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Abstract. We characterise the set of fundamental groups for which there exist n-manifolds
that are h-cobordant (hence homotopy equivalent) but not simple homotopy equivalent, when n

is sufficiently large. In particular, for n ≥ 12 even, we show that examples exist for any finitely

presented group G such that the involution on the Whitehead group Wh(G) is nontrivial. This
expands on previous work, where we constructed the first examples of even-dimensional manifolds

that are homotopy equivalent but not simple homotopy equivalent. Our construction is based on

doubles of thickenings, and a key ingredient of the proof is a formula for the Whitehead torsion
of a homotopy equivalence between such manifolds.

1. Introduction

Two finite CW-complexes are said to be simple homotopy equivalent if they are related by a
sequence of expansions and collapses of cells [Whi50Whi50, Coh73Coh73]. This gives an equivalence relation
which interpolates between homotopy and homeomorphism in the sense that homeomorphic im-
plies simple homotopy equivalent implies homotopy equivalent [Cha74Cha74]. This notion has proven
extremely useful in manifold topology and lies behind the s-cobordism theorem, which is the basis
for the vast majority of manifold classification results in dimension at least four.

Lens spaces give examples of smooth n-manifolds in all odd dimensions n ≥ 3 that are homotopy
equivalent but not simple homotopy equivalent. Examples in all even dimensions n ≥ 4 were
constructed in previous work of the authors [NNP23NNP23], with the caveat that the manifolds are
topological in dimension four. The examples constructed there are homotopy equivalent to L×S1

for some lens space L, and consequently have fundamental groups C∞ × Cm for some m ≥ 2. In
this article, we construct new classes of manifolds that are homotopy equivalent but not simple
homotopy equivalent. A key motivation is the following question. All of our manifolds will be
assumed to be smooth, however our results apply equally in the PL or topological categories.

Question 1.1. For which finitely presented groups G and homomorphisms w : G→ {±1} are there
n-manifolds with fundamental group G and orientation character w that are homotopy equivalent
but not simple homotopy equivalent?

For a group G, Whitehead [Whi39Whi39,Whi41Whi41,Whi49Whi49,Whi50Whi50] defined the abelian group Wh(G), and
for a homotopy equivalence f : X → Y between finite CW complexes, with G = π1(Y ), defined
the Whitehead torsion τ(f) ∈ Wh(G). He also proved that a homotopy equivalence f is simple
if and only if τ(f) = 0. Consequently, for a positive answer to Question 1.11.1, it is necessary that
Wh(G) ̸= 0. As we only consider homotopy equivalences between n-manifolds, a stronger condition
can be given in terms of Wh(G,w), the Whitehead group Wh(G) equipped with the canonical
involution x 7→ x induced by the involution on ZG determined by g 7→ w(g)g−1. Namely, it is
necessary that Jn(G,w) ̸= 0 (see Proposition 2.102.10), where we use the notation

Jn(G,w) := {y ∈ Wh(G,w) | y = −(−1)ny} ≤ Wh(G,w),

In(G,w) := {x− (−1)nx | x ∈ Wh(G,w)} ≤ Jn(G,w).
Our main result is that in high dimensions a slightly stronger condition, the nonvanishing of

In(G,w), is sufficient. In fact, this condition precisely characterises when manifolds that are
h-cobordant but not simple homotopy equivalent exist.

Theorem A. Let n = 9 or n ≥ 11, let G be a finitely presented group, and let w : G → {±1} be
a homomorphism. Then there is a pair of n-manifolds with fundamental group G and orientation
character w that are h-cobordant but not simple homotopy equivalent if and only if In(G,w) ̸= 0.
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Recall that a cobordism (W ;M,N) is an h-cobordism if the inclusion maps M →W and N →
W are homotopy equivalences. In particular, h-cobordant but not simple homotopy equivalent
manifolds are also examples of homotopy equivalent but not simple homotopy equivalent manifolds.
Theorem AA will be complemented by Theorem 1.61.6, which gives a sufficient (but possibly not
necessary) condition for the existence of manifolds that are homotopy equivalent, but neither
simple homotopy equivalent, nor h-cobordant. The implications of these results for the existence
of homotopy equivalent but not simple homotopy equivalent manifolds will be summarised in
Section 1.41.4, and in particular in Table 11.

Theorem AA can be used to construct examples of manifolds that are homotopy but not simple
homotopy equivalent, provided that In(G,w) ̸= 0. If G is torsion free and satisfies the Farrell Jones
conjecture, then Wh(G) = 0 and so In(G,w) = 0 for all orientation characters w. We therefore
consider groups G that have nontrivial torsion. It was shown by Wall [Wal74Wal74] that, if G is a finite
group and w = 1, then the involution is trivial when restricted to Wh′(G), the free part of Wh(G).
This can be used to show that the involution is trivial for a range of finite groups, including finite
abelian groups [Bak77Bak77, Theorem 1] and finite 3-manifold groups [KS92KS92, p742].

If n is even, then In(G,w) ̸= 0 if and only if the involution on Wh(G,w) is nontrivial. It is not
straightforward to find groups with this property and this explains why it was so much harder to
find examples in even dimensions. Nonetheless the involution has been shown to be nontrivial for
groups of the form C∞×Cm for certain m ≥ 2 (see [NNP23NNP23, Theorem 5.15 (i)] and [Mil66Mil66, p. 421])
and for certain finite p-groups (see [Oli80Oli80, Proposition 24], [Oli88Oli88, Example 8.11]), the smallest of
which has order 35 = 243. Using the latter examples, we now obtain the following.

Corollary 1.2. Let n ≥ 12 be even. Then there exist orientable n-manifolds with finite funda-
mental group that are homotopy equivalent but not simple homotopy equivalent.

As mentioned above, lens spaces give examples in all odd dimensions n ≥ 3 since their funda-
mental groups are finite cyclic. Corollary 1.21.2 demonstrates the utility of Theorem AA and sits in
contrast to the examples constructed in [NNP23NNP23], which were all homotopy equivalent to L × S1

for some lens space L and so had fundamental groups of the form C∞ × Cm.

1.1. Simple homotopy manifold sets. To study the difference between homotopy equivalence
and simple homotopy equivalence, we introduced the simple homotopy manifold set of a closed
n-manifold M in [NNP23NNP23]. This is the set of n-manifolds homotopy equivalent to M up to simple
homotopy equivalence:

Mh
s (M) := {n-manifolds N | N ≃M}/ ≃s

where we write≃ for homotopy equivalence and≃s for simple homotopy equivalence. Hence there is
a pair of manifolds (with a given fundamental group and orientation character) that are homotopy
equivalent but not simple homotopy equivalent if and only if there is an M with |Mh

s (M)| > 1.
To understand Mh

s (M), it is helpful to also consider the following variations:

MhCob
s (M) := {n-manifolds N | N is h-cobordant to M} / ≃s

Mh
s,hCob(M) := {n-manifolds N | N ≃M} /⟨≃s,hCob⟩

where ⟨≃s,hCob⟩ denotes the equivalence relation generated by simple homotopy equivalence and
h-cobordism (see [NNP23NNP23, Theorem E]). In particular, if |MhCob

s (M)| > 1 or |Mh
s,hCob(M)| > 1,

then |Mh
s (M)| > 1. By [NNP23NNP23, Proposition 4.22] the converse also holds when n ≥ 5.

To state the results about simple homotopy manifold sets that we will need, we recall that the

Tate cohomology group Ĥn+1(C2;Wh(G,w)) is canonically identified with Jn(G,w)/In(G,w),
and we denote the quotient map by

π : Jn(G,w) → Ĥn+1(C2;Wh(G,w)).

We will also make use of the homomorphism ψ : Lhn+1(ZG,w) → Ĥn+1(C2;Wh(G,w)) from the
Ranicki–Rothenberg exact sequence (see [Sha69Sha69], [Ran80Ran80, §9]). Finally, for an n-manifold M with
fundamental group G and orientation character w : G→ {±1}, we introduce the following notation:

T (M) := {τ(g) | g ∈ hAut(M)} ⊆ Jn(G,w)

U(M) := {π(τ(g)) | g ∈ hAut(M)} ⊆ Ĥn+1(C2;Wh(G,w))

where hAut(M) is the group of homotopy automorphisms of M (and we used Proposition 2.102.10).
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The following result, which was proved in [NNP23NNP23, Propositions 4.20–21], will be our main tool
for determining when a simple homotopy manifold set is nontrivial or trivial.

Proposition 1.3. Let n ≥ 5 and let M be an n-manifold. Let G = π1(M) with orientation
character w : G→ {±1}. Then

(a) |MhCob
s (M)| > 1 if and only if In(G,w) \ T (M) is nonempty.

(b) If Im(ψ) \ U(M) is nonempty, then |Mh
s,hCob(M)| > 1.

(c) If |Mh
s,hCob(M)| > 1, then Ĥn+1(C2;Wh(G,w)) ̸= 0.

1.2. Homotopy equivalences of doubles. By Proposition 1.31.3, to show that a simple homotopy
manifold set is nontrivial for some M , we need to understand the involution on the Whitehead
group of π1(M), and the group of homotopy automorphisms hAut(M). In this paper we will be
focusing on the latter. Our aim is to develop a systematic method for constructing manifolds M ,
with arbitrary predetermined fundamental group G and orientation character w, such that we have
control over the Whitehead torsion of homotopy automorphisms of M . To achieve this, we will
study doubles and homotopy equivalences between them.

Our central result is a formula for the Whitehead torsion of such a homotopy equivalence
(Theorem BB), which we will discuss below. By applying this formula to certain doubles, we get
sufficient conditions for the existence of an M with nontrivial MhCob

s (M) or Mh
s,hCob(M) (and

hence Mh
s (M)), expressed in terms of the involution on Wh(G,w). These, and a few further

applications of Theorem BB, will be discussed in Section 1.31.3.
We start by introducing the doubles that we will study. Fix positive integers n, k such that

n ≥ max(6, 2k + 2). Let K be a k-complex, i.e. a finite k-dimensional CW complex, and let T
be an n-dimensional thickening of K, i.e. an n-manifold with boundary together with a simple
homotopy equivalence fT : K → T (see Section 44). Then a double over K is a manifold of the
form M = T ∪Id∂T

T (a trivial double), M = T ∪g T where g : ∂T → ∂T is a diffeomorphism (a
twisted double), or M = T ∪W ∪ T where W is an h-cobordism between two copies of ∂T (a
generalised double). In each case M comes equipped with a canonical map φ : K → M , which is
the composition of fT and the inclusion of the first component T →M .

If M is an n-manifold and K is a k-complex, then we will call a map φ : K → M a polar-
isation of M , and the pair (M,φ) a polarised manifold. We will say that (M,φ) has a triv-
ial/twisted/generalised double structure if, for some thickening T of K, M has a decomposition as
above such that the canonical map K →M is homotopic to φ.

We will obtain the following recognition criterion for generalised doubles (see Proposition 5.25.2).

Proposition 1.4. Let (M,φ) be a polarised manifold. Then (M,φ) has a generalised double
structure if and only if φ is

⌊
n
2

⌋
-connected.

It follows that the class of generalised doubles is closed under homotopy equivalence, i.e. if
(M,φ) has a generalised double structure and M ≃ N , then (N,ψ) also has a generalised double
structure for some ψ. Note that the same is not true for the classes of twisted and trivial doubles.

Given a polarised manifold (M,φ) such that φ is
⌊
n
2

⌋
-connected, we can define an invariant

τ(M,φ), called the Whitehead torsion of (M,φ), as follows. There is a thickening fT : K → T
of K and an embedding i : T → M such that i ◦ fT ≃ φ. Let C = M \ i(IntT ), then by general
position and because n ≥ 2k + 2, the map φ is homotopic to a map that factors as K → C →M ,
with the first map a homotopy equivalence φ′ : K → C. In particular the inclusion C →M induces
an isomorphism π1(C) ∼= π1(M), so we can identify Wh(π1(C)) with Wh(π1(M)).

Definition 1.5. Let τ(M,φ) = τ(φ′) ∈ Wh(π1(M)).

This invariant will show up in the formula of Theorem BB as an error term. We will also prove
in Corollary 5.85.8 that if (M,φ) has a trivial double structure, then τ(M,φ) = 0. The converse does
not hold, but if τ(M,φ) = 0, then (M,φ) has a twisted double structure, and more generally see
Proposition 5.105.10 for a result characterising precisely when a twisted double structure exists.

Next we consider homotopy equivalences between doubles. If (M,φ) is a polarised manifold and
φ is

⌊
n
2

⌋
-connected, then we can find a CW decomposition ofM such that φ is the embedding of its

k-skeleton. Suppose that N is another n-manifold with an
⌊
n
2

⌋
-connected polarisation ψ : L→ N

for a k-dimensional CW complex L. Then by cellular approximation any homotopy equivalence
f : M → N restricts to a map α : K → L. This α is also a homotopy equivalence if (M,φ) and
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(N,ψ) satisfy some mild restrictions on their dimensions or double structures; in this case we call
them split polarised (SP) manifolds (see Definition 5.125.12). The following key theorem then allows
us to compute the Whitehead torsion of f from that of α (see Theorem 6.56.5).

Theorem B. Suppose that (M,φ) and (N,ψ) are split polarised manifolds and f : M → N is a
homotopy equivalence. Then

τ(f) = τ(α)− (−1)nτ(α) + τ(N,ψ)− f∗(τ(M,φ)) ∈ Wh(π1(N), wN )

where α : K → L is the restriction of f , Wh(π1(L)) is identified with Wh(π1(N)) via ψ∗ and wN
is the orientation character of N .

To prove Theorem BB, we start by considering the algebraic version of the problem. We consider
split chain complexes, which are those that split as the direct sum of their lower and upper halves
(see Definitions 3.13.1 and 3.23.2). Provided that they are also based and satisfy a version of Poincaré
duality, we compute the Whitehead torsion of a chain homotopy equivalence between two such
chain complexes in terms of the Whitehead torsion of the restriction of the chain map to the lower
half (see Lemma 3.63.6). The formula contains two error terms, which are intrinsic to the two chain
complexes, namely they are given by the Whitehead torsion of the restriction of the Poincaré
duality map. To derive Theorem BB from this, we show that if (M,φ) is an SP manifold, then its
cellular chain complex splits and its Whitehead torsion τ(M,φ) is equal to the associated error
term (see Theorem 5.145.14).

1.3. Applications of Theorem BB. In the main applications of Theorem BB we restrict to special
types of doubles where we have control over the right hand side of the formula. In particular,
when τ(M,φ) = 0 (which can be ensured by taking M to be a trivial double), then we have
τ(f) ∈ In(G,w) for every homotopy automorphism f of M . By Proposition 1.31.3 (bb) we have the
following (see Theorem 7.37.3).

Theorem 1.6. Let n ≥ 5, let G be a finitely presented group and let w : G → {±1} be such that

ψ : Lhn+1(ZG,w) → Ĥn+1(C2;Wh(G,w)) is nontrivial. Then there exists an n-manifold M with

fundamental group G and orientation character w such that |Mh
s,hCob(M)| > 1.

Remark 1.7. (a) For n ≥ 6, this can also be deduced from results in Hausmann’s unpublished
preprint [Hau80Hau80, Sections 9–10].

(b) For G = C∞ ×Cm, w = 1, and n even, the map ψ can be nontrivial by combining [NNP23NNP23,
Proposition 3.12] with [NNP23NNP23, Theorem 1.8 (ii)]. More specifically, by [NNP23NNP23, Proposition
11.16], ψ ̸= 0 for infinitely many groups of the form C∞ × C2k .

When we also have some control over the possible values of τ(α), Theorem BB gives even stricter
restrictions on the Whitehead torsions of homotopy equivalences and automorphisms. For ex-
ample, if K and L are k-manifolds with orientation character w, then τ(α) ∈ Jk(G,w) (see
Proposition 2.102.10). We obtain the following simple homotopy rigidity theorem for sphere bundles.

Theorem C. Suppose that j > k are positive integers and j is odd. Let K and L be k-manifolds,
and let Sj → M → K and Sj → N → L be orientable (linear) sphere bundles. Then every
homotopy equivalence f : M → N is simple.

Remark 1.8. If we think of the Whitehead torsion as an invariant analogous to the Euler charac-
teristic (cf. [NNP23NNP23, Lemma 2.18]), then Theorem CC can be regarded as the analogue of the fact
that odd dimensional manifolds have vanishing Euler characteristic.

Combined with Proposition 1.31.3 (aa), Theorem CC leads to a proof of Theorem AA (see Section 7.27.2).
At the same time, it produces a class of manifolds, with arbitrary fundamental groups, within
which two manifolds are homotopy equivalent if and only if they are simple homotopy equivalent.

To get more concrete examples, next we consider doubles over certain 2-complexes X with
fundamental group C∞ × Cm, for which Metzler showed that τ : hAut(X) → Wh(C∞ × Cm) is
not surjective [Met79Met79, Theorem 1]. Using these complexes X, improved constraints on the set
τ(hAut(X)), and Proposition 1.31.3 (aa), we obtain the following theorem.

Theorem 1.9. Let n ≥ 5 and let m ≥ 2 be such that {x − (−1)nx | x ∈ K̃0(ZCm)} ̸= 0. Then
there is an orientable n-manifold M with fundamental group C∞×Cm such that |MhCob

s (M)| > 1.
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Remark 1.10. If n is even, then examples where {x − x | x ∈ K̃0(ZCm)} ̸= 0 are given in
[NNP23NNP23, Theorem 1.7 (i)]. If n is odd then, by [NNP23NNP23, Lemma 10.2 (i)] and a similar argument

to the one used in [NNP23NNP23, Lemma 11.4], we have |{x + x | x ∈ K̃0(ZCm)}| ≥ h+m where h+m
denotes the plus part of the mth cyclotomic class number. For example, we have that h+136 ̸= 1
[Was97Was97, p. 421].

Finally we note that τ(M,φ) can be used to define an invariant for certain unpolarised manifolds.
We say that M is a split manifold if there exists a polarisation φ : K →M such that (M,φ) is an
SP manifold. For such an M we define

τ(M) := π(τ(M,φ)) ∈ Ĥn+1(C2;Wh(π1(M), w))

where w : π1(M) → {±1} is the orientation character of M . It can be shown using Theorem BB
that this is well-defined (see Section 7.47.4). If a split manifold M is also a manifold without middle
dimensional handles in the sense of Hausmann [Hau80Hau80], then τ(M) recovers the “torsion invariant”
defined in [Hau80Hau80, Section 9], which was shown to be invariant under simple homotopy equivalences
and homotopy equivalences induced by h-cobordisms. We prove the following (see Theorem 7.227.22).

Theorem 1.11. On the class of split manifolds, τ(M) is a complete invariant for the equivalence
relation generated by simple homotopy equivalence and h-cobordism.

1.4. Summary. Let G be a finitely presented group with a homomorphism w : G → {±1}. We
now give a brief overview of how the above results can be used to decide whether a pair of ho-
motopy equivalent but not simple homotopy equivalent n-manifolds with fundamental group G
and orientation character w exists – equivalently, an whether an M exists with 1-type (G,w) and
|Mh

s (M)| > 1. We also consider the analogous questions for MhCob
s and Mh

s,hCob.

First, Theorem AA characterises pairs (G,w) such that |MhCob
s (M)| > 1 for some M with

fundamental group G and orientation character w in terms of the (non-)vanishing of In(G,w). For
Mh

s,hCob, Proposition 1.31.3 (cc) and Theorem 1.61.6 show that the nontriviality of Ĥn+1(C2;Wh(G,w)) is

necessary and the nonvanishing of ψ = ψn+1
(G,w) : L

h
n+1(ZG,w) → Ĥn+1(C2;Wh(G,w)) is sufficient.

The case when Ĥn+1(C2;Wh(G,w)) ̸= 0 but ψn+1
(G,w) = 0 is open in general.

Finally, if at least one of MhCob
s (M) and Mh

s,hCob(M) is nontrivial, then Mh
s (M) is nontrivial

as well. On the other hand, if Jn(G,w) = 0 (equivalently, In(G,w) = Ĥn+1(C2;Wh(G,w)) = 0),
then by Proposition 2.102.10 Mh

s (M) is trivial (and hence MhCob
s (M) and Mh

s,hCob(M) are trivial

too). Thus the existence of an M with |Mh
s (M)| > 1 can be decided in all cases except when

In(G,w) = 0, Ĥn+1(C2;Wh(G,w)) ̸= 0 and ψn+1
(G,w) = 0. We note that this case is nonempty:

for example, for n even, the group C4 × C4, with w = 1, falls into this category. Details will be
postponed for future work.

These results are summarised in Table 11, where we also indicate the restrictions on n needed
for our theorems to apply. (We are not asserting that the dimensional ranges given are optimal.)

In(G,w) Ĥn+1(C2;Wh(G,w)) ψn+1
(G,w) Mh

s MhCob
s Mh

s,hCob

= 0 = 0 = 0 No all n No all n No all n
= 0 ̸= 0 ̸= 0 Yes n ≥ 5 No all n Yes n ≥ 5
= 0 ̸= 0 = 0 Open - No all n Open -
̸= 0 = 0 = 0 Yes n = 9,≥ 11 Yes n = 9,≥ 11 No n ≥ 5
̸= 0 ̸= 0 ̸= 0 Yes n ≥ 5 Yes n = 9,≥ 11 Yes n ≥ 5
̸= 0 ̸= 0 = 0 Yes n = 9,≥ 11 Yes n = 9,≥ 11 Open -

Table 1. Is there an n-manifold M with fundamental group G and orientation
character w such that |Mh

s (M)| > 1 (resp. |MhCob
s (M)| > 1, |Mh

s,hCob(M)| > 1)?

Remark 1.12. The results listed in Table 11 also apply in the category of topological or PL man-
ifolds. That is because when there are examples of smooth manifolds that are, for instance,
homotopy equivalent but not simple homotopy equivalent, then those are also examples in the
other categories. The negative results in the first row and the MhCob

s column rely on Proposi-

tions 2.102.10 and 2.112.11, which only use Poincaré duality. Finally, when Ĥn+1(C2;Wh(G,w)) = 0 but
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In(G,w) = Jn(G,w) ̸= 0, the triviality of Mh
s,hCob follows ultimately from [NNP23NNP23, Proposition

4.21], so it holds in all three categories when n ≥ 5 (and also for topological 4-manifolds with good
fundamental group).

Organisation of the paper. In Section 22 we will briefly recall the basic preliminaries on White-
head torsion, taken from [NNP23NNP23]. In Section 33 we consider split chain complexes, and prove the
algebraic version of Theorem BB. In Section 44, we recall Wall’s results on thickenings. In Section 55,
we introduce polarised doubles, SP manifolds and the invariant τ(M,φ), and then identify τ(M,φ)
with an invariant of the cellular chain complex of M . In Section 66, we combine the previous re-
sults to prove Theorem BB. In Section 77, we consider various applications of Theorem BB, including
Theorems AA, CC, 1.61.6, 1.91.9 and 1.111.11.
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JN was supported by the Heilbronn Institute for Mathematical Research and a Rankin-Sneddon
Research Fellowship from the University of Glasgow. MP was partially supported by EPSRC New
Investigator grant EP/T028335/2 and EPSRC New Horizons grant EP/V04821X/2.

2. Whitehead torsion

We will use the conventions established in [NNP23NNP23, Section 2]. The main sources are Mil-
nor [Mil66Mil66], Cohen [Coh73Coh73], and Davis-Kirk [DK01DK01]. We will assume familiarity with the definition
of simple homotopy equivalence ≃s, the Whitehead group Wh(G) of a group G, and the Whitehead
torsion τ(f) ∈ Wh(G) of a chain homotopy equivalence f : C∗ → D∗ between chain complexes
of finitely generated, free, based (left) ZG-modules (see [NNP23NNP23, Section 2]). For the reader’s
convenience, we briefly recall the main properties that we will need.

Proposition 2.1 ([DK01DK01, Theorem 11.27]). Let f, g : C∗ → D∗ be homotopic chain homotopy
equivalences. Then τ(f) = τ(g).

Lemma 2.2 ([DK01DK01, Theorem 11.28]). Let f : C∗ → D∗ and g : D∗ → E∗ be chain homotopy
equivalences. Then τ(g ◦ f) = τ(f) + τ(g). In particular τ(Id) = 0.

Lemma 2.3 ([NNP23NNP23, Lemma 2.17]). Let 0 → C ′
∗ → C∗ → C ′′

∗ → 0 and 0 → D′
∗ → D∗ → D′′

∗ → 0
be based short exact sequences of chain complexes, and let (f ′, f, f ′′) be a morphism between them,
where f ′ : C ′

∗ → D′
∗, f : C∗ → D∗, and f ′′ : C ′′

∗ → D′′
∗ are chain homotopy equivalences. Then

τ(f) = τ(f ′) + τ(f ′′).

Lemma 2.4 ([NNP23NNP23, Lemma 2.19]). Let f : C∗ → D∗ be a chain homotopy equivalence. For
every k ∈ Z, it can also be regarded as a chain homotopy equivalence f : Ck+∗ → Dk+∗, and we
have τ(f : Ck+∗ → Dk+∗) = (−1)kτ(f : C∗ → D∗).

We can also define the Whitehead torsion for a map between cochain complexes.

Definition 2.5. Let f : C∗ → D∗ be a homotopy equivalence of cochain complexes of finitely
generated, free, based, left ZG-modules. It can be regarded as a homotopy equivalence of chain
complexes f : C−∗ → D−∗, and we define τ(f : C∗ → D∗) := τ(f : C−∗ → D−∗).

If a group G is equipped with a group homomorphism w : G → {±1}, then w determines an
involution on the group ring ZG. So if C∗ is a finitely generated, free, based, left ZG-module chain
complex, then we can define the dual cochain complex C∗, which also consists of finitely generated,
free, based, left ZG-modules. Moreover, the involution on the group ring induces an involution
x 7→ x on the Whitehead group Wh(G,w), and we have the following.

Lemma 2.6 ([NNP23NNP23, Lemma 2.24]). Let f : C∗ → D∗ be a chain homotopy equivalence and let

f∗ : D∗ → C∗ be its dual. Then τ(f∗) = τ(f) ∈ Wh(G,w).

The following notation will be used when we need to change the underlying (group) ring of a
module or chain complex.

Definition 2.7. Let A and B be groups, X a left ZB-module and θ ∈ Hom(A,B). The left
ZA-module Xθ is defined as follows. The underlying abelian group of Xθ is the same as that of
X. For every a ∈ A and x ∈ Xθ let ax = θ(a) · x, where · denotes multiplication in X.

Similarly, if Y is a right ZB-module, then the right ZA-module Y θ is equal to Y as an abelian
group, and ya = y · θ(a) for every a ∈ A and y ∈ Y θ, where · denotes multiplication in Y .
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Let X and Y be finite CW complexes, and let F := π1(X) and G := π1(Y ). The cellular chain
complex of Y with ZG coefficients is C∗(Y ;ZG), which is a finitely generated, free, left ZG-module
chain complex, and similarly C∗(X;ZF ) is a ZF -module chain complex. Let f : X → Y be a
homotopy equivalence, and let θ = π1(f) : F → G. The right ZG-module ZG corresponds to a
local coefficient system on Y , which is pulled back to the local coefficient system onX corresponding
to the right ZF -module ZGθ. Therefore (after cellular approximation) f induces a chain homotopy
equivalence f∗ : C∗(X;ZGθ) → C∗(Y ;ZG) of left ZG-module chain complexes, and the Whitehead
torsion of f is defined to be the Whitehead torsion of f∗. We will use the following properties.

Theorem 2.8 (Chapman [Cha74Cha74]). Let f : X → Y be a homeomorphism between compact, con-
nected CW complexes. Then f is a simple homotopy equivalence.

Proposition 2.9 ([Coh73Coh73, Statement 22.4]). Let X, Y , and Z be finite CW complexes and let
f : X → Y and g : Y → Z be homotopy equivalences. Then τ(g ◦ f) = τ(g) + g∗(τ(f)).

The involution of the Whitehead group and the subgroups Jn(G,w) and In(G,w) play an
important role when considering homotopy equivalences between manifolds, due to the following
two results, both of which are consequences of Poincaré duality (cf. [Wal99Wal99], [KS77KS77], [Mil66Mil66]).

Proposition 2.10 ([NNP23NNP23, Proposition 2.35]). Let M and N be n-manifolds. Let G = π1(N)
with orientation character w : G → {±1}, and let f : M → N be a homotopy equivalence. Then
τ(f) ∈ Jn(G,w).

Proposition 2.11 ([NNP23NNP23, Proposition 2.38]). Let W be an h-cobordism between n-manifolds
M and N . Let G = π1(W ), let w : G → {±1} be the orientation character of W , and identify
π1(M) with G via the inclusion. If f : N → M denotes the homotopy equivalence induced by W ,

then τ(f) = −τ(W,M) + (−1)nτ(W,M) ∈ In(G,w).

3. Split chain complexes

In this section we define split chain complexes and prove Lemma 3.63.6 about computing the
Whitehead torsion of a chain homotopy equivalence between two split chain complexes.

Fix some positive integer n and a group G with orientation character w : G → {±1}. Every
chain complex C∗ will be assumed to consist of finitely generated free, left ZG-modules, satisfying
the condition Ci = 0 for i < 0 and i > n (and similarly for cochain complexes).

Definition 3.1. Let (C∗, d∗) be a chain complex. We define the chain complex (Cℓ∗, d
ℓ
∗) by C

ℓ
i = Ci

and dℓi = di : Ci → Ci−1 if i < n
2 and Cℓi = 0 if i ≥ n

2 . Similarly, we define (Cu∗ , d
u
∗) by C

u
i = Ci if

i > n
2 , d

u
i = di if i >

n
2 + 1, and Cui = 0 if i ≤ n

2 .

Let (C∗, d∗) be a cochain complex. We define ((Cu)∗, (du)∗) by (Cu)i = Ci and (du)i = di : Ci →
Ci+1 if i > n

2 and (Cu)i = 0 if i ≤ n
2 . Similarly, we define ((Cℓ)∗, (dℓ)∗) by (Cℓ)i = Ci if i < n

2 ,

(dℓ)i = di if i < n
2 − 1, and (Cℓ)i = 0 if i ≥ n

2 .

Definition 3.2. We say that a chain complex (C∗, d∗) splits if Cn/2 = 0 (if n is even) or d⌈n/2⌉ = 0

(if n is odd). We say that a cochain complex (C∗, d∗) splits if Cn/2 = 0 (if n is even) or d⌊n/2⌋ = 0
(if n is odd).

Note that C∗ (resp. C∗) splits if and only if C∗ ∼= Cℓ∗ ⊕ Cu∗ (resp. C∗ ∼= (Cu)∗ ⊕ (Cℓ)∗).

Definition 3.3. Let C∗ and D∗ be chain complexes. We define chEq(C∗, D∗) ⊆ Hom(C∗, D∗)/≃
to be the set of chain homotopy classes of chain homotopy equivalences C∗ → D∗.

Lemma 3.4. Suppose that (C∗, d
C
∗ ) and (D∗d

D
∗ ) are split chain complexes. Then there is a bijection

chEq(C∗, D∗) ∼= chEq(Cℓ∗, D
ℓ
∗)× chEq(Cu∗ , D

u
∗ ),

where the projections chEq(C∗, D∗) → chEq(Cℓ∗, D
ℓ
∗) and chEq(C∗, D∗) → chEq(Cu∗ , D

u
∗ ) are de-

fined by restriction.

Proof. Since C∗ and D∗ split, restrictions define an isomorphism

Hom(C∗, D∗) ∼= Hom(Cℓ∗, D
ℓ
∗)⊕Hom(Cu∗ , D

u
∗ ).

Let f, f ′ : C∗ → D∗ be chain maps. The restrictions of a chain homotopy between f and f ′ are
homotopies between f

∣∣
Cℓ

∗
and f ′

∣∣
Cℓ

∗
and between f

∣∣
Cu

∗
and f ′

∣∣
Cu

∗
, respectively, because dD⌈n/2⌉ = 0
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and dC⌊n/2⌋+1 = 0. Conversely, a pair of homotopies between f
∣∣
Cℓ

∗
and f ′

∣∣
Cℓ

∗
and between f

∣∣
Cu

∗

and f ′
∣∣
Cu

∗
can be combined to a homotopy between f and f ′. Therefore there is an induced

isomorphism (Hom(C∗, D∗)/≃) ∼= (Hom(Cℓ∗, D
ℓ
∗)/≃)⊕ (Hom(Cu∗ , D

u
∗ )/≃) on homotopy classes.

This isomorphism is defined for every pair (C∗, D∗) of split chain complexes, it is compati-
ble with the composition maps (induced by Hom(D∗, E∗) × Hom(C∗, D∗) → Hom(C∗, E∗), and
similarly for Hom(Cℓ∗, D

ℓ
∗) and Hom(Cu∗ , D

u
∗ )) and [IdC∗ ] ∈ (Hom(C∗, C∗)/≃) corresponds to

([IdCℓ
∗
], [IdCu

∗
]). Since chEq(C∗, D∗) consists of those elements of (Hom(C∗, D∗)/≃) which have an

inverse in (Hom(D∗, C∗)/≃) (and similarly for chEq(Cℓ∗, D
ℓ
∗) and chEq(Cu∗ , D

u
∗ )), this implies that

the isomorphism above restricts to a bijection chEq(C∗, D∗) ∼= chEq(Cℓ∗, D
ℓ
∗)× chEq(Cu∗ , D

u
∗ ). □

Recall that the orientation character w determines an involution on ZG, which allows us to
define the dual of a left ZG-module as another left ZG-module. Note that a chain complex C∗
splits if and only if the dual cochain complex C∗ (defined by Ci = (Ci)

∗) splits.

Definition 3.5. Let C∗ and D∗ be chain complexes, C∗ and D∗ the dual cochain complexes,
and let P : Cn−∗ → C∗ and Q : Dn−∗ → D∗ be chain homotopy equivalences. Then define
chEq(C∗, D∗)P,Q ⊆ chEq(C∗, D∗) to be the subset consisting of those chain homotopy equiva-
lences f : C∗ → D∗ which make the diagram

Cn−∗

P

��

Dn−∗f∗
oo

Q

��
C∗

f // D∗

of chain complexes commute up to chain homotopy, where f∗ denotes the dual of f .

Lemma 3.6. Let C∗ and D∗ be chain complexes, C∗ and D∗ the dual cochain complexes, and
let P : Cn−∗ → C∗ and Q : Dn−∗ → D∗ be chain homotopy equivalences. Suppose that C∗ and
D∗ split, so that P and Q restrict to chain homotopy equivalences P

∣∣
(Cℓ)n−∗ : (C

ℓ)n−∗ → Cu∗ and

Q
∣∣
(Dℓ)n−∗ : (D

ℓ)n−∗ → Du
∗ , and let α = τ(P

∣∣
(Cℓ)n−∗) and β = τ(Q

∣∣
(Dℓ)n−∗) ∈ Wh(G,w). Then

there is a commutative diagram

chEq(C∗, D∗)P,Q
τ //

��

Wh(G,w)

chEq(Cℓ∗, D
ℓ
∗)

τ //Wh(G,w)

x 7→x−(−1)nx+β−α

OO

where the vertical map on the left is given by restriction, i.e. it is the composition of the inclu-
sion chEq(C∗, D∗)P,Q → chEq(C∗, D∗) and the projection chEq(C∗, D∗) → chEq(Cℓ∗, D

ℓ
∗) from

Lemma 3.43.4.

Proof. Let f ∈ chEq(C∗, D∗)P,Q. Since C∗ and D∗ split, by Lemma 2.32.3 we have that τ(f) =

τ(f
∣∣
Cℓ

∗
) + τ(f

∣∣
Cu

∗
), so it is enough to prove that τ(f

∣∣
Cu

∗
) = −(−1)nτ(f

∣∣
Cℓ

∗
) + β − α.

The diagram in Definition 3.53.5 restricts to a homotopy commutative diagram

(Cℓ)n−∗

P |
(Cℓ)n−∗

��

(Dℓ)n−∗
f∗|

(Dℓ)n−∗
oo

Q|
(Dℓ)n−∗

��
Cu∗

f |Cu
∗ // Du

∗

By Proposition 2.12.1 and Lemma 2.22.2 we have

τ(f∗
∣∣
(Dℓ)n−∗) + α+ τ(f

∣∣
Cu

∗
) = β,

or equivalently
τ(f

∣∣
Cu

∗
) = −τ(f∗

∣∣
(Dℓ)n−∗) + β − α.

Therefore it suffices to prove that

τ(f∗
∣∣
(Dℓ)n−∗) = (−1)nτ(f

∣∣
Cℓ

∗
).
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By Lemma 2.42.4 we have τ(f∗
∣∣
(Dℓ)n−∗) = (−1)nτ(f∗

∣∣
(Dℓ)−∗), and it follows from Definition 2.52.5

that τ(f∗
∣∣
(Dℓ)−∗) = τ(f∗

∣∣
(Dℓ)∗

). Finally by Lemma 2.62.6, we have τ(f∗
∣∣
(Dℓ)∗

) = τ(f
∣∣
Cℓ

∗
), which

completes the proof. □

4. Thickenings

We recall Wall’s definition of thickenings and some of their basic properties. Fix positive integers
n, k with n ≥ 2k + 1, and let K be a connected finite CW complex of dimension (at most) k.

Definition 4.1. Suppose that n ≥ max(k + 3, 2k + 1). An n-dimensional thickening of K is a
simple homotopy equivalence fT : K → T , where T is an n-manifold with boundary such that the
inclusion map ∂T ↪→ T induces an isomorphism π1(∂T ) ∼= π1(T ).

Two thickenings fT : K → T and fT ′ : K → T ′ are equivalent if there is a diffeomorphism
H : T → T ′ such that H ◦ fT ≃ fT ′ .

Since n ≥ 2k + 1, we can assume that fT is an embedding. From now on thickening will mean
n-dimensional thickening, unless indicated otherwise.

Lemma 4.2 (Wall [Wal66Wal66, Proposition 5.1]). Suppose that n ≥ max(6, 2k + 1). The assignment
(fT : K → T ) 7→ f∗T (νT ), where νT denotes the stable normal bundle of T , is a bijection between
the set of equivalence classes of thickenings of K and the set of isomorphism classes of stable vector
bundles over K. □

Remark 4.3. The arguments of [Wal66Wal66, §5, §7 and §8] also show that if n = 5 ≥ 2k + 1, then the
assignment (fT : K → T ) 7→ f∗T (νT ) is surjective.

Lemma 4.4 (Wall). Suppose that n ≥ max(6, 2k+1),M is an n-manifold (possibly with boundary),
and φ : K → M is a continuous map. Then there is a thickening fT : K → T and an embedding
i : T → IntM such that i ◦ fT ≃ φ. The thickening fT is unique up to equivalence.

Proof. The existence part follows from Wall’s embedding theorem [Wal66Wal66]. For the uniqueness
assume that there is another thickening fT ′ : K → T ′ and an embedding i′ : T ′ → M such that
i′ ◦ fT ′ ≃ φ. Then f∗T (νT )

∼= f∗T (i
∗(νM )) ∼= φ∗(νM ) ∼= f∗T ′((i′)∗(νM )) ∼= f∗T ′(νT ′), so by Lemma 4.24.2

it follows that fT and fT ′ are equivalent. □

Lemma 4.5. Suppose that n ≥ max(k + 3, 2k + 1) and fT : K → T is a thickening. Then the
inclusion ∂T → T is (n− k − 1)-connected.

Proof. By the definition of thickenings π1(∂T ) → π1(T ) is an isomorphism. Let G = π1(T ) and
consider homology with ZG coefficients. We have Hi(T, ∂T ) ∼= Hn−i(T ) ∼= Hn−i(K) = 0 if
n− i > k, equivalently, i ≤ n− k − 1. □

Lemma 4.6. Suppose that n ≥ max(6, 2k + 2) and fT : K → T is an n-dimensional thickening.
Then there is a map f∂T : K → ∂T such that f∂T ≃ fT as maps K → T . Furthermore, f∂T is
unique up to homotopy.

Proof. By [Wal66Wal66, §5] there is an (n−1)-dimensional thickening fV : K → V and a diffeomorphism

T ≈ V × I such that fT is homotopic to the composition K
fV−→ V → V × I ≈ T . Hence

∂T ≈ V ∪Id∂V
V , and we can take f∂T to be the composition K

fV−→ V → V ∪Id∂V
V ≈ ∂T .

Since the inclusion ∂T → T is at least (k + 1)-connected, any two maps from K to ∂T that are
homotopic as K → T maps are also homotopic as K → ∂T maps. Therefore f∂T is unique up to
homotopy. □

Lemma 4.7. Suppose that n ≥ max(6, 2k + 2). Let M be a closed n-manifold, fT : K → T a
thickening, φ : K →M an

⌊
n
2

⌋
-connected map and i : T →M an embedding such that i ◦ fT ≃ φ.

Let C = M \ i(IntT ) denote the complement of i(T ), let j : C → M be the inclusion, and let φ′

denote the composition K
f∂T−→ ∂T

i−→ i(∂T ) → C.

(a) The map φ′ : K → C is a homotopy equivalence.
(b) A map f : K → C is homotopic to φ′ if and only if j ◦ f ≃ φ : K →M .
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Proof. (aa) Since φ is
⌊
n
2

⌋
-connected and fT is a homotopy equivalence, i is

⌊
n
2

⌋
-connected too. The

inclusions ∂T → T and i induce isomorphisms on π1, so it follows from the Van Kampen theorem
that the inclusions i(∂T ) = ∂C → C and j also induce isomorphisms on π1. Let G = π1(M),
identify the fundamental groups of T , ∂T and C with G via the inclusions, and consider their
homology with ZG coefficients.

By excision and Lemma 4.54.5 we have Hr(M,C) ∼= Hr(T, ∂T ) = 0 if r ≤ n − k − 1. Therefore
Hr(j) : Hr(C) → Hr(M) is an isomorphism if r ≤ n − k − 2, in particular if r ≤

⌈
n
2

⌉
− 1. The

induced homomorphism Hr(φ) : Hr(K) → Hr(M) is an isomorphism for r ≤
⌊
n
2

⌋
, because φ is⌊

n
2

⌋
-connected and K has dimension k <

⌊
n
2

⌋
. Since φ ≃ i ◦ fT ≃ i ◦ f∂T ≃ j ◦ φ′ : K → M , we

get that Hr(φ
′) : Hr(K) → Hr(C) is an isomorphism if r ≤

⌈
n
2

⌉
− 1. We also have that Hr(C) ∼=

Hn−r(C, ∂C) ∼= Hn−r(M, i(T )) = 0 and Hr(K) = 0 if r ≥
⌈
n
2

⌉
(hence n− r ≤

⌊
n
2

⌋
). Therefore φ′

induces an isomorphism on π1 and all homology groups, so it is a homotopy equivalence.
(bb) We already saw that φ ≃ j ◦ φ′. This implies the only if direction. Also, by part (aa) this

implies that j is
⌊
n
2

⌋
-connected. Hence if j ◦ f ≃ φ ≃ j ◦ φ′ for some f : K → C, then f ≃ φ′,

because K has dimension k ≤
⌊
n
2

⌋
− 1. □

The next lemma is implicit in the discussion on [Wal66Wal66, p. 77].

Lemma 4.8. Let M be an n-manifold with boundary, and let N ⊂ IntM be a codimension 0
submanifold. Then the following hold.

(a) If M \ IntN is an h-cobordism between ∂N and ∂M , then the inclusion i : N → M is a
homotopy equivalence.

(b) If the inclusions induce isomorphisms π1(∂N) ∼= π1(N) and π1(∂M) ∼= π1(M), and i : N →M
is a homotopy equivalence, then M \ IntN is an h-cobordism.

(c) If the assumptions in (bb) hold, then τ(i) = j∗(τ(M \ IntN, ∂N)) ∈ Wh(π1(M)), where j : M \
IntN →M is the inclusion.

Proof. (aa) Since the inclusion ∂N →M \ IntN is a homotopy equivalence, by applying homotopy
excision [Hat02Hat02, Theorem 4.23] to the map (M \ IntN, ∂N) → (M,N) we deduce that i is a
homotopy equivalence too.

(bb) Let G = π1(M), it follows from the Van Kampen theorem and the assumptions that the
inclusions identify π1(N), π1(∂N), π1(M \ IntN) and π1(∂M) with G, in particular π1(∂N) ∼=
π1(M \ IntN) ∼= π1(∂M). Consider homology with ZG coefficients. Since i is a homotopy equiva-
lence, we have H∗(M \ IntN, ∂N) ∼= H∗(M,N) = 0 by excision. By Poincaré duality we also have
H∗(M \ IntN, ∂M) = 0, therefore the inclusions ∂N →M \ IntN and ∂M →M \ IntN are both
homotopy equivalences.

(cc) Fix a CW structure on ∂N and extend it to a CW structure on M (so that ∂N is a
subcomplex of N andM \ IntN). Consider cellular chain complexes with ZG coefficients. We have
a commutative diagram

0 // C∗(∂N) //

��

C∗(N) //

i∗

��

C∗(N, ∂N) //

��

0

0 // C∗(M \ IntN) // C∗(M) // C∗(M,M \ IntN) // 0

where the rows are short exact sequences of chain complexes. The left and middle vertical maps
are chain homotopy equivalences by our assumptions and part (bb). The vertical map on the right
is a chain homotopy equivalences with vanishing Whitehead torsion, because the cells in N \ ∂N
determine the standard basis in both C∗(N, ∂N) and C∗(M,M \ IntN). So by Lemma 2.32.3 we have
τ(i∗) = τ(C∗(∂N) → C∗(M \ IntN)) ∈ Wh(G). □

5. Polarised doubles

Fix positive integers n, k with n ≥ 2k + 1, and let M be a closed n-manifold, K a finite CW
complex of dimension (at most) k and let φ : K →M be a continuous map. We will think of (the
homotopy class of) φ as extra structure on M and call the pair (M,φ) a polarised manifold.
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5.1. Double structures on polarised manifolds. We start by defining the different types of
double structures that a polarised manifold may have.

Definition 5.1. Let (M,φ) be a polarised manifold.
• A generalised double structure on (M,φ) is a diffeomorphism h : T ∪g0 W ∪g1 T →M such that
φ ≃ h◦ i1 ◦ fT , where fT : K → T is a thickening, W is an h-cobordism with ∂W = ∂0W ⊔∂1W ,
g0 : ∂0W → ∂T and g1 : ∂T → ∂1W are diffeomorphisms and i1 : T → T ∪g0 W ∪g1 T is the
inclusion of the first component.

• A twisted double structure on (M,φ) is a diffeomorphism h : T∪gT →M such that φ ≃ h◦i1◦fT ,
where fT : K → T is a thickening, g : ∂T → ∂T is a diffeomorphism, and i1 : T → T ∪g T is the
inclusion of the first component.

• A trivial double structure on (M,φ) is a twisted double structure with g = Id∂T .

Of course, (M,φ) has a twisted double structure if and only if it has a generalised double
structure with W ≈ ∂T × I. If the manifold M is of the form T ∪g0 W ∪g1 T , T ∪g T , or T ∪Id∂T

T ,
then IdM is a generalised/twisted/trivial double structure on (M, i1 ◦ fT ).

Proposition 5.2. Suppose that n ≥ max(6, 2k+2). Then (M,φ) has a generalised double structure
if and only if φ is

⌊
n
2

⌋
-connected.

Proof. First assume that a generalised double structure h exists as in Definition 5.15.1. By Lemma 4.84.8 (aa),
the inclusion T → T ∪W is a homotopy equivalence. By Lemma 4.54.5 the pair (T, ∂T ) is (n−k−1)-
connected, and by homotopy excision the same holds for the pair (T ∪W ∪ T, T ∪W ). Therefore
i1 is (n− k − 1)-connected too. Since φ ≃ h ◦ i1 ◦ fT and h and fT are homotopy equivalences, φ
is also (n− k − 1)-connected, in particular it is

⌊
n
2

⌋
-connected.

Now assume that φ is
⌊
n
2

⌋
-connected. By Lemma 4.44.4 there is a thickening fT : K → T of K

and an embedding i : T → M such that i ◦ fT ≃ φ. Let C = M \ i(IntT ) denote the complement

of i(T ). By Lemma 4.74.7 the composition K
f∂T−→ ∂T

i−→ i(∂T ) → C, denoted by φ′, is a homotopy
equivalence. Applying Lemma 4.44.4 again, there is a thickening fT ′ : K → T ′ of K and an embedding
i′ : T ′ → IntC such that i′◦fT ′ ≃ φ′. Moreover, since φ and φ′ are homotopic as K →M maps, fT
and fT ′ are equivalent thickenings, i.e. there is a diffeomorphismH : T → T ′ such thatH◦fT ≃ fT ′ .
Let W = C \ i′(IntT ′). The embedding i′ : T ′ → C is a homotopy equivalence, because φ′ : K → C
and fT ′ are both homotopy equivalences and i′ ◦ fT ′ ≃ φ′. So by Lemma 4.84.8 (bb) W is an h-
cobordism. Therefore the decomposition M = i(T ) ∪W ∪ (i′ ◦ H)(T ) determines a generalised
double structure on (M,φ). □

Corollary 5.3. Suppose that n ≥ max(6, 2k + 2), and let N be an n-manifold. If (M,φ) has a
generalised double structure and M ≃ N , then (N,ψ) also has a generalised double structure for
some ψ : K → N .

Proof. If h : M → N is a homotopy equivalence, then ψ := h ◦ φ is
⌊
n
2

⌋
-connected. □

5.2. The Whitehead torsion of a polarised double. Next we define and study the invariant
τ(M,φ), the torsion associated to a polarised double.

Definition 5.4. Suppose that n ≥ max(6, 2k+2) and φ is
⌊
n
2

⌋
-connected. The Whitehead torsion

associated to (M,φ), denoted by τ(M,φ), is defined as follows. Let fT : K → T be a thickening
and let i : T → M be an embedding such that i ◦ fT ≃ φ. Let C = M \ i(IntT ) denote the
complement of i(T ) with inclusion j : C →M , and let φ′ be the composition

φ′ : K
f∂T−→ ∂T

i−→ i(∂T ) → C.

Then

τ(M,φ) = j∗(τ(φ
′)) ∈ Wh(π1(M)).

Proposition 5.5. The Whitehead torsion τ(M,φ) is well-defined.

Proof. First we check that the assumptions made in Definition 5.45.4 are satisfied. A suitable thick-
ening fT and embedding i exist by Lemma 4.44.4. The composition φ′ : K → C is a homotopy
equivalence by Lemma 4.74.7, so τ(φ′) ∈ Wh(π1(C)) is defined. Since j ◦ φ′ ≃ φ and π1(φ) and
π1(φ

′) are isomorphisms, j∗ : Wh(π1(C)) → Wh(π1(M)) is an isomorphism too.
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Next we check that τ(M,φ) is independent of choices. By Lemma 4.44.4, the thickening fT is
well-defined (up to equivalence). Suppose that i0 : T → M and i1 : T → M are two embeddings
with i0 ◦ fT ≃ i1 ◦ fT ≃ φ and corresponding C0, j0, φ

′
0 and C1, j1, φ

′
1. We will prove that

(j0)∗(τ(φ
′
0)) = (j1)∗(τ(φ

′
1)).

Since n ≥ 2k + 2, we can assume that fT is an embedding, and since the embeddings i0 ◦ fT
and i1 ◦ fT : K →M are homotopic, they are isotopic [Whi36Whi36, Theorem 6].

By the isotopy extension theorem there is a diffeomorphism H : M →M , isotopic to IdM , such
that i0 ◦fT = H ◦ i1 ◦fT . Let i2 = H ◦ i1, C2 = H(C1) =M \ i2(IntT ), j2 = H ◦j1 ◦H−1 : C2 →M
and φ′

2 = H ◦ φ′
1 : K → C2.

Since H is a diffeomorphism, τ(φ′
2) = H∗(τ(φ

′
1)) ∈ Wh(π1(C2)) by Proposition 2.92.9 and The-

orem 2.82.8, and hence (j2)∗(τ(φ
′
2)) = H∗ ◦ (j1)∗(τ(φ

′
1)). We have H∗ = Id: Wh(π1(M)) →

Wh(π1(M)), because H ≃ IdM , therefore (j2)∗(τ(φ
′
2)) = (j1)∗(τ(φ

′
1)). So it is enough to prove

that
(j0)∗(τ(φ

′
0)) = (j2)∗(τ(φ

′
2)).

The image of i0 ◦fT = i2 ◦fT : K →M is contained in i0(T )∩ i2(T ), so we can apply Lemma 4.44.4
to get an embedding i3 : T → i0(T )∩ i2(T ) such that i3 ◦fT ≃ i0 ◦fT , and define the corresponding
C3 := M \ i3(IntT ), with inclusion j3 : C3 → M , and φ′

3 : K → C3. Since i3(T ) ⊆ i0(T ), we have
C3 ⊇ C0. Let h : i3(T ) → i0(T ) and h

′ : C0 → C3 denote the inclusions (hence j0 = j3 ◦ h′).
By construction, h ◦ i3 ◦ fT ≃ i0 ◦ fT : K → i0(T ). Since fT and the diffeomorphisms i0 : T →

i0(T ) and i3 : T → i3(T ) are simple homotopy equivalences, h is a simple homotopy equivalence
too. By Lemma 4.84.8 (bb) and (cc), we see that i0(T ) \ i3(IntT ) is an s-cobordism, and this in turn
implies that h′ is a simple homotopy equivalence. We have j3 ◦ h′ ◦ φ′

0 = j0 ◦ φ′
0 ≃ φ, so by

Lemma 4.74.7 (bb), we have that h′ ◦ φ′
0 ≃ φ′

3 : K → C3. Use this, Proposition 2.92.9, and the fact that
τ(h′) = 0, to deduce that

(j3)∗(τ(φ
′
3)) = (j3)∗(τ(h

′ ◦ φ′
0)) = (j3)∗(h

′
∗(τ(φ

′
0))) = (j0)∗(τ(φ

′
0)).

Since also i3(T ) ⊆ i2(T ), we can prove similarly that (j3)∗(τ(φ
′
3)) = (j2)∗(τ(φ

′
2)). Therefore

(j0)∗(τ(φ
′
0)) = (j2)∗(τ(φ

′
2)) as required. □

Note that τ(M,φ) is defined precisely when (M,φ) admits a (generalised) double structure, but
it is determined by the polarised manifold (M,φ) alone, and is independent of a choice of a double
structure. However, when a double structure is present, it can be used to compute τ(M,φ), as
we explain below. More generally, we will investigate the relationship between τ(M,φ) and the
possible double structures on (M,φ).

Proposition 5.6. Suppose that n ≥ max(6, 2k+ 2) and (M,φ) has a generalised double structure
h : T ∪g0 W ∪g1 T → M , and let i1, i2, and i3 denote the inclusions of the three components of
T ∪g0 W ∪g1 T .
(a) There is a homotopy automorphism α : K → K such that φ ◦ α ≃ h ◦ i3 ◦ fT : K → M , and

such an α is unique up to homotopy.
(b) This α satisfies α∗(φ∗(νM )) ∼= φ∗(νM ).
(c) For this α, we have τ(M,φ) = (h ◦ i2)∗(τ(W,∂1W ))− φ∗(τ(α)).

Proof. First we introduce some notation. Let i = h ◦ i1 : T → M , C = h(W ∪g1 T ), and φ′ =
h ◦ i1 ◦ f∂T : K → C, and let j : C → M denote the inclusion. Then, by Definition 5.45.4, we have
τ(M,φ) = j∗(τ(φ

′)) = h∗(τ(φ
′′)), where φ′′ = i1 ◦ f∂T : K →W ∪g1 T .

(aa) By Lemma 4.74.7, φ′ is a homotopy equivalence, and since h
∣∣
W∪g1

T
: W ∪g1 T → C is a

diffeomorphism, φ′′ is a homotopy equivalence too. Let

α := (φ′′)−1 ◦ i3 ◦ fT : K → K,

where i3 is regarded as an inclusion T → W ∪g1 T and (φ′′)−1 : W ∪g1 T → K is the homotopy
inverse of φ′′. By Lemma 4.84.8 (aa), i3 is a homotopy equivalence, so α is a homotopy equivalence
too. Moreover, we compute that

φ ◦ α ≃ h ◦ i1 ◦ fT ◦ α ≃ h ◦ i1 ◦ f∂T ◦ α = h ◦ φ′′ ◦ α ≃ h ◦ i3 ◦ fT : K →M.

If α, α′ : K → K are two maps such that φ ◦ α ≃ φ ◦ α′ : K → M , then α ≃ α′, because φ is⌊
n
2

⌋
-connected and K has dimension k ≤

⌊
n
2

⌋
− 1.
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(bb) Since φ ◦α ≃ h ◦ i3 ◦ fT , we have α∗(φ∗(νM )) ∼= f∗T ((h ◦ i3)∗(νM )) ∼= f∗T (νT ), where we used
that h ◦ i3 : T → M is a codimension 0 embedding. Since φ ≃ h ◦ i1 ◦ fT , and h ◦ i1 : T → M is a
codimension 0 embedding, we similarly obtain φ∗(νM ) ∼= f∗T (νT ). Hence α∗(φ∗(νM )) ∼= φ∗(νM ).

(cc) It follows from the definition of α that φ′′ ≃ i3 ◦ fT ◦ α−1 : K →W ∪g1 T . We have

τ(i3 ◦ fT ◦ α−1) = τ(i3) + (i3)∗(τ(fT )) + (i3 ◦ fT )∗(τ(α−1))

by Proposition 2.92.9. The map fT is a simple homotopy equivalence, and by Lemma 4.84.8 (cc), we have
that τ(i3) = (i2)∗(τ(W,∂1W )), where i2 is regarded as an embedding W →W ∪g1 T . We also have
0 = τ(α−1 ◦ α) = τ(α−1) + α−1

∗ (τ(α)), so

τ(i3 ◦ fT ◦ α−1) = (i2)∗(τ(W,∂1W ))− (i3 ◦ fT ◦ α−1)∗(τ(α)).

Since φ ≃ h ◦ i3 ◦ fT ◦ α−1, we obtain

τ(M,φ) = h∗(τ(φ
′′)) = h∗(τ(i3 ◦ fT ◦ α−1)) = (h ◦ i2)∗(τ(W,∂1W ))− φ∗(τ(α)). □

Corollary 5.7. Suppose that n ≥ max(6, 2k+2) and (M,φ) has a twisted double structure h : T ∪g
T → M . Let α ∈ hAut(K) be the image of g under the restriction map hAut(∂T ) → hAut(K)
(see Remark 5.135.13, Lemma 6.36.3 and Remark 6.46.4). Then τ(M,φ) = −φ∗(τ(α)).

Proof. Since the twisted double structure of (M,φ) determines a generalised double structure with
W ≈ ∂T × I, it is enough to show that φ ◦ α ≃ h ◦ i2 ◦ fT : K →M , where i2 : T → T ∪g T is the
inclusion of the second component. This holds, because

φ ◦ α ≃ h ◦ i1 ◦ fT ◦ α ≃ h ◦ i1 ◦ f∂T ◦ α ≃ h ◦ i1 ◦ g ◦ f∂T = h ◦ i2 ◦ f∂T ≃ h ◦ i2 ◦ fT . □

Corollary 5.8. Suppose that n ≥ max(6, 2k + 2) and (M,φ) has a trivial double structure. Then
τ(M,φ) = 0.

Proof. We can apply Corollary 5.75.7 with g = Id∂T , and hence α = IdK . □

Remark 5.9. The converse does not hold. There are even simply-connected counterexamples, e.g.
take K to be a point and M an exotic sphere.

Proposition 5.10. Suppose that n ≥ max(6, 2k + 2) and φ is
⌊
n
2

⌋
-connected. Then (M,φ)

has a twisted double structure if and only if there is a homotopy automorphism α ∈ hAut(K)
such that there is an isomorphism of stable vector bundles α∗(φ∗(νM )) ∼= φ∗(νM ) and τ(M,φ) =
−φ∗(τ(α)) ∈ Wh(π1(M)).

Proof. If (M,φ) has a twisted double structure, then it follows from Proposition 5.65.6 (bb) and the
proof of Corollary 5.75.7 that such an α exists.

Now suppose that there is an α with α∗(φ∗(νM )) ∼= φ∗(νM ) and τ(M,φ) = −φ∗(τ(α)). Define
fT : K → T , i, C, j and φ′ as in Definition 5.45.4, so that τ(M,φ) = j∗(τ(φ

′)). Let ψ := φ′ ◦α : K →
C. Then

j∗(τ(ψ)) = j∗(τ(φ
′) + φ′

∗(τ(α))) = τ(M,φ) + (j ◦ φ′)∗(τ(α)) = τ(M,φ) + φ∗(τ(α)) = 0

by Proposition 2.92.9, Lemma 4.74.7 (bb), and the hypothesis. As j∗ is an isomorphism, this means that
ψ is a simple homotopy equivalence, hence ψ : K → C is a thickening. Moreover,

ψ∗(νC) ∼= α∗((φ′)∗(j∗(νM ))) ∼= α∗(φ∗(νM )) ∼= φ∗(νM ) ∼= f∗T (i
∗(νM )) ∼= f∗T (νT ).

So by Lemma 4.24.2 the thickenings ψ : K → C and fT : K → T are equivalent, i.e. there is a
diffeomorphism H : T → C such that H ◦ fT ≃ ψ. Then (i ∪H) : T ∪g T →M is a twisted double
structure on (M,φ), where g is the composition

g : ∂T
H−→ ∂C = i(∂T )

i−1

−→ ∂T. □

Corollary 5.11. Suppose that n ≥ max(6, 2k + 2) and φ is
⌊
n
2

⌋
-connected. If τ(M,φ) = 0, then

(M,φ) has a twisted double structure.

Proof. Take α = IdK and apply Proposition 5.105.10. □
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5.3. SP manifolds. Next we show that if we impose some mild restrictions on (M,φ), then
τ(M,φ) can be expressed in terms of the Poincaré duality chain homotopy equivalence.

Definition 5.12. The pair (M,φ) is a split polarised manifold (SP manifold for short) if at least
one of the following conditions holds:

(SP1) n ≥ max(7, 2k + 2) and (M,φ) has a generalised double structure;
(SP2) n ≥ max(6, 2k + 2) and (M,φ) has a twisted double structure; or
(SP3) n ≥ max(k + 3, 2k + 1) and (M,φ) has a trivial double structure.

Remark 5.13. If n ≥ max(6, 2k+ 2) and fT : K → T is an n-dimensional thickening, then n− 1 ≥
max(k + 3, 2k + 1) and the proof of Lemma 4.64.6 shows that (∂T, f∂T ) satisfies (SP3).

We extend the definition of τ(M,φ) to the case when max(6, 2k + 2) > n ≥ max(k + 3, 2k + 1)
and (M,φ) has a trivial double structure by setting τ(M,φ) = 0. Then τ(M,φ) is defined for
every SP manifold (M,φ), and if (SP3) holds, then τ(M,φ) = 0.

Theorem 5.14. Suppose that (M,φ) is an SP manifold, and let G = π1(M) with orientation
character w : G→ {±1}. Then M has a CW decomposition with the following properties.

(a) The
⌊
n
2

⌋
-skeleton of M is identified with K via an embedding K →M homotopic to φ.

(b) Let C∗(M) = C∗(M ;ZG) denote the cellular chain complex of M with ZG coefficients. Then
C∗(M) splits (see Definition 3.23.2).

(c) Let PD: Cn−∗(M) → C∗(M) denote the chain homotopy equivalence induced by Poincaré
duality (which is determined up to chain homotopy by a choice of twisted fundamental class
[M ] ∈ Hn(M ;Zw) ∼= Z, where Zw is the orientation module). Then

τ(PD
∣∣
Cℓ(M)n−∗ : C

ℓ(M)n−∗ → Cu∗ (M)) = τ(M,φ) ∈ Wh(G,w).

Proof. (aa) Let h : T ∪g0W ∪g1 T →M or h : T ∪g T →M be a generalised, twisted or trivial double
structure on (M,φ) if (SP1), (SP2) or (SP3) holds, respectively (in the last case g = Id∂T ). Let
i1, i2 and i3 denote the embeddings of the components of T ∪g0 W ∪g1 T , or let i1 and i2 denote
the embeddings of the components of T ∪g T .

The thickening T has a handlebody decomposition such that the embedding fT : K → T iden-
tifies K with the CW complex formed by the cores of the handles, in particular there is a bijection
between the i-handles and the i-cells of K (see [Wal66Wal66, §7]). This handlebody decomposition de-
termines a Morse function m0 : T → [0, 1] such that index-i critical points of m0 correspond to
i-handles and m−1

0 (1) = ∂T . By the normal form lemma [Mil65Mil65], [Lüc02Lüc02, Lemma 1.24], if n ≥ 7,
then there is a Morse function m1 : W → [0, 1] on the h-cobordism W such that all critical points
have index

⌊
n
2

⌋
+ 1 or

⌊
n
2

⌋
+ 2, and m−1

1 (0) = ∂0W and m−1
1 (1) = ∂1W .

Now we can define a Morse function m : M → R on M . In the case of (SP1) we take m0 on
h ◦ i1(T ), m1 + 1 on h ◦ i2(W ) and 3 −m0 on h ◦ i3(T ). In the case of (SP2) and (SP3) we take
m0 on h ◦ i1(T ) and 2−m0 on h ◦ i2(T ).

The Morse function m determines a handlebody decomposition of M , and by [Mat02Mat02, Theorem
4.18] M is homeomorphic to the CW complex formed by the cores of the handles (having one
i-cell for each index-i critical point of m). The critical points of m have index at most k ≤

⌊
n
2

⌋
in

h ◦ i1(T ),
⌊
n
2

⌋
+ 1 or

⌊
n
2

⌋
+ 2 in h ◦ i2(W ), and at least n− k ≥

⌊
n
2

⌋
+ 1 in h ◦ i2(T ) or h ◦ i3(T ).

Therefore the
⌊
n
2

⌋
-skeleton of M consists of the cores of the handles in h ◦ i1(T ).

Let fM = h ◦ i1 ◦ fT : K → M , then by the above fM identifies the
⌊
n
2

⌋
-skeleton of M (which

is also the k-skeleton) with K. Moreover, fM ≃ φ by Definition 5.15.1.
(bb) If n ≥ 2k + 2, then k ≤

⌊
n
2

⌋
− 1, so M has no

⌊
n
2

⌋
-cells. This means that C⌊n/2⌋(M) = 0,

hence C∗(M) splits.
If n = 2k + 1, then (M,φ) satisfies (SP3), so h−1 is a diffeomorphism M → T ∪Id∂T

T . There
is a well-defined retraction IdT ∪ IdT : T ∪Id∂T

T → T . Since the embedding fT is a homotopy
equivalence, K is a deformation retract of T , and we can compose h−1 with the two retractions
to get a retraction r : M → K. It induces a chain map C∗(r) : C∗(M) → C∗(K) such that the

composition C∗(K)
C∗(fM )−→ C∗(M)

C∗(r)−→ C∗(K) is the identity. Since Ci(fM ) is an isomorphism for
i ≤ k, we get that Ck(r) is an isomorphism too, and this implies that the differential Ck+1(M) →
Ck(M) vanishes. Therefore C∗(M) splits.

(cc) Let m = −m : M → R be the reverse Morse function on M . It has the same critical points
as m, with index-i critical points turning into index-(n − i) critical points. It determines a new
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CW complex homeomorphic to M , which we will denote by M . By cellular approximation there
is a cellular map ι : M →M homotopic to IdM .

Now let I : Cn−∗(M) → C∗(M) denote the isomorphism that sends the (cochain) dual of
an (n − i)-cell of M to the corresponding i-cell of M . Then the chain homotopy equivalence
PD: Cn−∗(M) → C∗(M) inducing Poincaré duality can be defined (up to chain homotopy) as
the composition C∗(ι)

−1 ◦ I, where C∗(ι)
−1 denotes the homotopy inverse of the chain homotopy

equivalence C∗(ι) : C∗(M) → C∗(M).
The chain complex C∗(M) splits, because Cn−∗(M) splits and I is an isomorphism. By

Lemma 3.43.4, we have that PD, I, and C∗(ι) all restrict to chain homotopy equivalences between
the upper and lower halves of the chain complexes involved, and C∗(ι)

−1
∣∣
Cℓ

∗(M)
= (C∗(ι)

∣∣
Cℓ

∗(M)
)−1

and C∗(ι)
−1

∣∣
Cu

∗ (M)
= (C∗(ι)

∣∣
Cu

∗ (M)
)−1 (up to chain homotopy). Hence we have:

PD
∣∣
Cu(M)n−∗ = (C∗(ι)

∣∣
Cℓ

∗(M)
)−1 ◦ I

∣∣
Cu(M)n−∗ , PD

∣∣
Cℓ(M)n−∗ = (C∗(ι)

∣∣
Cu

∗ (M)
)−1 ◦ I

∣∣
Cℓ(M)n−∗ .

Since the isomorphism I and its restrictions preserve the standard bases, this implies that

τ(PD
∣∣
Cu(M)n−∗) = −τ(C∗(ι)

∣∣
Cℓ

∗(M)
) and τ(PD

∣∣
Cℓ(M)n−∗) = −τ(C∗(ι)

∣∣
Cu

∗ (M)
).

Now note that τ(C∗(ι)
∣∣
Cu

∗ (M)
)+ τ(C∗(ι)

∣∣
Cℓ

∗(M)
) = τ(C∗(ι)) = 0. Here we used that ι is homotopic

to IdM , so we can apply Proposition 2.12.1 and Lemma 2.22.2 to deduce that τ(C∗(ι)) = 0. Therefore
τ(PD

∣∣
Cℓ(M)n−∗) = −τ(C∗(ι)

∣∣
Cu

∗ (M)
) = τ(C∗(ι)

∣∣
Cℓ

∗(M)
).

Let L denote the
⌊
n
2

⌋
-skeleton ofM and let C =M\h◦i1(IntT ). InM the handles corresponding

to the critical points of m of index at most
⌊
n
2

⌋
(which are the critical points of m of index at

least
⌈
n
2

⌉
) together make up C, and L consists of the cores of these handles. By [Mat02Mat02, Theorem

4.18], it follows that C is homeomorphic to the mapping cylinder of the projection ∂C → L, so
the inclusion L → C is a simple homotopy equivalence by [Coh73Coh73, Corollary 5.1A]. The cellular
map ι restricts to a map ι

∣∣
fM (K)

: fM (K) → L between the
⌊
n
2

⌋
-skeletons of M and M . The

inclusions determine isomorphisms Cℓ∗(M) ∼= C∗(fM (K)) and Cℓ∗(M) ∼= C∗(L) (preserving the
standard bases), hence τ(C∗(ι)

∣∣
Cℓ

∗(M)
) = τ(ι

∣∣
fM (K)

).

First assume that (SP1) or (SP2) holds. Let φ′ denote the composition K
f∂T−→ ∂T

i1−→ i1(∂T ) →
C, so that τ(M,φ) = τ(φ′) (when π1(C) is identified with π1(M) via the inclusion). The compo-

sition K
fM−→ fM (K)

ι−→ L → C → M is homotopic to φ, because fM ≃ φ and ι ≃ IdM . So by

Lemma 4.74.7 (bb) the composition K
fM−→ fM (K)

ι−→ L → C is homotopic to φ′. This shows that
τ(ι

∣∣
fM (K)

) = τ(φ′) = τ(M,φ), because the homeomorphism fM : K → fM (K) and the inclusion

L→ C have vanishing Whitehead torsion.
Now assume that (SP3) holds. Then L = h◦i2◦fT (K) and r

∣∣
L
: L→ K is a homeomorphism (by

the definition of r). Moreover, r ◦ ι◦fM ≃ r ◦ IdM ◦fM = IdK . Since fM is also a homeomorphism,
this means that ι

∣∣
fM (K)

is homotopic to a homeomorphism, so τ(ι
∣∣
fM (K)

) = 0 = τ(M,φ).

Therefore τ(PD
∣∣
Cℓ(M)n−∗) = τ(M,φ) in all cases. □

6. The Whitehead torsion of homotopy equivalences of doubles

In this section we prove Theorem BB. Fix positive integers n, k with n ≥ 2k + 1. Let M and
N be closed n-manifolds, and let K and L be finite CW complexes of dimension (at most) k.
Suppose that φ : K →M and ψ : L→ N are continuous maps such that (M,φ) and (N,ψ) are SP
manifolds.

Let F := π1(M) and G := π1(N). The maps φ and ψ are
⌊
n
2

⌋
-connected by Proposition 5.25.2, so

π1(φ) and π1(ψ) are isomorphisms. We use these isomorphisms to identify π1(K) with F = π1(M)
and π1(L) with G = π1(N).

Let wM : F → {±1} and w = wN : G → {±1} be the orientation characters of M and N
respectively. Fix twisted fundamental classes [M ] ∈ Hn(M ;ZwM ) and [N ] ∈ Hn(N ;Zw). For any
homotopy equivalence f : M → N we have w ◦ π1(f) = wM and f∗([M ]) = ε[N ] for ε = 1 or −1.

Definition 6.1. For topological spaces X, Y , let hEq(X,Y ) denote the set of homotopy classes
of homotopy equivalences X → Y . For an isomorphism θ : π1(X) → π1(Y ), let hEqθ(X,Y ) ⊆
hEq(X,Y ) denote the subset consisting of homotopy equivalences f such that π1(f) = θ.
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For ε = ±1, let hEq(M,N)ε ⊆ hEq(M,N) denote the subset of degree-ε homotopy equivalences,
i.e. those that send [M ] to ε[N ]. For an isomorphism θ : F → G, let hEqθ(M,N)ε = hEqθ(M,N)∩
hEq(M,N)ε.

Lemma 6.2. Suppose that X is a CW complex of dimension at most k, and let f, g : X → L be
continuous maps. If ψ ◦ f ≃ ψ ◦ g : X → N , then f ≃ g.

Proof. By Theorem 5.145.14 (aa), N has a CW decomposition such that (up to homotopy) ψ is an
embedding identifying L with the

⌊
n
2

⌋
-skeleton of N .

If (N,ψ) satisfies (SP1) or (SP2), then N has no (k+1)-cells. Therefore if we make the homotopy
between ψ ◦ f and ψ ◦ g cellular, we obtain a homotopy between f and g.

If (N,ψ) satisfies (SP3), then we can compose the homotopy between ψ ◦ f and ψ ◦ g with the
retraction r : N → L from the proof of Theorem 5.145.14 (bb) to get a homotopy between f and g. □

Lemma 6.3. There is a well-defined restriction map hEq(M,N) → hEq(K,L).

Proof. Again we fix CW decompositions on M and N using Theorem 5.145.14 (aa).
Consider a continuous map M → N . After cellular approximation it can be restricted to a

map K → L, and by Lemma 6.26.2 the restriction’s homotopy class is independent of the choice of
the approximation. Therefore restriction defines a map [M,N ] → [K,L]. Similarly we get a map
[N,M ] → [L,K].

Now suppose that f : M → N is a cellular homotopy equivalence and g is its cellular homotopy
inverse. Then f ◦ g ≃ IdN and g ◦ f ≃ IdM , hence f

∣∣
φ(K)

◦ g
∣∣
ψ(L)

≃ Idψ(L) : ψ(L) → N and

g
∣∣
ψ(L)

◦ f
∣∣
φ(K)

≃ Idφ(K) : φ(K) → M . Lemma 6.26.2 implies that f
∣∣
φ(K)

◦ g
∣∣
ψ(L)

≃ Idψ(L) : ψ(L) →
ψ(L) and g

∣∣
ψ(L)

◦ f
∣∣
φ(K)

≃ Idφ(K) : φ(K) → φ(K), therefore f
∣∣
φ(K)

: φ(K) → ψ(L) is a homotopy

equivalence. □

Remark 6.4. The restriction α ∈ hEq(K,L) of a map f ∈ hEq(M,N) is characterised by the
property that ψ ◦ α ≃ f ◦ φ : K → N , i.e. the following diagram is homotopy commutative:

M
f // N

K
α //

φ

OO

L

ψ

OO

This implies that π1(α) = π1(f) ∈ Hom(F,G). Therefore for every isomorphism θ : F → G the
restriction map of Lemma 6.36.3 restricts to a map hEqθ(M,N) → hEqθ(K,L).

Finally, we will establish the following, which is an equivalent formulation of Theorem BB.

Theorem 6.5. For every isomorphism θ : F → G with w◦θ = wM there is a commutative diagram

hEqθ(M,N)
τ //

��

Wh(G,w)

hEqθ(K,L)
τ //Wh(G,w)

x 7→x−(−1)nx+τ(N,ψ)−θ∗(τ(M,φ))

OO

where the vertical map on the left is given by restriction.

Proof. Fix CW decompositions on M and N as in Theorem 5.145.14. We denote the correspond-
ing (split) cellular chain complexes by C∗(M) = C∗(M ;ZF ) and C∗(N) = C∗(N ;ZG). Let

PDM : Cn−∗(M) → C∗(M) and PDN : Cn−∗(N) → C∗(N) denote the chain homotopy equiva-

lences given by Poincaré duality. By Theorem 5.145.14 (cc), we have τ(PDM
∣∣
Cℓ(M)n−∗) = τ(M,φ) and

τ(PDN
∣∣
Cℓ(N)n−∗) = τ(N,ψ). We will show that there is a commutative diagram

hEqθ(M,N)1
C∗(−) //

��

chEq(C∗(M)θ−1 , C∗(N))PDM ,PDN
τ //

��

Wh(G,w)

hEqθ(K,L)
C∗(−) // chEq(C∗(K)θ−1 , C∗(L))

τ //Wh(G,w).

x7→x−(−1)nx+τ(N,ψ)−θ∗(τ(M,φ))

OO

(6.1)



GENERALISED DOUBLES AND SIMPLE HOMOTOPY TYPES 17

For the notation see Definitions 2.72.7 and 3.53.5. We begin by describing the three maps not yet defined.
Since K and L are the

⌊
n
2

⌋
-skeletons of M and N respectively, we have Cℓ∗(M) ∼= C∗(K)

(hence Cℓ∗(M)θ−1
∼= C∗(K)θ−1) and Cℓ∗(N) ∼= C∗(L). By Lemma 3.43.4, there is a restriction map

chEq(C∗(M)θ−1 , C∗(N)) → chEq(C∗(K)θ−1 , C∗(L)), and we define the vertical map in the middle
to be its restriction to chEq(C∗(M)θ−1 , C∗(N))PDM ,PDN .

Suppose that f ∈ hEqθ(K,L), then f induces a chain map C∗(K;ZGθ) → C∗(L;ZG). We have
C∗(K;ZGθ) ∼= C∗(K;ZF )θ−1 (see [NNP23NNP23, Lemma 2.26 (a)]), so taking the induced chain map
defines a map C∗(−) : hEqθ(K,L) → chEq(C∗(K)θ−1 , C∗(L)).

Similarly, a homotopy equivalence f ∈ hEqθ(M,N) induces maps

C∗(f) : C∗(M ;ZGθ) ∼= C∗(M)θ−1 → C∗(N ;ZG) = C∗(N)

C∗(f) : C∗(N ;ZG) = C∗(N) → C∗(M ;ZGθ) ∼= C∗(M)θ−1

where the last isomorphism follows from [NNP23NNP23, Lemma 2.26 (b)]. Moreover, C∗(M ;ZGθ) is the
dual of C∗(M)θ−1 , and C∗(f) is identified with the dual of C∗(f). The chain homotopy equiva-
lence Cn−∗(M ;ZGθ) ∼= Cn−∗(M)θ−1 → C∗(M ;ZGθ) ∼= C∗(M)θ−1 given by Poincaré duality (with

ZGθ coefficients) is identified with PDM under the identification Hom(Cn−∗(M)θ−1 , C∗(M)θ−1) =
Hom(Cn−∗(M), C∗(M)). If f has degree 1, i.e. f∗([M ]) = [N ], then it induces a homotopy com-
mutative diagram

Cn−∗(M)θ−1

PDM

��

Cn−∗(N)
Cn−∗(f)oo

PDN

��
C∗(M)θ−1

C∗(f) // C∗(N)

since Poincaré duality can be defined by taking cap product with the fundamental class. Therefore
we get a restricted map C∗(−) : hEqθ(M,N)1 → chEq(C∗(M)θ−1 , C∗(N))PDM ,PDN .

Next we verify that the diagram in (6.16.1) commutes. The square on the left commutes since
both downward pointing arrows are defined by restriction. The square on the right commutes by
Lemma 3.63.6. Note that if PDM

∣∣
Cℓ(M)n−∗ is regarded as a chain homotopy equivalence Cℓ(M)n−∗

θ−1 →
Cu∗ (M)θ−1 (instead of Cℓ(M)n−∗ → Cu∗ (M)), then its Whitehead torsion is θ∗(τ(M,φ)) (instead
of τ(M,φ)), see [NNP23NNP23, Lemma 2.27].

The Whitehead torsion of a homotopy equivalence is defined as the Whitehead torsion of the
induced chain homotopy equivalence, so from (6.16.1) we get a commutative diagram

hEqθ(M,N)1
τ //

��

Wh(G,w)

hEqθ(K,L)
τ //Wh(G,w)

x 7→x−(−1)nx+τ(N,ψ)−θ∗(τ(M,φ))

OO

We can apply the same argument to −N instead of N (where −N is the same manifold N with
the opposite twisted fundamental class [−N ] = −[N ]). Then we get a commutative diagram

hEqθ(M,N)−1
τ //

��

Wh(G,w)

hEqθ(K,L)
τ //Wh(G,w)

x 7→x−(−1)nx+τ(N,ψ)−θ∗(τ(M,φ))

OO

because hEqθ(M,−N)1 = hEqθ(M,N)−1 and τ(−N,ψ) = τ(N,ψ) (because the definition of
τ(N,ψ) does not depend on the choice of the twisted fundamental class).

Since hEqθ(M,N) = hEqθ(M,N)1 ⊔ hEqθ(M,N)−1, we can combine the two diagrams to get
the diagram in the statement. □

7. Applications

Now we consider some applications of Theorem BB and prove the results announced in Section 1.31.3.
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7.1. Simple doubles. Let (M,φ) be a polarised manifold such that τ(M,φ) is defined. We say
that (M,φ) is simple if τ(M,φ) = 0. Recall from Corollaries 5.85.8 and 5.115.11 that if (M,φ) has a
trivial double structure, then it is simple, and if (M,φ) is simple, then it has a twisted double
structure. We now state a consequence of Theorem 6.56.5 in the special case when (M,φ) is simple,
and then use it to prove Theorem 1.61.6.

Theorem 7.1. Suppose that M and N are n-manifolds, K and L are CW complexes of dimension
(at most) k, and φ : K →M and ψ : L→ N are continuous maps such that (M,φ) and (N,ψ) are
SP manifolds. Let G = π1(N) with orientation character w : G → {±1}, and identify π1(L) with
G via ψ. Suppose that τ(M,φ) = 0. Then there is a commutative diagram

hEq(M,N)
τ //

��

Wh(G,w)

hEq(K,L)
τ //Wh(G,w)

x 7→x−(−1)nx+τ(N,ψ)

OO

where the vertical map on the left is given by restriction.

Proof. We have hEq(M,N) =
⊔
θ hEqθ(M,N), where the union ranges over all isomorphisms

θ : π1(M) → G with w ◦ θ = wM , where wM is the orientation character of M . For each such θ we
can apply Theorem 6.56.5, and since θ∗(τ(M,φ)) = 0, we can combine the resulting diagrams to get
the diagram in the statement. □

The following is obtained by further specialising.

Theorem 7.2. Suppose that M is an n-manifold, K is a CW complex of dimension (at most) k,
and φ : K → M is a continuous map such that (M,φ) is an SP manifold. Let G = π1(M) with
orientation character w : G→ {±1}, and identify π1(K) with G via φ. Suppose that τ(M,φ) = 0.
Then there is a commutative diagram

hAut(M)
τ //

��

Wh(G,w)

hAut(K)
τ //Wh(G,w)

x7→x−(−1)nx

OO

where the vertical map on the left is given by restriction.

Proof. Apply Theorem 7.17.1 to the case where M = N , K = L, and φ = ψ. □

In particular, this implies that τ(g) ∈ In(G,w) for every g ∈ hAut(M), hence T (M) ⊆ In(G,w)
and U(M) = {0} (see Section 1.11.1). We use this to prove Theorem 1.61.6.

Theorem 7.3 (cf. Hausmann [Hau80Hau80, Sections 9–10]). Let n ≥ 5, let G be a finitely presented

group and let w : G → {±1} be such that ψ : Lhn+1(ZG,w) → Ĥn+1(C2;Wh(G,w)) is nontrivial
(see Section 1.11.1). Then there exists an n-manifold M with fundamental group G and orientation
character w such that |Mh

s,hCob(M)| > 1.

Proof. Let K be a finite 2-dimensional CW complex with π1(K) ∼= G (and we fix an isomorphism).
Let ν be a stable vector bundle overK with orientation character w. By Lemma 4.24.2 and Remark 4.34.3
there is an n-dimensional thickening fT : K → T such that f∗T (νT )

∼= ν. Let M = T ∪g T be a
twisted double of T such that (M,φ) is an SP manifold and τ(M,φ) = 0, where φ is the composition
of fT and the inclusion T →M of the first component (e.g. let g = Id∂T ). Then π1(M) ∼= G with
orientation character w.

It follows from Theorem 7.27.2 that U(M) = {0}. So Im(ψ) \U(M) is nonempty, and by Proposi-
tion 1.31.3 (bb) this implies that |Mh

s,hCob(M)| > 1. □

7.2. Doubles over manifolds. We now consider the special case of Theorem 6.56.5 when K and L
are closed k-manifolds. We get an especially nice statement when n − k is odd. Then we present
some applications, proving Theorems CC and AA.



GENERALISED DOUBLES AND SIMPLE HOMOTOPY TYPES 19

Theorem 7.4. Suppose that M and N are n-manifolds, K and L are k-manifolds and φ : K →M
and ψ : L→ N are continuous maps such that (M,φ) and (N,ψ) are SP manifolds. Let F = π1(M)
and G = π1(N), and identify π1(K) with F and π1(L) with G via φ and ψ respectively. Let
wM : F → {±1} be the orientation character of M and let w = wN : G→ {±1} be the orientation
character of N . Assume that the orientation character of L is also w.

(a) If n−k is odd, then τ(f) = τ(N,ψ)−f∗(τ(M,φ)) for every homotopy equivalence f : M → N .
(b) If n−k is even, then for every isomorphism θ : F → G with w◦θ = wM there is a commutative

diagram

hEqθ(M,N)
τ //

��

Wh(G,w)

hEqθ(K,L)
τ //Wh(G,w)

x7→2x+τ(N,ψ)−θ∗(τ(M,φ))

OO

Proof. Let f : M → N be a homotopy equivalence. By Lemma 6.36.3 it restricts to a homotopy equiv-
alence α : K → L. By Theorem 6.56.5 we have τ(f) = τ(α)− (−1)nτ(α) + τ(N,ψ)− f∗(τ(M,φ)) ∈
Wh(G,w). Since K and L are k-manifolds and the orientation character of L is w, by Proposi-

tion 2.102.10 we see that τ(α) ∈ Jk(G,w). That is, τ(α) = −(−1)kτ(α) ∈ Wh(G,w). Therefore

τ(f) = τ(α)−(−1)nτ(α)+τ(N,ψ)−f∗(τ(M,φ)) = τ(α)+(−1)n−kτ(α)+τ(N,ψ)−f∗(τ(M,φ)). □

We will use this to prove the following result from the introduction.

Theorem CC. Suppose that j > k are positive integers and j is odd. Let K and L be k-manifolds,
and let Sj → M → K and Sj → N → L be orientable (linear) sphere bundles. Then every
homotopy equivalence f : M → N is simple.

Proof. Let n = j + k be the dimension of M and N . It follows from the assumptions that
j ≥ max(3, k + 1), so n ≥ max(k + 3, 2k + 1).

The manifold M is the sphere bundle of some orientable rank (j + 1) vector bundle ξ over K.
Since j+1 > k, there is a rank j vector bundle ξ0 such that ξ ∼= ξ0⊕ε1, where ε1 denotes the trivial
rank 1 bundle. Let T be the disc bundle of ξ0. Then T is a thickening of K (with the zero-section
K → T ) and M ≈ T ∪Id∂T

T . This means that if φ denotes the composition K → T → M of the
zero section and the inclusion of the first component, then (M,φ) has a trivial double structure,
so it satisfies (SP3). Similarly, (N,ψ) satisfies (SP3) for the analogous ψ : L→ N .

Let G = π1(N) and let w : G→ {±1} be the orientation character of N . Then π1(ψ) determines
an identification π1(L) ∼= G, and since ξ is orientable, w is also the orientation character of L.

SinceM and N are trivial doubles, τ(M,φ) = 0 and τ(N,ψ) = 0 by Corollary 5.85.8. Since n−k =
j is odd, Theorem 7.47.4 (aa) implies that τ(f) = 0 for every homotopy equivalence f : M → N . □

We obtain the following two theorems as immediate corollaries.

Theorem 7.5. Suppose that j > k are positive integers and j is odd. Let K and L be k-manifolds,
and let Sj →M → K and Sj → N → L be orientable sphere bundles. If M and N are homotopy
equivalent, then they are simple homotopy equivalent.

Theorem 7.6. Suppose that j > k are positive integers and j is odd. Let K be a k-manifold and
let Sj →M → K be an orientable sphere bundle. Then T (M) = {0} (see Section 1.11.1).

Remark 7.7. In the three theorems above, the sphere bundleM could be replaced with any twisted
double T ∪g T of the disc bundle T of an orientable rank j bundle ξ0 over K such that (M,φ) is
an SP manifold and τ(M,φ) = 0, where φ is the composition of the zero section K → T and the
inclusion T →M of the first component (and similarly for N).

Finally, we will use Theorem 7.67.6 to prove the following result from the introduction.

Theorem AA. Let n ≥ 11 or n = 9. Let G be a finitely presented group with an orientation
character w : G→ {±1}. Then there is an n-manifoldM with fundamental group G and orientation
character w such that |MhCob

s (M)| > 1 if and only if In(G,w) ̸= 0.

Proof. First assume that In(G,w) ̸= 0. Under the assumptions on n there is an integer k ≥ 4 such
that n − k > k and n − k is odd. For instance, we can take k = 4 for n ≥ 9 odd and k = 5 for
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n ≥ 12 even. Since k ≥ 4, there is a k-manifold K with π1(K) ∼= G and orientation character w.
Let M be an orientable Sn−k-bundle over K (e.g. K × Sn−k). Then π1(M) ∼= G with orientation
character w, and by Theorem 7.67.6, it follows that T (M) = {0}. So In(G,w) \ T (M) is nonempty,
and by Proposition 1.31.3 (aa) this implies that |MhCob

s (M)| > 1.
In the other direction, if f is the homotopy equivalence induced by an h-cobordism between n-

manifolds with fundamental groupG and orientation character w, then τ(f) ∈ In(G,w) by Proposi-
tion 2.112.11. If the manifolds are not simple homotopy equivalent, then τ(f) ̸= 0, so In(G,w) ̸= 0. □

7.3. Doubles over certain 2-complexes. In this section we will consider specific 2-dimensional
CW complexes for which it is known by work of Metzler [Met79Met79] that the Whitehead torsions of
their homotopy automorphisms are contained in a certain subgroup of the Whitehead group. We
can exploit this property by applying Theorem 7.27.2 to doubles over such 2-complexes, leading to a
proof of Theorem 1.91.9.

Recall that for any group presentation P = ⟨g1, . . . , gs | r1, . . . , rt⟩ there is a corresponding
presentation complex, denoted by XP , which consists of one 0-cell, one 1-cell for each generator
gi, and one 2-cell for each relation rj , with gluing map determined by rj .

In this section all groups will be equipped with the trivial orientation character w ≡ 1, which
we will omit from the notation.

We will need the Bass-Heller-Swan decomposition of the Whitehead group of C∞ × Cm:

Wh(C∞ × Cm)
∼=−→ Wh(Cm)⊕ K̃0(ZCm)⊕NK1(ZCm)2. (7.1)

In (7.17.1) each term is equipped with a natural involution, and the isomorphism respects these
involutions (see [Ran86Ran86, p.329, p.357]).

The following is a generalisation of the main result of [Met79Met79].

Theorem 7.8. Let m ≥ 1 and let X := XP , where P = ⟨x, y | ym, [x, y]⟩ is the standard presen-
tation for C∞ × Cm. Then the composition

hAut(X)
τ−→ Wh(C∞ × Cm) ↠ K̃0(ZCm)

is the zero map. In particular, τ(hAut(X)) ⊆ Wh(Cm)⊕ {0} ⊕NK1(ZCm)2 ⊆ Wh(C∞ × Cm).

Proof. Let G = C∞ × Cm and let ψ : ZCm ↠ ZCm/Σ be the quotient map, factoring out by

the ideal generated by Σ :=
∑m−1
i=0 yi, the group norm in ZCm. Since ZG ∼= (ZCm)[C∞] and

ZG/Σ ∼= (ZCm/Σ)[C∞], ψ induces a map Ψ: ZG ↠ ZG/Σ. Metzler showed [Met79Met79, Lemma 2]
that the composition

hAut(X)
τ−→ Wh(G) ∼= K1(ZG)/±G

Ψ∗−−→ K1(ZG/Σ)/(ZG/Σ)×

is the zero map. Since ZG/Σ ∼= (ZCm/Σ)[t, t−1], we set R = ZCm/Σ, so that ZG/Σ ∼= R[t, t−1]. A
variant of the Bass-Heller-Swan decomposition for arbitrary Laurent polynomial ringsR[t, t−1] [Wei13Wei13,
III.3.6] implies that

K1(ZG/Σ)/(ZG/Σ)× ∼= (K1(ZCm/Σ)/(ZCm/Σ)×)⊕ K̃0(ZCm/Σ)⊕NK1(ZCm/Σ)2.
The map Ψ∗ respects this splitting and so we have that:

τ(hAut(X)) ⊆ ker(ψ∗ : Wh(Cm) → K1(ZG/Σ)/(ZG/Σ)×)

⊕ ker(ψ∗ : K̃0(ZCm) → K̃0(ZCm/Σ))⊕ ker(ψ∗ : NK1(ZCm) → NK1(ZCm/Σ))2.

It therefore suffices to prove that ψ∗ : K̃0(ZCm) → K̃0(ZCm/Σ) is injective. To see this, consider
the following pullback square of rings

ZCm ZCm/Σ

Z Z/m

ψ

ε ε′

ψ′

(7.2)

where ψ,ψ′ are the quotient maps and ε, ε′ are induced by augmentation. Note that (7.27.2) has
the property that at least one of the maps ψ′ and ε′ is surjective, i.e. (7.27.2) is a Milnor square. It
follows from [CR87CR87, Theorem 42.13] that (7.27.2) induces a long exact sequence:

K1(Z)⊕K1(ZCm/Σ)
(ψ′

∗,ε
′
∗)−−−−−→ K1(Z/m)

∂−→ K̃0(ZCm)
(ϵ∗,ψ∗)−−−−→ K̃0(Z)⊕ K̃0(ZCm/Σ).
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More specifically, by [CR87CR87, Theorem 42.13], we obtain an exact sequence with K̃0 replaced by K0

throughout. It is clear from the definition of ∂ that its image lies in K̃0(ZCm) and, from this, we
obtain the exact sequence above.

By [CR87CR87, p. 343], we have Im(∂) = T (Cm) ⊆ K̃0(ZCm) where T (G) ⊆ K̃0(ZG) denotes the
Swan subgroup of a finite group G. By [CR87CR87, Proposition 53.6 (iii)], we have T (Cm) = 0 and so

∂ = 0. Since Z is a PID, we have K̃0(Z) = 0. Hence ψ∗ : K̃0(ZCm) → K̃0(ZCm/Σ) is injective. It
follows that the composition in the statement of the theorem is the zero map. □

This implies that the map τ : hAut(X) → Wh(C∞ ×Cm) is not surjective when K̃0(ZCm) ̸= 0,
which is a broad generalisation of [Met79Met79, Theorem 1].

Corollary 7.9. Let n ≥ 5 and m ≥ 1. Suppose that M is an n-manifold and φ : XP → M is a
continuous map such that (M,φ) is an SP manifold and τ(M,φ) = 0, where P = ⟨x, y | ym, [x, y]⟩
is the standard presentation for C∞ × Cm. Then the composition

hAut(M)
τ−→ Wh(C∞ × Cm) ↠ K̃0(ZCm)

is the zero map.

Proof. Consider the diagram

hAut(M) Wh(C∞ × Cm) K̃0(ZCm)

hAut(XP) Wh(C∞ × Cm) K̃0(ZCm)

τ

τ

x 7→x−(−1)nx x 7→x−(−1)nx

where the vertical map on the left is given by restriction. The first square commutes by The-
orem 7.27.2. The second square commutes, because the isomorphism (7.17.1) is compatible with the
involutions. Since the composition of the maps in the bottom row vanishes by Theorem 7.87.8, the
commutativity of the diagram implies that the composition of the maps in the top row vanishes
too. □

Remark 7.10. By the first square of the diagram, we also have T (M) ⊆ In(C∞ × Cm). By

[NNP23NNP23, Proposition 5.10] In(C∞×Cm) ∼= In(Cm)⊕{x− (−1)nx | x ∈ K̃0(ZCm)}⊕NK1(ZCm),
so Corollary 7.97.9 implies that T (M) ⊆ In(Cm)⊕ {0} ⊕NK1(ZCm), where NK1(ZG) is embedded
into NK1(ZG)2 by the map x 7→ (x,−(−1)nx).

Theorem 7.11. Let n ≥ 5 and let m ≥ 2 be such that {x − (−1)nx | x ∈ K̃0(ZCm)} ̸= 0. Then
there is an orientable n-manifold M with fundamental group C∞×Cm such that |MhCob

s (M)| > 1.

Proof. Let P = ⟨x, y | ym, [x, y]⟩, and let T be an oriented thickening of XP (e.g. a regular
neighbourhood of an embedding XP → Rn). Let M = T ∪g T be a twisted double of T such that
(M,φ) is an SP manifold and τ(M,φ) = 0, where φ : K → M denotes the composition of fT and
the inclusion T →M of the first component (e.g. let g = Id∂T ). Then π1(M) ∼= π1(XP) ∼= C∞×Cm
and M is orientable.

By Proposition 1.31.3 (aa) it is enough to show that In(C∞ × Cm) \ T (M) is nonempty. It follows
from [NNP23NNP23, Proposition 5.10] and Corollary 7.97.9 that In(C∞ × Cm) \ T (M) contains the subset

{x− (−1)nx | x ∈ K̃0(ZCm)} \ {0}, which is nonempty by our assumption. □

7.4. The dependence of τ(M,φ) on φ. Theorem 6.56.5 allows us to describe the set of possible
values of τ(M,φ) for a fixed M .

Proposition 7.12. Suppose that n ≥ max(6, 2k + 2), M is an n-manifold and G = π1(M) with
orientation character w : G → {±1}. Let φ : K → M be an

⌊
n
2

⌋
-connected map for some CW

complex K of dimension k. Then τ(M,φ) ∈ Jn(G,w).

Proof. By Proposition 5.25.2 there is a generalised double structure h : T ∪g0 W ∪g1 T → M on
(M,φ). Let i1, i2, and i3 denote the inclusions of the three components of T ∪g0 W ∪g1 T . Let
d0 : ∂1W → ∂0W be the composition of the inclusion ∂1W → W and the homotopy inverse of
∂0W → W . By the construction of d0, we have i2

∣∣
∂1W

≃ i2
∣∣
∂0W

◦ d0 : ∂1W → T ∪g0 W ∪g1 T .
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Hence, with the notation d := g0 ◦ d0 ◦ g1 ∈ hAut(∂T ), and using that g1 and g0 are the gluing
maps, we have

i3
∣∣
∂T

= i2
∣∣
∂1W

◦ g1 ≃ i2
∣∣
∂0W

◦ d0 ◦ g1 = i1
∣∣
∂T

◦ g0 ◦ d0 ◦ g1 = i1
∣∣
∂T

◦ d : ∂T → T ∪g0 W ∪g1 T. (7.3)

By Proposition 5.65.6 there is a homotopy automorphism α : K → K such that

φ ◦ α ≃ h ◦ i3 ◦ fT
and

τ(M,φ) = (h ◦ i2)∗(τ(W,∂1W ))− φ∗(τ(α)).

By Remark 5.135.13, (∂T, f∂T ) is an SP manifold, so by Lemma 6.36.3 there is a restriction map
hAut(∂T ) → hAut(K). The homotopy automorphism α is the restriction of d. To see this recall
Remark 6.46.4 and note that

h ◦ i1 ◦ f∂T ◦ α ≃ h ◦ i1 ◦ fT ◦ α ≃ φ ◦ α ≃ h ◦ i3 ◦ fT ≃ h ◦ i3 ◦ f∂T ≃ h ◦ i1 ◦ d ◦ f∂T : K →M,

using Definition 5.15.1, the definition of α, and (7.37.3). The map h ◦ i1
∣∣
∂T

: ∂T →M is
⌊
n
2

⌋
-connected,

because it is the composition of the inclusion ∂T → T (which is
⌊
n
2

⌋
-connected by Lemma 4.54.5)

and h ◦ i1 : T → M (which is also
⌊
n
2

⌋
-connected, because h ◦ i1 ◦ fT ≃ φ and fT is a homotopy

equivalence). Since K has dimension k ≤
⌊
n
2

⌋
− 1, we get that f∂T ◦ α ≃ d ◦ f∂T : K → ∂T , and

this means that α is the restriction of d.
Since (∂T, f∂T ) has a trivial double structure, τ(∂T, f∂T ) = 0. It follows from Theorem 6.56.5 that

τ(d) = (f∂T )∗(τ(α)− (−1)n−1τ(α)). Let j = h ◦ i1
∣∣
∂T

: ∂T →M . Then we have

j∗(τ(d)) = (h ◦ i1 ◦ f∂T )∗(τ(α)− (−1)n−1τ(α)) = (h ◦ i1 ◦ fT )∗(τ(α)− (−1)n−1τ(α))

= φ∗(τ(α)− (−1)n−1τ(α)).

Again we used that h ◦ i1 ◦ fT ≃ φ (Definition 5.15.1), to obtain the last equality.

By Proposition 2.112.11, we have τ(d0) = τ(W,∂1W ) − (−1)n−1τ(W,∂1W ) where π1(∂0W ) is
identified with π1(W ) via the inclusion. Since g0 and g1 are diffeomorphisms, we have τ(d) =
(g0)∗(τ(d0)), by Proposition 2.92.9 and Theorem 2.82.8. Hence

j∗(τ(d)) = (h ◦ i1 ◦ g0)∗(τ(d0)) = (h ◦ i2)∗(τ(d0))

= (h ◦ i2)∗(τ(W,∂1W ))− (−1)n−1(h ◦ i2)∗(τ(W,∂1W )).

By combining the above formulae we obtain

τ(M,φ)− (−1)n−1τ(M,φ)

= (h ◦ i2)∗(τ(W,∂1W ))− (−1)n−1(h ◦ i2)∗(τ(W,∂1W ))− φ∗(τ(α)) + (−1)n−1φ∗(τ(α))

= j∗(τ(d))− j∗(τ(d)) = 0.

Therefore τ(M,φ) = −(−1)nτ(M,φ), i.e. τ(M,φ) ∈ Jn(G,w). □

If n < max(6, 2k + 2) and (M,φ) is an SP manifold, then it satisfies (SP3), so τ(M,φ) = 0.
Therefore τ(M,φ) ∈ Jn(G,w) for every SP manifold (M,φ).

Remark 7.13. The proof of Proposition 7.127.12 shows that τ(M,φ) can be regarded as a secondary
invariant of an inertial h-cobordism on ∂T . An inertial h-cobordism on ∂T is an h-cobordism
between two copies of ∂T , more precisely, an h-cobordismW with ∂W = ∂0W ⊔∂1W together with
diffeomorphisms g0 : ∂0W → ∂T and g1 : ∂T → ∂1W . If d : ∂T → ∂T is the homotopy equivalence
induced by W , g0 and g1, then τ(d) ∈ In−1(G,w) for two different reasons: τ(d) = τ(W,∂1W ) −
(−1)n−1τ(W,∂1W ) by Proposition 2.112.11, and τ(d) = τ(α) − (−1)n−1τ(α) by Theorem 6.56.5, where
α ∈ hAut(K) is the restriction of d. In general τ(W,∂1W ) ̸= τ(α) (the former does not depend
on the diffeomorphisms g0 and g1, but α does), and τ(W,∂1W ) − τ(α) = τ(M,φ) for M =
T ∪g0 W ∪g1 T and φ = i1 ◦ fT . So τ(M,φ) is a secondary invariant in the sense that it equals
the difference between two reasons that τ(d) ∈ In−1(G,w), i.e. two cochains in the Tate cochain

group Ĉn−1(C2;Wh(G,w)) mapping to τ(d) under the coboundary map.

Proposition 7.14. Suppose that M is an n-manifold, G = π1(M) and w : G → {±1} is the
orientation character of M . Let φ : K → M and φ′ : K ′ → M be continuous maps such that
(M,φ) and (M,φ′) are SP manifolds. Then τ(M,φ)− τ(M,φ′) ∈ In(G,w).
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Proof. We will apply Theorem 6.56.5 to IdM , regarded as a map between the SP manifolds (M,φ)
and (M,φ′). Then IdM ∈ hEqId(M,M), and it has a restriction f ∈ hEqId(K,K

′), where π1(K)
and π1(K

′) are identified with G via φ and φ′. Let x = τ(f). Since IdM is a diffeomorphism,
τ(IdM ) = 0. Therefore 0 = x− (−1)nx+ τ(M,φ′)− τ(M,φ). This means that

τ(M,φ)− τ(M,φ′) = x− (−1)nx ∈ In(G,w). □

Remark 7.15. Suppose that (M,φ) is an SP manifold satisfying (SP1) and k ≥ 3. Let G =
π1(M) ∼= π1(K), and let w : G → {±1} be the orientation character of M . Since k ≥ 3, for every
x ∈ Wh(G) there is a k-dimensional CW complex K ′ and a homotopy equivalence f : K ′ → K such
that τ(f) = x. Let φ′ = φ◦f : K ′ →M , then by Proposition 5.25.2 φ, and hence φ′, is

⌊
n
2

⌋
-connected,

so (M,φ′) also satisfies (SP1). The proof of Proposition 7.147.14 shows that τ(M,φ′) − τ(M,φ) =
x − (−1)nx. Therefore if ψ varies across all maps L → M such that (M,ψ) is an SP manifold,
then the set of possible values of τ(M,ψ) is precisely the coset τ(M,φ) + In(G,w) in Jn(G,w).

7.5. An invariant of unpolarised manifolds. Based on the observations of Section 7.47.4, we
define an invariant for manifolds that can be obtained from SP manifolds by forgetting the polar-
isation. First we describe these manifolds.

Definition 7.16. Let M be an n-manifold.
• We say that M is a split manifold if there is a positive integer k, a k-dimensional CW-complex
K and a continuous map φ : K →M such that (M,φ) is an SP manifold.

• Suppose that n ≥ 7. We say that M is strongly split if it has a CW-decomposition with no⌊
n
2

⌋
-cells.

Proposition 7.17. Suppose that n ≥ 7 and M is an n-manifold. Then M is strongly split if
and only if there is a positive integer k, a k-dimensional CW-complex K and a continuous map
φ : K →M such that (M,φ) satisfies (SP1). In particular, if M is strongly split, then it is split.

Proof. First assume that M is strongly split and fix a CW-decomposition on M with no
⌊
n
2

⌋
-cells.

Let k =
⌊
n
2

⌋
−1, and let K be the k-skeleton ofM , then the inclusion φ : K →M is

⌊
n
2

⌋
-connected.

By Proposition 5.25.2 (M,φ) has a generalised double structure, so it satisfies (SP1).
Now assume that (M,φ) satisfies (SP1) for some k, K and φ. Then the CW-decomposition

constructed in the proof of Theorem 5.145.14 has no
⌊
n
2

⌋
-cells. □

Corollary 7.18. Suppose that n ≥ 7. If M is a strongly split n-manifold and N is homotopy
equivalent to M , then N is also strongly split.

Proof. By Proposition 7.177.17 there is a k, a k-dimensional K and a φ : K →M such that n ≥ 2k+2
and (M,φ) has a generalised double structure. By Corollary 5.35.3 there is a ψ : K → N such that
(N,ψ) has a generalised double structure, so it also satisfies (SP1). Again by Proposition 7.177.17, N
is strongly split. □

Corollary 7.19. Let M be an n-manifold. Then M is split if and only if one of the following
holds:
• n ≥ 8 is even and M is strongly split.
• n ≥ 7 is odd and M is strongly split or (M,φ) has a trivial double structure for some K of

dimension n−1
2 and φ : K →M .

• n = 6 and (M,φ) has a twisted double structure for some K of dimension at most 2 and
φ : K →M .

• 5 ≥ n ≥ k + 3 and (M,φ) has a trivial double structure for some positive integer k, some K of
dimension at most k and φ : K →M .

Proof. If n ≥ 7, then (SP2) implies (SP1). If n ≥ 6 is even, then (SP3) implies (SP2). □

Next we define an invariant for split manifolds.

Definition 7.20. Suppose that M is a split n-manifold, and let G = π1(M) with orientation
character w : G→ {±1}. We define the τ -invariant of M by

τ(M) = π(τ(M,φ)) ∈ Ĥn+1(C2;Wh(G,w))

where k is a positive integer, K is a k-dimensional CW complex and φ : K → M is a continuous
map such that (M,φ) is an SP manifold.
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It follows from Propositions 7.127.12 and 7.147.14 that τ(M) is well-defined.
By the proof of Theorem 5.145.14, if n ≥ 8 and M is strongly split, then it is a manifold without

middle dimensional handles in the sense of Hausmann [Hau80Hau80]. For such manifolds τ(M) coincides
with the “torsion invariant” defined in [Hau80Hau80, Section 9]. Moreover, Hausmann showed that this
invariant is preserved by simple homotopy equivalences and homotopy equivalences induced by h-
cobordisms. Both of the two theorems below can be regarded as strengthenings of this statement.

Firstly, in analogy with Theorem 6.56.5, we obtain the following formula for π(τ(f)) for a homotopy
equivalence f between split manifolds.

Theorem 7.21. Suppose that M and N are split n-manifolds and f : M → N is a homotopy
equivalence. Let G = π1(N) with orientation character w : G→ {±1}. Then

π(τ(f)) = τ(N)− f∗(τ(M)) ∈ Ĥn+1(C2;Wh(G,w)).

In particular, if f : M → N is a homotopy equivalence between split manifolds, then π(τ(f))
depends only on the induced homomorphism π1(f).

Proof. By Proposition 2.102.10 τ(f) ∈ Jn(G,w), so π(τ(f)) is defined. Fix a φ : K → M and a
ψ : L → N such that (M,φ) and (N,ψ) are SP manifolds. Let α : K → L be the restriction of f ,
and let x = τ(α) ∈ Wh(G). By Theorem 6.56.5 τ(f) = x−(−1)nx+τ(N,ψ)−f∗(τ(M,φ)). Therefore

π(τ(f)) = π(x− (−1)nx) + π(τ(N,ψ))− π(f∗(τ(M,φ)))

= 0 + π(τ(N,ψ))− f∗(π(τ(M,φ))) = τ(N)− f∗(τ(M)). □

Secondly, we show that τ is a complete invariant for the equivalence relation generated by simple
homotopy equivalence and h-cobordism, restricted to split manifolds (cf. [NNP23NNP23, Proposition
4.15]).

Theorem 7.22. Suppose that M and N are split n-manifolds. The following are equivalent.

(a) There is a homotopy equivalence f : M → N such that τ(N) = f∗(τ(M)).
(b) There is a manifold P that is simple homotopy equivalent to M and h-cobordant to N .

Proof. If n = 4, then (N,ψ) has a trivial double structure for some 1-dimensional L and ψ : L→ N ,
so τ(N) = 0, and similarly τ(M) = 0. We also get that π1(N) ∼= π1(L) is free. By Stallings [Sta65Sta65]
the Whitehead group of a finitely generated free group is trivial, so every homotopy equivalence
M → N is simple. Hence each of (aa) and (bb) holds if and only if M ≃ N . In the rest we assume
that n ≥ 5.

(aa) ⇒ (bb). Let G = π1(N) with orientation character w : G → {±1}. By Theorem 7.217.21, we
have π(τ(f)) = 0, so τ(f) ∈ In(G,w). By [NNP23NNP23, Corollary 3.3] (using the assumption that
n ≥ 5) this implies that there exists an n-manifold P that is simple homotopy equivalent to M
and h-cobordant to N .

(bb) ⇒ (aa). Let f = h ◦ g for a simple homotopy equivalence g : M → P and a homotopy
equivalence h : P → N induced by an h-cobordism. Then τ(f) = τ(h) + h∗(τ(g)). Since τ(g) = 0,
this implies that τ(f) ∈ In(G,w) by Proposition 2.112.11. Therefore π(τ(f)) = 0, so τ(N) = f∗(τ(M))
by Theorem 7.217.21. □

References

[Bak77] Anthony Bak, The involution on Whitehead torsion, General Topology and Appl. 7 (1977), no. 2, 201–206.
[Cha74] Thomas A. Chapman, Topological invariance of Whitehead torsion, Amer. J. Math. 96 (1974), 488–497.

[Coh73] Marshall M. Cohen, A course in simple-homotopy theory, Graduate Texts in Mathematics, Vol. 10,

Springer-Verlag, New York-Berlin, 1973.
[CR87] Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. II, Pure and Applied Math-

ematics (New York), John Wiley & Sons, Inc., New York, 1987. With applications to finite groups and

orders, A Wiley-Interscience Publication.
[DK01] James F. Davis and Paul Kirk, Lecture notes in algebraic topology, Graduate Studies in Mathematics,

vol. 35, American Mathematical Society, Providence, RI, 2001.
[Hat02] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.

[Hau80] Jean-Claude Hausmann, Manifolds without middle dimensional handles, 1980. Preprint, available at

https://www.unige.ch/math/folks/hausmann/hausmannMWMDH.pdfhttps://www.unige.ch/math/folks/hausmann/hausmannMWMDH.pdf.
[KS77] Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings,

and triangulations, Princeton University Press, Princeton, N.J., 1977. With notes by John Milnor and

Michael Atiyah, Annals of Mathematics Studies, No. 88.

https://www.unige.ch/math/folks/hausmann/hausmannMWMDH.pdf


GENERALISED DOUBLES AND SIMPLE HOMOTOPY TYPES 25

[KS92] Slawomir Kwasik and Reinhard Schultz, Vanishing of Whitehead torsion in dimension four, Topology 31

(1992), no. 4, 735–756.
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