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ABSTRACT. We characterise the set of fundamental groups for which there exist n-manifolds
that are h-cobordant (hence homotopy equivalent) but not simple homotopy equivalent, when n
is sufficiently large. In particular, for n > 12 even, we show that examples exist for any finitely
presented group G such that the involution on the Whitehead group Wh(G) is nontrivial. This
expands on previous work, where we constructed the first examples of even-dimensional manifolds
that are homotopy equivalent but not simple homotopy equivalent. Our construction is based on
doubles of thickenings, and a key ingredient of the proof is a formula for the Whitehead torsion
of a homotopy equivalence between such manifolds.

1. INTRODUCTION

Two finite CW-complexes are said to be simple homotopy equivalent if they are related by a
sequence of expansions and collapses of cells [Whi50, Coh73]. This gives an equivalence relation
which interpolates between homotopy and homeomorphism in the sense that homeomorphic im-
plies simple homotopy equivalent implies homotopy equivalent [Cha74]. This notion has proven
extremely useful in manifold topology and lies behind the s-cobordism theorem, which is the basis
for the vast majority of manifold classification results in dimension at least four.

Lens spaces give examples of smooth n-manifolds in all odd dimensions n > 3 that are homotopy
equivalent but not simple homotopy equivalent. Examples in all even dimensions n > 4 were
constructed in previous work of the authors [NNP23], with the caveat that the manifolds are
topological in dimension four. The examples constructed there are homotopy equivalent to L x S*
for some lens space L, and consequently have fundamental groups Co, x C,, for some m > 2. In
this article, we construct new classes of manifolds that are homotopy equivalent but not simple
homotopy equivalent. A key motivation is the following question. All of our manifolds will be
assumed to be smooth, however our results apply equally in the PL or topological categories.

Question 1.1. For which finitely presented groups G and homomorphisms w: G — {%1} are there
n-manifolds with fundamental group G and orientation character w that are homotopy equivalent
but not simple homotopy equivalent?

For a group G, Whitehead [Whi39, Whi41, Whi49, Whi50] defined the abelian group Wh(G), and
for a homotopy equivalence f: X — Y between finite CW complexes, with G = 71(Y"), defined
the Whitehead torsion 7(f) € Wh(G). He also proved that a homotopy equivalence f is simple
if and only if 7(f) = 0. Consequently, for a positive answer to Question 1.1, it is necessary that
Wh(G) # 0. As we only consider homotopy equivalences between n-manifolds, a stronger condition
can be given in terms of Wh(G,w), the Whitehead group Wh(G) equipped with the canonical
involution = +— 7 induced by the involution on ZG determined by g + w(g)g~!. Namely, it is
necessary that J,(G,w) # 0 (see Proposition 2.10), where we use the notation

In(G,w) :={y € Wh(G,w) |y = —(=1)"y} < Wh(G, w),
Z,(Gw) :=={z— (-1)"T | x € Wh(G,w)} < J(G,w).
Our main result is that in high dimensions a slightly stronger condition, the nonvanishing of

Z,.(G,w), is sufficient. In fact, this condition precisely characterises when manifolds that are
h-cobordant but not simple homotopy equivalent exist.

Theorem A. Letn =9 orn > 11, let G be a finitely presented group, and let w: G — {£1} be
a homomorphism. Then there is a pair of n-manifolds with fundamental group G and orientation
character w that are h-cobordant but not simple homotopy equivalent if and only if Z,,(G,w) # 0.
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Recall that a cobordism (W; M, N) is an h-cobordism if the inclusion maps M — W and N —
W are homotopy equivalences. In particular, h-cobordant but not simple homotopy equivalent
manifolds are also examples of homotopy equivalent but not simple homotopy equivalent manifolds.
Theorem A will be complemented by Theorem 1.6, which gives a sufficient (but possibly not
necessary) condition for the existence of manifolds that are homotopy equivalent, but neither
simple homotopy equivalent, nor h-cobordant. The implications of these results for the existence
of homotopy equivalent but not simple homotopy equivalent manifolds will be summarised in
Section 1.4, and in particular in Table 1.

Theorem A can be used to construct examples of manifolds that are homotopy but not simple
homotopy equivalent, provided that Z,,(G, w) # 0. If G is torsion free and satisfies the Farrell Jones
conjecture, then Wh(G) = 0 and so Z,,(G,w) = 0 for all orientation characters w. We therefore
consider groups G that have nontrivial torsion. It was shown by Wall [Wal74] that, if G is a finite
group and w = 1, then the involution is trivial when restricted to Wh'(G), the free part of Wh(G).
This can be used to show that the involution is trivial for a range of finite groups, including finite
abelian groups [Bak77, Theorem 1] and finite 3-manifold groups [KS92, p742].

If n is even, then Z,, (G, w) # 0 if and only if the involution on Wh(G, w) is nontrivial. It is not
straightforward to find groups with this property and this explains why it was so much harder to
find examples in even dimensions. Nonetheless the involution has been shown to be nontrivial for
groups of the form Cy, x Cy, for certain m > 2 (see [NNP23, Theorem 5.15 (i)] and [Mil66, p. 421])
and for certain finite p-groups (see [Oli80, Proposition 24], [Oli88, Example 8.11]), the smallest of
which has order 3° = 243. Using the latter examples, we now obtain the following.

Corollary 1.2. Let n > 12 be even. Then there exist orientable n-manifolds with finite funda-
mental group that are homotopy equivalent but not simple homotopy equivalent.

As mentioned above, lens spaces give examples in all odd dimensions n > 3 since their funda-
mental groups are finite cyclic. Corollary 1.2 demonstrates the utility of Theorem A and sits in
contrast to the examples constructed in [NNP23], which were all homotopy equivalent to L x S*
for some lens space L and so had fundamental groups of the form Cy, x C,,.

1.1. Simple homotopy manifold sets. To study the difference between homotopy equivalence
and simple homotopy equivalence, we introduced the simple homotopy manifold set of a closed
n-manifold M in [NNP23]. This is the set of n-manifolds homotopy equivalent to M up to simple
homotopy equivalence:
MM (M) = {n-manifolds N | N ~ M}/ ~,
where we write ~ for homotopy equivalence and ~ for simple homotopy equivalence. Hence there is
a pair of manifolds (with a given fundamental group and orientation character) that are homotopy
equivalent but not simple homotopy equivalent if and only if there is an M with |[M"(M)| > 1.
To understand M (M), it is helpful to also consider the following variations:

MBCE(AL) := {n-manifolds N | N is h-cobordant to M} / ~,
Mg,hcob(M) = {n-manifolds N | N ~ M} /(~,,hCob)
where (~,, hCob) denotes the equivalence relation generated by simple homotopy equivalence and

h-cobordism (see [NNP23, Theorem E]). In particular, if [MICP(A)| > 1 or |MZ7hCOb(M)| > 1,
then |[M"(M)| > 1. By [NNP23, Proposition 4.22] the converse also holds when n > 5.

To state the results about simple homotopy manifold sets that we will need, we recall that the
Tate cohomology group H™+!(Cy; Wh(G,w)) is canonically identified with J,(G,w)/Z, (G, w),
and we denote the quotient map by

71 Jn(G,w) — H™ (O3 Wh(G, w)).

We will also make use of the homomorphism v: L! | (ZG,w) — I;T”“(Cg;Wh(G7w)) from the
Ranicki-Rothenberg exact sequence (see [Sha69], [Ran80, §9]). Finally, for an n-manifold M with
fundamental group G and orientation character w: G — {£1}, we introduce the following notation:

T(M):={7(9) | g € hAut(M)} € Tn(G, w)
U(M) = {n(r(g)) | g € hAut(M)} C H" (Co; Wh(G, w))
where hAut(M) is the group of homotopy automorphisms of M (and we used Proposition 2.10).
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The following result, which was proved in [NNP23, Propositions 4.20-21], will be our main tool
for determining when a simple homotopy manifold set is nontrivial or trivial.

Proposition 1.3. Let n > 5 and let M be an n-manifold. Let G = w1 (M) with orientation
character w: G — {£1}. Then

(a) |[MECE(M)| > 1 if and only if Z,,(G,w) \ T(M) is nonempty.

(b) If Im(vp) \ U(M) is nonempty, then |M;‘7hcob(M)| > 1.

(€) 1 MY cop(M)] > 1, then H™(Cor Wh(G, w)) # 0.

1.2. Homotopy equivalences of doubles. By Proposition 1.3, to show that a simple homotopy
manifold set is nontrivial for some M, we need to understand the involution on the Whitehead
group of m (M), and the group of homotopy automorphisms hAut(A). In this paper we will be
focusing on the latter. Our aim is to develop a systematic method for constructing manifolds M,
with arbitrary predetermined fundamental group G and orientation character w, such that we have
control over the Whitehead torsion of homotopy automorphisms of M. To achieve this, we will
study doubles and homotopy equivalences between them.

Our central result is a formula for the Whitehead torsion of such a homotopy equivalence
(Theorem B), which we will discuss below. By applying this formula to certain doubles, we get
sufficient conditions for the existence of an M with nontrivial MY (M) or M| (M) (and
hence M"(M)), expressed in terms of the involution on Wh(G,w). These, and a few further
applications of Theorem B, will be discussed in Section 1.3.

We start by introducing the doubles that we will study. Fix positive integers n, k such that
n > max(6,2k + 2). Let K be a k-complex, i.e. a finite k-dimensional CW complex, and let T
be an n-dimensional thickening of K, i.e. an m-manifold with boundary together with a simple
homotopy equivalence fr: K — T (see Section 4). Then a double over K is a manifold of the
form M = T Upq,, T (a trivial double), M =T U, T where g: 0T — 0T is a diffeomorphism (a
twisted double), or M = T UW UT where W is an h-cobordism between two copies of 9T (a
generalised double). In each case M comes equipped with a canonical map ¢: K — M, which is
the composition of fr and the inclusion of the first component 7" — M.

If M is an n-manifold and K is a k-complex, then we will call a map ¢: K — M a polar-
isation of M, and the pair (M, ) a polarised manifold. We will say that (M, p) has a triv-
ial/twisted/generalised double structure if, for some thickening T of K, M has a decomposition as
above such that the canonical map K — M is homotopic to .

We will obtain the following recognition criterion for generalised doubles (see Proposition 5.2).
Proposition 1.4. Let (M,p) be a polarised manifold. Then (M,¢) has a generalised double

structure if and only if ¢ is L%J -connected.

It follows that the class of generalised doubles is closed under homotopy equivalence, i.e. if
(M, @) has a generalised double structure and M ~ N, then (IV,v) also has a generalised double
structure for some ¥. Note that the same is not true for the classes of twisted and trivial doubles.

Given a polarised manifold (M, ) such that ¢ is L%J—Connected, we can define an invariant
7(M, @), called the Whitehead torsion of (M, p), as follows. There is a thickening fr: K — T
of K and an embedding i: T — M such that i o fr ~ . Let C = M \ i(Int T'), then by general
position and because n > 2k + 2, the map ¢ is homotopic to a map that factors as K — C — M,
with the first map a homotopy equivalence ¢': K — C. In particular the inclusion C' — M induces
an isomorphism 71 (C) 2 71 (M), so we can identify Wh(m(C')) with Wh(zy (M)).

Definition 1.5. Let 7(M, ) = 7(¢’) € Wh(m (M)).

This invariant will show up in the formula of Theorem B as an error term. We will also prove
in Corollary 5.8 that if (M, ¢) has a trivial double structure, then 7(M, ¢) = 0. The converse does
not hold, but if 7(M, ) = 0, then (M, ¢) has a twisted double structure, and more generally see
Proposition 5.10 for a result characterising precisely when a twisted double structure exists.

Next we consider homotopy equivalences between doubles. If (M, ) is a polarised manifold and

n

pis bJ—connected, then we can find a CW decomposition of M such that ¢ is the embedding of its

k-skeleton. Suppose that N is another n-manifold with an [gJ—connected polarisation v: L — N

for a k-dimensional CW complex L. Then by cellular approximation any homotopy equivalence
f: M — N restricts to a map a: K — L. This « is also a homotopy equivalence if (M, ¢) and
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(N, v) satisfy some mild restrictions on their dimensions or double structures; in this case we call
them split polarised (SP) manifolds (see Definition 5.12). The following key theorem then allows
us to compute the Whitehead torsion of f from that of « (see Theorem 6.5).

Theorem B. Suppose that (M, ) and (N,v) are split polarised manifolds and f: M — N s a
homotopy equivalence. Then

7(f) = 7(@) = (=1)"7(a) + 7(N,¥) = fo(T(M, ) € Wh(mi (N), wn)

where a: K — L is the restriction of f, Wh(my(L)) is identified with Wh(m1(N)) via ¥, and wy
is the orientation character of N.

To prove Theorem B, we start by considering the algebraic version of the problem. We consider
split chain complexes, which are those that split as the direct sum of their lower and upper halves
(see Definitions 3.1 and 3.2). Provided that they are also based and satisfy a version of Poincaré
duality, we compute the Whitehead torsion of a chain homotopy equivalence between two such
chain complexes in terms of the Whitehead torsion of the restriction of the chain map to the lower
half (see Lemma 3.6). The formula contains two error terms, which are intrinsic to the two chain
complexes, namely they are given by the Whitehead torsion of the restriction of the Poincaré
duality map. To derive Theorem B from this, we show that if (M, ¢) is an SP manifold, then its
cellular chain complex splits and its Whitehead torsion 7(M, ¢) is equal to the associated error
term (see Theorem 5.14).

1.3. Applications of Theorem B. In the main applications of Theorem B we restrict to special
types of doubles where we have control over the right hand side of the formula. In particular,
when 7(M,¢) = 0 (which can be ensured by taking M to be a trivial double), then we have
7(f) € Z,,(G,w) for every homotopy automorphism f of M. By Proposition 1.3 (b) we have the
following (see Theorem 7.3).

Theorem 1.6. Let n > 5, let G be a finitely presented group and let w: G — {£1} be such that
¢: Lt (ZG,w) — H""(Co; Wh(G, w)) is nontrivial. Then there ezists an n-manifold M with
fundamental group G and orientation character w such that [M”, « (M)| > 1.

Remark 1.7. (a) For n > 6, this can also be deduced from results in Hausmann’s unpublished
preprint [Hau80, Sections 9-10].

(b) For G = Co x Cp,, w =1, and n even, the map % can be nontrivial by combining [NNP23,
Proposition 3.12] with [NNP23, Theorem 1.8 (ii)]. More specifically, by [NNP23, Proposition
11.16], ¥ # 0 for infinitely many groups of the form Co, X Cax.

When we also have some control over the possible values of 7(a), Theorem B gives even stricter
restrictions on the Whitehead torsions of homotopy equivalences and automorphisms. For ex-
ample, if K and L are k-manifolds with orientation character w, then 7(a) € Jx(G,w) (see
Proposition 2.10). We obtain the following simple homotopy rigidity theorem for sphere bundles.

Theorem C. Suppose that j > k are positive integers and j is odd. Let K and L be k-manifolds,
and let S — M — K and S — N — L be orientable (linear) sphere bundles. Then every
homotopy equivalence f: M — N is simple.

Remark 1.8. If we think of the Whitehead torsion as an invariant analogous to the FEuler charac-
teristic (cf. [NNP23, Lemma 2.18]), then Theorem C can be regarded as the analogue of the fact
that odd dimensional manifolds have vanishing Euler characteristic.

Combined with Proposition 1.3 (a), Theorem C leads to a proof of Theorem A (see Section 7.2).
At the same time, it produces a class of manifolds, with arbitrary fundamental groups, within
which two manifolds are homotopy equivalent if and only if they are simple homotopy equivalent.

To get more concrete examples, next we consider doubles over certain 2-complexes X with
fundamental group Co, X Ciy, for which Metzler showed that 7: hAut(X) — Wh(Cyx X Cp,) is
not surjective [Met79, Theorem 1]. Using these complexes X, improved constraints on the set
7(hAut(X)), and Proposition 1.3 (a), we obtain the following theorem.

Theorem 1.9. Let n > 5 and let m > 2 be such that {x — (—1)"T | x € Ko(ZCpn)} # 0. Then
there is an orientable n-manifold M with fundamental group Cog X Cy, such that |[MBYCP(M)| > 1.
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Remark 1.10. If n is even, then examples where {z — = | # € Ko(ZC,,)} # 0 are given in
[NNP23, Theorem 1.7 (i)]. If n is odd then, by [NNP23, Lemma 10.2 (i)] and a similar argument
to the one used in [NNP23, Lemma 11.4], we have |{z + T | z € Ko(ZCy,)}| > b}, where h,
denotes the plus part of the mth cyclotomic class number. For example, we have that hi*'% #1
[Was97, p. 421].

Finally we note that 7(M, ¢) can be used to define an invariant for certain unpolarised manifolds.
We say that M is a split manifold if there exists a polarisation ¢: K — M such that (M, p) is an
SP manifold. For such an M we define

(M) :=7(r(M, ) € H***(Cy; Wh(my (M), w))

where w: m (M) — {£1} is the orientation character of M. It can be shown using Theorem B
that this is well-defined (see Section 7.4). If a split manifold M is also a manifold without middle
dimensional handles in the sense of Hausmann [Hau80], then 7(M) recovers the “torsion invariant”
defined in [Hau80, Section 9], which was shown to be invariant under simple homotopy equivalences
and homotopy equivalences induced by h-cobordisms. We prove the following (see Theorem 7.22).

Theorem 1.11. On the class of split manifolds, 7(M) is a complete invariant for the equivalence
relation generated by simple homotopy equivalence and h-cobordism.

1.4. Summary. Let G be a finitely presented group with a homomorphism w: G — {+1}. We
now give a brief overview of how the above results can be used to decide whether a pair of ho-
motopy equivalent but not simple homotopy equivalent n-manifolds with fundamental group G
and orientation character w exists — equivalently, an whether an M exists with 1-type (G, w) and
|M"(M)| > 1. We also consider the analogous questions for M2C°P and Mg,hCob'

First, Theorem A characterises pairs (G,w) such that |[MbEC°P(M)| > 1 for some M with
fundamental group G and orientation character w in terms of the (non-)vanishing of Z,, (G, w). For
M, cop» Proposition 1.3 (¢) and Theorem 1.6 show that the nontriviality of H™1(Co; Wh(G, w)) is

necessary and the nonvanishing of ¢ = 1/1?51@: L (ZG,w) — H™(Co; Wh(G, w)) is sufficient.

The case when H"*1(Cy; Wh(G, w)) # 0 but 1/}?5}”) = 0 is open in general.

Finally, if at least one of M°P(M) and M?,hCob(M) is nontrivial, then M” (M) is nontrivial
as well. On the other hand, if 7, (G, w) = 0 (equivalently, Z,, (G, w) = ﬁ”“‘l(Cg;Wh(G,w)) = 0),
then by Proposition 2.10 M%(M) is trivial (and hence ME°P(M) and M, (M) are trivial
too). Thus the existence of an M with |[M”?(M)| > 1 can be decided in all cases except when
Z.(G,w) = 0, ﬁ"“(C’Q;Wh(G,w)) # 0 and w?gji) = 0. We note that this case is nonempty:
for example, for n even, the group Cy x Cy, with w = 1, falls into this category. Details will be
postponed for future work.

These results are summarised in Table 1, where we also indicate the restrictions on n needed
for our theorems to apply. (We are not asserting that the dimensional ranges given are optimal.)

Z.(G,w) | H"(Cy; Wh(G, w)) Q/JZLGJ?U) Mh MbCeb M];,hCob
=0 =0 =0 No all n No all n No all n
=0 #£0 #£0 Yes n>5 No all n Yes |n>5
=0 #0 =0 || Open - No all n Open -
#0 =0 =0 Yes |n=9,>11|Yes [ n=9,>11| No |[n>5
#0 #0 #0 Yes n>>5 Yes | n=9,>11| Yes |n>5
#0 #0 =0 Yes |m=9,>11 | Yes | n=9,> 11 | Open -

TABLE 1. Is there an n-manifold M with fundamental group G and orientation
character w such that [M?(M)| > 1 (resp. IMECP(M)] > 1, IME} o, (M)] > 1)?

Remark 1.12. The results listed in Table 1 also apply in the category of topological or PL man-
ifolds. That is because when there are examples of smooth manifolds that are, for instance,
homotopy equivalent but not simple homotopy equivalent, then those are also examples in the
other categories. The negative results in the first row and the M"“°" column rely on Proposi-
tions 2.10 and 2.11, which only use Poincaré duality. Finally, when ﬁ”“‘l(Cg; Wh(G,w)) =0 but
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Z.(G,w) = J.(G,w) # 0, the triviality of M?,hCob follows ultimately from [NNP23, Proposition
4.21], so it holds in all three categories when n > 5 (and also for topological 4-manifolds with good
fundamental group).

Organisation of the paper. In Section 2 we will briefly recall the basic preliminaries on White-
head torsion, taken from [NNP23]. In Section 3 we consider split chain complexes, and prove the
algebraic version of Theorem B. In Section 4, we recall Wall’s results on thickenings. In Section 5,
we introduce polarised doubles, SP manifolds and the invariant 7(M, ¢), and then identify 7(M, ¢)
with an invariant of the cellular chain complex of M. In Section 6, we combine the previous re-
sults to prove Theorem B. In Section 7, we consider various applications of Theorem B, including
Theorems A, C, 1.6, 1.9 and 1.11.
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JN was supported by the Heilbronn Institute for Mathematical Research and a Rankin-Sneddon
Research Fellowship from the University of Glasgow. MP was partially supported by EPSRC New
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2. WHITEHEAD TORSION

We will use the conventions established in [NNP23, Section 2]. The main sources are Mil-
nor [Mil66], Cohen [Coh73], and Davis-Kirk [DK01]. We will assume familiarity with the definition
of simple homotopy equivalence ~, the Whitehead group Wh(G) of a group G, and the Whitehead
torsion 7(f) € Wh(G) of a chain homotopy equivalence f : C, — D, between chain complexes
of finitely generated, free, based (left) ZG-modules (see [NNP23, Section 2]). For the reader’s
convenience, we briefly recall the main properties that we will need.

Proposition 2.1 ([DKO01, Theorem 11.27]). Let f,g: Cx — D, be homotopic chain homotopy
equivalences. Then 7(f) = 7(g).

Lemma 2.2 ([DKO01, Theorem 11.28]). Let f: Cx — D, and g: D, — E, be chain homotopy
equivalences. Then 7(go f) =7(f) + 7(g). In particular 7(Id) = 0.

Lemma 2.3 ([NNP23, Lemma 2.17]). Let0 - C, — C. - C) - 0and0 — D!, — D, — D/ — 0
be based short exact sequences of chain complexes, and let (f', f, f") be a morphism between them,
where f': C. — D!, f: Cy — D,, and f": C? — D! are chain homotopy equivalences. Then

T(f) =7(f) +7(f").
Lemma 2.4 ([NNP23, Lemma 2.19]). Let f: C. — D, be a chain homotopy equivalence. For

every k € Z, it can also be regarded as a chain homotopy equivalence f: Ciyx — Diyy, and we
have 7(f: Cryv — Diys) = (=1)E7(f: C. — D).

We can also define the Whitehead torsion for a map between cochain complexes.

Definition 2.5. Let f: C* — D* be a homotopy equivalence of cochain complexes of finitely
generated, free, based, left ZG-modules. It can be regarded as a homotopy equivalence of chain
complexes f: C™* — D~ and we define 7(f: C* — D*) =7(f: C~* — D~ *).

If a group G is equipped with a group homomorphism w: G — {£1}, then w determines an
involution on the group ring ZG. So if C, is a finitely generated, free, based, left ZG-module chain
complex, then we can define the dual cochain complex C*, which also consists of finitely generated,
free, based, left ZG-modules. Moreover, the involution on the group ring induces an involution
x +— T on the Whitehead group Wh(G, w), and we have the following.

Lemma 2.6 ([NNP23, Lemma 2.24]). Let f: Cx — D, be a chain homotopy equivalence and let

f*: D* — C* be its dual. Then 7(f*) =7(f) € Wh(G,w).
The following notation will be used when we need to change the underlying (group) ring of a
module or chain complex.

Definition 2.7. Let A and B be groups, X a left ZB-module and § € Hom(A, B). The left
ZA-module Xy is defined as follows. The underlying abelian group of Xy is the same as that of
X. For every a € A and = € Xy let ax = 6(a) - x, where - denotes multiplication in X.

Similarly, if Y is a right ZB-module, then the right ZA-module Y? is equal to Y as an abelian
group, and ya = y - 0(a) for every a € A and y € Y?, where - denotes multiplication in Y.



GENERALISED DOUBLES AND SIMPLE HOMOTOPY TYPES 7

Let X and Y be finite CW complexes, and let F' := 71 (X) and G := m1(Y). The cellular chain
complex of Y with ZG coefficients is C,(Y'; ZG), which is a finitely generated, free, left ZG-module
chain complex, and similarly C.(X;ZF) is a ZF-module chain complex. Let f: X — Y be a
homotopy equivalence, and let § = m1(f): F — G. The right ZG-module ZG corresponds to a
local coefficient system on Y, which is pulled back to the local coefficient system on X corresponding
to the right ZF-module ZG?. Therefore (after cellular approximation) f induces a chain homotopy
equivalence f,: C.(X;ZG%) — C.(Y;ZG) of left ZG-module chain complexes, and the Whitehead
torsion of f is defined to be the Whitehead torsion of f,. We will use the following properties.

Theorem 2.8 (Chapman [Cha74]). Let f: X — Y be a homeomorphism between compact, con-
nected CW complexes. Then f is a simple homotopy equivalence.

Proposition 2.9 ([Coh73, Statement 22.4]). Let X, Y, and Z be finite CW complexes and let
f: X =Y and g: Y — Z be homotopy equivalences. Then 7(go f) = 7(g) + g«(7(f)).

The involution of the Whitehead group and the subgroups J,(G,w) and Z,(G,w) play an
important role when considering homotopy equivalences between manifolds, due to the following
two results, both of which are consequences of Poincaré duality (cf. [Wal99], [KS77], [Mil66]).

Proposition 2.10 ([NNP23, Proposition 2.35]). Let M and N be n-manifolds. Let G = m1(N)
with orientation character w: G — {£1}, and let f: M — N be a homotopy equivalence. Then
7(f) € Tn(G,w).

Proposition 2.11 ([NNP23, Proposition 2.38]). Let W be an h-cobordism between n-manifolds
M and N. Let G = (W), let w: G — {£1} be the orientation character of W, and identify
m1(M) with G via the inclusion. If f: N — M denotes the homotopy equivalence induced by W,

then 7(f) = —7(W, M) + (—-1)"7(W, M) € Z,,(G,w).
3. SPLIT CHAIN COMPLEXES

In this section we define split chain complexes and prove Lemma 3.6 about computing the
Whitehead torsion of a chain homotopy equivalence between two split chain complexes.

Fix some positive integer n and a group G with orientation character w: G — {+1}. Every
chain complex C, will be assumed to consist of finitely generated free, left ZG-modules, satisfying
the condition C; = 0 for ¢ < 0 and 4 > n (and similarly for cochain complexes).

Definition 3.1. Let (C,, d,) be a chain complex. We define the chain complex (C¥, d%) by Cf = C;

and df = d;: C; — C;_1 if i < % and C! =0 if i > %. Similarly, we define (C¥,d¥) by C}* = C; if
i>D dt=difi>2+1,and C¥ =0ifi <2,

Let (C*,d*) be a cochain complex. We define ((C*)*, (d*)*) by (C*)* = C? and (d*)! = d*: C* —

Ciﬂ ifiv> 2 and (C*)' =0 if i < 2. Similarly, we define ((C*)*, (d%)*) by (C*)" = C" if i < Z,
(d)=difi<%—1,and (C)' =0if i > 2.
Definition 3.2. We say that a chain complex (C., d.) splits if C,, /o = 0 (if n is even) or dp,, )27 = 0
(if n is odd). We say that a cochain complex (C*,d*) splits if C™/? = 0 (if n is even) or d"/2] = 0
(if n is odd).

Note that C, (resp. C*) splits if and only if C, = Cf @ C¥ (resp. C* = (C*)* @ (C*)*).

Definition 3.3. Let C, and D, be chain complexes. We define chEq(C., D,) C Hom(C,, D.)/~

to be the set of chain homotopy classes of chain homotopy equivalences C, — D,.

Lemma 3.4. Suppose that (Cy,dS) and (D.dP) are split chain complexzes. Then there is a bijection
chEq(C,, D.) & chEq(CY, DY) x chEq(CY, DY),

where the projections chEq(Cy, D.) — chEq(C¥¢, DY) and chEq(Cy, D,) — chEq(C¥, D¥) are de-
fined by restriction.

Proof. Since C, and D, split, restrictions define an isomorphism
Hom(C,, D) = Hom(C?*, DY) @ Hom(C*, D).

Let f, f': C, — D, be chain maps. The restrictions of a chain homotopy between f and f’ are
homotopies between f ‘ oe and I ’ o¢ and between f | o and 1! ’ o> Tespectively, because dﬁ /2 = 0
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and dﬁl/2j+1 = 0. Conversely, a pair of homotopies between f|(ﬂ and f/|cﬂ and between f|

and f'| cu
isomorphism (Hom(C\, D,)/~) = (Hom(C%, D%)/~) @ (Hom(C¥, D*)/=~) on homotopy classes.
This isomorphism is defined for every pair (Cy, D.) of split chain complexes, it is compati-
ble with the composition maps (induced by Hom(D., E,) X Hom(C,, D.) — Hom(C,, E,), and
similarly for Hom(C?, DY) and Hom(C¥, D¥)) and [Idc,] € (Hom(C,,C,)/~) corresponds to
([Id¢e], [Idcu]). Since chEq(Cy, Dy ) consists of those elements of (Hom(C\, D.)/=~) which have an
inverse in (Hom(D,, C,)/~) (and similarly for chEq(C¥, D?) and chEq(C¥, D¥)), this implies that
the isomorphism above restricts to a bijection chEq(Cy, D) = chEq(C¥, DY) x chEq(C¥, D¥). O

Ccu
can be combined to a homotopy between f and f’. Therefore there is an induced

Recall that the orientation character w determines an involution on ZG, which allows us to
define the dual of a left ZG-module as another left ZG-module. Note that a chain complex C.,
splits if and only if the dual cochain complex C* (defined by C* = (C;)*) splits.

Definition 3.5. Let C, and D, be chain complexes, C* and D* the dual cochain complexes,
and let P: C"* — () and Q: D" * — D, be chain homotopy equivalences. Then define
chEq(Cy, Dy)p,g € chEq(Cy, D) to be the subset consisting of those chain homotopy equiva-
lences f: Cy — D, which make the diagram

#*

Cn—* pDn—*
Pl lQ
f
Co,—— D,
of chain complexes commute up to chain homotopy, where f* denotes the dual of f.

Lemma 3.6. Let C, and D, be chain complexes, C* and D* the dual cochain complexes, and
let P: C"* — C and Q: D"* — D, be chain homotopy equivalences. Suppose that C, and
D, split, so that P and @ restrict to chain homotopy equivalences P|((ﬂ)ﬂ-* S (CH* = C¥ and

Q|(Dl)n7*: (DY)"=* — DY, and let a = T(P|(Cz)n,*) and B = T(Q‘(De)n,*) € Wh(G,w). Then
there is a commutative diagram

chEq(C., D.)pg —— Wh(G,w)
l TmHm(l)”rJrﬁa
chEq(CZ, DY) ——= Wh(G, w)

where the vertical map on the left is given by restriction, i.e. it is the composition of the inclu-
sion chEq(Cy, D)pg — chEq(Cs, D.) and the projection chEq(Cy, D.) — chEq(C%, D%) from
Lemma 3.4.

Proof. Let f € chEq(Cy,Ds)pg. Since C, and D, split, by Lemma 2.3 we have that 7(f) =

) = —(-0" ([ + 8-
The diagram in Definition 3.5 restricts to a homotopy commutative diagram

T(f|cz) + T(f’Cu)7 so it is enough to prove that 7(f

Il peyn—=

(Cé)n—* (Dé)n—*
Pl(cl)n*l \LQ'(DZ)?L*
Cu flow Do

By Proposition 2.1 and Lemma 2.2 we have
T(F* | peye-) T+ 7(f|w) =B,
or equivalently

m(f

Therefore it suffices to prove that

C}:) = _T(f*|(Dl)n7*) +ﬂ — Q.
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By Lemma 2.4 we have T(f*|(D£)n_*) = (71)“T(f*|(D£)_*), and it follows from Definition 2.5
c¢)s Which

that 7(f*
completes the proof. O

(Df)**) = T(f*|(De)*)- Finally by Lemma 2.6, we have T(f*’(Dé)*) =7(f

4. THICKENINGS

We recall Wall’s definition of thickenings and some of their basic properties. Fix positive integers
n,k with n > 2k + 1, and let K be a connected finite CW complex of dimension (at most) k.

Definition 4.1. Suppose that n > max(k + 3,2k + 1). An n-dimensional thickening of K is a
simple homotopy equivalence fr: K — T, where T is an n-manifold with boundary such that the
inclusion map 0T — T induces an isomorphism m (0T = w1 (7).

Two thickenings fr: K — T and fp.: K — T’ are equivalent if there is a diffeomorphism
H:T — T’ such that H o fr ~ fr..

Since n > 2k + 1, we can assume that fr is an embedding. From now on thickening will mean
n-dimensional thickening, unless indicated otherwise.

Lemma 4.2 (Wall [Wal66, Proposition 5.1]). Suppose that n > max(6,2k + 1). The assignment
(fr: K = T) w— fr(vr), where vy denotes the stable normal bundle of T, is a bijection between
the set of equivalence classes of thickenings of K and the set of isomorphism classes of stable vector
bundles over K. (]

Remark 4.3. The arguments of [Wal66, §5, §7 and §8] also show that if n =5 > 2k + 1, then the
assignment (fr: K — T) — f5(vr) is surjective.

Lemma 4.4 (Wall). Suppose thatn > max(6,2k+1), M is an n-manifold (possibly with boundary),
and p: K — M is a continuous map. Then there is a thickening fr: K — T and an embedding
i: T — Int M such that i o fr ~ . The thickening fr is unique up to equivalence.

Proof. The existence part follows from Wall’s embedding theorem [Wal66]. For the uniqueness
assume that there is another thickening f7.: K — T’ and an embedding i': T — M such that
i' o frr ~ . Then fi(vr) = f5(i*(vm)) = ©*(vm) = f7,(()*(vamr)) = f7 (vrr), so by Lemma 4.2
it follows that fr and fp/ are equivalent. O

Lemma 4.5. Suppose that n > max(k + 3,2k + 1) and fr: K — T is a thickening. Then the
inclusion T — T is (n — k — 1)-connected.

Proof. By the definition of thickenings m (0T) — m1(T) is an isomorphism. Let G = 71 (T) and
consider homology with ZG coefficients. We have H;(T,0T) = H" {T) = H" Y(K) = 0 if
n —1 >k, equivalently, : <n — k — 1. O

Lemma 4.6. Suppose that n > max(6,2k + 2) and fr: K — T is an n-dimensional thickening.
Then there is a map for: K — 0T such that for ~ fr as maps K — T. Furthermore, for is
unique up to homotopy.

Proof. By [Wal66, §5] there is an (n—1)-dimensional thickening fy : K — V and a diffeomorphism
T ~ V x I such that fr is homotopic to the composition K v, V. - V xI = T. Hence

0T ~ V Up,, V, and we can take far to be the composition K ﬂ) V = VUua,, V = 0T.
Since the inclusion 9T — T is at least (k + 1)-connected, any two maps from K to 9T that are
homotopic as K — T maps are also homotopic as K — 9T maps. Therefore fsr is unique up to
homotopy. ]

Lemma 4.7. Suppose that n > max(6,2k + 2). Let M be a closed n-manifold, fr: K — T a
thickening, ¢o: K — M an ng -connected map and i: T — M an embedding such that i o fr ~ ¢.
Let C = M\ i(IntT) denote the complement of i(T), let j: C — M be the inclusion, and let ¢’

denote the composition K ELENPY N i(0T) — C.

(a) The map ¢': K — C is a homotopy equivalence.
(b) A map f: K — C is homotopic to ¢ if and only if jo f ~p: K — M.
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Proof. (a) Since ¢ is L%J—connected and fr is a homotopy equivalence, ¢ is {gj—connected too. The
inclusions 0T — T and i induce isomorphisms on 71, so it follows from the Van Kampen theorem
that the inclusions i(0T) = 0C — C and j also induce isomorphisms on 7. Let G = 7 (M),
identify the fundamental groups of T, 0T and C' with G via the inclusions, and consider their
homology with ZG coefficients.

By excision and Lemma 4.5 we have H.(M,C) = H,.(T,0T) = 0 if r < n — k — 1. Therefore
H,(j): H,(C) — H,(M) is an isomorphism if r < n — k — 2, in particular if » < [2] — 1. The

induced homomorphism H,(¢): H.(K) — H,(M) is an isomorphism for r < |%], because ¢ is

L%J—connected and K has dimension k < L%J Since p >~ io fr ~io far ~joyp' : K — M, we

get that H,(¢'): H,(K) — H,(C) is an isomorphism if r < [2] — 1. We also have that H,(C) =
H"="(C,0C) =2 H""(M,i(T)) =0 and H,(K) =0if r > [2] (hence n —r < |2]). Therefore ¢’
induces an isomorphism on 7; and all homology groups, so it is a homotopy equivalence.

(b) We already saw that ¢ ~ j o ¢’. This implies the only if direction. Also, by part (a) this

implies that j is |%|-connected. Hence if jo f ~ ¢ ~ jo ¢ for some f: K — C, then f ~ ¢/,

because K has dimension k£ < L%J —1. O

The next lemma is implicit in the discussion on [Wal66, p. 77].

Lemma 4.8. Let M be an n-manifold with boundary, and let N C Int M be a codimension 0
submanifold. Then the following hold.

(a) If M \ Int N is an h-cobordism between ON and OM, then the inclusion i: N — M s a
homotopy equivalence.

(b) If the inclusions induce isomorphisms w1 (ON) =2 7 (N) and w1 (OM) = w1 (M), andi: N - M
is a homotopy equivalence, then M \ Int N is an h-cobordism.

(c) If the assumptions in (b) hold, then 7(i) = j.(7(M \ Int N,0ON)) € Wh(m1(M)), where j: M \
Int N — M is the inclusion.

Proof. (a) Since the inclusion 9N — M \ Int N is a homotopy equivalence, by applying homotopy
excision [Hat02, Theorem 4.23] to the map (M \ Int N,ON) — (M, N) we deduce that i is a
homotopy equivalence too.

(b) Let G = m (M), it follows from the Van Kampen theorem and the assumptions that the
inclusions identify m1(N), 71 (ON), m (M \ Int N) and 1 (0M) with G, in particular m (ON) =
w1 (M \ Int N) = w1 (0M). Consider homology with ZG coefficients. Since i is a homotopy equiva-
lence, we have H,(M \ Int N,ON) = H,(M, N) = 0 by excision. By Poincaré duality we also have
H.(M\Int N,OM) = 0, therefore the inclusions ON — M \ Int N and OM — M \ Int N are both
homotopy equivalences.

(¢) Fix a CW structure on ON and extend it to a CW structure on M (so that ON is a
subcomplex of N and M \Int N). Consider cellular chain complexes with ZG coeflicients. We have
a commutative diagram

0

C.(ON) C.(N) C.(N,ON) ——=0

| g l

0—CM\ItN) —C,(M) —=C.(M,M \Int N) ——=0

where the rows are short exact sequences of chain complexes. The left and middle vertical maps
are chain homotopy equivalences by our assumptions and part (b). The vertical map on the right
is a chain homotopy equivalences with vanishing Whitehead torsion, because the cells in N \ N
determine the standard basis in both C(N,9N) and C\ (M, M\ Int N). So by Lemma 2.3 we have
7(ix) = T(Cx(ON) = C(M \ Int N)) € Wh(G). |

5. POLARISED DOUBLES

Fix positive integers n, k with n > 2k 4+ 1, and let M be a closed n-manifold, K a finite CW
complex of dimension (at most) k and let p: K — M be a continuous map. We will think of (the
homotopy class of) ¢ as extra structure on M and call the pair (M, ) a polarised manifold.
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5.1. Double structures on polarised manifolds. We start by defining the different types of
double structures that a polarised manifold may have.

Definition 5.1. Let (M, ¢) be a polarised manifold.

o A generalised double structure on (M, ¢) is a diffeomorphism h: T' Uy, W Uy, T — M such that
@ =~ hoiyo fpr, where fr: K — T is a thickening, W is an h-cobordism with OW = W U W,
go: QoW — 0T and g,: 0T — O1W are diffeomorphisms and i;: T — T Ugy W Uy, T is the
inclusion of the first component.

o A twisted double structure on (M, ¢) is a diffeomorphism h: TU,T — M such that ¢ ~ hoiyo fr,
where fr: K — T is a thickening, g: 0T — 0T is a diffeomorphism, and é;: T — T' Uy T is the
inclusion of the first component.

e A trivial double structure on (M, ) is a twisted double structure with g = Idgp.

Of course, (M, ) has a twisted double structure if and only if it has a generalised double
structure with W = 9T x I. If the manifold M is of the form T'Ug, W Ug, T, T Uy T, or T Uq,, T,
then Idy, is a generalised /twisted/trivial double structure on (M, o fr).

Proposition 5.2. Suppose that n > max(6,2k+2). Then (M, ) has a generalised double structure

if and only if ¢ is L%J -connected.

Proof. First assume that a generalised double structure h exists as in Definition 5.1. By Lemma 4.8 (a),
the inclusion T'— T UW is a homotopy equivalence. By Lemma 4.5 the pair (T,9T) is (n—k—1)-
connected, and by homotopy excision the same holds for the pair (TUW UT,T UW). Therefore
i1 is (n — k — 1)-connected too. Since ¢ ~ hoi; o fr and h and fr are homotopy equivalences, ¢
is also (n — k — 1)-connected, in particular it is L%J—connected.

Now assume that ¢ is L%J—connected. By Lemma 4.4 there is a thickening fr: K — T of K

and an embedding i: T — M such that i o fr ~ ¢. Let C = M \ i(Int T') denote the complement

of i(T"). By Lemma 4.7 the composition K LN,y N i(0T) — C, denoted by ¢, is a homotopy
equivalence. Applying Lemma 4.4 again, there is a thickening f7v: K — T” of K and an embedding
7' T" — Int C such that i’ o f7v ~ ¢'. Moreover, since o and ¢’ are homotopic as K — M maps, fr
and fr: are equivalent thickenings, i.e. there is a diffeomorphism H: T' — T’ such that Ho fr ~ fr.
Let W = C\4'(Int T"). The embedding i’: 7" — C is a homotopy equivalence, because ¢’: K — C
and fr/ are both homotopy equivalences and i’ o f7r ~ ¢’. So by Lemma 4.8 (b) W is an h-
cobordism. Therefore the decomposition M = i(T) U W U (i’ o H)(T) determines a generalised
double structure on (M, ). O

Corollary 5.3. Suppose that n > max(6,2k + 2), and let N be an n-manifold. If (M, p) has a
generalised double structure and M ~ N, then (N,v) also has a generalised double structure for
some : K — N.

Proof. If h: M — N is a homotopy equivalence, then ¥ := h o ¢ is L%J—connected. |

5.2. The Whitehead torsion of a polarised double. Next we define and study the invariant
T(M, ¢), the torsion associated to a polarised double.

Definition 5.4. Suppose that n > max(6,2k+2) and ¢ is L%J—connected. The Whitehead torsion
associated to (M, ), denoted by 7(M,p), is defined as follows. Let fr: K — T be a thickening
and let i: T — M be an embedding such that i o fr ~ ¢. Let C = M \ i(IntT) denote the

complement of i(T") with inclusion j: C' — M, and let ¢’ be the composition
o K125 91 L i(0T) — C.
Then
7(M, @) = ju(7(¢)) € Wh(m1(M)).
Proposition 5.5. The Whitehead torsion T(M, ) is well-defined.

Proof. First we check that the assumptions made in Definition 5.4 are satisfied. A suitable thick-
ening fr and embedding ¢ exist by Lemma 4.4. The composition ¢': K — C is a homotopy
equivalence by Lemma 4.7, so 7(¢') € Wh(m(C)) is defined. Since j o ¢’ ~ ¢ and m1(p) and
m1(¢’) are isomorphisms, j.: Wh(m(C)) — Wh(m;(M)) is an isomorphism too.
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Next we check that 7(M,¢) is independent of choices. By Lemma 4.4, the thickening fr is
well-defined (up to equivalence). Suppose that ig: 7' — M and i1: T — M are two embeddings
with ig o fr >~ 41 o fr ~ ¢ and corresponding Cy, jo, @[ and C1, j1, ). We will prove that

(Jo)«(7(0)) = (1)« (7(1))-

Since n > 2k + 2, we can assume that fr is an embedding, and since the embeddings ig o fr
and iy o fr: K — M are homotopic, they are isotopic [Whi36, Theorem 6].

By the isotopy extension theorem there is a diffeomorphism H: M — M, isotopic to Id;, such
that iOOfT = HO’ilOfT. Let i9 = HOil, Cy = H(Cl) = M\ZQ(IntT), Jo = Hojl oH™1: Co - M
and ph = Hop): K — C.

Since H is a diffeomorphism, 7(¢5) = Hi(7(¢})) € Wh(m(Cs)) by Proposition 2.9 and The-
orem 2.8, and hence (j2).(7(¥%)) = Hi o (j1)«(7(¢})). We have H, = Id: Wh(m(M)) —
Wh(m (M)), because H ~ Idys, therefore (j2).(7(05)) = (j1)«(7(¢})). So it is enough to prove
that

(Jo)«(T(0)) = (j2)+(7(5))-

The image of igo fr = izo fr: K — M is contained in io(T)Ni2(T"), so we can apply Lemma 4.4
to get an embedding iz: T — io(T) Niz(T) such that izo fr ~ igo fr, and define the corresponding
C3:= M \ i3(Int T), with inclusion js: C5 — M, and ¢4: K — Cs. Since i5(T) C ig(T"), we have
C3 2 Cy. Let h: i3(T) — io(T) and h': Cy — C5 denote the inclusions (hence jo = j3 o h').

By construction, hoigo fr ~igo fr: K — io(T). Since fr and the diffeomorphisms ig: T' —
io(T) and i3: T — i3(T) are simple homotopy equivalences, h is a simple homotopy equivalence
too. By Lemma 4.8 (b) and (c), we see that ig(T) \ i3(Int T') is an s—cobordism7 and this in turn
implies that A’ is a simple homotopy equivalence We have jz o b/ o ¢, = jo o ¢y =~ ¢, so by
Lemma 4.7 (b), we have that h' o ¢ >~ ¢4 : K — C3. Use this, Proposition 2.9, and the fact that
7(h') =0, to deduce that

(43)+ (7(#5)) = (d3)« (T(R" © ) = (43)« (AT (0))) = (Jo)«(7 (0
Since also i3(T) C i2(T"), we can prove similarly that (j3)«(7(©%)) = (j2)«(7(©h)). Therefore
(J0)«(T(#0)) = (42)«(7(2)) as required. 0

Note that 7(M, ¢) is defined precisely when (M, ¢) admits a (generalised) double structure, but
it is determined by the polarised manifold (M, ¢) alone, and is independent of a choice of a double
structure. However, when a double structure is present, it can be used to compute 7(M, ), as
we explain below. More generally, we will investigate the relationship between 7(M, ) and the
possible double structures on (M, ).

*
A
©
S~—
S~—

Proposition 5.6. Suppose that n > max(6,2k + 2) and (M, @) has a generalised double structure

h:T Ugy WUg, T — M, and let i1, i2, and i3 denote the inclusions of the three components of

TUg, WU, T

(a) There is a homotopy automorphism a: K — K such that poa ~ hoizo fr: K — M, and
such an « is unique up to homotopy.

(b) This « satisfies a*(p*(var)) = ©*(Var).

(c) For this o, we have T(M, ) = (hoig)(T(W,01W)) — p.(T()).

Proof. First we introduce some notation. Let ¢ = hoi1: T — M, C = h(W U, T), and ¢’ =
hoiio far: K — C, and let j: C' — M denote the inclusion. Then, by Definition 5.4, we have
T(M, ) = ju(1(¢")) = ha(T(¢")), where ¢"" =iy 0 for: K = W U, T

(a) By Lemma 4.7, ¢’ is a homotopy equivalence, and since h|WUg1T: WU, T = Cis a

diffeomorphism, ¢” is a homotopy equivalence too. Let
a:=(¢") toizofr: K = K,
where i3 is regarded as an inclusion ' — W Uy, T and (¢”)"': W Uy, T — K is the homotopy
inverse of ¢”. By Lemma 4.8 (a), i3 is a homotopy equivalence, so « is a homotopy equivalence
too. Moreover, we compute that
poa~hoijofroa~hoijofsroa=hoy ' oca~hoizofr: K — M.

If a,0/: K — K are two maps such that poa ~ poa’: K — M, then a ~ o, because ¢ is
L%J-connected and K has dimension k < L%J —1.
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(b) Since poa =~ hoizo fr, we have a*(p*(var)) = fr((hoig)*(var)) = fr(vr), where we used
that hoig: T — M is a codimension 0 embedding. Since ¢ ~ hoijo fpr, and hoi;: T — M is a
codimension 0 embedding, we similarly obtain ¢*(var) = f(vr). Hence o*(¢* (Vi) = ¢* (var)-

(c) It follows from the definition of a that " ~izo froa™': K — W U, T. We have

7(izo froa™') =7(is) + (is)«(7(fr)) + (is © fr)«((a "))

by Proposition 2.9. The map fr is a simple homotopy equivalence, and by Lemma 4.8 (¢), we have
that 7(ig) = (i2)«(7(W, 01 W)), where i is regarded as an embedding W — WUy, T. We also have
0=7(atoa)="1(a™t) +a(r(a)), so

T(iz o froa™h) = (i) (r(W,1W)) — (i3 0 fr o a™).(7(v)).

1

Since p ~ hoizo froa™", we obtain

T(M, ) = hi(7(¢")) = hu(r(iz 0 fr 0 a™")) = (hoiz)u(T(W,0:W)) — pu(7(av)). 0

Corollary 5.7. Suppose that n > max(6,2k+2) and (M, ) has a twisted double structure h: T'U,
T — M. Let a € hAut(K) be the image of g under the restriction map hAut(0T) — hAut(K)
(see Remark 5.13, Lemma 6.3 and Remark 6.4). Then 7(M, ) = —p.(7(a)).

Proof. Since the twisted double structure of (M, ¢) determines a generalised double structure with
W = 0T x I, it is enough to show that poa ~ hoiyo fr: K — M, where ig: T'— T Uy T' is the
inclusion of the second component. This holds, because

@OaﬁhoilOfTOaﬁhOilOfaTOO(ZhOilogOfaT:hOigOfaT2h07:20fT. O

Corollary 5.8. Suppose that n > max(6,2k + 2) and (M, ) has a trivial double structure. Then
T(M, ) =0.

Proof. We can apply Corollary 5.7 with ¢ = Idgr, and hence a = Id . |

Remark 5.9. The converse does not hold. There are even simply-connected counterexamples, e.g.
take K to be a point and M an exotic sphere.

Proposition 5.10. Suppose that n > max(6,2k + 2) and ¢ is L%J -connected. Then (M, p)

has a twisted double structure if and only if there is a homotopy automorphism o« € hAut(K)
such that there is an isomorphism of stable vector bundles a*(¢*(var)) = ¢*(var) and 7(M, ) =

—¢u(1(@)) € Wh(mi (M)).

Proof. If (M, ) has a twisted double structure, then it follows from Proposition 5.6 (b) and the
proof of Corollary 5.7 that such an « exists.

Now suppose that there is an a with a*(¢*(var)) = ¢*(vay) and 7(M, ¢) = —p.(7(a)). Define
fr: K = T,i4, C, jand ¢’ as in Definition 5.4, so that 7(M, ¢) = j.(7(¢)). Let ¢ := p'oa: K —
C. Then

Je(T(¥)) = Ju(7(¢) + u(r(@))) = T(M, ) + (j 0 ¢")u(T(@)) = T(M, ) + pu(7(ax)) =0

by Proposition 2.9, Lemma 4.7 (b), and the hypothesis. As j, is an isomorphism, this means that
1 is a simple homotopy equivalence, hence ¢: K — C' is a thickening. Moreover,

Ut (ve) = o ((P) (" (var))) = o™ (9" (var)) = 9" (var) = f7(07 (vn)) = fr(v).

So by Lemma 4.2 the thickenings ¢: K — C and fr: K — T are equivalent, i.e. there is a
diffeomorphism H: T — C such that H o fp ~ . Then ({UH): T Uy T — M is a twisted double
structure on (M, @), where g is the composition

g: 0T 1 oc = i(oT) s aT. O

Corollary 5.11. Suppose that n > max(6,2k + 2) and ¢ is L%J -connected. If (M, p) = 0, then
(M, @) has a twisted double structure.

Proof. Take @ = Idi and apply Proposition 5.10. O
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5.3. SP manifolds. Next we show that if we impose some mild restrictions on (M, ), then
T(M, ¢) can be expressed in terms of the Poincaré duality chain homotopy equivalence.

Definition 5.12. The pair (M, ¢) is a split polarised manifold (SP manifold for short) if at least
one of the following conditions holds:

(SP1) n > max(7,2k 4 2) and (M, ¢) has a generalised double structure;
(SP2) n > max(6,2k + 2) and (M, ) has a twisted double structure; or
(SP3) n > max(k + 3,2k 4+ 1) and (M, ¢) has a trivial double structure.

Remark 5.13. If n > max(6,2k +2) and fr: K — T is an n-dimensional thickening, then n — 1 >
max(k + 3,2k + 1) and the proof of Lemma 4.6 shows that (0T, far) satisfies (SP3).

We extend the definition of 7(M, ¢) to the case when max(6, 2k + 2) > n > max(k + 3,2k + 1)
and (M, ) has a trivial double structure by setting 7(M,¢) = 0. Then 7(M, ¢) is defined for
every SP manifold (M, ¢), and if (SP3) holds, then 7(M, ¢) = 0.

Theorem 5.14. Suppose that (M, ) is an SP manifold, and let G = w1 (M) with orientation
character w: G — {£1}. Then M has a CW decomposition with the following properties.

(a) The L%J -skeleton of M is identified with K via an embedding K — M homotopic to .

(b) Let C.(M) = C.(M;ZG) denote the cellular chain complex of M with ZG coefficients. Then
C(M) splits (see Definition 3.2).

(¢) Let PD: C"*(M) — C.(M) denote the chain homotopy equivalence induced by Poincaré
duality (which is determined up to chain homotopy by a choice of twisted fundamental class

[M] € H,(M;Z") 2 Z, where Z" is the orientation module). Then
7(PD |C£(M)n,* S CHM)TF = CU(M)) = 7(M, ¢) € Wh(G, w).

Proof. (a) Let h: TUg WUy, T — M or h: TUy,T — M be a generalised, twisted or trivial double
structure on (M, ) if (SP1), (SP2) or (SP3) holds, respectively (in the last case g = Idsr). Let
i1, 42 and i3 denote the embeddings of the components of T"U,, W Uy, T, or let ¢; and i3 denote
the embeddings of the components of T'U, T'.

The thickening T" has a handlebody decomposition such that the embedding fr: K — T iden-
tifies K with the CW complex formed by the cores of the handles, in particular there is a bijection
between the i-handles and the i-cells of K (see [Wal66, §7]). This handlebody decomposition de-
termines a Morse function mg: T — [0,1] such that index-i critical points of mg correspond to
i-handles and mg ' (1) = T. By the normal form lemma [Mil65], [Liic02, Lemma 1.24], if n > 7,
then there is a Morse function my: W — [0, 1] on the h-cobordism W such that all critical points
have index |2 | +1or [ %] +2, and my"(0) = 9W and m'(1) = 0, W.

Now we can define a Morse function m: M — R on M. In the case of (SP1) we take mg on
hoi1(T), mi +1on hoix(W)and 3 —mg on hoisg(T). In the case of (SP2) and (SP3) we take
mo on hoiy(T) and 2 —mg on hoiy(T).

The Morse function m determines a handlebody decomposition of M, and by [Mat02, Theorem
4.18] M is homeomorphic to the CW complex formed by the cores of the handles (having one
i-cell for each index-i critical point of m). The critical points of m have index at most k < L%J in
hoiy(T), | %] +1or |2|+2inhoiy(W), and at least n —k > [%] 4+ 1 in hoiy(T) or hoiz(T).
Therefore the ng—skeleton of M consists of the cores of the handles in h o i1(T).

Let fay = hoiyo fr: K — M, then by the above fj; identifies the ng—skeleton of M (which
is also the k-skeleton) with K. Moreover, fas ~ ¢ by Definition 5.1.

(b) If n > 2k + 2, then k < L%J — 1, so M has no {%J-cells. This means that C|,/o|(M) = 0,
hence C, (M) splits.

If n = 2k + 1, then (M, p) satisfies (SP3), so h=! is a diffeomorphism M — T Ujq,, T. There
is a well-defined retraction IdrUldr: T Ura,, T — T. Since the embedding fr is a homotopy
equivalence, K is a deformation retract of T, and we can compose h~! with the two retractions

to get a retraction r: M — K. It induces a chain map C.(r): C.(M) — C.(K) such that the

composition C,(K) - Uyr) C(M) W C.(K) is the identity. Since C;(fas) is an isomorphism for

i <k, we get that Ck(r) is an isomorphism too, and this implies that the differential Cy4q1 (M) —
Cr(M) vanishes. Therefore C, (M) splits.

(c) Let m = —m: M — R be the reverse Morse function on M. It has the same critical points
as m, with index-i critical points turning into index-(n — i) critical points. It determines a new
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CW complex homeomorphic to M, which we will denote by M. By cellular approximation there
is a cellular map ¢: M — M homotopic to Idyy;.
Now let I: C"*(M) — C.(M) denote the isomorphism that sends the (cochain) dual of
an (n — i)-cell of M to the corresponding i-cell of M. Then the chain homotopy equivalence
D: C"*(M) — C.(M) inducing Poincaré duality can be defined (up to chain homotopy) as
the composition C,(¢)~! o I, where C,(1)~! denotes the homotopy inverse of the chain homotopy
equivalence C,(1): Cx(M) — C.(M).
The chain complex C,(M) splits, because C"~*(M) splits and I is an isomorphism. By
Lemma 3.4, we have that PD, I, and C,(¢) all restrict to chain homotopy equivalences between
the upper and lower halves of the chain complexes involved, and C.,(

and C,(

1‘06 (M) = ( *(L)‘Cf(]\/[))_l
(up to chain homotopy). Hence we have:

(M)yn—* — (C* (L)

Since the isomorphism I and its restrictions preserve the standard bases, this implies that
7(PD |C“ and 7(PD |C¢

1|Cu(M) (Cile ’C};(M))i

PD

PD‘CZ

OI|Cz

_ -1
o = (Cule ’0£<M>) cu (M= cx () (M)n—="

(M)"**) = _T(C*(L)|CZ(M)) (M)n**) = —T(C*(L)}C}:(M)).

Now note that 7(C\(¢) Cu (M)
to Idas, so we can apply Proposition 2.1 and Lemma 2.2 to deduce that 7(C,(¢)) = 0. Therefore
7(PD |CZ(M)n—*) = —7(Ci(¢) C};'(M)) 7(Cs |C“(M))

Let L denote the | % |-skeleton of M and let C = M\hoiy(Int 7). In M the handles corresponding
to the critical points of m of index at most {%J (which are the critical points of m of index at
least { ]) together make up C, and L consists of the cores of these handles. By [Mat02, Theorem
4.18], it follows that C is homeomorphic to the mapping cylinder of the projection C — L, so
the inclusion L — C' is a simple homotopy equivalence by [Coh73, Corollary 5.1A]. The cellular
map ¢ restricts to a map L|fM(K): fu(K) — L between the L%J—skeletons of M and M. The

)+ 7(Cy |C[(M)) T(C«(¢)) = 0. Here we used that ¢ is homotopic

~

inclusions determine isomorphisms C{M ) =~ O.(fu(K)) and C4M) = C.(L) (preserving the

standard bases), hence 7(C\ |C’(M) |fM(K)

First assume that (SP1) or (SP2) holds. Let ¢’ denote the composition K 101, o 2y 01 (0T) —
C, so that 7(M,¢) = 7(¢’) (when 71 (C) is identified with 71 (M) via the inclusion). The compo-

sition K fu(K) = L — C — M is homotopic to ¢, because fys ~ ¢ and ¢ ~ Idy;. So by

Lemma 4.7 (b) the composition K — iEL 2 fu(K) == L — C is homotopic to ¢’. This shows that
(L|fM(K)) 7(¢') = 7(M, ¢), because the homeomorphism fy;: K — fu;(K) and the inclusion
L — C have vanishing Whitehead torsion.
Now assume that (SP3) holds. Then L = hoigo fr(K) and r|L: L — K is a homeomorphism (by
the definition of 7). Moreover, roco fyy ~ roldy ofpy = Idg. Since fy is also a homeomorphism,
this means that L|fM(K) is homotopic to a homeomorphism, so T(L’fM(K)) =0=17(M, o).

Therefore 7(PD |CZ(M)H,*) =7(M, ) in all cases. O

6. THE WHITEHEAD TORSION OF HOMOTOPY EQUIVALENCES OF DOUBLES

In this section we prove Theorem B. Fix positive integers n,k with n > 2k + 1. Let M and
N be closed n-manifolds, and let K and L be finite CW complexes of dimension (at most) k.
Suppose that p: K — M and ¢: L — N are continuous maps such that (M, ) and (N, ) are SP
manifolds.

Let F:=m (M) and G := 71(N). The maps ¢ and 1 are {gJ—connected by Proposition 5.2, so
m1(p) and 7 (1)) are isomorphisms. We use these isomorphisms to identify m (K) with F' = m; (M)
and (L) with G = m1(N).

Let wp: F — {£1} and w = wy: G — {£1} be the orientation characters of M and N
respectively. Fix twisted fundamental classes [M] € H,(M;Z"¥*) and [N] € H,(N;Z"). For any
homotopy equivalence f: M — N we have w o m(f) = wy and f,([M]) = ¢[N] for e =1 or —1.

Definition 6.1. For topological spaces X, Y, let hEq(X,Y) denote the set of homotopy classes
of homotopy equivalences X — Y. For an isomorphism 0: 71(X) — m(Y), let hEqy(X,Y) C
hEq(X,Y) denote the subset consisting of homotopy equivalences f such that 71 (f) = 6.
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For e = £1, let hEq(M, N). C hEq(M, N) denote the subset of degree-¢ homotopy equivalences,
i.e. those that send [M] to [ N]. For an isomorphism 0: F — G, let hEqy(M, N). = hEqy(M, N)N
hEq(M, N)...

Lemma 6.2. Suppose that X is a CW complex of dimension at most k, and let f,g: X — L be
continuous maps. If Yo f~pog: X — N, then f~g.

Proof. By Theorem 5.14 (a), N has a CW decomposition such that (up to homotopy) 1 is an

embedding identifying L with the L%J—skeleton of N.

If (N, ) satisfies (SP1) or (SP2), then N has no (k+1)-cells. Therefore if we make the homotopy
between 1 o f and v o g cellular, we obtain a homotopy between f and g.

If (N, ) satisfies (SP3), then we can compose the homotopy between 1 o f and 9 o g with the
retraction r: N — L from the proof of Theorem 5.14 (b) to get a homotopy between f and g. O

Lemma 6.3. There is a well-defined restriction map hEq(M, N) — hEq(K, L).

Proof. Again we fix CW decompositions on M and N using Theorem 5.14 (a).

Consider a continuous map M — N. After cellular approximation it can be restricted to a
map K — L, and by Lemma 6.2 the restriction’s homotopy class is independent of the choice of
the approximation. Therefore restriction defines a map [M, N] — [K, L]. Similarly we get a map
[N,M] — [L,K].

Now suppose that f: M — N is a cellular homotopy equivalence and g is its cellular homotopy
inverse. Then fog ~ Idy and g o f ~ Idys, hence f’W(K) og‘w(L) ~ Idy): ¥(L) = N and

g’w(L) of|¢(K) ~Idyk): @(K) — M. Lemma 6.2 implies that f|¢(K) Og|w(L) ~ Idyy: V(L) —

(L) and g|w(L) of’w(K) ~Idy(xy: @(K) — ¢(K), therefore f|w(K): ©(K) — (L) is a homotopy
equivalence. O

Remark 6.4. The restriction o € hEq(K,L) of a map f € hEq(M, N) is characterised by the
property that Y oa ~ fop: K — N, i.e. the following diagram is homotopy commutative:

M—LoN

1l

K—~>1L
This implies that m1(a) = m1(f) € Hom(F,G). Therefore for every isomorphism 6: F — G the
restriction map of Lemma 6.3 restricts to a map hEqy(M, N) — hEqy (K, L).

Finally, we will establish the following, which is an equivalent formulation of Theorem B.
Theorem 6.5. For every isomorphism 0: F' — G with wo@ = wy; there is a commutative diagram
hEq,(M, N) —— Wh(G,w)
l Tzn—m(1)"1:+T(N,1/;)0*(T(M,<p))
hEq, (K, L) —— Wh(G,w)
where the vertical map on the left is given by restriction.

Proof. Fix CW decompositions on M and N as in Theorem 5.14. We denote the correspond-
ing (split) cellular chain complexes by C.(M) = C.(M;ZF) and C.(N) = C.(N;ZG). Let
PDM: C"—*(M) — C.(M) and PD": C"*(N) — C.(N) denote the chain homotopy equiva-

lences given by Poincaré duality. By Theorem 5.14 (c), we have 7(PDY |C,3(M)n,*) =7(M,p) and
r(PDV ’cé(N)nf*) = 7(N,v). We will show that there is a commutative diagram
Cu(~ -
hEqq(M, N); Al chEq(Cy(M)g-1,Cx(N))ppm ppy —— Wh(G, w)
i i TIHI—(—l)HZE—'rT(N,QZ))—H*(T(M,(‘D))

Cu(-)

hEqy(K, L) chEq(Cy(K)g-1,C(L)) u Wh(G,w).

(6.1)
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For the notation see Definitions 2.7 and 3.5. We begin by describing the three maps not yet defined.

Since K and L are the |%|-skeletons of M and N respectively, we have CL(M) = C,(K)
(hence C4(M)g-1 = C\(K)g-1) and C4(N) = C,(L). By Lemma 3.4, there is a restriction map
chEq(Cy(M)g-1,C(N)) = chEq(C«(K)g-1,Cx(L)), and we define the vertical map in the middle
to be its restriction to chEq(Cy(M)g-1, Ci(N))ppm ppn.

Suppose that f € hEq, (K, L), then f induces a chain map C,(K;ZG?) — C,.(L; ZG). We have
C.(K;ZG%) = C.(K;ZF)y-1 (see [NNP23, Lemma 2.26 (a)]), so taking the induced chain map
defines a map C.(—): hEqy (K, L) — chEq(Cy(K)s-1, Ci(L)).

Similarly, a homotopy equivalence f € hEqy(M, N) induces maps

C.(f): C.(M;ZG%) = C(M)g-1 — C(N; ZG) = C,.(N)
C*(f): C*(N;ZG) = C*(N) — C*(M; ZG%) = C*(M)g-

where the last isomorphism follows from [NNP23, Lemma 2.26 (b)]. Moreover, C*(M;ZG?) is the
dual of Cy(M)g-1, and C*(f) is identified with the dual of C.(f). The chain homotopy equiva-
lence C"~*(M; ZG%) = C"*(M)g-1 — C.(M;ZG?) = C,(M)g-1 given by Poincaré duality (with
ZGY coefficients) is identified with PD™ under the identification Hom(C™*(M)g-1,Cy(M)g-1) =
Hom(C™"*(M),C«(M)). If f has degree 1, i.e. fi.([M]) = [N], then it induces a homotopy com-
mutative diagram

. )
C"*(M)g-r =—="C"*(N)

PDA{\L

C.(f)
Cu(M)g

since Poincaré duality can be defined by taking cap product with the fundamental class. Therefore
we get a restricted map C.(—): hEqy(M, N); — chEq(Cy(M)p-1,Cy(N))ppm ppn-

Next we verify that the diagram in (6.1) commutes. The square on the left commutes since
both downward pointing arrows are defined by restriction. The square on the right commutes by
Lemma 3.6. Note that if PD™ |C£(1M)"—* is regarded as a chain homotopy equivalence C’Z(M)z‘__l* —

C*(M)g-1 (instead of C*(M)"~* — C¥(M)), then its Whitehead torsion is 0. (7(M,¢)) (instead
of 7(M, ¢)), see [NNP23, Lemma 2.27].

The Whitehead torsion of a homotopy equivalence is defined as the Whitehead torsion of the
induced chain homotopy equivalence, so from (6.1) we get a commutative diagram

hEq, (M, N); —— Wh(G, w)
J/ Tsz(1)"'a:+r(N,w)9*(T(M,<P))
hEqy (K, L) —— Wh(G,w)

We can apply the same argument to —N instead of N (where —N is the same manifold N with
the opposite twisted fundamental class [—-N] = —[N]). Then we get a commutative diagram

hEqy(M, N)_; —— Wh(G, w)

l Tz»—)z—(—l)nm-‘r‘r(]\/»w)—e*(T(Mv‘P))

hEqy (K, L) ——> Wh(G, w)

because hEqy(M,—N); = hEqy(M,N)_; and 7(—N,v) = 7(N,v) (because the definition of
7(N, 1) does not depend on the choice of the twisted fundamental class).

Since hEqy(M, N) = hEqy(M, N); UhEq,(M, N)_1, we can combine the two diagrams to get
the diagram in the statement. O

7. APPLICATIONS

Now we consider some applications of Theorem B and prove the results announced in Section 1.3.
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7.1. Simple doubles. Let (M, ) be a polarised manifold such that 7(M, ¢) is defined. We say
that (M, ) is simple if 7(M,p) = 0. Recall from Corollaries 5.8 and 5.11 that if (M, ) has a
trivial double structure, then it is simple, and if (M, ) is simple, then it has a twisted double
structure. We now state a consequence of Theorem 6.5 in the special case when (M, ¢) is simple,
and then use it to prove Theorem 1.6.

Theorem 7.1. Suppose that M and N are n-manifolds, K and L are CW complexes of dimension
(at most) k, and ¢: K — M and: L — N are continuous maps such that (M, ) and (N,1) are
SP manifolds. Let G = m1(N) with orientation character w: G — {£1}, and identify m1(L) with
G via 1. Suppose that T(M, ) = 0. Then there is a commutative diagram

hEq(M, N) ——= Wh(G, w)
l Tmn—ﬁc—(—l)"w—‘m’(N,d))
hEq(K, L) —— Wh(G, w)
where the vertical map on the left is given by restriction.

Proof. We have hEq(M,N) = ||, hEqy(M, N), where the union ranges over all isomorphisms
0: m (M) — G with wo 6 = wy, where wyy is the orientation character of M. For each such 0 we
can apply Theorem 6.5, and since 0, (7(M, ¢)) = 0, we can combine the resulting diagrams to get
the diagram in the statement. (Il

The following is obtained by further specialising.

Theorem 7.2. Suppose that M is an n-manifold, K is a CW complex of dimension (at most) k,
and p: K — M is a continuous map such that (M, p) is an SP manifold. Let G = w1 (M) with
orientation character w: G — {1}, and identify m1(K) with G via ¢. Suppose that 7(M,p) = 0.
Then there is a commutative diagram

hAut(M) —— Wh(G,w)

i TmHm—(—l)”z

hAut(K) —— Wh(G, w)
where the vertical map on the left is given by restriction.

Proof. Apply Theorem 7.1 to the case where M = N, K = L, and ¢ = 1. O

In particular, this implies that 7(g) € Z,, (G, w) for every g € hAut(M), hence T(M) C Z,,(G, w)
and U(M) = {0} (see Section 1.1). We use this to prove Theorem 1.6.

Theorem 7.3 (cf. Hausmann [Hau80, Sections 9-10]). Let n > 5, let G be a finitely presented
group and let w: G — {£1} be such that ¢: LI | (ZG,w) — H™(Co; Wh(G, w)) is nontrivial
(see Section 1.1). Then there exists an n-manifold M with fundamental group G and orientation
character w such that [M" . (M)] > 1.

Proof. Let K be a finite 2-dimensional CW complex with 71 (K) = G (and we fix an isomorphism).
Let v be a stable vector bundle over K with orientation character w. By Lemma 4.2 and Remark 4.3
there is an n-dimensional thickening fr: K — T such that f}.(vr) = v. Let M = T Uy T be a
twisted double of T" such that (M, ¢) is an SP manifold and 7(M, ¢) = 0, where ¢ is the composition
of fr and the inclusion T — M of the first component (e.g. let g = Idsr). Then 7 (M) = G with
orientation character w.

It follows from Theorem 7.2 that U(M) = {0}. So Im(¢) \ U(M) is nonempty, and by Proposi-
tion 1.3 (b) this implies that |M", -, (M)| > 1. O

7.2. Doubles over manifolds. We now consider the special case of Theorem 6.5 when K and L
are closed k-manifolds. We get an especially nice statement when n — k is odd. Then we present
some applications, proving Theorems C and A.
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Theorem 7.4. Suppose that M and N are n-manifolds, K and L are k-manifolds and p: K — M
andp: L — N are continuous maps such that (M, ¢) and (N,v) are SP manifolds. Let F = (M)
and G = m(N), and identify m(K) with F and m (L) with G via ¢ and 1 respectively. Let
wpr: F— {1} be the orientation character of M and let w = wyn: G — {£1} be the orientation
character of N. Assume that the orientation character of L is also w.
(a) If n—k is odd, then 7(f) = 7(N,v) — fu(1(M, p)) for every homotopy equivalence f: M — N.
(b) If n—k is even, then for every isomorphism 6: F — G with wo® = wys there is a commutative
diagram
hEqy(M, N) ——= Wh(G, w)

\L TGJHQI-FT(NJZJ)—@*(T(M#P))
hEq, (K, L) — > Wh(G, w)

Proof. Let f: M — N be a homotopy equivalence. By Lemma 6.3 it restricts to a homotopy equiv-
alence o: K — L. By Theorem 6.5 we have 7(f) = 7(a) — (—=1)"7(a) + 7(N,¢) — fu(7(M, p)) €
Wh(G,w). Since K and L are k-manifolds and the orientation character of L is w, by Proposi-
tion 2.10 we see that 7(a) € Jx(G,w). That is, 7(a) = —(—=1)*7(a) € Wh(G, w). Therefore

7(f) = 7(@)=(=1)"1(a)+7(N,¥) = fu(T(M, 9)) = T(a)+(=1)""*7(a) +7(N, ¥) = f.(r(M, ¢)). O

We will use this to prove the following result from the introduction.

Theorem C. Suppose that j > k are positive integers and j is odd. Let K and L be k-manifolds,
and let S — M — K and S — N — L be orientable (linear) sphere bundles. Then every
homotopy equivalence f: M — N is simple.

Proof. Let n = j + k be the dimension of M and N. It follows from the assumptions that
j > max(3,k+ 1), so n > max(k + 3,2k + 1).

The manifold M is the sphere bundle of some orientable rank (j + 1) vector bundle £ over K.
Since j+1 > k, there is a rank j vector bundle &y such that ¢ = & @', where ¢! denotes the trivial
rank 1 bundle. Let T be the disc bundle of . Then T is a thickening of K (with the zero-section
K — T)and M = T Uyq,, T. This means that if ¢ denotes the composition K — T — M of the
zero section and the inclusion of the first component, then (M, ¢) has a trivial double structure,
so it satisfies (SP3). Similarly, (N, 1)) satisfies (SP3) for the analogous ¢: L — N.

Let G = w1 (V) and let w: G — {£1} be the orientation character of N. Then 7 (¢) determines
an identification 71 (L) = G, and since ¢ is orientable, w is also the orientation character of L.

Since M and N are trivial doubles, 7(M, ¢) = 0 and 7(N, ) = 0 by Corollary 5.8. Since n—k =
j is odd, Theorem 7.4 (a) implies that 7(f) = 0 for every homotopy equivalence f: M — N. O

We obtain the following two theorems as immediate corollaries.

Theorem 7.5. Suppose that_j > k are positive integers and j is odd. Let K and L be k-manifolds,
and let ST — M — K and 87 — N — L be orientable sphere bundles. If M and N are homotopy
equivalent, then they are simple homotopy equivalent.

Theorem 7.6. Suppose that j > k are positive integers and j is odd. Let K be a k-manifold and
let S7 — M — K be an orientable sphere bundle. Then T(M) = {0} (see Section 1.1).

Remark 7.7. In the three theorems above, the sphere bundle M could be replaced with any twisted
double T'U, T of the disc bundle T of an orientable rank j bundle &, over K such that (M, ) is
an SP manifold and 7(M, ¢) = 0, where ¢ is the composition of the zero section K — T and the
inclusion T — M of the first component (and similarly for V).

Finally, we will use Theorem 7.6 to prove the following result from the introduction.

Theorem A. Let n > 11 orn = 9. Let G be a finitely presented group with an orientation
character w: G — {£1}. Then there is an n-manifold M with fundamental group G and orientation
character w such that |MBC°P(M)| > 1 if and only if Z,,(G,w) # 0.

Proof. First assume that Z,,(G,w) # 0. Under the assumptions on n there is an integer k£ > 4 such
that n — k > k and n — k is odd. For instance, we can take k = 4 for n > 9 odd and k& = 5 for
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n > 12 even. Since k > 4, there is a k-manifold K with m (K) = G and orientation character w.
Let M be an orientable S"~*-bundle over K (e.g. K x S"). Then 7, (M) = G with orientation
character w, and by Theorem 7.6, it follows that T'(M) = {0}. So Z,,(G,w) \ T(M) is nonempty,
and by Proposition 1.3 (a) this implies that |MICP(M)] > 1.

In the other direction, if f is the homotopy equivalence induced by an h-cobordism between n-
manifolds with fundamental group G and orientation character w, then 7(f) € Z,,(G, w) by Proposi-
tion 2.11. If the manifolds are not simple homotopy equivalent, then 7(f) # 0, so Z,,(G,w) # 0. O

7.3. Doubles over certain 2-complexes. In this section we will consider specific 2-dimensional
CW complexes for which it is known by work of Metzler [Met79] that the Whitehead torsions of
their homotopy automorphisms are contained in a certain subgroup of the Whitehead group. We
can exploit this property by applying Theorem 7.2 to doubles over such 2-complexes, leading to a
proof of Theorem 1.9.

Recall that for any group presentation P = (g1,...,gs | 71,...,7¢) there is a corresponding
presentation complex, denoted by Xp, which consists of one 0O-cell, one 1-cell for each generator
gi, and one 2-cell for each relation r;, with gluing map determined by r;.

In this section all groups will be equipped with the trivial orientation character w = 1, which
we will omit from the notation.

We will need the Bass-Heller-Swan decomposition of the Whitehead group of Co, X Cpy:

Wh(Co X Cpp) = Wh(Cy,) @ Ko(ZCy) ® NK(ZCy, )2 (7.1)

In (7.1) each term is equipped with a natural involution, and the isomorphism respects these
involutions (see [Ran86, p.329, p.357]).
The following is a generalisation of the main result of [Met79].

Theorem 7.8. Let m > 1 and let X := Xp, where P = (x,y | y™, [z, y]) is the standard presen-
tation for Cs X Cy,. Then the composition

hAut(X) 5 Wh(Cs x Cp) — Ko(ZCh,)
is the zero map. In particular, T(hAut(X)) € Wh(C,,) & {0} & NK1(ZC,,)? € Wh(Co x Cp).
Proof. Let G = Cy X Cy, and let ¥: ZC,, — ZC,, /¥ be the quotient map, factoring out by
the ideal generated by ¥ := Z;’:Olyi, the group norm in ZC,,. Since ZG = (ZC,,)[Cs] and

ZG/Y = (ZC), /2)[Cxo], ¥ induces a map V: ZG — ZG /3. Metzler showed [Met79, Lemma 2]
that the composition

hAut(X) 5 Wh(G) 2 K1 (ZG)/£G 5 K1 (ZG /%) /(ZG/2)*
is the zero map. Since ZG/¥ = (ZC,, /¥)[t,t™ ], we set R = ZC,, /%, so that ZG/S = R[t,t7!]. A
variant of the Bass-Heller-Swan decomposition for arbitrary Laurent polynomial rings R[t, ] [Weil3,
I11.3.6] implies that
Ky(ZGS)/(ZG[S) = (Ky(ZC [5)/(ZCrn/S)") & Ro(ZCpn/5) & NKy(ZCpn /).
The map ¥, respects this splitting and so we have that:
T(hAut(X)) Cker(v.: Wh(C,,) = K1(ZG/%)/(ZG/%)*)
& ker(v,: Ko(ZCp) — Ko(ZCy /%)) @ ker (¢ : NK1(ZCp) — NK1(ZCy, /%))2.

It therefore suffices to prove that 1, : Ko(ZCy,) — Ko(ZC,, /%) is injective. To see this, consider
the following pullback square of rings

ZCy —Y 70 /S

|+ | (7.2)

Z—Y s Z/m
where 1,1’ are the quotient maps and ¢,¢’ are induced by augmentation. Note that (7.2) has
the property that at least one of the maps 1)’ and &’ is surjective, i.e. (7.2) is a Milnor square. It
follows from [CR87, Theorem 42.13] that (7.2) induces a long exact sequence:

(¥l .€h)
-

Ki(Z) & Ki(ZCpn /%) Ki(Z/m) 2 Ko(ZCy) 2 Ro(Z) © Ko(ZCon/5).



GENERALISED DOUBLES AND SIMPLE HOMOTOPY TYPES 21

More specifically, by [CR87, Theorem 42.13], we obtain an exact sequence with IN(O replaced by Ky
throughout. It is clear from the definition of J that its image lies in I?O(ZCm) and, from this, we
obtain the exact sequence above.

By [CR87, p. 343], we have Im(8) = T(C,,) C Ko(ZCp,) where T(G) C Ko(ZG) denotes the
Swan subgroup of a finite group G. By [CR87, Proposition 53.6 (iii)], we have T'(C,,) = 0 and so
d = 0. Since Z is a PID, we have Ky(Z) = 0. Hence t,: Ko(ZCp,) — Ko(ZChp, /%) is injective. It
follows that the composition in the statement of the theorem is the zero map. O

This implies that the map 7: hAut(X) — Wh(Cs x C,,) is not surjective when Ko(ZC,y,) # 0,
which is a broad generalisation of [Met79, Theorem 1].

Corollary 7.9. Let n > 5 and m > 1. Suppose that M is an n-manifold and p: Xp — M is a
continuous map such that (M, ) is an SP manifold and 7(M, p) = 0, where P = {(x,y | y™, [z, y])
is the standard presentation for Coy X Cy,. Then the composition

hAut(M) 5 Wh(Co X Cpy) — Ko(ZCy)
is the zero map.

Proof. Consider the diagram

hAut(M) —— Wh(Cs X Cp) —» Ko(ZC))

J{ Tm*—)wf(fl)"f Tﬁ—)x—(—l)"i

hAut(Xp) —— Wh(Coo X Cpn) — Ko(ZC,)

where the vertical map on the left is given by restriction. The first square commutes by The-
orem 7.2. The second square commutes, because the isomorphism (7.1) is compatible with the
involutions. Since the composition of the maps in the bottom row vanishes by Theorem 7.8, the
commutativity of the diagram implies that the composition of the maps in the top row vanishes
too. (]

Remark 7.10. By the first square of the diagram, we also have T(M) C Z,(Cy x Cy,). By
[NNP23, Proposition 5.10] Z,, (Coo X Cpn) = Ly (Cra) & {z — (=1)"T | 2 € Ko(ZCyn)} & NK1(ZChy),
so Corollary 7.9 implies that T(M) C Z,,(Cy,) ® {0} & NK1(ZC,,), where NK;(Z@G) is embedded
into NK;(ZG)? by the map x — (z, —(—1)"%).

Theorem 7.11. Let n > 5 and let m > 2 be such that {x — (—1)"T | z € Ko(ZCy)} # 0. Then
there is an orientable n-manifold M with fundamental group Coo x Cp, such that | MY (M)| > 1.

Proof. Let P = (z,y | y™, [z,y]), and let T be an oriented thickening of Xp (e.g. a regular
neighbourhood of an embedding Xp — R"). Let M =T U, T be a twisted double of T such that
(M, o) is an SP manifold and 7(M, ¢) = 0, where ¢: K — M denotes the composition of fr and
the inclusion T' — M of the first component (e.g. let g = Idsr). Then m (M) = 11 (Xp) = Coo XChy
and M is orientable.

By Proposition 1.3 (a) it is enough to show that Z,,(Co X Cy,) \ T(M) is nonempty. It follows
from [NNP23, Proposition 5.10] and Corollary 7.9 that Z,,(Co x Cy,) \ T(M) contains the subset
{z — (=1)"T | 2 € Ko(ZC,»)} \ {0}, which is nonempty by our assumption. O

7.4. The dependence of 7(M,¢) on ¢. Theorem 6.5 allows us to describe the set of possible
values of 7(M, ¢) for a fixed M.

Proposition 7.12. Suppose that n > max(6,2k + 2), M is an n-manifold and G = m (M) with
orientation character w: G — {£1}. Let p: K — M be an |2 |-connected map for some CW
complex K of dimension k. Then 7(M, @) € J,(G,w).

Proof. By Proposition 5.2 there is a generalised double structure h: T'Ug, W Uy, T — M on
(M, ). Let i1, ia, and i3 denote the inclusions of the three components of T' Uy, W Uy, T. Let
do: W — 9yW be the composition of the inclusion ;W — W and the homotopy inverse of
0)W — W. By the construction of dy, we have i2’61W ~ ig‘agw odo: W — T Ugy W Uy, T.
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Hence, with the notation d = gy o dyp 0 g1 € hAut(9T), and using that ¢g; and go are the gluing
maps, we have

i3|aT:i2’81W°gl ~ iy aowodoogl :i1|aTog()0doogl :il‘aTod: OT = TUg WU, T. (7.3)

By Proposition 5.6 there is a homotopy automorphism a: K — K such that
poa>~hoizo fp
and
T(M,p) = (hoiz)«(T(W,01W)) — @u(7(e)).

By Remark 5.13, (0T, for) is an SP manifold, so by Lemma 6.3 there is a restriction map
hAut(0T) — hAut(K). The homotopy automorphism « is the restriction of d. To see this recall
Remark 6.4 and note that

hoijo fagroa~hoijo froa~poa=~hoizo fr~hoizo far ~hoijodo for: K — M,
using Definition 5.1, the definition of «, and (7.3). The map hoiy ‘8T: OT — M is | % |-connected,

because it is the composition of the inclusion 9" — T (which is | % |-connected by Lemma 4.5)

and hoiy: T — M (which is also L%J—connected7 because hoiy o fr ~ ¢ and fr is a homotopy

n

equivalence). Since K has dimension k < | 2| — 1, we get that for oa ~ do for: K — 0T, and
this means that « is the restriction of d.

Since (9T, far) has a trivial double structure, 7(9T, for) = 0. It follows from Theorem 6.5 that
7(d) = (for)«(r(a) = (=1)""'7(a)). Let j = hoiy|,,: T — M. Then we have

Je(r(d)) = (hoir o for)«(m(a) = (=1)""'7(a)) = (hoir o fr).(r(a) — (=1)""'7(a))
= pu(r(a) = (=1)""'7(a)).

Again we used that ho iy o fr ~ ¢ (Definition 5.1), to obtain the last equality.

By Proposition 2.11, we have 7(dy) = 7(W, W) — (=1)" "t (W,0,W) where m1(doW) is
identified with 71 (W) via the inclusion. Since go and g; are diffeomorphisms, we have 7(d) =
(90)«(7(dp)), by Proposition 2.9 and Theorem 2.8. Hence

J=(7(d)) = (h o i1 0go)«(7(do)) = (hoiz)«(7(do))
= (hois) (T(W,0W)) — (=1)" " (h o iz (T(W, 1 W)).
By combining the above formulae we obtain
T(Myp) = (=1)""'7(M, p)
= (hoig)«(T(W, 81 )) = (=1)"H(h o ia) (T(W, 01 W) — u(7(@)) + (=1)" pu(r(a))
= Ju(7(d)) — ju(7(d)) = 0.
Therefore 7(M, @) = —(—=1)"7(M, @), i.e. 7(M, ) € T (G, w). O

If n < max(6,2k 4+ 2) and (M, p) is an SP manifold, then it satisfies (SP3), so 7(M,¢) = 0.
Therefore 7(M, ¢) € T, (G, w) for every SP manifold (M, ¢).

Remark 7.13. The proof of Proposition 7.12 shows that 7(M, ¢) can be regarded as a secondary
invariant of an inertial h-cobordism on OT. An inertial h-cobordism on 0T is an h-cobordism
between two copies of 9T, more precisely, an h-cobordism W with OW = dyW U0 W together with
diffeomorphisms gg: dgW — 9T and g;: 0T — 4W. If d: 9T — 90T is the homotopy equivalence
induced by W, go and g1, then 7(d) € Z,,_1 (G, w) for two different reasons: 7(d) = 7(W,0,W) —
(=1)"17(W,0,W) by Proposition 2.11, and 7(d) = 7(a) — (—1)""'7(a) by Theorem 6.5, where
a € hAut(K) is the restriction of d. In general 7(W, W) # 7(«) (the former does not depend
on the diffeomorphisms go and g;, but « does), and 7(W,0,W) — 7(a) = 7(M,p) for M =
T Ug, WUy, T and ¢ =iy o fp. So 7(M, ) is a secondary invariant in the sense that it equals
the difference between two reasons that 7(d) € Z,,_1(G,w), i.e. two cochains in the Tate cochain
group 6’"_1(02; Wh(G,w)) mapping to 7(d) under the coboundary map.

Proposition 7.14. Suppose that M is an n-manifold, G = m (M) and w: G — {x1} is the
orientation character of M. Let o: K — M and ¢': K' — M be continuous maps such that
(M, ) and (M, ¢") are SP manifolds. Then 7(M, @) —7(M,¢") € T,(G,w).
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Proof. We will apply Theorem 6.5 to Idy,, regarded as a map between the SP manifolds (M, p)
and (M, ¢’). Then Idy; € hEqq(M, M), and it has a restriction f € hEqq(K, K'), where 71 (K)
and 71 (K') are identified with G via ¢ and ¢’. Let z = 7(f). Since Idys is a diffeomorphism,
7(Idpr) = 0. Therefore 0 =z — (—1)"T + 7(M, ¢') — 7(M, ). This means that

T(M,p) —7(M,¢") =2z — (-1)"T € Z,(G, w). O

Remark 7.15. Suppose that (M, ¢) is an SP manifold satisfying (SP1) and k& > 3. Let G =
w1 (M) = 7 (K), and let w: G — {£1} be the orientation character of M. Since k > 3, for every
x € Wh(QG) there is a k-dimensional CW complex K’ and a homotopy equivalence f: K’ — K such
that 7(f) = z. Let ¢’ = o f: K’ — M, then by Proposition 5.2 ¢, and hence ¢', is |  |-connected,
so (M, ') also satisfies (SP1). The proof of Proposition 7.14 shows that 7(M,¢') — 7(M, ) =
x — (=1)"Z. Therefore if ¢ varies across all maps L — M such that (M, 1)) is an SP manifold,

then the set of possible values of 7(M, 1) is precisely the coset 7(M, ¢) + Z,,(G,w) in J,,(G,w).

7.5. An invariant of unpolarised manifolds. Based on the observations of Section 7.4, we
define an invariant for manifolds that can be obtained from SP manifolds by forgetting the polar-
isation. First we describe these manifolds.

Definition 7.16. Let M be an n-manifold.

e We say that M is a split manifold if there is a positive integer k, a k-dimensional CW-complex
K and a continuous map ¢: K — M such that (M, ) is an SP manifold.

e Suppose that n > 7. We say that M is strongly split if it has a CW-decomposition with no
L%J—cells.

Proposition 7.17. Suppose that n > 7 and M is an n-manifold. Then M is strongly split if
and only if there is a positive integer k, a k-dimensional CW-complex K and a continuous map
w: K — M such that (M, ) satisfies (SP1). In particular, if M is strongly split, then it is split.

Proof. First assume that M is strongly split and fix a CW-decomposition on M with no {gJ—cells.
Let k = LgJ —1, and let K be the k-skeleton of M, then the inclusion ¢: K — M is ng—connected.
By Proposition 5.2 (M, ) has a generalised double structure, so it satisfies (SP1).

Now assume that (M, ) satisfies (SP1) for some k, K and ¢. Then the CW-decomposition

constructed in the proof of Theorem 5.14 has no bJ—cells. O

Corollary 7.18. Suppose that n > 7. If M is a strongly split n-manifold and N is homotopy
equivalent to M, then N is also strongly split.

Proof. By Proposition 7.17 there is a k, a k-dimensional K and a ¢: K — M such that n > 2k +2
and (M, ) has a generalised double structure. By Corollary 5.3 there is a ¢»: K — N such that
(N, ) has a generalised double structure, so it also satisfies (SP1). Again by Proposition 7.17, N
is strongly split. O

Corollary 7.19. Let M be an n-manifold. Then M is split if and only if one of the following

holds:

e n > 8 is even and M is strongly split.

e n > 7 is odd and M is strongly split or (M, ) has a trivial double structure for some K of
dimension %ﬁl and p: K — M.

en = 6 and (M,p) has a twisted double structure for some K of dimension at most 2 and
p: K - M.

e 5>n>k+3 and (M,p) has a trivial double structure for some positive integer k, some K of
dimension at most k and ¢: K — M.

Proof. It n > 7, then (SP2) implies (SP1). If n > 6 is even, then (SP3) implies (SP2). O
Next we define an invariant for split manifolds.

Definition 7.20. Suppose that M is a split n-manifold, and let G = 71 (M) with orientation
character w: G — {£1}. We define the 7-invariant of M by

(M) = 7(r(M, p)) € H"(Cy; Wh(G, w))

where k is a positive integer, K is a k-dimensional CW complex and ¢: K — M is a continuous
map such that (M, ¢) is an SP manifold.
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It follows from Propositions 7.12 and 7.14 that 7(M) is well-defined.

By the proof of Theorem 5.14, if n > 8 and M is strongly split, then it is a manifold without
middle dimensional handles in the sense of Hausmann [Hau80]. For such manifolds 7(M) coincides
with the “torsion invariant” defined in [Hau80, Section 9]. Moreover, Hausmann showed that this
invariant is preserved by simple homotopy equivalences and homotopy equivalences induced by h-
cobordisms. Both of the two theorems below can be regarded as strengthenings of this statement.

Firstly, in analogy with Theorem 6.5, we obtain the following formula for = (7(f)) for a homotopy
equivalence f between split manifolds.

Theorem 7.21. Suppose that M and N are split n-manifolds and f: M — N is a homotopy
equivalence. Let G = w1 (N) with orientation character w: G — {£1}. Then

7(r(f)) = 7(N) = fu(r(M)) € H"(Co; Wh(G, w)).

In particular, if f: M — N is a homotopy equivalence between split manifolds, then m(7(f))
depends only on the induced homomorphism 1 (f).

Proof. By Proposition 2.10 7(f) € J,(G,w), so w(7(f)) is defined. Fix a ¢: K — M and a
t: L — N such that (M, ) and (N, ) are SP manifolds. Let a: K — L be the restriction of f,
and let © = 7(a) € Wh(G). By Theorem 6.5 7(f) = z— (=1)"Z+7(N, ) — fo«(7(M, ¢)). Therefore

m(7(f)) = m(z = (=1)"7) + 7(r(N, ) = 7(f+(7(M, ¢)))
=04 m(7(N, ) = fu(m(T(M, ¢))) = T(N) = fu(T(M)). 0

Secondly, we show that 7 is a complete invariant for the equivalence relation generated by simple
homotopy equivalence and h-cobordism, restricted to split manifolds (cf. [NNP23, Proposition
4.15]).

Theorem 7.22. Suppose that M and N are split n-manifolds. The following are equivalent.

(a) There is a homotopy equivalence f: M — N such that 7(N) = f.(7(M)).
(b) There is a manifold P that is simple homotopy equivalent to M and h-cobordant to N.

Proof. If n = 4, then (N, 4) has a trivial double structure for some 1-dimensional L and ¢: L — N,
so 7(N) = 0, and similarly 7(M) = 0. We also get that w1 (N) = (L) is free. By Stallings [Sta65]
the Whitehead group of a finitely generated free group is trivial, so every homotopy equivalence
M — N is simple. Hence each of (a) and (b) holds if and only if M ~ N. In the rest we assume
that n > 5.

(a) = (b). Let G = m1(N) with orientation character w: G — {#+1}. By Theorem 7.21, we
have 7(7(f)) = 0, so 7(f) € Z,(G,w). By [NNP23, Corollary 3.3] (using the assumption that
n > 5) this implies that there exists an n-manifold P that is simple homotopy equivalent to M
and h-cobordant to .

(b) = (a). Let f = hog for a simple homotopy equivalence g: M — P and a homotopy
equivalence h: P — N induced by an h-cobordism. Then 7(f) = 7(h) + h.(7(g)). Since 7(g) =0,
this implies that 7(f) € Z,,(G, w) by Proposition 2.11. Therefore w(7(f)) = 0, so 7(N) = f.(7(M))
by Theorem 7.21. ]
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