary 1.3. Since | det(V )| = 2 is prime, by Theorem 6.1 it suffices to
show that V is neither integrally congruent to(

0 2
1 0

)
nor to

(
−2 2
1 0

)
.

But this follows from Proposition 5.3, with a = −1 and b = 1, noting that
two matrices are congruent if and only if their transposes are. �
Remark 6.3. The method applied for 11n139 in the proof of Theorem 6.2
can also be used to show that the knots 61 and 946 do not admit cosmetic
crossings.

7. More examples

In this section we discuss some families of examples for which Theorems
1.1 and 5.4 imply the nugatory crossing conjecture.

7.1. Twisted Whitehead doubles. Given a knot K let D+(K,n) denote
the n-twisted Whitehead double of K with a positive clasp and let D−(K,n)
denote the n-twisted Whitehead double of K with a negative clasp.

Corollary 7.1. (a) Given a knot K, the Whitehead double D+(K,n) admits
no cosmetic crossing if either n < 0 or |n| is odd. Similarly D−(K,n) admits
no cosmetic crossing if either n > 0 or |n| is odd.

(b) If K is not a cable knot then D±(K,n) admits no cosmetic crossings
for every n ̸= 0.

Proof. (a) A Seifert surface of D+(K,n) obtained by plumbing an n-twisted
annulus with core K and a Hopf band gives rise to a Seifert matrix Vn =(
−1 0
−1 n

)
[Lic97, Example 6.8]. Thus the Alexander polynomial is of the

form

(5) ∆K(t)
.
= ∆K′(t)

.
= −n(t2 + 1) + (1 + 2n)t =: ∆n.

Suppose now that D+(K,n) admits a cosmetic crossing. Then ∆n should
be of the form shown in equation (2). Comparing the leading coefficients in
the expressions (2) and (5) we obtain |n| = |b(b+ 1)| which implies that |n|
should be even. We have shown that if |n| is odd then D+(K,n) admits no
cosmetic crossing changes. Suppose now that n < 0. Since the Seifert matrix
Vn depends only on n and not on K, the knot D+(K,n) is S-equivalent to
the n-twisted, positive-clasped double of the unknot. This is a positive knot
(all the crossings in the standard diagram of D+(O,n) are positive) and it
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Figure 4. The (−4)-twisted negative-clasped double of the
unknot D−(O,−4).

p q r

Figure 5. P (p, q, r) with p, q and r positive and P (3, 3,−3).

has non-zero signature [Prz89]. Hence D+(K,n) is not algebraically slice
and by Theorem 3.1 it cannot admit cosmetic crossings.

A similar argument holds for D−(K,n).

(b) Suppose that K is not a cable knot. By results of Lyon and Whitten
[Lyo74, Whi73], for every n ̸= 0 the Whitehead doubles D±(K,n) have
unique Seifert surfaces of minimal genus. By (5), ∆n ̸= 1, and the conclusion
follows by Theorem 5.4. �

7.2. Pretzel knots. Let K be a three string pretzel knot P (p, q, r) with
p, q and r odd (see Figure 5). The knot determinant is given by det(K) =
|pq + qr + pr| and if K is non-trivial then it has genus one. It is known
that K is algebraically slice if and only if pq+ qr+ pr = −m2, for some odd
m ∈ Z [Lev69].

Corollary 7.2. The knot P (p, q, r) with p, q and r odd does not admit cos-
metic crossings if one of the following is true:

(a) pq + qr + pr ̸= −m2, for every odd m ∈ Z.
(b) q + r = 0 and gcd(p, q) ̸= 1.

(c) p+ q = 0 and gcd(p, r) ̸= 1.

Proof. In case (a) the result follows from Theorem 3.1 and the discussion
above. For case (b) recall that there is a genus one surface for P (p, q, r) for

which a Seifert matrix is V(p,q,r) =
1
2

(
p+ q q + 1
q − 1 q + r

)
[Lic97, Example 6.9].
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Suppose that q + r = 0. If gcd(p, q) ̸= 1, then gcd(p + q, q) ̸= 1 and the
conclusion in case (b) follows by Corollary 4.3. Case (c) is similar. �
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