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Covering link calculus and the bipolar filtration
of topologically slice links

JAE CHOON CHA

MARK POWELL

The bipolar filtration introduced by T Cochran, S Harvey and P Horn is a framework
for the study of smooth concordance of topologically slice knots and links. It is
known that there are topologically slice 1–bipolar knots which are not 2–bipolar.
For knots, this is the highest known level at which the filtration does not stabilize.
For the case of links with two or more components, we prove that the filtration does
not stabilize at any level: for any n , there are topologically slice links which are
n–bipolar but not .nC 1/–bipolar. In the proof we describe an explicit geometric
construction which raises the bipolar height of certain links exactly by one. We
show this using the covering link calculus. Furthermore we discover that the bipolar
filtration of the group of topologically slice string links modulo smooth concordance
has a rich algebraic structure.

57M25, 57N70

1 Introduction

Since the stunning work of S Donaldson and M Freedman in the early 1980s, the
smoothing of topological 4–manifolds has been a central subject in low-dimensional
topology. While there have been significant advances in this area, we are still far
from having a complete understanding of it. An experimental lab for the study of this
difference in categories is the comparison between smooth and topological concordance
of knots and links in S3 . In this context various techniques, from Donaldson and
Seiberg–Witten theory to more recent tools arising from Heegaard Floer and Khovanov
homology, have been used to give exciting results. In particular, since A Casson
observed that Donaldson’s work could be applied to show that there are topologically
slice knots which are not smoothly slice, smooth concordance of topologically slice
knots and links has been studied extensively.

In order to understand the structure of topologically slice knots and links, T Cochran,
S Harvey and P Horn introduced a framework for the study of smooth concordance in
their recent paper [9]. This is an intriguing attempt at describing a global picture of the
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world of topologically slice links. They defined the notion of n–bipolarity of knots
and links, as an approximation to honest slicing whose accuracy is measured in terms
of the derived series of the fundamental group of slice disk complements in certain
positive/negative-definite 4–manifolds. For a precise definition, see Definition 2.1 or
[9, Definition 2.1]. This refines Cochran–Orr–Teichner’s .n/–solvable filtration which
organizes the study of topological concordance. Note that a topologically slice link is
.n/–solvable for all n, so that the solvable filtration contains no information about the
difference in categories.

For each m, the collection Tn of concordance classes of topologically slice n–bipolar
links with m components form a filtration

fŒunlink�g � � � � � T2 � T1 � T0 � T D
ftopologically slice m–component linksg

concordance
:

A smoothly slice link lies in Tn for all n. An important feature which helps to
justify this theory is that previously known smooth concordance obstructions are
related to the low-level terms. In particular, for 1–bipolar knots the following obstruc-
tions to being slice vanish: the � –invariant and the �–invariant from Heegaard Floer
Knot homology, the s–invariant from the Khovanov homology (and consequently the
Thurston–Bennequin invariant), and the Heegaard Floer correction term d –invariant
of ˙1–surgery manifolds and prime power fold cyclic branched covers, as well as
gauge-theoretic obstructions derived from work of Fintushel–Stern, Furuta, Endo and
Kirk–Hedden. For more details the reader is referred to [9].

A fundamental question is whether the filtration is non-trivial at every level. This is
difficult to answer because, as discussed above, known smooth invariants vanish in the
higher terms of the filtration. The best previously known result, due to [9; 10], is that

T2 ¨ T1 ¨ T0 ¨ T

for knots. That is, for nD�1; 0; 1, there are topologically slice n–bipolar knots which
are not .nC 1/–bipolar, where for convenience “topologically slice .�1/–bipolar” is
understood as “topologically slice”. Consequently, for links with any given number of
components, the filtration is non-trivial at level n for each n� 1. The knots of Hedden–
Livingston–Ruberman from [16], which were the first examples of topologically slice
knots which are not smoothly concordant to knots with Alexander polynomial one, are
also nontrivial in T =T0 .

The main result of this paper is to show the non-triviality of the filtration at every level
for links.

Theorem 1.1 For any m� 2 and n� 0, there are topologically slice m–component
links which are n–bipolar but not .nC 1/–bipolar.
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We remark that, for n� 1, the links which we exhibit in the proof of Theorem 1.1 have
unknotted components.

In order to prove Theorem 1.1, we introduce the notion of a Z.p/–homology n–bipolar
link (Definition 2.3) and employ the method of covering link calculus following the
formulation in [5]. An n–bipolar link is Z.p/–homology n–bipolar for all primes
p . The key ingredient (Theorem 3.2), which we call the Covering positon/negaton
theorem, is that a covering link of a Z.p/–homology n–bipolar link of height k is
Z.p/–homology .n� k/–bipolar.

An interesting aspect of the proof of Theorem 1.1 is that our examples are described
explicitly using a geometric operation, which pushes a link into a higher level of the
bipolar filtration. For this purpose it is useful to consider the notion of the bipolar
height of a link, which is defined by

BH.L/Dmaxfn j L is n–bipolarg:

Using the Covering positon/negaton theorem and the calculus of covering links, we
show that for certain class of links our geometric operation raises the bipolar height
(and its Z.p/–homology analogue) precisely by one; see Definitions 4.2, 4.4 and 4.5
and Theorem 4.6 for more details. This enables us to push the rich structure of T0

modulo T1 , which was revealed by Cochran and Horn for the knot case in [10] using
d –invariants, to an arbitrarily high level of the bipolar filtration of links.

For links, the concordance classes merely form a set, of which fTng is a filtration by
subsets, since the connected sum operation is not well defined. The standard approach
to generalize the algebraic structure of the knot concordance group is to consider string
links. The concordance classes of string links with m components form a group, and
it turns out that the classes of topologically slice string links with n–bipolar closures
form a normal subgroup, which we denote by T SL

n .m/. We discuss more details at the
beginning of Section 5. This bipolar filtration of topologically slice string links has a
rich algebraic structure:

Theorem 1.2 For any n � 0 and for any m � 2, the quotient T SL
n .m/=T SL

nC1
.m/

contains a subgroup whose abelianization is of infinite rank.

Once again, for n � 1 these subgroups are generated by string links with unknotted
components.

In the proof of Theorem 1.2, we introduce a string link version of covering link
construction which behaves nicely with respect to the group structure; see for instance
Definition 5.2 and Lemma 5.3. We employ a more involved calculus of covering string
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links than that used in the ordinary links case. So far as the authors know, this is
the first use of covering link calculus to investigate the structure of the string link
concordance group. We anticipate that our method for string links will be useful for
further applications.

The paper is organized as follows: In Section 2 we give the definition of a Z.p/–
homology n–bipolar link, and prove some basic results about this notion. In Section 3
we discuss the covering link calculus, and prove the Covering positon/negaton theorem.
We also prove some preliminary results on Bing doubles, using covering link calculus
results for Bing doubles from the literature. In Section 4 we prove the bipolar height
raising result, exhibit our main examples, and thus prove Theorem 1.1.

Section 5 considers string links and proves Theorem 1.2.

Appendices A and B give results on the use of Levine–Tristram signatures and Von
Neumann �–invariants respectively to obstruct a link being Z.p/–homology n–bipolar.

Conventions All manifolds are smooth and submanifolds are smoothly embedded,
with the exception of the locally flat disks which are tacitly referred to when we claim
that a link is topologically slice. If not specified, then homology groups are with Z
coefficients by default. The letter p always denotes a prime number.

Acknowledgements The authors would like to thank Tim Cochran and Shelly Harvey
for interesting conversations about their filtration. The authors also thank an anonymous
referee for helpful comments. The first author was partially supported by NRF grants
2010-0011629, 2013067043 and 2013053914.

2 Homology n–positive, negative and bipolar links

An (oriented) m–component link LDL1 t � � � t Lm is a smooth disjoint embedding
of m (oriented) copies of S1 into S3 . Two links L and L0 are said to be smoothly
(resp. topologically) concordant if there are m disjoint smoothly (resp. locally flat)
embedded annuli Ci in S3 � I with @Ci D Li � f0g t�L0i � f1g. Here �L0 is the
mirror image of L0 with the string orientation reversed. A link which is concordant to
the unlink is said to be slice.

In [9], Cochran, Harvey and Horn introduced the notion of n–positivity, negativity and
bipolarity.
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Definition 2.1 [9, Definition 2.2] An m–component link L in S3 is n–positive if
S3 bounds a connected 4–manifold V satisfying the following:

(1) �1.V /Š 0.

(2) There are disjoint smoothly embedded 2–disks �1; : : : ; �m in V that satisfyF
@�i DL.

(3) The intersection pairing on H2.V / is positive-definite and there are disjointly
embedded connected surfaces Sj in V �

F
�i which generate H2.V / and

satisfy �1.Sj /� �1.V �
F
�i/

.n/ .

We call V as above an n–positon for L with slicing disks �i . An n–negative link
and an n–negaton are defined by replacing “positive-definite” with “negative-definite”.
A link L is called n–bipolar if L is both n–positive and n–negative.

For our purpose the following homology analogue of Definition 2.1 provides an optimum
setting.

Throughout this paper p denotes a fixed prime. Therefore, as in Definition 2.2, we
often omit the p from the notation. In the statements of theorems also we omit that the
theorem holds for all primes p . At the end of the paper, in the proof of Theorem 5.1,
we need to restrict to p D 2 for d –invariant computational reasons, but until then p

can be any fixed prime.

We denote the localization of Z at p by Z.p/Dfa=b 2Q jp − bg, and the ring Z=pZ
of mod p residue classes by Zp . Note that a manifold is a Zp –homology sphere if
and only if it is a Z.p/–homology sphere.

Definition 2.2 We define the Z.p/–coefficient derived series fPnGg of a group G as
follows: P0G WDG and

PnC1G WDKer
�
PnG!

PnG

ŒPnG;PnG�
!

PnG

ŒPnG;PnG�
˝Z Z.p/ŠH1.PnGIZ.p//

�
:

From the definition it can be seen that PnG is a normal subgroup of G for any n.

We remark that a more general case of the mixed-coefficient derived series was defined
in [2]. It should also be noted that our Z.p/–coefficient derived series is not equal to
the Zp –coefficient analogue, namely the series obtained by replacing Z.p/ with Zp ,
which appeared in the literature as well; PnG=PnC1G is the maximal abelian quotient
of PnG which has no torsion coprime to p , while the corresponding quotient of the
Zp –coefficient analogue is the maximal abelian quotient which is a Zp –vector space.
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Definition 2.3 (Z.p/–homology n–positivity, negativity and bipolarity) Suppose L

is an m–component link in a Z.p/–homology 3–sphere Y . We say that .Y;L/ is
Z.p/–homology n–positive if Y bounds a connected 4–manifold V satisfying the
following:

(1) H1.V IZ.p//D 0.

(2) There are disjointly embedded 2–disks �1; : : : ; �m in V with
F
@�i DL.

(3) The intersection pairing on H2.V /=torsion is positive definite and there are
disjointly embedded connected surfaces Sj in V �

F
�i which generate the

group H2.V /=torsion and satisfy �1.Sj /� Pn�1.V �
F
�i/.

We call V as above a Z.p/–homology n–positon for .Y;L/ with slicing disks �i .
A Z.p/–homology n–negative link and a Z.p/–homology n–negaton are defined
by replacing “positive definite” with “negative definite.” We say that .Y;L/ Z.p/–
homology n–bipolar if .Y;L/ is both Z.p/–homology n–positive and Z.p/–homology
n–negative.

For a commutative ring R (eg RD Z or Q), the R–homology analogues are defined
by replacing Z.p/ with R in the above definitions.

We note that whether a link is Z.p/–homology n–positive depends on the choice
of the ambient space; it is conceivable that, for example, even when .Y;L/ is not
Z.p/–homology n–positive, .Y # Y 0;L/ could be. Nonetheless, when the choice of
the ambient space Y is clearly understood, we often say that L is Z.p/–homology
n–positive, and similarly for the negative/bipolar case.

When we need to distinguish n–positive (resp. negative, bipolar) links in Definition 2.1
explicitly from the Z.p/–homology case in Definition 2.2, we call the former homotopy
n–positive (resp. negative, bipolar). It is easy to see that homotopy n–positive (resp.
negative, bipolar) links are R–homology n–positive (resp. negative, bipolar) for any R.

2.1 Zero-framing and 0–positivity/negativity

In this paper, we need some basic facts on framings of components of links in rational
homology spheres (for example to define branched covers). For the reader’s convenience
we discuss these in some detail, focusing on the 0–positive/negative case.

The following lemma gives the basic homological properties of a Z.p/–homology
0–positon (or negaton). Since an n–positon, for n > 0, is in particular a 0–positon,
this will suffice.
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Lemma 2.4 Suppose V is a Z.p/–homology 0–positon (or negaton) for an m–
component link L with slicing disks �i . Then the following hold:

(1) The first homology H1.V �
F
�i IZ.p// is a free Z.p/–module of rank m

generated by the meridians of L.

(2) The inclusion induces an isomorphism of H2.V�
F
�i IZ.p// onto H2.V IZ.p//,

which is a free Z.p/–module generated by the surfaces Sj in Definition 2.3.

The following elementary observations are useful: commutative localizations are flat, so

H�.� IZ.p//ŠH�.� /˝Z.p/;

and for a finitely generated abelian group A, we have

A˝Z.p/ Š .Z.p//
d
”AŠ Zd

˚ (torsion coprime to p)

”A˝QŠQd and A˝Zpa Š .Zpa/d for any a.

In addition, if these equivalent conditions hold, then for elements x1; : : : ;xd 2 A,
fxi ˝ 1g is a basis of A˝Z.p/ if and only if fxi ˝ 1g is a basis of A˝Zpa and
fxi˝1g is a basis of A˝Q. This gives us the following consequences of Lemma 2.4:
the torsion part of H1.V �

F
�i/ has order coprime to p , and for RD Zpa and Q,

H1.V �
F
�i IR/ is isomorphic to the free R-module Rm generated by the meridians.

Similar conclusions hold for H2.V �
F
�i I �/ and H2.V I �/.

Proof of Lemma 2.4 First we claim that H2.V / has no p–torsion. To see this, note
that since @V is a Zp –homology sphere and H1.V IZ.p//D0 implies H1.V IZp/D0,
we have H3.V IZp/ŠH 1.V; @V IZp/ŠH 1.V IZp/D 0. By the universal coefficient
theorem, H3.V IZp/ surjects onto Tor.H2.V /;Zp/. The vanishing of this latter group
implies the claim.

From the above claim it follows that the quotient map H2.V / ! H2.V /=torsion
induces an isomorphism H2.V IZ.p//DH2.V /˝Z.p/ Š .H2.V /=torsion/˝Z.p/ .
Let Sj be the surfaces given in Definition 2.3. Since Sj � V �

F
�i and the classes

of Sj span H2.V /=torsion, it follows that H2.V �
F
�i IZ.p//! H2.V IZ.p// is

surjective. From the long exact sequence for .V;V �
F
�i/ and excision it follows

that

H1

�
V �

G
�i IZ.p/

�
ŠH2

�
V;V �

G
�i IZ.p/

�
Š

M
i

H2.�i � .D
2;S1/IZ.p//Š .Z.p//

m;

where this is generated by the meridians of the �i . This shows (1).
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Now, for (2), consider the Z.p/–coefficient Mayer–Vietoris sequence for V ' .V �F
�i/[ .2–cells/, where the 2–cells are attached along each meridian. (Alternatively,

consider the long exact sequence for .V;V �
F
�i/.) By (1), the desired conclusion

easily follows.

A framing of a submanifold is a choice of trivialization of its normal bundle. Generaliz-
ing the case of knots in S3 , a framing f of a knot K in a rational homology sphere Y

is called the zero-framing if the rational-valued linking number of K with its longitude
(D a parallel copy) taken along f is zero. We state some facts on the zero-framing.
For the proofs, see [3, Chapter 2], [6, Section 3].

(1) A knot K in a rational homology sphere has a zero framing if and only if the
Q=Z–valued self-linking of K vanishes. This follows from [3, Theorem 2.6 (2)],
noting that a knot admits a generalized Seifert surface with respect to some
framing if and only if that framing is the zero framing, by [6, Lemma 3.1].

(2) A framing f on K in Y is a zero-framing if and only if there is a map gWY�K!

S1 under which the longitude (= a parallel copy) taken along f is sent to a
null-homotopic curve and the image of a meridian � of K is sent to an essential
curve. Furthermore, g�.Œ��/ 2 Z D �1.S

1/ is coprime to p if Y is a Z.p/–
homology 3–sphere. This follows from elementary obstruction theory and
the same observation as above, namely that zero-framing is equivalent to the
existence of a generalized Seifert surface.

From the above it follows that if a knot K in a Z.p/–homology 3–sphere Y admits a
zero-framing and d is a power of p , then the d –fold cyclic branched cover of Y along
K is defined. For, the above map g induces �W�1.Y �K/! Z! Zd which gives a
d –fold regular cover of Y �K . Under � the meridian of K is sent to a generator of
Zd , since d is a power of p . It follows that one can glue the d –fold cover of Y �K

with the standard branched covering of K � .D2; 0/ along the zero-framing to obtain
the desired branched cover of Y along K .

Lemma 2.5 A Z.p/–homology 0–positive (or negative) knot K in a Z.p/–homology
sphere admits a zero-framing.

Proof Suppose V is a Z.p/–homology 0–positon for L with a slicing disk �. By
appealing to Lemma 2.4(1), H1.V ��/=torsion is isomorphic to an infinite cyclic
group where the meridian of K is a nonzero power of the generator. This gives rise
to a map V ��! S1 by elementary obstruction theory. Let gWY �K! S1 be its
restriction. The longitude of K taken along the unique framing of the normal bundle of
� is null-homotopic in V ��, and consequently its image under g is null-homotopic
in S1 .
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2.2 Basic operations on links

We state some observations on how positivity (resp. negativity, bipolarity) are affected
by certain basic operations for links as the following theorem. Throughout this paper,
I D Œ0; 1�. For two links L� Y and L0 � Y 0 , their split union is defined to be the link
LtL0 � Y # Y 0 , where the connected sum is formed by choosing 3–balls disjoint to
the links. For a link L� Y and an embedding  W I � I ! Y such that  .0� I/ and
 .1�I/ are contained in distinct components of L and  ..0; 1/�I/ is disjoint to L, a
new link L0 is obtained by smoothing the corners of .L� .f0; 1g�I//[ .I�f0; 1g/.
We say L0 is obtained from L by band sum of components. When L is oriented, we
assume that the orientation of  .f0; 1g� I/ is opposite to the orientations of L so that
L0 is oriented naturally. For a submanifold J , we denote the normal bundle by �.J /.

Theorem 2.6 The following statements and their Z.p/–homology analogues hold.
In addition, the statements also hold if the words “positive” and “negative” are inter-
changed. Similarly the statements hold if both these words are replaced by “bipolar”,
except for (9).

(1) (Mirror image) A link is n–positive if and only if its mirror image is n–negative.

(2) (String orientation change) A link if n–positive if and only if the link obtained
by reversing orientation of any of the components is n–positive.

(3) (Split union) The split union of two n–positive link is n–positive.

(4) (Sublink) A sublink of an n–positive link is n–positive.

(5) (Band sum) A link obtained by band sum of components from an n–positive
link is n–positive.

(6) (Generalized cabling and doubling) Suppose L0 is a link in the standard S1 �

D2 � S3 which is slice in the 4–ball, and L is an n–positive link with a
component J . Then the link obtained from L by replacing .�.J /;J / with
.S1 �D2;L0/ along the zero framing is n–positive.

(7) (Blow-down) If L is an n–positive m–component link, then the .m � 1/–
component link in the .˙1/–framed (with respect to the zero-framing) surgery
along a component of L is n–positive.

(8) (Concordance) A link concordant to an n–positive link is n–positive. A slice
link is n–bipolar for any n.

(9) (Crossing change) If L is transformed to a 0–positive link by changing some
positive crossings involving the same components to negative crossings, then L

is 0–positive.
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We remark that due to Theorem 2.6(2) one may view knot and links as unoriented for
the study of n–positivity (resp. negativity, bipolarity).

From Theorem 2.6(3) and (5) above, it follows that any connected sum of n–positive
(resp. negative, bipolar) links is n–positive (resp. negative, bipolar). Moreover, by
Theorem 2.6(2), by changing the orientation on one component before band summing,
we can consider band sums which do not respect the orientation of a component. We
have Z.p/–homology analogues as well.

Proof Suppose V is an n–positon for L with slicing disks �i .

(1) The 4–manifold V with reversed orientation is an n–negaton for the mirror
image of L. Note that this makes it sufficient to consider only the positive case of the
remaining statements: the negative case then follows from taking mirror image and the
bipolar case from having both the positive and negative cases.

(2) As remarked above, the n–positon V and the slicing disks �i satisfy Definition 2.3
and its homotopy analogue independently of the orientations of components of L.

(3) The boundary connected sum of n–positons (along balls disjoint to links) is an
n–positon of the split link.

(4) The 4–manifold V with appropriate slicing disks forgotten is an n–positon for a
sublink.

(5) If L0 is obtained from L by band sum, then L0 and �L cobound a disjoint union
of annuli and a twice-punctured disk in @V � I . Attaching it to V , we obtain an
n–positon for L0 .

(6) Note that L0 � S1�D2 � @.D2 �D2/ bounds slicing disks Di in D2�D2 by
the assumption. If � is a slicing disk for a component J of L, then identifying �.�/
with ��D2 ŠD2 �D2 and replacing .�.�/;�/ with .D2 �D2;

F
Di/ in V , we

obtain slicing disks for the newly introduced components, and with these and the other
slicing disks for L, V is an n–positon.

(7) Without loss of generality we can do surgery on the first component, say K1 , of L1 .
Define a 4–manifold W to be V ��.�1/ with a 2–handle D2�D2 attached along the
�1�S1 part of the boundary of V ��.�1/, with an attaching map S1�D2!�1�S1

chosen so that the resulting boundary 3–manifold is that given by performing surgery
on L1 using the .˙1/–framing. The 4–manifold W is an n–positon for the new
link obtained by .˙1/–surgery along L1 by the following argument. It can be seen
that �1.W /Š 0 by the Seifert–Van Kampen theorem, since �1.V ��1/ is normally
generated by a meridian of K1 and the zero-linking longitude of K1 is null-homotopic
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in V ��.�1/. We also see that H2.W /ŠH2.V / by a Mayer–Vietoris argument, using
Lemma 2.4(2). (This is true when V is a homotopy n–positon and a Z.p/–homology
n–positon.)

(8) If L0 is concordant to L via disjoint embedded annuli Ci in S3 � I , then
V [S3 S3 � I is an n–positon for L0 with slicing disks �i [Ci . For a slice link L,
the 4–ball with slicing disks is an n–positon (and negaton) for L for all n.

(9) This is shown by arguments of [11, Lemma 3.4].

The Z.p/–homology analogues are shown by the same arguments. We note that
when V is a Z.p/–homology n–positon in (7), we have the following instead of
�1.W /Š 0: H1.W IZ.p//ŠH1.V IZ.p//Š 0 by a Mayer–Vietoris argument, since
H1.V ��1IZ.p// is isomorphic to Z.p/ generated by a meridian by Lemma 2.4(1).

We remark that the operations in Theorem 2.6(2), (3), (4), (5) and (7) may be used
(in various combinations) to obtain obstructions to links being positive (or negative,
bipolar) from previously known results on knots. We discuss these results on knots
below. In the later sections of this paper we will develop more sophisticated methods
of reducing a problem from links to knots.

2.3 Obstructions to homology 0– and 1–positivity

Most of the obstructions to knots being 0– and 1–positive (resp. negative, bipolar)
introduced in [9, Sections 4, 5, 6] generalize to their Z.p/–homology analogues. For
those who are not familiar with these results, we spell out the statements.

Theorem 2.7 (Obstructions to being Z.p/–homology 0–positive; cf [9, Section 4])
If a knot K in a Z.p/–homology 3–sphere is Z.p/–homology 0–positive, then the
following hold:

(1) The average function �K .�/ of Cha–Ko’s signature [6] is nonpositive.

(2) Ozsváth–Szabó–Rasmussen � –invariant [22; 23] of K is nonnegative.

(3) The .˙1/–surgery manifold, say N , of K bounds a 4–manifold W with
positive definite intersection form on H2.W /=torsion and H1.W IZp/ D 0.
Consequently the Ozsváth–Szabó d –invariant [21] of N associated to its unique
spinc –structure is non-positive.

(4) In addition, if p D 2 and �K .2�k=2a/D 0 for all k , then the Fintushel–Stern–
Hedden–Kirk obstruction [15] associated to the 2a –fold cyclic branched cover
vanishes.
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Consequently, if K is Z.p/–homology 0–bipolar, then �K .�/ D 0, �.K/ D 0 and
Hom’s invariant �.K/D 0 [17].

We remark that in order to generalize the Levine–Tristram signature result in [9,
Section 4], we employ, in Theorem 2.7(1), a generalization of the Levine–Tristram
signature to knots in rational homology spheres which was introduced by Cha and
Ko [6]. We give a description of the invariant �K and a proof of Theorem 2.7(1) in
Appendix A.

The proofs of other parts of Theorem 2.7 and Theorem 2.8 stated below, are completely
identical to those of the homotopy positive (resp. negative, bipolar) cases given in [9].

Theorem 2.8 (Obstruction to being Z.p/–homology 1–positive [9, Section 6]) Sup-
pose K is a Z.p/–homology 1–positive knot. Then the d –invariant of K associated
to the pa –fold cyclic branched cover M is nonpositive, in the following sense: for
some metabolizer H � H1.M / (ie jH j2 D jH1.M /j and the Q=Z–valued linking
form vanishes on H ) and a spinc –structure s0 on M corresponding to a spin-structure
on M , d.M; s0Cyz/� 0 for any z 2H , where yz is the Poincaré dual of z .

Remark 2.9 Note that Theorem 2.8 also follows from our Covering positon theo-
rem 3.2 that is stated and proved in Section 3: if we take a pa –fold branched cover
M of S3 along K , then by Theorem 3.2, M bounds a Z.p/–homology 0–position,
to which a result of Ozsváth–Szabó [21] applies to allow us to conclude that the d –
invariant of M with appropriate spinc –structures is non-positive. Indeed our proof of
Theorem 3.2 involves some arguments which are similar to those in [9, Section 6].

We do not know whether the Rasmussen s–invariant obstruction in [9] has a Z.p/–
homology analogue. Even the following weaker question is still left open.

Question 2.10 If a knot K is slice in a homology 4–ball (or more generally in a
Z.p/– or Q–homology 4–ball), then does s.K/ vanish?

We can also relate Z.p/–homology positivity to amenable von Neumann �–invariants,
following the idea of [9, Section 5] and using techniques of [2]. We discuss this in
more detail in Appendix B (see Theorem B.1).

3 Covering link calculus

We follow [5] to give a formal description of covering links. Suppose L is a link in a
Z.p/–homology 3–sphere Y . We consider the following two operations that give new
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links: (C1) taking a sublink of L, and (C2) taking the pre-image of L in the pa –fold
cyclic cover of Y branched along a component of L with vanishing Q=Z–valued
self-linking. Note that the pa –fold cyclic branched cover is again a Z.p/–homology
sphere, by the argument of Casson and Gordon [1, Lemma 2].

Definition 3.1 A link zL obtained from L by a finite sequence of the operations (C1)
and/or (C2) above is called a p–covering link of L of height � h, where h is the
number of (C2) operations.

Often we say that the link zL in Definition 3.1 is a height h p–covering link. This is
an abuse of terminology without the � sign; it is more appropriate to define the height
of zL to be minimum of the number of (C2) moves over all sequences of (C1) and
(C2) operations which produce zL from L. In all statements in this paper, this abuse
does not cause any problem, since if we assign a height to a covering link which is not
minimal, we obtain a weaker conclusion from Theorem 3.2 than is optimal.

We remark that for an oriented link L, a covering link zL has a well-defined induced
orientation. Since the choice of an orientation is irrelevant for the purpose of the study
of n–positivity (or negativity, bipolarity) as discussed after Theorem 2.6, in this paper
we also call a covering link with some component’s orientation reversed a covering
link.

3.1 Covering positon/negaton theorem

The main theorem of this section is the following:

Theorem 3.2 (Covering positon/negaton theorem) For n>k , a height k p–covering
link of a Z.p/–homology n–positive (resp. negative, bipolar) link is Z.p/–homology
.n� k/–positive (resp. negative, bipolar).

We remark that this may be compared with the Covering solution theorem [4, Theo-
rem 3.5] that provides a similar method for the n–solvable filtration of [12].

Proof It suffices to prove the positivity case. Suppose L is a link in a Z.p/–homology
3–sphere Y , and V is a Z.p/–homology n–positon for L with slicing disks �i . It
suffices to show the following:

(1) A sublink of L is Z.p/–homology n–positive.

(2) Suppose n > 0, zY is a pa –fold cyclic branched cover of Y along the first
component of L, and zL is the pre-image of L in zY . Then zL is Z.p/–homology
.n� 1/–positive.
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Item (1) has been already discussed in Theorem 2.6. To show (2), we first observe that
by Lemma 2.4(1) applied to the first component as a sublink (see also the observation
below Lemma 2.4), H1.V � �1IZpa/ is isomorphic to Zpa and generated by a
meridional curve of �1 . Therefore we can define the pa –fold cyclic branched cover of
zV of V along �1 . In addition, since the inclusion induces an isomorphism H1.Y �

@�1IZpa/! H1.V ��1IZpa/, it follows that @ zV is the ambient space zY of the
covering link L, by the above discussion on the zero-framing and branched covering
construction for Y , namely Lemma 2.5 and its preceding paragraph.

We will show that zV is a Z.p/–homology .n� 1/–positon for zL.

For notational convenience, we denote the pre-image of a subset A� V under zV ! V

by zA� zV . Observe that components of the z�i form disjoint slicing disks for zL in zV ,
since each �i is simply connected. Let �� V be a meridional circle for �1 . Then z�
is a meridional circle of the 2–disk z�1 . By Lemma 2.4(1), H1.V ��1; �IZp/D 0.
From the following fact, it follows that H1. zV � z�1; z�IZp/Š 0.

Lemma 3.3 [8, Corollary 4.10; 4, page 910] Suppose G is a p–group and C� is a
projective chain complex over the group ring ZpG with Ck finitely generated. Then,
for any k , dimZp

Hk.C�/� jGj � dimZp
Hk.Zp˝ZpG C�/.

That H1. zV � z�1; z�IZp/Š 0 implies that H1. zV � z�1; z�IZ.p//Š 0 and that H1. zV �
z�1IZ.p// is generated by the class of z�. It follows that H1. zV IZ.p//D 0 since the
homotopy type of zV is obtained by attaching a 2–cell to zV � z�1 along z�.

For later use, we also claim that H1. zV � z�1IZ.p//ŠZ.p/ , generated by the class Œz��.
For, since the map H1. zV � z�1IZ.p//!H1.V ��1IZ.p//ŠZ.p/ sends Œz�� to paŒ��,
which is a multiple of a generator, H1. zV � z�1IZ.p// is not Z.p/–torsion. The claim
follows. A consequence is that H1. zV � z�1IZp/ is isomorphic to Zp and generated
by Œz�� (see the paragraph after Lemma 2.4).

Observe that the pa –fold cover zV �
F
z�i of V �

F
�i has fundamental group

�1. zV �
F
z�i/D Ker

˚
�1.V �

F
�i/!H1.V �

F
�i/=torsionŠ Zm! Zpa

	
;

where final map sends the first meridian to 1 2 Zpa and the other meridians to 0. (For
convenience we view the fundamental group of a covering space as a subgroup of the
fundamental group of its base space.) Also, from the definition we have

P1�1.V �
F
�i/D Ker

˚
�1.V �

F
�i/!H1.V �

F
�i IZ.p//

	
;

where the above map with kernel P1�1.V �
F
�i/ decomposes as

�1.V �
F
�i/!H1.V �

F
�i/=torsionŠ Zm ,!H1.V �

F
�i IZ.p//
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with the rightmost map injective, by Lemma 2.4(1) and the paragraph below Lemma 2.4.
From this it follows that P1�1.V �

F
�i/� �1. zV �

F
z�i/.

Suppose that Sj are disjointly embedded surfaces in V satisfying Definition 2.3. By
definition and the above observation, we have

�1.Sj /� Pn�1.V �
F
�i/� P1�1.V �

F
�i/� �1. zV �

F
z�i/:

By the lifting criterion, it follows that the surfaces Sj lift to zV �
F
z�i , that is, zSj

consists of pa lifts f†j ;kg
pa

kD1
of Sj . The †j ;k are mutually disjoint, and are disjoint

to the slicing disks for zL. Furthermore, each †j ;k has self intersection C1 in zV since
so does Sj in V . As subgroups of �1.V �

F
�i/, we have

�1.†j ;k/D a conjugate of �1.Sj /� Pn�1.V �
F
�i/� Pn�1�1. zV �

F
z�i/:

It is easy to see from the definitions that the last inclusion follows from the fact that
P1�1.V �

F
�i/� �1. zV �

F
z�i/.

It remains to prove that the †j ;k generate H2. zV /=torsion. Denote the i th Betti number
by bi.� IQ/D dimQ Hi.� IQ/ and bi.� IZp/D dimZp

Hi.� IZp/. We claim that

b2. zV IQ/� b2. zV IZp/D b2. zV � z�1IZp/� pa
� b2.V ��1IZp/

D pa
� b2.V IZp/D pa

� b2.V IQ/:

The first inequality is from the universal coefficient theorem. The second part is
obtained by a Mayer–Vietoris argument for . zV � z�1/[ (2–cell)' zV , using that our
previous observation that H1. zV � z�1IZp/Š Zp is generated by z�. The third part
follows from Lemma 3.3. The fourth part is again by a Mayer–Vietoris argument as
before, for .V ��1/[ (2–cell)' V . The last part is shown by Lemma 2.4(2) and its
accompanying paragraph; the fact that the torsion part of H2.V / has order coprime
to p .

Now, let h be the map from the free abelian group F generated by the †j ;k into
H2. zV /=torsion sending †j ;k to its homology class. The fact that the surfaces †j ;k

are disjoint and have self intersection one implies that the composition

F
h
�!H2. zV /=torsion

�ad

�! Hom.H2. zV /=torsion;Z/
h�

�! Hom.F;Z/

is the adjoint of a form represented by the identity matrix, where �ad is (the adjoint of)
the intersection pairing. It follows that the initial map h is injective. Since b2. zV IQ/�
pa �b2.V IQ/D rank F , it follows that b2. zV IQ/D pa �b2.V IQ/D rank F . Since all
the terms in the above sequence are free abelian groups of the same rank, it follows that
all the maps, particularly h, are isomorphisms. This completes the proof of Theorem 3.2.
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Remark 3.4 Generalizing Definition 2.3, we can define a relation on links, similarly
to [9, Definition 2.1]: for links L � Y and L � Y 0 in Z.p/–homology spheres, we
write L�.Z.p/;n/ L0 if there is a 4–manifold V satisfying the following:

(1) H1.V IZ.p//D 0.

(2) There exist disjointly embedded annuli Ci in V satisfying @.V;
F

Ci/D .Y;L/t

�.Y 0;L0/ and that both Ci \Y , Ci \Y 0 are nonempty for each i .

(3) The intersection pairing on H2.V /=torsion is positive-definite and there are
disjointly embedded surfaces Sj in V �

F
Ci which generate H2.V /=torsion

and satisfy �1.Sj /� Pn�1.V �
F

Ci/.

Note that L is Z.p/–homology n–positive if and only if L�.Z.p/;n/ (unlink). Then
the arguments of the proof of Theorem 3.2 show the following generalized statement:

If L�.Z.p/;n/ L0 and zL and zL0 are height k p–covering links of L and L0 obtained
by applying the same sequence of operations (C1) and (C2), then zL�.Z.p/;n�k/

zL0 .

In order to interpret the idea of the same sequence of operations, we use the annuli Ci

to pair up components of L and L0 .

3.2 Examples: Bing doubles

Theorem 3.2 applied to covering link calculus results for Bing doubles in the literature
immediately gives various interesting examples which are often topologically slice
links.

We denote by B.L/ the Bing double of a link L in S3 , and for n� 1 define Bn.L/D

B.Bn�1.L// to be the nth iterated Bing double, where by convention, B0.L/ is L

itself. In this paper Bing doubles are always untwisted. We remark that if K is
topologically (resp. smoothly) slice, then Bn.K/ is topologically (resp. smoothly) slice.
The converse is a well-known open problem.

For an oriented knot K , we denote the reverse of K by Kr .

Theorem 3.5 If Bn.K/ is Z.p/–homology .k C 2n � 1/–positive (resp. negative,
bipolar), then K # Kr is Z.p/–homology k –positive (resp. negative, bipolar).

Proof The following fact is due to Cha–Livingston–Ruberman [7], Cha–Kim [5],
Livingston–Van Cott [19] and Van Cott [24]: for any knot K in S3 and any prime p ,
K # Kr is a height .2n� 1/ p–covering link of Bn.K/. Therefore by Theorem 3.2,
the conclusion follows.
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Corollary 3.6 If �.K/¤ 0, then Bn.K/ is not Z.p/–homology .2n�1/–bipolar for
any p .

It is well-known that there are topologically slice knots K with �.K/¤ 0 (eg K D

the positive Whitehead double of any knot J with �.J / > 0, by Hedden [14]). For
such a knot K , Corollary 3.6 implies that Bn.K/ is a topologically slice link which is
not .2n� 1/–bipolar.

Proof of Corollary 3.6 Suppose Bn.K/ is Z.p/–homology .2n� 1/–positive for
some p . Then K # Kr is Z.p/–homology 0–positive by Theorem 3.5. It follows
that 2�.K/ D �.K # Kr / � 0 by Theorem 2.7. Similarly, �.K/ � 0 if Bn.K/ is
Z.p/–homology .2n� 1/–negative.

While the non-bipolarity of the above links is easily derived by applying our method,
we do not know the precise bipolar height of these links. The following lemma is useful
in producing highly bipolar links:

Lemma 3.7 If L is n–positive (resp. negative, bipolar), then Bk.L/ is .k C n/–
positive (resp. negative, bipolar). The Z.p/–homology analogue holds too.

Proof We may assume kD 1 by induction. Let V be an n–positon for LDK1t� � �t

Km with slicing disks �i . We proceed similarly to the proof of Theorem 2.6(6), except
that we need a stronger conclusion. We identify a tubular neighborhood �.�i/ with
�i�D2 as usual. Note that B.L/ is obtained by replacing, for all i , .�.Ki/;Ki/ with
the standard Bing link L0 , which is a 2–component link in S1�D2 . Viewing L0 as a
link in S3 via the standard embedding S1�D2�@.D2�D2/ŠS3 , L0 is a trivial link.
Consequently L0 bounds disjoint slicing disks, say Di;1 and Di;2 , in D2�D2ŠD4 .
Replacing .�.�i/;�i/ with .D2 �D2;D1 tD2/ for each i , we see that B.L/ has
slicing disks, say D` in V . Since �1.V /D 0, �1.V �

F
�.�i// is normally generated

by the meridians �i of the Ki . Since the meridional curve � � S1 � S1 �D2 is
homotopic to a commutator of meridians of the components of L0 in S1 �D2�L0 ,
it follows that the image of �1.V �

F
�.�i// lies in �1.V �

F
D`/

.1/ . For the
surfaces Sj in Definition 2.1, since �1.Sj / � �1.V �

F
�.�i//

.n/ , it follows that
�1.Sj /� �1.V �

F
D`/

.nC1/ . This shows that V is an .nC 1/–positon for B.L/.

For the Z.p/–homology analogue, we proceed similarly. In this case, the argument
using that �1.V �

F
�.�i// is normally generated by the meridians does not work.

Instead, we appeal to the following: first we claim that the image of �1.V �
F
�.�i//
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in �1.V �
F

D`/ lies in the subgroup P1�1.V �
F

D`/. For, we have a commutative
diagram

�1.V �
F
�.�i// H1.V �

F
�.�i/IZ.p//Š .Z.p//

m

�1.V �
F

D`/ H1.V �
F

D`IZ.p//

//

�� ��
// 

with vertical maps induced by the inclusion. Here the isomorphism in the upper right
corner is obtained by Lemma 2.4(1). Since .Z.p//m is generated by meridians of L

which are null-homologous in the exterior of B.L/, the right vertical arrow is a zero
map. Since P1�1.V �

F
D`/ is the kernel of  , the claim follows. Now, from the

claim we obtain

�1.Sj /� Pn�1.V �
F
�.�i//� PnC1�1.V �

F
D`/

as desired.

Theorem 3.8 Suppose K is a knot in S3 which is 0–bipolar and 1–positive but
not Z.p/–homology 1–bipolar for some p . Then Bn.K/ is n–bipolar but not (Z.p/–
homology) 2n–bipolar.

For example, we obtain topologically slice links which are n–bipolar but not 2n–
bipolar, by applying Theorem 3.8 to the knots presented by Cochran and Horn [10];
they constructed topologically slice knots K which are 0–bipolar, 1–positive but not
1–bipolar. Indeed K is shown not to be 1–negative by exhibiting that a certain d –
invariant of the double branched cover associated to a metabolizer element is negative
in the sense of [9, Theorem 6.2] and Theorem 2.8. It follows that their K is not
Z.2/–homology 1–negative by Theorem 2.8.

Proof of Theorem 3.8 By Lemma 3.7, Bn.K/ is n–bipolar since K is 0–bipolar.
If Bn.K/ is 2n–bipolar then it is Z.p/–homology 2n–bipolar for all primes p . By
Theorem 3.5 for k D 1 we see that K # Kr is Z.p/–homology 1–bipolar. Since K is
Z.p/–homology 1–positive, the concordance inverse �Kr of Kr is Z.p/–homology
1–negative by Theorem 2.6(1), (2). We have that K is concordant to K#Kr #�Kr . By
Theorem 2.6(3), (5), this latter knot is Z.p/–homology 1–negative since both K # Kr

and �Kr are 1–negative. Therefore so is K by Theorem 2.6(8). This contradicts the
hypothesis.
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The examples obtained in Theorem 3.8 illustrate the non-triviality of the n–bipolar
filtration for links for higher n. Note that there are still some limitations: the number
of components of our link L D Bn.K/ grows exponentially on n, and the height
BH.L/ WD maxfh j L is h–bipolarg is not precisely determined; we only know that
n � BH.Bn.K// < 2n. In the next section we will give examples resolving these
limitations.

We finish this section with a discussion of some covering link calculus examples due to
A Levine [18]. He considered iterated Bing doubling operations associated to a binary
tree T . Namely, for a knot K , BT .K/ is a link with components indexed by the leaf
nodes of T , which is defined inductively: for a single node tree T , BT .K/ D K .
If T 0 is obtained by attaching two child nodes to a node v of T , then BT 0.K/ is
obtained from BT .K/ by Bing doubling the component associated to v . For a link
L, we denote by WhC.L/ the link obtained by replacing each component with its
positive untwisted Whitehead double. We define the order of a binary tree T to be
number of non-leaf vertices i.e. one more than the number of trivalent vertices (since
the root vertex is bivalent), or equivalently, the number of leaf vertices minus one. We
denote the order of T by o.T /.

Theorem 3.9 (1) If �.K/¤ 0, then WhC.BT .K// is not o.T /–bipolar.

(2) For the Hopf link H , WhC.BT1;T2
.H // is not .o.T1/C o.T2/C 1/–bipolar.

Proof Levine showed that WhC.BT .K// has a knot J with �.J / > 0 as a covering
link of height o.T /. Similarly for WhC.BT1;T2

.H //, where the relevant covering link
has height o.T1/C o.T2/C 1.

4 Raising the bipolar height by one

The goal of this section is to prove the following:

Theorem 4.1 For any m> 1 and n� 0, there exist topologically slice m–component
links in S3 which are n–bipolar but not .nC 1/–bipolar.

To construct links satisfying Theorem 4.1, we will introduce an operation that pushes
a link into a deeper level of the bipolar filtration. To describe this behaviour of our
operation, we will use the following terminology:

Definition 4.2 The bipolar height of a link L is defined by

BH.L/ WDmaxfn j L is n–bipolarg:
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The Z.p/–bipolar height is defined by

BHp.L/ WDmaxfn j L is Z.p/–homology n–bipolarg:

By convention, BH.L/D�1 if L is not 0–bipolar. Similarly for BHp .

The proof of the following proposition is immediate from the definitions and is left to
the reader to check.

Proposition 4.3 For any L and for any p , we have BH.L/� BHp.L/.

The following refined notion will be the precise setting for our height-raising theorem.

Definition 4.4 We say that L has property BHp
C.n/ if BHp.L/D n and L is Z.p/–

homology .nC 1/–positive and we say that L has property BHp
�.n/ if BHp.L/D n

and L is Z.p/–homology .nC 1/–negative.

Our operation is best described in terms of string links. We always draw a string link
horizontally; components of a string link are oriented from left to right, and ordered
from bottom to top. We denote the closure of a string link ˇ by y̌.

From now on, we assume knots are oriented, so that a knot can be viewed as a
1–component string link and vice versa. (Recall that a 1–component string link is
determined by its closure.)

Definition 4.5 (1) For a knot or a 1–string link K , we define C.K/ to be the
2–component string link illustrated in Figure 1. The two parallel strands passing
through K are untwisted. Note that the closure 1C.K/ is the Bing double of K .

C.K/ D K

Figure 1: Bing doubling a knot K as a 2–string link

(2) For a 2–component string link ˇ , we define C.ˇ/ to be the 2–string link shown
in Figure 2. (For now ignore the dashed arcs.) As before, we take parallel strands
passing through each of the strings of ˇ in an untwisted fashion.
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C.ˇ/ D
ˇ

Figure 2: A doubling operation for 2–string links

The key property of the operation C.�/ is the following height-raising result:

Theorem 4.6 Suppose ˇ is a string link with one or two components such that y̌

has property BHp
C.n/. Then the link 1C.ˇ/ has property BHp

C.nC 1/.

We remark that the BHp
� analogue of Theorem 4.6 holds by taking mirror images.

As the first step of the proof of Theorem 4.6, we make a few useful observations as a
lemma.

Lemma 4.7 If y̌ is k –positive (resp. negative, bipolar), then 1C.ˇ/ is .kC1/–positive
(resp. negative, bipolar). If y̌ is Z.p/–homology k –positive (resp. negative, bipolar),
then 1C.ˇ/ is Z.p/–homology .k C 1/–positive (resp. negative, bipolar). If y̌ is
topologically (resp. smoothly) slice, then so is 1C.ˇ/ .

Proof For the case that ˇ is a 1–component string link, this is Lemma 3.7, plus
the observation that the Bing double of a slice link is slice, which follows from the
argument in the proof of Theorem 2.6(6).

For the 2–component string link case, observe that 1C.ˇ/ is obtained from the Bing
double B. y̌/ by band sum of components: two pairs of components are joined. The
dashed arcs in Figure 2 indicate where to cut to reverse these band sums. From this the
conclusion follows by Lemma 3.7 and Theorem 2.6(5). The sliceness claim is shown
similarly: the Bing double of a slice link is slice, as is the internal band sum of a slice
link.

Due to Lemma 4.7, in order to prove Theorem 4.6 it remains to show, given ˇ for
which y̌ has property BHp

C.n/, that 1C.ˇ/ is not Z.p/–homology .nC 2/–negative.
For this purpose we will use covering link calculus.

Geometry & Topology, Volume 18 (2014)



1560 Jae Choon Cha and Mark Powell

In what follows we use the following notation. For two knots J1 and J2 , let `.J1;J2/

be the 2–component string link which is the split union of string link representations
of J1 and J2 , as the first and second components respectively. For a 2–component
string link ˇ , we denote by ž the plat closure of ˇ , see Figure 3, which also indicates
the orientation which we give ž. We say that ˇ has unknotted components if each
strand of ˇ is unknotted.

ž D
ˇ

D ˇ

Figure 3: The plat closure of a 2–string links

In what follows, � denotes the product of string links given by concatenation.

Theorem 4.8 For any 2–component string link ˇ with unknotted components, the
link 1C.ˇ/ has, as a p–covering link of height one, the link

�
ˇ � `. žr ; ž/

�b in S3 .

See Figure 4 for the initial link 1C.ˇ/ , and Figure 5 for its height one covering link�
ˇ � `. žr ; ž/

�b .

1C.ˇ/ D ˇ

Figure 4: The closure of the 2–string link C.ˇ/

Proof Our proof mostly consists of pictures. While the statement of Theorem 4.8 is
independent of the choice of orientation of links due to our convention (see the remark
after Definition 3.1), we will work in the proof with oriented knots and (string) links in
order to show clearly how the orientations of involved blocks match. Indeed we will
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ˇ

ˇ

ˇ

D ˇ

ˇ

ˇ

Figure 5: 4
ˇ � `. žr ; ž/ is a height one covering link of bC.ˇ/

show that as oriented links the link in Figure 5 with the first (bottom) component’s
orientation reversed is a covering link of the link in Figure 4. Choose a such that
pa � 5 and take the pa –fold cyclic cover branched along the right hand component of
the link 1C.ˇ/ illustrated in Figure 4. The covering space is obtained by cutting the
3–sphere along a disk whose boundary is the right hand component, and glueing pa

copies of the result. The covering link (with the pre-image of the branching component
forgotten) in the branched cover is shown in Figure 6. Note that the ambient space is
again S3 since the branching component is an unknot.

Forgetting all components except two marked by � in Figure 6, we obtain the 2–
component link illustrated in Figure 7, since pa�5. Since ˇ has unknotted components,
the link in Figure 7 with the bottom component’s orientation reversed is isotopic to the
link

�
ˇ � `. žr ; ž/

�b which is illustrated in Figure 5. This completes the proof.

Now we are ready to give a proof of Theorem 4.6.

Proof of Theorem 4.6 Suppose ˇ is such that y̌ has property BHp
C.n/. We will

show that 1C.ˇ/ has property BHp
C.nC 1/. By Lemma 4.7, it suffices to show that

1C.ˇ/ is not Z.p/–homology .nC 2/–bipolar.

When ˇ is a 1–component string link, 1C.ˇ/ D B1. y̌/; that is, the operator C corre-
sponds to Bing doubling. So, if nD 0, then Theorem 3.8 (with nD 1 in the notation
of that theorem) says that 1C.ˇ/ is not Z.p/–homology 2–bipolar. For arbitrary n,
observe that the proof of Theorem 3.8 also works if we shift all bipolarity heights by a
constant.

Now suppose that ˇ is a 2–component string link. We will show that 1C.ˇ/ is not
Z.p/–homology .nC2/–negative. So let us suppose, for a contradiction, that 1C.ˇ/ is
Z.p/–homology .nC 2/–negative.
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ˇ

ˇ

ˇ

�

�

Figure 6: The cyclic branched covering

By Theorem 4.8 and Theorem 3.2, .ˇ �`. žr ; ž//b is Z.p/–homology .nC1/–negative.
Since y̌ is Z.p/–homology .nC 1/–positive and ž and žr are obtained from y̌ and
y̌r by band sum of components, ž and žr are Z.p/–homology .nC 1/–positive by
Theorem 2.6(5). It follows that .`. žr ; ž/�1/b is Z.p/–homology .nC 1/–negative
by Theorem 2.6(1), (2) and (3), where for a string link  , we denote the concordance
inverse obtained by mirror image and reversing string orientation by �1 . Then y̌,
which is concordant to .ˇ�`. žr ; ž/�`. žr ; ž/�1/b , is Z.p/–homology .nC1/–negative
by Theorem 2.6(5) and (8). This contradicts the hypothesis that y̌ has property BHp

C.n/.
Therefore 1C.ˇ/ is not Z.p/–homology .nC 2/–negative, as desired.
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ˇ

ˇ

ˇ

ˇ

ˇ

Figure 7: A two-component sublink of Figure 6

We are now ready to prove the promised result (Theorem 4.1) by giving explicit
examples. For a knot K , define a sequence fCn.K/g inductively by C0.K/ WD K ,
CnC1.K/ WD C.Cn.K// for n> 0. Note that Cn.K/ is a 2–component string link for
n> 0.

Corollary 4.9 Suppose K is a knot which is topologically slice and 0–bipolar and
Z.p/–homology 1–positive but not Z.p/–homology 1–bipolar for some p . Then the
2–component link 2Cn.K/ is topologically slice and n–bipolar but not .nC 1/–bipolar.

Proof Since K is topologically slice and 0–bipolar, 2Cn.K/ is topologically slice
and n–bipolar by applying Lemma 4.7 inductively. So BH.2Cn.K//� n. Also, since
K has property BHp

C.0/, 2Cn.K/ has property BHp
C.n/ by applying Theorem 4.6

inductively. In particular BHp.2Cn.K//D n, so BH.2Cn.K//� n by Proposition 4.3.
Thus BH.2Cn.K//D n and 2Cn.K/ is n–bipolar but not .nC 1/–bipolar.
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Using one of the knots of Cochran–Horn [10] for K , as discussed in the paragraph
after Theorem 3.8, the 2–component case of Theorem 4.1 follows from Corollary 4.9
with p D 2. For the general m–component case, the split union of the 2–component
example and an .m� 2/–component unlink is a link with all the desired properties.

5 String links and a subgroup of infinite rank

Thus far, the bipolar filtration of links with m� 2 components has been a filtration by
subsets; the set of links does not have a well defined notion of connected sums. In this
section we consider string links to impose more structure.

5.1 The bipolar filtration of string links

Although we have already used some standard string link terminology in Section 4, we
begin by recalling the definitions of string links and the concordance group of string
links, which is our object of study in this section. Readers who are familiar with string
links may skip the following three paragraphs.

Fix m distinct interior points in D2 and identify these with Œm� WD f1; : : : ;mg. An
m–component string link ˇ is a collection of m properly embedded oriented disjoint
arcs in D2 � I joining .i; 0/ to .i; 1/, i 2 Œm�. Let ˇ0 and ˇ1 be two m–component
string links. The product ˇ0 �ˇ1 is defined by stacking cylinders. We say that ˇ0 and
ˇ1 are concordant if there are m properly embedded disjoint disks in .D2 � I/� I

bounded by .ˇ0 � 0/[ .Œm� � @I � I/[ .�ˇ1 � 1/. Concordance classes of string
links form a group under the product operation. The identity is the trivial string
link Œm�� I � D2 � I . The inverse ˇ�1 of ˇ is defined to be its image under the
automorphism .x; t/! .x; 1� t/ on D2 � I . A string link is slice if it is concordant
to the trivial string link.

The quotient space of D2 � I obtained by identifying D2 � 0 and D2 � 1 under the
identity map and collapsing x� I to a point for each x 2 @D2 is diffeomorphic to S3 .
The closure y̌ � S3 of ˇ is defined to be the image of ˇ under the quotient map. A
string link ˇ is slice if and only if y̌ is slice as a link. Consequently two string links
ˇ0 and ˇ1 are concordant if and only if the closure of ˇ

0
ˇ�1

1
is slice as a link. We

note that if two string links are concordant then so are their closures, but the converse
does not hold in general; for an in-depth study related to this, the readers are referred
to [13].

Note that our definitions are also meaningful in the topological category with locally
flat submanifolds. In particular the notion of a topologically slice string link is defined.
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We say that a string link is n–positive, n–negative or n–bipolar if its closure is,
respectively, n–positive, n–negative or n–bipolar. Equivalently, these notions can
be defined by asking whether a string link is slice in a 4–manifold V with @V D
@.D2 � I � I/, where V should satisfy the properties of Definition 2.1.

As in the introduction, we denote the subgroup of topologically slice n–bipolar string
links with m–components by T SL

n .m/. Note that T SL
n .m/ is closed under group

operations by Lemma 2.4(1), (2), (3) and (5), since the closure of ˇ�1 is � y̌ and the
closure of ˇ0ˇ1 is obtained from y̌0 t y̌1 by band sum. Also, T SL

n .m/ is a normal
subgroup since ˇ and a conjugate of ˇ have concordant closures.

This section is devoted to the following special case of Theorem 1.2 in the introduction:

Theorem 5.1 For any n� 0 the quotient T SL
n .2/=T SL

nC1
.2/ contains a subgroup whose

abelianization is of infinite rank. For n� 1, the subgroup is generated by string links
with unknotted components.

For nD 0, the theorem follows from the result for knots in [10] by taking the disjoint
union of (string link representations of) the Cochran–Horn knots with a trivial strand.
Theorem 1.2 for the m> 2 component case follows by adjoining the correct number
of trivial strands.

5.2 Covering string links

To investigate the group structure of the string link concordance group, we formulate a
string link version of the covering link calculus. For this purpose, again similarly to
the link case, it is natural to consider string links in a Z.p/–homology D2 � I , which
we will call Z.p/–string links. Here a 3–manifold Y is said to be a Z.p/–homology
D2 � I if H�.Y IZ.p//ŠH�.D

2 � I IZ.p// and the boundary @Y is identified with
@.D2�I/. The boundary identification enables us to define product, closure and Z.p/–
homology concordance of Z.p/–string links. In addition, we define the Q=Z–valued
self-linking number of a component of a Z.p/–string link to be that of the corresponding
component of the closure. We remark that all Z.p/–string links considered in this
section have components with vanishing Q=Z–valued self-linking.

A string link is defined to be Z.p/–homology n–positive, n–negative or n–bipolar if
its closure is Z.p/–homology n–positive, n–negative or n–bipolar, respectively. The
definitions of the bipolar heights BH.ˇ/ and BHp.ˇ/ carry over verbatim from the
ordinary link case.

For a Z.p/–string link ˇ , we consider the following operations: (CL1) taking a sublink
of ˇ , and (CL2) taking the pre-image of ˇ in the pa –fold cyclic cover of the ambient
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space branched along a component of ˇ with vanishing Q=Z–valued self-linking. The
result can always be viewed as a Z.p/–string link; for this purpose we fix, in (CL2),
an identification of the pa –fold cyclic branched cover of .D2; Œm�/ branched along
i 2 Œm� with .D2; Œpa.m� 1/C 1�/.

Definition 5.2 A string link obtained from ˇ by a finite sequence of (CL1) and/or
(CL2) is called a p–covering string link of ˇ of height � h (or of height h as an abuse
of terminology), where h is the number of (CL2) operations.

The following immediate consequence of the definitions will be useful. Note that a
fixed sequence of operations (CL1) and (CL2) starting from an m–component string
link gives rise to a covering string link of any m–component string link, which we
refer to as a corresponding covering string link.

Lemma 5.3 The product operation of string links commutes with covering string link
operations. In other words, a covering string link of a product is the product of the
corresponding covering string links.

Essentially, Lemma 5.3 says that the covering string link operation induces a homo-
morphism of the string link concordance groups.

5.3 Computation for string link examples

To show Theorem 5.1 we consider the subgroup generated by the 2–component string
links Cn.Ki/, constructed in Section 4, where Ki are the knots used to prove [10,
Theorem 1.1]. Indeed, for most of the proof it suffices to assume that the Ki are knots
which are topologically slice, 0–bipolar and 1–positive. The exception to this is that
in the last part of Section 5.4 we need the Ki to also satisfy a technical condition on
certain d –invariants of double covers, which was shown in [10] (see Proposition 5.7).
As before we often regard a knot as a string link with one component and vice versa.

A typical element in the subgroup generated by the Cn.Ki/ is of the form
sQ

jD1

Cn.Kij /
"j ,

where �j D˙1.

Lemma 5.4 The string link
sQ

jD1

Cn.Kij /
"j has BH � n, BHp

� n for any prime p

and is topologically slice.

Proof Each factor string link Cn.Kij /
"j has closure which is n–bipolar, by Lemma 4.7.

If "j D�1 then this still holds by Theorem 2.6(1) and (2). The closure of the product
of the Cn.Kij /

"j is a band sum of the closures of the Cn.Kij /
"j . The latter link is

n–bipolar by Theorem 2.6(5).

Similarly,
Qs

jD1 Cn.Kij /
"j is topologically slice and Z.p/–homology n–bipolar.

Geometry & Topology, Volume 18 (2014)



Covering link calculus and the bipolar filtration of topologically slice links 1567

The remaining part of this section is devoted to showing that the subgroup generated
by the Cn.Ki/ has infinite rank abelianization. It turns out that for this purpose we
need a more complicated application of the covering link calculus than we used in
Section 4. In fact this is related to the orientation reversing which was performed in
the last paragraph of the proof of Theorem 4.8. This is not allowed for string links if
we want our covering links to respect the product structure, as in Lemma 5.3.

To describe our covering string link calculation, we use the following notation. For
a string link ˇ , define r.ˇ/ to be ˇ with reversed string orientation, and define
rs.ˇ/D r.� � � .r.ˇ// � � � / where r is applied s times. Note that rs.ˇ/D ˇ if s is even,
whereas rs.ˇ/D r.ˇ/ if s is odd. Define T .ˇ/ to be the string link shown in Figure 8,
and Ts.ˇ/DT .� � � .T .ˇ// � � � /, where T is applied s times. For a 1–component string
link ˛ , let `2.˛/D `.˛; ˛/ be the split union of two copies of ˛ , which is viewed as
a 2–component string link. Recall from Section 4 that ž is the 1–component string
link shown in Figure 3. Define Nd .J / to be the d –fold cyclic branched cover of a
knot J . We denote Nd .y̨/ by Nd .˛/ for a 1–component string link ˛ , viewing ˛ as
a knot. Given a string link ˇ in Y and another 3–manifold N , remove a 3–ball from
Y which is disjoint to ˇ . Filling in this 3–ball with a punctured N , we obtain a new
string link in Y # N . We call the result of this construction “ˇ in the Y summand of
Y # N ”.

ˇ

Figure 8: The string link T .ˇ/

Theorem 5.5 Suppose ˇ is a 2–component string link with unknotted components.
Then the string link Ts.rt .C.ˇ/// � `2.˛/ has, as a p–covering string link of height
one, the string link T2sC1.rsCtC1.ˇ// � `2.rsCt . ž/ � ˛/ in the D2 � I summand of
.D2 � I/ # Npa.˛/.

See Figures 9 and 10 for the base and covering string links in Theorem 5.5 for t D 0.
Here, s represents s left-handed half twistings (i.e. s positive crossings) arranged
vertically, which are obtained by applying Ts .

Proof of Theorem 5.5 We will give a proof for t D 0 only, since exactly the same
argument shows the t D 1 case; only the residue of t modulo 2 matters. By choosing
a such that pa � 5 and taking the pa –fold cyclic branched cover of D2� I along the
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ˇ

s

˛

˛

Figure 9: The string link Ts.C.ˇ// � `2.˛/

2sC 1

rsC1.ˇ/

rs. ž/

rs. ž/

˛

˛

Figure 10: The string link T2sC1.rsC1.ˇ// � `2.rs. ž/ �˛/

first (bottom) component of the link in Figure 9, we obtain a p–covering link which is
similar to that shown in Figure 6. By taking a sublink similar to the sublink which was
taken to pass from Figure 6 to Figure 7, we obtain the covering string link shown in
Figure 11, which is in the D2 � I summand of .D2 � I/ # Npa.˛/.

After an isotopy, we obtain the string link in Figure 12. We use that a single component
of ˇ is unknotted, so that the upper left and lower right occurrences of ˇ in Figure 11
are removed.

Then a further isotopy gives us Figure 13. Here the upper component in Figure 12
corresponds to the upper component of Figure 13. Using the fact that a local knot on
a component of a string link can be moved to anywhere on the same component, we
see that the upper left ž in Figure 12 becomes the upper rs. ž/ part in Figure 13. The
lower component is simplified similarly but an additional half twist is introduced.

Finally, by moving the box ˇ down, across the sC1 half twists, we obtain the desired
covering string link T2sC1.rsC1.ˇ// � `2.rs. ž/ �˛/ illustrated in Figure 10.
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ˇ

ˇ

ˇ

ˇ

ˇ

s

s

˛

˛

Figure 11: A covering string link of Figure 9, drawn in D2 � I

Corollary 5.6 For any 1–component string link  , the 2–component string link
Cn. / has, as a p–covering string link of height n, the 1–component string link
 � r. / �AC1. / � � �CCn�1. / in the D2 � I summand of the connected sum of D2 � I

and Z.p/–homology spheres of the form Npa.ACk. // where either 2� k � n� 1 or
.k;pa/D .1;p/.

Proof By repeated application of Theorem 5.5 starting with Cn. /, we obtain

T1

�
r.Cn�1. //

�
`2

�CCn�1. /
�
; T3

�
r.Cn�1. //

�
`2

�CCn�2. /CCn�1. /
�
; : : : ;

T2n�1�1

�
r.C1. //

�
`2

�AC1. / � � �CCn�1. /
�

as covering string links of Cn. /. The last covering string link in the above list has
height n�1 and is in the D2�I summand of .D2�I/# N , where N is a connected
sum of Z.p/–homology spheres of the form Npa.ACk. // with 2 � k � n� 1. This
covering string link is shown in Figure 14.

As the final covering, we proceed similarly to [7, Section 3]. By taking the p–fold
cover branched along the bottom component of the link in Figure 14 and then taking a
component, we obtain the string link illustrated in Figure 15, which is in the D2 � I
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ˇ

˛

˛

s

s

ž

ž

Figure 12: A simplified version of Figure 11

ˇ

sC 1

s

rs. ž/

rs. ž/

˛

˛

Figure 13: A planar version of Figure 12

summand of .D2�I/# N1 , where N1 is a connected sum of Z.p/–homology spheres
of the form Npa.ACk. // for either 2 � k � n � 1 or .k;pa/ D .1;p/. Note that
this can be done even for p D 2; the final covering does not require us to take a
covering of order pa � 5. It is easily seen that the link in Figure 15 is isotopic to
 � r. / �AC1. / � � �CCn�1. / as desired.
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r. /

2n�1� 1

AC1. / � � � BCn�1. /

AC1. / � � � BCn�1. /

Figure 14: A height n� 1 covering string link of Cn. /

AC1. / � � � BCn�1. /

r. /

r. /

2n�1� 1

Figure 15: A height n covering string link of Cn. /

5.4 Proof of Theorem 5.1

We are now ready to prove Theorem 5.1. As before, consider the 2–component string
link ˇ D

Qs
jD1 Cn.Kij /

"j where the Ki are the knots in [10]. We have that ˇ is
n–bipolar and topologically slice by Lemma 5.4. Therefore, it suffices to show the
following: define ai WD

P
fj jijDig "j . Suppose ai ¤ 0 for some i . Then ˇ is not

Z.p/–homology .nC 1/–bipolar.

In this proof we will work with a general prime p for as long as possible, although at
the end of the proof we will specialize to p D 2. The specialization occurs due to the
fact that we need to use d –invariant calculations which were made for double covers
of knots, by Manolescu–Owens [20] and Cochran–Horn [10].

By replacing ˇ with ˇ�1 and reindexing the knots Ki if necessary, we may assume
that a1 > 0. Suppose for a contradiction that ˇ is Z.p/–homology .nC 1/–negative.
Applying Theorem 3.2, we see that the knot

s

#
jD1

"j

�
Kij # Kr

ij
#
� n�1

#
kD1

CCk.Kij /
��
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is Z.p/–homology 1–negative, since it is the closure of a height n covering string
link of ˇ by Corollary 5.6 and Lemma 5.3. Here, by the description of the ambient
space of our covering links in Corollary 5.6, the knot lies in a 3–ball in the connected
sum, say N , of 3–manifolds of the form Npa."jCCk.Kij //, where either k � 2 or
.k;pa/ D .1;p/; we note that the exponent a need not be the same for different
summands.

Recall that Kij is 0–bipolar. So Ck.Kij /
"j is 2–bipolar for k � 2 by Lemma 4.7.

Since the plat closure .�/e is obtained from the closure .�/b by band sum of com-
ponents, "jCCk.Kij / is 2–bipolar for k � 2 by Theorem 2.6(5). Similarly "jCC1.Kij /

is 1–bipolar. Therefore �"jCCk.Kij / is 1–negative for k � 1. By Theorem 2.6(5),
we have that the knot

s

#
jD1

"j

�
Kij # Kr

ij
#
� n�1

#
kD1

CCk.Kij / #�CCk.Kij /
��
;

which is again in a 3–ball in N , is Z.p/–homology 1–negative. By Theorem 2.6(8),
the knot

s

#
jD1

"j .Kij # Kr
ij
/;

which is in a 3–ball in N , is Z.p/–homology 1–negative. Since the connected sum
operation is commutative, the knot

J WD#
i

ai.Ki # Kr
i /

lying in a 3–ball in N is Z.p/–homology 1–negative.

We will remove many summands from the ambient space N of J , without altering the
Z.p/–homology 1–negativity. First let V be a Z.p/–homology 1–negaton for J . For
k�2, we will remove all the Npa."jCCk.Kij // summands. Recall that D"j Ck.Kij / is 2–
bipolar for k�2. By Theorem 3.2, the branched cover Npa."jCCk.Kij // bounds a Z.p/–
homology 1–positon, say Vij . View @V as the union of a (many) punctured S3 and a
disjoint union of punctured Npa."jCCk.Kij // glued along the boundary. Viewing each
Vij as a (relative to the boundary) cobordism from a punctured Npa."jCCk.Kij // to
B3 , and attaching each �Vij to V along the punctured

Npa."j CCk.Kij // for k � 2,

we obtain a 4–manifold W whose boundary is a connected sum, say N 0 , of 3–
manifolds of the form Np."jCC1.Kij //. Moreover, W is a Z.p/–homology 1–negaton
for the knot J which is now considered as a knot in N 0 . This can be seen by an easy
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Mayer–Vietoris argument which shows that

H2.W /=torsionŠ
�
H2.V /=torsion

�
˚
�L

H2.Vij /=torsion
�
;

and by observing that the change in orientation of the Vij causes their intersection
forms to be negative definite.

The argument above for removing the Npa."j CCk.Kij // summands for k � 2 also
works in the case k D 1, when "j D 1, since Kij is 1–positive and so CC1.Kij / is
2–positive. So we can in fact assume that J is a Z.p/–homology 1–negative knot in
a 3–ball in a connected sum of 3–manifolds of the form Np.�CC1.Kij //.

Furthermore, since a1 > 0 and K1 is 1–positive by our assumption, it follows that

J 0 DK1 #
�

#
i¤1

ai.Ki # Kr
i /
�

which is in the same ambient space is Z.p/–homology 1–negative.

We will derive a contradiction by using d –invariants. We remark that we essentially
follow the argument in [10, Section 4, Proof of Theorem 1.1], with additional compli-
cation required to resolve the difficulty from the remaining 3–manifold summands in
the ambient space of J 0 .

From now on we restrict to p D 2. Let † be the double branched cover of J 0 . It is
easily seen that † is the connected sum of N2.K1/, aiN2.Ki # Kr

i / with i ¤ 1, and
additional summands of the form

N2.�CC1.K
r
ij
//:

By combining Figures 1 and 3, observe that the knot �CC1.K
r
ij
/ is the Whitehead

double of �Kr
ij

with positive clasp. So N2.�CC1.K
r
ij
// is a homology sphere. It

follows that N2.�CC1.K
r
ij
// has a unique spinc –structure, and the spinc –structures of

Y WDN2.K1/ #
�

#
i¤1

aiN2.Ki # Kr
i /
�

are in 1–1 correspondence with those of †. We need the following fact concerning
the knots Ki :

Proposition 5.7 [10, Section 4, proof of Theorem 1.1] There is a spinc –structure
s on Y such that d.Y; s/ < 0 and the corresponding first homology class lies in any
metabolizer.
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In our case, the corresponding spinc –structure t of † also represent a homology class
lying in any metabolizer, and we have d.†; t/ D d.Y; s/C

P
` d.Y`/ where the Y`

denote the N2.�CC1.K
r
ij
// summands and d.Y`/ denotes the d –invariant associated

to the unique spinc –structure. By [20, Theorem 1.5], d.Y`/ � 0 since �CC1.K
r
ij
/ is

a positive Whitehead double. It follows that d.†; t/ < 0. By the Z.2/–homology 1–
negative version of Theorem 2.8, this contradicts that J 0 is Z.2/–homology 1–negative.

Appendix A: Signature invariants and 0–positivity of knots
in Z.p/–homology spheres

In this appendix we give a proof that the signature invariant of knots in rational homology
spheres defined in [6] gives an obstruction to Z.p/–homology 0–positivity. This is a
generalization of [9, Proposition 4.1]

We begin by describing the invariant following [6]. Suppose K is a knot in a rational
homology 3–sphere Y . A surface F embedded in Y is called a generalized Seifert
surface for K if for some c ¤ 0, F is bounded by the union of c parallel copies of K

which are taken along a framing on K which agrees with the framing induced by F on
each parallel copy. The integer c is called the complexity of F . See Lemma 2.5 and the
preceding discussion on zero-framings of knots in rational homology spheres. A Seifert
matrix A is defined as usual: choosing a basis fxig of H1.F /, AD .lkY .x

C
i ;xj //ij

where xCi is obtained by pushing xi slightly along the positive normal direction of F .
Note that here the linking number lkY is rational-valued. Define, for � 2R,

�A.�/D sign
�
.1� e2�i� /AC .1� e�2� i� /AT

�
and let

�A.�/D
1

2

�
lim
�!��

�A.�/C lim
�!�C

�A.�/
�

be the average of the one-sided limits. Now the signature average function for K is
defined by �K .�/D �A.�=c/, where c is the complexity of the generalized Seifert
surface F . Due to [6], the function �K WR! Z is invariant under a concordance in
a rational homology S3 � I .1 For knots in S3 , �K is equal to the Levine–Tristram
signature.

Theorem A.1 If K is Z.p/–homology 0–positive, then x�K .�/� 0 for any � 2R.

1In [6], they consider the jump at � , rather than the average, as a concordance invariant. It is easy to
see that the average function determines the jump function and vice versa.
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Proof First note that x�K is defined by Lemma 2.5. Suppose V is a Z.p/–homology
0–positon for an K � Y , with slicing disk �. Choose a generalized Seifert surface F

for K , and let A be the Seifert matrix. It suffices to show that �A.�/� 0 on a dense
subset of R. By using the observation in [6, page 1178] that the Seifert pairing vanishes
at .x;y/ whenever either x or y is a boundary component of F , it can be seen that the
Seifert matrix of A is S –equivalent to the Seifert matrix of a new surface obtained by
attaching half-twisted bands to the boundary of F in such a way that the new boundary
is the .n; 1/–cable of K . Since the .n; 1/–cable of K is Z.p/–homology 0–positive
by Theorem 2.6(6), we may assume that @F DK .

We will use the following fact: consider a rational homology 3–sphere † and a
framed knot J in †. Suppose .W;M / is a .4; 2/–manifold pair with M framed
(i.e. we identify �.M / with M �D2 ), such that .†;J / is a component of @.W;M /,
zH�.@W IQ/D 0, and .W;M / is primitive in the sense of [6, page 1170], that is, there

is a homomorphism H1.W �M /! Z whose restriction on the circle bundle of M

coincides with H1.M �S1/!H1.S
1/D Z induced by the projection. Let zW be

the d –fold cyclic branched cover of W along M , and t W zW ! zW be the generator
of the covering transformation group corresponding to the (positive) meridian of J .
Let �k;d .W;M / be the signature of the restriction of the intersection pairing on the
e2�ik=d –eigenspace of t�WH2. zW IC/!H2. zW IC/.

Lemma A.2 The value �k;d .W;M /� sign.W / is determined by .†;J /, indepen-
dently of the choice of .W;M /.

Some special cases of Lemma A.2, at least, seem to be folklore in the classical signature
theory (eg, see [25, Theorem 4.4] for the case of W D †� I ). The above general
case is essentially proven by an argument of [6, Lemma 4.2], although [6, Lemma 4.2]
is stated with a slightly stronger hypothesis to eliminate the sign.W / term. For the
reader’s convenience we will give a proof later.

Let F 0�Y �I be the framed surface obtained by pushing the interior of F �Y DY �0

slightly into Y � .0; 1/. In [6, Lemma 4.3], it was shown that �A.k=d/D �k;d .Y �

I;F 0/. Since sign.Y � I/D 0, it follows that �A.k=d/D �k;d .V; �/� sign.V / by
Lemma A.2.

The remaining part of the proof is now almost identical with that of [9, Proposition 4.1].
Since V has positive definite intersection form, sign.V /D b2.V /. Using the obser-
vations given above, the eigenspace-refined Euler characteristic argument of the last
part of the proof of [9, Proposition 4.1] is carried out to show that �k;d .V; �/� b2.V /

whenever d − k . Therefore �A.k=d/ � 0 for d − k . Since such k=d form a dense
subset of R, the proof is completed.
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Proof of Lemma A.2 Suppose both .W;M / and .W 0;M 0/ are as in the description
above the statement of Lemma A.2. We consider the pair .X;E/D .W;M /[.†;J /
�.W 0;M 0/. We identify the normal bundle of E with E �D2 under the framing
of E . By the assumption there is a map X �E! S1 which restricts to the projection
E �S1! S1 on the circle bundle associated to the normal bundle of E . We may
assume that it restricts to a constant map on @X , since H1.@X / is torsion. Extend it
to f WX D X � 0!D2 by glueing the projection E �D2!D2 , and extend f to
gWU DX �I!D2 in such a way that the restriction of g on .@X �I/[@X�1 .X �1/

is a constant map away from 0 2D2 . We may assume g is smooth and 0 2D2 is a
regular value. Now N D g�1.0/ is a submanifold in U satisfying

@.U;N /D .X � 0;E/[ .@X � I;∅/[ .X � 1;∅/:

It follows that �k;d .X;E/C �k;d .@X � I;∅/ D �k;d .X;∅/. It is well known that
�k;d .X;∅/D sign.X /, namely, the eigenspace refined signature of the d –fold covering
associated to the zero map �1.�/! Zd is equal to the ordinary signature. We also
have �k;d .@X �I;∅/D sign.@X �I/D 0, where the last equality holds since @X �I

is a product. By combining the above with Novikov additivity, it follows that

�k;d .W;M /� �k;d .W
0;M 0/D �k;d .X;E/D sign.X /D sign.W /� sign.W 0/:

Appendix B: Amenable von Neumann �–invariants
and n–positivity

In this appendix we discuss the relationship between amenable von Neumann �–
invariants and Z.p/–homology n–positivity.

Theorem B.1 Suppose a knot K has a Z.p/–homology n–positon V with slicing
disk �. Let M.K/ be the zero-surgery manifold of K . If �W�1.M.K// ! � is
a homomorphism into an amenable group � lying in Strebel’s class D.Zp/ that
sends a meridian of K to an infinite order element and extends to  W�1.V ��/!

� , then the von Neumann invariant �.2/.M.K/; �/ is nonpositive. In addition, if
 .Pn�1.V ��//D feg (for example when Pn� D feg), then �.2/.M.K/; �/D 0.

Our proof is a combination of the idea of its homotopy n–positive analogue (see [9,
Theorem 5.8]) and the technique for amenable L2 –invariants in [2].

Proof Consider W0 D V � �.D/, whose boundary is M.K/. Let �.2/.M.K/; �/

be the invariant given by (or defined to be) the L2 –signature defect sign.2/� .W0/�

sign.W /, where sign.2/� .W0/ is the L2 –signature of the intersection pairing defined
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on H2.W0IN�/ and N� is the group von Neumann algebra of � . Since � is
amenable and in D.Zp/, we have that the L2 –dimension dim.2/H2.W0ING/ is
not greater than the Zp –Betti number b2.W0IZp/ by [2, Theorem 3.11]. It fol-
lows that j sign.2/� .W0/j � b2.W0IZp/. By Lemma 2.4(2), b2.W0IZp/ D b2.W0/.
Since W0 has positive definite intersection form, b2.W0/D sign.W0/. It follows that
�.2/.M.K/; �/� 0.

To prove the other conclusions of the theorem, consider the connected sum W of W0

and r copies of CP2 , where r D b2.V /. Then W has the following properties:

(1) @.W /DM.K/.

(2) H1.W / Š Z˚ .torsion coprime to p /, and the meridian of K represents an
integer coprime to p in H1.W /=torsionŠ Z.

(3) H2.W / D Z2r ˚ .torsion coprime to p /. There exist elements `1; : : : ; `r ,
d1; : : : ; dr 2H2.W IZŒ�1.W /=Pn�1.W /�/ such that the images of the `i , dj

generate H2.W / modulo torsion, �n.`i ; j̀ /D 0 and �n.`i ; dj /D ıij , where
�n is the intersection pairing over ZŒ�1.W /=Pn�1.W /�.

(1) is obvious. (2) and the first statement of (3) follow immediately from Lemma 2.4.
Consider the surfaces Sj given in Definition 2.3 of Z.p/–homology n–positivity,
and the surfaces Pi D (CP1 in the i th CP2 summand). We may assume both Sj

and Pi lie in W . Since �1.Sj /, �1.Pi/� Pn�1.W /, the classes of Sj and Pi are
in H2.ZŒ�1.W /=Pn�1.W /�/. We have �n.ŒSi �; ŒSj �/D ıij , �n.ŒSj �; ŒPi �/D 0, and
�n.ŒPi �; ŒPj �/D�ıij . Therefore `i D ŒSi �C ŒPi � and di D ŒSi � satisfy (3).

If  .Pn�1.V ��//D feg, then the proof of [2, Theorem 3.2] is carried out without
any change, using (1), (2) and (3), to show �.2/.M.K/; �/D 0.
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