SIMPLE HOMOTOPY TYPES OF EVEN DIMENSIONAL MANIFOLDS

CSABA NAGY, JOHN NICHOLSON, AND MARK POWELL

Abstract

We study the difference between simple homotopy equivalence and homotopy equivalence for closed manifolds of dimension $n \geq 4$. Given a closed n-manifold, we characterise the set of simple homotopy types of n-manifolds within its homotopy type in terms of algebraic K-theory, the surgery obstruction map, and the homotopy automorphisms of the manifold. We use this to construct the first examples, for all $n \geq 4$ even, of closed n-manifolds that are homotopy equivalent but not simple homotopy equivalent. In fact, we construct infinite families with pairwise the same properties, and our examples can be taken to be smooth for $n \geq 6$.

We also show that, for $n \geq 4$ even, orientable examples with fundamental group $C_{\infty} \times C_{m}$ exist if and only if $m=4,8,9,12,15,16,18$ or ≥ 20. The proof involves analysing the obstructions which arise using integral representation theory and class numbers of cyclotomic fields. More generally, we consider the classification of the fundamental groups G for which such examples exist. For $n \geq 12$ even, we show that examples exist for any finitely presented G such that the involution on the Whitehead group $\mathrm{Wh}(G)$ is nontrivial. The key ingredient of the proof is a formula for the Whitehead torsion of a homotopy equivalence between doubles of thickenings.

1. Introduction

1.1. Background and main results. One of the earliest triumphs in manifold topology was the classification of 3 -dimensional lens spaces up to homotopy equivalence, and up to homeomorphism, due to Seifert-Threlfall, Reidemeister, Whitehead, and Moise [TS33, Rei35, Whi41, Moi52]; see [Coh73] for a self-contained treatment and [Vol13] for a detailed history. The two classifications do not coincide e.g. $L(7,1)$ and $L(7,2)$ are famously homotopy equivalent but not homeomorphic.

The homeomorphism classification made use of Reidemeister torsion to distinguish homotopy equivalent lens spaces. While trying to understand this more deeply, J.H.C. Whitehead defined the notion of simple homotopy equivalence [Whi39, Whi41, Whi49, Whi50]. A homotopy equivalence $f: X \rightarrow Y$ between CW complexes is said to be simple if it is homotopic to the composition of a sequence of elementary expansions and collapses; see Section 2 for the precise definition. Chapman [Cha74] showed that every homeomorphism $f: X \rightarrow Y$ between compact CW complexes is a simple homotopy equivalence, and so in the hierarchy of equivalence relations:
homeomorphism \Rightarrow simple homotopy equivalence \Rightarrow homotopy equivalence.
Whitehead showed that the homeomorphism classification of 3-dimensional lens spaces coincides with the classification up to simple homotopy equivalence, so there are many examples of homotopy but not simple homotopy equivalent lens spaces, e.g. the aforementioned $L(7,1)$ and $L(7,2)$. Higher dimensional lens spaces give rise to similar examples in all odd dimensions $2 k-1 \geq 5$ [Coh73], and infinite such families of odd-dimensional manifolds were produced by Jahren-Kwasik [JK15].

This article constructs the first examples of closed manifolds, in all even dimensions $2 k \geq 4$, that are homotopy but not simple homotopy equivalent. In fact, we produce infinite familes.

From now on, $n \geq 4$ will be an integer and an n-manifold will be a compact, connected, CAT n-manifold where CAT $\in\{$ Diff, PL, TOP $\}$ is the category of either smooth, piecewise linear, or topological manifolds. Manifolds will also be assumed closed unless otherwise specified. We will also frequently make use of the following hypothesis.
Hypothesis 1.1. If $n=4$, then we assume CAT $=$ TOP and we restrict to manifolds whose fundamental group is good in the sense of Freedman (see, for example, [FQ90, KOPR21]).
Theorem A. Let $n \geq 4$ be even and let CAT be as in Hypothesis 1.1. Then there exists an infinite collection of orientable CAT n-manifolds that are all homotopy equivalent but are pairwise not simple homotopy equivalent.

[^0]Key words and phrases. Manifolds, simple homotopy equivalence.

We write \simeq for homotopy equivalence and \simeq_{s} for simple homotopy equivalence. We note that if $M_{1} \simeq N_{1}$ and $M_{2} \simeq N_{2}$ are odd dimensional manifolds, then $M_{1} \times M_{2} \simeq{ }_{s} N_{1} \times N_{2}$ (Corollary 2.32), so even dimensional examples cannot be constructed in such a straightforward way from odd dimensional examples.

It is currently open whether all topological 4-manifolds are homeomorphic to CW complexes. Thus, the definition of simple homotopy equivalence given previously does not apply when $n=4$ and CAT $=$ TOP. For a more general definition that does apply in this case, see Definition 2.3.

In order to state our more detailed results, we introduce the simple homotopy manifold set

$$
\mathcal{M}_{s}^{h}(M):=\{\text { CAT } n \text {-manifolds } N \mid N \simeq M\} / \simeq_{s}
$$

for a CAT n-manifold M. This is the set of manifolds homotopy equivalent to M up to simple homotopy equivalence. We are interested in finding manifolds with nontrival, and ideally large, simple homotopy manifold sets. More specifically, we will consider two questions in this paper.

Question 1. For $n \geq 4$ even, how large can $\mathcal{M}_{s}^{h}(M)$ be for a CAT n-manifold M ?
We prove that the size of $\mathcal{M}_{s}^{h}(M)$ can be both arbitrarily large finite and infinite if $M=S^{1} \times L$ for some lens space L, which in particular implies Theorem A. For an integer $m \geq 2$, let C_{m} denote the cyclic group of order m and let C_{∞} denote the infinite cyclic group.

Theorem B. Let $n \geq 4$ be even and let CAT be as in Hypothesis 1.1. Let $M_{m}^{n}=S^{1} \times L$, where L is an $(n-1)$-dimensional lens space with $\pi_{1}(L) \cong C_{m}, m \geq 2$. Then
(a) $\left|\mathcal{M}_{s}^{h}\left(M_{m}^{n}\right)\right|$ only depends on n and m, and is independent of the choice of L or CAT;
(b) $\left|\mathcal{M}_{s}^{h}\left(M_{m}^{n}\right)\right|=1$ if and only if $m \in\{2,3,5,6,7,10,11,13,14,17,19\}$;
(c) $\left|\mathcal{M}_{s}^{h}\left(M_{m}^{n}\right)\right|=\infty$ if and only if m is not square-free;
(d) $\left|\mathcal{M}_{s}^{h}\left(M_{m}^{n}\right)\right| \rightarrow \infty$ as $m \rightarrow \infty$, uniformly in n.

The ingredients of the proof will be discussed in Sections 1.2, 1.3, and 1.7. They rely on an analysis of the Whitehead group [Whi50]. For a group G, Whitehead defined this group, $\mathrm{Wh}(G)$, and associated to a homotopy equivalence $f: X \rightarrow Y$ its Whitehead torsion $\tau(f) \in \mathrm{Wh}\left(\pi_{1}(Y)\right)$. He proved the fundamental result that $\tau(f)=0$ if and only if f is simple. So to understand simple homotopy manifold sets, one has to understand the Whitehead torsions of homotopy equivalences between manifolds.

Here is our second motivating question.
Question 2. Fix $n \geq 4$ (not necessarily even) and a category CAT. For which pairs (G, w) is there a CAT n-manifold M with fundamental group G and orientation character $w: G \rightarrow\{ \pm 1\}$ such that $\left|\mathcal{M}_{s}^{h}(M)\right|>1$?

Of course, it is necessary that $\mathrm{Wh}(G) \neq 0$, otherwise all homotopy equivalences between spaces with fundamental group G are simple. As we only consider homotopy equivalences between n manifolds, a stronger condition can be given in terms of $\mathrm{Wh}(G, w)$, the Whitehead group $\mathrm{Wh}(G)$ equipped with the canonical involution $x \mapsto \bar{x}$ determined by w (see Section 2.2). Namely, it is necessary that $\mathcal{J}_{n}(G, w) \neq 0$ (see Proposition 2.34), where we use the notation

$$
\begin{aligned}
& \mathcal{J}_{n}(G, w)=\left\{y \in \mathrm{~Wh}(G, w) \mid y=-(-1)^{n} \bar{y}\right\} \leq \mathrm{Wh}(G, w) \\
& \mathcal{I}_{n}(G, w)=\left\{x-(-1)^{n} \bar{x} \mid x \in \mathrm{~Wh}(G, w)\right\} \leq \mathcal{J}_{n}(G, w)
\end{aligned}
$$

Our main result in this direction is that in high dimensions a slightly stronger condition, the nonvanishing of $\mathcal{I}_{n}(G, w)$, is sufficient. In fact we have the following.

Theorem C. Let $n=9$ or $n \geq 11$, fix a category CAT, let G be a finitely presented group and let $w: G \rightarrow\{ \pm 1\}$ be a homomorphism. Then there is a CAT n-manifold M with fundamental group G and orientation character w such that $\left|\mathcal{M}_{s}^{\mathrm{hCob}}(M)\right|>1$ if and only if $\mathcal{I}_{n}(G, w) \neq 0$.

Here, $\mathcal{M}_{s}^{\mathrm{hCob}}(M)$ denotes the set of manifolds h-cobordant to M up to simple homotopy equivalence. Recall that a cobordism $(W ; M, N)$ of closed manifolds is an h-cobordism if the inclusion maps $i_{M}: M \rightarrow W$ and $i_{N}: N \rightarrow W$ are homotopy equivalences. There is a natural inclusion $\mathcal{M}_{s}^{\mathrm{hCob}}(M) \hookrightarrow \mathcal{M}_{s}^{h}(M)$, and so $\left|\mathcal{M}_{s}^{\mathrm{hCob}}(M)\right|>1$ implies that $\left|\mathcal{M}_{s}^{h}(M)\right|>1$. Thus Theorem C can be used to construct a pair of manifolds that are h-cobordant but not simple homotopy equivalent. This will be complemented by Theorem 1.7, which gives a sufficient (but possibly not necessary)
condition for the existence of manifolds that are homotopy equivalent, but neither simple homotopy equivalent, nor h-cobordant.

The notion of an h-cobordism is central to manifold topology. Smale's h-cobordism theorem [Sma61, Sma62, Mil65], together with its extensions to other categories and dimension 4 in [Sta67, KS77, FQ90], states that under Hypothesis 1.1, every simply-connected h-cobordism is CAT-equivalent to the product $M \times I$. To generalise the h-cobordism theorem to non-simply connected manifolds, one also considers s-cobordisms. An s-cobordism $(W ; M, N)$ is a cobordism for which the inclusions $M \rightarrow W$ and $N \rightarrow W$ are simple homotopy equivalences. The CAT s-cobordism theorem [Bar63, Maz63, Sta67, KS77, FQ90] states that under Hypothesis 1.1, CAT equivalence classes of h-cobordisms based on M are in bijection with $\mathrm{Wh}\left(\pi_{1}(M)\right)$, with the bijection given by taking the Whitehead torsion of the inclusion $M \rightarrow W$ (Theorem 3.1). In particular every s-cobordism is a product. This theorem underpins manifold classification in dimension at least 4 . So while studying the difference between homotopy and simple homotopy equivalence for manifolds, it is natural to also consider the rôle of h-cobordisms.

For the remainder of the introduction, we will discuss our results and the contents of this article in greater detail. In Section 1.2, we give a characterisation of $\mathcal{M}_{s}^{h}(M)$ (Theorem D). We apply this in Section 1.3 to the manifold $S^{1} \times L$ to obtain Theorem B, as well as other detailed numerical results (Theorems E and F). In Section 1.4, we establish a formula for the Whitehead torsion of a homotopy equivalences between doubles (Theorem G). This is applied in Section 1.5 to obtain a simple homotopy rigidity result for sphere bundles (Theorem H), leading to Theorem C. Using the results on $S^{1} \times L$ and doubles, we revisit Question 2 in Section 1.6. In Section 1.7 we conclude by discussing the involution on $\widetilde{K}_{0}(\mathbb{Z} G)$ and our approach to its computation using methods from algebraic number theory. This is the basis for the numerical results in Theorems B, E, and F.
1.2. Characterisation of simple homotopy manifold sets. In Theorem D below, we characterise the simple homotopy manifold sets $\mathcal{M}_{s}^{h}(M)$, for a CAT n-manifold M, in terms of the Whitehead group, the homotopy automorphisms of M, and the surgery obstruction map. It will be helpful to consider the following variations of $\mathcal{M}_{s}^{h}(M)$:

$$
\begin{aligned}
& \mathcal{M}_{s}^{\mathrm{hCob}}(M): \\
& \mathcal{M}_{s, \mathrm{hCob}}^{h}(M):=\{\text { CAT } n \text {-manifolds } N \mid N \text { is } h \text {-cobordant to } M\} / \simeq_{s} \\
&
\end{aligned}
$$

where $\left\langle\simeq_{s}, \mathrm{hCob}\right\rangle$ denotes the equivalence relation generated by simple homotopy equivalence and h-cobordism. All our main theorems arise by applying these characterisations to specific manifolds M, for which we can compute the objects that appear in Theorem D.

Recall the definition of $\mathcal{J}_{n}(G, w)$ and $\mathcal{I}_{n}(G, w)$. The Tate cohomology group $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$ is canonically identified with $\mathcal{J}_{n}(G, w) / \mathcal{I}_{n}(G, w)$ (see Proposition 14.5), and we will denote the quotient map by

$$
\pi: \mathcal{J}_{n}(G, w) \rightarrow \widehat{H}^{n+1}\left(C_{2} ; \operatorname{Wh}(G, w)\right)
$$

If $w \equiv 1$ is the trivial orientation character, then we omit it from the notation.
There is an action of $\operatorname{hAut}(M)$ on $\operatorname{Wh}(G, w)$ (as a set) such that if $f: N \rightarrow M$ is a homotopy equivalence and $g \in \operatorname{hAut}(M)$, then $\tau(f)^{g}=\tau(g \circ f)$. Let $q: \mathrm{Wh}(G, w) \rightarrow \mathrm{Wh}(G, w) / \operatorname{hat}(M)$ denote the quotient map, let $\varrho: \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right) \rightarrow L_{n}^{s}(\mathbb{Z} G, w)$ be the homomorphism from the exact sequence (3.1), and let $\sigma_{s}: \mathcal{N}(M) \rightarrow L_{n}^{s}(\mathbb{Z} G, w)$ be the surgery obstruction map (see Section 3.2). The following theorem is the basis of our main results (see Theorems 4.11 and 4.16).

Theorem D. Let M be a CAT n-manifold with fundamental group G and orientation character $w: G \rightarrow\{ \pm 1\}$, satisfying Hypothesis 1.1. There is a commutative diagram

where each row is a short exact sequence of pointed sets, and each vertical arrow is a bijection.

The subset $\mathcal{J}_{n}(G, w)$ is invariant under the action of $\operatorname{hAut}(M)$ on $\mathrm{Wh}(G, w)$, and there is an induced action on $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$. In the statement above, the subsets

$$
(\varrho \circ \pi)^{-1}\left(\operatorname{Im} \sigma_{s}\right) \subseteq \mathcal{J}_{n}(G, w) \quad \text { and } \quad \varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right) \subseteq \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)
$$

are both invariant under the induced actions of $\operatorname{hAut}(M)$. Note that if the subset $\mathcal{I}(G, w)$ is invariant under the action of $\operatorname{hAut}(M)$ on $\operatorname{Wh}(G, w)$, then $q\left(\mathcal{I}_{n}(G, w)\right)=\mathcal{I}_{n}(G, w) / \operatorname{hAut}(M)$.

It follows from the exact sequence (3.1) that the image of the homomorphism $\psi: L_{n+1}^{h}(\mathbb{Z} G, w) \rightarrow$ $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$ is contained in $\varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right)$ and so we obtain the following corollary.

Corollary 1.2. Let M be a CAT n-manifold with fundamental group G and orientation character $w: G \rightarrow\{ \pm 1\}$, satisfying Hypothesis 1.1. If $\psi: L_{n+1}^{h}(\mathbb{Z} G, w) \rightarrow \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$ is surjective, then $\mathcal{M}_{s}^{h}(M) \cong \mathcal{J}_{n}(G, w) / \operatorname{hAut}(M)$ and $\mathcal{M}_{s, \mathrm{hCob}}^{h}(M) \cong \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right) / \operatorname{hAut}(M)$.

The advantage of Corollary 1.2 is that $\mathcal{J}_{n}(G, w)$ and $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$ (and, more generally, $\operatorname{Im} \psi$) only depend on G and w, while $\operatorname{Im} \sigma_{s}$ depends on M a priori. This will allow us to apply Corollary 1.2 by separately analysing the involution on $\mathrm{Wh}(G, w)$ and the homotopy automorphisms of M. Note also that, in cases where M can be regarded as a manifold in multiple categories, the sets $q\left(\mathcal{I}_{n}(G, w)\right), \mathcal{J}_{n}(G, w) / \operatorname{hAut}(M)$ and $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right) / \operatorname{hAut}(M)$ do not depend on the choice of CAT.

To prove Theorem D, first we observe that if N is a manifold homotopy equivalent to M, then the set of Whitehead torsions of all possible homotopy equivalences $f: N \rightarrow M$ forms an orbit of the action of $\operatorname{hAut}(M)$ on $\mathrm{Wh}(G, w)$. By considering the different restrictions and equivalence relations on these manifolds N, we obtain maps from the various simple homotopy manifold sets of M to subsets/subquotients of $\mathrm{Wh}(G, w) / \operatorname{hat}(M)$. We then verify that these maps are injective, and the remaining task is to determine their images.

In the case of $\mathcal{M}_{s}^{\mathrm{hCob}}(M)$ we use the s-cobordism theorem. For every $x \in \mathrm{~Wh}(G, w)$ there is an h-cobordism $(W ; M, N)$ with Whitehead torsion x, and then $\tau(f)=-x+(-1)^{n} \bar{x}$ for the induced homotopy equivalence $f: N \rightarrow M$ (see Proposition 2.37). This shows that every element of $\mathcal{I}_{n}(G, w)$ can be realised as the Whitehead torsion of a homotopy equivalence $N \rightarrow M$ for some N that is h-cobordant to M. For $\mathcal{M}_{s, \mathrm{hCob}}^{h}(M)$, we use the surgery exact sequence combined with the Ranicki-Rothenberg exact sequence [Sha69], [Ran80, §9] to describe the set of vaues of $\pi(\tau(f))$ for all homotopy equivalences $f: N \rightarrow M$ (see Proposition 3.6). Finally, the characterisation of $\mathcal{M}_{s}^{h}(M)$ is obtained by combining the results on $\mathcal{M}_{s}^{\mathrm{hCob}}(M)$ and $\mathcal{M}_{s, \mathrm{hCob}}^{h}(M)$.
1.3. The simple homotopy manifold set of $S^{1} \times L$. Recall that a lens space $L:=S^{2 k-1} / C_{m}$ of dimension $2 k-1 \geq 3$ is a quotient of $S^{2 k-1}$ by a free action of a finite cyclic group C_{m} for some $m \geq 2$. The action is determined by a k-tuple of integers $\left(q_{1}, \ldots, q_{k}\right)$ with q_{j} coprime to m for all j. The fundamamental group is $\pi_{1}(L) \cong C_{m}$.

In Part 2 we will prove Theorem B (and hence Theorem A) by applying Corollary 1.2 to $S^{1} \times L$. This is possible, because the map $\psi: L_{n+1}^{h}\left(\mathbb{Z}\left[C_{\infty} \times C_{m}\right]\right) \rightarrow \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{\infty} \times C_{m}\right)\right)$ is surjective for $n=2 k$ (see Proposition 3.12), and we get that $\mathcal{M}_{s}^{h}\left(S^{1} \times L\right) \cong \mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right) / \operatorname{hAut}\left(S^{1} \times L\right)$. For the homotopy automorphisms of $S^{1} \times L$ we have the following (see Theorems 6.5 and 6.6).

Theorem 1.3.

(a) Every homotopy automorphism $f: S^{1} \times L \rightarrow S^{1} \times L$ is simple.
(b) If $\pi_{1}: \operatorname{hAut}\left(S^{1} \times L\right) \rightarrow \operatorname{Aut}\left(C_{\infty} \times C_{m}\right)$ is the map given by taking the induced automorphism on the fundamental group, then $\operatorname{Im}\left(\pi_{1}\right)=\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right) \in \operatorname{Aut}\left(C_{\infty} \times C_{m}\right) \right\rvert\, c^{k} \equiv \pm 1 \bmod m\right\}$.

Part (a) implies that the action of $\operatorname{hAut}\left(S^{1} \times L\right)$ on $\mathrm{Wh}\left(C_{\infty} \times C_{m}\right)$ factors through the action of $\operatorname{Aut}\left(C_{\infty} \times C_{m}\right)$, which acts on $\mathrm{Wh}\left(C_{\infty} \times C_{m}\right)$ via automorphisms, using the functoriality of Wh (see Definition 4.3 and Remark 4.9). Therefore every orbit has cardinality at most $\left|\operatorname{Aut}\left(C_{\infty} \times C_{m}\right)\right|<$ $2 m^{2}$, and $\left|\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right) / \operatorname{hAut}\left(S^{1} \times L\right)\right|=1$ if and only if $\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right)=0$. Moreover, since it follows from part (b) that $\operatorname{Im}\left(\pi_{1}: \operatorname{hAut}\left(S^{1} \times L\right) \rightarrow \operatorname{Aut}\left(C_{\infty} \times C_{m}\right)\right)$ is independent of the choice of the integers $\left(q_{1}, \ldots, q_{k}\right)$, the same is true for $\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right) / \operatorname{hAut}\left(S^{1} \times L\right)$.

So to prove Theorem B about $\left|\mathcal{M}_{s}^{h}\left(S^{1} \times L\right)\right|$, it remains to study the involution on $\mathrm{Wh}\left(C_{\infty} \times C_{m}\right)$ and prove the corresponding statements about $\left|\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right)\right|$. First, the fundamental theorem
for $K_{1}\left(\mathbb{Z} C_{m}\left[t, t^{-1}\right]\right)$ gives rise to a direct sum decomposition (see Theorem 5.9):

$$
\mathrm{Wh}\left(C_{m} \times C_{\infty}\right) \cong \mathrm{Wh}\left(C_{m}\right) \oplus \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \oplus N K_{1}\left(\mathbb{Z} C_{m}\right)^{2}
$$

where \widetilde{K}_{0} is the reduced projective class group, and $N K_{1}$ is the so-called Nil group. All summands have natural involutions, which are compatible with this isomorphism. Using that $\mathcal{J}_{n}\left(C_{m}\right)=0$ (see Proposition 5.13), we obtain the following decomposition for $\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right)$ (see Proposition 5.10):

$$
\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right) \cong\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \mid x=-\bar{x}\right\} \oplus N K_{1}\left(\mathbb{Z} C_{m}\right)
$$

In this decomposition the first component is always finite (see Lemma 5.12), so part (c) of Theorem B is proved by the following (see Theorems 5.7 and 5.8).
Theorem 1.4 (Bass-Murthy, Martin, Weibel, Farrell). If m is square-free then $N K_{1}\left(\mathbb{Z} C_{m}\right)=0$. Otherwise $N K_{1}\left(\mathbb{Z} C_{m}\right)$ is infinite.

For the remaining parts (b) and (d) of Theorem B, we need to study the involution on $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)$ and prove the analogous statements about $\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \mid x=-\bar{x}\right\}$ in the case where m is squarefree. This will be achieved using methods from algebraic number theory, and discussed further in Section 1.7 (see Theorem 1.13).

We can analyse $\mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right)$ similarly to $\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right)$. It has the following decomposition (see Proposition 5.10):

$$
\mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right) \cong\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\} \oplus N K_{1}\left(\mathbb{Z} C_{m}\right)
$$

It follows from Theorem 1.3 that $\mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right)$ is invariant under the action of $\operatorname{hAut}\left(S^{1} \times L\right)$, so $q\left(\mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right)\right)$ can be expressed as $\mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right) / \operatorname{hAut}\left(S^{1} \times L\right)$. Thus by Theorem D we have $\mathcal{M}_{s}^{\mathrm{hCob}}\left(S^{1} \times L\right) \cong \mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right) / \operatorname{hAut}\left(S^{1} \times L\right)$. By Theorems 1.3, 1.4, and 1.14, this leads to the following theorem.
Theorem E. Let $n \geq 4$ be even and let CAT be as in Hypothesis 1.1. Let $M_{m}^{n}=S^{1} \times L$, where L is an $(n-1)$-dimensional lens space with $\pi_{1}(L) \cong C_{m}, m \geq 2$. Then
(a) $\left|\mathcal{M}_{s}^{\mathrm{hCob}}\left(M_{m}^{n}\right)\right|$ only depends on n and m, but it is independent of the choice of L or CAT;
(b) $\left|\mathcal{M}_{s}^{\mathrm{hCob}}\left(M_{m}^{n}\right)\right|=1$ if and only if $m \in\{2,3,5,6,7,10,11,13,14,15,17,19,29\}$;
(c) $\left|\mathcal{M}_{s}^{\mathrm{hCob}}\left(M_{m}^{n}\right)\right|=\infty$ if and only if m is not square-free;
(d) $\left|\mathcal{M}_{s}^{\mathrm{hCob}}\left(M_{m}^{n}\right)\right| \rightarrow \infty$ as $m \rightarrow \infty$ uniformly in n.

Finally, we will consider $\mathcal{M}_{s, \mathrm{hCob}}^{h}\left(S^{1} \times L\right)$. It follows from Corollary 1.2 that this is isomorphic to $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{\infty} \times C_{m}\right)\right) / \operatorname{hAut}\left(S^{1} \times L\right)$. The decomposition of $\mathrm{Wh}\left(C_{\infty} \times C_{m}\right)$ induces an isomorphism $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{\infty} \times C_{m}\right)\right) \cong \widehat{H}^{n+1}\left(C_{2} ; \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right)$. Hence, as above, it remains to consider the involution on $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)$, but the behaviour of $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{\infty} \times C_{m}\right)\right)$ is different from $\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right)$ and $\mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right)$, in particular it is always finite.
Theorem F. Let $n \geq 4$ be even and let CAT be as in Hypothesis 1.1. Let $M_{m}^{n}=S^{1} \times L$, where L is an $(n-1)$-dimensional lens space with $\pi_{1}(L) \cong C_{m}, m \geq 2$. Then
(a) $\left|\mathcal{M}_{s, \mathrm{hCob}}^{h}\left(M_{m}^{n}\right)\right|$ only depends on n and m, but it is independent of the choice of L or CAT;
(b) $\liminf _{m \rightarrow \infty}\left(\sup _{n}\left|\mathcal{M}_{s, \mathrm{hCob}}^{h}\left(M_{m}^{n}\right)\right|\right)=1$;
(c) $\left|\mathcal{M}_{s, \mathrm{hCob}}^{h}\left(M_{m}^{n}\right)\right|<\infty$ for all n and m;
(d) $\limsup _{m \rightarrow \infty}\left(\inf _{n}\left|\mathcal{M}_{s, \mathrm{hCob}}^{h}\left(M_{m}^{n}\right)\right|\right)=\infty$.

Equivalently, part (b) says that there are infinitely many m such that $\left|\mathcal{M}_{s, \mathrm{hCob}}^{h}\left(M_{m}^{n}\right)\right|=1$ for every n, while part (d) says that $\inf _{n}\left|\mathcal{M}_{s, \mathrm{hCob}}^{h}\left(M_{m}^{n}\right)\right|$ is unbounded in m.
1.4. Homotopy equivalences of doubles. Next we consider Question 2. By Theorem D , to show that $\mathcal{M}_{s}^{h}(M)\left(\operatorname{resp} . \mathcal{M}_{s}^{\mathrm{hCob}}(M), \mathcal{M}_{s, \mathrm{hCob}}^{h}(M)\right)$ is nontrivial for some M, we need to understand the action of $\operatorname{hAut}(M)$ on the Whitehead group. Therefore our aim is to develop a systematic method for constructing manifolds M, with arbitrary predetermined fundamental group G and orientation character w, such that we have control over the Whitehead torsion of homotopy automorphisms of M. To achieve this, we will study doubles and homotopy equivalences between them. Our central result is a formula for the Whitehead torsion of such a homotopy equivalence (Theorem G), which
we will discuss below. By applying this formula to certain doubles, we get sufficient conditions for the existence of an M with nontrivial $\mathcal{M}_{s}^{\mathrm{hCob}}(M)$ or $\mathcal{M}_{s, \mathrm{hCob}}^{h}(M)$ (and hence $\mathcal{M}_{s}^{h}(M)$), expressed in terms of the involution on $\mathrm{Wh}(G, w)$. These, and a few further applications of Theorem G, will be discussed in Section 1.5.

We start by introducing the doubles that we will study. Fix positive integers n, k such that $n \geq \max (6,2 k+2)$. Let K be a k-complex, i.e. a finite k-dimensional CW complex, and let T be an n-dimensional thickening of K, i.e. an n-manifold with boundary together with a simple homotopy equivalence $f_{T}: K \rightarrow T$ (see Section 9). Then a double over K is a manifold of the form $M=T \cup_{\text {Id }_{\partial T}} T$ (a trivial double), $M=T \cup_{g} T$ where $g: \partial T \rightarrow \partial T$ is a diffeomorphism (a twisted double), or $M=T \cup W \cup T$ where W is an h-cobordism between two copies of ∂T (a generalised double). In each case M comes equipped with a canonical map $\varphi: K \rightarrow M$, which is the composition of f_{T} and the inclusion of the first component $T \rightarrow M$.

If M is an n-manifold and K is a k-complex, then we will call a map $\varphi: K \rightarrow M$ a polarisation of M, and the pair (M, φ) a polarised manifold. We will say that (M, φ) has a trivial/twisted/generalised double structure if, for some thickening T of K, M has a decomposition as above such that the canonical map $K \rightarrow M$ is homotopic to φ.

We will obtain the following recognition criterion for generalised doubles (see Proposition 10.2).
Proposition 1.5. Let (M, φ) be a polarised manifold. Then (M, φ) has a generalised double structure if and only if φ is $\left\lfloor\frac{n}{2}\right\rfloor$-connected.

It follows that the class of generalised doubles is closed under homotopy equivalence, i.e. if (M, φ) has a generalised double structure and $M \simeq N$, then (N, ψ) also has a generalised double structure for some ψ. Note that the same is not true for the classes of twisted and trivial doubles.

Given a polarised manifold (M, φ) such that φ is $\left\lfloor\frac{n}{2}\right\rfloor$-connected, we can define an invariant $\tau(M, \varphi)$, called the Whitehead torsion of (M, φ), as follows. There is a thickening $f_{T}: K \rightarrow T$ of K and an embedding $i: T \rightarrow M$ such that $i \circ f_{T} \simeq \varphi$. Let $C=M \backslash i(\operatorname{Int} T)$, then φ is homotopic to a homotopy equivalence $\varphi^{\prime}: K \rightarrow C$ regarded as a map $K \rightarrow M$. The inclusion $C \rightarrow M$ induces an isomorphism $\pi_{1}(C) \cong \pi_{1}(M)$, so we can identify $\mathrm{Wh}\left(\pi_{1}(C)\right)$ with $\mathrm{Wh}\left(\pi_{1}(M)\right)$.
Definition 1.6. Let $\tau(M, \varphi)=\tau\left(\varphi^{\prime}\right) \in \mathrm{Wh}\left(\pi_{1}(M)\right)$.
This invariant will show up in the formula of Theorem G as an error term. We will also prove in Corollary 10.8 that if (M, φ) has a trivial double structure, then $\tau(M, \varphi)=0$. The converse does not hold, but if $\tau(M, \varphi)=0$, then (M, φ) has a twisted double structure, and more generally see Proposition 10.10 for a result characterising precisely when a twisted double structure exists.

Next we consider homotopy equivalences between doubles. If (M, φ) is a polarised manifold and φ is $\left\lfloor\frac{n}{2}\right\rfloor$-connected, then we can find a CW decomposition of M such that φ is the embedding of its k-skeleton. Suppose that N is another n-manifold with an $\left\lfloor\frac{n}{2}\right\rfloor$-connected polarisation $\psi: L \rightarrow N$ for a k-dimensional CW complex L. Then by cellular approximation any homotopy equivalence $f: M \rightarrow N$ restricts to a map $\alpha: K \rightarrow L$. This α is also a homotopy equivalence if (M, φ) and (N, ψ) satisfy some mild restrictions on their dimensions or double structures; in this case we call them split polarised (SP) manifolds (see Definition 10.12). The following key theorem then allows us to compute the Whitehead torsion of f from that of α (see Theorem 11.5).
Theorem G. Suppose that (M, φ) and (N, ψ) are split polarised manifolds and $f: M \rightarrow N$ is a homotopy equivalence. Then

$$
\tau(f)=\tau(\alpha)-(-1)^{n} \overline{\tau(\alpha)}+\tau(N, \psi)-f_{*}(\tau(M, \varphi)) \in \mathrm{Wh}\left(\pi_{1}(N), w_{N}\right)
$$

where $\alpha: K \rightarrow L$ is the restriction of $f, \mathrm{~Wh}\left(\pi_{1}(L)\right)$ is identified with $\mathrm{Wh}\left(\pi_{1}(N)\right)$ via ψ_{*} and w_{N} is the orientation character of N.
1.5. Applications of Theorem G. In the main applications of Theorem G we restrict to special types of doubles where we have control over the right hand side of the formula. In particular, when $\tau(M, \varphi)=0$ (which can be ensured by taking M to be a trivial double), then we have $\tau(f) \in \mathcal{I}_{n}(G, w)$ for every homotopy automorphism f of M. From this we get that 0 is a fixed point of the action of $\operatorname{hAut}(M)$ on $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$. By Theorem D we have the following.
Theorem 1.7. Let $n \geq 5$, let G be a finitely presented group and let $w: G \rightarrow\{ \pm 1\}$ be such that $\psi: L_{n+1}^{h}(\mathbb{Z} G, w) \rightarrow \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$ is nontrivial. Then there exists a CAT n-manifold M with fundamental group G and orientation character w such that $\left|\mathcal{M}_{s, h \mathrm{hob}}^{h}(M)\right|>1$.

Remark 1.8. For $n \geq 6$, this can also be deduced from results in Hausmann's unpublished preprint [Hau80, Sections 9-10]. He gave applications in the case where n is odd [Hau80, Example 10.2].

When we also have some control over the possible values of $\tau(\alpha)$, Theorem G gives even stricter restrictions on the Whitehead torsions of homotopy equivalences and automorphisms. For example, if K and L are k-manifolds with orientation character w, then $\tau(\alpha) \in \mathcal{J}_{k}(G, w)$ (see Proposition 2.34). We obtain the following simple homotopy rigidity theorem for sphere bundles.

Theorem H. Suppose that $j>k$ are positive integers and j is odd. Let K and L be k-manifolds, and let $S^{j} \rightarrow M \rightarrow K$ and $S^{j} \rightarrow N \rightarrow L$ be orientable (linear) sphere bundles. Then every homotopy equivalence $f: M \rightarrow N$ is simple.
Remark 1.9. If we think of the Whitehead torsion as an invarant analogous to the Euler characteristic (cf. Lemma 2.17), then Theorem H can be regarded as the analogue of the fact that odd dimensional manifolds have vanishing Euler characteristic.

Combined with Theorem D, Theorem H leads to a proof of Theorem C (see Theorem 12.9). At the same time, it produces a class of manifolds, with arbitrary fundamental groups, within which two manifolds are homotopy equivalent if and only if they are simple homotopy equivalent.

Next we consider doubles over certain 2-complexes X with fundamental group $C_{\infty} \times C_{m}$, for which Metzler showed that $\tau: \operatorname{hAut}(X) \rightarrow \mathrm{Wh}\left(C_{\infty} \times C_{m}\right)$ is not surjective [Met79, Theorem 1]. Using these complexes X, improved constraints on the set $\tau(\operatorname{hAut}(X))$, and Theorem D , we obtain:

Theorem 1.10. Let $n \geq 5$ and let $m \geq 2$ be such that $\left\{x-(-1)^{n} \bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\} \neq 0$. Then there is an orientable CAT n-manifold M with fundamental group $C_{\infty} \times C_{m}$ such that $\left|\mathcal{M}_{s}^{\mathrm{hCob}}(M)\right|>1$.
Remark 1.11. If n is even, then examples where $\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\} \neq 0$ are given in Theorem 1.14 (i). If n is odd then, by Lemma 15.2 (i) and a similar argument to the one used in Lemma 16.4, we have $\left|\left\{x+\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\}\right| \geq h_{m}^{+}$where h_{m}^{+}denotes the plus part of the m th cyclotomic class number (see Section 1.7). For example, we have that $h_{136}^{+} \neq 1$ [Was97, p. 421].

Theorem 1.10 leads to examples of doubles M with fundamental group $C_{\infty} \times C_{m}$ such that $\left|\mathcal{M}_{s}^{\mathrm{hCob}}(M)\right|>1$. When n is even, these serve as alternatives to the examples constructed in Section 1.3.

Finally we note that $\tau(M, \varphi)$ can be used to define an invariant for certain unpolarised manifolds. We say that M is a split manifold if there is a $\varphi: K \rightarrow M$ such that (M, φ) is an SP manifold. For such an M we define

$$
\tau(M):=\pi(\tau(M, \varphi)) \in \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(\pi_{1}(M), w\right)\right)
$$

where $w: \pi_{1}(M) \rightarrow\{ \pm 1\}$ is the orientation character of M. It can be shown using Theorem G that this is well-defined (see Section 12.4). If a split manifold M is also a manifold without middle dimensional handles in the sense of Hausmann [Hau80], then $\tau(M)$ recovers the "torsion invariant" defined in [Hau80, Section 9], which was shown to be invariant under simple homotopy equivalences and homotopy equivalences induced by h-cobordisms. We prove the following (see Theorem 12.21).

Theorem 1.12. On the class of split manifolds, $\tau(M)$ is a complete invariant for the equivalence relation generated by simple homotopy equivalence and h-cobordism.
1.6. Summary for Question 2. We now give a brief overview of how the results presented so far can be used to characterise pairs (G, w) with an affirmative answer to Question 2, and the analogous questions for $\mathcal{M}_{s}^{\mathrm{hCob}}$ and $\mathcal{M}_{s, \mathrm{hCob}}^{h}$.

First observe that when $G=C_{\infty} \times C_{m}, w=1$ and n is even, we can use the results on $S^{1} \times L$ to get a complete answer for \mathcal{M}_{s}^{h} and $\mathcal{M}_{s}^{\mathrm{hCob}}$. That is because during the proof of Theorem B (b) (resp. Theorem E (b)) we show that $\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right)=0\left(\right.$ resp. $\left.\mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right)=0\right)$ for the listed values of m, which excludes the existence of an M with nontrivial $\mathcal{M}_{s}^{h}(M)\left(\operatorname{resp} . \mathcal{M}_{s}^{\mathrm{hCob}}(M)\right)$ by Theorem D. Furthermore, by comparing the two lists, we see that $m=15$ and 29 are the only integers for which $\left|\mathcal{M}_{s}^{\mathrm{hCob}}\left(M_{m}^{n}\right)\right|=1$ but $\left|\mathcal{M}_{s}^{h}\left(M_{m}^{n}\right)\right|>1$ (for every n). These give examples of manifolds M_{m}^{n} such that every manifold h-cobordant to M_{m}^{n} is simple homotopy equivalent to it, but being homotopy equivalent to M_{m}^{n} does not imply being simple homotopy equivalent to it.

In course of the proof of Theorem F we similarly show that a manifold M with nontrivial $\mathcal{M}_{s, \mathrm{hCob}}^{h}(M)$ exists if and only if $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{\infty} \times C_{m}\right)\right) \cong \mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right) / \mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right)$ is nontrivial. The question whether $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{\infty} \times C_{m}\right)\right)$ is trivial or not is open in general. However, the answer is known for the previously mentioned special values of m by the results on $\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right)$ and $\mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right)$, and the proof of Theorem 16.3 shows that for each case there are infinitely many m for which that case occurs. The results on $C_{\infty} \times C_{m}$ are summarised in Table 1.

m	\mathcal{M}_{s}^{h}	$\mathcal{M}_{s}^{\mathrm{hCob}}$	$\mathcal{M}_{s, \mathrm{hCob}}^{h}$
$2,3,5,6,7,10,11,13,14,17,19$	No	No	No
15,29	Yes	No	Yes
otherwise	Yes	Yes	Open

Table 1. Is there an even-dimensional orientable M with fundamental group $C_{\infty} \times C_{m}$ such that $\left|\mathcal{M}_{s}^{h}(M)\right|>1\left(\right.$ resp. $\left.\left|\mathcal{M}_{s}^{\mathrm{hCob}}(M)\right|>1,\left|\mathcal{M}_{s, \mathrm{hCob}}^{h}(M)\right|>1\right)$?

Next we consider the case of an arbitrary finitely presented group G with a homomorphism $w: G \rightarrow\{ \pm 1\}$, using results from Section 1.5.

First, Theorem C characterises pairs (G, w) such that $\left|\mathcal{M}_{s}^{\mathrm{hCob}}(M)\right|>1$ for some M with fundamental group G and orientation character w in terms of the (non-)vanishing of $\mathcal{I}_{n}(G, w)$.

For $\mathcal{M}_{s, \mathrm{hCob}}^{h}$, Theorem D and Theorem 1.7 show that the nontriviality of $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$ is necessary and the nonvanishing of $\psi=\psi_{(G, w)}^{n+1}: L_{n+1}^{h}(\mathbb{Z} G, w) \rightarrow \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$ is sufficient. The case when $\widehat{H}^{n+1}\left(C_{2} ; \operatorname{Wh}(G, w)\right) \neq 0$ but $\psi_{(G, w)}^{n+1}=0$ is open in general.

Finally, Theorem D shows that $\mathcal{M}_{s}^{h}(M)$ is nontrivial if and only if at least one of $\mathcal{M}_{s}^{\mathrm{hCob}}(M)$ and $\mathcal{M}_{s, \mathrm{hCob}}^{h}(M)$ is nontrivial. Thus the existence of an M with $\left|\mathcal{M}_{s}^{h}(M)\right|>1$ can be decided in all cases except when $\mathcal{I}_{n}(G, w)=0, \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right) \neq 0$ and $\psi_{(G, w)}^{n+1}=0$. We note that this case is nonempty: for example, for n even, the group $C_{4} \times C_{4}$, with $w=1$, falls into this category. Details will be postponed for future work.

These results are summarised in Table 2, where we also indicate the restrictions on n needed for the theorems to apply.

$\mathcal{I}_{n}(G, w)$	$\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$	$\psi_{(G, w)}^{n+1}$	\mathcal{M}_{s}^{h}			$\mathcal{M}_{s}^{\mathrm{hCob}}$		
$\mathcal{M}_{s, \mathrm{hCob}}^{h}$								
$=0$	$=0$	$=0$	No	$n \geq 4$	No	$n \geq 4$	No	$n \geq 4$
$=0$	$\neq 0$	$\neq 0$	Yes	$n \geq 5$	No	$n \geq 4$	Yes	$n \geq 5$
$=0$	$\neq 0$	$=0$	Open	-	No	$n \geq 4$	Open	-
$\neq 0$	$=0$	$=0$	Yes	$n=9, \geq 11$	Yes	$n=9, \geq 11$	No	$n \geq 4$
$\neq 0$	$\neq 0$	$\neq 0$	Yes	$n \geq 5$	Yes	$n=9, \geq 11$	Yes	$n \geq 5$
$\neq 0$	$\neq 0$	$=0$	Yes	$n=9, \geq 11$	Yes	$n=9, \geq 11$	Open	-

TABLE 2. Is there an n-manifold M with fundamental group G and orientation character w such that $\left|\mathcal{M}_{s}^{h}(M)\right|>1\left(\operatorname{resp} .\left|\mathcal{M}_{s}^{\mathrm{hCob}}(M)\right|>1,\left|\mathcal{M}_{s, \mathrm{hCob}}^{h}(M)\right|>1\right)$?
1.7. The involution on $\widetilde{K}_{0}\left(\mathbb{Z}_{m}\right)$. In light of the discussion in Section 1.3, detailed information regarding the involution on $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)$ is required in order to complete the proofs of parts (b) and (d) in each of Theorems B, E, and F. The purpose of Part 4 is to explore this involution in detail and to establish the following three theorems which are the key algebraic ingredients behind the proofs of Theorems B, E, and F respectively.

Theorem 1.13. Let $m \geq 2$ be a square-free integer. Then
(i) $\left|\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \mid \bar{x}=-x\right\}\right|=1$ if and only if $m \in\{2,3,5,6,7,10,11,13,14,17,19\}$; and
(ii) $\left|\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \mid \bar{x}=-x\right\}\right| \rightarrow \infty$ super-exponentially in m.

Theorem 1.14. Let $m \geq 2$ be a square-free integer. Then
(i) $\left|\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\}\right|=1$ if and only if $m \in\{2,3,5,6,7,10,11,13,14,15,17,19,29\}$; and
(ii) $\left|\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\}\right| \rightarrow \infty$ super-exponentially in m.

Theorem 1.15. Let $m \geq 2$ be an integer. Then
(i) $\left|\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \mid \bar{x}=-x\right\} /\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\underset{Z}{\mathbb{Z}} C_{m}\right)\right\}\right|=1$ for infinitely many m; and
(ii) $\sup _{n \leq m}\left|\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \mid \bar{x}=-x\right\} /\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\}\right| \rightarrow \infty$ exponentially in m.

We will now explain the strategy of proof of these three theorems, as well as some of the key ingredients. The first thing to note is that, whilst $\widetilde{K}_{0}(R)$ is difficult to compute for an arbitrary ring, it is often computable in the case where $R=\mathbb{Z} G$ for a finite group G since finitely generated projective $\mathbb{Z} G$-modules P are all locally free, i.e. $\mathbb{Z}_{p} \otimes_{\mathbb{Z}} P$ is a free $\mathbb{Z}_{p} G$ module for all primes p, where \mathbb{Z}_{p} denotes the p-adic integers. In particular, $\widetilde{K}_{0}(\mathbb{Z} G) \cong C(\mathbb{Z} G)$ where $C(\cdot)$ denotes the locally free class group (see Section 13.1). The general strategy for determining the involution on $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)$ is to note that, since $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \cong C\left(\mathbb{Z} C_{m}\right)$, we can fit $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)$ into a short exact sequence of abelian groups:

$$
0 \rightarrow D\left(\mathbb{Z} C_{m}\right) \rightarrow \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \rightarrow \bigoplus_{d \mid m} C\left(\mathbb{Z}\left[\zeta_{d}\right]\right) \rightarrow 0
$$

where $D\left(\mathbb{Z} C_{m}\right)$ denotes the kernel group of $\mathbb{Z} C_{m}$ (see Section 13.2) and $C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)$ denotes the ideal class group of $\mathbb{Z}\left[\zeta_{d}\right]$, where ζ_{d} denotes a primitive d th root of unity. The standard involution on $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)$ restricts to $D\left(\mathbb{Z} C_{m}\right)$ and induces the involution given by conjugation on each $C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)$ (see Section 15.1).

The proofs of Theorems 1.13 and 1.14 are intertwined and can be found in Section 16.1. The approach we will take is to use Lemma 14.3, and its consequence Lemma 16.4, which allow us to obtain information about the orders $\left|\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \mid \bar{x}=-x\right\}\right|$ and $\left|\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\}\right|$ from the orders of the corresponding groups $|\{x \in A \mid \bar{x}=-x\}|$ and $|\{x-\bar{x} \mid x \in A\}|$ in the cases where $A=D\left(\mathbb{Z} C_{m}\right)$ or $\left.C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)\right)$ for some $d \mid m$.

The key lemma which makes this approach possible is the following, which is a part of Proposition 15.4. Let $h_{m}=\left|C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right|$ denotes the class number of the m th cyclotomic field, and recall that it splits as a product $h_{m}=h_{m}^{+} h_{m}^{-}$for integers $h_{m}^{+}=\left|C\left(\mathbb{Z}\left[\zeta_{m}+\zeta_{m}^{-1}\right]\right)\right|$ and h_{m}^{-}known as the plus and minus parts of the class number. For an integer m, we let odd (m) denote the odd part of m, i.e. the unique odd integer r such that $m=2^{k} r$ for some k.

Lemma 1.16. We have that $\operatorname{odd}\left(h_{m}^{-}\right) \leq\left|\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}\right|$.
It was shown by Horie [Hor89], using results from Iwasawa theory [Fri81], that there exists finitely many m for which $\operatorname{odd}\left(h_{m}^{-}\right)=1$ and $\operatorname{odd}\left(h_{m}^{-}\right) \rightarrow \infty$ (see Proposition 15.8). Since Lemma 1.16 also gives a lower bound on $\left|\left\{x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right) \mid \bar{x}=-x\right\}\right|$, this is enough to prove part (ii) of Theorems 1.13 and 1.14 and to reduce the proof of part (i) to checking finitely many cases. These cases are dealt with via a variety of methods such as analysing the group structure on $C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)$ (see the proof of Proposition 16.7) and the studying the involution on $D\left(\mathbb{Z} C_{m}\right)$ by relating it to maps between units groups (see Sections 15.4 and 16.1).

The proof of Theorem 1.15 can be found in Section 16.2. Our approach will be based around the fact that the group we are trying to compute can be expressed as

$$
\frac{\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \mid \bar{x}=-x\right\}}{\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\}} \cong \widehat{H}^{1}\left(C_{2} ; \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right)
$$

where $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)$ is viewed as a $\mathbb{Z} C_{2}$-module with the C_{2}-action given by the involution (see Proposition 14.5). The short exact sequence above induces a 6 -periodic exact sequence on Tate cohomology (Proposition 14.7). This, combined with the fact that $\widehat{H}^{n}\left(C_{2} ; A\right)$ for A finite only depends on its 2-Sylow subgroup $A_{(2)}$ (Proposition 14.11) gives the following, which is a part of Lemma 16.14.

Lemma 1.17. If h_{m} is odd, then $\widehat{H}^{1}\left(C_{2} ; \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right) \cong \widehat{H}^{1}\left(C_{2} ; D\left(\mathbb{Z} C_{m}\right)\right)$. In particular, if h_{m} and $\left|D\left(\mathbb{Z} C_{m}\right)\right|$ are both odd, then $\widehat{H}^{1}\left(C_{2} ; \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right)=0$.

Using Iwasawa theory, it was shown by Washington [Was75] that $h_{3^{n}}$ is odd for all $n \geq 1$ (see also the work of Ichimura-Nakajima [IN12] which extends this results to more primes $p \leq 509$). Since $C_{3^{n}}$ is a 3-group, $\left|D\left(\mathbb{Z} C_{3^{n}}\right)\right|$ is an abelian 3-group and so is odd [CR87, Theorem 50.18]. By Lemma 1.17, this implies that $\left|\widehat{H}^{1}\left(C_{2} ; \widetilde{K}_{0}\left(\mathbb{Z} C_{3^{n}}\right)\right)\right|=1$ for all $n \geq 1$ which gives Theorem 1.15 (i).

On the other hand, by Weber's theorem, $h_{2^{n}}$ is odd for all $n \geq 1$ (see Lemma 15.11). Using a result of Kervaire-Murthy [KM77] which relates $D\left(\mathbb{Z} C_{2^{n}}\right)$ with $D\left(\mathbb{Z} C_{2^{n+1}}\right)$ (Proposition 15.20), and the 6-periodic exact sequence on Tate cohomology (Lemma 16.14), we show that $\left|\widehat{H}^{1}\left(C_{2} ; D\left(\mathbb{Z} C_{2^{n}}\right)\right)\right|$ is unbounded as $n \rightarrow \infty$. By Lemma 1.17, this implies Theorem 1.15 (ii).

Organisation of the paper. The paper will be structured into four parts that approximately mirror the structure of Sections $1.2-1.7$ above, which can be viewed as introductions for the parts to which they correspond. Part 1 follows on from Section 1.2: we develop the necessary background on simple homotopy equivalence, Whitehead torsion and h-cobordisms. We will then prove Theorem D, which is our main general result. Part 2 follows on from Section 1.3: we study the manifolds $L \times S^{1}$, leading to the proofs of Theorems B, E, and F subject to results about $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)$. Part 3 follows on from Sections $1.4-1.5$: we develop a theory of homotopy equivalences of doubles which we apply to prove Theorems G and H. Part 4 follows on from Section 1.7: we develop the necessary background on integral representation theory and algebraic number theory. We then study the involution of $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)$, leading to proofs of Theorems 1.13-1.15.

Conventions. The following conventions will be in place throughout this article, unless otherwise specified. As above, $n \geq 4$ will be an integer and an n-manifold will be a compact connected CAT n-manifold where CAT $\in\{$ Diff, PL, TOP $\}$. They will be assumed closed except where it is clear from the context that they are not, e.g. thickenings and cobordisms. We will frequently assume Hypothesis 1.1 but will state this as needed. Groups will be assumed to be finitely presented. Rings R will be assumed to have a multiplicative identity, and R-modules will be assumed to be finitely generated.

Acknowledgements. We are grateful to Daniel Kasprowski and Arunima Ray for discussions on the s-cobordism theorem, to Henri Johnston, Rachel Newton, and Jack Shotton for advice on ideal class groups, and to Scott Schmieding for discussions on Nil groups.

CsN was supported by EPSRC New Investigator grant EP/T028335/2. JN was supported by the Heilbronn Institute for Mathematical Research. MP was partially supported by EPSRC New Investigator grant EP/T028335/2 and EPSRC New Horizons grant EP/V04821X/2.

Contents

1. Introduction 1
1.1. Background and main results 1
1.2. Characterisation of simple homotopy manifold sets 3
1.3. The simple homotopy manifold set of $S^{1} \times L$ 4
1.4. Homotopy equivalences of doubles 5
1.5. Applications of Theorem G 6
1.6. Summary for Question 2 7
1.7. The involution on $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)$ 8
Organisation of the paper 10
Conventions 10
Acknowledgements 10
Part 1. General results 11
2. Preliminaries 12
2.1. Simple homotopy equivalence 12
2.2. The Whitehead group 13
2.3. The Whitehead torsion of a chain homotopy equivalence 14
2.4. The Whitehead torsion of a homotopy equivalence 16
3. Realising elements of the Whitehead group by maps between manifolds 18
3.1. Realising via h-cobordisms 18
3.2. Realising via the surgery exact sequence 19
4. Simple homotopy manifold sets 24
4.1. CW complexes 24
4.2. Manifolds 25
Part 2. The simple homotopy manifold set of $S^{1} \times L$ 29
5. The involution on $\mathrm{Wh}\left(C_{\infty} \times C_{m}\right)$ 29
5.1. The \widetilde{K}_{0} and $N K_{1}$ groups 29
5.2. Bass-Heller-Swan decomposition of $\mathrm{Wh}\left(C_{\infty} \times G\right)$ 30
5.3. The groups $\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right), \mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right)$, and $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{\infty} \times C_{m}\right)\right)$ 31
6. Homotopy automorphisms of $S^{1} \times L$ 32
6.1. The automorphism induced on the fundamental group 32
6.2. The Whitehead torsion 33
7. The proof of Theorems B, E, and F 34
Part 3. Homotopy equivalences of doubles 36
8. Split chain complexes 36
9. Thickenings 38
10. Polarised doubles 40
10.1. Double structures on polarised manifolds 40
10.2. The Whitehead torsion of a polarised double 40
10.3. SP manifolds 43
11. The Whitehead torsion of homotopy equivalences of doubles 44
12. Applications 47
12.1. Simple doubles 47
12.2. Doubles over manifolds 48
12.3. Doubles over certain 2-complexes 49
12.4. The dependence of $\tau(M, \varphi)$ on φ 51
12.5. An invariant of unpolarised manifolds 52
Part 4. The involution on $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)$ 53
13. Locally free class groups 53
13.1. Definitions and properties 53
13.2. Kernel groups 54
13.3. The idèlic approach to locally free class groups 54
13.4. Involutions on locally free class groups 55
14. Tate cohomology and $\mathbb{Z} C_{2}$-modules 56
14.1. Tate cohomology 56
14.2. Tate cohomology and the structure of $\mathbb{Z} C_{2}$-modules 56
15. Computing the involution on $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)$ 58
15.1. The induced involution on the maximal order 59
15.2. Ideal class groups of cyclotomic fields 60
15.3. Divisibility of class numbers of cyclotomic fields 61
15.4. Kernel groups of $\mathbb{Z} C_{m}$ 63
15.5. Divisibility and lower bounds for kernel groups 66
16. Proof of main results on the involution on $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)$ 68
16.1. Proof of Theorems 16.1 and 16.2 68
16.2. Proof of Theorem 16.3 72
References 74

Part 1. General results

In this part we will establish general results regarding simple homotopy equivalence. This will be the basis for our applications in Parts 2 and 3. In Section 2, we will recall the basic theory of simple homotopy equivalence, culminating in constraints on the Whitehead torsion of homotopy equivalences between manifolds. Section 3 concerns the two methods which we will use for constructing manifolds: via h-cobordisms (Section 3.1) and via the surgery exact sequence
(Section 3.2). In Section 4, which follows on from Section 1.2 in a natural way, we study the simple homotopy manifolds sets and prove Theorem D.

2. Preliminaries

In this section we recall the definition of simple homotopy equivalence, the Whitehead group and the Whitehead torsion, as well as some of their basic properties. Our main sources are Milnor [Mil66], Cohen [Coh73], and Davis-Kirk [DK01].
2.1. Simple homotopy equivalence. Let X be a CW complex and let $\phi: D^{n} \rightarrow X$ be a cellular map. Divide the boundary of the closed $(n+1)$-cell e^{n+1} into two n-discs, $\partial e^{n+1} \cong D^{n} \cup_{S^{n-1}} D^{n}$, gluing along the first copy of $D^{n} \subseteq \partial e^{n+1}$. Then the inclusion $X \rightarrow X \cup_{\phi} e^{n+1}$ is called an elementary expansion. There is a deformation retract $X \cup_{\phi} e^{n+1} \rightarrow X$ in the other direction, and this is called an elementary collapse.

Definition 2.1. A homotopy equivalence $f: X \rightarrow Y$ between finite CW complexes is simple if f is homotopic to a map that is a composition of finitely many elementary expansions and collapses

$$
X=X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \cdots \rightarrow X_{k}=Y
$$

For a homotopy equivalence $f: X \rightarrow Y$, Whitehead introduced an invariant $\tau(f)$, the Whitehead torsion of f, which lies in the Whitehead group $\mathrm{Wh}\left(\pi_{1}(Y)\right)$ of $\pi_{1}(Y)$. We shall define both the Whitehead group and the Whitehead torsion shortly. The motivation for the Whitehead torsion is the following beautiful result, which completely characterises whether or not a homotopy equivalence is simple.

Theorem 2.2 (Whitehead [Whi50]). A homotopy equivalence $f: X \rightarrow Y$ between $C W$ complexes X and Y is simple if and only if $\tau(f)=0 \in \mathrm{~Wh}\left(\pi_{1}(Y)\right)$.

In dimensions $n \neq 4$, every closed n-manifold admits an n-dimensional CW structure; see KirbySiebenmann [KS77, III.2.2] for $n \geq 5,[\operatorname{Rad} 26]$ for $n=2$ and [Moi52] for $n=3$. In dimension 4, it is an open question whether this holds. Certainly every smooth or PL n-manifold admits an n-dimensional triangulation, and hence a CW structure.

We explain how the notion of simple homotopy equivalence makes sense for 4-manifolds, even those for which we do not know whether they admit a CW structure. The procedure, which is due to Kirby-Siebenmann [KS77, III, §4] works for any dimension, so we work in this generality.

Let M be a topological n-manifold. Embed M in high-dimensional Euclidean space. By [KS77, III, §4], there is a normal disc bundle $D(M) \rightarrow M$ that admits a triangulation and hence a CW structure. The inclusion map $z_{M}: M \rightarrow D(M)$ of the 0 -section is a homotopy equivalence. Let z_{M}^{-1} denote the homotopy inverse of z_{M}.

Definition 2.3. We say that a homotopy equivalence $f: M \rightarrow N$ between topological manifolds is simple if the composition $z_{N} \circ f \circ z_{M}^{-1}: D(M) \rightarrow D(N)$ is simple. Kirby-Siebenmann [KS77, III, §4] showed that whether or not this composition is simple does not depend on the choice of normal disc bundle nor on the choice of triangulation.

If M and N are smooth or PL, then we can ask whether f is simple using the canonical class of triangulations of M and N, or by forgetting the smooth/PL structures and using the KirbySiebenmann method from Definition 2.3.

Proposition 2.4 (Kirby-Siebenmann [KS77, III.5.1]). For CAT $\in\{$ Diff, PL $\}$, a homotopy equivalence $f: M \rightarrow N$ between CAT manifolds M and N is simple with respect to their canonical class of triangulations if and only if it is simple with respect to Definition 2.3.

Hence we have a coherent notion of simple homotopy equivalence in all three manifold categories. We remark that Proposition 2.4 can also be proven using the following theorem of Chapman.

Theorem 2.5 (Chapman [Cha74]). Let $f: X \rightarrow Y$ be a homeomorphism between compact, connected $C W$ complexes. Then f is a simple homotopy equivalence.

Thus for closed manifolds M and N that admit a CW structure, one can deduce from Chapman's Theorem 2.5 that the question of whether $f: M \xrightarrow{\simeq} N$ is simple does not depend on the CW structures. Thus the extra work using disc bundles in Definition 2.3 is only required for nonsmoothable topological 4-manifolds.

2.2. The Whitehead group.

Definition 2.6. For a ring R, let $\mathrm{GL}(R)=\operatorname{colim}_{n} \mathrm{GL}_{n}(R)$, where we take the colimit with respect to the inclusions $\mathrm{GL}_{n}(R) \hookrightarrow \mathrm{GL}_{n+1}(R), A \mapsto\left(\begin{array}{cc}A & 0 \\ 0 & 1\end{array}\right)$. Define

$$
K_{1}(R):=\mathrm{GL}(R)^{\mathrm{ab}} .
$$

The Whitehead lemma [Mil66, Lemma 1.1] states that the commutator subgroup of GL (R) is equal to the subgroup $E(R)$ generated by elementary matrices (i.e. the matrices E such that $A \mapsto E A$ is an elementary row operation). It follows that we can also write

$$
K_{1}(R)=\mathrm{GL}(R) / E(R)
$$

Definition 2.7. Define the Whitehead group of a group G to be $\mathrm{Wh}(G)=K_{1}(\mathbb{Z} G) / \pm G$, where the map $\pm G \rightarrow K_{1}(\mathbb{Z} G)$ is the composition $\pm G \subseteq G L_{1}(\mathbb{Z} G) \subseteq \mathrm{GL}(\mathbb{Z} G) \rightarrow K_{1}(\mathbb{Z} G)$.

Note that Wh is a functor from the category of groups to the category of abelian groups. The map induced by a homomorphism $\theta: G \rightarrow H$ will be denoted by $\theta_{*}: \mathrm{Wh}(G) \rightarrow \mathrm{Wh}(H)$. Similarly, for a continuous map $f: X \rightarrow Y$ between topological spaces, the map induced by $\pi_{1}(f): \pi_{1}(X) \rightarrow$ $\pi_{1}(Y)$ will be denoted by $f_{*}: \mathrm{Wh}\left(\pi_{1}(X)\right) \rightarrow \mathrm{Wh}\left(\pi_{1}(Y)\right)$.

The isomorphism type of $\mathrm{Wh}(G)$ is known in some cases. For us the following examples will be relevant.
Proposition 2.8 (Stallings [Sta65]). If G is a finitely generated free group, then $\mathrm{Wh}(G)=0$.
Proposition 2.9 ([Coh73, (11.5)]). If C_{m} is the finite cyclic group of order m, then

$$
\mathrm{Wh}\left(C_{m}\right) \cong \mathbb{Z}^{\lfloor m / 2\rfloor+1-\delta(m)}
$$

where $\delta(m)$ is the number of positive integers dividing m.
The Whitehead group $\mathrm{Wh}(G)$ of a group G is equipped with a natural involution, i.e. an automorphism $x \mapsto \bar{x}$ such that $\overline{\bar{x}}=x$. Equivalently, it has a $\mathbb{Z} C_{2}$-module structure, where the generator of C_{2} acts by the involution. We will describe this involution below.

Let R be a ring with involution, i.e. a ring equipped with a map $x \mapsto \bar{x}$ that is an involution on R as an abelian group, and satisfies $\overline{x y}=\bar{y} \cdot \bar{x}$. This induces an involution on $\mathrm{GL}(R)$, sending $A=\left(A_{i j}\right) \in \mathrm{GL}_{n}(R)$ to $\bar{A}=\left(\overline{A_{j i}}\right) \in \mathrm{GL}_{n}(R)$, the conjugate transpose of A. Note that this is perhaps non-standard notation for the conjugate transpose. We use this convention so that the notation for involutions is consistent. This involution preserves the subgroup $E(R) \subseteq \mathrm{GL}(R)$ and so induces an involution $K_{1}(R)$.

If G is a group and $w: G \rightarrow\{ \pm 1\}$ is an orientation character, i.e. a homomorphism from G to $\{ \pm 1\}$, then the integral group ring $\mathbb{Z} G$ has an involution given by $\sum_{i=1}^{k} n_{i} g_{i} \mapsto \sum_{i=1}^{k} w\left(g_{i}\right) n_{i} g_{i}^{-1}$ for $n_{i} \in \mathbb{Z}$ and $g_{i} \in G$. The resulting involution on $K_{1}(\mathbb{Z} G)$ preserves $\pm G$ and so induces an involution on $\mathrm{Wh}(G)$.
Definition 2.10. We will write $\mathrm{Wh}(G, w)$ for the abelian group $\mathrm{Wh}(G)$ equipped with the involution determined by the orientation character $w: G \rightarrow\{ \pm 1\}$. This can equivalently be regarded as a $\mathbb{Z} C_{2}$-module. When $w \equiv 1$ is the trivial homomorphism, we will omit it from the notation and write $\mathrm{Wh}(G)$ for $\mathrm{Wh}(G, 1)$.

Note that the choice of w only affects the involution, and $\mathrm{Wh}(G, w)$ is equal to $\mathrm{Wh}(G)$ as an abelian group. Next we define two subgroups of $\mathrm{Wh}(G, w)$ which will play an important role in the rest of this article.

Definition 2.11. For a group G and a homomorphism $w: G \rightarrow\{ \pm 1\}$, define:

$$
\begin{aligned}
& \mathcal{J}_{n}(G, w):=\left\{y \in \mathrm{~Wh}(G, w) \mid y=-(-1)^{n} \bar{y}\right\} \leq \mathrm{Wh}(G, w) \\
& \mathcal{I}_{n}(G, w):=\left\{x-(-1)^{n} \bar{x} \mid x \in \mathrm{~Wh}(G, w)\right\} \leq \mathrm{Wh}(G, w)
\end{aligned}
$$

We have $\mathcal{I}_{n}(G, w) \leq \mathcal{J}_{n}(G, w)$, and it follows from the definition of the Tate cohomology groups (see Proposition 14.5) that there is a canonical isomorphism

$$
\mathcal{J}_{n}(G, w) / \mathcal{I}_{n}(G, w) \cong \widehat{H}^{n+1}\left(C_{2} ; \operatorname{Wh}(G, w)\right)
$$

We will denote the quotient map by

$$
\pi: \mathcal{J}_{n}(G, w) \rightarrow \widehat{H}^{n+1}\left(C_{2} ; \operatorname{Wh}(G, w)\right)
$$

2.3. The Whitehead torsion of a chain homotopy equivalence. Now we define the Whitehead torsion in the algebraic setting. Let G be a group and let $f: C_{*} \rightarrow D_{*}$ be a chain homotopy equivalence between finitely generated, free, based (left) $\mathbb{Z} G$-module chain complexes. Consider the algebraic mapping cone $\left(\mathscr{C}(f), \partial_{*}\right)$, which is also a finitely generated, free, based $\mathbb{Z} G$-module chain complex. Since f is a chain homotopy equivalence, $\mathscr{C}(f)$ is chain contractible; see e.g. [Ran02, Proposition 3.14]. Choose a chain contraction $s: \mathscr{C}(f)_{*} \rightarrow \mathscr{C}(f)_{*+1}$. Now consider the modules

$$
\mathscr{C}(f)_{\text {odd }}:=\bigoplus_{i=0}^{\infty} \mathscr{C}(f)_{2 i+1} \quad \text { and } \quad \mathscr{C}(f)_{\text {even }}:=\bigoplus_{i=0}^{\infty} \mathscr{C}(f)_{2 i} .
$$

These are finitely generated, free, based $\mathbb{Z} G$-modules. Since $\mathscr{C}(f)$ is contractible, its Euler characteristic vanishes, and so these modules are of equal, finite rank. The collection of boundary maps $\oplus_{i=0}^{\infty} \partial_{2 i+1}$ with odd degree domain, and the collection of the maps in the chain contraction $\oplus_{i=0}^{\infty} s_{2 i+1}$ with odd degree domain, both give rise to homomorphisms from $\mathscr{C}(f)_{\text {odd }}$ to $\mathscr{C}(f)_{\text {even }}$. Using the given bases, their sum is an element of $\operatorname{GL}(\mathbb{Z} G)$ [Coh73, (15.1)], and hence represents an element of the Whitehead group.

Definition 2.12. The Whitehead torsion of f is the equivalence class

$$
\tau(f):=\left[\bigoplus_{i=0}^{\infty}\left(\partial_{2 i+1}+s_{2 i+1}\right): \mathscr{C}(f)_{\text {odd }} \rightarrow \mathscr{C}(f)_{\text {even }}\right] \in \mathrm{Wh}(G) .
$$

This equivalence class is independent of the choice of the chain contraction s [Coh73, (15.3)].
Remark 2.13. Since $\mathscr{C}(f)_{\text {odd }}$ and $\mathscr{C}(f)_{\text {even }}$ are finitely generated, the sum in the definition of $\tau(f)$ is a finite sum.

The equivalence class $\tau(f)$ remains invariant under permutations of the bases of C_{*} and D_{*}, or if a basis element is multiplied by (-1) or an element of G [Coh73, (15.2) and (10.3)].

Now we list some useful facts about τ. We fix the group G, and all chain complexes will be assumed to be finitely generated, free, based, left $\mathbb{Z} G$-module chain complexes.

Proposition 2.14 ([DK01, Theorem 11.27]). Let $f, g: C_{*} \rightarrow D_{*}$ be homotopic chain homotopy equivalences. Then $\tau(f)=\tau(g)$.
Lemma 2.15 ([DK01, Theorem 11.28]). Let $f: C_{*} \rightarrow D_{*}$ and $g: D_{*} \rightarrow E_{*}$ be chain homotopy equivalences. Then $\tau(g \circ f)=\tau(f)+\tau(g)$. In particular $\tau(\mathrm{Id})=0$.

We say that a short exact sequence $0 \rightarrow C_{*}^{\prime} \rightarrow C_{*} \rightarrow C_{*}^{\prime \prime} \rightarrow 0$ of chain complexes is based if the basis of C_{*} consists of the image of the basis of C_{*}^{\prime} and an element from the preimage of each basis element of $C_{*}^{\prime \prime}$.

Lemma 2.16. Let $0 \rightarrow C_{*}^{\prime} \rightarrow C_{*} \rightarrow C_{*}^{\prime \prime} \rightarrow 0$ and $0 \rightarrow D_{*}^{\prime} \rightarrow D_{*} \rightarrow D_{*}^{\prime \prime} \rightarrow 0$ be based short exact sequences of chain complexes, and let $\left(f^{\prime}, f, f^{\prime \prime}\right)$ be a morphism between them, where $f^{\prime}: C_{*}^{\prime} \rightarrow D_{*}^{\prime}$, $f: C_{*} \rightarrow D_{*}$, and $f^{\prime \prime}: C_{*}^{\prime \prime} \rightarrow D_{*}^{\prime \prime}$ are chain homotopy equivalences. Then $\tau(f)=\tau\left(f^{\prime}\right)+\tau\left(f^{\prime \prime}\right)$.
Proof. The given data determines a based short exact sequence $0 \rightarrow \mathscr{C}\left(f^{\prime}\right) \rightarrow \mathscr{C}(f) \rightarrow \mathscr{C}^{\prime \prime}(f) \rightarrow 0$ of mapping cones, so the statement follows from [DK01, Theorem 11.23].

The following lemma gives a useful way to compute Whitehead torsion in favourable special cases. We will apply it in Section 6.
Lemma 2.17. Let $f: C_{*} \rightarrow D_{*}$ be a chain map such that $f_{i}: C_{i} \rightarrow D_{i}$ is an isomorphism for each i. Then $\left[f_{i}\right] \in \mathrm{Wh}(G)$ for each i and $\tau(f)=\sum_{i=0}^{\infty}(-1)^{i}\left[f_{i}\right]$.

Proof. Let $n=\max \left\{i \mid C_{i} \neq 0\right\}$, we will prove the statement by induction on n. If $n=0$, then $\mathscr{C}(f)_{\text {odd }}=\mathscr{C}(f)_{1} \cong C_{0}, \mathscr{C}(f)_{\text {even }}=\mathscr{C}(f)_{0} \cong D_{0}$, and $\partial_{1}=f_{0}$, so $\tau(f)=\left[f_{0}\right]$ by Definition 2.12.

For the induction step define C_{*}^{\prime} by $C_{i}^{\prime}=C_{i}$ if $i<n$ and $C_{i}=0$ otherwise, and define $C_{*}^{\prime \prime}$ by $C_{n}^{\prime \prime}=C_{n}$ and $C_{i}=0$ if $i \neq n$. Define $D_{*}^{\prime}, D_{*}^{\prime \prime}, f^{\prime}: C_{*}^{\prime} \rightarrow D_{*}^{\prime}$, and $f^{\prime \prime}: C_{*}^{\prime \prime} \rightarrow D_{*}^{\prime \prime}$ analogously, and apply Lemma 2.16.

For a chain complex C_{*} and an integer k we will denote by C_{k+*} the same chain complex with shifted grading $i \mapsto C_{k+i}$. Similarly, the cochain complex C_{k-*} is defined by changing the grading to $i \mapsto C_{k-i}$. The notation C^{k+i} and C^{k-*} is defined analogously for a cochain complex C^{*}.

Lemma 2.18. Let $f: C_{*} \rightarrow D_{*}$ be a chain homotopy equivalence. For every $k \in \mathbb{Z}$, it can also be regarded as a chain homotopy equivalence $f: C_{k+*} \rightarrow D_{k+*}$, and we have $\tau\left(f: C_{k+*} \rightarrow D_{k+*}\right)=$ $(-1)^{k} \tau\left(f: C_{*} \rightarrow D_{*}\right)$.
Proof. If we shift the grading by an even number, then $\mathscr{C}(f)$ odd and $\mathscr{C}(f)_{\text {even }}$ remain unchanged. If we shift the grading by an odd number, then $\mathscr{C}(f)_{\text {odd }}$ and $\mathscr{C}(f)_{\text {even }}$ are swapped, and by [Coh73, (15.1)], we see that $\tau(f)$ changes its sign.

Definition 2.19. Let $f: C^{*} \rightarrow D^{*}$ be a homotopy equivalence of cochain complexes of finitely generated, free, based, left $\mathbb{Z} G$-modules. It can be regarded as a homotopy equivalence of chain complexes $f: C^{-*} \rightarrow D^{-*}$, and we define $\tau\left(f: C^{*} \rightarrow D^{*}\right):=\tau\left(f: C^{-*} \rightarrow D^{-*}\right)$.

Next we describe how we can define the dual of a left R-module as another left R-module, if R is a ring with involution.
Definition 2.20. Suppose that R is a ring with involution. Let X and Y be a left and a right R-module respectively. Then we define the abelian groups

$$
\begin{aligned}
Y \otimes_{R} X & =Y \otimes_{\mathbb{Z}} X /(y r \otimes x=y \otimes r x) \quad \forall r \in R, x \in X, y \in Y \\
\operatorname{Hom}_{R}^{l r}(X, Y) & =\left\{\varphi \in \operatorname{Hom}_{\mathbb{Z}}(X, Y)|\forall r \in R, x \in X| \varphi(r x)=\varphi(x) \bar{r}\right\} .
\end{aligned}
$$

If Y also has a left S-module structure for some ring S (which is compatible with its right R-module structure), then $Y \otimes_{R} X$ is a left S-module with $s(y \otimes x)=(s y) \otimes x$, and $\operatorname{Hom}_{R}^{l r}(X, Y)$ is a left S-module with $(s \varphi)(x)=s \varphi(x)$.
Remark 2.21. $\operatorname{Hom}_{R}^{l r}(X, Y)$ is equal to $\operatorname{Hom}_{R}^{r}(\bar{X}, Y)$, the group of right R-module homomorphisms $\bar{X} \rightarrow Y$, as a subgroup of $\operatorname{Hom}_{\mathbb{Z}}(X, Y)$ (or as a left S-module). Here \bar{X} denotes the right R-module that is equal to X as an abelian group, with its multiplication given by $x r=\bar{r} \cdot x$, where \cdot denotes multiplication in X.
Definition 2.22. Suppose that R is a ring with involution. Let X be a left R-module. Its dual is the left R-module $X^{*}=\operatorname{Hom}_{R}^{l r}(X, R)$.

Now suppose that G is equipped with a group homomorphism $w: G \rightarrow\{ \pm 1\}$, i.e. an orientation character. This determines an involution on the group ring $\mathbb{Z} G$, and also on the Whitehead group $\mathrm{Wh}(G, w)$ (see Section 2.2). So if C_{*} is a finitely generated, free, based, left $\mathbb{Z} G$-module chain complex then, using Definition 2.22, we can define the dual cochain complex C^{*}, which also consists of finitely generated, free, based, left $\mathbb{Z} G$-modules.

Lemma 2.23. Let $f: C_{*} \rightarrow D_{*}$ be a chain homotopy equivalence and let $f^{*}: D^{*} \rightarrow C^{*}$ be its dual. Then $\tau\left(f^{*}\right)=\overline{\tau(f)} \in \mathrm{Wh}(G, w)$.
Proof. First note that if $g: X \rightarrow Y$ is an isomorphism between finitely generated, free, based, left $\mathbb{Z} G$-modules, and $g^{*}: Y^{*} \rightarrow X^{*}$ is its dual, then the matrix of g^{*} is the conjugate transpose of the matrix of g, hence $\tau\left(g^{*}\right)=\overline{\tau(g)} \in \mathrm{Wh}(G, w)$.

Now let $\left(\mathscr{C}(f), \partial_{*}^{f}\right)$ denote the mapping cone of f, so that $\mathscr{C}(f)_{i}=C_{i-1} \oplus D_{i}$. We regard $f^{*}: D^{*} \rightarrow C^{*}$ as a homotopy equivalence $f^{*}: D^{-*} \rightarrow C^{-*}$ of chain complexes, and define its mapping cone $\left(\mathscr{C}\left(f^{*}\right), \partial_{*}^{f^{*}}\right)$. Then $\mathscr{C}\left(f^{*}\right)_{i}=\left(D_{-i+1}\right)^{*} \oplus\left(C_{-i}\right)^{*} \cong\left(\mathscr{C}(f)_{-i+1}\right)^{*}$, and this implies that $\mathscr{C}\left(f^{*}\right)_{\text {odd }} \cong\left(\mathscr{C}(f)_{\text {even }}\right)^{*}$ and $\mathscr{C}\left(f^{*}\right)_{\text {even }} \cong\left(\mathscr{C}(f)_{\text {odd }}\right)^{*}$. Moreover, $\partial_{i}^{f^{*}}: \mathscr{C}\left(f^{*}\right)_{i} \rightarrow \mathscr{C}\left(f^{*}\right)_{i-1}$ is the dual of $\partial_{-i+2}^{f}: \mathscr{C}(f)_{-i+2} \rightarrow \mathscr{C}(f)_{-i+1}$.

Let $s_{*}: \mathscr{C}(f)_{*} \rightarrow \mathscr{C}(f)_{*+1}$ be a chain contraction. We define $s_{*}^{\prime}: \mathscr{C}\left(f^{*}\right)_{*} \rightarrow \mathscr{C}\left(f^{*}\right)_{*+1}$ by $s_{i}^{\prime}=\left(s_{-i}\right)^{*}: \mathscr{C}\left(f^{*}\right)_{i} \cong\left(\mathscr{C}(f)_{-i+1}\right)^{*} \rightarrow \mathscr{C}\left(f^{*}\right)_{i+1} \cong\left(\mathscr{C}(f)_{-i}\right)^{*}$. Then it follows by dualising the formula $s_{*} \partial^{f}+\partial^{f} s_{*}=\operatorname{Id}$ that s_{*}^{\prime} is a chain contraction of $\mathscr{C}\left(f^{*}\right)$.

Thus the map $\bigoplus_{i}\left(\partial_{2 i+1}^{f^{*}}+s_{2 i+1}^{\prime}\right): \mathscr{C}\left(f^{*}\right)_{\text {odd }} \rightarrow \mathscr{C}\left(f^{*}\right)_{\text {even }}$ is the dual of the map $\bigoplus_{i}\left(\partial_{2 i+1}^{f}+\right.$ $\left.s_{2 i+1}\right): \mathscr{C}(f)_{\text {odd }} \rightarrow \mathscr{C}(f)_{\text {even }}$. By our earlier observations in the first paragraph of the proof, this implies that $\tau\left(f^{*}\right)=\overline{\tau(f)}$.

Finally we consider the effect of changing the underlying (group) ring.
Definition 2.24. Let A and B be groups, X a left $\mathbb{Z} B$-module and $\theta \in \operatorname{Hom}(A, B)$. The left $\mathbb{Z} A$-module X_{θ} is defined as follows. The underlying abelian group of X_{θ} is the same as that of X. For every $a \in A$ and $x \in X_{\theta}$ let $a x=\theta(a) \cdot x$, where \cdot denotes multiplication in X.

Similarly, if Y is a right $\mathbb{Z} B$-module, then the right $\mathbb{Z} A$-module Y^{θ} is equal to Y as an abelian group, and $y a=y \cdot \theta(a)$ for every $a \in A$ and $y \in Y^{\theta}$, where \cdot denotes multiplication in Y.

Lemma 2.25. Let A and B be groups equipped with orientation characters $w_{A}: A \rightarrow\{ \pm 1\}$ and $w_{B}: B \rightarrow\{ \pm 1\}$ respectively. Let X be a left $\mathbb{Z} A$-module and let $\theta: A \rightarrow B$ be an isomorphism such that $w_{B} \circ \theta=w_{A}$. Then we have the following isomorphisms of left $\mathbb{Z} B$-modules.
(a) $\mathbb{Z} B^{\theta} \otimes_{\mathbb{Z} A} X \cong X_{\theta^{-1}}$.
(b) $\operatorname{Hom}_{\mathbb{Z} B}^{l r}\left(X_{\theta^{-1}}, \mathbb{Z} B\right)=\operatorname{Hom}_{\mathbb{Z} A}^{l r}\left(X, \mathbb{Z} B^{\theta}\right) \cong \operatorname{Hom}_{\mathbb{Z} A}^{l r}(X, \mathbb{Z} A)_{\theta^{-1}}$, in particular $\left(X_{\theta^{-1}}\right)^{*} \cong\left(X^{*}\right)_{\theta^{-1}}$.

Proof. (a) If Y is a right $\mathbb{Z} A$-module and a left R-module for some ring R, then it follows from the definition of the tensor product (see Definition 2.20) that $Y \otimes_{\mathbb{Z} A} X=Y^{\theta^{-1}} \otimes_{\mathbb{Z} B} X_{\theta^{-1}}$ (as left R-modules). By applying this for $Y=\mathbb{Z} B^{\theta}$ and $R=\mathbb{Z} B$, we get that $\mathbb{Z} B^{\theta} \otimes_{\mathbb{Z} A} X=\mathbb{Z} B \otimes_{\mathbb{Z} B} X_{\theta^{-1}}$. Of course $X_{\theta-1} \cong \mathbb{Z} B \otimes_{\mathbb{Z} B} X_{\theta^{-1}}$ via the map $x \mapsto 1 \otimes x$.
(b) (cf. [Nic23, Proposition 3.9]) For Y as above, it also follows from the definitions that $\operatorname{Hom}_{\mathbb{Z} A}^{l r}(X, Y)=\operatorname{Hom}_{\mathbb{Z} B}^{l r}\left(X_{\theta^{-1}}, Y^{\theta^{-1}}\right)$, so $\operatorname{Hom}_{\mathbb{Z} A}^{l r}\left(X, \mathbb{Z} B^{\theta}\right)=\operatorname{Hom}_{\mathbb{Z} B}^{l r}\left(X_{\theta^{-1}}, \mathbb{Z} B\right)=\left(X_{\theta^{-1}}\right)^{*}$.

The isomorphism θ induces an isomorphism $\mathbb{Z} \theta: \mathbb{Z} A \rightarrow \mathbb{Z} B$ of abelian groups (or rings). This map is also an isomorphism $\mathbb{Z} \theta: \mathbb{Z} A \rightarrow \mathbb{Z} B^{\theta}$ of right $\mathbb{Z} A$-modules. Hence it induces an isomorphism $(\mathbb{Z} \theta)_{*}: \operatorname{Hom}_{\mathbb{Z} A}^{l r}(X, \mathbb{Z} A) \rightarrow \operatorname{Hom}_{\mathbb{Z} A}^{l r}\left(X, \mathbb{Z} B^{\theta}\right)$ of abelian groups. We can check that $(\mathbb{Z} \theta)_{*}$ is also an isomorphism $\operatorname{Hom}_{\mathbb{Z} A}^{l r}(X, \mathbb{Z} A)_{\theta^{-1}} \rightarrow \operatorname{Hom}_{\mathbb{Z} A}^{l r}\left(X, \mathbb{Z} B^{\theta}\right)$ of left $\mathbb{Z} B$-modules. So we get that $\left(X^{*}\right)_{\theta^{-1}}=$ $\operatorname{Hom}_{\mathbb{Z} A}^{l r}(X, \mathbb{Z} A)_{\theta^{-1}} \cong \operatorname{Hom}_{\mathbb{Z} A}^{l r}\left(X, \mathbb{Z} B^{\theta}\right)$.

Lemma 2.26. Let A and B be groups and let $\theta: A \rightarrow B$ be an isomorphism. Let $f: C_{*} \rightarrow D_{*}$ be a chain homotopy equivalence of finitely generated, free, based, left $\mathbb{Z} B$-module chain complexes, which can also be regarded as a chain homotopy equivalence $f:\left(C_{*}\right)_{\theta} \rightarrow\left(D_{*}\right)_{\theta}$ of $\mathbb{Z} A$-module chain complexes. We have

$$
\tau\left(f:\left(C_{*}\right)_{\theta} \rightarrow\left(D_{*}\right)_{\theta}\right)=\theta_{*}^{-1}\left(\tau\left(f: C_{*} \rightarrow D_{*}\right)\right) \in \mathrm{Wh}(A)
$$

Proof. First note that if $g: X \rightarrow Y$ is an isomorphism between finitely generated, free, based, left $\mathbb{Z} B$-modules, and we regard it as an isomorphism $g: X_{\theta} \rightarrow Y_{\theta}$ of $\mathbb{Z} A$-modules, then its matrix changes by applying θ^{-1} to each entry, hence $\tau\left(g: X_{\theta} \rightarrow Y_{\theta}\right)=\theta_{*}^{-1}(\tau(g: X \rightarrow Y)) \in \mathrm{Wh}(A)$.

Now let $\left(\mathscr{C}(f), \partial_{*}\right)$ denote the mapping cone of f and let $s_{*}: \mathscr{C}(f)_{*} \rightarrow \mathscr{C}(f)_{*+1}$ be the chain contraction used to define $\tau(f)$ over $\mathbb{Z} B$. Then s_{*} is also a chain contraction for $\left(\mathscr{C}(f)_{\theta}, \partial_{*}\right)$, the mapping cone over $\mathbb{Z} A$.

So we can compute $\tau\left(f:\left(C_{*}\right)_{\theta} \rightarrow\left(D_{*}\right)_{\theta}\right)$ from $\bigoplus_{i}\left(\partial_{2 i+1}+s_{2 i+1}\right):\left(\mathscr{C}(f)_{\theta}\right)_{\text {odd }}=\left(\mathscr{C}(f)_{\text {odd }}\right)_{\theta} \rightarrow$ $\left(\mathscr{C}(f)_{\theta}\right)_{\text {even }}=\left(\mathscr{C}(f)_{\text {even }}\right)_{\theta}$, which is $\bigoplus_{i}\left(\partial_{2 i+1}+s_{2 i+1}\right): \mathscr{C}(f)_{\text {odd }} \rightarrow \mathscr{C}(f)_{\text {even }}$ regarded as an isomorphism of $\mathbb{Z} A$-modules, hence $\tau\left(f:\left(C_{*}\right)_{\theta} \rightarrow\left(D_{*}\right)_{\theta}\right)=\theta_{*}^{-1}\left(\tau\left(f: C_{*} \rightarrow D_{*}\right)\right)$.
2.4. The Whitehead torsion of a homotopy equivalence. Now let X and Y be finite CW complexes with universal covers \widetilde{X} and \widetilde{Y}, and let $F:=\pi_{1}(X)$ and $G:=\pi_{1}(Y)$. The cellular chain complex of Y with $\mathbb{Z} G$ coefficients is $C_{*}(Y ; \mathbb{Z} G)=\mathbb{Z} G \otimes_{\mathbb{Z} G} C_{*}(\tilde{Y}) \cong C_{*}(\widetilde{Y})$, which is a finitely generated, free, left $\mathbb{Z} G$-module chain complex. Choose a lift of each cell of Y in \widetilde{Y} to obtain a basis of $C_{*}(\widetilde{Y})$, which is well-defined up to ordering, signs and multiplication by elements of G. Similarly, the cellular chain complex of X with $\mathbb{Z} F$ coefficients, $C_{*}(X ; \mathbb{Z} F) \cong C_{*}(\widetilde{X})$, is a finitely generated, free, left $\mathbb{Z} F$-module chain complex with a basis well-defined up to ordering and multiplication by elements of $\pm F$.

Let $f: X \rightarrow Y$ be a cellular homotopy equivalence, and let $\theta=\pi_{1}(f): F \rightarrow G$. The right $\mathbb{Z} G$-module $\mathbb{Z} G$ corresponds to a local coefficient system on Y, which is pulled back to the local coefficient system on X corresponding to the right $\mathbb{Z} F$-module $\mathbb{Z} G^{\theta}$. Therefore f induces a chain homotopy equivalence $f_{*}: C_{*}\left(X ; \mathbb{Z} G^{\theta}\right) \rightarrow C_{*}(Y ; \mathbb{Z} G)$ of left $\mathbb{Z} G$-module chain complexes. Note that by Lemma 2.25 (a) we have

$$
C_{*}\left(X ; \mathbb{Z} G^{\theta}\right)=\mathbb{Z} G^{\theta} \otimes_{\mathbb{Z} F} C_{*}(\widetilde{X}) \cong C_{*}(\widetilde{X})_{\theta^{-1}} \cong C_{*}(X ; \mathbb{Z} F)_{\theta^{-1}}
$$

so this is also a finitely generated, free chain complex with a basis that is well-defined up to ordering and multiplication by elements of $\pm G$.

Definition 2.27. The Whitehead torsion of the cellular homotopy equivalence $f: X \rightarrow Y$ is $\tau(f):=\tau\left(f_{*}\right)$, where $f_{*}: C_{*}\left(X ; \mathbb{Z} G^{\theta}\right) \rightarrow C_{*}(Y ; \mathbb{Z} G)$ is the induced chain homotopy equivalence.

By Remark 2.13, it follows that $\tau\left(f_{*}\right)$ is well-defined, even though the bases of $C_{*}\left(X ; \mathbb{Z} G^{\theta}\right)$ and $C_{*}(Y ; \mathbb{Z} G)$ are well-defined only up to ordering and multiplication by elements of $\pm G$.

Proposition 2.28 ([Coh73, Statement 22.1]). Let $f, g: X \rightarrow Y$ be homotopic cellular homotopy equivalences between finite $C W$ complexes. Then $\tau(f)=\tau(g) \in \mathrm{Wh}(G)$.

Proof. This follows immediately from Proposition 2.14, because homotopic homotopy equivalences induce homotopic chain homotopy equivalences.

Now we can extend the definition of Whitehead torsion to arbitrary homotopy equivalences. If $f: X \rightarrow Y$ is a homotopy equivalence between finite CW complexes, then it is homotopic to a cellular homotopy equivalence $f^{\prime}: X \rightarrow Y$, and we define $\tau(f):=\tau\left(f^{\prime}\right)$. By Proposition 2.28 this is independent of the choice of f^{\prime}. Moreover, it follows that if $f, g: X \rightarrow Y$ are arbitrary homotopy equivalences and $f \simeq g$, then $\tau(f)=\tau(g)$.

Now that we have defined Whitehead torsion, it is worth recalling its key role: Theorem 2.2 states that a homotopy equivalence $f: X \rightarrow Y$ between CW complexes X and Y is simple if and only if its Whitehead torsion $\tau(f)=0 \in \mathrm{~Wh}\left(\pi_{1}(Y)\right)$.

We collect a few key properties of Whitehead torsion.
Proposition 2.29 ([Coh73, Corollary 5.1A]). Let X and Y be finite $C W$ complexes and let $f: X \rightarrow$ Y be a cellular map. Let Cyl_{f} denote the mapping cylinder of f. Then the inclusion $Y \rightarrow \mathrm{Cyl}_{f}$ is a simple homotopy equivalence.

Proposition 2.30 ([Coh73, Statement 22.4]). Let X, Y, and Z be finite $C W$ complexes and let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be homotopy equivalences. Then

$$
\tau(g \circ f)=\tau(g)+g_{*}(\tau(f))
$$

Proposition 2.31 ([Coh73, Statement 23.2]). For $i=1,2$, let X_{i}, Y_{i} be finite $C W$ complexes and let $f_{i}: X_{i} \rightarrow Y_{i}$ be a homotopy equivalence. Let $i_{1}: Y_{1} \hookrightarrow Y_{1} \times Y_{2}$ and $i_{2}: Y_{2} \hookrightarrow Y_{1} \times Y_{2}$ be natural inclusion maps defined by fixing a point in Y_{2} and Y_{1} respectively. For the product map $f_{1} \times f_{2}: X_{1} \times X_{2} \rightarrow Y_{1} \times Y_{2}$, we have

$$
\tau\left(f_{1} \times f_{2}\right)=\chi\left(Y_{2}\right) \cdot i_{1 *}\left(\tau\left(f_{1}\right)\right)+\chi\left(Y_{1}\right) \cdot i_{2 *}\left(\tau\left(f_{2}\right)\right)
$$

Corollary 2.32. Let $f_{1}: M_{1} \rightarrow N_{1}$ and $f_{2}: M_{2} \rightarrow N_{2}$ be homotopy equivalences between odd dimensional manifolds. Then $f_{1} \times f_{2}: M_{1} \times M_{2} \rightarrow N_{1} \times N_{2}$ is a simple homotopy equivalence.

Proof. We have $\tau\left(f_{1} \times f_{2}\right)=0$, by Proposition 2.31 and the fact that $\chi\left(N_{1}\right)=\chi\left(N_{2}\right)=0$.
Proposition 2.33. Let $f: X \rightarrow Y$ be a homeomorphism between finite $C W$ complexes. Then $\tau(f)=0$.
Proof. By Theorem 2.5, f is a simple homotopy equivalence. Therefore $\tau(f)=0$ by Theorem 2.2.

The following generalises an observation of Wall. He pointed this out in the case where M, N are simple Poincaré complexes [Wal74, p. 612], i.e. finite Poincaré complexes X for which the chain duality isomorphism $C^{*}(\widetilde{X}) \rightarrow C_{*}(\widetilde{X})$ is a simple chain homotopy equivalence. At the time, it was known that smooth manifolds are simple Poincaré complexes [Wal99, Theorem 2.1] but the case of topological manifolds was not established until the work of Kirby-Siebenmann [KS77, III.5.13].
Proposition 2.34. Let M and N be closed n-dimensional topological manifolds. Let $G=\pi_{1}(N)$ with orientation character $w: G \rightarrow\{ \pm 1\}$, and let $f: M \rightarrow N$ be a homotopy equivalence. Then $\tau(f) \in \mathcal{J}_{n}(G, w)$.

Proof. Let $F=\pi_{1}(M)$ and $\theta=\pi_{1}(f): F \rightarrow G$. Since f is a homotopy equivalence, $f_{*}([M])=$ $\pm[N]$, where $[M]$ and $[N]$ denote the (twisted) fundamental classes of M and N respectively. Since Poincaré duality is given by taking cap product with the fundamental class, and the cap product is natural, we get a diagram of left $\mathbb{Z} G$-module chain complexes that commutes up to chain homotopy
and sign:

Poincaré duality is a simple chain homotopy equivalence by [KS77, III.5.13], so we have that $\tau\left(\mathrm{PD}: C^{n-*}(N ; \mathbb{Z} G) \rightarrow C_{*}(N ; \mathbb{Z} G)\right)=0$. By Lemmas 2.25 and 2.26 , the Poincaré duality map

$$
\mathrm{PD}: C^{n-*}\left(M ; \mathbb{Z} G^{\theta}\right) \cong C^{n-*}(M ; \mathbb{Z} F)_{\theta^{-1}} \rightarrow C_{*}\left(M ; \mathbb{Z} G^{\theta}\right) \cong C_{*}(M ; \mathbb{Z} F)_{\theta^{-1}}
$$

is simple too.
It follows from Proposition 2.14 and Lemma 2.15 that $\tau\left(C^{n-*}(f)\right)+\tau\left(C_{*}(f)\right)=0$. Therefore it is enough to prove that $\tau\left(C^{n-*}(f)\right)=(-1)^{n} \overline{\tau\left(C_{*}(f)\right)}$.

By Lemma 2.18, we know that $\tau\left(C^{n-*}(f)\right)=(-1)^{n} \tau\left(C^{-*}(f)\right)$, and it follows from Definition 2.19 that $\tau\left(C^{-*}(f)\right)=\tau\left(C^{*}(f)\right)$. Finally Lemma 2.23 shows that $\tau\left(C^{*}(f)\right)=\overline{\tau\left(C_{*}(f)\right)}$. We deduce that $\tau\left(C^{n-*}(f)\right)=(-1)^{n} \overline{\tau\left(C_{*}(f)\right)}$, completing the proof.

We recall the definitions of h - and s-cobordisms.
Definition 2.35. A cobordism $(W ; M, N)$ of closed manifolds is an h-cobordism if the inclusion maps $i_{M}: M \rightarrow W$ and $i_{N}: N \rightarrow W$ are homotopy equivalences. If in addition i_{M} and i_{N} are simple homotopy equivalences then W is an s-cobordism.
Definition 2.36. Suppose that W is an h-cobordism between closed n-dimensional manifolds M and N. Let $G=\pi_{1}(W)$ and let $w: G \rightarrow\{ \pm 1\}$ be the orientation character of W. We will write $\tau(W, M)$ and $\tau(W, N)$ to denote the Whitehead torsion of the inclusions $M \rightarrow W$ and $N \rightarrow W$ respectively. The composition $N \rightarrow M$ of the inclusion $N \rightarrow W$ and the homotopy inverse of the inclusion $M \rightarrow W$ (well-defined up to homotopy) will be called the homotopy equivalence induced by W.

Proposition 2.37. Let W be an h-cobordism between closed, n-dimensional manifolds M and N. Let $G=\pi_{1}(W)$ and let $w: G \rightarrow\{ \pm 1\}$ be the orientation character of W.
(a) We have that $\tau(W, N)=(-1)^{n} \overline{\tau(W, M)} \in \mathrm{Wh}(G, w)$.
(b) If $f: N \rightarrow M$ denotes the homotopy equivalence induced by W, then we have

$$
\tau(f)=-\tau(W, M)+(-1)^{n} \overline{\tau(W, M)} \in \mathrm{Wh}(G, w)
$$

where $\pi_{1}(M)$ is identified with G via the inclusion. In particular $\tau(f) \in \mathcal{I}_{n}(G, w)$.
Proof. For (a) this is the "duality theorem" [Mil66, p. 394], translated into our conventions; see also the Remark on [Mil66, p. 398]. Then (b) follows from part (a) and Proposition 2.30.

3. Realising elements of the Whitehead group by maps between manifolds

Throughout this section, fix $n \geq 4$, a finitely presented group G, and CAT $\in\{$ Diff, PL, TOP $\}$, satisfying Hypothesis 1.1.
3.1. Realising via h-cobordisms. If $(W ; M, N)$ is an h-cobordism, then we will use the isomorphism $\pi_{1}\left(i_{M}\right)$ to identify $\pi_{1}(M)$ with $\pi_{1}(W)$, and regard $\tau(W, M) \in \mathrm{Wh}\left(\pi_{1}(W)\right)$ as an element of $\mathrm{Wh}\left(\pi_{1}(M)\right)$.

Here is the complete statement of the s-cobordism theorem, for closed manifolds. It is due to Smale, Barden, Mazur, Stallings, Kirby-Siebenmann, and Freedman-Quinn [Sma62, Bar63, Maz63, Sta67, KS77, FQ90].

Theorem 3.1 (s-cobordism theorem). Let M be a closed, CAT n-manifold with $\pi_{1}(M) \cong G$, satisfying Hypothesis 1.1.
(a) Let $\left(W ; M, M^{\prime}\right)$ be an h-cobordism over M. Then W is trivial over M, i.e. $W \cong M \times[0,1]$, via a CAT-isomorphism restricting to the identity on M, if and only if its Whitehead torsion $\tau(W, M) \in \mathrm{Wh}(G)$ vanishes.
(b) For every $x \in \mathrm{~Wh}(G)$ there exists an h-cobordism ($W ; M, M^{\prime}$) with $\tau(W, M)=x$.
(c) The function assigning to an h-cobordism $\left(W ; M, M^{\prime}\right)$ its Whitehead torsion $\tau(W, M)$ yields a bijection from the CAT-isomorphism classes relative to M of h-cobordisms over M to the Whitehead group $\mathrm{Wh}(G)$.
Part (b) of the theorem was stated in [RS82, p. 90] in the PL category. As observed in [KPR22, Remark 3.6], the proof given there has a gap in the case $n=4$, since it is not clear that the manifold M^{\prime} has the same fundamental group as M : the attaching spheres for the 3-handles can be smoothly embedded but it is not clear that these embeddings admit geometric duals. If one restricts to the topological category and good fundamental group (i.e. Hypothesis 1.1), then as explained in [KPR22, Theorem 3.5], the proof can be fixed using the sphere embedding theorem [FQ90,PRT20].

Recall that we write $\mathcal{I}_{n}(G, w):=\left\{y+(-1)^{n+1} \bar{y} \mid y \in \mathrm{~Wh}(G, w)\right\} \leq \mathrm{Wh}(G, w)$.
Corollary 3.2. Let M be a closed, CAT n-manifold with $\pi_{1}(M) \cong G$ and orientation character $w: G \rightarrow\{ \pm 1\}$, satisfying Hypothesis 1.1. For every $x \in \mathcal{I}_{n}(G, w)$ there exists a closed, CAT n manifold N and a homotopy equivalence $f: N \rightarrow M$ induced by an h-cobordism between M and N such that $\tau(f)=x$.
Proof. Let $x \in \mathcal{I}_{n}(G, w)$ and write $x=-y+(-1)^{n} \bar{y}$ for some $y \in \mathrm{~Wh}(G, w)$. Apply Theorem 3.1 to obtain an h-cobordism $(W ; M, N)$ from M to some n-manifold N with $\tau(W, M)=y$. If f is the homotopy equivalence induced by W, then $\tau(f)=-y+(-1)^{n} \bar{y}=x$ by Proposition 2.37 (b).
Corollary 3.3. Let M and N be closed, CAT n-manifolds satisfying Hypothesis 1.1. Suppose M has $\pi_{1}(M) \cong G$ and orientation character $w: G \rightarrow\{ \pm 1\}$. If there is a homotopy equivalence $f: N \rightarrow M$ such that $\tau(f) \in \mathcal{I}_{n}(G, w)$, then there exists a closed, CAT n-manifold P that is simple homotopy equivalent to N and h-cobordant to M.

Proof. By Corollary 3.2 there is an h-cobordism between M and some n-manifold P such that $\tau(g)=\tau(f)$ for the induced homotopy equivalence $g: P \rightarrow M$. Moreover, if g^{-1} denotes the homotopy inverse of g, then $g^{-1} \circ f: N \rightarrow P$ is a simple homotopy equivalence, because $\tau\left(g^{-1} \circ f\right)=$ $\tau\left(g^{-1}\right)+g_{*}^{-1}(\tau(f))=\tau\left(g^{-1}\right)+g_{*}^{-1}(\tau(g))=\tau\left(g^{-1} \circ g\right)=\tau(\mathrm{Id})=0$ by Proposition 2.30.
3.2. Realising via the surgery exact sequence. We recall the surgery exact sequence. Let M be a closed CAT n-dimensional manifold with $\pi_{1}(M)=G$ and orientation character $w: G \rightarrow\{ \pm 1\}$, for some $n \geq 4$, satisfying Hypothesis 1.1.
Definition 3.4. The homotopy structure set of M, denoted $\mathcal{S}^{h}(M)$, is by definition the set of pairs (N, f), where N is a closed CAT n-manifold and $f: N \rightarrow M$ is a homotopy equivalence, considered up to h-cobordism over M. That is, $[N, f]=\left[N^{\prime}, f^{\prime}\right] \in \mathcal{S}^{h}(M)$ if and only if there is an h-cobordism ($W ; N, N^{\prime}$), with inclusion maps $i: N \rightarrow W$ and $i^{\prime}: N^{\prime} \rightarrow W$, together with a map $F: W \rightarrow M$ such that $F \circ i=f$ and $F \circ i^{\prime}=f^{\prime}$.

We can similarly define the simple homotopy structure set $\mathcal{S}^{s}(M)$ to be the set of pairs (N, f), where N is a closed CAT n-manifold and $f: N \rightarrow M$ is a simple homotopy equivalence, considered up to s-cobordism over M.

The Browder-Novikov-Sullivan-Wall surgery exact sequence for $x \in\{h, s\}$ is as follows [Wal99, FQ90]; see also [Lüc02, Theorem 5.12], [OPR21].

$$
\mathcal{N}(M \times[0,1], M \times\{0,1\}) \xrightarrow{\sigma_{x}} L_{n+1}^{x}(\mathbb{Z} G, w) \xrightarrow{W_{x}} \mathcal{S}^{x}(M) \xrightarrow{\eta_{x}} \mathcal{N}(M) \xrightarrow{\sigma_{x}} L_{n}^{x}(\mathbb{Z} G, w) .
$$

Here, $\mathcal{N}(M \times[0,1], M \times\{0,1\})$ and $\mathcal{N}(M)$ denote the sets of the normal bordism classes of degree one normal maps over $M \times[0,1]$ and M respectively. These sets do not depend on the decoration x.

The groups $L_{n}^{x}(\mathbb{Z} G, w)$ are the surgery obstruction groups. Elements of $L_{n}^{h}(\mathbb{Z} G, w)$ are represented by nonsingular Hermitian forms over finitely generated free $\mathbb{Z} G$-modules for n even, and by nonsingular formations over finitely generated free $\mathbb{Z} G$-modules for n odd, with the involution on $\mathbb{Z} G$ determined by w. See e.g. [Ran80]. In the case of $L_{n}^{s}(\mathbb{Z} G, w)$ the forms/formations are also required to be based and simple.

The maps labelled σ_{x} are the surgery obstruction maps. For the definition of σ_{s}, we take a degree one normal map $(f, b): N \rightarrow M$, perform surgery below the middle dimension to make the map [$n / 2$]-connected, and then produce the based, simple form or formation (for n even or odd respectively) of the surgery kernel in the middle dimension(s), to obtain an element of $L_{n}^{s}(\mathbb{Z} G, w)$.

To define the map σ_{h} we perform the same procedure, and then forget the data of the bases, to obtain an element of $L_{n}^{h}(\mathbb{Z} G, w)$. One of the main theorems of surgery [Wa199],[Lüc02] is that the maps σ_{x}, for $x \in\{h, s\}$, are well-defined.

The map W_{x} is the Wall realisation map. Given a $z \in L_{n+1}^{x}(\mathbb{Z} G, w)$ and $\left[M_{0}, f_{0}\right] \in \mathcal{S}^{x}(M)$, Wall realisation produces a new element $\left[M_{1}, f_{1}\right] \in \mathcal{S}^{x}(M)$ together with a degree one normal bordism between $\left(M_{0}, f_{0}\right)$ and (M_{1}, f_{1}) whose surgery obstruction equals z. This determines an action of $L_{n+1}^{x}(\mathbb{Z} G, w)$ on $\mathcal{S}^{x}(M)$, and the map W_{x} is defined by acting on the equivalence class of the identity map, $\left[M, \operatorname{Id}_{M}\right] \in \mathcal{S}^{x}(M)$.

The s and h decorated L groups are related by the exact sequence:

$$
\begin{equation*}
\cdots \rightarrow L_{n+1}^{s}(\mathbb{Z} G, w) \rightarrow L_{n+1}^{h}(\mathbb{Z} G, w) \xrightarrow{\psi} \widehat{H}^{n+1}\left(C_{2} ; \operatorname{Wh}(G, w)\right) \rightarrow L_{n}^{s}(\mathbb{Z} G, w) \rightarrow L_{n}^{h}(\mathbb{Z} G, w) \rightarrow \cdots \tag{3.1}
\end{equation*}
$$

Remark 3.5. The only proof we could find in the literature for this exact sequence is due to Shaneson [Sha69, Section 4]. There, Shaneson attributed the derivation of the sequence to Rothenberg, by a different (unpublished) proof.

Here for the definition of the Tate group, C_{2} acts on $\mathrm{Wh}(G, w)$ via the involution. Recall that $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right) \cong \mathcal{J}_{n}(G, w) / \mathcal{I}_{n}(G, w)$ and $\pi: \mathcal{J}_{n}(G, w) \rightarrow \mathcal{J}_{n}(G, w) / \mathcal{I}_{n}(G, w)$ is the quotient map. Define a map

$$
\begin{aligned}
\widehat{\tau}: \mathcal{S}^{h}(M) & \rightarrow \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right) \\
\quad[N, f] & \mapsto \pi(\tau(f)) .
\end{aligned}
$$

We check that this map is well-defined. By Proposition 2.34, the Whitehead torsion of a homotopy equivalence between manifolds lies in $\mathcal{J}_{n}(G, w)$. If we change the representative of $[N, f]$ we obtain an h-cobordism between N and some N^{\prime} over M, and by Proposition 2.37 this changes the torsion by an element of $\mathcal{I}_{n}(G, w)$.

The map ψ from (3.1) determines an action of $L_{n+1}^{h}(\mathbb{Z} G, w)$ on $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$, given by $x^{z}=x+\psi(z)$ for $x \in \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$ and $z \in L_{n+1}^{h}(\mathbb{Z} G, w)$. We will now establish the following two properties of the map $\widehat{\tau}$.
Proposition 3.6. The map $\widehat{\tau}$ is $L_{n+1}^{h}(\mathbb{Z} G, w)$-equivariant. That is, for all $z \in L_{n+1}^{h}(\mathbb{Z} G, w)$ and $\left[M_{0}, f_{0}\right] \in \mathcal{S}^{h}(M)$, we have $\widehat{\tau}\left(\left[M_{0}, f_{0}\right]^{z}\right)=\widehat{\tau}\left(\left[M_{0}, f_{0}\right]\right)^{z}$.
Proposition 3.7. There is a commutative diagram

between the surgery exact sequence and the exact sequence (3.1).
Remark 3.8. This commutative diagram in Proposition 3.7 is part of a braid that appeared in Jahren and Kwasik's preprint [JK17, Diagram (6)], but was removed for the published version [JK18]. In the case CAT $=$ TOP, see also Ranicki [Ran86, p.359-360]. Neither reference contains a proof.

In the proofs of these propositions we will need to work with Whitehead torsion in a more general setting than (chain) homotopy equivalences, so we will use Milnor's definition [Mil66, Section 3-4]. Given a chain complex C_{*} of free $\mathbb{Z} G$-modules with free homology $H_{*}:=H_{*}\left(C_{*}\right)$, if bases are chosen for both C_{*} and H_{*}, then the Whitehead torsion $\tau\left(C_{*}\right) \in \mathrm{Wh}(G)$ is defined. In particular, if H_{*} is trivial, then it has a unique basis, so it is enough to choose a basis for C_{*}.

Given a chain homotopy equivalence $f: C_{*} \rightarrow D_{*}$ between based chain complexes, Cohen [Coh73, $\S 16]$ showed that the definition of $\tau(f)$ from Section 2 coincides with Milnor's definition of the Whitehead torsion of the mapping cone $\mathscr{C}(f)$ of f, with basis determined by the bases of C_{*} and $D_{*}\left(\right.$ which is the same as the Whitehead torsion of the pair $\left.\left(\mathrm{Cyl}_{f}, C_{*}\right)\right)$.

More generally, $\tau\left(C_{*}\right)$ is also defined when H_{*} is only stably free, equipped with a stable basis. A module X is called stably free if $X \oplus \mathbb{Z} G^{k}$ is free for some $k \geq 0$, and a stable basis of X is by definition the data of an integer k and a basis of $X \oplus \mathbb{Z} G^{k}$ for some k. Note that in this more general setting, $\tau\left(C_{*}\right)$ is no longer unambiguously defined when H_{*} is trivial and C_{*} is based, because the stable basis of the trivial module is not unique. But it has a canonical stable basis (given by its unique basis), so when H_{*} is trivial, we will assume that it is equipped with the canonical stable basis, unless we specify a different one.

In the proofs of Propositions 3.6 and 3.7 , every space X will be equipped with a fixed map to M, which allows us to take all chain complexes and homology groups with $\mathbb{Z} G$ coefficients. That is, we will write $C_{*}(X)$ for $C_{*}\left(X ; \mathbb{Z} G^{\theta}\right)$ if $f: X \rightarrow M$ is the fixed map and $\theta=\pi_{1}(f): \pi_{1}(X) \rightarrow \pi_{1}(M)=$ G.

Proof of Proposition 3.6. The case of odd n was proved in Shaneson [Sha69, Lemma 4.2], so we will assume that $n=2 q$ is even.

An element $z \in L_{n+1}^{h}(\mathbb{Z} G, w)$ is represented by a formation $\left(H ; L_{0}, L_{1}\right)$, where H is a $(-1)^{q_{-}}$ symmetric hyperbolic form over $\mathbb{Z} G$ (of rank $2 k$) and L_{0} and L_{1} are lagrangians in H. Let $\left[M_{0}, f_{0}\right] \in \mathcal{S}^{h}(M)$. First we recall the definition of the action of z on $\left[M_{0}, f_{0}\right]$.

Consider $M_{0} \times I$ and add k trival q-handles, then we obtain a cobordism W_{0} between M_{0} and $N:=M_{0} \# k\left(S^{q} \times S^{q}\right)$. There is an isometry $H \cong H_{q}\left(\#^{k} S^{q} \times S^{q}\right)$ such that L_{0} corresponds to the subgroup generated by the $* \times S^{q}$ (recall that all homology is with $\mathbb{Z} G$ coefficients by default in this proof). Then W_{0} can also be constructed from $N \times I$ by adding $k(q+1)$-handles along a basis of L_{0}.

Next add $k(q+1)$-handles to $N \times I$ along a basis of L_{1}. This yields a cobordism W_{1} between N and some M_{1}, and we define $W=W_{0} \cup_{N} W_{1}$. It is a cobordism between M_{0} and M_{1} over M with the map $F: W \rightarrow M$, which restricts to the composition of the projection $M_{0} \times I \rightarrow M_{0}$ and f_{0} on $M_{0} \times I$, and sends the extra handles to a point. Let

$$
f_{1}:=\left.F\right|_{M_{1}}: M_{1} \rightarrow M, F_{i}:=\left.F\right|_{W_{i}}: W_{i} \rightarrow M(i=0,1), \text { and } g:=\left.F\right|_{N}: N \rightarrow M .
$$

Then $\left[M_{0}, f_{0}\right]^{z}=\left[M_{1}, f_{1}\right]$.
Fix a basis of H. On L_{i} we consider the basis which corresponds to the gluing maps of the handles that are added to $N \times I$ to construct W_{i}, this determines a dual basis on L_{i}^{*}. The adjoint of the intersection form on H is an isomorphism $H \rightarrow H^{*}$, and we get a split short exact sequence

$$
\begin{equation*}
0 \rightarrow L_{i} \rightarrow H \rightarrow L_{i}^{*} \rightarrow 0 \tag{3.2}
\end{equation*}
$$

A splitting determines an isomorphism $H \cong L_{i} \oplus L_{i}^{*}$, and its Whitehead torsion, denoted $x_{i} \in$ $\mathrm{Wh}(G, w)$, is independent of the choice of the splitting (see [Mil66, Section 2]).

We note that changing the basis of H has the same effect on x_{0} and x_{1}, so $x_{1}-x_{0}$ is independent of the choice of basis. In the case when the basis is given by the homology classes corresponding to the spheres in $H_{q}\left(\#^{k} S^{q} \times S^{q}\right)$, we have $x_{0}=0$ and $\psi(z)=\pi\left(x_{1}\right)$ by definition; see [Sha69, p. 312] and the correspondence between the different descriptions of the odd-dimensional L-groups given at the end of [Wal99, Chapter 6]. Therefore we have, independently of the choice of basis of H, that

$$
\begin{equation*}
\psi(z)=\pi\left(x_{1}-x_{0}\right) \in \widehat{H}^{n+1}\left(C_{2} ; \operatorname{Wh}(G, w)\right) \tag{3.3}
\end{equation*}
$$

Now consider the triple $\left(\mathrm{Cyl}_{F_{i}}, W_{i}, N\right)$, where $\mathrm{Cyl}_{F_{i}}$ denotes the mapping cylinder of F_{i}. We compute the relative homology groups as follows:
(1) $H_{*}\left(W_{i}, N\right) \cong H_{q+1}\left(W_{i}, N\right) \cong L_{i}$;
(2) $H_{*}\left(\mathrm{Cyl}_{F_{i}}, N\right) \cong H_{q+1}\left(\mathrm{Cyl}_{F_{i}}, N\right) \cong \operatorname{ker}\left(H_{q}(g)\right) \cong H$, because $\mathrm{Cyl}_{F_{i}} \simeq M \simeq M_{0}$, and using the construction of N as $N=M_{0} \# k\left(S^{q} \times S^{q}\right)$; and
(3) $H_{*}\left(\mathrm{Cyl}_{F_{i}}, W_{i}\right) \cong H_{q+1}\left(\mathrm{Cyl}_{F_{i}}, W_{i}\right) \cong \operatorname{ker}\left(H_{q}\left(F_{i}\right)\right) \cong \operatorname{ker}\left(H_{q}(g)\right) / \operatorname{ker}\left(H_{q}\left(N \rightarrow W_{i}\right)\right) \cong$ $H / L_{i} \cong L_{i}^{*}$, because W_{i} is constructed from $M_{0} \times I \simeq M \simeq{ }_{s} \operatorname{Cyl}_{F_{i}}$ by adding $(q+1)$ handles.
So all of these homology groups are free (over $\mathbb{Z} G$), and we equip them with the previously chosen bases. The long exact sequence
$\cdots \rightarrow H_{q+2}\left(\mathrm{Cyl}_{F_{i}}, W_{i}\right) \rightarrow H_{q+1}\left(W_{i}, N\right) \rightarrow H_{q+1}\left(\mathrm{Cyl}_{F_{i}}, N\right) \rightarrow H_{q+1}\left(\mathrm{Cyl}_{F_{i}}, W_{i}\right) \rightarrow H_{q}\left(W_{i}, N\right) \rightarrow \cdots$
is therefore isomorphic to the short exact sequence (3.2). If we regard it as a based free chain complex with vanishing homology, then by the sign conventions in the definition (see [Mil66, p. 365]) its Whitehead torsion is $(-1)^{q} x_{i}$. The cobordism W_{i} is simple homotopy equivalent to N with a $(q+1)$-cell attached for each basis element of L_{i}, so

$$
C_{*}\left(W_{i}, N\right) \cong C_{q+1}\left(W_{i}, N\right) \cong L_{i} \cong H_{q+1}\left(W_{i}, N\right) \cong H_{*}\left(W_{i}, N\right)
$$

with the same choice of basis, therefore, again by the definition, $\tau\left(W_{i}, N\right)=0$. Finally, $\mathrm{Cyl}_{F_{i}} \simeq_{s}$ $M \simeq{ }_{s} \mathrm{Cyl}_{g}$ by Proposition 2.29, so $\tau\left(\mathrm{Cyl}_{F_{i}}, N\right)=\tau\left(\mathrm{Cyl}_{g}, N\right)$. Hence by [Mil66, Theorem 3.2] we have

$$
\tau\left(\mathrm{Cyl}_{g}, N\right)=\tau\left(\mathrm{Cyl}_{F_{i}}, W_{i}\right)+(-1)^{q} x_{i},
$$

which implies that

$$
x_{1}-x_{0}=(-1)^{q+1}\left(\tau\left(\mathrm{Cyl}_{F_{1}}, W_{1}\right)-\tau\left(\mathrm{Cyl}_{F_{0}}, W_{0}\right)\right) .
$$

Next consider the triple $\left(\mathrm{Cyl}_{F_{i}}, W_{i}, M_{i}\right)$. Since W_{i} can be obtained from $M_{i} \times I$ by adding k trivial q-handles, we have $W_{i} \simeq_{s} M_{i} \vee\left(\bigvee^{k} S^{q}\right)$. We choose the basis corresponding to the spheres in both $C_{*}\left(W_{i}, M_{i}\right) \cong C_{q}\left(W_{i}, M_{i}\right) \cong C_{q}\left(\bigvee^{k} S^{q}\right)$ and $H_{*}\left(W_{i}, M_{i}\right) \cong H_{q}\left(W_{i}, M_{i}\right) \cong H_{q}\left(\bigvee^{k} S^{q}\right)$, so that $\tau\left(W_{i}, M_{i}\right)=0$. Since $f_{i}: M_{i} \rightarrow M$ is a homotopy equivalence and $\operatorname{Cyl}_{F_{i}} \simeq_{s} M \simeq{ }_{s} \operatorname{Cyl}_{F_{i}}$, we have $H_{*}\left(\mathrm{Cyl}_{F_{i}}, M_{i}\right) \cong H_{*}\left(\mathrm{Cyl}_{F_{i}}, M_{i}\right)=0$ and $\tau\left(\mathrm{Cyl}_{F_{i}}, M_{i}\right)=\tau\left(\mathrm{Cyl}_{F_{i}}, M_{i}\right)=\tau\left(f_{i}\right)$. In the homological long exact sequence of the triple $\left(\mathrm{Cyl}_{F_{i}}, W_{i}, M_{i}\right)$ all terms are trivial except for the isomorphism

$$
\begin{equation*}
0 \rightarrow H_{q+1}\left(\mathrm{Cyl}_{F_{i}}, W_{i}\right) \stackrel{\cong}{\rightrightarrows} H_{q}\left(W_{i}, M_{i}\right) \rightarrow 0 \tag{3.5}
\end{equation*}
$$

We equipped $H_{q+1}\left(\mathrm{Cyl}_{F_{i}}, W_{i}\right) \cong L_{i}^{*}$ with the dual of the basis of L_{i}. Since the handles added to $M_{i} \times I$ to obtain W_{i} (determining the basis of $\left.H_{q}\left(W_{i}, M_{i}\right)\right)$ are the duals of the handles added to $N \times I$ to obtain W_{i} (corresponding to the basis if L_{i}), the isomorphism (3.5) preserves the basis. Therefore the Whitehead torsion of the long exact sequence (3.4) vanishes. So by [Mil66, Theorem 3.2] we have

$$
\tau\left(f_{i}\right)=\tau\left(\mathrm{Cyl}_{F_{i}}, W_{i}\right)
$$

Therefore $x_{1}-x_{0}=(-1)^{q+1}\left(\tau\left(f_{1}\right)-\tau\left(f_{0}\right)\right)$, which implies that $\pi\left(x_{1}-x_{0}\right)=\pi\left(\tau\left(f_{1}\right)-\tau\left(f_{0}\right)\right)$. Combining with (3.3), we have $\pi\left(\tau\left(f_{1}\right)-\tau\left(f_{0}\right)\right)=\pi\left(x_{1}-x_{0}\right)=\psi(z)$. Hence

$$
\begin{aligned}
\widehat{\tau}\left(\left[M_{0}, f_{0}\right]^{z}\right) & =\widehat{\tau}\left(\left[M_{1}, f_{1}\right]\right)=\pi\left(\tau\left(f_{1}\right)\right)=\pi\left(\tau\left(f_{0}\right)\right)+\pi\left(\tau\left(f_{1}\right)-\tau\left(f_{0}\right)\right)=\pi\left(\tau\left(f_{0}\right)\right)+\pi\left(x_{1}-x_{0}\right) \\
& =\widehat{\tau}\left(\left[M_{0}, f_{0}\right]\right)+\psi(z)=\widehat{\tau}\left(\left[M_{0}, f_{0}\right]\right)^{z}
\end{aligned}
$$

as required.
Proof of Proposition 3.7. The first triangle commutes by Proposition 3.6 combining with the fact that $\widehat{\tau}([M, \mathrm{Id}])=0$. The last triangle commutes by the definitions of σ_{s} and σ_{h}, see e.g. [Ran86, p.359-360]. The map σ_{h} is by definition the map σ_{s} followed by the map $F: L_{n}^{s}(\mathbb{Z} G, w) \rightarrow$ $L_{n}^{h}(\mathbb{Z} G, w)$ that forgets bases.

So we need to prove that the square commutes. Let $[N, f] \in \mathcal{S}^{h}(M)$, then $\eta_{h}([N, f]) \in \mathcal{N}(M)$ is the normal bordism class of $f: N \rightarrow M$ (with an appropriate bundle map), and $\widehat{\tau}([N, f])=\pi(\tau(f))$. We need to determine the image of these elements in $L_{n}^{s}(\mathbb{Z} G, w)$.

First assume that $n=2 q$ is even. Since f is q-connected, $\sigma_{s}\left(\eta_{h}([N, f])\right)$ is defined as a form on $\operatorname{ker}\left(H_{q}(f)\right) \cong H_{q+1}\left(\mathrm{Cyl}_{f}, N\right)$, which is trivial (because f is a homotopy equivalence), and it is equipped with a certain stable basis. The stable basis of $H_{q+1}\left(\mathrm{Cyl}_{f}, N\right)=0$ is chosen such that with this choice $\tau\left(\mathrm{Cyl}_{f}, N\right)=0$ (where $H_{i}\left(\mathrm{Cyl}_{f}, N\right)=0$ is equipped with the canonical stable basis if $i \neq q+1)$. If $H_{q+1}\left(\mathrm{Cyl}_{f}, N\right)$ were also equipped with the canonical stable basis, then the Whitehead torsion of $\left(\mathrm{Cyl}_{f}, N\right)$ would be equal to $\tau(f)$. Therefore the transition matrix between the chosen and the standard stable basis (when both are regarded as bases of $\mathbb{Z} G^{k}$ for some $k \geq 0)$ has Whitehead torsion $(-1)^{q} \tau(f)$. In $L_{n}^{s}(\mathbb{Z} G, w)$ the same element $\sigma_{s}\left(\eta_{h}([N, f])\right)$ is also represented by a standard hyperbolic form with a basis such that the transition matrix between the chosen and the standard basis has Whitehead torsion $(-1)^{q} \tau(f)$.

The image of $\pi(\tau(f))$ in $L_{n}^{s}(\mathbb{Z} G, w)$ is represented by a standard hyperbolic form with a basis with the property that if x denotes the Whitehead torsion of the transition matrix between the chosen and the standard basis, then $x \in \mathcal{J}_{n}(G, w)$ and $\pi(x)=\pi(\tau(f))$ (see [Sha69, p. 312]). In particular, the representative of $\sigma_{s}\left(\eta_{h}([N, f])\right)$ constructed above also represents $\varrho(\widehat{\tau}([N, f]))$,
noting that $\pi\left((-1)^{q} \tau(f)\right)=\pi(\tau(f))$, because $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$ is 2-torsion. Therefore the square commutes if n is even.

Next consider the case when $n=2 q+1$ is odd. Let U denote a tubular neighbourhood of a disjoint union of embeddings $S^{q} \rightarrow N$ representing a generating set of $\operatorname{ker}\left(\pi_{q}(f)\right)$ and let $N_{0}=N \backslash$ Int U. We identify $H_{q}(\partial U)$ with the standard hyperbolic form, then $H_{q+1}(U, \partial U)$ (more precisely, its image under the boundary map) corresponds to the standard lagrangian. We can assume that $\left.f\right|_{U}$ is constant, so $\left.f\right|_{N_{0}}$ is a map of pairs $\left(N_{0}, \partial U\right) \rightarrow(M, *)$. Then $\operatorname{ker}\left(H_{q+1}\left(N_{0}, \partial U\right) \rightarrow\right.$ $\left.H_{q+1}(M, *)\right) \cong H_{q+2}\left(\mathrm{Cyl}_{\left.f\right|_{N_{0}}}, N_{0} \cup \mathrm{Cyl}_{\left.f\right|_{\partial U}}\right)$ determines another lagrangian in $H_{q}(\partial U)$. We equip $H_{q}(\partial U)$ and $H_{q+1}(U, \partial U)$ with their standard bases, and $H_{q+2}\left(\mathrm{Cyl}_{\left.f\right|_{N_{0}}}, N_{0} \cup \mathrm{Cyl}_{\left.f\right|_{\partial U}}\right)$ with a stable basis such that $\tau\left(\mathrm{Cyl}_{\left.f\right|_{N_{0}}}, N_{0} \cup \mathrm{Cyl}_{\left.f\right|_{\partial U}}\right)=0$. Then $\sigma_{s}\left(\eta_{h}([N, f])\right)$ is represented by the formation $\left(H_{q}(\partial U) ; H_{q+1}(U, \partial U), H_{q+2}\left(\mathrm{Cyl}_{\left.f\right|_{N_{0}}}, N_{0} \cup \mathrm{Cyl}_{\left.f\right|_{\partial U}}\right)\right)$. Since f is a homotopy equivalence, we can take the empty generating set for $\operatorname{ker}\left(\pi_{q}(f)\right)$. Then $H_{q}(\partial U)=0$, so we have the trivial formation, with the standard basis on the ambient form and on the first lagrangian. The stable basis on the second lagrangian, $H_{q+2}\left(\mathrm{Cyl}_{f}, N\right)$, is chosen such that $\tau\left(\mathrm{Cyl}_{f}, N\right)=0$. Therefore the transition matrix between this stable basis and the standard one has Whitehead torsion $(-1)^{q+1} \tau(f)$. In $L_{n}^{s}(\mathbb{Z} G, w)$ the same element $\sigma_{s}\left(\eta_{h}([N, f])\right)$ is also represented by a formation on the standard hyperbolic form given by the standard lagrangians, such that the ambient form and the first lagrangian are equipped with their standard bases, and for the second lagrangian the transition matrix between the chosen and the standard basis has Whitehead torsion $(-1)^{q+1} \tau(f)$.

The image of $\pi(\tau(f))$ in $L_{n}^{s}(\mathbb{Z} G, w)$ is represented by a formation on the standard hyperbolic form given by the standard lagrangians, such that the ambient form and the first lagrangian are equipped with their standard bases, and if x denotes the Whitehead torsion of the transition matrix between the chosen and the standard basis of the second lagrangian, then $x \in \mathcal{J}_{n}(G, w)$ and $\pi(x)=\pi(\tau(f))$. Again we use that we can ignore signs because $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$ is 2-torsion. So the representative of $\sigma_{s}\left(\eta_{h}([N, f])\right)$ constructed above also represents $\varrho(\widehat{\tau}([N, f]))$, showing that the square also commutes if n is odd.

Corollary 3.9.

(a) $\operatorname{Im} \widehat{\tau}=\varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right)$.
(b) $\operatorname{Im} \psi \subseteq \varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right)$.

Proof. First we prove (a). The commutativity of the square in Proposition 3.7 implies that $\operatorname{Im} \widehat{\tau} \subseteq$ $\varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right)$. For the other direction assume that $x \in \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$ and $\varrho(x)=\sigma_{s}(y)$ for some $y \in \mathcal{N}(M)$. Then $\sigma_{h}(y)=F \circ \sigma_{s}(y)=F \circ \varrho(x)=0$, so $y=\eta_{h}(v)$ for some $v \in \mathcal{S}^{h}(M)$. Then $\varrho(x-\widehat{\tau}(v))=\varrho(x)-\sigma_{s}\left(\eta_{h}(v)\right)=\varrho(x)-\sigma_{s}(y)=0$, so $x-\widehat{\tau}(v)=\psi(z)$ for some $z \in L_{n+1}^{h}(\mathbb{Z} G, w)$. So by Proposition $3.6 x=\widehat{\tau}(v)^{z}=\widehat{\tau}\left(v^{z}\right) \in \operatorname{Im} \widehat{\tau}$.

For (b), since Id_{M} has vanishing surgery obstruction, we have $\operatorname{Im} \psi=\operatorname{ker} \varrho \subseteq \varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right)$.
Corollary 3.10. Let $x \in \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$. If $x \in \operatorname{Im} \psi$, then there is a CAT n-manifold N and a homotopy equivalence $f: N \rightarrow M$ such that $\pi(\tau(f))=x$.

Proof. By Corollary 3.9, $x=\widehat{\tau}([N, f])$ for some $[N, f] \in \mathcal{S}^{h}(M)$.
Remark 3.11. There is a common generalisation of the two realisation techniques used in Section 3. Let $L_{n}^{s, \tau}(\mathbb{Z} G, w)$ denote the surgery obstruction groups defined in [Kre85, Section 4]. Similarly to $L_{n}^{s}(\mathbb{Z} G, w)$, the elements of $L_{n}^{s, \tau}(\mathbb{Z} G, w)$ are represented by based nonsingular forms/formations, but, unlike the elements of $L_{n}^{s}(\mathbb{Z} G, w)$, they are not assumed to be simple. Thus there is a natural forgetful map $L_{n}^{s, \tau}(\mathbb{Z} G, w) \rightarrow L_{n}^{h}(\mathbb{Z} G, w)$ and $L_{n}^{s}(\mathbb{Z} G, w)$ is the kernel of a map $L_{n}^{s, \tau}(\mathbb{Z} G, w) \rightarrow$ $\mathrm{Wh}(G, w)$ (see [Kre85]). There is also an action of $\mathrm{Wh}(G, w)$ on $L_{n}^{s, \tau}(\mathbb{Z} G, w)$ (which determines a map $\operatorname{Wh}(G, w) \rightarrow L_{n}^{s, \tau}(\mathbb{Z} G, w)$ by acting on 0$)$ given by changing the basis; this action is transitive on the fibers of the $L_{n}^{s, \tau}(\mathbb{Z} G, w) \rightarrow L_{n}^{h}(\mathbb{Z} G, w)$.

Wall's construction for realising elements of $L_{n}^{s}(\mathbb{Z} G, w)$ [Wal99] can also be applied to $L_{n}^{s, \tau}$, but it will only produce homotopy equivalences, not simple homotopy equivalences. The Whitehead torsion of the resulting homotopy equivalence is given by the previously mentioned map $L_{n}^{s, \tau}(\mathbb{Z} G, w) \rightarrow \mathrm{Wh}(G, w)$, and in fact the image of this map is in $\mathcal{J}_{n}(G, w)$.

The realisation of $L_{n}^{h}(\mathbb{Z} G, w)$, and the map W_{h}, can be regarded as a special case of this construction, by first choosing a basis for the form/formation representing an element of $L_{n}^{h}(\mathbb{Z} G, w)$,
equivalently, choosing a lift in $L_{n}^{s, \tau}(\mathbb{Z} G, w)$. As the choice of basis is not unique, the homotopy equivalence we obtain is not unique, and its Whitehead torsion (the value of $\widehat{\tau}$) is only well-defined in the quotient $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$. The realisation part of the s-cobordism theorem is also a special case via the map $\operatorname{Wh}(G, w) \rightarrow L_{n}^{s, \tau}(\mathbb{Z} G, w)$. The Whitehead torsion of the homotopy equivalence induced by the h-cobordism we get is of course in $\mathcal{I}_{n}(G, w)$.

In the rest of this section we will consider the orientable ($w \equiv 1$) case, and omit w from the notation.

Proposition 3.12. Let $G_{m}:=C_{\infty} \times C_{m}$, with $m \geq 2$. For every even integer $n=2 k \geq 0$, the map

$$
\psi: L_{n+1}^{h}\left(\mathbb{Z}\left[G_{m}\right]\right) \rightarrow \widehat{H}^{n+1}\left(C_{2} ; \operatorname{Wh}\left(G_{m}\right)\right)
$$

is surjective.
Proof. We verify that the forgetful map $F: L_{2 k}^{s}\left(\mathbb{Z} G_{m}\right) \rightarrow L_{2 k}^{h}\left(\mathbb{Z} G_{m}\right)$ is injective. The conclusion then follows from the exact sequence (3.1). First we apply Shaneson splitting to the domain and the codomain, to obtain a commutative diagram whose rows are split short exact sequences and whose vertical maps are the forgetful maps [Ran86].

By the five lemma it suffices to show that the left and right vertical maps are injective. In [Bak76], Bak gave computations of $L_{i}^{X}(\mathbb{Z} G)$ for $X \in\{s, h, p\}$ and G a finite group whose 2-hyperelementary subgroups are abelian, which certainly holds for finite cyclic groups. See also [Bak75, Bak78] First we note that, by [Bak76, Theorem 8], the forgetful map $L_{2 k-1}^{h}\left(\mathbb{Z} C_{m}\right) \rightarrow L_{2 k-1}^{p}\left(\mathbb{Z} C_{m}\right)$ is injective. So the right vertical map is injective.

To prove that the left vertical map is injective we also use [Bak76]. For a finite group G whose 2-Sylow subgroup G_{2} is normal and abelian, Bak defined $r_{2}:=\operatorname{rk} H^{1}\left(C_{2} ; \mathrm{Wh}(G)\right)$. On [Bak76, p. 386], he noted that if G_{2} is cyclic, as in our case $G=C_{m}$, then $r_{2}=0$. Therefore by the sequence (3.1), as shown on [Bak76, p. 390], it follows that $L_{2 k}^{s}\left(\mathbb{Z} C_{m}\right) \rightarrow L_{2 k}^{h}\left(\mathbb{Z} C_{m}\right)$ is injective. Hence $F: L_{2 k}^{s}\left(\mathbb{Z} G_{m}\right) \rightarrow L_{2 k}^{h}\left(\mathbb{Z} G_{m}\right)$ is injective as desired.

4. Simple homotopy manifold sets

In this section we prove Theorem D about the characterisation of simple homotopy manifold sets. First we look at the analogous problem in the setting of CW complexes, which has a simpler answer. Then we consider the case of manifolds, which will rely on the results of Section 3.
4.1. CW complexes. Fix a CW complex X and let $G=\pi_{1}(X)$. Our goal is to understand the set $\mathcal{C}_{s}^{h}(X)$ defined below.
Definition 4.1. Let

$$
\mathcal{C}_{s}^{h}(X):=\{\mathrm{CW} \text { complexes } Y \mid Y \simeq X\} / \simeq_{s}
$$

We will need some auxiliary definitions.
Definition 4.2. If Y is a CW complex homotopy equivalent to X, then let

$$
t_{X}(Y)=\{\tau(f) \mid f: Y \rightarrow X \text { is a homotopy equivalence }\} \subseteq \mathrm{Wh}(G)
$$

Definition 4.3. For $x \in \mathrm{~Wh}(G)$ and $g \in \operatorname{hAut}(X)$ let $x^{g}=g_{*}(x)+\tau(g)$. Clearly $x^{\mathrm{Id}}=x$ and $x^{g \circ g^{\prime}}=\left(x^{g^{\prime}}\right)^{g}$ (see Proposition 2.30), so this defines an action of $\operatorname{hAut}(X)$ on the set $\mathrm{Wh}(G)$.

With this notation we have the following theorem.
Theorem 4.4. The map t_{X} induces a well-defined bijection $\tilde{t}_{X}: \mathcal{C}_{s}^{h}(X) \rightarrow \mathrm{Wh}(G) / \operatorname{hAut}(X)$.
The proof will consist of the following sequence of lemmas.
Lemma 4.5. If Y is a $C W$ complex homotopy equivalent to X, then $t_{X}(Y)$ is an orbit of the action of $\operatorname{hAut}(X)$ on $\operatorname{Wh}(G)$.

Proof. By Proposition 2.30 we have $\tau(g \circ f)=\tau(f)^{g}$ for every homotopy equivalence $f: Y \rightarrow X$ and $g \in \operatorname{hAut}(X)$. If $f: Y \rightarrow X$ is a homotopy equivalence and $g \in \operatorname{hat}(X)$, then $g \circ f$ is also a homotopy equivalence, so if $x \in t_{X}(Y)$, then $x^{g} \in t_{X}(Y)$ for every g. On the other hand, if $f, f^{\prime}: Y \rightarrow X$ are homotopy equivalences, then there is a $g \in \operatorname{hAut}(X)$ such that $f^{\prime} \simeq g \circ f$, showing that if $x, x^{\prime} \in t_{X}(Y)$, then $x^{\prime}=x^{g}$ for some g.
Lemma 4.6. If Y is a $C W$ complex homotopy equivalent to X and $Y \simeq_{s} Z$, then $t_{X}(Y)=t_{X}(Z)$.
Proof. Let $h: Z \rightarrow Y$ be a simple homotopy equivalence. If $x \in t_{X}(Y)$, i.e. $x=\tau(f)$ for some homotopy equivalence $f: Y \rightarrow X$, then $f \circ h: Z \rightarrow X$ is a homotopy equivalence with $\tau(f \circ$ $h)=\tau(f)=x$ by Proposition 2.30. This shows that $t_{X}(Y) \subseteq t_{X}(Z)$. We get similarly that $t_{X}(Z) \subseteq t_{X}(Y)$, therefore $t_{X}(Y)=t_{X}(Z)$.

Lemma 4.7. If Y and Z are $C W$ complexes homotopy equivalent to X and $t_{X}(Y)=t_{X}(Z)$, then $Y \simeq_{s} Z$.
Proof. Let $x \in t_{X}(Y)=t_{X}(Z)$ be an arbitrary element, then there are homotopy equivalences $f: Y \rightarrow X$ and $f^{\prime}: Z \rightarrow X$ with $\tau(f)=\tau\left(f^{\prime}\right)=x$. Let $f^{-1}: X \rightarrow Y$ denote the homotopy inverse of f, then by Proposition $2.300=\tau\left(\operatorname{Id}_{Y}\right)=\tau\left(f^{-1}\right)+f_{*}^{-1}(\tau(f))=\tau\left(f^{-1}\right)+f_{*}^{-1}(x)$. Hence we have $\tau\left(f^{-1} \circ f^{\prime}\right)=\tau\left(f^{-1}\right)+f_{*}^{-1}\left(\tau\left(f^{\prime}\right)\right)=\tau\left(f^{-1}\right)+f_{*}^{-1}(x)=0$, showing that $f^{-1} \circ f^{\prime}: Z \rightarrow Y$ is a simple homotopy equivalence.
Lemma 4.8 ([Coh73, (24.1)]). For every $x \in \mathrm{~Wh}(G)$ there is a $C W$ complex Y and a homotopy equivalence $f: Y \rightarrow X$ such that $\tau(f)=x$.

Proof of Theorem 4.4. By Lemma 4.5, t_{X} takes values in $\mathrm{Wh}(G) / \operatorname{hat}(X)$ and by Lemma 4.6 it induces a well-defined map \widetilde{t}_{X} on $\mathcal{C}_{s}^{h}(X)$. Lemmas 4.7 and 4.8 imply that \widetilde{t}_{X} is injective and surjective, respectively.

Remark 4.9. There are two special cases when the action of $\operatorname{hAut}(X)$ on $\mathrm{Wh}(G)$ has a simpler description.

First, assume that $\pi_{1}(g)=\operatorname{Id}_{G}$ for every $g \in \operatorname{hAut}(X)$. Then $\tau\left(g \circ g^{\prime}\right)=\tau(g)+\tau\left(g^{\prime}\right)$ for every $g, g^{\prime} \in \operatorname{hAut}(X)$ and $x^{g}=x+\tau(g)$ for every $x \in \mathrm{~Wh}(G)$ and $g \in \operatorname{hAut}(X)$. This implies that $\{\tau(g) \mid g \in \operatorname{hAut}(X)\}$ is a subgroup of $\mathrm{Wh}(G)$ and $\mathrm{Wh}(G) / \operatorname{hat}(X)$ is the corresponding quotient group.

Second, assume that $\tau(g)=0$ for every $g \in \operatorname{hAut}(X)$. Then $x^{g}=g_{*}(x)$ for every $x \in \mathrm{~Wh}(G)$ and $g \in \operatorname{hAut}(X)$. This means that the action of $\operatorname{hAut}(X)$ factors through the map $\pi_{1}: \operatorname{hAut}(X) \rightarrow$ $\operatorname{Aut}(G)$, in particular $\operatorname{hAut}(X)$ acts via automorphisms of the group $\mathrm{Wh}(G)$.
4.2. Manifolds. Now we consider the problem in the manifold setting. Fix a closed connected CAT n-manifold M and let $G=\pi_{1}(M)$ with orientation character $w: G \rightarrow\{ \pm 1\}$. Then we can consider either all n-manifolds that are homotopy equivalent to M, or those that are h-cobordant to M, up to simple homotopy equivalence, or manifolds homotopy equivalent to M up to the equivalence relation generated by simple homotopy equivalence and h-cobordism.
Definition 4.10. Let

$$
\begin{aligned}
\mathcal{M}_{s}^{h}(M) & :=\{\text { closed CAT } n \text {-manifolds } N \mid N \simeq M\} / \simeq_{s} \\
\mathcal{M}_{s}^{\mathrm{hCob}}(M) & :=\{\text { closed CAT } n \text {-manifolds } N \mid N \text { is } h \text {-cobordant to } M\} / \simeq_{s} \\
\mathcal{M}_{s, \mathrm{hCob}}^{h}(M) & :=\{\text { closed CAT } n \text {-manifolds } N \mid N \simeq M\} /\left\langle\simeq_{s}, \text { hCob }\right\rangle
\end{aligned}
$$

where $\left\langle\simeq_{s}, \mathrm{hCob}\right\rangle$ denotes the equivalence relation generated by simple homotopy equivalence and h-cobordism.

As before, $\operatorname{hAut}(M)$ acts on the set $\mathrm{Wh}(G, w)$, and a subset $t_{M}(N) \subseteq \mathrm{Wh}(G, w)$ is defined for every manifold N that is homotopy equivalent to M. By Proposition 2.34 if $f: N \rightarrow M$ is a homotopy equivalence between manifolds, then $\tau(f) \in \mathcal{J}_{n}(G, w)$, so we can also define $u_{M}(N)=\pi\left(t_{M}(N)\right)=\{\pi(\tau(f)) \mid f: N \rightarrow M$ is a homotopy equivalence $\} \subseteq \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$.
Theorem 4.11.
(a) The subset $\mathcal{J}_{n}(G, w) \subseteq \mathrm{Wh}(G, w)$ is invariant under the action of hAut(M). The action of $\operatorname{hAut}(M)$ on $\mathcal{J}_{n}(G, w)$ induces an action on the set $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$.
(b) The map t_{M} induces well-defined injective maps

$$
\widetilde{t}_{M}: \mathcal{M}_{s}^{h}(M) \rightarrow \mathcal{J}_{n}(G, w) / \operatorname{hAut}(M) \text { and } \widetilde{t_{M}^{\prime}}: \mathcal{M}_{s}^{\mathrm{hCob}}(M) \rightarrow q\left(\mathcal{I}_{n}(G, w)\right)
$$

where $q: \mathcal{J}_{n}(G, w) \rightarrow \mathcal{J}_{n}(G, w) / \operatorname{hAut}(M)$ denotes the quotient map, so that

$$
q\left(\mathcal{I}_{n}(G, w)\right) \subseteq \mathcal{J}_{n}(G, w) / \operatorname{hAut}(M)
$$

Similarly, the map u_{M} induces a well-defined map

$$
\widetilde{u}_{M}: \mathcal{M}_{s, \mathrm{hCob}}^{h}(M) \rightarrow \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right) / \operatorname{hAut}(M) .
$$

(c) There is a commutative diagram

In each row the first map is injective and the second map is surjective. In the top row the composition of the maps is trivial, while the bottom row is an exact sequence of pointed sets.
(d) If Hypothesis 1.1 are satisfied, then $\widetilde{t}_{M}^{\prime}$ is surjective, \widetilde{u}_{M} is injective, and the top row is an exact sequence of pointed sets.
(e) If Hypothesis 1.1 are satisfied, then, using the notation from Section 3.2, the subsets

$$
\varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right) \subseteq \mathcal{J}_{n}(G, w) \text { and }(\varrho \circ \pi)^{-1}\left(\operatorname{Im} \sigma_{s}\right) \subseteq \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)
$$

are invariant under the action of $\operatorname{hAut}(M)$, and we have

$$
\operatorname{Im} \widetilde{t}_{M}=(\varrho \circ \pi)^{-1}\left(\operatorname{Im} \sigma_{s}\right) / \operatorname{hAut}(M) \text { and } \operatorname{Im} \widetilde{u}_{M}=\varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right) / \operatorname{hAut}(M)
$$

This implies Theorem D (see also Theorem 4.16 below). Note that parts (a), (b) and (c) do not require Hypothesis 1.1 and so apply to smooth/PL 4-manifolds as well as topological 4-manifolds with arbitrary fundamental group.

We will use the following lemmas in the proof of Theorem 4.11.
Lemma 4.12. Let N and P be manifolds homotopy equivalent to M. If $N \simeq{ }_{s} P$ or N is h cobordant to P, then $u_{M}(N)=u_{M}(P)$.

Proof. If $N \simeq_{s} P$, then $t_{M}(N)=t_{M}(P)$ by Lemma 4.6, so $u_{M}(N)=\pi\left(t_{M}(N)\right)=\pi\left(t_{M}(P)\right)=$ $u_{M}(P)$.

If N is h-cobordant to P and $h: P \rightarrow N$ is a homotopy equivalence induced by an h-cobordism, then $\pi(\tau(f \circ h))=\pi(\tau(f))+\pi\left(f_{*}(\tau(h))\right)=\pi(\tau(f))$ for every homotopy equivalence $f: N \rightarrow M$ (because $f_{*}(\tau(h)) \in \mathcal{I}_{n}(G, w)$ by Proposition 2.37). Hence $u_{M}(N) \subseteq u_{M}(P)$. We get similarly that $u_{M}(P) \subseteq u_{M}(N)$, therefore $u_{M}(N)=u_{M}(P)$.

Lemma 4.13. Suppose that Hypothesis 1.1 are satisfied, and N and P are manifolds homotopy equivalent to M. If $u_{M}(N)=u_{M}(P)$, then there is a manifold Q that is simple homotopy equivalent to N and h-cobordant to P.

Proof. Since $u_{M}(N)=u_{M}(P)$, there are homotopy equivalences $f: N \rightarrow M$ and $g: P \rightarrow M$ such that $\pi(\tau(f))=\pi(\tau(g))$, equivalently, $\tau(f)-\tau(g) \in \mathcal{I}_{n}(G, w)$. If g^{-1} denotes the homotopy inverse of g, then $\tau\left(g^{-1} \circ f\right)=\tau\left(g^{-1}\right)+g_{*}^{-1}(\tau(f))=\tau\left(g^{-1}\right)+g_{*}^{-1}(\tau(g))+g_{*}^{-1}(\tau(f)-\tau(g))=$ $\tau\left(g^{-1} \circ g\right)+g_{*}^{-1}(\tau(f)-\tau(g))=g_{*}^{-1}(\tau(f)-\tau(g))$ by Proposition 2.30. So we can apply Corollary 3.3 to the homotopy equivalence $g^{-1} \circ f: N \rightarrow P$.

Lemma 4.14. Suppose that N and P are manifolds satisfying Hypothesis 1.1. If there is a manifold Q that is simple homotopy equivalent to N and h-cobordant to P, then there is a manifold R that is h-cobordant to N and simple homotopy equivalent to P.

Proof. Apply Corollary 3.3 to the composition of a homotopy equivalence $P \rightarrow Q$ induced by an h-cobordism and a simple homotopy equivalence $Q \rightarrow N$.

Proposition 4.15. Suppose that N and P are manifolds satisfying Hypothesis 1.1. Then the following are equivalent.
(a) The manifolds N and P are equivalent under the equivalence relation generated by simple homotopy equivalence and h-cobordism.
(a) There is a manifold Q that is simple homotopy equivalent to N and h-cobordant to P.

Proof. A chain between N and P of alternating simple homotopy equivalences and h-cobordisms can be reduced to a chain of length 2 using Lemma 4.14.

Now we are ready to begin the proof of Theorem 4.11.
Proof of Theorem 4.11. (a) If $g \in \operatorname{hAut}(M)$, then $\tau(g) \in \mathcal{J}_{n}(G, w)$ by Proposition 2.34. Moreover, $\pi_{1}(g) \circ w=w$, hence $g_{*}: \operatorname{Wh}(\underline{G, w)} \rightarrow \mathrm{Wh}(G, w)$ is compatible with the involution, so if $x=$ $-(-1)^{n} \bar{x}$, then $g_{*}(x)=-(-1)^{n} \overline{g_{*}(x)}$. Therefore if $x \in \mathcal{J}_{n}(G, w)$, then $x^{g} \in \mathcal{J}_{n}(G, w)$, showing that $\operatorname{hAut}(M)$ acts on $\mathcal{J}_{n}(G, w)$.

If $x, y \in \mathcal{J}_{n}(G, w)$ and $x-y \in \mathcal{I}_{n}(G, w)$, then $x^{g}-y^{g}=\left(g_{*}(x)+\tau(g)\right)-\left(g_{*}(y)+\tau(g)\right)=$ $g_{*}(x-y) \in \mathcal{I}_{n}(G, w)$ (because g_{*} is compatible with the involution). Therefore there is an induced action on $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$.
(b) If $f: N \rightarrow M$ is a homotopy equivalence for some n-manifold N, then $\tau(f) \in \mathcal{J}_{n}(G, w)$ by Proposition 2.34. Hence $t_{M}(N) \subseteq \mathcal{J}_{n}(G, w)$ for every manifold N that is homotopy equivalent to M. Lemmas 4.5, 4.6, and 4.7 can be used again to show that t_{M} induces well-defined injective $\operatorname{maps} \widetilde{t}_{M}: \mathcal{M}_{s}^{h}(M) \rightarrow \mathcal{J}_{n}(G, w) / \operatorname{hAut}(M)$ and $\widetilde{t}_{M}^{\prime}: \mathcal{M}_{s}^{\mathrm{hCob}}(M) \rightarrow \mathcal{J}_{n}(G, w) / \operatorname{hAut}(M)$. If N is h-cobordant to M and $f: N \rightarrow M$ is a homotopy equivalence induced by an h-cobordism, then $\tau(f) \in \mathcal{I}_{n}(G, w)$ by Proposition 2.37, showing that $t_{M}(N) \in q\left(\mathcal{I}_{n}(G, w)\right)$.

The analogue of Lemma 4.5 shows that $u_{M}(N)$ is an orbit of the action of hAut (M) on $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$ (using that $\pi(\tau(g \circ f))=\pi\left(\tau(f)^{g}\right)=\pi(\tau(f))^{g}$ for every homotopy equivalence $f: N \rightarrow M$ and $g \in \operatorname{hAut}(M)$). Lemma 4.12 shows that u_{M} induces a well-defined map on $\mathcal{M}_{s, \mathrm{hCob}}^{h}(M)$.
(c) This follows immediately from the definitions.
(d) The surjectivity of ${\widetilde{t_{M}^{\prime}}}^{\prime}$ and injectivity of \widetilde{u}_{M} follow from Corollary 3.2 and Lemma 4.13, respectively.

For the exactness of the top row, assume that N is equivalent to M under the equivalence relation generated by simple homotopy equivalence and h-cobordism. By Proposition 4.15 there is a manifold P that is simple homotopy equivalent to N and h-cobordant to M. This P represents an element of $\mathcal{M}_{s}^{\mathrm{hCob}}(M)$, which is mapped to the equivalence class of N in $\mathcal{M}_{s}^{h}(M)$.
(e) First consider $\varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right)$, which is equal to $\operatorname{Im} \widehat{\tau}$ by Corollary 3.9. This is hAut (M)-invariant, because for any $[N, f] \in \mathcal{S}^{h}(M)$ and $g \in \operatorname{hAut}(M)$ we have $\pi(\tau(f))^{g}=\pi(\tau(g \circ f))=\widehat{\tau}([N, g \circ f])$. Since the action of $\operatorname{hAut}(M)$ on $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$ is induced by its action on $\mathcal{J}_{n}(G, w)$, and $\varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right)$ is $\operatorname{hAut}(M)$-invariant, $\pi^{-1}\left(\varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right)\right)$ is hAut($\left.M\right)$-invariant too.

Now suppose that $[N] \in \mathcal{M}_{s, \mathrm{hCob}}^{h}(M)$. Then there is a homotopy equivalence $f: N \rightarrow M$ and $\widetilde{u}_{M}([N])$ is the orbit of $\pi(\tau(f))=\widehat{\tau}([N, f]) \in \operatorname{Im} \widehat{\tau}=\varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right)$. This shows that $\operatorname{Im} \widetilde{u}_{M} \subseteq$ $\varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right) / \operatorname{hAut}(M)$. On the other hand, if $x \in \varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right)=\operatorname{Im} \widehat{\tau}$, then $x=\pi(\tau(f))$ for some homotopy equivalence $f: N \rightarrow M$, and then $[N] \in \mathcal{M}_{s, \mathrm{hCob}}^{h}(M)$ and $\widetilde{u}_{M}([N])$ is the orbit of x. Therefore $\operatorname{Im} \widetilde{u}_{M} \supseteq \varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right) / \operatorname{hAut}(M)$.

By the commutativity of the diagram in part $(\mathrm{c}), \operatorname{Im} \widetilde{t}_{M}$ is contained in the inverse image of $\operatorname{Im} \widetilde{u}_{M}=\varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right) / \operatorname{hAut}(M)$, which is $\pi^{-1}\left(\varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right)\right) / \operatorname{hAut}(M)$. In the other direction, if $x \in \mathcal{J}_{n}(G, w)$ and $\pi(x) \in \varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right)=\operatorname{Im} \widehat{\tau}$, then there exists a manifold N_{1} and a homotopy equivalence $f_{1}: N_{1} \rightarrow M$ with $\pi\left(\tau\left(f_{1}\right)\right)=\pi(x)$. It follows that $x=\tau\left(f_{1}\right)+y$ for some $y \in$ $\mathcal{I}_{n}(G, w)$. Use $\left(f_{1}\right)_{*}$ to identify $\pi_{1}\left(N_{1}\right)$ with $G=\pi_{1}(M)$ (since f_{1} is a homotopy equivalence, the orientation character of N is also w). By Corollary 3.2 there exists a manifold N_{2} and a homotopy equivalence $f_{2}: N_{2} \rightarrow N_{1}$ with $\tau\left(f_{2}\right)=y$. By Proposition 2.30 we have $\tau\left(f_{1} \circ f_{2}\right)=$ $\tau\left(f_{1}\right)+\left(f_{1}\right)_{*}\left(\tau\left(f_{2}\right)\right)=\tau\left(f_{1}\right)+\tau\left(f_{2}\right)=\tau\left(f_{1}\right)+y=x$ (where $\left(f_{1}\right)_{*}=$ Id because we used f_{1} to identify $\pi_{1}\left(N_{1}\right)$ with $\left.G\right)$. So for $\left[N_{2}\right] \in \mathcal{M}_{s}^{h}(M)$ we get that $\widetilde{t}_{M}\left(\left[N_{2}\right]\right)$ is the orbit of x, showing that $\operatorname{Im} \widetilde{t}_{M} \supseteq(\varrho \circ \pi)^{-1}\left(\operatorname{Im} \sigma_{s}\right) / \operatorname{hAut}(M)$.

In particular we proved the following, which is immediate from Theorem 4.11.

Theorem 4.16. If Hypothesis 1.1 are satisfied, then there are bijections

$$
\begin{aligned}
& \widetilde{t}_{M}^{\prime}: \mathcal{M}_{s}^{\mathrm{hCob}}(M) \stackrel{\cong}{\rightrightarrows} q\left(\mathcal{I}_{n}(G, w)\right) \\
& \widetilde{t}_{M}: \mathcal{M}_{s}^{h}(M) \stackrel{\cong}{\rightrightarrows}(\varrho \circ \pi)^{-1}\left(\operatorname{Im} \sigma_{s}\right) / \operatorname{hAut}(M) \\
& \widetilde{u}_{M}: \mathcal{M}_{s, \mathrm{hCob}}^{h}(M) \stackrel{\cong}{\rightrightarrows} \varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right) / \operatorname{hAut}(M) .
\end{aligned}
$$

With extra input from the map ψ, the latter two statements become cleaner.
Corollary 4.17. If Hypothesis 1.1 are satisfied and ψ is surjective, then there are bijections $\mathcal{M}_{s}^{h}(M) \cong \mathcal{J}_{n}(G, w) / \operatorname{hAut}(M)$ and $\mathcal{M}_{s, \mathrm{hCob}}^{h}(M) \cong \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right) / \operatorname{hAut}(M)$.

Proof. By Corollary 3.9 (b) we have $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)=\operatorname{Im} \psi \subseteq \varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right)$. Therefore $\varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right)=\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$ and $(\varrho \circ \pi)^{-1}\left(\operatorname{Im} \sigma_{s}\right)=\mathcal{J}_{n}(G, w)$.

Remark 4.18. If $\tau(g) \in \mathcal{I}_{n}(G, w)$ for every $g \in \operatorname{hAut}(M)$, then the proof of Theorem 4.11 (a) shows that $\mathcal{I}_{n}(G, w)$ is also an invariant subset under the action of $\operatorname{hAut}(M)$, and $q\left(\mathcal{I}_{n}(G, w)\right)=$ $\mathcal{I}_{n}(G, w) / \operatorname{hAut}(M)$. It also means that $\pi(\tau(g))=0$ for every g, so hAut (M) acts on the group $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$ via automorphisms.

As in Remark 4.9, if $\tau(g)=0$ for every g, then $\operatorname{hAut}(M)$ acts on the groups $\mathcal{I}_{n}(G, w)$ and $\mathcal{J}_{n}(G, w)$ via automorphisms. And if $\pi_{1}(g)=\operatorname{Id}_{G}$ for every g, then $\mathcal{J}_{n}(G, w) / \operatorname{hAut}(M)$ and $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right) / \operatorname{hAut}(M)$ are quotient groups of $\mathcal{J}_{n}(G, w)$ and $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$.

Now we consider some corollaries of Theorems 4.11 and 4.16.
Definition 4.19. Let M be a closed, CAT n-manifold with $\pi_{1}(M) \cong G$ and orientation character $w: G \rightarrow\{ \pm 1\}$. We define the subsets

$$
\begin{aligned}
& T(M)=\{\tau(g) \mid g \in \operatorname{hAut}(M)\} \subseteq \mathcal{J}_{n}(G, w) \\
& U(M)=\{\pi(\tau(g)) \mid g \in \operatorname{hAut}(M)\} \subseteq \widehat{H}^{n+1}\left(C_{2} ; \operatorname{Wh}(G, w)\right)
\end{aligned}
$$

Proposition 4.20. Let M be a closed, CAT n-manifold satisfying Hypothesis 1.1. Let $G=\pi_{1}(M)$ with orientation character $w: G \rightarrow\{ \pm 1\}$. Then $\left|\mathcal{M}_{s}^{\mathrm{hCob}}(M)\right|>1$ if and only if $\mathcal{I}_{n}(G, w) \backslash T(M)$ is nonempty.

Proof. Note that $T(M)=t_{M}(M) \subseteq \mathcal{J}_{n}(G, w)$ is the orbit of 0 under the action of $\operatorname{hAut}(M)$. So $q\left(\mathcal{I}_{n}(G, w)\right)$ contains more than one element if and only if $\mathcal{I}_{n}(G, w) \backslash T(M)$ is nonempty. By Theorem 4.16 this is equivalent to $\mathcal{M}_{s}^{\mathrm{hCob}}(M)$ containing more than one element.

Proposition 4.21. Let M be a closed, CAT n-manifold satisfying Hypothesis 1.1. Let $G=\pi_{1}(M)$ with orientation character $w: G \rightarrow\{ \pm 1\}$. Then $\left|\mathcal{M}_{s, \mathrm{hCob}}^{h}(M)\right|>1$ if and only if $\varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right) \backslash U(M)$ is nonempty. In particular, it is a sufficient condition that $\operatorname{Im}(\psi) \backslash U(M)$ is nonempty.

Proof. Again $U(M)=u_{M}(M) \subseteq \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$ is the orbit of 0 under the action of $\operatorname{hAut}(M)$. So $\varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right) / \operatorname{hAut}(M)$ contains more than one element if and only if $\varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right) \backslash$ $U(M)$ is nonempty. By Theorem 4.16 this is equivalent to $\mathcal{M}_{s, \mathrm{hCob}}^{h}(M)$ containing more than one element. Finally, by Corollary $3.9(\mathrm{~b})$ we have $\varrho^{-1}\left(\operatorname{Im} \sigma_{s}\right) \backslash U(M) \supseteq \operatorname{Im}(\psi) \backslash U(M)$.

Proposition 4.22. Let M be a closed, CAT n-manifold satisfying Hypothesis 1.1. Then the following are equivalent:
(i) $\left|\mathcal{M}_{s}^{h}(M)\right|>1$.
(ii) Either $\left|\mathcal{M}_{s}^{\mathrm{hCob}}(M)\right|>1$ or $\left|\mathcal{M}_{s, \mathrm{hCob}}^{h}(M)\right|>1$.
(iii) $(\varrho \circ \pi)^{-1}\left(\operatorname{Im} \sigma_{s}\right) \backslash T(M)$ is nonempty.

Proof. (i) \Leftrightarrow (ii). By Theorem 4.11 (c) and (d) we have $\left|\mathcal{M}_{s}^{h}(M)\right|=1$ if and only if $\left|\mathcal{M}_{s}^{\mathrm{hCob}}(M)\right|=$ 1 and $\left|\mathcal{M}_{s, \mathrm{hCob}}^{h}(M)\right|=1$.
(i) \Leftrightarrow (iii). Follows from the fact that $T(M)$ is the orbit of 0 and Theorem 4.16.

Part 2. The simple homotopy manifold set of $S^{1} \times L$

In this part we consider $S^{1} \times L$, the product of the circle with a lens space L. We will prove Theorems B, E, and F about the simple homotopy manifold sets of $S^{1} \times L$. As described in Sections 1.2 and 1.3, we need to study the involution on $\mathrm{Wh}\left(C_{\infty} \times C_{m}\right)$ and the group hAut $\left(S^{1} \times L\right)$. Section 5 contains our results about the groups $\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right), \mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right)$ and $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{\infty} \times C_{m}\right)\right)$ (for n even), which rely on the results of Part 4. In Section 6, we prove that all homotopy automorphisms of $S^{1} \times L$ are simple, and determine the automorphisms of $C_{\infty} \times C_{m}$ induced by them. In Section 7, we combine these results to prove Theorems B, E, and F.

5. The involution on $\mathrm{Wh}\left(C_{\infty} \times C_{m}\right)$

In order to understand its involution, we first consider a direct sum decomposition of the Whitehead group $\mathrm{Wh}\left(C_{\infty} \times G\right)$. This decomposition is derived from the fundamental theorem for $K_{1}\left(\mathbb{Z} G\left[t, t^{-1}\right]\right)$ [Bas68]; see also [Ran86], [Wei13, III.3.6]. Whilst this theorem appeared for the first time in Bass' book, the paper of Bass-Heller-Swan [BHS64, Theorem 2'] is often mentioned in conjunction with it, as an early version which contained several key ideas, and the theorem for left regular rings, appeared there. See [Bas68, pXV] for further discussion.

We will use the version given by Ranicki [Ran86]. We start by defining the terms appearing in the decomposition in Section 5.1. Section 5.2 contains the decomposition of $\mathrm{Wh}\left(C_{\infty} \times C_{m}\right)$ and the induced decompositions of $\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right), \mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right)$ and $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{\infty} \times C_{m}\right)\right)$. These will be combined with the results of Part 4 in Section 5.3, to prove Theorems 5.14, 5.15, and 5.17, which will be the key algebraic ingredients in the proofs of Theorems B, E, and F respectively.
5.1. The \widetilde{K}_{0} and $N K_{1}$ groups. First we consider the K_{0} groups. For a ring R, we will define the abelian group $K_{0}(R)$, and, for a group G, the reduced group $\widetilde{K}_{0}(\mathbb{Z} G)$. A convenient reference for this material is [Wei13]. In Part 4, we will study the involution on $\widetilde{K}_{0}(\mathbb{Z} G)$ in more detail when G is a finite cyclic group.

Definition 5.1. For a ring R let $P(R)$ denote the set of isomorphism classes of (finitely generated left) projective R-modules, which is a monoid under direct sum. Define $K_{0}(R)$ to be the Grothendieck group of this monoid, i.e. the abelian group generated by symbols $[P]$, for every $P \in P(R)$, subject to the relations $\left[P_{1} \oplus P_{2}\right]=\left[P_{1}\right]+\left[P_{2}\right]$ for $P_{1}, P_{2} \in P(R)$.

The assignment $R \mapsto K_{0}(R)$ defines a functor from the category of rings to the category of abelian groups. If $f: R \rightarrow S$ is a ring homomorphism, then $K_{0}(f): K_{0}(R) \rightarrow K_{0}(S)$ is the map induced by extension of scalars $P \mapsto f_{\#}(P):=S \otimes_{R} P$ (see Definition 2.20) for $P \in P(R)$.

Definition 5.2. For a group G, let

$$
\widetilde{K}_{0}(\mathbb{Z} G):=K_{0}(\mathbb{Z} G) / K_{0}(\mathbb{Z})
$$

where the map $K_{0}(\mathbb{Z}) \rightarrow K_{0}(\mathbb{Z} G)$ is induced by the inclusion $i: \mathbb{Z} \rightarrow \mathbb{Z} G$.
Definition 5.3. For a group G and a (finitely generated) projective $\mathbb{Z} G$-module P, the rank of P is defined to be

$$
\operatorname{rk}(P):=\operatorname{rk}_{\mathbb{Z}}\left(\varepsilon_{\#}(P)\right)
$$

where $\varepsilon: \mathbb{Z} G \rightarrow \mathbb{Z}$ denotes the augmentation map and $\mathrm{rk}_{\mathbb{Z}}$ denotes the rank of a free \mathbb{Z}-module.
We have that $K_{0}(\mathbb{Z}) \cong \mathbb{Z}$ and, for $P \in P(\mathbb{Z} G)$, the $\operatorname{rank} \operatorname{rk}(P)$ coincides the the image of $[P]$ under the composition $K_{0}(\mathbb{Z} G) \rightarrow K_{0}(\mathbb{Z}) \cong \mathbb{Z}$ induced by ε. Since $\varepsilon \circ i=\operatorname{Id}_{\mathbb{Z}}$, we have a splitting of abelian groups $K_{0}(\mathbb{Z} G) \cong \mathbb{Z} \oplus \widetilde{K}_{0}(\mathbb{Z} G)$ given by $[P] \mapsto(\operatorname{rk}(P),[P])$. In particular, $\widetilde{K}_{0}(\mathbb{Z} G)$ is the set of equivalence classes of projective $\mathbb{Z} G$-modules P where $P \sim Q$ if $P \oplus \mathbb{Z} G^{i} \cong Q \oplus \mathbb{Z} G^{j}$ for some $i, j \geq 0$.

For R a ring with involution, we can define a natural involution on $K_{0}(R)$. If $P \in P(R)$, then $P^{*} \in P(R)$ (see Definition 2.22) since $P \oplus Q \cong R^{n}$ implies that $P^{*} \oplus Q^{*} \cong R^{n}$.
Definition 5.4. The standard involution on $K_{0}(R)$ is given by $[P] \stackrel{\rightharpoonup}{\sim}-\left[P^{*}\right]$. This map preserves the rank of projective $\mathbb{Z} G$-modules and so induces an involution on $\widetilde{K}_{0}(\mathbb{Z} G)$.

Next we define the Nil groups $N K_{1}(R)$ and recall some of their properties.

Definition 5.5. For a ring R, let

$$
N K_{1}(R):=\operatorname{coker}\left(K_{1}(R) \rightarrow K_{1}(R[t])\right),
$$

where the map $K_{1}(R) \rightarrow K_{1}(R[t])$ is induced by the inclusion $R \rightarrow R[t]$.
Note that $N K_{1}$ is a functor from the category of rings to the category of abelian groups.
If R (and hence $R[t]$) is a ring with involution, then $K_{1}(R[t])$ also has a natural involution (see Section 2.2). This involution preserves the image of $K_{1}(R) \rightarrow K_{1}(R[t])$, and hence induces an involution on $N K_{1}(R)$, which we will denote by $x \mapsto \bar{x}$.

Definition 5.6. We equip $N K_{1}(R)^{2}=N K_{1}(R) \oplus N K_{1}(R)$ with the involution $(x, y) \mapsto(\bar{y}, \bar{x})$.
We will need the following result of Farrell [Far77] (note that Nil, which is also written as Nil_{0}, coincides with $N K_{1}$ by [Bas68, Chapter XII; 7.4(a)]).

Theorem 5.7 (Farrell). For any ring R, if $N K_{1}(R) \neq 0$, then $N K_{1}(R)$ is not finitely generated.
The following can be proven by combining results of Bass-Murthy [BM67], Martin [Mar75], and Weibel [Wei09].

Theorem 5.8. Let $m \geq 1$. Then $N K_{1}\left(\mathbb{Z} C_{m}\right)=0$ if and only if m is square-free.
Proof. If m is square-free, then $N K_{1}\left(\mathbb{Z} C_{m}\right)=0$ by [BM67, Theorem 10.8 (d)]. If $n \mid m$ and $N K_{1}\left(\mathbb{Z} C_{n}\right) \neq 0$, then $N K_{1}\left(\mathbb{Z} C_{m}\right) \neq 0$ (by, for example, [Mar75, Theorem 3.6]). It remains to show that $N K_{1}\left(\mathbb{Z} C_{p^{2}}\right) \neq 0$ for all primes p. This was achieved in the case where p is odd in [Mar75, Theorem B] and in the case $p=2$ in [Wei09, Theorem 1.4].
5.2. Bass-Heller-Swan decomposition of $\mathrm{Wh}\left(C_{\infty} \times G\right)$. By [Ran86, p.329, p.357] we have the following theorem.

Theorem 5.9 (Bass-Heller-Swan decomposition). Let G be a group. Then there is an isomorphism of $\mathbb{Z} C_{2}$-modules, which is natural in G :

$$
\mathrm{Wh}\left(C_{\infty} \times G\right) \cong \mathrm{Wh}(G) \oplus \widetilde{K}_{0}(\mathbb{Z} G) \oplus N K_{1}(\mathbb{Z} G)^{2}
$$

where the $\mathbb{Z} C_{2}$-module structure of each component is determined by the involution defined in Section 2.2, Definition 5.4 and Definition 5.6 respectively.

Proposition 5.10. Let G be a group. The decomposition of Theorem 5.9 restricts to the following isomorphisms:

$$
\begin{aligned}
& \mathcal{J}_{n}\left(C_{\infty} \times G\right) \cong \mathcal{J}_{n}(G) \oplus\left\{x \in \widetilde{K}_{0}(\mathbb{Z} G) \mid x=-(-1)^{n} \bar{x}\right\} \oplus N K_{1}(\mathbb{Z} G) \\
& \mathcal{I}_{n}\left(C_{\infty} \times G\right) \cong \mathcal{I}_{n}(G) \oplus\left\{x-(-1)^{n} \bar{x} \mid x \in \widetilde{K}_{0}(\mathbb{Z} G)\right\} \oplus N K_{1}(\mathbb{Z} G)
\end{aligned}
$$

where $N K_{1}(\mathbb{Z} G)$ is embedded into $N K_{1}(\mathbb{Z} G)^{2}$ by the map $x \mapsto\left(x,-(-1)^{n} \bar{x}\right)$.
Proof. Since Theorem 5.9 gives a decomposition of $\mathbb{Z} C_{2}$-modules, both $\mathcal{I}_{n}\left(C_{\infty} \times G\right)$ and $\mathcal{J}_{n}\left(C_{\infty} \times G\right)$ are decomposed into the corresponding subgroups of the components on the right-hand side. If $(x, y) \in N K_{1}(\mathbb{Z} G)^{2}$, then $\overline{(x, y)}=(\bar{y}, \bar{x})$, so $(x, y)=-(-1)^{n} \overline{(x, y)}$ holds if and only if $y=-(-1)^{n} \bar{x}$, so

$$
\left\{(x, y) \in N K_{1}(\mathbb{Z} G)^{2} \mid(x, y)=-(-1)^{n} \overline{(x, y)}\right\}=\left\{\left(x,-(-1)^{n} \bar{x}\right) \mid x \in N K_{1}(\mathbb{Z} G)\right\} \cong N K_{1}(\mathbb{Z} G)
$$

Similarly, we have $(x, y)-(-1)^{n} \overline{(x, y)}=\left(x-(-1)^{n} \bar{y},-(-1)^{n} \overline{x-(-1)^{n} \bar{y}}\right)$, therefore

$$
\left\{(x, y)-(-1)^{n} \overline{(x, y)} \mid(x, y) \in N K_{1}(\mathbb{Z} G)^{2}\right\}=\left\{\left(x,-(-1)^{n} \bar{x}\right) \mid x \in N K_{1}(\mathbb{Z} G)\right\} \cong N K_{1}(\mathbb{Z} G)
$$

We immediately get the following corollary; see also [Ran86, p.358].
Corollary 5.11. Let G be a group. The decomposition of Theorem 5.9 induces an isomorphism

$$
\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{\infty} \times G\right)\right) \cong \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G)\right) \oplus \widehat{H}^{n+1}\left(C_{2} ; \widetilde{K}_{0}(\mathbb{Z} G)\right)
$$

5.3. The groups $\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right), \mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right)$, and $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{\infty} \times C_{m}\right)\right)$. In this section we prove, using results from Part 4, our main results about the groups $\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right), \mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right)$, and $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{\infty} \times C_{m}\right)\right)$ for n even.

First note that by Proposition 5.10 and Theorem 5.7, for any group G and any n, if $N K_{1}(\mathbb{Z} G) \neq$ 0 , then $\mathcal{J}_{n}\left(C_{\infty} \times G\right)$ and $\mathcal{I}_{n}\left(C_{\infty} \times G\right)$ are not finitely generated. If G is finite and n is even, then we also have the following lemma.

Lemma 5.12. Suppose that n is even and G is a finite group. Then the following are equivalent:
(i) $\left|\mathcal{J}_{n}\left(C_{\infty} \times G\right)\right|<\infty$
(ii) $\left|\mathcal{I}_{n}\left(C_{\infty} \times G\right)\right|<\infty$
(iii) $N K_{1}(\mathbb{Z} G)=0$.

Proof. Let $S K_{1}(\mathbb{Z} G)=\operatorname{ker}\left(K_{1}(\mathbb{Z} G) \rightarrow K_{1}(\mathbb{Q} G)\right)$ where the map is induced by inclusion $\mathbb{Z} G \subseteq \mathbb{Q} G$. It was shown by Wall [Wal74, Proposition 6.5] (see also [Oli88, Theorem 7.4]) that $S K_{1}(\mathbb{Z} G)$ is isomorphic to the torsion subgroup of $\mathrm{Wh}(G)$. Let $\mathrm{Wh}^{\prime}(G)=\mathrm{Wh}(G) / S K_{1}(\mathbb{Z} G)$ be the free part. The standard involution on $\mathrm{Wh}(G)$ induces an involution on $\mathrm{Wh}^{\prime}(G)$, and it was shown by Wall (see [Oli88, Corollary 7.5]) that this induced involution is the identity.

It follows that if $x=-\bar{x} \in \mathrm{~Wh}(G)$, then x maps to $0 \in \mathrm{~Wh}^{\prime}(G)$, so $x \in S K_{1}(\mathbb{Z} G)$. Hence $\mathcal{I}_{n}(G) \leq \mathcal{J}_{n}(G) \leq S K_{1}(\mathbb{Z} G)$. If G is finite, then $S K_{1}(\mathbb{Z} G)$ is finite [Wal74] and $\widetilde{K}_{0}(\mathbb{Z} G)$ is finite [Swa60] (see also Proposition 13.5 (ii)). Therefore the lemma follows from Proposition 5.10 and Theorem 5.7.

Proposition 5.13. Suppose that n is even. Then for every $m \geq 2$ we have $\mathcal{J}_{n}\left(C_{m}\right)=0$, and hence $\mathcal{I}_{n}\left(C_{m}\right) \cong \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{m}\right)\right)=0$.

Proof. By Proposition 2.9, $\mathrm{Wh}\left(C_{m}\right)$ is a finitely generated free abelian group. By [Bas74, Proposition 4.2], the involution acts trivially on $\mathrm{Wh}(G)$ for every finite abelian group G. This implies that $\mathcal{J}_{n}\left(C_{m}\right)=\left\{x \in \mathrm{~Wh}\left(C_{m}\right) \mid x=-x\right\}=0$.

The next three theorems are the main results of Section 5 . They will be established as a consequence of Theorems 16.1, 16.2 and 16.3 , which will be proven in Section 16 (which is in Part 4). These results were stated in the introduction as Theorems 1.13, 1.14 and 1.15 respectively.

Theorem 5.14. Suppose that n is even and $m \geq 2$ is an integer.
(i) $\left|\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right)\right|=1$ if and only if $m \in\{2,3,5,6,7,10,11,13,14,17,19\}$;
(ii) $\left|\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right)\right|=\infty$ if and only if m is not square-free;
(iii) $\left|\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right)\right| \rightarrow \infty$ super-exponentially in m.

Theorem 5.15. Suppose that n is even and $m \geq 2$ is an integer.
(i) $\left|\mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right)\right|=1$ if and only if $m \in\{2,3,5,6,7,10,11,13,14,15,17,19,29\}$;
(ii) $\left|\mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right)\right|=\infty$ if and only if m is not square-free;
(iii) $\left|\mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right)\right| \rightarrow \infty$ super-exponentially in m.

Remark 5.16. To write Theorem 5.14 (i) another way, the $m \geq 2$ for which $\left|\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right)\right|=1$ are as follows:

$$
m= \begin{cases}p, & \text { where } p \leq 19 \text { is prime } \\ 2 p, & \text { where } p \leq 7 \text { is an odd prime }\end{cases}
$$

Furthermore, Theorem 5.15 (i) states that $\left|\mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right)\right|=1$ if and only if $\left|\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right)\right|=1$ or $m \in\{15,29\}$.

Proof of Theorems 5.14 and 5.15. First note that Theorem 5.14 (ii) and Theorem 5.15 (ii) immediately follow from Theorem 5.8 and Lemma 5.12. For the proofs of (i) and (iii), we can therefore restrict to the case where m is square-free, when $N K_{1}\left(\mathbb{Z} C_{m}\right)=0$. By Propositions 5.10 and 5.13 we then have:

$$
\begin{aligned}
& \mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right) \cong\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \mid \bar{x}=-x\right\} \\
& \mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right) \cong\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\}
\end{aligned}
$$

So the results follow from Theorems 16.1 and 16.2, which will be proved in Section 16.
Theorem 5.17. Suppose that n is even and $m \geq 2$ is an integer.
(i) $\left|\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{\infty} \times C_{m}\right)\right)\right|=1$ for infinitely many m.
(ii) $\left|\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{\infty} \times C_{m}\right)\right)\right|<\infty$ for every m.
(iii) $\sup _{l \leq m}\left|\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{\infty} \times C_{l}\right)\right)\right| \rightarrow \infty$ exponentially in m.

Note that (i) and (iii) imply that

$$
\liminf _{m \rightarrow \infty}\left|\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{\infty} \times C_{m}\right)\right)\right|=1, \quad \limsup _{m \rightarrow \infty}\left|\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{\infty} \times C_{m}\right)\right)\right|=\infty
$$

Proof. It follows from Corollary 5.11 and Proposition 5.13 that

$$
\widehat{H}^{n+1}\left(C_{2} ; \operatorname{Wh}\left(C_{\infty} \times C_{m}\right)\right) \cong \widehat{H}^{1}\left(C_{2} ; \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right) \cong \frac{\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \mid x=-\bar{x}\right\}}{\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\}} .
$$

Hence parts (i) and (iii) follows from Theorem 16.3, which will be proved in Section 16. Part (ii) follows from the fact that $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)$ is finite [Swa60] (see also Proposition 13.5 (ii)).

6. Homotopy automorphisms of $S^{1} \times L$

Fix $k, m \geq 2$ and q_{1}, \ldots, q_{k} such that $\operatorname{gcd}\left(m, q_{j}\right)=1$. Let $L=L_{2 k-1}\left(m ; q_{1}, \ldots, q_{k}\right)$ be a $(2 k-1)$-dimensional lens space with $\pi_{1}(L) \cong C_{m}$. We will be interested in the product $S^{1} \times L$ and its homotopy automorphisms. Fix basepoints of S^{1} and L and let $i_{1}: S^{1} \rightarrow S^{1} \times L$ and $i_{2}: L \rightarrow S^{1} \times L$ denote the standard embeddings, we will identify S^{1} and L with their images in $S^{1} \times L$. Let $G=C_{\infty} \times C_{m} \cong \pi_{1}\left(S^{1} \times L\right)$.
6.1. The automorphism induced on the fundamental group. Our first goal is to determine which automorphisms of G can be realised by homotopy automorphisms of $S^{1} \times L$, i.e. to describe the image of the map $\pi_{1}: \operatorname{hAut}\left(S^{1} \times L\right) \rightarrow \operatorname{Aut}(G)$. Note that the automorphisms of $G=C_{\infty} \times C_{m}$ can be expressed as matrices of the form $\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right)$, where $a \in\{ \pm 1\}, b \in C_{m}$ and $c \in C_{m}^{\times} \cong \operatorname{Aut}\left(C_{m}\right)$.
Lemma 6.1 ([Coh73, Statement 29.5]). Let $c \in C_{m}^{\times}$. There is a homotopy automorphism $f: L \rightarrow L$ such that $\pi_{1}(f)=c$ if and only if $c^{k} \equiv \pm 1 \bmod m$.

Lemma 6.2.

(a) There is a diffeomorphism $f \in \operatorname{Diff}\left(S^{1} \times L\right)$ such that $\pi_{1}(f)=\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right)$.
(b) There is a diffeomorphism $f \in \operatorname{Diff}\left(S^{1} \times L\right)$ such that $\pi_{1}(f)=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.

Proof. (a) Take $f=r \times \operatorname{Id}_{L}$ for an orientation-reversing diffeomorphism $r: S^{1} \rightarrow S^{1}$.
(b) Let $S^{2 k-1}=\left\{\left.\left(z_{1}, \ldots, z_{k}\right)\left|\sum\right| z_{j}\right|^{2}=1\right\} \subseteq \mathbb{C}^{k}$. Recall that $L=L_{2 k-1}\left(m ; q_{1}, \ldots, q_{k}\right)$ is the quotient of $S^{2 k-1}$ by the C_{m}-action generated by $\left(z_{1}, \ldots, z_{k}\right) \mapsto\left(\zeta^{q_{1}} z_{1}, \ldots, \zeta^{q_{k}} z_{k}\right)$, where $\zeta=e^{2 \pi i / m}$. Define $\phi: S^{1} \rightarrow \operatorname{Diff}(L)$ by $e^{2 \pi i t} \mapsto\left(\left[z_{1}, \ldots, z_{k}\right] \mapsto\left[\zeta^{q_{1} t} z_{1}, \ldots, \zeta^{q_{k} t} z_{k}\right]\right)$. Then we can define a suitable diffeomorphism f by $f(x, y)=(x, \phi(x)(y))$.

Lemma 6.3. For every homotopy automorphism $f: S^{1} \times L \rightarrow S^{1} \times L$ there is a homotopy automorphism $\bar{f}_{2}: L \rightarrow L$ such that $f \circ i_{2} \simeq i_{2} \circ \bar{f}_{2}: L \rightarrow S^{1} \times L$.
Proof. Since $\pi_{1}(L) \cong C_{m}$ is the torsion subgroup of $\pi_{1}\left(S^{1} \times L\right) \cong C_{\infty} \times C_{m}$, the restriction of $\pi_{1}(f)$ is an isomorphism $\pi_{1}(L) \rightarrow \pi_{1}(L)$, and hence $\operatorname{Im} \pi_{1}\left(f \circ i_{2}\right)=\operatorname{Im} \pi_{1}(\rho)$ where the covering $\rho: \mathbb{R} \times L \rightarrow$ $S^{1} \times L$ is the product of the universal covering of S^{1} and Id_{L}. By the lifting criterion [Hat02, Proposition 1.33], $f \circ i_{2}$ has a lift $\widetilde{f}_{2}: L \rightarrow \mathbb{R} \times L$ such that $f \circ i_{2}=\rho \circ \widetilde{f}_{2}$. Let $\pi: \mathbb{R} \times L \rightarrow L$ denote the projection. Since \mathbb{R} is contractible, the universal covering map $\mathbb{R} \rightarrow S^{1}$ is null-homotopic. It follows that $\rho \simeq i_{2} \circ \pi$. Thus

$$
f \circ i_{2}=\rho \circ \widetilde{f_{2}} \simeq i_{2} \circ \pi \circ \widetilde{f_{2}}=i_{2} \circ \overline{f_{2}},
$$

where by definition $\bar{f}_{2}=\pi \circ \widetilde{f}_{2}: L \rightarrow L$.
This implies that $\pi_{1}\left(\bar{f}_{2}\right)$ is the restriction of $\pi_{1}(f)$, so it is an isomorphism. Since $\pi_{j}\left(i_{2}\right)$ is an isomorphism for $j>1$ and f is a homotopy automorphism (hence $\pi_{j}(f)$ is an isomorphism), $\pi_{j}\left(\bar{f}_{2}\right)$ is also an isomorphism. Therefore \bar{f}_{2} is a homotopy automorphism too.

Definition 6.4. Let $A_{2 k}(m) \leq \operatorname{Aut}(G)$ denote the subgroup of matrices $\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right)$ such that $c^{k} \equiv \pm 1$ $\bmod m$.
Theorem 6.5. We have $\operatorname{Im}\left(\pi_{1}: \operatorname{hAut}\left(S^{1} \times L\right) \rightarrow \operatorname{Aut}(G)\right)=A_{2 k}(m)$.

Proof. Suppose that $f: S^{1} \times L \rightarrow S^{1} \times L$ is a homotopy automorphism with $\pi_{1}(f)=\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)$. By Lemma 6.3 there is a homotopy automorphism $\bar{f}_{2}: L \rightarrow L$ such that $f \circ i_{2} \simeq i_{2} \circ \bar{f}_{2}$. This implies that $\pi_{1}\left(\bar{f}_{2}\right)=c$, so by Lemma $6.1 c^{k} \equiv \pm 1 \bmod m$. Therefore $\pi_{1}(f) \in A_{2 k}(m)$.

Let $c \in C_{m}^{\times}$be such that $c^{k} \equiv \pm 1 \bmod m$. By Lemma 6.1 there is a homotopy automorphism $f: L \rightarrow L$ such that $\pi_{1}(f)=c$. Then $\operatorname{Id}_{S^{1}} \times f$ is a homotopy automorphism of $S^{1} \times L$ such that $\pi_{1}\left(\operatorname{Id}_{S^{1}} \times f\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & c\end{array}\right)$. Matrices of this form, together with the matrices realised in Lemma 6.2, generate $A_{2 k}(m)$. Therefore $A_{2 k}(m) \subseteq \operatorname{Im}\left(\pi_{1}: \operatorname{hAut}\left(S^{1} \times L\right) \rightarrow \operatorname{Aut}(G)\right)$.
6.2. The Whitehead torsion. Next we prove that every homotopy automorphism of $S^{1} \times L$ is simple.
Theorem 6.6. If $f \in \operatorname{hAut}\left(S^{1} \times L\right)$, then $\tau(f)=0$.
Remark 6.7. When m is odd, this also follows from results of Khan and Hsiang-Jahren. By [Kha17, Corollary 6.2], $\operatorname{hAut}\left(S^{1} \times L\right)$ is generated by maps of the form $f \times \operatorname{Id}_{L}, \operatorname{Id}_{S^{1}} \times g$ and r_{h}, where $f \in \operatorname{hAut}\left(S^{1}\right), g \in \operatorname{hAut}(L), h: S^{1} \rightarrow \operatorname{Map}(L)$ and $r_{h}(x, y)=(x, h(x)(y))$. By Proposition 2.31, generators of the first two types have vanishing Whitehead torsion. If m is odd, then it follows from [HJ83, Proposition 3.1] that $\tau\left(r_{h}\right)=0$ (see also [Kha17, Corollary 6.4]).

The proof consists of two parts, which we will prove in the following two lemmas. For a CW complex X and an integer $n \geq 0$, let $\operatorname{sk}_{n}(X)$ denote the n-skeleton of X. We will endow $S^{1} \times L$ with a standard CW decomposition, that we recall during the next proof.
Lemma 6.8. If $g: S^{1} \times L \rightarrow S^{1} \times L$ is a homotopy automorphism such that $\left.g\right|_{L \cup \mathrm{sk}_{2 k-2}\left(S^{1} \times L\right)}=\mathrm{Id}$, then $\tau(g)=0$.

Proof. We will denote the generators of the components of G by $\alpha \in C_{\infty}$ and $\beta \in C_{m}$. Let $\Sigma:=\sum_{j=0}^{m-1} \beta^{j} \in \mathbb{Z} C_{m} \subseteq \mathbb{Z} G$ be the norm element of $\mathbb{Z} C_{m}$.

The lens space $L=L_{2 k-1}\left(m ; q_{1}, \ldots, q_{k}\right)$ has a CW decomposition with one cell E_{j} in each dimension $0 \leq j \leq 2 k-1$ (see e.g. [Coh73, §28]). The corresponding cellular chain complex $\left(C_{j}^{L}, d_{j}^{L}\right)$ with $\mathbb{Z} C_{m}$ coefficients has $C_{j}^{L} \cong \mathbb{Z} C_{m}$ for every j and

$$
d_{j}^{L}= \begin{cases}\Sigma & \text { if } j \text { is even } \\ \beta^{r_{h}}-1 & \text { if } j=2 h-1\end{cases}
$$

where $r_{h} q_{h} \equiv 1 \bmod m$.
The product $M=S^{1} \times L$ has a CW decomposition containing the cells of L, plus a $(j+1)$-cell E_{j+1}^{\prime}, the product of E_{j} and the 1 -cell of S^{1}, for every $0 \leq j \leq 2 k-1$. Its chain complex $\left(C_{j}^{M}, d_{j}^{M}\right)$ with $\mathbb{Z} G$ coefficients is the tensor product of $\left(C_{j}^{L}, d_{j}^{L}\right)$ and the chain complex of S^{1} with $\mathbb{Z} C_{\infty}$ coefficients, $\mathbb{Z} C_{\infty} \xrightarrow{\alpha-1} \mathbb{Z} C_{\infty}$. It has $C_{0}^{M} \cong C_{2 k}^{M} \cong \mathbb{Z} G$ and $C_{j}^{M} \cong \mathbb{Z} G^{2}$ for every $1 \leq j \leq 2 k-1$ (with $\mathbb{Z} G \oplus\{0\}$ corresponding to E_{j} and $\{0\} \oplus \mathbb{Z} G$ corresponding to E_{j}^{\prime}). The differentials are

$$
\begin{gathered}
d_{1}^{M}=\binom{\beta^{r_{1}}-1}{\alpha-1}, \quad d_{2 h-1}^{M}=\left(\begin{array}{cc}
\beta^{r_{h}}-1 & 0 \\
\alpha-1 & \Sigma
\end{array}\right) \quad \text { for } h>1, \\
d_{2 k}^{M}=\left(1-\alpha, \beta^{r_{k}}-1\right), \quad d_{2 h}^{M}=\left(\begin{array}{cc}
\Sigma & 0 \\
1-\alpha & \beta^{r_{h}}-1
\end{array}\right) \quad \text { for } h<k .
\end{gathered}
$$

We write elements of $\mathbb{Z} G^{j}$ as row vectors, so a homomorphism $\mathbb{Z} G^{j} \rightarrow \mathbb{Z} G^{h}$ is multiplication on the right by a $j \times h$ matix.

We can assume that g is cellular, let $g_{j}: C_{j}^{M} \rightarrow C_{j}^{M}$ denote the induced chain map. Since $\left.g\right|_{L \cup \mathrm{sk}_{2 k-2}\left(L \times S^{1}\right)}=\mathrm{Id}$, we have $g_{j}=\mathrm{Id}$ for every $j \leq 2 k-2$ and $\left.g_{2 k-1}\right|_{\mathbb{Z} G \oplus\{0\}}=\mathrm{Id}$.

We investigate the map $g_{2 k-1}: C_{2 k-1}^{M} \rightarrow C_{2 k-1}^{M}$. It is represented by a 2×2 matrix with entries in $\mathbb{Z} G$, with respect to the basis corresponding to $E_{2 k-1}$ and $E_{2 k-1}^{\prime}$. Since $\left.g_{2 k-1}\right|_{\mathbb{Z} G \oplus\{0\}}=I d$, the matrix is $\left(\begin{array}{ll}1 & 0 \\ x & y\end{array}\right)$ for some $x, y \in \mathbb{Z} G$. To compute x and y, we consider the difference between g and Id on $E_{2 k-1}^{\prime}$. Since $\left.g\right|_{\partial E_{2 k-1}^{\prime}}=\mathrm{Id}$, the cell $E_{2 k-1}^{\prime}$ and $g\left(E_{2 k-1}^{\prime}\right)$ together form a map $S^{2 k-1} \rightarrow S^{1} \times L$. This map represents an element of $\pi_{2 k-1}\left(S^{1} \times L\right) \cong \pi_{2 k-1}\left(\mathbb{R} \times S^{2 k-1}\right) \cong \mathbb{Z}$, so its homotopy class is an integer multiple of that of the inclusion $S^{2 k-1} \rightarrow \mathbb{R} \times S^{2 k-1}$, composed with the projection $\mathbb{R} \times S^{2 k-1} \rightarrow S^{1} \times L$. The image of the fundamental class of $S^{2 k-1}$ under this composition is represented by the chain $\Sigma \in \mathbb{Z} G \oplus\{0\}<\mathbb{Z} G^{2} \cong C_{2 k-1}^{M}$. So $E_{2 k-1}^{\prime}$ and $g\left(E_{2 k-1}^{\prime}\right)$
differ by some integer multiple of $\Sigma \in \mathbb{Z} G \oplus\{0\}$. Therefore (by changing g on $E_{2 k-1}^{\prime}$ and $E_{2 k}^{\prime}$, to replace it with another cellular map which is homotopic to it) we can assume that $y=1$ and $x=a \Sigma$ for some $a \in \mathbb{Z}$. That is, $g_{2 k-1}=\left(\begin{array}{cc}1 & 0 \\ a \Sigma & 1\end{array}\right)$.

Since $\left(g_{j}\right)$ is a chain map, we have $d_{2 k}^{M} \circ g_{2 k}=g_{2 k-1} \circ d_{2 k}^{M}$. When converted to matrices this yields

$$
g_{2 k}\left(1-\alpha, \beta^{r_{k}}-1\right)=\left(1-\alpha, \beta^{r_{k}}-1\right)\left(\begin{array}{cc}
1 \\
a \Sigma & 0 \\
1
\end{array}\right)=\left(1-\alpha, \beta^{r_{k}}-1\right),
$$

since $\beta^{r_{k}} \Sigma=\Sigma$. Looking at the first coordinate, we have $g_{2 k}(1-\alpha)=(1-\alpha)$. Multiplication by $(1-\alpha)$ is an injective map $\mathbb{Z} G \rightarrow \mathbb{Z} G$, so we deduce that $g_{2 k}=1$.

Therefore g_{j} is an isomorphism for every j. By Lemma 2.17 we can compute the torsion via the formula $\tau(g)=\sum_{j=0}^{2 k}(-1)^{j}\left[g_{j}\right]$. Since $g_{2 k-1}$ is an elementary matrix and $g_{j}=\operatorname{Id}$ for $j \neq 2 k-1$, this implies that $\tau(g)=0$.

Lemma 6.9. For every homotopy automorphism $f: S^{1} \times L \rightarrow S^{1} \times L$ there is another homotopy automorphism g such that $\tau(f)=\tau(g)$ and $\left.g\right|_{L \cup \mathrm{sk}_{2 k-2}\left(L \times S^{1}\right)}=\mathrm{Id}$.
Proof. By Lemma 6.3 there is a homotopy automorphism $\bar{f}_{2}: L \rightarrow L$ such that $f \circ i_{2} \simeq i_{2} \circ \bar{f}_{2}$. Let $\bar{h}: L \rightarrow L$ be the homotopy inverse of \bar{f}_{2}, and let $h:=\operatorname{Id}_{S^{1}} \times \bar{h}: S^{1} \times L \rightarrow S^{1} \times L$. Note that $h \circ i_{2}=i_{2} \circ \bar{h}: L \rightarrow S^{1} \times L$. By Corollary $2.32 \tau(h)=0$. Let $f^{\prime}=f \circ h$. Then by Proposition 2.30, we have that $\tau\left(f^{\prime}\right)=\tau(f)$. Moreover, combining the above observations we have

$$
f^{\prime} \circ i_{2}=f \circ h \circ i_{2}=f \circ i_{2} \circ \bar{h} \simeq i_{2} \circ \bar{f}_{2} \circ \bar{h} \simeq i_{2}
$$

This means that after changing f^{\prime} by a homotopy we can assume that $\left.f^{\prime}\right|_{L}=\operatorname{Id}$.
The embedding $i_{1}: S^{1} \rightarrow S^{1} \times L$ represents $(1,0) \in \pi_{1}\left(S^{1} \times L\right) \cong C_{\infty} \times C_{m}$. Since $\pi_{1}\left(f^{\prime}\right)$ is an automorphism of $C_{\infty} \times C_{m}, \pi_{1}\left(f^{\prime}\right)^{-1}(1,0)=(a, b)$ for some $a \in\{ \pm 1\}, b \in C_{m}$. It follows from Lemma 6.2 that there is a diffeomorphism $h \in \operatorname{Diff}\left(S^{1} \times L\right)$ such that $\pi_{1}(h)(1,0)=(a, b)$. Let $f^{\prime \prime}=f^{\prime} \circ h$. Then $\tau\left(f^{\prime \prime}\right)=\tau\left(f^{\prime}\right)$ by Proposition 2.30 and Chapman's Theorem 2.5. Moreover $\pi_{1}\left(f^{\prime \prime}\right)(1,0)=(1,0)$, i.e. $f^{\prime \prime} \circ i_{1} \simeq i_{1}$. The diffeomorphisms constructed in Lemma 6.2 keep L pointwise fixed, so $\left.f^{\prime \prime}\right|_{L}=\operatorname{Id}$, and after applying a homotopy we can also assume $\left.f^{\prime \prime}\right|_{S^{1}}=\operatorname{Id}$.

Finally, we recursively construct maps $f_{j}^{\prime \prime}$ for every $1 \leq j \leq 2 k-2$ such that $f^{\prime \prime} \simeq f_{j}^{\prime \prime}$ rel $S^{1} \vee L$ and $\left.f_{j}^{\prime \prime}\right|_{L \cup s k_{j}\left(L \times S^{1}\right)}=$ Id. We start with $f_{1}^{\prime \prime}=f^{\prime \prime}$. If $f_{j-1}^{\prime \prime}$ is already defined, we consider the single j-cell E_{j}^{\prime} in $S^{1} \times L-L$. Since $\left.f_{j-1}^{\prime \prime}\right|_{\partial E_{j}^{\prime}}=\mathrm{Id}$, the cell E_{j}^{\prime} and $f_{j-1}^{\prime \prime}\left(E_{j}^{\prime}\right)$ together form a map $S^{j} \rightarrow S^{1} \times L$. This map is nullhomotopic (because $\pi_{j}\left(S^{1} \times L\right) \cong \pi_{j}\left(\mathbb{R} \times S^{2 k-1}\right)=0$ for $2 \leq j \leq 2 k-2)$, so $\left.f_{j-1}^{\prime \prime}\right|_{E_{j}^{\prime}}$ is homotopic to $\operatorname{Id}_{E_{j}^{\prime}}$ rel ∂E_{j}^{\prime}. We can extend this homotopy to a homotopy between $f_{j-1}^{\prime \prime}$ and an $f_{j}^{\prime \prime}$ with $\left.f_{j}^{\prime \prime}\right|_{L \cup s k_{j}\left(L \times S^{1}\right)}=$ Id. Therefore $f_{j}^{\prime \prime}$ can be defined for every $1 \leq j \leq 2 k-2$.

To complete the proof of Lemma 6.9, we take $g=f_{2 k-2}^{\prime \prime}: S^{1} \times L \rightarrow S^{1} \times L$.
Proof of Theorem 6.6. Consider a homotopy equivalence $f: S^{1} \times L \rightarrow S^{1} \times L$. By Lemma 6.9, we can replace f by a homotopy equivalence $g: S^{1} \times L \rightarrow S^{1} \times L$ such that $\tau(f)=\tau(g)$ and $\left.g\right|_{L \cup \mathrm{sk}_{2 k-2}\left(L \times S^{1}\right)}=\mathrm{Id}$. Then g satisfies the hypotheses of Lemma 6.8, and so $\tau(g)=0$. Therefore $\tau(f)=0$, and f is a simple homotopy equivalence, as desired.

7. The proof of Theorems B, E, and F

We can now combine the results of the previous sections to prove Theorems B, E, and F. Let $n=2 k \geq 4$ be an even integer and fix a category CAT satisfying Hypothesis 1.1.

Recall the definition of the sets $\mathcal{M}_{s}^{h}(M), \mathcal{M}_{s}^{\mathrm{hCob}}(M)$ and $\mathcal{M}_{s, \mathrm{hCob}}^{h}(M)$ from Definition 4.10. Also recall the definition of $A_{2 k}(m)$ (Definition 6.4): $A_{2 k}(m) \leq \operatorname{Aut}\left(C_{\infty} \times C_{m}\right)$ denotes the subgroup of matrices $\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right)$ such that $c^{k} \equiv \pm 1 \bmod m$. Note that $A_{2 k}(m)$ acts on $\mathrm{Wh}\left(C_{\infty} \times C_{m}\right)$ and on the subgroups $\mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right)$ and $\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right)$.

Proposition 7.1. Let $m \geq 2$ and q_{1}, \ldots, q_{k} such that $\operatorname{gcd}\left(m, q_{j}\right)=1$. Let $L=L_{2 k-1}\left(m ; q_{1}, \ldots, q_{k}\right)$ be an $(n-1)$-dimensional lens space with $\pi_{1}(L) \cong C_{m}$. Let $G:=C_{\infty} \times C_{m} \cong \pi_{1}\left(S^{1} \times L\right)$. Then there are bijections of pointed sets $\mathcal{M}_{s}^{h}\left(S^{1} \times L\right) \cong \mathcal{J}_{n}(G) / A_{2 k}(m), \mathcal{M}_{s}^{\mathrm{hCob}}\left(S^{1} \times L\right) \cong \mathcal{I}_{n}(G) / A_{2 k}(m)$ and $\mathcal{M}_{s, \mathrm{hCob}}^{h}\left(S^{1} \times L\right) \cong \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G)\right) / A_{2 k}(m)$.

Proof. Firstly note that, since $C_{\infty} \times C_{m}$ is polycyclic, it is a good group [FQ90, KOPR21], so Hypothesis 1.1 is satisfied. Moreover, since the map ψ is surjective for $G=C_{\infty} \times C_{m}, w \equiv 1$ and n even by Proposition 3.12, the vertical maps in the diagram of Theorem 4.11 (c) are bijections if $M=S^{1} \times L$. Therefore $\mathcal{M}_{s}^{h}\left(S^{1} \times L\right) \cong \mathcal{J}_{n}(G) / \operatorname{hAut}\left(S^{1} \times L\right), \mathcal{M}_{s}^{\mathrm{hCob}}\left(S^{1} \times L\right) \cong q\left(\mathcal{I}_{n}(G)\right)$, and $\mathcal{M}_{s, \mathrm{hCob}}^{h}\left(S^{1} \times L\right) \cong \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G)\right) / \operatorname{hAut}\left(S^{1} \times L\right)$.

By Theorem 6.6, every homotopy automorphism of $S^{1} \times L$ is simple, therefore the action of $\operatorname{hAut}\left(S^{1} \times L\right)$ on $\mathrm{Wh}(G)$ factors through the action of $\operatorname{Aut}(G)$ (see Definition 4.3 and Remark 4.18). By Theorem 6.5, the image of $\pi_{1}: \operatorname{hAut}\left(S^{1} \times L\right) \rightarrow \operatorname{Aut}(G)$ is $A_{2 k}(m)$. In particular, the orbits of the action of $\operatorname{hAut}\left(S^{1} \times L\right)$ and $A_{2 k}(m)$ on $\mathcal{J}_{n}(G), \mathcal{I}_{n}(G)$, and $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G)\right)$ coincide. This implies that $\mathcal{J}_{n}(G) / \operatorname{hat}\left(S^{1} \times L\right)=\mathcal{J}_{n}(G) / A_{2 k}(m), q\left(\mathcal{I}_{n}(G)\right)=\mathcal{I}_{n}(G) / A_{2 k}(m)$ and $\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G)\right) / \operatorname{hAut}\left(S^{1} \times L\right)=\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G)\right) / A_{2 k}(m)$, as required.

In particular Proposition 7.1 implies that $\left|\mathcal{M}_{s}^{h}\left(S^{1} \times L\right)\right|,\left|\mathcal{M}_{s}^{\mathrm{hCob}}\left(S^{1} \times L\right)\right|$ and $\left|\mathcal{M}_{s, \mathrm{hCob}}^{h}\left(S^{1} \times L\right)\right|$ are independent of the choice of the q_{j} and of CAT, and only depend on n and m. This proves part (a) of Theorems B, E, and F.

From now on, we will write M_{m}^{n} for $S^{1} \times L$, where L is any $(n-1)$-dimensional lens space with $\pi_{1}(L) \cong C_{m}$.

Lemma 7.2. Let $n=2 k \geq 4$ be an even integer, $m \geq 2$ and $G=C_{\infty} \times C_{m}$. Then the following hold.
(a) $\left|\mathcal{M}_{s}^{h}\left(M_{m}^{n}\right)\right|=1$ if and only if $\mathcal{J}_{n}(G)=0$.
(b) $\left|\mathcal{M}_{s}^{h}\left(M_{m}^{n}\right)\right|=\infty$ if and only if $\left|\mathcal{J}_{n}(G)\right|=\infty$.
(c) If $\mathcal{M}_{s}^{h}\left(M_{m}^{n}\right)$ is finite, then $\frac{\left|\mathcal{J}_{n}(G)\right|}{2 m^{2}}<\left|\mathcal{M}_{s}^{h}\left(M_{m}^{n}\right)\right| \leq\left|\mathcal{J}_{n}(G)\right|$.
(d) $\left|\mathcal{M}_{s}^{\mathrm{hCob}}\left(M_{m}^{n}\right)\right|=1$ if and only if $\mathcal{I}_{n}(G)=0$.
(e) $\left|\mathcal{M}_{s}^{\mathrm{hCob}}\left(M_{m}^{n}\right)\right|=\infty$ if and only if $\left|\mathcal{I}_{n}(G)\right|=\infty$.
(f) If $\mathcal{M}_{s}^{\mathrm{hCob}}\left(M_{m}^{n}\right)$ is finite, then $\frac{\left|\mathcal{I}_{n}(G)\right|}{2 m^{2}}<\left|\mathcal{M}_{s}^{\mathrm{hCob}}\left(M_{m}^{n}\right)\right| \leq\left|\mathcal{I}_{n}(G)\right|$.
(g) $\left|\mathcal{M}_{s, \mathrm{hCob}}^{h}\left(M_{m}^{n}\right)\right|=1$ if and only if $\hat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G)\right)=0$.
(h) $\left|\mathcal{M}_{s, \mathrm{hCob}}^{h}\left(M_{m}^{n}\right)\right|=\infty$ if and only if $\left|\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G)\right)\right|=\infty$.
(i) If $\mathcal{M}_{s, \mathrm{hCob}}^{h}\left(M_{m}^{n}\right)$ is finite, then $\frac{\left|\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G)\right)\right|}{2 m^{2}}<\left|\mathcal{M}_{s, \mathrm{hCob}}^{h}\left(M_{m}^{n}\right)\right| \leq\left|\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G)\right)\right|$.

Proof. (a) By Proposition 7.1, $\left|\mathcal{M}_{s}^{h}\left(M_{m}^{n}\right)\right|=\left|\mathcal{J}_{n}(G) / A_{2 k}(m)\right|$. The group $A_{2 k}(m) \leq \operatorname{Aut}(G)$ acts on $\mathrm{Wh}(G)$, and hence on $\mathcal{J}_{n}(G)$, by automorphisms. So $0 \in \mathcal{J}_{n}(G)$ is a fixed point of this action, and $\left|\mathcal{J}_{n}(G) / A_{2 k}(m)\right|=1$ if and only if $\mathcal{J}_{n}(G)=0$.
(b) $\operatorname{Aut}(G)$, and hence its subgroup $A_{2 k}(m)$, is finite. Hence $\left|\mathcal{J}_{n}(G) / A_{2 k}(m)\right|=\infty$ if and only if $\left|\mathcal{J}_{n}(G)\right|=\infty$.
(c) It is easy to see that $\frac{\left|\mathcal{J}_{n}(G)\right|}{\left|A_{2 k}(m)\right|} \leq\left|\mathcal{J}_{n}(G) / A_{2 k}(m)\right| \leq\left|\mathcal{J}_{n}(G)\right|$. We have $\left|A_{2 k}(m)\right| \leq|\operatorname{Aut}(G)| \leq$ $2 m(m-1)<2 m^{2}$, because elements of $\operatorname{Aut}(G)$ can be represented as matrices of the form $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)$, where $a \in\{ \pm 1\}, b \in C_{m}$ and $c \in C_{m}^{\times}$.

The proofs of parts (d), (e), and (f) (resp. parts (g), (h) and (i)) are entirely analogous to those of parts (a), (b), and (c) respectively, and so will be omitted for brevity.

Theorem 7.3. Let $n=2 k \geq 4$ be an even integer and $m \geq 2$. Then the following hold.
(a) $\left|\mathcal{M}_{s}^{h}\left(M_{m}^{n}\right)\right|=1$ if and only if $m \in\{2,3,5,6,7,10,11,13,14,17,19\}$.
(b) $\left|\mathcal{M}_{s}^{h}\left(M_{m}^{n}\right)\right|=\infty$ if and only if m is not square-free.
(c) $\left|\mathcal{M}_{s}^{h}\left(M_{m}^{n}\right)\right| \rightarrow \infty$ as $m \rightarrow \infty$ (uniformly in n).
(d) $\left|\mathcal{M}_{s}^{\mathrm{hCob}}\left(M_{m}^{n}\right)\right|=1$ if and only if $m \in\{2,3,5,6,7,10,11,13,14,15,17,19,29\}$.
(e) $\left|\mathcal{M}_{s}^{\mathrm{hCob}}\left(M_{m}^{n}\right)\right|=\infty$ if and only if m is not square-free.
(f) $\left|\mathcal{M}_{s}^{\mathrm{hCob}}\left(M_{m}^{n}\right)\right| \rightarrow \infty$ as $m \rightarrow \infty$ (uniformly in n).
(g) There are infinitely many m such that $\left|\mathcal{M}_{s, \mathrm{hCob}}^{h}\left(M_{m}^{n}\right)\right|=1$ for every n.
(h) $\left|\mathcal{M}_{s, h \mathrm{hob}}^{h}\left(M_{m}^{n}\right)\right|$ is finite for every n and m.
(i) $\limsup _{m \rightarrow \infty}\left(\inf _{n}\left|\mathcal{M}_{s, \mathrm{hCob}}^{h}\left(M_{m}^{n}\right)\right|\right)=\infty$.

Proof. (a), (b), (d), (e), (g), and (h) follow immediately from Lemma 7.2 and Theorems 5.14, 5.15, and 5.17.
(c) For every m, it follows from Lemma 7.2 (c) that $\left|\mathcal{M}_{s}^{h}\left(M_{m}^{n}\right)\right|>\frac{\left|\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right)\right|}{2 m^{2}}$ for every n. By Theorem 5.14 (iii) $\frac{\left|\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right)\right|}{2 m^{2}} \rightarrow \infty$ as $m \rightarrow \infty$. Item (f), can be proved similarly using Theorem 5.15 (iii).
(i) For every m, it follows from Lemma 7.2 (i) that $\inf _{n}\left|\mathcal{M}_{s, \mathrm{hCob}}^{h}\left(M_{m}^{n}\right)\right|>\frac{\left|\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{\infty} \times C_{m}\right)\right)\right|}{2 m^{2}}$. By Theorem 5.17 (iii), we see that $\frac{1}{2 m^{2}} \sup _{l \leq m}\left|\hat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{\infty} \times C_{l}\right)\right)\right| \rightarrow \infty$ as $m \rightarrow \infty$. This implies that $\sup _{l \leq m} \frac{\left|\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{\infty} \times C_{l}\right)\right)\right|}{2 l^{2}} \rightarrow \infty$ as $m \rightarrow \infty$. So the map $m \mapsto \frac{\left|\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{\infty} \times C_{m}\right)\right)\right|}{2 m^{2}}$ is unbounded, therefore $\lim \sup _{m \rightarrow \infty} \frac{\left|\widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}\left(C_{\infty} \times C_{m}\right)\right)\right|}{2 m^{2}}=\infty$.

This completes the proof of the remaining parts of Theorems B, E, and F, subject to the proofs of Theorems 16.1 to 16.3 which will be postponed until Section 16 . We can now deduce:

Theorem 7.4. There exists an infinite collection of orientable, CAT n-manifolds that are all homotopy equivalent to one another but are pairwise not simple homotopy equivalent.
Proof. By Theorem 7.3 (b), if m is not square-free (e.g. if $m=4$), then $\mathcal{M}_{s}^{h}\left(M_{m}^{n}\right)$ is infinite. Note that $M_{m}^{n}=S^{1} \times L$ is orientable, so the same is true for every n-manifold homotopy equivalent to it. Therefore we can get a suitable infinite collection by choosing a representative from each element of $\mathcal{M}_{s}^{h}\left(M_{m}^{n}\right)$.

This completes the proof of Theorem A. Note that this does not depend on the results postponed to Section 16. In particular, if m is not square-free, then $\left|N K_{1}\left(\mathbb{Z} C_{m}\right)\right|=\infty$ (Theorem 1.4) which implies $\left|\mathcal{J}_{n}\left(C_{\infty} \times C_{m}\right)\right|=\infty\left(\right.$ Lemma 5.12) and so $\left|\mathcal{M}_{s}^{h}\left(M_{m}^{n}\right)\right|=\infty($ Lemma 7.2 (b)).

Part 3. Homotopy equivalences of doubles

In this part we prove Theorem G about the Whitehead torsion of a homotopy equivalence between doubles, and then derive the results announced in Section 1.5 from it. Every manifold will be assumed to be smooth, compact and connected, but not necessarily closed.

We start by considering the algebraic version of the problem in Section 8. We consider split chain complexes, which are those that split as the direct sum of their lower and upper halves, cf. Definitions 8.1 and 8.2. Provided that they are also based and satisfy a version of Poincaré duality, in Lemma 8.6 we compute the Whitehead torsion of a chain homotopy equivalence between two such chain complexes in terms of the Whitehead torsion of the restriction of the chain map to the lower half. We note that the formula contains two error terms, which are intrinsic to the two chain complexes (given by the Whitehead torsion of the restriction of the Poincaré duality map).

In Section 9, we recall Wall's results on thickenings. In Section 10, we introduce polarised doubles, SP manifolds and the invariant $\tau(M, \varphi)$. We show that if (M, φ) is an SP manifold, then its cellular chain complex splits and $\tau(M, \varphi)$ is equal to the associated error term. In Section 11, we combine the previous results to prove Theorem G. In Section 12, we consider various applications of Theorem G, including Theorems 1.7, H, C, 1.10 and 1.12.

8. Split chain complexes

In this section we define split chain complexes and prove Lemma 8.6 about computing the Whitehead torison of a chain homotopy equivalence between two split chain complexes.

Fix some positive integer n and a group G with orientation character $w: G \rightarrow\{ \pm 1\}$. Every chain complex C_{*} will be assumed to consist of finitely generated free, left $\mathbb{Z} G$-modules, satisfying the condition $C_{i}=0$ for $i<0$ and $i>n$ (and similarly for cochain complexes).
Definition 8.1. Let $\left(C_{*}, d_{*}\right)$ be a chain complex. We define the chain complex $\left(C_{*}^{\ell}, d_{*}^{\ell}\right)$ by $C_{i}^{\ell}=C_{i}$ and $d_{i}^{\ell}=d_{i}: C_{i} \rightarrow C_{i-1}$ if $i<\frac{n}{2}$ and $C_{i}^{\ell}=0$ if $i \geq \frac{n}{2}$. Similarly, we define $\left(C_{*}^{u}, d_{*}^{u}\right)$ by $C_{i}^{u}=C_{i}$ if $i>\frac{n}{2}, d_{i}^{u}=d_{i}$ if $i>\frac{n}{2}+1$, and $C_{i}^{u}=0$ if $i \leq \frac{n}{2}$.

Let $\left(C^{*}, d^{*}\right)$ be a cochain complex. We define $\left(\left(C^{u}\right)^{*},\left(d^{u}\right)^{*}\right)$ by $\left(C^{u}\right)^{i}=C^{i}$ and $\left(d^{u}\right)^{i}=d^{i}: C^{i} \rightarrow$ C^{i+1} if $i>\frac{n}{2}$ and $\left(C^{u}\right)^{i}=0$ if $i \leq \frac{n}{2}$. Similarly, we define $\left(\left(C^{\ell}\right)^{*},\left(d^{\ell}\right)^{*}\right)$ by $\left(C^{\ell}\right)^{i}=C^{i}$ if $i<\frac{n}{2}$, $\left(d^{\ell}\right)^{i}=d^{i}$ if $i<\frac{n}{2}-1$, and $\left(C^{\ell}\right)^{i}=0$ if $i \geq \frac{n}{2}$.
Definition 8.2. We say that a chain complex $\left(C_{*}, d_{*}\right)$ splits if $C_{n / 2}=0$ (if n is even) or $d_{\lceil n / 2\rceil}=0$ (if n is odd). We say that a cochain complex $\left(C^{*}, d^{*}\right)$ splits if $C^{n / 2}=0$ (if n is even) or $d^{\lfloor n / 2\rfloor}=0$ (if n is odd).

Note that $C_{*}\left(\right.$ resp. $\left.C^{*}\right)$ splits if and only if $C_{*} \cong C_{*}^{\ell} \oplus C_{*}^{u}\left(\right.$ resp. $\left.C^{*} \cong\left(C^{u}\right)^{*} \oplus\left(C^{\ell}\right)^{*}\right)$.
Definition 8.3. Let C_{*} and D_{*} be chain complexes. We define $\operatorname{chEq}\left(C_{*}, D_{*}\right) \subseteq \operatorname{Hom}\left(C_{*}, D_{*}\right) / \simeq$ to be the set of chain homotopy classes of chain homotopy equivalences $C_{*} \rightarrow D_{*}$.
Lemma 8.4. Suppose that $\left(C_{*}, d_{*}^{C}\right)$ and $\left(D_{*} d_{*}^{D}\right)$ are split chain complexes. Then there is a bijection

$$
\operatorname{chEq}\left(C_{*}, D_{*}\right) \cong \operatorname{chEq}\left(C_{*}^{\ell}, D_{*}^{\ell}\right) \times \operatorname{chEq}\left(C_{*}^{u}, D_{*}^{u}\right)
$$

where the projections $\operatorname{chEq}\left(C_{*}, D_{*}\right) \rightarrow \operatorname{chEq}\left(C_{*}^{\ell}, D_{*}^{\ell}\right)$ and $\operatorname{chEq}\left(C_{*}, D_{*}\right) \rightarrow \operatorname{chEq}\left(C_{*}^{u}, D_{*}^{u}\right)$ are defined by restriction.
Proof. Since C_{*} and D_{*} split, restrictions define an isomorphism

$$
\operatorname{Hom}\left(C_{*}, D_{*}\right) \cong \operatorname{Hom}\left(C_{*}^{\ell}, D_{*}^{\ell}\right) \oplus \operatorname{Hom}\left(C_{*}^{u}, D_{*}^{u}\right)
$$

Let $f, f^{\prime}: C_{*} \rightarrow D_{*}$ be chain maps. The restrictions of a chain homotopy between f and f^{\prime} are homotopies between $\left.f\right|_{C_{*}^{\ell}}$ and $\left.f^{\prime}\right|_{C_{*}^{\ell}}$ and between $\left.f\right|_{C_{*}^{u}}$ and $\left.f^{\prime}\right|_{C_{*}^{u}}$, respectively, because $d_{\lceil n / 2\rceil}^{D}=0$ and $d_{\lfloor n / 2\rfloor+1}^{C}=0$. Conversely, a pair of homotopies between $\left.f\right|_{C_{*}^{\ell}}$ and $\left.f^{\prime}\right|_{C_{*}^{\ell}}$ and between $\left.f\right|_{C_{*}^{u}}$ and $\left.f^{\prime}\right|_{C_{*}^{u}}$ can be combined to a homotopy between f and f^{\prime}. Therefore there is an induced isomorphism $\left(\operatorname{Hom}\left(C_{*}, D_{*}\right) / \simeq\right) \cong\left(\operatorname{Hom}\left(C_{*}^{\ell}, D_{*}^{\ell}\right) / \simeq\right) \oplus\left(\operatorname{Hom}\left(C_{*}^{u}, D_{*}^{u}\right) / \simeq\right)$ on homotopy classes.

This isomorphism is defined for every pair $\left(C_{*}, D_{*}\right)$ of split chain complexes, it is compatible with the composition maps (induced by $\operatorname{Hom}\left(D_{*}, E_{*}\right) \times \operatorname{Hom}\left(C_{*}, D_{*}\right) \rightarrow \operatorname{Hom}\left(C_{*}, E_{*}\right)$, and similarly for $\operatorname{Hom}\left(C_{*}^{\ell}, D_{*}^{\ell}\right)$ and $\left.\operatorname{Hom}\left(C_{*}^{u}, D_{*}^{u}\right)\right)$ and $\left[\operatorname{Id}_{C_{*}}\right] \in\left(\operatorname{Hom}\left(C_{*}, C_{*}\right) / \simeq\right)$ corresponds to $\left(\left[\operatorname{Id}_{C_{*}^{\ell}}\right],\left[\operatorname{Id}_{C_{*}^{u}}\right]\right)$. Since $\operatorname{chEq}\left(C_{*}, D_{*}\right)$ consists of those elements of $\left(\operatorname{Hom}\left(C_{*}, D_{*}\right) / \simeq\right)$ which have an inverse in $\left(\operatorname{Hom}\left(D_{*}, C_{*}\right) / \simeq\right)$ (and similarly for $\operatorname{chEq}\left(C_{*}^{\ell}, D_{*}^{\ell}\right)$ and $\operatorname{chEq}\left(C_{*}^{u}, D_{*}^{u}\right)$), this implies that the isomorphism above restricts to a bijection $\operatorname{chEq}\left(C_{*}, D_{*}^{*}\right) \cong \operatorname{chEq}\left(C_{*}^{\ell}, D_{*}^{\ell}\right) \times \operatorname{chEq}\left(C_{*}^{u}, D_{*}^{u}\right)$.

Recall that the orientation character w determines an involution on $\mathbb{Z} G$, which allows us to define the dual of a left $\mathbb{Z} G$-module as another left $\mathbb{Z} G$-module (see Definition 2.22). Note that a chain complex C_{*} splits if and only if the dual cochain complex C^{*} (defined by $\left.C^{i}=\left(C_{i}\right)^{*}\right)$ splits.

Definition 8.5. Let C_{*} and D_{*} be chain complexes, C^{*} and D^{*} the dual cochain complexes, and let $P: C^{n-*} \rightarrow C_{*}$ and $Q: D^{n-*} \rightarrow D_{*}$ be chain homotopy equivalences. Then define $\operatorname{chEq}\left(C_{*}, D_{*}\right)_{P, Q} \subseteq \operatorname{chEq}\left(C_{*}, D_{*}\right)$ to be the subset consisting of those chain homotopy equivalences $f: C_{*} \rightarrow D_{*}$ which make the diagram

of chain complexes commute up to chain homotopy, where f^{*} denotes the dual of f.
Lemma 8.6. Let C_{*} and D_{*} be chain complexes, C^{*} and D^{*} the dual cochain complexes, and let $P: C^{n-*} \rightarrow C_{*}$ and $Q: D^{n-*} \rightarrow D_{*}$ be chain homotopy equivalences. Suppose that C_{*} and D_{*} split, so that P and Q restrict to chain homotopy equivalences $\left.P\right|_{\left(C^{\ell}\right)^{n-*}}:\left(C^{\ell}\right)^{n-*} \rightarrow C_{*}^{u}$ and $\left.Q\right|_{\left(D^{\ell}\right)^{n-*}}:\left(D^{\ell}\right)^{n-*} \rightarrow D_{*}^{u}$, and let $\alpha=\tau\left(\left.P\right|_{\left(C^{\ell}\right)^{n-*}}\right)$ and $\beta=\tau\left(\left.Q\right|_{\left(D^{\ell}\right)^{n-*}}\right) \in \operatorname{Wh}(G, w)$. Then there is a commutative diagram

where the vertical map on the left is given by restriction, i.e. it is the composition of the inclusion $\operatorname{chEq}\left(C_{*}, D_{*}\right)_{P, Q} \rightarrow \operatorname{chEq}\left(C_{*}, D_{*}\right)$ and the projection $\operatorname{chEq}\left(C_{*}, D_{*}\right) \rightarrow \operatorname{chEq}\left(C_{*}^{\ell}, D_{*}^{\ell}\right)$ from Lemma 8.4.
Proof. Let $f \in \operatorname{chEq}\left(C_{*}, D_{*}\right)_{P, Q}$. Since C_{*} and D_{*} split, by Lemma 2.16 we have that $\tau(f)=$ $\tau\left(\left.f\right|_{C_{*}^{\ell}}\right)+\tau\left(\left.f\right|_{C_{*}^{u}}\right)$, so it is enough to prove that $\tau\left(\left.f\right|_{C_{*}^{u}}\right)=-(-1)^{n} \overline{\tau\left(\left.f\right|_{C_{*}^{\ell}}\right)}+\beta-\alpha$.

The diagram in Definition 8.5 restricts to a homotopy commutative diagram

By Proposition 2.14 and Lemma 2.15 we have $\tau\left(\left.f^{*}\right|_{\left(D^{\ell}\right)^{n-*}}\right)+\alpha+\tau\left(\left.f\right|_{C_{*}^{u}}\right)=\beta$, or equivalently $\tau\left(\left.f\right|_{C_{*}^{u}}\right)=-\tau\left(\left.f^{*}\right|_{\left(D^{\ell}\right)^{n-*}}\right)+\beta-\alpha$. Therefore it suffices to prove that $\left.\tau\left(\left.f^{*}\right|_{\left(D^{\ell}\right)^{n-*}}\right)=(-1)^{n} \overline{\tau\left(\left.f\right|_{C_{*}^{\ell}}\right.}\right)$.

By Lemma 2.18 it follows that $\tau\left(\left.f^{*}\right|_{\left(D^{\ell}\right)^{n-*}}\right)=(-1)^{n} \tau\left(\left.f^{*}\right|_{\left(D^{\ell}\right)^{-*}}\right)$, and it follows from Definition 2.19 that $\tau\left(\left.f^{*}\right|_{\left(D^{\ell}\right)^{-*}}\right)=\tau\left(\left.f^{*}\right|_{D_{l}^{*}}\right)$. Finally by Lemma 2.23 , we have $\left.\tau\left(\left.f^{*}\right|_{D_{l}^{*}}\right)=\overline{\tau\left(\left.f\right|_{C_{*}^{\ell}}\right.}\right)$, which completes the proof.

9. Thickenings

We recall Wall's definition of thickenings and some of their basic properties. Fix positive integers n, k with $n \geq 2 k+1$, and let K be a connected finite CW complex of dimension (at most) k. Recall that we work in the smooth category in this part.

Definition 9.1. Suppose that $n \geq \max (k+3,2 k+1)$. An n-dimensional thickening of K is a simple homotopy equivalence $f_{T}: K \rightarrow T$, where T is an n-manifold with boundary such that the inclusion map $\partial T \hookrightarrow T$ induces an isomorphism $\pi_{1}(\partial T) \cong \pi_{1}(T)$.

Two thickenings $f_{T}: K \rightarrow T$ and $f_{T^{\prime}}: K \rightarrow T^{\prime}$ are equivalent if there is a diffeomorphism $H: T \rightarrow T^{\prime}$ such that $H \circ f_{T} \simeq f_{T^{\prime}}$.

Since $n \geq 2 k+1$, we can assume that f_{T} is an embedding. From now on thickening will mean n-dimensional thickening, unless indicated otherwise.
Lemma 9.2 (Wall [Wal66, Proposition 5.1]). Suppose that $n \geq \max (6,2 k+1)$. The assignment $\left(f_{T}: K \rightarrow T\right) \mapsto f_{T}^{*}\left(\nu_{T}\right)$, where ν_{T} denotes the stable normal bundle of T, is a bijection between the set of equivalence classes of thickenings of K and the set of isomorphism classes of stable vector bundles over K.

Remark 9.3. The arguments of [Wal66, $\S 5, \S 7$ and $\S 8]$ also show that if $n=5 \geq 2 k+1$, then the assignment $\left(f_{T}: K \rightarrow T\right) \mapsto f_{T}^{*}\left(\nu_{T}\right)$ is surjective.
Lemma 9.4 (Wall). Suppose that $n \geq \max (6,2 k+1)$, M is an n-manifold, and $\varphi: K \rightarrow M$ is a continuous map. Then there is a thickening $f_{T}: K \rightarrow T$ and an embedding $i: T \rightarrow \operatorname{Int} M$ such that $i \circ f_{T} \simeq \varphi$. The thickening f_{T} is unique up to equivalence.

Proof. The existence part follows from Wall's embedding theorem [Wal66]. For the uniqueness assume that there is another thickening $f_{T^{\prime}}: K \rightarrow T^{\prime}$ and an embedding $i^{\prime}: T^{\prime} \rightarrow M$ such that $i^{\prime} \circ f_{T^{\prime}} \simeq \varphi$. Then $f_{T}^{*}\left(\nu_{T}\right) \cong f_{T}^{*}\left(i^{*}\left(\nu_{M}\right)\right) \cong \varphi^{*}\left(\nu_{M}\right) \cong f_{T^{\prime}}^{*}\left(\left(i^{\prime}\right)^{*}\left(\nu_{M}\right)\right) \cong f_{T^{\prime}}^{*}\left(\nu_{T^{\prime}}\right)$, so by Lemma 9.2 it follows that f_{T} and $f_{T^{\prime}}$ are equivalent.

Lemma 9.5. Suppose that $n \geq \max (k+3,2 k+1)$ and $f_{T}: K \rightarrow T$ is a thickening. Then the inclusion $\partial T \rightarrow T$ is $(n-k-1)$-connected.
Proof. By the definition of thickenings $\pi_{1}(\partial T) \rightarrow \pi_{1}(T)$ is an isomorphism. Let $G=\pi_{1}(T)$ and consider homology with $\mathbb{Z} G$ coefficients. We have $H_{i}(T, \partial T) \cong H^{n-i}(T) \cong H^{n-i}(K)=0$ if $n-i>k$, equivalently, $i \leq n-k-1$.

Lemma 9.6. Suppose that $n \geq \max (6,2 k+2)$ and $f_{T}: K \rightarrow T$ is an n-dimensional thickening. Then there is a map $f_{\partial T}: K \rightarrow \partial T$ such that $f_{\partial T} \simeq f_{T}$ as maps $K \rightarrow T$. Furthermore, $f_{\partial T}$ is unique up to homotopy.
Proof. By [Wal66, §5] there is an $(n-1)$-dimensional thickening $f_{V}: K \rightarrow V$ and a diffeomorphism $T \approx V \times I$ such that f_{T} is homotopic to the composition $K \xrightarrow{f_{V}} V \rightarrow V \times I \approx T$. Hence $\partial T \approx V \cup_{\mathrm{Id}_{\partial V}} V$, and we can take $f_{\partial T}$ to be the composition $K \xrightarrow{f_{V}} V \rightarrow V \cup_{\operatorname{Id}_{\partial V}} V \approx \partial T$. Since the inclusion $\partial T \rightarrow T$ is at least $(k+1)$-connected, any two maps from K to ∂T that are
homotopic as $K \rightarrow T$ maps are also homotopic as $K \rightarrow \partial T$ maps. Therefore $f_{\partial T}$ is unique up to homotopy.

Lemma 9.7. Suppose that $n \geq \max (6,2 k+2)$. Let M be a closed n-manifold, $f_{T}: K \rightarrow T a$ thickening, $\varphi: K \rightarrow M$ an $\left\lfloor\frac{n}{2}\right\rfloor$-connected map and $i: T \rightarrow M$ an embedding such that $i \circ f_{T} \simeq \varphi$. Let $C=M \backslash i(\operatorname{Int} T)$ denote the complement of $i(T)$, let $j: C \rightarrow M$ be the inclusion, and let φ^{\prime} denote the composition $K \xrightarrow{f_{\partial T}} \partial T \xrightarrow{i} i(\partial T) \rightarrow C$.
(a) The map $\varphi^{\prime}: K \rightarrow C$ is a homotopy equivalence.
(b) A map $f: K \rightarrow C$ is homotopic to φ^{\prime} if and only if $j \circ f \simeq \varphi: K \rightarrow M$.

Proof. (a) Since φ is $\left\lfloor\frac{n}{2}\right\rfloor$-connected and f_{T} is a homotopy equivalence, i is $\left\lfloor\frac{n}{2}\right\rfloor$-connected too. The inclusions $\partial T \rightarrow T$ and i induce isomorphisms on π_{1}, so it follows from the Van Kampen theorem that the inclusions $i(\partial T)=\partial C \rightarrow C$ and j also induce isomorphisms on π_{1}. Let $G=\pi_{1}(M)$, identify the fundamental groups of $T, \partial T$ and C with G via the inclusions, and consider their homology with $\mathbb{Z} G$ coefficients.

By excision and Lemma 9.5 we have $H_{r}(M, C) \cong H_{r}(T, \partial T)=0$ if $r \leq n-k-1$. Therefore $H_{r}(j): H_{r}(C) \rightarrow H_{r}(M)$ is an isomorphism if $r \leq n-k-2$, in particular if $r \leq\left\lceil\frac{n}{2}\right\rceil-1$. The induced homomorphism $H_{r}(\varphi): H_{r}(K) \rightarrow H_{r}(M)$ is an isomorphism for $r \leq\left\lfloor\frac{n}{2}\right\rfloor$, because φ is $\left\lfloor\frac{n}{2}\right\rfloor$-connected and K has dimension $k<\left\lfloor\frac{n}{2}\right\rfloor$. Since $\varphi \simeq i \circ f_{T} \simeq i \circ f_{\partial T} \simeq j \circ \varphi^{\prime}: K \rightarrow M$, we get that $H_{r}\left(\varphi^{\prime}\right): H_{r}(K) \rightarrow H_{r}(C)$ is an isomorphism if $r \leq\left\lceil\frac{n}{2}\right\rceil-1$. We also have that $H_{r}(C) \cong$ $H^{n-r}(C, \partial C) \cong H^{n-r}(M, i(T))=0$ and $H_{r}(K)=0$ if $r \geq\left\lceil\frac{n}{2}\right\rceil$ (hence $n-r \leq\left\lfloor\frac{n}{2}\right\rfloor$). Therefore φ^{\prime} induces an isomorphism on π_{1} and all homology groups, so it is a homotopy equivalence.
(b) We already saw that $\varphi \simeq j \circ \varphi^{\prime}$. This implies the only if direction. Also, by part (a) this implies that j is $\left\lfloor\frac{n}{2}\right\rfloor$-connected. Hence if $j \circ f \simeq \varphi \simeq j \circ \varphi^{\prime}$ for some $f: K \rightarrow C$, then $f \simeq \varphi^{\prime}$, because K has dimension $k \leq\left\lfloor\frac{n}{2}\right\rfloor-1$.

The next lemma is implicit in the discussion on [Wal66, p. 77].
Lemma 9.8. Let M be an n-manifold with boundary, and let $N \subset \operatorname{Int} M$ be a codimension 0 submanifold. Then the following hold.
(a) If $M \backslash \operatorname{Int} N$ is an h-cobordism between ∂N and ∂M, then the inclusion $i: N \rightarrow M$ is a homotopy equivalence.
(b) If the inclusions induce isomorphisms $\pi_{1}(\partial N) \cong \pi_{1}(N)$ and $\pi_{1}(\partial M) \cong \pi_{1}(M)$, and $i: N \rightarrow M$ is a homotopy equivalence, then $M \backslash \operatorname{Int} N$ is an h-cobordism.
(c) If the assumptions in (b) hold, then $\tau(i)=j_{*}(\tau(M \backslash \operatorname{Int} N, \partial N)) \in \mathrm{Wh}\left(\pi_{1}(M)\right)$, where $j: M \backslash$ Int $N \rightarrow M$ is the inclusion.

Proof. (a) Since the inclusion $\partial N \rightarrow M \backslash \operatorname{Int} N$ is a homotopy equivalence, by applying homotopy excision [Hat02, Theorem 4.23] to the map $(M \backslash \operatorname{Int} N, \partial N) \rightarrow(M, N)$ we deduce that i is a homotopy equivalence too.
(b) Let $G=\pi_{1}(M)$, it follows from the Van Kampen theorem and the assumptions that the inclusions identify $\pi_{1}(N), \pi_{1}(\partial N), \pi_{1}(M \backslash \operatorname{Int} N)$ and $\pi_{1}(\partial M)$ with G, in particular $\pi_{1}(\partial N) \cong$ $\pi_{1}(M \backslash \operatorname{Int} N) \cong \pi_{1}(\partial M)$. Consider homology with $\mathbb{Z} G$ coefficients. Since i is a homotopy equivalence, we have $H_{*}(M \backslash \operatorname{Int} N, \partial N) \cong H_{*}(M, N)=0$ by excision. By Poincaré duality we also have $H_{*}(M \backslash \operatorname{Int} N, \partial M)=0$, therefore the inclusions $\partial N \rightarrow M \backslash \operatorname{Int} N$ and $\partial M \rightarrow M \backslash \operatorname{Int} N$ are both homotopy equivalences.
(c) Fix a CW structure on ∂N and extend it to a CW structure on M (so that ∂N is a subcomplex of N and $M \backslash \operatorname{Int} N)$. Consider cellular chain complexes with $\mathbb{Z} G$ coefficients. We have a commutative diagram

where the rows are short exact sequences of chain compexes. The left and middle vertical maps are chain homotopy equivalences by our assumptions and part (b). The vertical map on the right is a chain homotopy equivalences with vanishing Whitehead torsion, because the cells in $N \backslash \partial N$
determine the standard basis in both $C_{*}(N, \partial N)$ and $C_{*}(M, M \backslash \operatorname{Int} N)$. So by Lemma 2.16 (additivity with respect to short exact sequences) $\tau\left(i_{*}\right)=\tau\left(C_{*}(\partial N) \rightarrow C_{*}(M \backslash \operatorname{Int} N)\right) \in \mathrm{Wh}(G)$.

10. Polarised doubles

Fix positive integers n, k with $n \geq 2 k+1$, and let M be a closed n-manifold, K a finite CW complex of dimension (at most) k and let $\varphi: K \rightarrow M$ be a continuous map. We will think of (the homotopy class of) φ as extra structure on M and call the pair (M, φ) a polarised manifold.
10.1. Double structures on polarised manifolds. We start by defining the different types of double structures that a polarised manifold may have.
Definition 10.1. Let (M, φ) be a polarised manifold.

- A generalised double structure on (M, φ) is a diffeomorphism $h: T \cup_{g_{0}} W \cup_{g_{1}} T \rightarrow M$ such that $\varphi \simeq h \circ i_{1} \circ f_{T}$, where $f_{T}: K \rightarrow T$ is a thickening, W is an h-cobordism with $\partial W=\partial_{0} W \sqcup \partial_{1} W$, $g_{0}: \partial_{0} W \rightarrow \partial T$ and $g_{1}: \partial T \rightarrow \partial_{1} W$ are diffeomorphisms and $i_{1}: T \rightarrow T \cup_{g_{0}} W \cup_{g_{1}} T$ is the inclusion of the first component.
- A twisted double structure on (M, φ) is a diffeomorphism $h: T \cup_{g} T \rightarrow M$ such that $\varphi \simeq h \circ i_{1} \circ f_{T}$, where $f_{T}: K \rightarrow T$ is a thickening, $g: \partial T \rightarrow \partial T$ is a diffeomorphism, and $i_{1}: T \rightarrow T \cup_{g} T$ is the inclusion of the first component.
- A trivial double structure on (M, φ) is a twisted double structure with $g=\operatorname{Id}_{\partial T}$.

Of course, (M, φ) has a twisted double structure if and only if it has a generalised double structure with $W \approx \partial T \times I$. If the manifold M is of the form $T \cup_{g_{0}} W \cup_{g_{1}} T, T \cup_{g} T$, or $T \cup_{\operatorname{Id}_{\partial T}} T$, then Id_{M} is a generalised/twisted/trivial double structure on $\left(M, i_{1} \circ f_{T}\right)$.
Proposition 10.2. Suppose that $n \geq \max (6,2 k+2)$. Then (M, φ) has a generalised double structure if and only if φ is $\left\lfloor\frac{n}{2}\right\rfloor$-connected.
Proof. First assume that a generalised double structure h exists as in Definition 10.1. By Lemma 9.8 (a), the inclusion $T \rightarrow T \cup W$ is a homotopy equivalence. By Lemma 9.5 the pair $(T, \partial T)$ is $(n-k-1)$ connected, and by homotopy excision the same holds for the pair $(T \cup W \cup T, T \cup W)$. Therefore i_{1} is $(n-k-1)$-connected too. Since $\varphi \simeq h \circ i_{1} \circ f_{T}$ and h and f_{T} are homotopy equivalences, φ is also $(n-k-1)$-connected, in particular it is $\left\lfloor\frac{n}{2}\right\rfloor$-connected.

Now assume that φ is $\left\lfloor\frac{n}{2}\right\rfloor$-connected. By Lemma 9.4 there is a thickening $f_{T}: K \rightarrow T$ of K and an embedding $i: T \rightarrow M$ such that $i \circ f_{T} \simeq \varphi$. Let $C=M \backslash i(\operatorname{Int} T)$ denote the complement of $i(T)$. By Lemma 9.7 the composition $K \xrightarrow{f_{\partial T}} \partial T \xrightarrow{i} i(\partial T) \rightarrow C$, denoted by φ^{\prime}, is a homotopy equivalence. Applying Lemma 9.4 again, there is a thickening $f_{T^{\prime}}: K \rightarrow T^{\prime}$ of K and an embedding $i^{\prime}: T^{\prime} \rightarrow \operatorname{Int} C$ such that $i^{\prime} \circ f_{T^{\prime}} \simeq \varphi^{\prime}$. Moreover, since φ and φ^{\prime} are homotopic as $K \rightarrow M$ maps, f_{T} and $f_{T^{\prime}}$ are equivalent thickenings, i.e. there is a diffeomorphism $H: T \rightarrow T^{\prime}$ such that $H \circ f_{T} \simeq f_{T^{\prime}}$. Let $W=C \backslash i^{\prime}\left(\operatorname{Int} T^{\prime}\right)$. The embedding $i^{\prime}: T^{\prime} \rightarrow C$ is a homotopy equivalence, because $\varphi^{\prime}: K \rightarrow C$ and $f_{T^{\prime}}$ are both homotopy equivalences and $i^{\prime} \circ f_{T^{\prime}} \simeq \varphi^{\prime}$. So by Lemma 9.8 (b) W is an h cobordism. Therefore the decomposition $M=i(T) \cup W \cup\left(i^{\prime} \circ H\right)(T)$ determines a generalised double structure on (M, φ).

Corollary 10.3. Suppose that $n \geq \max (6,2 k+2)$, and let N be a closed n-manifold. If (M, φ) has a generalised double structure and $M \simeq N$, then (N, ψ) also has a generalised double structure for some $\psi: K \rightarrow N$.
Proof. If $h: M \rightarrow N$ is a homotopy equivalence, then $\psi:=h \circ \varphi$ is $\left\lfloor\frac{n}{2}\right\rfloor$-connected.
10.2. The Whitehead torsion of a polarised double. Next we define and study the invariant $\tau(M, \varphi)$, the torsion associated to a polarised double. Note that this invariant gives an invariant of a single polarised manifold, and not of a homotopy equivalence between manifolds.
Definition 10.4. Suppose that $n \geq \max (6,2 k+2)$ and φ is $\left\lfloor\frac{n}{2}\right\rfloor$-connected. The Whitehead torsion associated to (M, φ), denoted by $\tau(M, \varphi)$, is defined as follows. Let $f_{T}: K \rightarrow T$ be a thickening and let $i: T \rightarrow M$ be an embedding such that $i \circ f_{T} \simeq \varphi$. Let $C=M \backslash i(\operatorname{Int} T)$ denote the complement of $i(T)$ with inclusion $j: C \rightarrow M$, and let φ^{\prime} be the composition

$$
\varphi^{\prime}: K \xrightarrow{f_{\partial T}} \partial T \xrightarrow{i} i(\partial T) \rightarrow C
$$

Then

$$
\tau(M, \varphi)=j_{*}\left(\tau\left(\varphi^{\prime}\right)\right) \in \mathrm{Wh}\left(\pi_{1}(M)\right) .
$$

Proposition 10.5. The Whitehead torsion $\tau(M, \varphi)$ is well-defined.
Proof. First we check that the assumptions made in Definition 10.4 are satisfied. A suitable thickening f_{T} and embedding i exist by Lemma 9.4. The composition $\varphi^{\prime}: K \rightarrow C$ is a homotopy equivalence by Lemma 9.7, so $\tau\left(\varphi^{\prime}\right) \in \mathrm{Wh}\left(\pi_{1}(C)\right)$ is defined. Since $j \circ \varphi^{\prime} \simeq \varphi$ and $\pi_{1}(\varphi)$ and $\pi_{1}\left(\varphi^{\prime}\right)$ are isomorphisms, $j_{*}: \mathrm{Wh}\left(\pi_{1}(C)\right) \rightarrow \mathrm{Wh}\left(\pi_{1}(M)\right)$ is an isomorphism too.

Next we check that $\tau(M, \varphi)$ is independent of choices. By Lemma 9.4, the thickening f_{T} is well-defined (up to equivalence). Suppose that $i_{0}: T \rightarrow M$ and $i_{1}: T \rightarrow M$ are two embeddings with $i_{0} \circ f_{T} \simeq i_{1} \circ f_{T} \simeq \varphi$ and corresponding $C_{0}, j_{0}, \varphi_{0}^{\prime}$ and $C_{1}, j_{1}, \varphi_{1}^{\prime}$. We will prove that

$$
\left(j_{0}\right)_{*}\left(\tau\left(\varphi_{0}^{\prime}\right)\right)=\left(j_{1}\right)_{*}\left(\tau\left(\varphi_{1}^{\prime}\right)\right)
$$

Since $n \geq 2 k+2$, we can assume that f_{T} is an embedding, and since the embeddings $i_{0} \circ f_{T}$ and $i_{1} \circ f_{T}: K \rightarrow M$ are homotopic, they are isotopic [Whi36, Theorem 6].

By the isotopy extension theorem there is a diffeomorphism $H: M \rightarrow M$, isotopic to Id_{M}, such that $i_{0} \circ f_{T}=H \circ i_{1} \circ f_{T}$. Let $i_{2}=H \circ i_{1}, C_{2}=H\left(C_{1}\right)=M \backslash i_{2}(\operatorname{Int} T), j_{2}=H \circ j_{1} \circ H^{-1}: C_{2} \rightarrow M$ and $\varphi_{2}^{\prime}=H \circ \varphi_{1}^{\prime}: K \rightarrow C_{2}$.

Since H is a diffeomorphism, $\tau\left(\varphi_{2}^{\prime}\right)=H_{*}\left(\tau\left(\varphi_{1}^{\prime}\right)\right) \in \mathrm{Wh}\left(\pi_{1}\left(C_{2}\right)\right)$ by Proposition 2.30 and Theorem 2.5, and hence $\left(j_{2}\right)_{*}\left(\tau\left(\varphi_{2}^{\prime}\right)\right)=H_{*} \circ\left(j_{1}\right)_{*}\left(\tau\left(\varphi_{1}^{\prime}\right)\right)$. We have $H_{*}=\mathrm{Id}: \mathrm{Wh}\left(\pi_{1}(M)\right) \rightarrow$ $\mathrm{Wh}\left(\pi_{1}(M)\right)$, because $H \simeq \operatorname{Id}_{M}$, therefore $\left(j_{2}\right)_{*}\left(\tau\left(\varphi_{2}^{\prime}\right)\right)=\left(j_{1}\right)_{*}\left(\tau\left(\varphi_{1}^{\prime}\right)\right)$. So it is enough to prove that

$$
\left(j_{0}\right)_{*}\left(\tau\left(\varphi_{0}^{\prime}\right)\right)=\left(j_{2}\right)_{*}\left(\tau\left(\varphi_{2}^{\prime}\right)\right)
$$

The image of $i_{0} \circ f_{T}=i_{2} \circ f_{T}: K \rightarrow M$ is contained in $i_{0}(T) \cap i_{2}(T)$, so we can apply Lemma 9.4 to get an embedding $i_{3}: T \rightarrow i_{0}(T) \cap i_{2}(T)$ such that $i_{3} \circ f_{T} \simeq i_{0} \circ f_{T}$, and define the corresponding $C_{3}:=M \backslash i_{3}(\operatorname{Int} T)$, with inclusion $j_{3}: C_{3} \rightarrow M$, and $\varphi_{3}^{\prime}: K \rightarrow C_{3}$. Since $i_{3}(T) \subseteq i_{0}(T)$, we have $C_{3} \supseteq C_{0}$. Let $h: i_{3}(T) \rightarrow i_{0}(T)$ and $h^{\prime}: C_{0} \rightarrow C_{3}$ denote the inclusions (hence $j_{0}=j_{3} \circ h^{\prime}$).

By construction, $h \circ i_{3} \circ f_{T} \simeq i_{0} \circ f_{T}: K \rightarrow i_{0}(T)$. Since f_{T} and the diffeomorphisms $i_{0}: T \rightarrow$ $i_{0}(T)$ and $i_{3}: T \rightarrow i_{3}(T)$ are simple homotopy equivalences, h is a simple homotopy equivalence too. By Lemma $9.8(\mathrm{~b})$ and (c), we see that $i_{0}(T) \backslash i_{3}(\operatorname{Int} T)$ is an s-cobordism, and this in turn implies that h^{\prime} is a simple homotopy equivalence. We have $j_{3} \circ h^{\prime} \circ \varphi_{0}^{\prime}=j_{0} \circ \varphi_{0}^{\prime} \simeq \varphi$, so by Lemma $9.7(\mathrm{~b})$, we have that $h^{\prime} \circ \varphi_{0}^{\prime} \simeq \varphi_{3}^{\prime}: K \rightarrow C_{3}$. Use this, Proposition 2.30, and the fact that $\tau\left(h^{\prime}\right)=0$, to deduce that

$$
\left(j_{3}\right)_{*}\left(\tau\left(\varphi_{3}^{\prime}\right)\right)=\left(j_{3}\right)_{*}\left(\tau\left(h^{\prime} \circ \varphi_{0}^{\prime}\right)\right)=\left(j_{3}\right)_{*}\left(h_{*}^{\prime}\left(\tau\left(\varphi_{0}^{\prime}\right)\right)\right)=\left(j_{0}\right)_{*}\left(\tau\left(\varphi_{0}^{\prime}\right)\right) .
$$

Since also $i_{3}(T) \subseteq i_{2}(T)$, we can prove similarly that $\left(j_{3}\right)_{*}\left(\tau\left(\varphi_{3}^{\prime}\right)\right)=\left(j_{2}\right)_{*}\left(\tau\left(\varphi_{2}^{\prime}\right)\right)$. Therefore $\left(j_{0}\right)_{*}\left(\tau\left(\varphi_{0}^{\prime}\right)\right)=\left(j_{2}\right)_{*}\left(\tau\left(\varphi_{2}^{\prime}\right)\right)$ as required.

Proposition 10.6. Suppose that $n \geq \max (6,2 k+2)$ and (M, φ) has a generalised double structure $h: T \cup_{g_{0}} W \cup_{g_{1}} T \rightarrow M$, and let i_{1}, i_{2}, and i_{3} denote the inclusions of the three components of $T \cup_{g_{0}} W \cup_{g_{1}} T$.
(a) There is a homotopy automorphism $\alpha: K \rightarrow K$ such that $\varphi \circ \alpha \simeq h \circ i_{3} \circ f_{T}: K \rightarrow M$, and such an α is unique up to homotopy.
(b) This α satisfies $\alpha^{*}\left(\varphi^{*}\left(\nu_{M}\right)\right) \cong \varphi^{*}\left(\nu_{M}\right)$.
(c) For this α, we have $\tau(M, \varphi)=\left(h \circ i_{2}\right)_{*}\left(\tau\left(W, \partial_{1} W\right)\right)-\varphi_{*}(\tau(\alpha))$.

Proof. First we introduce some notation. Let $i=h \circ i_{1}: T \rightarrow M, C=h\left(W \cup_{g_{1}} T\right)$, and $\varphi^{\prime}=$ $h \circ i_{1} \circ f_{\partial T}: K \rightarrow C$, and let $j: C \rightarrow M$ denote the inclusion. Then, by Definition 10.4, we have $\tau(M, \varphi)=j_{*}\left(\tau\left(\varphi^{\prime}\right)\right)=h_{*}\left(\tau\left(\varphi^{\prime \prime}\right)\right)$, where $\varphi^{\prime \prime}=i_{1} \circ f_{\partial T}: K \rightarrow W \cup_{g_{1}} T$.
(a) By Lemma 9.7, φ^{\prime} is a homotopy equivalence, and since $\left.h\right|_{W \cup_{g_{1}} T}: W \cup_{g_{1}} T \rightarrow C$ is a diffeomorphism, $\varphi^{\prime \prime}$ is a homotopy equivalence too. Let

$$
\alpha:=\left(\varphi^{\prime \prime}\right)^{-1} \circ i_{3} \circ f_{T}: K \rightarrow K
$$

where i_{3} is regarded as an inclusion $T \rightarrow W \cup_{g_{1}} T$ and $\left(\varphi^{\prime \prime}\right)^{-1}: W \cup_{g_{1}} T \rightarrow K$ is the homotopy inverse of $\varphi^{\prime \prime}$. By Lemma 9.8 (a), i_{3} is a homotopy equivalence, so α is a homotopy equivalence too. Moreover, we compute that

$$
\varphi \circ \alpha \simeq h \circ i_{1} \circ f_{T} \circ \alpha \simeq h \circ i_{1} \circ f_{\partial T} \circ \alpha=h \circ \varphi^{\prime \prime} \circ \alpha \simeq h \circ i_{3} \circ f_{T}: K \rightarrow M .
$$

If $\alpha, \alpha^{\prime}: K \rightarrow K$ are two maps such that $\varphi \circ \alpha \simeq \varphi \circ \alpha^{\prime}: K \rightarrow M$, then $\alpha \simeq \alpha^{\prime}$, because φ is $\left\lfloor\frac{n}{2}\right\rfloor$-connected and K has dimension $k \leq\left\lfloor\frac{n}{2}\right\rfloor-1$.
(b) Since $\varphi \circ \alpha \simeq h \circ i_{3} \circ f_{T}$, we have $\alpha^{*}\left(\varphi^{*}\left(\nu_{M}\right)\right) \cong f_{T}^{*}\left(\left(h \circ i_{3}\right)^{*}\left(\nu_{M}\right)\right) \cong f_{T}^{*}\left(\nu_{T}\right)$, where we used that $h \circ i_{3}: T \rightarrow M$ is a codimension 0 embedding. Since $\varphi \simeq h \circ i_{1} \circ f_{T}$, and $h \circ i_{1}: T \rightarrow M$ is a codimension 0 embedding, we similarly obtain $\varphi^{*}\left(\nu_{M}\right) \cong f_{T}^{*}\left(\nu_{T}\right)$. Hence $\alpha^{*}\left(\varphi^{*}\left(\nu_{M}\right)\right) \cong \varphi^{*}\left(\nu_{M}\right)$.
(c) It follows from the definition of α that $\varphi^{\prime \prime} \simeq i_{3} \circ f_{T} \circ \alpha^{-1}: K \rightarrow W \cup_{g_{1}} T$. We have

$$
\tau\left(i_{3} \circ f_{T} \circ \alpha^{-1}\right)=\tau\left(i_{3}\right)+\left(i_{3}\right)_{*}\left(\tau\left(f_{T}\right)\right)+\left(i_{3} \circ f_{T}\right)_{*}\left(\tau\left(\alpha^{-1}\right)\right)
$$

by Proposition 2.30. The map f_{T} is a simple homotopy equivalence, and by Lemma 9.8 (c), we have that $\tau\left(i_{3}\right)=\left(i_{2}\right)_{*}\left(\tau\left(W, \partial_{1} W\right)\right)$, where i_{2} is regarded as an embedding $W \rightarrow W \cup_{g_{1}} T$. We also have $0=\tau\left(\alpha^{-1} \circ \alpha\right)=\tau\left(\alpha^{-1}\right)+\alpha_{*}^{-1}(\tau(\alpha))$, so

$$
\tau\left(i_{3} \circ f_{T} \circ \alpha^{-1}\right)=\left(i_{2}\right)_{*}\left(\tau\left(W, \partial_{1} W\right)\right)-\left(i_{3} \circ f_{T} \circ \alpha^{-1}\right)_{*}(\tau(\alpha)) .
$$

Since $\varphi \simeq h \circ i_{3} \circ f_{T} \circ \alpha^{-1}$, we obtain

$$
\tau(M, \varphi)=h_{*}\left(\tau\left(\varphi^{\prime \prime}\right)\right)=h_{*}\left(\tau\left(i_{3} \circ f_{T} \circ \alpha^{-1}\right)\right)=\left(h \circ i_{2}\right)_{*}\left(\tau\left(W, \partial_{1} W\right)\right)-\varphi_{*}(\tau(\alpha)) .
$$

Corollary 10.7. Suppose that $n \geq \max (6,2 k+2)$ and (M, φ) has a twisted double structure $h: T \cup_{g} T \rightarrow M$. Let $\alpha \in \operatorname{hAut}(K)$ be the image of g under the restriction map $\operatorname{hAut}(\partial T) \rightarrow$ hAut (K) (see Remark 10.13, Lemma 11.3 and Remark 11.4). Then $\tau(M, \varphi)=-\varphi_{*}(\tau(\alpha))$.

Proof. Since the twisted double structure of (M, φ) determines a generalised double structure with $W \approx \partial T \times I$, it is enough to show that $\varphi \circ \alpha \simeq h \circ i_{2} \circ f_{T}: K \rightarrow M$, where $i_{2}: T \rightarrow T \cup_{g} T$ is the inclusion of the second component. This holds, because

$$
\varphi \circ \alpha \simeq h \circ i_{1} \circ f_{T} \circ \alpha \simeq h \circ i_{1} \circ f_{\partial T} \circ \alpha \simeq h \circ i_{1} \circ g \circ f_{\partial T}=h \circ i_{2} \circ f_{\partial T} \simeq h \circ i_{2} \circ f_{T}
$$

Corollary 10.8. Suppose that $n \geq \max (6,2 k+2)$ and (M, φ) has a trivial double structure. Then $\tau(M, \varphi)=0$.

Proof. We can apply Corollary 10.7 with $g=\operatorname{Id}_{\partial T}$, and hence $\alpha=\operatorname{Id}_{K}$.
Remark 10.9. The converse does not hold. There are even simply-connected counterexamples, e.g. take K to be a point and M an exotic sphere.

Proposition 10.10. Suppose that $n \geq \max (6,2 k+2)$ and φ is $\left\lfloor\frac{n}{2}\right\rfloor$-connected. Then (M, φ) has a twisted double structure if and only if there is a homotopy automorphism $\alpha \in \operatorname{hAut}(K)$ such that there is an isomorphism of stable vector bundles $\alpha^{*}\left(\varphi^{*}\left(\nu_{M}\right)\right) \cong \varphi^{*}\left(\nu_{M}\right)$ and $\tau(M, \varphi)=$ $-\varphi_{*}(\tau(\alpha)) \in \mathrm{Wh}\left(\pi_{1}(M)\right)$.

Proof. If (M, φ) has a twisted double structure, then it follows from Proposition 10.6 (b) and the proof of Corollary 10.7 that such an α exists.

Now suppose that there is an α with $\alpha^{*}\left(\varphi^{*}\left(\nu_{M}\right)\right) \cong \varphi^{*}\left(\nu_{M}\right)$ and $\tau(M, \varphi)=-\varphi_{*}(\tau(\alpha))$. Define $f_{T}: K \rightarrow T, i, C, j$ and φ^{\prime} as in Definition 10.4, so that $\tau(M, \varphi)=j_{*}\left(\tau\left(\varphi^{\prime}\right)\right)$. Let $\psi:=\varphi^{\prime} \circ \alpha: K \rightarrow$ C. Then

$$
j_{*}(\tau(\psi))=j_{*}\left(\tau\left(\varphi^{\prime}\right)+\varphi_{*}^{\prime}(\tau(\alpha))\right)=\tau(M, \varphi)+\left(j \circ \varphi^{\prime}\right)_{*}(\tau(\alpha))=\tau(M, \varphi)+\varphi_{*}(\tau(\alpha))=0
$$

by Proposition 2.30, Lemma 9.7 (b), and the hypothesis. As j_{*} is an isomorphism, this means that ψ is a simple homotopy equivalence, hence $\psi: K \rightarrow C$ is a thickening. Moreover,

$$
\psi^{*}\left(\nu_{C}\right) \cong \alpha^{*}\left(\left(\varphi^{\prime}\right)^{*}\left(j^{*}\left(\nu_{M}\right)\right)\right) \cong \alpha^{*}\left(\varphi^{*}\left(\nu_{M}\right)\right) \cong \varphi^{*}\left(\nu_{M}\right) \cong f_{T}^{*}\left(i^{*}\left(\nu_{M}\right)\right) \cong f_{T}^{*}\left(\nu_{T}\right)
$$

So by Lemma 9.2 the thickenings $\psi: K \rightarrow C$ and $f_{T}: K \rightarrow T$ are equivalent, i.e. there is a diffeomorphism $H: T \rightarrow C$ such that $H \circ f_{T} \simeq \psi$. Then $(i \cup H): T \cup_{g} T \rightarrow M$ is a twisted double structure on (M, φ), where g is the composition

$$
g: \partial T \xrightarrow{H} \partial C=i(\partial T) \xrightarrow{i^{-1}} \partial T .
$$

Corollary 10.11. Suppose that $n \geq \max (6,2 k+2)$ and φ is $\left\lfloor\frac{n}{2}\right\rfloor$-connected. If $\tau(M, \varphi)=0$, then (M, φ) has a twisted double structure.
Proof. Take $\alpha=\operatorname{Id}_{K}$ and apply Proposition 10.10.
10.3. SP manifolds. Next we show that if we impose some mild restrictions on a double (M, φ), then $\tau(M, \varphi)$ can be expressed in terms of the Poincaré duality chain homotopy equivalence.
Definition 10.12. The pair (M, φ) is a split polarised manifold (SP manifold for short) if at least one of the following conditions holds:
(SP1) $n \geq \max (7,2 k+2)$ and (M, φ) has a generalised double structure;
(SP2) $n \geq \max (6,2 k+2)$ and (M, φ) has a twisted double structure; or
(SP3) $n \geq \max (k+3,2 k+1)$ and (M, φ) has a trivial double structure.
Remark 10.13. If $n \geq \max (6,2 k+2)$ and $f_{T}: K \rightarrow T$ is an n-dimensional thickening, then $n-1 \geq \max (k+3,2 k+1)$ and the proof of Lemma 9.6 shows that $\left(\partial T, f_{\partial T}\right)$ satisfies (SP3).

We extend the definition of $\tau(M, \varphi)$ to the case when $\max (6,2 k+2)>n \geq \max (k+3,2 k+1)$ and (M, φ) has a trivial double structure by setting $\tau(M, \varphi)=0$. Then $\tau(M, \varphi)$ is defined for every SP manifold (M, φ), and if (SP3) holds, then $\tau(M, \varphi)=0$.

Theorem 10.14. Suppose that (M, φ) is an SP manifold, and let $G=\pi_{1}(M)$ with orientation character $w: G \rightarrow\{ \pm 1\}$. Then M has a $C W$ decomposition with the following properties.
(a) The $\left\lfloor\frac{n}{2}\right\rfloor$-skeleton of M is identified with K via an embedding $K \rightarrow M$ homotopic to φ.
(b) Let $C_{*}(M)=C_{*}(M ; \mathbb{Z} G)$ denote the cellular chain complex of M with $\mathbb{Z} G$ coefficients. Then $C_{*}(M)$ splits (see Definition 8.2).
(c) Let PD: $C^{n-*}(M) \rightarrow C_{*}(M)$ denote the chain homotopy equivalence induced by Poincaré duality (which is determined up to chain homotopy by a choice of twisted fundamental class $[M] \in H_{n}\left(M ; \mathbb{Z}^{w}\right) \cong \mathbb{Z}$, where \mathbb{Z}^{w} is the orientation module). Then

$$
\tau\left(\left.\mathrm{PD}\right|_{C^{\ell}(M)^{n-*}}: C^{\ell}(M)^{n-*} \rightarrow C_{*}^{u}(M)\right)=\tau(M, \varphi) \in \mathrm{Wh}(G, w)
$$

Proof. (a) Let $h: T \cup_{g_{0}} W \cup_{g_{1}} T \rightarrow M$ or $h: T \cup_{g} T \rightarrow M$ be a generalised, twisted or trivial double structure on (M, φ) if (SP1), (SP2) or (SP3) holds, respectively (in the last case $g=\operatorname{Id}_{\partial T}$). Let i_{1}, i_{2} and i_{3} denote the embeddings of the components of $T \cup_{g_{0}} W \cup_{g_{1}} T$, or let i_{1} and i_{2} denote the embeddings of the components of $T \cup_{g} T$.

The thickening T has a handlebody decomposition such that the embedding $f_{T}: K \rightarrow T$ identifies K with the CW complex formed by the cores of the handles, in particular there is a bijection between the i-handles and the i-cells of K (see [Wal66, §7]). This handlebody decomposition determines a Morse function $m_{0}: T \rightarrow[0,1]$ such that index- i critical points of m_{0} correspond to i-handles and $m_{0}^{-1}(1)=\partial T$. By the normal form lemma [Mil65], [Lüc02, Lemma 1.24], if $n \geq 7$, then there is a Morse function $m_{1}: W \rightarrow[0,1]$ on the h-cobordism W such that all critical points have index $\left\lfloor\frac{n}{2}\right\rfloor+1$ or $\left\lfloor\frac{n}{2}\right\rfloor+2$, and $m_{1}^{-1}(0)=\partial_{0} W$ and $m_{1}^{-1}(1)=\partial_{1} W$.

Now we can define a Morse function $m: M \rightarrow \mathbb{R}$ on M. In the case of (SP1) we take m_{0} on $h \circ i_{1}(T), m_{1}+1$ on $h \circ i_{2}(W)$ and $3-m_{0}$ on $h \circ i_{3}(T)$. In the case of (SP2) and (SP3) we take m_{0} on $h \circ i_{1}(T)$ and $2-m_{0}$ on $h \circ i_{2}(T)$.

The Morse function m determines a handlebody decomposition of M, and by [Mat02, Theorem 4.18] M is homeomorphic to the CW complex formed by the cores of the handles (having one i-cell for each index- i critical point of m). The critical points of m have index at most $k \leq\left\lfloor\frac{n}{2}\right\rfloor$ in $h \circ i_{1}(T),\left\lfloor\frac{n}{2}\right\rfloor+1$ or $\left\lfloor\frac{n}{2}\right\rfloor+2$ in $h \circ i_{2}(W)$, and at least $n-k \geq\left\lfloor\frac{n}{2}\right\rfloor+1$ in $h \circ i_{2}(T)$ or $h \circ i_{3}(T)$. Therefore the $\left\lfloor\frac{n}{2}\right\rfloor$-skeleton of M consists of the cores of the handles in $h \circ i_{1}(T)$.

Let $f_{M}=h \circ i_{1} \circ f_{T}: K \rightarrow M$, then by the above f_{M} identifies the $\left\lfloor\frac{n}{2}\right\rfloor$-skeleton of M (which is also the k-skeleton) with K. Moreover, $f_{M} \simeq \varphi$ by Definition 10.1.
(b) If $n \geq 2 k+2$, then $k \leq\left\lfloor\frac{n}{2}\right\rfloor-1$, so M has no $\left\lfloor\frac{n}{2}\right\rfloor$-cells. This means that $C_{\lfloor n / 2\rfloor}(M)=0$, hence $C_{*}(M)$ splits.

If $n=2 k+1$, then (M, φ) satisfies (SP3), so h^{-1} is a diffeomorphism $M \rightarrow T \cup_{\mathrm{Id}_{\partial T}} T$. There is a well-defined retraction $\operatorname{Id}_{T} \cup \operatorname{Id}_{T}: T \cup_{\operatorname{Id}_{\partial T}} T \rightarrow T$. Since the embedding f_{T} is a homotopy equivalence, K is a deformation retract of T, and we can compose h^{-1} with the two retractions to get a retraction $r: M \rightarrow K$. It induces a chain map $C_{*}(r): C_{*}(M) \rightarrow C_{*}(K)$ such that the composition $C_{*}(K) \xrightarrow{C_{*}\left(f_{M}\right)} C_{*}(M) \xrightarrow{C_{*}(r)} C_{*}(K)$ is the identity. Since $C_{i}\left(f_{M}\right)$ is an isomorphism for $i \leq k$, we get that $C_{k}(r)$ is an isomorphism too, and this implies that the differential $C_{k+1}(M) \rightarrow$ $C_{k}(M)$ vanishes. Therefore $C_{*}(M)$ splits.
(c) Let $\bar{m}=-m: M \rightarrow \mathbb{R}$ be the reverse Morse function on M. It has the same critical points as m, with index- i critical points turning into index- $(n-i)$ critical points. It determines a new

CW complex homeomorphic to M, which we will denote by \bar{M}. By cellular approximation there is a cellular map $\iota: M \rightarrow \bar{M}$ homotopic to Id_{M}.

Now let $I: C^{n-*}(M) \rightarrow C_{*}(\bar{M})$ denote the isomorphism that sends the (cochain) dual of an $(n-i)$-cell of M to the corresponding i-cell of \bar{M}. Then the chain homotopy equivalence PD: $C^{n-*}(M) \rightarrow C_{*}(M)$ inducing Poincaré duality can be defined (up to chain homotopy) as the composition $C_{*}(\iota)^{-1} \circ I$, where $C_{*}(\iota)^{-1}$ denotes the homotopy inverse of the chain homotopy equivalence $C_{*}(\iota): C_{*}(M) \rightarrow C_{*}(\bar{M})$.

The chain complex $C_{*}(\bar{M})$ splits, because $C^{n-*}(M)$ splits and I is an isomorphism. By Lemma 8.4, we have that PD, I, and $C_{*}(\iota)$ all restrict to chain homotopy equivalences between the upper and lower halves of the chain complexes involved, and $\left.C_{*}(\iota)^{-1}\right|_{C_{*}^{\ell}(\bar{M})}=\left(\left.C_{*}(\iota)\right|_{C_{*}^{\ell}(M)}\right)^{-1}$ and $\left.C_{*}(\iota)^{-1}\right|_{C_{*}^{u}(\bar{M})}=\left(\left.C_{*}(\iota)\right|_{C_{*}^{u}(M)}\right)^{-1}$ (up to chain homotopy). Hence we have:

$$
\left.\mathrm{PD}\right|_{C^{u}(M)^{n-*}}=\left.\left(\left.C_{*}(\iota)\right|_{C_{*}^{\ell}(M)}\right)^{-1} \circ I\right|_{C^{u}(M)^{n-*}},\left.\quad \mathrm{PD}\right|_{C^{\ell}(M)^{n-*}}=\left.\left(\left.C_{*}(\iota)\right|_{C_{*}^{u}(M)}\right)^{-1} \circ I\right|_{C^{\ell}(M)^{n-*}} .
$$

Since the isomorphism I and its restrictions preserve the standard bases, this implies that

$$
\tau\left(\left.\mathrm{PD}\right|_{C^{u}(M)^{n-*}}\right)=-\tau\left(\left.C_{*}(\iota)\right|_{C_{*}^{\ell}(M)}\right) \text { and } \tau\left(\left.\mathrm{PD}\right|_{C^{\ell}(M)^{n-*}}\right)=-\tau\left(\left.C_{*}(\iota)\right|_{C_{*}^{u}(M)}\right) .
$$

Now note that $\tau\left(\left.C_{*}(\iota)\right|_{C_{*}^{u}(M)}\right)+\tau\left(\left.C_{*}(\iota)\right|_{C_{*}^{\ell}(M)}\right)=\tau\left(C_{*}(\iota)\right)=0$. Here we used that ι is homotopic to Id_{M}, so we can apply Proposition 2.14 and Lemma 2.15 to deduce that $\tau\left(C_{*}(\iota)\right)=0$. Therefore $\tau\left(\left.\mathrm{PD}\right|_{C^{\ell}(M)^{n-*}}\right)=-\tau\left(\left.C_{*}(\iota)\right|_{C_{*}^{u}(M)}\right)=\tau\left(\left.C_{*}(\iota)\right|_{C_{*}^{\ell}(M)}\right)$.

Let L denote the $\left\lfloor\frac{n}{2}\right\rfloor$-skeleton of \bar{M} and let $C=M \backslash h \circ i_{1}(\operatorname{Int} T)$. In \bar{M} the handles corresponding to the critical points of \bar{m} of index at most $\left\lfloor\frac{n}{2}\right\rfloor$ (which are the critical points of m of index at least $\left\lceil\frac{n}{2}\right\rceil$) together make up C, and L consists of the cores of these handles. By [Mat02, Theorem 4.18], it follows that C is homeomorphic to the mapping cylinder of the projection $\partial C \rightarrow L$, so the inclusion $L \rightarrow C$ is a simple homotopy equivalence by Proposition 2.29. The cellular map ι restricts to a map $\left.\iota\right|_{f_{M}(K)}: f_{M}(K) \rightarrow L$ between the $\left\lfloor\frac{n}{2}\right\rfloor$-skeletons of M and \bar{M}. The inclusions determine isomorphisms $C_{*}^{\ell}(M) \cong C_{*}\left(f_{M}(K)\right)$ and $C_{*}^{\ell}(\bar{M}) \cong C_{*}(L)$ (preserving the standard bases), hence $\tau\left(\left.C_{*}(\iota)\right|_{C_{*}^{\ell}(M)}\right)=\tau\left(\left.\iota\right|_{f_{M}(K)}\right)$.

First assume that (SP1) or (SP2) holds. Let φ^{\prime} denote the composition $K \xrightarrow{f_{\partial T}} \partial T \xrightarrow{i_{1}} i_{1}(\partial T) \rightarrow$ C, so that $\tau(M, \varphi)=\tau\left(\varphi^{\prime}\right)$ (when $\pi_{1}(C)$ is identified with $\pi_{1}(M)$ via the inclusion). The composition $K \xrightarrow{f_{M}} f_{M}(K) \xrightarrow{\iota} L \rightarrow C \rightarrow M$ is homotopic to φ, because $f_{M} \simeq \varphi$ and $\iota \simeq \operatorname{Id}_{M}$. So by Lemma $9.7(\mathrm{~b})$ the composition $K \xrightarrow{f_{M}} f_{M}(K) \xrightarrow{\iota} L \rightarrow C$ is homotopic to φ^{\prime}. This shows that $\tau\left(\left.\iota\right|_{f_{M}(K)}\right)=\tau\left(\varphi^{\prime}\right)=\tau(M, \varphi)$, because the homeomorphism $f_{M}: K \rightarrow f_{M}(K)$ and the inclusion $L \rightarrow C$ have vanishing Whitehead torsion.

Now assume that (SP3) holds. Then $L=h \circ i_{2} \circ f_{T}(K)$ and $\left.r\right|_{L}: L \rightarrow K$ is a homeomorphism (by the definition of r). Moreover, $r \circ \iota \circ f_{M} \simeq r \circ \operatorname{Id}_{M} \circ f_{M}=\operatorname{Id}_{K}$. Since f_{M} is also a homeomorphism, this means that $\left.\iota\right|_{f_{M}(K)}$ is homotopic to a homeomorphism, so $\tau\left(\left.\iota\right|_{f_{M}(K)}\right)=0=\tau(M, \varphi)$.

Therefore $\tau\left(\left.\mathrm{PD}\right|_{C^{\ell}(M)^{n-*}}\right)=\tau(M, \varphi)$ in all cases.

11. The Whitehead torsion of homotopy equivalences of doubles

In this section we prove Theorem G. Fix positive integers n, k with $n \geq 2 k+1$. Let M and N be closed n-manifolds, and let K and L be finite CW complexes of dimension (at most) k. Suppose that $\varphi: K \rightarrow M$ and $\psi: L \rightarrow N$ are continuous maps such that (M, φ) and (N, ψ) are SP manifolds.

Let $F:=\pi_{1}(M)$ and $G:=\pi_{1}(N)$. The maps φ and ψ are $\left\lfloor\frac{n}{2}\right\rfloor$-connected by Proposition 10.2 , so $\pi_{1}(\varphi)$ and $\pi_{1}(\psi)$ are isomorphisms. We use these isomorphisms to identify $\pi_{1}(K)$ with $F=\pi_{1}(M)$ and $\pi_{1}(L)$ with $G=\pi_{1}(N)$.

Let $w_{M}: F \rightarrow\{ \pm 1\}$ and $w=w_{N}: G \rightarrow\{ \pm 1\}$ be the orientation characters of M and N respectively. Fix twisted fundamental classes $[M] \in H_{n}\left(M ; \mathbb{Z}^{w_{M}}\right)$ and $[N] \in H_{n}\left(N ; \mathbb{Z}^{w}\right)$. For any homotopy equivalence $f: M \rightarrow N$ we have $w \circ \pi_{1}(f)=w_{M}$ and $f_{*}([M])=\varepsilon[N]$ for $\varepsilon=1$ or -1 .

Definition 11.1. For topological spaces X, Y, let $\mathrm{hEq}(X, Y)$ denote the set of homotopy classes of homotopy equivalences $X \rightarrow Y$. For an isomorphism $\theta: \pi_{1}(X) \rightarrow \pi_{1}(Y)$, let $\mathrm{hEq}_{\theta}(X, Y) \subseteq$ $\mathrm{hEq}(X, Y)$ denote the subset consisting of homotopy equivalences f such that $\pi_{1}(f)=\theta$.

For $\varepsilon= \pm 1$, let $\mathrm{hEq}(M, N)_{\varepsilon} \subseteq \mathrm{hEq}(M, N)$ denote the subset of degree- ε homotopy equivalences, i.e. those that send $[M]$ to $\varepsilon[N]$. For an isomorphism $\theta: F \rightarrow G$, let $\operatorname{hEq}_{\theta}(M, N)_{\varepsilon}=\operatorname{hEq}_{\theta}(M, N) \cap$ $\operatorname{hEq}(M, N)_{\varepsilon}$.
Lemma 11.2. Suppose that X is a $C W$ complex of dimension at most k, and let $f, g: X \rightarrow L$ be continuous maps. If $\psi \circ f \simeq \psi \circ g: X \rightarrow N$, then $f \simeq g$.
Proof. By Theorem 10.14 (a), N has a CW decomposition such that (up to homotopy) ψ is an embedding identifying L with the $\left\lfloor\frac{n}{2}\right\rfloor$-skeleton of N.

If (N, ψ) satisfies (SP1) or (SP2), then N has no $(k+1)$-cells. Therefore if we make the homotopy between $\psi \circ f$ and $\psi \circ g$ cellular, we obtain a homotopy between f and g.

If (N, ψ) satisfies (SP3), then we can compose the homotopy between $\psi \circ f$ and $\psi \circ g$ with the retraction $r: N \rightarrow L$ from the proof of Theorem 10.14 (b) to get a homotopy between f and g.
Lemma 11.3. There is a well-defined restriction map $\mathrm{hEq}(M, N) \rightarrow \mathrm{hEq}(K, L)$.
Proof. Again we fix CW decompositions on M and N using Theorem 10.14 (a).
Consider a continuous map $M \rightarrow N$. After cellular approximation it can be restricted to a map $K \rightarrow L$, and by Lemma 11.2 the restriction's homotopy class is independent of the choice of the approximation. Therefore restriction defines a map $[M, N] \rightarrow[K, L]$. Similarly we get a map $[N, M] \rightarrow[L, K]$.

Now suppose that $f: M \rightarrow N$ is a cellular homotopy equivalence and g is its cellular homotopy inverse. Then $f \circ g \simeq \operatorname{Id}_{N}$ and $g \circ f \simeq \operatorname{Id}_{M}$, hence $\left.\left.f\right|_{\varphi(K)} \circ g\right|_{\psi(L)} \simeq \operatorname{Id}_{\psi(L)}: \psi(L) \rightarrow N$ and $\left.\left.g\right|_{\psi(L)} \circ f\right|_{\varphi(K)} \simeq \operatorname{Id}_{\varphi(K)}: \varphi(K) \rightarrow M$. Lemma 11.2 implies that $\left.\left.f\right|_{\varphi(K)} \circ g\right|_{\psi(L)} \simeq \operatorname{Id}_{\psi(L)}: \psi(L) \rightarrow$ $\psi(L)$ and $\left.\left.g\right|_{\psi(L)} \circ f\right|_{\varphi(K)} \simeq \operatorname{Id}_{\varphi(K)}: \varphi(K) \rightarrow \varphi(K)$, therefore $\left.f\right|_{\varphi(K)}: \varphi(K) \rightarrow \psi(L)$ is a homotopy equivalence.

Remark 11.4. The restriction $\alpha \in \mathrm{hEq}(K, L)$ of a map $f \in \mathrm{hEq}(M, N)$ is characterised by the property that $\psi \circ \alpha \simeq f \circ \varphi: K \rightarrow N$, i.e. the following diagram is homotopy commutative:

This implies that $\pi_{1}(\alpha)=\pi_{1}(f) \in \operatorname{Hom}(F, G)$. Therefore for every isomorphism $\theta: F \rightarrow G$ the restriction map of Lemma 11.3 restricts to a map $\mathrm{hEq}_{\theta}(M, N) \rightarrow \mathrm{hEq}_{\theta}(K, L)$.

Finally, we will establish the following, which is an equivalent formulation of Theorem G.
Theorem 11.5. For every isomorphism $\theta: F \rightarrow G$ with $w \circ \theta=w_{M}$ there is a commutative diagram

where the vertical map on the left is given by restriction.
Proof. Fix CW decompositions on M and N as in Theorem 10.14. We denote the corresponding (split) cellular chain complexes by $C_{*}(M)=C_{*}(M ; \mathbb{Z} F)$ and $C_{*}(N)=C_{*}(N ; \mathbb{Z} G)$. Let $\mathrm{PD}^{M}: C^{n-*}(M) \rightarrow C_{*}(M)$ and $\mathrm{PD}^{N}: C^{n-*}(N) \rightarrow C_{*}(N)$ denote the chain homotopy equivalences given by Poincaré duality. By Theorem 10.14 (c), we have $\tau\left(\left.\mathrm{PD}^{M}\right|_{C^{\ell}(M)^{n-*}}\right)=\tau(M, \varphi)$ and $\tau\left(\left.\mathrm{PD}^{N}\right|_{C^{\ell}(N)^{n-*}}\right)=\tau(N, \psi)$. We will show that there is a commutative diagram

For the notation see Definitions 2.24 and 8.5. We begin by describing the three maps not yet defined.

Since K and L are the $\left\lfloor\frac{n}{2}\right\rfloor$-skeletons of M and N respectively, we have $C_{*}^{\ell}(M) \cong C_{*}(K)$ (hence $\left.C_{*}^{\ell}(M)_{\theta^{-1}} \cong C_{*}(K)_{\theta^{-1}}\right)$ and $C_{*}^{\ell}(N) \cong C_{*}(L)$. By Lemma 8.4, there is a restriction map $\operatorname{chEq}\left(C_{*}(M)_{\theta^{-1}}, C_{*}(N)\right) \rightarrow \operatorname{chEq}\left(C_{*}(K)_{\theta^{-1}}, C_{*}(L)\right)$, and we define the vertical map in the middle to be its restriction to $\operatorname{chEq}\left(C_{*}(M)_{\theta^{-1}}, C_{*}(N)\right)_{\mathrm{PD}^{M}, \mathrm{PD}^{N}}$.

Suppose that $f \in \mathrm{hEq}_{\theta}(K, L)$, then f induces a chain map $C_{*}\left(K ; \mathbb{Z} G^{\theta}\right) \rightarrow C_{*}(L ; \mathbb{Z} G)$. We have $C_{*}\left(K ; \mathbb{Z} G^{\theta}\right) \cong C_{*}(K ; \mathbb{Z} F)_{\theta^{-1}}$ (see Lemma 2.25 (a)), so taking the induced chain map defines a $\operatorname{map} C_{*}(-): \operatorname{hEq}_{\theta}(K, L) \rightarrow \operatorname{chEq}\left(C_{*}(K)_{\theta^{-1}}, C_{*}(L)\right)$.

Similarly, a homotopy equivalence $f \in \mathrm{hEq}_{\theta}(M, N)$ induces maps

$$
\begin{aligned}
& C_{*}(f): C_{*}\left(M ; \mathbb{Z} G^{\theta}\right) \cong C_{*}(M)_{\theta^{-1}} \rightarrow C_{*}(N ; \mathbb{Z} G)=C_{*}(N) \\
& C^{*}(f): C^{*}(N ; \mathbb{Z} G)=C^{*}(N) \rightarrow C^{*}\left(M ; \mathbb{Z} G^{\theta}\right) \cong C^{*}(M)_{\theta^{-1}}
\end{aligned}
$$

where the last isomorphism follows from Lemma 2.25 (b). Moreover, $C^{*}\left(M ; \mathbb{Z} G^{\theta}\right)$ is the dual of $C_{*}(M)_{\theta^{-1}}$, and $C^{*}(f)$ is identified with the dual of $C_{*}(f)$. The chain homotopy equivalence $C^{n-*}\left(M ; \mathbb{Z} G^{\theta}\right) \cong C^{n-*}(M)_{\theta^{-1}} \rightarrow C_{*}\left(M ; \mathbb{Z} G^{\theta}\right) \cong C_{*}(M)_{\theta^{-1}}$ given by Poincaré duality (with $\mathbb{Z} G^{\theta}$ coefficients) is identified with PD^{M} under the identification Hom $\left(C^{n-*}(M)_{\theta^{-1}}, C_{*}(M)_{\theta^{-1}}\right)=$ $\operatorname{Hom}\left(C^{n-*}(M), C_{*}(M)\right)$. If f has degree 1, i.e. $f_{*}([M])=[N]$, then it induces a homotopy commutative diagram

since Poincaré duality can be defined by taking cap product with the fundamental class. Therefore we get a restricted map $C_{*}(-): \mathrm{hEq}_{\theta}(M, N)_{1} \rightarrow \operatorname{chEq}\left(C_{*}(M)_{\theta^{-1}}, C_{*}(N)\right)_{\mathrm{PD}^{M}, \mathrm{PD}^{N}}$.

Next we verify that the diagram in (11.1) commutes. The square on the left commutes since both downward pointing arrows are defined by restriction. The square on the right commutes by Lemma 8.6. Note that if $\left.\mathrm{PD}^{M}\right|_{C^{\ell}(M)^{n-*}}$ is regarded as a chain homotopy equivalence $C^{\ell}(M)_{\theta^{-1}}^{n-*} \rightarrow$ $C_{*}^{u}(M)_{\theta^{-1}}$ (instead of $\left.C^{\ell}(M)^{n-*} \rightarrow C_{*}^{u}(M)\right)$, then its Whitehead torsion is $\theta_{*}(\tau(M, \varphi))$ (instead of $\tau(M, \varphi)$), see Lemma 2.26.

The Whitehead torsion of a homotopy equivalence is defined as the Whitehead torsion of the induced chain homotopy equivalence, so we get a commutative diagram

We can apply the same argument to $-N$ instead of N (where $-N$ is the same manifold N with the opposite twisted fundamental class $[-N]=-[N]$). Then we get a commutative diagram
because $\operatorname{hEq}_{\theta}(M,-N)_{1}=\operatorname{hEq}_{\theta}(M, N)_{-1}$ and $\tau(-N, \psi)=\tau(N, \psi)$ (because the definition of $\tau(N, \psi)$ does not depend on the choice of the twisted fundamental class).

Since $\mathrm{hEq}_{\theta}(M, N)=\mathrm{hEq}_{\theta}(M, N)_{1} \sqcup \mathrm{hEq}_{\theta}(M, N)_{-1}$, we can combine the two diagrams to get the diagram in the statement.

12. Applications

Now we consider some applications of Theorem G and prove the results announced in Section 1.5.
12.1. Simple doubles. Let (M, φ) be a polarised manifold such that $\tau(M, \varphi)$ is defined. We say that (M, φ) is simple if $\tau(M, \varphi)=0$. Recall from Corollaries 10.8 and 10.11 that if (M, φ) has a trivial double structure, then it is simple, and if (M, φ) is simple, then it has a twisted double structure. We now state a consequence of Theorem 11.5 in the special case when (M, φ) is simple, and then use it to prove Theorem 1.7.

Theorem 12.1. Suppose that M and N are n-manifolds, K and L are $C W$ complexes of dimension (at most) k, and $\varphi: K \rightarrow M$ and $\psi: L \rightarrow N$ are continuous maps such that (M, φ) and (N, ψ) are SP manifolds. Let $G=\pi_{1}(N)$ with orientation character $w: G \rightarrow\{ \pm 1\}$, and identify $\pi_{1}(L)$ with G via ψ. Suppose that $\tau(M, \varphi)=0$. Then there is a commutative diagram

where the vertical map on the left is given by restriction.
Proof. We have $\mathrm{hEq}(M, N)=\bigsqcup_{\theta} \mathrm{hEq}_{\theta}(M, N)$, where the union ranges over all isomorphisms $\theta: \pi_{1}(M) \rightarrow G$ with $w \circ \theta=w_{M}$, where w_{M} is the orientation character of M. For each such θ we can apply Theorem 11.5, and since $\theta_{*}(\tau(M, \varphi))=0$, we can combine the resulting diagrams to get the diagram in the statement.

The following is obtained by further specialising.
Theorem 12.2. Suppose that M is an n-manifold, K is a $C W$ complex of dimension (at most) k, and $\varphi: K \rightarrow M$ is a continuous map such that (M, φ) is an SP manifold. Let $G=\pi_{1}(M)$ with orientation character $w: G \rightarrow\{ \pm 1\}$, and identify $\pi_{1}(K)$ with G via φ. Suppose that $\tau(M, \varphi)=0$. Then there is a commutative diagram

where the vertical map on the left is given by restriction.
Proof. Apply Theorem 12.1 to the case where $M=N, K=L$, and $\varphi=\psi$.
In particular, this implies that $\tau(g) \in \mathcal{I}_{n}(G, w)$ for every $g \in \operatorname{hAut}(M)$, hence $T(M) \subseteq \mathcal{I}_{n}(G, w)$ and $U(M)=\{0\}$ (see Definition 4.19).

We use this to show the following theorem, which implies Theorem 1.7. For the definition of the map ψ, see Section 3.2.

Theorem 12.3 (cf. Hausmann [Hau80, Sections 9-10]). Let $n \geq 5$, let G be a finitely presented group and let $w: G \rightarrow\{ \pm 1\}$ be such that $\psi: L_{n+1}^{h}(\mathbb{Z} G, w) \rightarrow \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$ is nontrivial. Then there exists an n-manifold M with fundamental group G and orientation character w such that $\left|\mathcal{M}_{s, \mathrm{hCob}}^{h}(M)\right|>1$.

Proof. Let K be a finite 2-dimensional CW complex with $\pi_{1}(K) \cong G$ (and we fix an isomorphism). Let ν be a stable vector bundle over K with orientation character w. By Lemma 9.2 and Remark 9.3 there is an n-dimensional thickening $f_{T}: K \rightarrow T$ such that $f_{T}^{*}\left(\nu_{T}\right) \cong \nu$. Let $M=T \cup_{g} T$ be a twisted double of T such that (M, φ) is an SP manifold and $\tau(M, \varphi)=0$, where φ is the composition of f_{T} and the inclusion $T \rightarrow M$ of the first component (e.g. let $g=\operatorname{Id}_{\partial T}$). Then $\pi_{1}(M) \cong G$ with orientation character w.

It follows from Theorem 12.2 that $U(M)=\{0\}$. So $\operatorname{Im}(\psi) \backslash U(M)$ is nonempty, and by Proposition 4.21 this implies that $\left|\mathcal{M}_{s, \mathrm{hCob}}^{h}(M)\right|>1$.

We saw in Proposition 3.12 that for $G=C_{\infty} \times C_{m}, w=0$, and n even, that the map ψ can be nontrivial. So Theorem 12.3 applies in this case.
12.2. Doubles over manifolds. We now consider the special case of Theorem 11.5 when K and L are closed k-manifolds. We get an especially nice statement when $n-k$ is odd. Then we present some applications, proving Theorems H and then C .
Theorem 12.4. Suppose that M and N are n-manifolds, K and L are k-manifolds and $\varphi: K \rightarrow M$ and $\psi: L \rightarrow N$ are continuous maps such that (M, φ) and (N, ψ) are SP manifolds. Let $F=\pi_{1}(M)$ and $G=\pi_{1}(N)$, and identify $\pi_{1}(K)$ with F and $\pi_{1}(L)$ with G via φ and ψ respectively. Let $w_{M}: F \rightarrow\{ \pm 1\}$ be the orientation character of M and let $w=w_{N}: G \rightarrow\{ \pm 1\}$ be the orientation character of N. Assume that the orientation character of L is also w.
(a) If $n-k$ is odd, then $\tau(f)=\tau(N, \psi)-f_{*}(\tau(M, \varphi))$ for every homotopy equivalence $f: M \rightarrow N$.
(b) If $n-k$ is even, then for every isomorphism $\theta: F \rightarrow G$ with $w \circ \theta=w_{M}$ there is a commutative diagram

Proof. Let $f: M \rightarrow N$ be a homotopy equivalence. By Lemma 11.3 it restricts to a homotopy equivalence $\alpha: K \rightarrow L$. By Theorem 11.5 we have $\tau(f)=\tau(\alpha)-(-1)^{n} \overline{\tau(\alpha)}+\tau(N, \psi)-f_{*}(\tau(M, \varphi)) \in$ $\mathrm{Wh}(G, w)$. Since K and L are k-manifolds and the orientation character of L is w, by Proposition 2.34 we see that $\tau(\alpha) \in \mathcal{J}_{k}(G, w)$. That is, $\tau(\alpha)=-(-1)^{k} \overline{\tau(\alpha)} \in \operatorname{Wh}(G, w)$. Therefore

$$
\tau(f)=\tau(\alpha)-(-1)^{n} \overline{\tau(\alpha)}+\tau(N, \psi)-f_{*}(\tau(M, \varphi))=\tau(\alpha)+(-1)^{n-k} \tau(\alpha)+\tau(N, \psi)-f_{*}(\tau(M, \varphi))
$$

We will use this to prove Theorem H.
Theorem 12.5. Suppose that $j>k$ are positive integers and j is odd. Let K and L be k manifolds, and let $S^{j} \rightarrow M \rightarrow K$ and $S^{j} \rightarrow N \rightarrow L$ be orientable (linear) sphere bundles. Then every homotopy equivalence $f: M \rightarrow N$ is simple.

Proof. Let $n=j+k$ be the dimension of M and N. It follows from the assumptions that $j \geq \max (3, k+1)$, so $n \geq \max (k+3,2 k+1)$.

The manifold M is the sphere bundle of some orientable rank $(j+1)$ vector bundle ξ over K. Since $j+1>k$, there is a rank j vector bundle ξ_{0} such that $\xi \cong \xi_{0} \oplus \varepsilon^{1}$, where ε^{1} denotes the trivial rank 1 bundle. Let T be the disc bundle of ξ_{0}. Then T is a thickening of K (with the zero-section $K \rightarrow T)$ and $M \approx T \cup_{\mathrm{Id}_{\partial T}} T$. This means that if φ denotes the composition $K \rightarrow T \rightarrow M$ of the zero section and the inclusion of the first component, then (M, φ) has a trivial double structure, so it satisfies (SP3). Similarly, (N, ψ) satisfies (SP3) for the analogous $\psi: L \rightarrow N$.

Let $G=\pi_{1}(N)$ and let $w: G \rightarrow\{ \pm 1\}$ be the orientation character of N. Then $\pi_{1}(\psi)$ determines an identification $\pi_{1}(L) \cong G$, and since ξ is orientable, w is also the orientation character of L.

Since M and N are trivial doubles, $\tau(M, \varphi)=0$ and $\tau(N, \psi)=0$ by Corollary 10.8. Since $n-k=j$ is odd, Theorem 12.4 (a) implies that $\tau(f)=0$ for every homotopy equivalence $f: M \rightarrow$ N.

We obtain the following two theorems as immediate corollaries.
Theorem 12.6. Suppose that $j>k$ are positive integers and j is odd. Let K and L be k-manifolds, and let $S^{j} \rightarrow M \rightarrow K$ and $S^{j} \rightarrow N \rightarrow L$ be orientable sphere bundles. If M and N are homotopy equivalent, then they are simple homotopy equivalent.

Theorem 12.7. Suppose that $j>k$ are positive integers and j is odd. Let K be a k-manifold and let $S^{j} \rightarrow M \rightarrow K$ be an orientable sphere bundle. Let $G=\pi_{1}(M)$ with orientation character $w: G \rightarrow\{ \pm 1\}$. Then $T(M)=\{0\}$ (see Definition 4.19).
Remark 12.8. In the three theorems above, the sphere bundle M could be replaced with any twisted double $T \cup_{g} T$ of the disc bundle T of an orientable rank j bundle ξ_{0} over K such that (M, φ) is an SP manifold and $\tau(M, \varphi)=0$, where φ is the composition of the zero section $K \rightarrow T$ and the inclusion $T \rightarrow M$ of the first component (and similarly for N).

We will use Theorem 12.7 to prove Theorem C.

Theorem 12.9. Let $n \geq 11$ or $n=9$ and CAT $\in\{T O P, P L, D i f f\}$. Let G be a finitely presented group with an orientation character $w: G \rightarrow\{ \pm 1\}$. Then the following are equivalent.
(a) There is a closed smooth n-manifold M with fundamental group G and orientation character w such that $\left|\mathcal{M}_{s}^{\mathrm{hCob}}(M)\right|>1$.
(b) There is a closed CAT n-manifold M with fundamental group G and orientation character w such that $\left|\mathcal{M}_{s}^{\mathrm{hCob}}(M)\right|>1$.
(c) We have $\mathcal{I}_{n}(G, w) \neq 0$.

Proof. (c) \Rightarrow (a) Under the assumptions on n there is an integer $k \geq 4$ such that $n-k>k$ and $n-k$ is odd. For instance, we can take $k=4$ for $n \geq 9$ odd and $k=5$ for $n \geq 12$ even. Since $k \geq 4$, there is a closed k-manifold K with $\pi_{1}(K) \cong G$ and orientation character w. Let M be an orientable S^{n-k}-bundle over K (e.g. $K \times S^{n-k}$). Then $\pi_{1}(M) \cong G$ with orientation character w, and by Theorem 12.7, it follows that $T(M)=\{0\}$. So $\mathcal{I}_{n}(G, w) \backslash T(M)$ is nonempty, and by Proposition 4.20 this implies that $\left|\mathcal{M}_{s}^{\mathrm{hCob}}(M)\right|>1$.
(a) $\Rightarrow(\mathrm{b})$ This implication holds because a smooth manifold has a CAT structure.
(b) \Rightarrow (c) If f is the homotopy equivalence induced by an h-cobordism between n-manifolds with fundamental group G and orientation character w, then $\tau(f) \in \mathcal{I}_{n}(G, w)$ by Proposition 2.37. If the manifolds are not simple homotopy equivalent, then $\tau(f) \neq 0$, so $\mathcal{I}_{n}(G, w) \neq 0$.
12.3. Doubles over certain 2-complexes. In this section we will consider specific 2-dimensional CW complexes for which it is known by work of Metzler [Met79] that the Whitehead torsions of their homotopy automorphisms are contained in a certain subgroup of the Whitehead group. We can exploit this property by applying Theorem 12.2 to doubles over such 2-complexes, leading to a proof of Theorem 1.10.

Recall that for any group presentation $\mathcal{P}=\left\langle g_{1}, \ldots, g_{s} \mid r_{1}, \ldots, r_{t}\right\rangle$ there is a corresponding presentation complex, denoted by $X_{\mathcal{P}}$, which consists of one 0 -cell, one 1-cell for each generator g_{i}, and one 2 -cell for each relator r_{j}, with gluing map determined by r_{j}.

Also recall that, by Theorem 5.9, there is an isomorphism

$$
\mathrm{Wh}\left(C_{\infty} \times C_{m}\right) \xrightarrow{\cong} \mathrm{Wh}\left(C_{m}\right) \oplus \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \oplus N K_{1}\left(\mathbb{Z} C_{m}\right)^{2} .
$$

The following is a generalisation of the main result of [Met79].
Theorem 12.10. Let $m \geq 1$ and let $X:=X_{\mathcal{P}}$, where $\mathcal{P}=\left\langle x, y \mid y^{m},[x, y]\right\rangle$ is the standard presentation for $C_{\infty} \times C_{m}$. Then the composition

$$
\operatorname{hAut}(X) \xrightarrow{\tau} \mathrm{Wh}\left(C_{\infty} \times C_{m}\right) \rightarrow \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)
$$

is the zero map. In particular, $\tau(\mathrm{hAut}(X)) \subseteq \mathrm{Wh}\left(C_{m}\right) \oplus\{0\} \oplus N K_{1}\left(\mathbb{Z} C_{m}\right)^{2} \subseteq \mathrm{~Wh}\left(C_{\infty} \times C_{m}\right)$.
Proof. Let $G=C_{\infty} \times C_{m}$ and let $\psi: \mathbb{Z} C_{m} \rightarrow \mathbb{Z} C_{m} / \Sigma$ be the quotient map, factoring out by the ideal generated by $\Sigma:=\sum_{i=0}^{m-1} y^{i}$, the group norm in $\mathbb{Z} C_{m}$. Since $\mathbb{Z} G \cong\left(\mathbb{Z} C_{m}\right)\left[C_{\infty}\right]$ and $\mathbb{Z} G / \Sigma \cong\left(\mathbb{Z} C_{m} / \Sigma\right)\left[C_{\infty}\right], \psi$ induces a map $\Psi: \mathbb{Z} G \rightarrow \mathbb{Z} G / \Sigma$. Metzler showed [Met79, Lemma 2] that the composition

$$
\operatorname{hAut}(X) \xrightarrow{\tau} \mathrm{Wh}(G) \cong K_{1}(\mathbb{Z} G) / \pm G \xrightarrow{\Psi_{*}} K_{1}(\mathbb{Z} G / \Sigma) /(\mathbb{Z} G / \Sigma)^{\times}
$$

is the zero map. Since $\mathbb{Z} G / \Sigma \cong\left(\mathbb{Z} C_{m} / \Sigma\right)\left[t, t^{-1}\right]$, we set $R=\mathbb{Z} C_{m} / \Sigma$, so that $\mathbb{Z} G / \Sigma \cong R\left[t, t^{-1}\right]$. A variant of the Bass-Heller-Swan decomposition for arbitrary Laurent polynomial rings $R\left[t, t^{-1}\right]$ [Wei13, III.3.6] (cf. Section 5.2) implies that

$$
K_{1}(\mathbb{Z} G / \Sigma) /(\mathbb{Z} G / \Sigma)^{\times} \cong\left(K_{1}\left(\mathbb{Z} C_{m} / \Sigma\right) /\left(\mathbb{Z} C_{m} / \Sigma\right)^{\times}\right) \oplus \widetilde{K}_{0}\left(\mathbb{Z} C_{m} / \Sigma\right) \oplus N K_{1}\left(\mathbb{Z} C_{m} / \Sigma\right)^{2}
$$

The map Ψ_{*} respects this splitting and so we have that:

$$
\begin{aligned}
& \tau(\operatorname{hAut}(X)) \subseteq \operatorname{ker}\left(\psi_{*}: \operatorname{Wh}\left(C_{m}\right) \rightarrow K_{1}(\mathbb{Z} G / \Sigma) /(\mathbb{Z} G / \Sigma)^{\times}\right) \\
& \quad \oplus \operatorname{ker}\left(\psi_{*}: \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \rightarrow \widetilde{K}_{0}\left(\mathbb{Z} C_{m} / \Sigma\right)\right) \oplus \operatorname{ker}\left(\psi_{*}: N K_{1}\left(\mathbb{Z} C_{m}\right) \rightarrow N K_{1}\left(\mathbb{Z} C_{m} / \Sigma\right)\right)^{2}
\end{aligned}
$$

It therefore suffices to prove that $\psi_{*}: \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \rightarrow \widetilde{K}_{0}\left(\mathbb{Z} C_{m} / \Sigma\right)$ is injective. To see this, consider the following pullback square of rings

where ψ, ψ^{\prime} are the quotient maps and $\varepsilon, \varepsilon^{\prime}$ are induced by augmentation. Note that (12.1) has the property that at least one of the maps ψ^{\prime} and ε^{\prime} is surjective, i.e. (12.1) is a Milnor square. It follows from [CR87, Theorem 42.13] that (12.1) induces a long exact sequence:

$$
K_{1}(\mathbb{Z}) \oplus K_{1}\left(\mathbb{Z} C_{m} / \Sigma\right) \xrightarrow{\left(\psi_{*}^{\prime}, \varepsilon_{*}^{\prime}\right)} K_{1}(\mathbb{Z} / m) \xrightarrow{\partial} \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \xrightarrow{\left(\epsilon_{*}, \psi_{*}\right)} \widetilde{K}_{0}(\mathbb{Z}) \oplus \widetilde{K}_{0}\left(\mathbb{Z} C_{m} / \Sigma\right) .
$$

More specifically, by [CR87, Theorem 42.13], we obtain an exact sequence with \widetilde{K}_{0} replaced by K_{0} throughout. It is clear from the definition of ∂ that its image lies in $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)$ and, from this, we obtain the exact sequence above.

By [CR87, p. 343], we have $\operatorname{Im}(\partial)=T\left(C_{m}\right) \subseteq \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)$ where $T(G) \subseteq \widetilde{K}_{0}(\mathbb{Z} G)$ denotes the Swan subgroup of a finite group G. By [CR87, Proposition 53.6 (iii)], we have $T\left(C_{m}\right)=0$ and so $\partial=0$. Since \mathbb{Z} is a PID, we have $\widetilde{K}_{0}(\mathbb{Z})=0$. Hence $\psi_{*}: \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \rightarrow \widetilde{K}_{0}\left(\mathbb{Z} C_{m} / \Sigma\right)$ is injective. It follows that the composition in the statement of the theorem is the zero map.

This implies that the map $\tau: \operatorname{hAut}(X) \rightarrow \mathrm{Wh}\left(C_{\infty} \times C_{m}\right)$ is not surjective when $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \neq 0$, which is a broad generalisation of $[\operatorname{Met79}$, Theorem 1].

Corollary 12.11. Let $n \geq 5$ and $m \geq 1$. Suppose that M is an n-manifold and $\varphi: X_{\mathcal{P}} \rightarrow M$ is a continuous map such that (M, φ) is an SP manifold and $\tau(M, \varphi)=0$, where $\mathcal{P}=\left\langle x, y \mid y^{m},[x, y]\right\rangle$ is the standard presentation for $C_{\infty} \times C_{m}$. Then the composition

$$
\operatorname{hAut}(M) \xrightarrow{\tau} \mathrm{Wh}\left(C_{\infty} \times C_{m}\right) \rightarrow \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)
$$

is the zero map.
Proof. Consider the diagram

where the vertical map on the left is given by restriction. The first square commutes by Theorem 12.2. The second square commutes by Theorem 5.9. Since the composition of the maps in the bottom row vanishes by Theorem 12.10, the commutativity of the diagram implies that the composition of the maps in the top row vanishes too.

Remark 12.12. By the first square of the diagram, we also have $T(M) \subseteq \mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right)$. So, by combining Proposition 5.10 with Corollary 12.11 , we get that $T(M) \subseteq \mathcal{I}_{n}\left(C_{m}\right) \oplus\{0\} \oplus N K_{1}\left(\mathbb{Z} C_{m}\right)$, where $N K_{1}(\mathbb{Z} G)$ is embedded into $N K_{1}(\mathbb{Z} G)^{2}$ by the map $x \mapsto\left(x,-(-1)^{n} \bar{x}\right)$.
Theorem 12.13. Let $n \geq 5$ and let $m \geq 2$ be such that $\left\{x-(-1)^{n} \bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\} \neq 0$. Then there is an orientable n-manifold M with fundamental group $C_{\infty} \times C_{m}$ such that $\left|\mathcal{M}_{s}^{\mathrm{hCob}}(M)\right|>1$.

Proof. Let $\mathcal{P}=\left\langle x, y \mid y^{m},[x, y]\right\rangle$, and let T be an oriented thickening of $X_{\mathcal{P}}$ (e.g. a regular neighbourhood of an embedding $X_{\mathcal{P}} \rightarrow \mathbb{R}^{n}$. Let $M=T \cup_{g} T$ be a twisted double of T such that (M, φ) is an SP manifold and $\tau(M, \varphi)=0$, where $\varphi: K \rightarrow M$ denotes the composition of f_{T} and the inclusion $T \rightarrow M$ of the first component (e.g. let $g=\operatorname{Id}_{\partial T}$). Then $\pi_{1}(M) \cong \pi_{1}\left(X_{\mathcal{P}}\right) \cong C_{\infty} \times C_{m}$ and M is orientable.

By Proposition 4.20 it is enough to show that $\mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right) \backslash T(M)$ is nonempty. It follows from Proposition 5.10 and Corollary 12.11 that $\mathcal{I}_{n}\left(C_{\infty} \times C_{m}\right) \backslash T(M)$ contains $\left\{x-(-1)^{n} \bar{x} \mid x \in\right.$ $\left.\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\} \backslash\{0\}$, which is nonempty by our assumption.
12.4. The dependence of $\tau(M, \varphi)$ on φ. Theorem 11.5 allows us to describe the set of possible values of $\tau(M, \varphi)$ for a fixed M.
Proposition 12.14. Suppose that $n \geq \max (6,2 k+2), M$ is a closed n-manifold and $G=\pi_{1}(M)$ with orientation character $w: G \rightarrow\{ \pm 1\}$. Let $\varphi: K \rightarrow M$ be an $\left\lfloor\frac{n}{2}\right\rfloor$-connected map for some $C W$ complex K of dimension k. Then $\tau(M, \varphi) \in \mathcal{J}_{n}(G, w)$.
Proof. By Proposition 10.2 there is a generalised double structure $h: T \cup_{g_{0}} W \cup_{g_{1}} T \rightarrow M$ on (M, φ). Let i_{1}, i_{2}, and i_{3} denote the inclusions of the three components of $T \cup_{g_{0}} W \cup_{g_{1}} T$. Let $d_{0}: \partial_{1} W \rightarrow \partial_{0} W$ be the composition of the inclusion $\partial_{1} W \rightarrow W$ and the homotopy inverse of $\partial_{0} W \rightarrow W$. By the construction of d_{0}, we have $\left.\left.i_{2}\right|_{\partial_{1} W} \simeq i_{2}\right|_{\partial_{0} W} \circ d_{0}: \partial_{1} W \rightarrow T \cup_{g_{0}} W \cup_{g_{1}} T$. Hence, with the notation $d:=g_{0} \circ d_{0} \circ g_{1} \in \operatorname{hAut}(\partial T)$, and using that g_{1} and g_{0} are the gluing maps, we have

$$
\begin{equation*}
\left.i_{3}\right|_{\partial T}=\left.\left.i_{2}\right|_{\partial_{1} W} \circ g_{1} \simeq i_{2}\right|_{\partial_{0} W} \circ d_{0} \circ g_{1}=\left.i_{1}\right|_{\partial T} \circ g_{0} \circ d_{0} \circ g_{1}=\left.i_{1}\right|_{\partial T} \circ d: \partial T \rightarrow T \cup_{g_{0}} W \cup_{g_{1}} T . \tag{12.2}
\end{equation*}
$$

By Proposition 10.6 there is a homotopy automorphism $\alpha: K \rightarrow K$ such that

$$
\varphi \circ \alpha \simeq h \circ i_{3} \circ f_{T}
$$

and

$$
\tau(M, \varphi)=\left(h \circ i_{2}\right)_{*}\left(\tau\left(W, \partial_{1} W\right)\right)-\varphi_{*}(\tau(\alpha)) .
$$

By Remark 10.13, $\left(\partial T, f_{\partial T}\right)$ is an SP manifold, so by Lemma 11.3 there is a restriction map $\operatorname{hAut}(\partial T) \rightarrow \operatorname{hAut}(K)$. The homotopy automorphism α is the restriction of d. To see this recall Remark 11.4 and note that

$$
h \circ i_{1} \circ f_{\partial T} \circ \alpha \simeq h \circ i_{1} \circ f_{T} \circ \alpha \simeq \varphi \circ \alpha \simeq h \circ i_{3} \circ f_{T} \simeq h \circ i_{3} \circ f_{\partial T} \simeq h \circ i_{1} \circ d \circ f_{\partial T}: K \rightarrow M
$$ using Definition 10.1, the definition of α, and (12.2). The map $\left.h \circ i_{1}\right|_{\partial T}: \partial T \rightarrow M$ is $\left\lfloor\frac{n}{2}\right\rfloor$-connected, because it is the composition of the inclusion $\partial T \rightarrow T$ (which is $\left\lfloor\frac{n}{2}\right\rfloor$-connected by Lemma 9.5) and $h \circ i_{1}: T \rightarrow M$ (which is also $\left\lfloor\frac{n}{2}\right\rfloor$-connected, because $h \circ i_{1} \circ f_{T} \simeq \varphi$ and f_{T} is a homotopy equivalence). Since K has dimension $k \leq\left\lfloor\frac{n}{2}\right\rfloor-1$, we get that $f_{\partial T} \circ \alpha \simeq d \circ f_{\partial T}: K \rightarrow \partial T$, and this means that α is the restriction of d.

Since $\left(\partial T, f_{\partial T}\right)$ has a trivial double structure, $\tau\left(\partial T, f_{\partial T}\right)=0$. It follows from Theorem 11.5 that $\tau(d)=\left(f_{\partial T}\right)_{*}\left(\tau(\alpha)-(-1)^{n-1} \overline{\tau(\alpha)}\right)$. Let $j=\left.h \circ i_{1}\right|_{\partial T}: \partial T \rightarrow M$. Then we have

$$
\begin{aligned}
j_{*}(\tau(d)) & =\left(h \circ i_{1} \circ f_{\partial T}\right)_{*}\left(\tau(\alpha)-(-1)^{n-1} \overline{\tau(\alpha)}\right)=\left(h \circ i_{1} \circ f_{T}\right)_{*}\left(\tau(\alpha)-(-1)^{n-1} \overline{\tau(\alpha)}\right) \\
& =\varphi_{*}\left(\tau(\alpha)-(-1)^{n-1} \overline{\tau(\alpha)}\right) .
\end{aligned}
$$

Again we used that $h \circ i_{1} \circ f_{T} \simeq \varphi$ (Definition 10.1), to obtain the last equality.
By Proposition 2.37 (b), we have $\tau\left(d_{0}\right)=\tau\left(W, \partial_{1} W\right)-(-1)^{n-1} \overline{\tau\left(W, \partial_{1} W\right)}$ where $\pi_{1}\left(\partial_{0} W\right)$ is identified with $\pi_{1}(W)$ via the inclusion. Since g_{0} and g_{1} are diffeomorphisms, we have $\tau(d)=$ $\left(g_{0}\right)_{*}\left(\tau\left(d_{0}\right)\right)$, by Proposition 2.30 and Theorem 2.5. Hence

$$
\begin{aligned}
j_{*}(\tau(d)) & =\left(h \circ i_{1} \circ g_{0}\right)_{*}\left(\tau\left(d_{0}\right)\right)=\left(h \circ i_{2}\right)_{*}\left(\tau\left(d_{0}\right)\right) \\
& =\left(h \circ i_{2}\right)_{*}\left(\tau\left(W, \partial_{1} W\right)\right)-(-1)^{n-1} \overline{\left(h \circ i_{2}\right)_{*}\left(\tau\left(W, \partial_{1} W\right)\right)}
\end{aligned}
$$

By combining the above formulae we obtain

$$
\begin{aligned}
& \tau(M, \varphi)-(-1)^{n-1} \overline{\tau(M, \varphi)} \\
& \left.\quad=\left(h \circ i_{2}\right)_{*}\left(\tau\left(W, \partial_{1} W\right)\right)-(-1)^{n-1} \overline{\left(h \circ i_{2}\right)_{*}\left(\tau\left(W, \partial_{1} W\right)\right)}-\varphi_{*}(\tau(\alpha))+(-1)^{n-1} \overline{\varphi_{*}(\tau(\alpha)}\right) \\
& \quad=j_{*}(\tau(d))-j_{*}(\tau(d))=0 .
\end{aligned}
$$

Therefore $\tau(M, \varphi)=-(-1)^{n} \overline{\tau(M, \varphi)}$, i.e. $\tau(M, \varphi) \in \mathcal{J}_{n}(G, w)$.
If $n<\max (6,2 k+2)$ and (M, φ) is an SP manifold, then it satisfies (SP3), so $\tau(M, \varphi)=0$. Therefore $\tau(M, \varphi) \in \mathcal{J}_{n}(G, w)$ for every SP manifold (M, φ).
Remark 12.15. The proof of Proposition 12.14 shows that $\tau(M, \varphi)$ can be regarded as a secondary invariant of an inertial h-cobordism on ∂T. An inertial h-cobordism on ∂T is an h-cobordism between two copies of ∂T, more precisely, an h-cobordism W with $\partial W=\partial_{0} W \sqcup \partial_{1} W$ together with diffeomorphisms $g_{0}: \partial_{0} W \rightarrow \partial T$ and $g_{1}: \partial T \rightarrow \partial_{1} W$. If $d: \partial T \rightarrow \partial T$ is the homotopy equivalence induced by W, g_{0} and g_{1}, then $\tau(d) \in \mathcal{I}_{n-1}(G, w)$ for two different reasons: $\tau(d)=$
$\tau\left(W, \partial_{1} W\right)-(-1)^{n-1} \overline{\tau\left(W, \partial_{1} W\right)}$ by Proposition 2.37 (b), and $\tau(d)=\tau(\alpha)-(-1)^{n-1} \overline{\tau(\alpha)}$ by Theorem 11.5, where $\alpha \in \operatorname{hAut}(K)$ is the restriction of d. In general $\tau\left(W, \partial_{1} W\right) \neq \tau(\alpha)$ (the former does not depend on the diffeomorphisms g_{0} and g_{1}, but α does), and $\tau\left(W, \partial_{1} W\right)-\tau(\alpha)=\tau(M, \varphi)$ for $M=T \cup_{g_{0}} W \cup_{g_{1}} T$ and $\varphi=i_{1} \circ f_{T}$. So $\tau(M, \varphi)$ is a secondary invariant in the sense that it equals the difference between two reasons that $\tau(d) \in \mathcal{I}_{n-1}(G, w)$, i.e. two cochains in the Tate cochain group $\widehat{C}^{n-1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)$ mapping to $\tau(d)$ under the coboundary map.

Proposition 12.16. Suppose that M is a closed n-manifold, $G=\pi_{1}(M)$ and $w: G \rightarrow\{ \pm 1\}$ is the orientation character of M. Let $\varphi: K \rightarrow M$ and $\varphi^{\prime}: K^{\prime} \rightarrow M$ be continuous maps such that (M, φ) and $\left(M, \varphi^{\prime}\right)$ are SP manifolds. Then $\tau(M, \varphi)-\tau\left(M, \varphi^{\prime}\right) \in \mathcal{I}_{n}(G, w)$.

Proof. We will apply Theorem 11.5 to Id_{M}, regarded as a map between the SP manifolds (M, φ) and $\left(M, \varphi^{\prime}\right)$. Then $\operatorname{Id}_{M} \in \operatorname{hEq}_{\mathrm{Id}}(M, M)$, and it has a restriction $f \in \mathrm{hEq}_{\mathrm{Id}}\left(K, K^{\prime}\right)$, where $\pi_{1}(K)$ and $\pi_{1}\left(K^{\prime}\right)$ are identified with G via φ and φ^{\prime}. Let $x=\tau(f)$. Since Id_{M} is a diffeomorphism, $\tau\left(\operatorname{Id}_{M}\right)=0$. Therefore $0=x-(-1)^{n} \bar{x}+\tau\left(M, \varphi^{\prime}\right)-\tau(M, \varphi)$. This means that

$$
\tau(M, \varphi)-\tau\left(M, \varphi^{\prime}\right)=x-(-1)^{n} \bar{x} \in \mathcal{I}_{n}(G, w)
$$

Remark 12.17. Suppose that (M, φ) is an SP manifold satisfying (SP1) and $k \geq 3$. Let $G=$ $\pi_{1}(M) \cong \pi_{1}(K)$, and let $w: G \rightarrow\{ \pm 1\}$ be the orientation character of M. Since $k \geq 3$, for every $x \in \mathrm{~Wh}(G)$ there is a k-dimensional CW complex K^{\prime} and a homotopy equivalence $f: K^{\prime} \rightarrow K$ such that $\tau(f)=x$. Let $\varphi^{\prime}=\varphi \circ f: K^{\prime} \rightarrow M$, then by Proposition 10.2φ, and hence φ^{\prime}, is $\left\lfloor\frac{n}{2}\right\rfloor$-connected, so $\left(M, \varphi^{\prime}\right)$ also satisfies (SP1). The proof of Proposition 12.16 shows that $\tau\left(M, \varphi^{\prime}\right)-\tau(M, \varphi)=x-(-1)^{n} \bar{x}$. Therefore if ψ varies across all maps $L \rightarrow M$ such that (M, ψ) is an SP manifold, then the set of possible values of $\tau(M, \psi)$ is precisely the $\operatorname{coset} \tau(M, \varphi)+\mathcal{I}_{n}(G, w)$ in $\mathcal{J}_{n}(G, w)$.
12.5. An invariant of unpolarised manifolds. Based on the observations of Section 12.4, we define an invariant for manifolds that can be obtained from SP manifolds by forgetting the polarisation.

Definition 12.18. We say that an n-manifold M is split if there is a positive integer k, a k dimensional CW complex K and a continuous map $\varphi: K \rightarrow M$ such that (M, φ) is an SP manifold.

By Proposition 10.2, if $n \geq 7$ and M has a CW decomposition with no $\left\lfloor\frac{n}{2}\right\rfloor$-cells, then it is split (as we can take φ to be the inclusion of its $\left\lfloor\frac{n}{2}\right\rfloor$-skeleton).

Definition 12.19. Suppose that M is a split n-manifold, and let $G=\pi_{1}(M)$ with orientation character $w: G \rightarrow\{ \pm 1\}$. We define the τ-invariant of M by

$$
\tau(M)=\pi(\tau(M, \varphi)) \in \widehat{H}^{n+1}\left(C_{2} ; \operatorname{Wh}(G, w)\right)
$$

where k is a positive integer, K is a k-dimensional CW complex and $\varphi: K \rightarrow M$ is a continuous map such that (M, φ) is an SP manifold.

It follows from Propositions 12.14 and 12.16 that $\tau(M)$ is well-defined.
If M is a manifold without middle dimensional handles in the sense of Hausmann [Hau80], then $\tau(M)$ coincides with the "torsion invariant" defined in [Hau80, Section 9]. By the proof of Theorem 10.14, this is the case if $n \geq 8$ and (M, φ) satisfies (SP1) for some φ. For such manifolds, Hausmann showed that the τ-invariant is preserved by simple homotopy equivalences and homotopy equivalences induced by h-cobordisms. Both of the two theorems below can be regarded as strengthenings of this statement.

Firstly, in analogy with Theorem 11.5, we obtain the following formula for $\pi(\tau(f))$ for a homotopy equivalence f between split manifolds.
Theorem 12.20. Suppose that M and N are split n-manifolds and $f: M \rightarrow N$ is a homotopy equivalence. Let $G=\pi_{1}(N)$ with orientation character $w: G \rightarrow\{ \pm 1\}$. Then

$$
\pi(\tau(f))=\tau(N)-f_{*}(\tau(M)) \in \widehat{H}^{n+1}\left(C_{2} ; \mathrm{Wh}(G, w)\right)
$$

In particular, if $f: M \rightarrow N$ is a homotopy equivalence between split manifolds, then $\pi(\tau(f))$ depends only on the induced homomorphism $\pi_{1}(f)$.

Proof. By Proposition $2.34 \tau(f) \in \mathcal{J}_{n}(G, w)$, so $\pi(\tau(f))$ is defined. Fix a $\varphi: K \rightarrow M$ and a $\psi: L \rightarrow N$ such that (M, φ) and (N, ψ) are SP manifolds. Let $\alpha: K \rightarrow L$ be the restriction of f, and let $x=\tau(\alpha) \in \mathrm{Wh}(G)$. By Theorem $11.5 \tau(f)=x-(-1)^{n} \bar{x}+\tau(N, \psi)-f_{*}(\tau(M, \varphi))$. Therefore

$$
\begin{aligned}
\pi(\tau(f)) & =\pi\left(x-(-1)^{n} \bar{x}\right)+\pi(\tau(N, \psi))-\pi\left(f_{*}(\tau(M, \varphi))\right) \\
& =0+\pi(\tau(N, \psi))-f_{*}(\pi(\tau(M, \varphi)))=\tau(N)-f_{*}(\tau(M))
\end{aligned}
$$

Secondly, we show that τ is a complete invariant for the equivalence relation generated by simple homotopy equivalence and h-cobordism, restricted to split manifolds (see also Proposition 4.15).

Theorem 12.21. Suppose that M and N are split n-manifolds. The following are equivalent.
(a) There is a homotopy equivalence $f: M \rightarrow N$ such that $\tau(N)=f_{*}(\tau(M))$.
(b) There is a manifold P that is simple homotopy equivalent to M and h-cobordant to N.

Proof. We can assume that $n \geq 5$. (If $n=4$, then (N, ψ) has a trivial double structure for some 1-dimensional L and $\psi: L \rightarrow N$, so $\tau(N)=0$, and similarly $\tau(M)=0$. We also get that $\pi_{1}(N) \cong \pi_{1}(L)$ is free, so $\mathrm{Wh}\left(\pi_{1}(N)\right)=0$ by Proposition 2.8. Hence every homotopy equivalence $M \rightarrow N$ is simple.)
(a) $\Rightarrow(\mathrm{b})$. Let $G=\pi_{1}(N)$ with orientation character $w: G \rightarrow\{ \pm 1\}$. By Theorem 12.20, we have $\pi(\tau(f))=0$, so $\tau(f) \in \mathcal{I}_{n}(G, w)$ and we can apply Corollary 3.3.
(b) \Rightarrow (a). Let $f=h \circ g$ for a simple homotopy equivalence $g: M \rightarrow P$ and a homotopy equivalence $h: P \rightarrow N$ induced by an h-cobordism. Then $\tau(f)=\tau(h)+h_{*}(\tau(g))$. Since $\tau(g)=0$, this implies that $\tau(f) \in \mathcal{I}_{n}(G, w)$ by Proposition 2.37. Therefore $\pi(\tau(f))=0$, so $\tau(N)=f_{*}(\tau(M))$ by Theorem 12.20.

Part 4. The involution on $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)$

The aim of this part will be to prove Theorems 16.1, 16.2, and 16.3, which are key ingredients in the proofs of Theorems 5.14, 5.15, and 5.17 respectively. In Sections 13 and 14, we will recall the necessary background on class groups, Tate cohomology, and $\mathbb{Z} C_{2}$-modules. The main technical heart of this part will be Section 15 where we will investigate the involution on $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)$ and prove general results which allow it to be computed. Finally, in Section 16, we make use of the results in Section 15 to prove Theorems 16.1, 16.2, and 16.3. Throughout, we will assume that all modules are left modules.

13. Locally free class groups

In this section, we will recall the theory of locally free class groups for orders in semisimple \mathbb{Q}-algebras. Good references for this material are [Swa80, Section 1-3] and [CR87, Section 49A \& $50 \mathrm{E}]$.
13.1. Definitions and properties. For a ring A, a nonzero A-module is simple if it contains no simple A-submodules other than itself and 0 , and is semisimple if isomorphic as A-modules to a direct sum of its simple A-submodules. We say that a ring A is simple (respectively semisimple) if A, viewed as an A-module, is simple (respectively semisimple). Recall that, for a field K, a K-algebra is a ring A for which K is a subring of the centre $Z(A)$. We say that a K-algebra is finite-dimensional if it is finite-dimensional as a K-vector space.
Definition 13.1. Let A be a finite-dimensional semisimple \mathbb{Q}-algebra. An order in A is a sub$\operatorname{ring} \Lambda \subseteq A$ that is finitely generated as an abelian group and which has $\mathbb{Q} \cdot \Lambda=A$.

For example, let G be a finite group. Then $A=\mathbb{Q} G$ is a finite dimensional \mathbb{Q}-algebra which is semisimple by Maschke's theorem in representation theory, and $\Lambda=\mathbb{Z} G$ is an order in A. For an even simpler example, let K / \mathbb{Q} is a finite field extension. Then $A=K$ is a simple \mathbb{Q}-algebra and its ring of integers $\Lambda=\mathcal{O}_{K}$ is an order in A.

From now on, fix an order Λ in a finite-dimensional semisimple \mathbb{Q}-algebra A. For a prime p, let $\Lambda_{p}=\mathbb{Z}_{p} \otimes_{\mathbb{Z}} \Lambda$ and let $A_{p}=\mathbb{Q}_{p} \otimes_{\mathbb{Q}} A$ denote the p-adic completions of Λ and A.

Definition 13.2. A Λ-module M is locally free if $M_{p}=\mathbb{Z}_{p} \otimes_{\mathbb{Z}} M$ is a free Λ_{p}-module for all primes p.

The following is [Swa80, Lemma 2.1]. Note that the converse need not hold, i.e. there exist orders Λ and projective Λ-modules that are not locally free [Swa80, p. 156].
Proposition 13.3. If M is a locally free Λ-module, then M is projective.
We say that two locally free Λ-modules M and N are stably isomorphic, written $M \cong \cong_{\text {st }} N$, if there exists $r, s \geq 0$ such that $M \oplus \Lambda^{r} \cong N \oplus \Lambda^{s}$ are isomorphic as Λ-modules.
Definition 13.4. Define the locally free class group $C(\Lambda)$ to be the set of equivalence classes of locally free Λ-modules up to stable isomorphism. This is an abelian group under direct sum (since the direct sum of locally free modules is locally free).

It follows that $C(\Lambda) \leq \widetilde{K}_{0}(\Lambda)$ is a subgroup, where \widetilde{K}_{0} is the 0 th reduced algebraic K-group as defined in Section 5.1. It is a consequence of the Jordan-Zassenhaus theorem that $C(\Lambda)$ is finite [CR87, Remark 49.11 (ii)].

We will now specialise to the case where $\Lambda=\mathbb{Z} G$ for G a finite group. In contrast to the situation for general orders, we have the following [Swa80, p. 156]. By Proposition 13.3, this implies that a $\mathbb{Z} G$-module is projective if and only if it is locally free.
Proposition 13.5. Let G be a finite group.
(i) If M is a projective $\mathbb{Z} G$-module, then M is locally free.
(ii) There is an isomorphism of abelian groups $\widetilde{K}_{0}(\mathbb{Z} G) \cong C(\mathbb{Z} G)$. In particular, $\widetilde{K}_{0}(\mathbb{Z} G)$ is finite.
This means that $\widetilde{K}_{0}(\mathbb{Z} G)$ is potentially computable, since, as we shall see below, methods exist for classifying locally free class groups (and more generally locally free modules) which do not apply to arbitrary projective modules over orders, let alone over arbitrary rings.

Finally we note the following which relates locally free class groups to ideal class groups (see [Rei75, Section 35]).

Proposition 13.6. Let K / \mathbb{Q} be a finite field extension. Then $C\left(\mathcal{O}_{K}\right)$ coincides with the ideal class group of \mathcal{O}_{K}.
13.2. Kernel groups. Let A be a finite-dimensional semisimple \mathbb{Q}-algebra A. An order in A is said to be maximal if it is not properly contained in another other order in A. Since every finite field extension of \mathbb{Q} is separable, A is a separable algebra and so every order in A is contained in a maximal order [Swa70, Proposition 5.1].

Let Λ be an order in A and let Γ be a maximal order in A containing Λ. The inclusion map $i: \Lambda \hookrightarrow \Gamma$ induces a map $i_{*}: C(\Lambda) \rightarrow C(\Gamma)$ given by extension of scalars $[M] \mapsto\left[\Gamma \otimes_{\Lambda} M\right]$ which is necessarily surjective by [CR87, Theorem 49.25].
Definition 13.7. Define the kernel group $D(\Lambda)$ to be the kernel of the map $i_{*}: C(\Lambda) \rightarrow C(\Gamma)$. This is often also referred to as the defect group.

The group $C(\Gamma)$ does not depend on the choice of maximal order in A; in fact, if Γ_{1}, Γ_{2} are maximal orders in A, then $C\left(\Gamma_{1}\right) \cong C\left(\Gamma_{2}\right)$ [CR87, Theorem 49.32]. Furthermore, the kernel group $D(\Lambda)$ does not depend on the choice of maximal order. This can be seen from the fact that it can be equivalently defined without reference to a maximal order: if M is a locally free Λ-module, then $[M] \in D(\Lambda)$ if and only if there exists a finitely generated Λ-module X such that $M \oplus X \cong \Lambda^{n} \oplus X$ as Λ-modules for some n [CR87, Proposition 49.34].

In particular, we have a well-defined exact sequence of abelian groups:

$$
0 \rightarrow D(\Lambda) \rightarrow C(\Lambda) \rightarrow C(\Gamma) \rightarrow 0
$$

where Γ can be taken to be any maximal order in A containing Λ.
13.3. The idèlic approach to locally free class groups. Let Λ be an order in a finitedimensional semisimple \mathbb{Q}-algebra A. One thing that makes the locally free class group $C(\Lambda)$ often much easier to compute than the full projective class group $\widetilde{K}_{0}(\Lambda)$ is that its elements can be represented by idèles.
Definition 13.8. Define the idèle group

$$
J(A)=\left\{\left(\alpha_{p}\right) \in \prod_{p} A_{p}^{\times} \mid \alpha_{p} \in \Lambda_{p}^{\times} \text {for all but finitely many } p\right\} \subseteq \prod_{p} A_{p}^{\times} .
$$

As a subgroup of A_{p}^{\times}, this is independent of the choice of order Λ [CR87, p. 218]. Every class in $C(\Lambda)$ is represented by a locally free Λ-module $M \subseteq A$ [CR87, p. 218]. For each p, there exists $\alpha_{p} \in A_{p}$ such that $M_{p}=\Lambda_{p} \alpha_{p} \subseteq A_{p}$. For all but finitely many $p, M_{p} \cong \Lambda_{p}$ and so $\alpha_{p} \in \Lambda_{p}^{\times}$. In particular, $\alpha=\left(\alpha_{p}\right) \in J(A)$. Conversely, given an idèle $\alpha \in J(A)$, we have that $\Lambda \alpha=A \cap \bigcap_{p} \Lambda_{p} \alpha_{p} \subseteq A$ is a locally free Λ-ideal. Let $\alpha, \beta \in J(A)$. Then $\Lambda \alpha \cong \Lambda \beta$ as Λ-modules if and only if $\beta \in U(\Lambda) \cdot \alpha \cdot A^{\times}$where $A^{\times} \subseteq J(A)$ by sending $a \in A^{\times}$to $\alpha_{p}=1 \otimes_{\mathbb{Q}} a$ for all p, and $U(\Lambda)=\left\{\left(\alpha_{p}\right) \in \prod_{p} A_{p}^{\times} \mid \alpha_{p} \in \Lambda_{p}^{\times}\right.$for all $\left.p\right\} \subseteq J(A)$ [CR87, 49.6]. Furthermore, we have that $\Lambda \alpha \oplus \Lambda \beta \cong \Lambda \oplus \Lambda \alpha \beta$ [CR87, 49.8]. This leads to the following.

Proposition 13.9. There is a surjective group homomorphism

$$
[\Lambda \cdot]: J(A) \rightarrow C(\Lambda), \quad \alpha \mapsto[\Lambda \alpha]
$$

Remark 13.10. Whilst we will not make use of it in this article, we note that this leads to the formula

$$
C(\Lambda) \cong \frac{J(A)}{J_{0}(A) \cdot A^{\times} \cdot U(\Lambda)}
$$

for the locally free class group, where $J_{0}(A)=\{x \in J(A) \mid \operatorname{nr}(x)=1\}$ and $\mathrm{nr}: J(A) \rightarrow J(Z(A))$ is induced by the reduced norm map. This is due to Fröhlich [Frö75] (see also [CR87, Theorem 49.22]).
13.4. Involutions on locally free class groups. Let Λ be an order in a finite-dimensional semisimple \mathbb{Q}-algebra A. Suppose further that A is a ring equipped with an involution ${ }^{\circ}: A \rightarrow A$ which restricts to Λ, i.e. the map ${ }^{-}$is an involution on A as an abelian group which satisfies $\overline{x y}=\bar{y} \cdot \bar{x}$ for all $x, y \in A$ and $\bar{x} \in \Lambda$ for all $x \in \Lambda$. For example, if G is a finite group and $w: G \rightarrow\{ \pm 1\}$ is an orientation character, then $A=\mathbb{Q} G$ has an involution given by $\sum_{i=1}^{k} n_{i} g_{i} \mapsto \sum_{i=1}^{k} w\left(g_{i}\right) n_{i} g_{i}^{-1}$ for $n_{i} \in \mathbb{Z}$ and $g_{i} \in G$ which restricts to $\Lambda=\mathbb{Z} G$ (see Section 2.2). Given a (left) Λ-module M, we now have the notion of a dual (left) Λ-module M^{*} (see Definition 2.22).

We now note the following properties of the dual of locally free modules.
Lemma 13.11. Let M be a locally free Λ-module. Then:
(i) M^{*} is locally free;
(ii) The evaluation map ev : $M \rightarrow M^{* *}, m \mapsto(f \mapsto f(m))$ is an isomorphism of Λ-modules.

Proof. (i) This follows from the fact that dualising commutes with p-adic localisations.
(ii) A module with this property is called reflexive. By Proposition 13.3, M is a projective Λ-module. Projective modules are reflexive since finitely generated free modules are reflexive and direct summands of reflexive modules are reflexive.

We can therefore use this to define an involution on the locally free class group.
Definition 13.12. There is an involution of abelian groups:

$$
: C(\Lambda) \rightarrow C(\Lambda), \quad[M] \mapsto-\left[M^{}\right] .
$$

That is, $*$ is a group homomorphism such that $*^{2}=\operatorname{Id}_{C(\Lambda)}$.
In the case $\Lambda=\mathbb{Z} G$, we have that $\widetilde{K}_{0}(\mathbb{Z} G) \cong C(\mathbb{Z} G)$ and the involution above coincides with the standard involution on \widetilde{K}_{0} as defined in Section 5.1.

We will now explore some properties of this involution. In what follows we will refer to [CR87, pp. 275-6]. Note that this deals only with the case $\Lambda=\mathbb{Z} G$, though the arguments there apply to the more general setting described above.

It is an immediate consequence of the alternative description of the kernel group given in Section 13.2 that, if $[M] \in D(\Lambda)$, then $\left[M^{*}\right] \in D(\Lambda)$ [CR87, p. 275]. In particular, the involution $*$ restricts to $D(\Lambda)$. This implies that, if $i: \Lambda \hookrightarrow \Gamma$ for Γ a maximal order in A, then $*$ induces an involution on $C(\Gamma)$ via the map $i_{*}: C(\Lambda) \rightarrow C(\Gamma)$, and this coincides with the involution on $C(\Gamma)$ coming from the fact that Γ is an order in A.

Recall that an involution on an abelian group is the same structure as a $\mathbb{Z} C_{2}$-module, where the C_{2}-action is given by the involution. In particular, we have shown the following.

Proposition 13.13. There is a short exact sequence of $\mathbb{Z} C_{2}$-modules

$$
0 \rightarrow D(\Lambda) \rightarrow C(\Lambda) \rightarrow C(\Gamma) \rightarrow 0
$$

where $D(\Lambda), C(\Lambda)$, and $C(\Gamma)$ are $\mathbb{Z} C_{2}$-modules under the involutions described above.
We will conclude this section by noting that the idèlic approach to class groups gives a different way to define an involution on $C(\Lambda)$. The involution ${ }^{-}: A \rightarrow A$ induces involutions on A_{p} for each p and so on $J(A)$. It can be shown that the involution fixes the subgroups $A^{\times}, U(\Lambda)$ and $J_{0}(A)$ and so induces an involution on $C(\Lambda)$ given by sending $[\Lambda \alpha] \mapsto[\Lambda \bar{\alpha}]$ (see [CR87, p. 274]).

The following is proven in [CR87, p. 274].
Proposition 13.14. The involution on $C(\Lambda)$ induced by the involution on $J(A)$ coincides with the standard involution $*: C(\Lambda) \rightarrow C(\Lambda),[M] \mapsto-\left[M^{*}\right]$.

This gives an alternate way to understand the standard involution on $C(\mathbb{Z} G) \cong \widetilde{K}_{0}(\mathbb{Z} G)$. We will make further use of this description the following section.

14. Tate cohomology and $\mathbb{Z} C_{2}$-modules

In this section, we will recall some basic facts about $\mathbb{Z} C_{2}$-modules which will be used throughout the proofs of Theorems $16.1,16.2$, and 16.3 . We will also explain how the methods of Tate cohomology can be applied to $\mathbb{Z} C_{2}$-modules in preparation for the proof of Theorem 16.3.
14.1. Tate cohomology. The Tate cohomology groups are defined as follows [Bro94, VI.4].

Definition 14.1. Given a finite group G and a $\mathbb{Z} G$-module A, the Tate cohomology groups $\widehat{H}^{n}(G ; A)$ for $n \in \mathbb{Z}$ are defined as follows. Let $A^{G}=\{x \in A \mid g \cdot x=x$ for all $g \in G\}$ be the invariants, let $A_{G}=A /\langle g \cdot x-x \mid g \in G, x \in A\rangle$ be the coinvariants and let $N: A_{G} \rightarrow A^{G}$ be the norm map $x \mapsto \sum_{g \in G} g \cdot x$ which is a well-defined homomorphism of abelian groups. Then define:

$$
\widehat{H}^{n}(G ; A)= \begin{cases}H^{n}(G ; A), & \text { if } n \geq 1 \\ \operatorname{coker}\left(N: A_{G} \rightarrow A^{G}\right), & \text { if } n=0 \\ \operatorname{ker}\left(N: A_{G} \rightarrow A^{G}\right), & \text { if } n=-1 \\ H_{-n-1}(G ; A), & \text { if } n \leq-2\end{cases}
$$

where H^{n} and H_{-n-1} denote the usual group cohomology and homology groups.
We now recall the following basic properties. The first can be found in [Bro94, VI.5.1], the second follows from the first since functoriality means that α_{*} is split whenever α is, the third is [CE56, XII.2.5], and the fourth is [CE56, XII.2.7].
Proposition 14.2. Let G be a finite group.
(i) Let $0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0$ be a short exact sequence of $\mathbb{Z} G$-modules. Then there is a long exact sequence of Tate cohomology groups:

$$
\cdots \rightarrow \widehat{H}^{n-1}(G ; C) \xrightarrow{\partial} \widehat{H}^{n}(G ; A) \xrightarrow{\alpha_{*}} \widehat{H}^{n}(G ; B) \xrightarrow{\beta_{*}} \widehat{H}^{n}(G ; C) \xrightarrow{\partial} \widehat{H}^{n+1}(G ; A) \rightarrow \cdots
$$

(ii) Let A, B be $\mathbb{Z} G$-modules. Then $\widehat{H}^{n}(G ; A \oplus B) \cong \widehat{H}^{n}(G ; A) \oplus \widehat{H}^{n}(G ; B)$ for all $n \in \mathbb{Z}$.
(iii) Let A be a $\mathbb{Z} G$-module. Then $|G| \cdot \widehat{H}^{n}(G ; A)=0$, i.e. $|G| \cdot x=0$ for all $x \in \widehat{H}^{n}(G ; A)$.
(iv) Let A be a finite $\mathbb{Z} G$-module and suppose $(|G|,|A|)=1$. Then $\widehat{H}^{n}(G ; A)=0$ for all $n \in \mathbb{Z}$.
14.2. Tate cohomology and the structure of $\mathbb{Z} C_{2}$-modules. Let A be a $\mathbb{Z} C_{2}$-module or, equivalently, an abelian group with an involution ${ }^{-}: A \rightarrow A$. In order to prove Theorems 16.1 to 16.3 , we would like to find techniques to determine the following groups associated to A :

$$
\left\{x \in A \mid x=(-1)^{n} \bar{x}\right\}, \quad\left\{x+(-1)^{n} \bar{x} \mid x \in A\right\}, \quad \frac{\left\{x \in A \mid x=(-1)^{n} \bar{x}\right\}}{\left\{x+(-1)^{n} \bar{x} \mid x \in A\right\}} .
$$

We are especially interested in the case n odd (i.e. $n=1$) but we will consider both cases. Note that, for the groups on the left, the notation $A^{-}=\{x \in A \mid x=-\bar{x}\}$ and $A^{+}=\{x \in A \mid x=\bar{x}\}$ is often used since they are the (-1) and $(+1)$-eigenspaces of the involution action. If $2 \in A$ is invertible, then $A \cong A^{+} \oplus A^{-}$but this need not hold in general.

The following lemma will suffice for the study of the first two classes of groups. Part (i) follows from the fact that $A \mapsto A^{C_{2}}$ is a left-exact functor where A is given the altered involution $x \mapsto(-1)^{n} \bar{x}$, and part (ii) is immediate.
Lemma 14.3. Let $0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0$ be an exact sequence of $\mathbb{Z} C_{2}$-modules and let $n \in \mathbb{Z}$.
(i) Then α, β induce an exact sequence of abelian groups:

$$
0 \rightarrow\left\{x \in A \mid \bar{x}=(-1)^{n} x\right\} \xrightarrow{\alpha}\left\{x \in B \mid \bar{x}=(-1)^{n} x\right\} \xrightarrow{\beta}\left\{x \in C \mid \bar{x}=(-1)^{n} x\right\} .
$$

(ii) There are injective and surjective maps induced by α, β :

$$
\left\{x+(-1)^{n} \bar{x} \mid x \in A\right\} \stackrel{\alpha}{\hookrightarrow}\left\{x+(-1)^{n} \bar{x} \mid x \in B\right\} \xrightarrow{\beta}\left\{x+(-1)^{n} \bar{x} \mid x \in C\right\} .
$$

Remark 14.4. For each n, the right map in (i) need not be surjective. For example, take $0 \rightarrow \mathbb{Z} \xrightarrow{2}$ $\mathbb{Z} \rightarrow \mathbb{Z} / 2 \rightarrow 0$ where $\mathbb{Z} / 2$ has the trivial involution and \mathbb{Z} has the involution $x \mapsto(-1)^{n} x$. For each n, the sequence (ii) need not be exact in the middle. For example, take $0 \rightarrow \mathbb{Z} / 2 \rightarrow \mathbb{Z} \oplus \mathbb{Z} / 2 \rightarrow$ $\mathbb{Z} \rightarrow 0$ where $\mathbb{Z} / 2$ has the trivial involution, $\mathbb{Z} \oplus \mathbb{Z} / 2$ has involution $(x, y) \mapsto\left((-1)^{n+1} x, x+y\right)$ and \mathbb{Z} has the involution $x \mapsto(-1)^{n} x$.

The third class of groups can be studied using Tate cohomology due to the following. This is standard (see, for example, [CE56, p. 251]) but we will include a proof here for convenience.
Proposition 14.5. Let A be a $\mathbb{Z} C_{2}$-module and let $n \in \mathbb{Z}$. Then

$$
\widehat{H}^{n}\left(C_{2} ; A\right) \cong \frac{\left\{x \in A \mid x=(-1)^{n} \bar{x}\right\}}{\left\{x+(-1)^{n} \bar{x} \mid x \in A\right\}}
$$

Proof. Since C_{2} has 2-periodic Tate cohomology group (see, for example, [Bro94, VI.9.2]), it suffices to compute $\widehat{H}^{0}\left(C_{2} ; A\right)$ and $\widehat{H}^{-1}\left(C_{2} ; A\right)$. We have $A^{C_{2}}=\{x \in A \mid x=\bar{x}\}$ and $A_{C_{2}}=A /\{x-\bar{x} \mid$ $x \in A\}$ and so the norm map is given by

$$
N: \frac{A}{\{x-\bar{x} \mid x \in A\}} \rightarrow\{x \in A \mid x=\bar{x}\}, \quad x \mapsto x+\bar{x} .
$$

The result then follows by reading off $\widehat{H}^{-1}\left(C_{2} ; A\right)=\operatorname{ker}(N)$ and $\widehat{H}^{0}\left(C_{2} ; A\right)=\operatorname{coker}(N)$.
Remark 14.6. This shows that, for a group G and $w: G \rightarrow\{ \pm 1\}$ an orientation character, we have

$$
\mathcal{J}_{n}(G, w) / \mathcal{I}_{n}(G, w) \cong \widehat{H}^{n+1}\left(C_{2} ; \operatorname{Wh}(G, w)\right)
$$

which was noted already in Section 2.2.
We now recall a series of special facts about the Tate cohomology of C_{2}. The first, which can be found in [Ser79, p. 133], is a consequence of Proposition 14.2 (i) and the fact that finite cyclic groups have 2-periodic cohomology. Note that this also applies for C_{2} replaced by an arbitrary finite cyclic group.
Proposition 14.7. Let $0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0$ be a short exact sequence of $\mathbb{Z} C_{2}$-modules. Then there is a 6-periodic exact sequence of abelian groups:

We will next consider results which apply only in the case where A is finite $\mathbb{Z} G$-module, i.e. a $\mathbb{Z} G$-module whose underlying abelian group is finite. This is a consequence of the theory of Herbrand quotients (see [Ser79, Chapter VIII, Section 4]) though we will include a direct proof here for convenience.

Proposition 14.8. Let A be a finite $\mathbb{Z} C_{2}$-module. Then there exists $d \geq 0$ such that

$$
\widehat{H}^{n}\left(C_{2} ; A\right) \cong(\mathbb{Z} / 2)^{d}
$$

for all $n \in \mathbb{Z}$. In particular, $\left|\widehat{H}^{n}(G ; A)\right|$ is independent of $n \in \mathbb{Z}$.

Proof. First note that, since A is finite, so is $\widehat{H}^{n}\left(C_{2} ; A\right)$ by Proposition 14.5. Next note that there are exact sequences of finite abelian groups (see, for example, [Ser79, p. 134]):

$$
\begin{gathered}
0 \rightarrow\{x \in A \mid \bar{x}=x\} \rightarrow A \xrightarrow{x \mapsto x-\bar{x}} A \rightarrow \frac{A}{\{x-\bar{x} \mid x \in A\}} \rightarrow 0 \\
0 \rightarrow \widehat{H}^{1}\left(C_{2} ; A\right) \rightarrow \frac{A}{\{x-\bar{x} \mid x \in A\}} \xrightarrow{x \mapsto x+\bar{x}}\{x \in A \mid \bar{x}=x\} \rightarrow \widehat{H}^{0}\left(C_{2} ; A\right) \rightarrow 0 .
\end{gathered}
$$

The first implies that $|\{x \in A \mid \bar{x}=x\}|=|A /\{x-\bar{x} \mid x \in A\}|$ and, by combining this with the second, we get that $\left|\widehat{H}^{1}\left(C_{2} ; A\right)\right|=\left|\widehat{H}^{0}\left(C_{2} ; A\right)\right|$. Hence, since $\widehat{H}^{n}\left(C_{2} ; A\right)$ is 2-periodic (see Proposition 14.5), we get that $\left|\widehat{H}^{n}\left(C_{2} ; A\right)\right|$ is independent of $n \in \mathbb{Z}$.

Next recall that, by Proposition 14.2 (iii), we have $2 \cdot \widehat{H}^{n}\left(C_{2} ; A\right)=0$, i.e. every element in $\widehat{H}^{n}\left(C_{2} ; A\right)$ has order at most two. This implies that $\widehat{H}^{n}\left(C_{2} ; A\right) \cong(\mathbb{Z} / 2)^{d_{n}}$ for some $d_{n} \geq 0$. Since $\left|\widehat{H}^{n}\left(C_{2} ; A\right)\right|$ is independent of n, this implies that d_{n} is also independent of n.

Remark 14.9. In particular, by Propositions 14.5 and 14.8 , there is an isomorphism of abelian groups

$$
\frac{\{x \in A \mid x=-\bar{x}\}}{\{x-\bar{x} \mid x \in A\}} \cong \frac{\{x \in A \mid x=\bar{x}\}}{\{x+\bar{x} \mid x \in A\}}
$$

whenever A is a finite $\mathbb{Z} C_{2}$-module.
For a finite abelian group A and a prime p, let $A_{(p)}=\left\{x \in A \mid p^{n} \cdot x=0\right.$ for some $\left.n \geq 1\right\}$ denote the p-primary component of A. This coincides with the Sylow p-subgroup of A and we use this notation since $A_{(p)} \cong \mathbb{Z}_{(p)} \otimes_{\mathbb{Z}} A$ where $\mathbb{Z}_{(p)}$ denotes the localisation of \mathbb{Z} at $S=\mathbb{Z} \backslash(p)$.

Lemma 14.10. Let A be a finite $\mathbb{Z} C_{2}$-module. For p prime, $A_{(p)} \leq A$ is a $\mathbb{Z} C_{2}$-submodule and

$$
A \cong \bigoplus_{p| | A \mid} A_{(p)}
$$

is an isomorphism of $\mathbb{Z} C_{2}$-modules.
Proof. By the classification of finite abelian groups, we have $A \cong \bigoplus_{p| | A \mid} A_{(p)}$ as abelian groups. Recall that, if G and H are finite abelian groups with $(|G|,|H|)=1$, then the natural inclusion $\operatorname{Aut}(G) \times \operatorname{Aut}(H) \hookrightarrow \operatorname{Aut}(G \times H)$ is an isomorphism. In particular, we have

$$
\operatorname{Aut}(A) \cong \prod_{p| | A \mid} \operatorname{Aut}\left(A_{(p)}\right)
$$

A $\mathbb{Z} C_{2}$-module structure on A is an involution, i.e. an element of $\operatorname{Aut}(A)$ of order at most two. The above isomorphism implies that the involution fixes each $A_{(p)}$ and so $A_{(p)} \leq A$ is a $\mathbb{Z} C_{2}$-submodule. It follows that that $A \cong \bigoplus_{p| | A \mid} A_{(p)}$ is an isomorphism of $\mathbb{Z} C_{2}$-modules.

Proposition 14.11. Let A be a finite $\mathbb{Z} C_{2}$-module and let $n \in \mathbb{Z}$. Then

$$
\widehat{H}^{n}\left(C_{2} ; A\right) \cong \widehat{H}^{n}\left(C_{2} ; A_{(2)}\right) .
$$

Proof. By Lemma 14.10 and Proposition 14.2 (ii), we get that

$$
\widehat{H}^{n}\left(C_{2} ; A\right) \cong \bigoplus_{p| | A \mid} \widehat{H}^{1}\left(C_{2} ; A_{(p)}\right)
$$

If $p \neq 2$, then $\left|A_{(p)}\right|$ is odd and so $\widehat{H}^{1}\left(C_{2} ; A_{(p)}\right)=0$ by Proposition 14.2 (iv). This gives that $\widehat{H}^{n}\left(C_{2} ; A\right) \cong \widehat{H}^{n}\left(C_{2} ; A_{(2)}\right)$, as required.

15. Computing the involution on $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)$

The aim of this section will be to investigate the involution on $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)$ in preparation for the proofs of Theorems 16.1, 16.2, and 16.3 in Section 16.

We will view $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)$ as a $\mathbb{Z} C_{2}$-module with the C_{2}-action coming from the standard involution on \widetilde{K}_{0} as defined in Section 5.1. We saw in Section 13.1 that $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \cong C\left(\mathbb{Z} C_{m}\right)$ is an isomorphism of $\mathbb{Z} C_{2}$-modules where $C\left(\mathbb{Z} C_{m}\right)$ denotes the locally free class group, and in particular
it is finite. Our basic approach for computing $C\left(\mathbb{Z} C_{m}\right)$ will be to use the following short exact sequence of $\mathbb{Z} C_{2}$-modules established in Section 13.4

$$
0 \rightarrow D\left(\mathbb{Z} C_{m}\right) \rightarrow C\left(\mathbb{Z} C_{m}\right) \rightarrow C\left(\Gamma_{m}\right) \rightarrow 0
$$

where Γ_{m} is a maximal order in $\mathbb{Q} C_{m}$ containing $\mathbb{Z} C_{m}$ and $D\left(\mathbb{Z} C_{m}\right)$ has the induced involution.
The plan for this section is as follows. In Section 15.1, we relate the involution on $C\left(\Gamma_{m}\right)$ to the involution on $C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)$ induced by conjugation. In Section 15.2, we study the conjugation action on $C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)$ and its relation to the class numbers $h_{d}=\left|C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)\right|$. In Section 15.3, we survey results on divisibility of class numbers as well as make some minor extensions (see Proposition 15.8 (ii)). Finally, in Section 15.4, we investigate the involution on $D\left(\mathbb{Z} C_{m}\right)$.
15.1. The induced involution on the maximal order. Let $m \geq 2$ and let $C_{m}=\left\langle x \mid x^{m}\right\rangle$. Then there is an isomorphism of \mathbb{Q}-algebras:

$$
\mathbb{Q} C_{m} \cong \prod_{d \mid m} \mathbb{Q}\left(\zeta_{d}\right), \quad x \mapsto \prod_{d \mid m}\left(\zeta_{d}\right)
$$

where $\zeta_{d}=e^{2 \pi i / d}$ denotes a d th primitive root of unity. Since $\mathcal{O}_{\mathbb{Q}\left(\zeta_{d}\right)}=\mathbb{Z}\left[\zeta_{d}\right]$, it follows that $\Gamma_{m}=\prod_{d \mid m} \mathbb{Z}\left[\zeta_{d}\right]$ is a maximal order in $\mathbb{Q} C_{m}$. The image of $\mathbb{Z} C_{m}$ under the isomorphism above is contained in Γ_{m} and so Γ_{m} contains $\mathbb{Z} C_{m}$. In fact, Γ_{m} is the unique maximal order in $\mathbb{Q} C_{m}$ containing $\mathbb{Z} C_{m}$ [CR87, p. 243]. This implies that there is an isomorphism of abelian groups

$$
C\left(\Gamma_{m}\right) \cong \bigoplus_{d \mid m} C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)
$$

where, as noted in Proposition 13.6, the locally free class group $C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)$ coincides with the ideal class group of $\mathbb{Z}\left[\zeta_{d}\right]$.

For an integer $d \geq 1$, let $-: C\left(\mathbb{Z}\left[\zeta_{d}\right]\right) \rightarrow C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)$ denote the map induced by conjugation, i.e. if $\sigma: \mathbb{Z}\left[\zeta_{d}\right] \rightarrow \mathbb{Z}\left[\zeta_{d}\right]$ is the ring homomorphism generated by $\zeta_{d} \mapsto \zeta_{d}^{-1}$, then $-=\sigma_{*}$ is the induced map on $C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)$. We will now compute the induced involution on $\bigoplus_{d \mid m} C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)$. This was shown in the case where m is prime in [Rei68] (see also [CR87, p. 275]).

Proposition 15.1. Let $i: \mathbb{Z} C_{m} \hookrightarrow \Gamma_{m}, x \mapsto \prod_{d \mid m}\left(\zeta_{d}\right)$ and let $i_{*}: C\left(\mathbb{Z} C_{m}\right) \rightarrow \bigoplus_{d \mid m} C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)$ denote the induced map. Then, under i_{*}, the standard involution on $C\left(\mathbb{Z} C_{m}\right)$ induces the conjugation map on each $C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)$.

This means that, if $x \in C\left(\mathbb{Z} C_{m}\right)$ and $i_{*}(x)=\prod_{d \mid m} x_{d}$, then $i_{*}(c(x))=\prod_{d \mid m} c_{d}\left(x_{d}\right)$ where $c: C\left(\mathbb{Z} C_{m}\right) \rightarrow C\left(\mathbb{Z} C_{m}\right)$ is the standard involution and $c_{d}: C\left(\mathbb{Z}\left[\zeta_{d}\right]\right) \rightarrow C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)$ is induced by conjugation.

Proof. For each $d \mid m$, let $i^{(d)}: \mathbb{Z} C_{m} \rightarrow \mathbb{Z}\left[\zeta_{d}\right], x \mapsto \zeta_{d}$. It suffices to prove that, under the $\operatorname{map} i_{*}^{(d)}: C\left(\mathbb{Z} C_{m}\right) \rightarrow C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)$, the involution on $C\left(\mathbb{Z} C_{m}\right)$ induces conjugation on $C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)$. By Proposition 13.14, the standard involution on $C\left(\mathbb{Z} C_{m}\right)$ is induced by the involution on the idèle group $J\left(\mathbb{Q} C_{m}\right)$. Note that $i_{*}^{(d)}$ is induced by the map $J\left(i^{(d)}\right): J\left(\mathbb{Q} C_{m}\right) \rightarrow J\left(\mathbb{Q}\left(\zeta_{d}\right)\right)$. Under the map $i^{(d)}$, the involution on $\mathbb{Q} C_{m}$ induces conjugation on $\mathbb{Q}\left(\zeta_{d}\right)$. In particular, the involution on $C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)$ induced by $i_{*}^{(d)}$ coincides with the involution induced by conjugation on $J\left(\mathbb{Q}\left(\zeta_{d}\right)\right)$. The result now follows since, if a locally free $\mathbb{Z}\left[\zeta_{d}\right]$-ideal $M=\left(x_{1}, \ldots, x_{n}\right) \subseteq \mathbb{Q}\left(\zeta_{d}\right)$ is represented by $\alpha \in J\left(\mathbb{Q}\left(\zeta_{d}\right)\right)$, then $\bar{M}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right) \subseteq \mathbb{Q}\left(\zeta_{d}\right)$ is represented by $\bar{\alpha} \in J\left(\mathbb{Q}\left(\zeta_{d}\right)\right)$.

In summary, we have shown that there is a short exact sequence of $\mathbb{Z} C_{2}$-modules

$$
0 \rightarrow D\left(\mathbb{Z} C_{m}\right) \rightarrow C\left(\mathbb{Z} C_{m}\right) \rightarrow \bigoplus_{d \mid m} C\left(\mathbb{Z}\left[\zeta_{d}\right]\right) \rightarrow 0
$$

where $C\left(\mathbb{Z} C_{m}\right)$ has the standard involution, $D\left(\mathbb{Z} C_{m}\right)$ has the induced involution, and each $C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)$ has the involution induced by conjugation.
15.2. Ideal class groups of cyclotomic fields. For every integer $m \geq 2$, let $\lambda_{m}=\zeta_{m}+\zeta_{m}^{-1}$. Let $i: \mathbb{Z}\left[\lambda_{m}\right] \hookrightarrow \mathbb{Z}\left[\zeta_{m}\right]$ denote inclusion and recall that the map $i_{*}: C\left(\mathbb{Z}\left[\lambda_{m}\right]\right) \rightarrow C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)$ is injective [Lan78, Theorem 4.2]. Furthermore, the norm map gives a surjection $N: C\left(\mathbb{Z}\left[\zeta_{m}\right]\right) \rightarrow C\left(\mathbb{Z}\left[\lambda_{m}\right]\right)$ such that the composition

$$
C\left(\mathbb{Z}\left[\zeta_{m}\right]\right) \xrightarrow{N} C\left(\mathbb{Z}\left[\lambda_{m}\right]\right) \xrightarrow{i_{*}} C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)
$$

is the map $x \mapsto x+\bar{x}$ (see, for example, [Lan78, pp. 83-4]). By viewing $C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)$ and $C\left(\mathbb{Z}\left[\lambda_{m}\right]\right)$ as $\mathbb{Z} C_{2}$-modules under the conjugation action, the maps i_{*} and N are $\mathbb{Z} C_{2}$-module homomorphisms. Note that the conjugation action induces the identify on $C\left(\mathbb{Z}\left[\lambda_{m}\right]\right)$.

This has the following useful consequences. Recall from earlier that, for A a $\mathbb{Z} C_{2}$-module, we defined $A^{-}=\{x \in A \mid x=-\bar{x}\}$ and $A^{+}=\{x \in A \mid x=\bar{x}\}$.

Lemma 15.2.

(i) The map i_{*} induces an isomorphism $C\left(\mathbb{Z}\left[\lambda_{m}\right]\right) \cong\left\{x+\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}$.
(ii) There is a short exact sequence of $\mathbb{Z} C_{2}$-modules:

$$
0 \rightarrow C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)^{-} \rightarrow C\left(\mathbb{Z}\left[\zeta_{m}\right]\right) \xrightarrow{N} C\left(\mathbb{Z}\left[\lambda_{m}\right]\right) \rightarrow 0
$$

Remark 15.3. Since $\mathbb{Q}\left(\lambda_{m}\right)$ is the maximal real subfield of $\mathbb{Q}\left(\zeta_{m}\right)$, it is often written as $\mathbb{Q}\left(\zeta_{m}\right)^{+}$. However, whilst $C\left(\mathbb{Z}\left[\lambda_{m}\right]\right) \subseteq C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)^{+}$is a subgroup, these groups are not equal in general. For example, if $m=29$, then $C\left(\mathbb{Z}\left[\lambda_{29}\right]\right)=0$ and $C\left(\mathbb{Z}\left[\zeta_{29}\right]\right)^{+} \cong(\mathbb{Z} / 2)^{3}$.
Proof. (i) Since N is surjective, we have $\operatorname{Im}\left(i_{*}\right)=\operatorname{Im}\left(i_{*} \circ N\right)=\left\{x+\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}$.
(ii) Since i_{*} is injective, we have $\operatorname{ker}(N)=\operatorname{ker}\left(i_{*} \circ N\right)=\left\{x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right) \mid x+\bar{x}=0\right\}$.

In order to set up later applications, we will now use Lemma 15.2 to obtain information about each of the following groups:

$$
\left\{x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right) \mid x=-\bar{x}\right\}, \quad\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}, \quad \underbrace{\frac{\left\{x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right) \mid x=-\bar{x}\right\}}{\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}}}_{\cong \widehat{H}^{1}\left(C_{2} ; C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right)}
$$

Since $C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)$ is a finite abelian group (see, for example, Section 13.1), we can define the class number of the cyclotomic integers to be $h_{m}=\left|C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right|$. By Lemma 15.2 (ii), we have that $h_{m}=h_{m}^{-} h_{m}^{+}$where $h_{m}^{-}=\left|C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)^{-}\right|$and $h_{m}^{+}=\left|C\left(\mathbb{Z}\left[\lambda_{m}\right]\right)\right|$. We refer to h_{m}^{-}as the minus part of the class number and h_{m}^{+}as the plus part of the class number respectively.

For an integer m, let $\operatorname{odd}(m)$ denote the odd part of m, i.e. odd (m) is the unique odd integer r such that $m=2^{k} r$ for some k.

Proposition 15.4. There are subgroups:
(i) $C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)^{-} \leq\left\{x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right) \mid x=-\bar{x}\right\}$;
(ii) $2 \cdot C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)^{-} \leq\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}$.

In particular, h_{m}^{-}divides $\left|\left\{x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right) \mid x=-\bar{x}\right\}\right|$ and $\operatorname{odd}\left(h_{m}^{-}\right)$divides $\left|\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}\right|$.
Proof. Parts (i) and (ii) each follows from Lemma 14.3, Lemma 15.2 (ii) and the fact that $\bar{x}=-x$ for all $x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)^{-}$. For the last part note that, since $C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)^{-}$is a finite abelian group, we have that $C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)^{-} \cong A \oplus B$ where $|A|$ is even and $|B|=\operatorname{odd}\left(h_{m}^{-}\right)$is odd. Since B is odd, $2 \cdot B=B$ and so

$$
B \leq 2 \cdot A \oplus B=2 \cdot C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)^{-} \leq\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}
$$

The result follows since $\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}$ has a subgroup of size odd $\left(h_{m}^{-}\right)$.
Remark 15.5. Here we used Lemma 15.2 (ii) in order to obtain these bounds. It is also possible to use Lemma 15.2 (i) instead. In particular, this implies that $C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)$ has quotient

$$
\operatorname{coker}\left(i_{*}\right) \cong C\left(\mathbb{Z}\left[\zeta_{m}\right]\right) /\left\{x+\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}
$$

If $[x] \in \operatorname{coker}\left(i_{*}\right)$, then $[\bar{x}]=-[x]$. By Lemma 14.3, $\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}$ has quotient $2 \cdot \operatorname{coker}\left(i_{*}\right)$. The same argument now applies since $\left|\operatorname{coker}\left(i_{*}\right)\right|=h_{m}^{-}$.
15.3. Divisibility of class numbers of cyclotomic fields. The aim of this section will be to survey results on the divisibility of the class numbers h_{m} and h_{m}^{-}. The most basic divisibility results are that, for $n \mid m$, we have $h_{n} \mid h_{m}$ [Was97, p. 205] and $h_{n}^{-} \mid h_{m}^{-}$[MM76, Lemma 5]. Motivated by Proposition 15.4, we will now pursue divisibility results of two distinct types. We will start by considering odd $\left(h_{m}^{-}\right)$, i.e. the unique odd integer r such that $h_{m}^{-}=2^{k} r$ for some k, and we will then go on to consider the parity of h_{m}^{-}.

Recall the following theorem of Masley-Montgomery [MM76] (see also [Was97, p. 205]). In anticipation of its application in the proofs of Theorems 16.1 and 16.2 , we will separate out the case where m is square-free.

Proposition 15.6. The complete list of $m \geq 2$ for which $h_{m}^{-}=1$ is as follows.
(i) If m is square-free, then

$$
m= \begin{cases}p, & \text { where } p \in\{2,3,5,7,11,13,17,19\} \\ 2 p, & \text { where } p \in\{3,5,7,11,13,17,19\} \\ p q \text { or } 2 p q, & \text { where }(p, q) \in\{(3,5),(3,7),(3,11),(5,7)\} .\end{cases}
$$

(ii) If m is not square-free, then

$$
m \in\{4,8,9,12,16,18,20,24,25,27,28,32,36,40,44,45,48,50,54,60,84,90\} .
$$

Furthermore, $h_{m}^{-}=1$ if and only if $h_{m}=1$.
The proof of Proposition 15.6 is based on the fact that $h_{m}^{-} \rightarrow \infty$ as $m \rightarrow \infty$. We will now establish lower bounds on the growth rate of h_{m}^{-}, and hence on h_{m} since $h_{m} \geq h_{m}^{-}$. Let $\varphi(m)$ denote Euler's totient function.

Proposition 15.7. There exists a constant $C>0$ such that, for all $m \geq 1$, we have:

$$
h_{m}^{-} \geq e^{C \frac{m \log m}{\log \log m}}
$$

In particular, $h_{m}^{-} \rightarrow \infty$ super-exponentially in m.
Proof. It is shown in [Was97, Theorem 4.20] that $\log h_{m}^{-} /\left(\frac{1}{4} \varphi(m) \log m\right) \rightarrow 1$ as $m \rightarrow \infty$. This implies that $\log h_{m}^{-} \geq C_{0} \varphi(m) \log m$ for some $C_{0}>0$. The result now follows from the fact that $\varphi(m) \geq m / 2 \log \log m$ for m sufficiently large [HW54, Theorem 328].

The following result gives the analogue of Proposition 15.6 for $\operatorname{odd}\left(h_{m}^{-}\right)$. Note that $h_{m}^{-}=1$ implies odd $\left(h_{m}^{-}\right)=1$, so we need not consider these m since they are classified in Proposition 15.6. This was established by Horie [Hor89, Theorems 2 and 3] and builds on Friedman's theorem from Iwasawa theory [Fri81] and the Brauer-Siegel theorem for abelian fields [Uch71].

Proposition 15.8. The complete list of $m \geq 2$ for which $\operatorname{odd}\left(h_{m}^{-}\right)=1$ and $h_{m}^{-} \neq 1$ is as follows.
(i) If m is square-free, then $m \in\{29,39,58,65,78,130\}$.
(ii) If m is not square-free, then $m \in\{56,68,120\}$.

Furthermore, $\operatorname{odd}\left(h_{m}^{-}\right)=1$ if and only if $\operatorname{odd}\left(h_{m}\right)=1$.
In [Hor89, Theorem 1], Horie also showed that odd $\left(h_{m}^{-}\right) \rightarrow \infty$ as $m \rightarrow \infty$ but gave no bound on the growth rate. In fact, we have the following result analogous to Proposition 15.7.

Proposition 15.9. There exists a constant $C>0$ such that, for all $m \geq 1$, we have:

$$
\text { odd } h_{m}^{-} \geq e^{C \frac{m \log m}{\log \log m}}
$$

In particular, odd $\left(h_{m}^{-}\right) \rightarrow \infty$ super-exponentially in m.
We will prove this by tracing through Horie's proof of [Hor89, Theorem 1]. Recall that an abelian field K is a finite Galois extension K / \mathbb{Q} with $\operatorname{Gal}(K / \mathbb{Q})$ abelian and we can assume that $K \subseteq \mathbb{C}$. For an abelian field K with maximal real subfield K^{+}, let $h_{K}=\left|C\left(\mathcal{O}_{K}\right)\right|, h_{K}^{+}=\left|C\left(\mathcal{O}_{K^{+}}\right)\right|$ and $h_{K}^{-}=h_{K} / h_{K}^{+}$(which is an integer). Let $\operatorname{disc}(K)$ denote the discriminant of a number field K.

Proof. We will use that, if L / K is an extension of abelian fields, then odd $\left(h_{K}^{-}\right) \mid \operatorname{odd}\left(h_{L}^{-}\right)$[Hor89, Lemma 1]. For each abelian field K, let K^{\prime} denote the maximal subfield of K with degree a power of 2 . By the fundamental theorem of Galois theory and the fact that a finite abelian group A has a subgroup of order d for all $d||A|$, we get that $| K^{\prime} / \mathbb{Q} \mid$ is the highest power of 2 dividing $|K / \mathbb{Q}|$. For an integer $n \geq 1$, let $\mathcal{A}_{n}=\left\{m \mid \operatorname{odd}\left(h_{m}^{-}\right) \leq n\right\}$ and $\mathcal{B}_{n}=\left\{\left|\mathbb{Q}\left(\zeta_{m}\right)^{\prime} / \mathbb{Q}\right| \mid n \in \mathcal{A}_{n}\right\}$.

We will begin by finding a bound for $\sup \left(\mathcal{B}_{n}\right)$. Let $K=\mathbb{Q}\left(\zeta_{m}\right)^{\prime}$ for some $m \in \mathcal{A}_{n}$. Then $\mathbb{Q}\left(\zeta_{m}\right) / K$ is an extension of abelian fields and so odd $\left(h_{K}^{-}\right) \mid h_{m}^{-}$and so odd $\left(h_{K}^{-}\right) \leq n$. Since $|K / \mathbb{Q}|$ is a power of $2, h_{K}$ must be odd [Was97] and so $h_{K}^{-}=\operatorname{odd}\left(h_{K}^{-}\right) \leq n$. Furthermore, note that K is imaginary unless $K=\mathbb{Q}$ [Hor89, p. 468].

It follows from the proof of Theorem 1 and Proposition 1 in [Uch71] that $\frac{|K / \mathbb{Q}|}{\log |\operatorname{disc}(K)|}$ is uniformly bounded across imaginary abelian fields K, where $\operatorname{disc}(K)$ denotes the discriminant, and that $h_{K}^{-} \geq|\operatorname{disc}(K)|^{6}$ for all but finitely many imaginary abelian fields K. This implies that there exists a constant $C>0$ such that $|K / \mathbb{Q}| \leq C \log \left(h_{K}^{-}\right)$for all imaginary abelian fields K. Hence, if $K=\mathbb{Q}\left(\zeta_{m}\right)^{\prime}$ for $m \in \mathcal{A}_{n}$, then $|K / \mathbb{Q}| \leq C \log n$. This implies that $\sup \left(\mathcal{B}_{n}\right) \leq C \log n$. It also follows that there are only finitely many fields of the form $\mathbb{Q}\left(\zeta_{m}\right)^{\prime}$ for $m \in \mathcal{A}_{n}$.

We now aim to find a bound for $\sup \left(\mathcal{A}_{n}\right)$. First let S denote the set of primes which are ramified in some field $\mathbb{Q}\left(\zeta_{m}\right)^{\prime}$ for $m \in \mathcal{A}_{n}$. This is finite since there are finitely many such fields, and coincides with the primes which are ramified in $\mathbb{Q}\left(\zeta_{m}\right)$ for some $m \in \mathcal{A}_{n}$ [Hor89, p. 468]. Let $S=\left\{p_{1}, \ldots, p_{s}\right\}$ for distinct primes p_{i}. By [Hor89, p. 469] there exists a cyclotomic field $L=\mathbb{Q}\left(\zeta_{\ell}\right)$ such that $L \subseteq \mathbb{Q}\left(\zeta_{m}\right) \subseteq L_{\infty}$ where L_{∞} is the basic $\mathbb{Z}_{p_{1}} \times \cdots \times \mathbb{Z}_{p_{s}}$-extension over L. Furthermore, we have $\left|\mathbb{Q}\left(\zeta_{m}\right) / L\right|=\prod_{i=1}^{s} p_{i}^{n\left(p_{i}\right)}$ for some $n\left(p_{i}\right) \geq 1$ and so, in the notation of [Fri81], we can write $\mathbb{Q}\left(\zeta_{m}\right)=L_{N}$ where $N=\left(n_{1}, \ldots, n_{s}\right)$. Let $e_{N}^{(2)}$ denote the highest power of 2 dividing h_{m}. By [Fri81, Theorem B], we have that $e_{N}^{(2)}=A \cdot n(2)+B$ for all but finitely many N, where $A, B \geq 0$ are integers that do not depend on N. This implies that there exists a constant $C^{\prime}>0$ such that $e_{N}^{(2)} \leq C^{\prime} \cdot n(2)$ for all N.

Let $K=\mathbb{Q}\left(\zeta_{m}\right)^{\prime}$. Then $\left|\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}\right|=2^{r} t$ for some $r \geq 0$ and t odd, where $2^{r}=|K / \mathbb{Q}| \leq C \log n$ by the bound on $\log \left(\mathcal{B}_{n}\right)$. Since $\left|\mathbb{Q}\left(\zeta_{m}\right) / L\right|\left|\left|\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}\right|\right.$, we have that $2^{n(2)} \leq 2^{r} \leq C \log n$. Hence $h_{m}^{-} / \operatorname{odd}\left(h_{m}^{-}\right) \leq h_{m} / \operatorname{odd}\left(h_{m}\right)=2^{e_{N}^{(2)}} \leq(C \log n)^{C^{\prime}}$. Since $m \in \mathcal{A}_{n}$, we have odd $\left(h_{m}^{-}\right) \leq n$. This gives that $h_{m}^{-} \leq a(\log n)^{b} n$ for some constants $a, b>0$ and so, for any $\varepsilon>0$, we have that $h_{m}^{-} \leq a n^{1+\varepsilon}$. Combining this with Proposition 15.7 gives that $\log \left(a n^{1+\varepsilon}\right) \geq C_{0} \frac{m \log m}{\log \log m}$ for some $C_{0}>0$, which implies that $\log n \geq C \frac{m \log m}{\log \log m}$ for some $C>0$.

Finally, fix $m \geq 2$. Then $m \in \mathcal{A}_{n}$ where $n=\operatorname{odd}\left(h_{m}^{-}\right)$, and so gives

$$
\log \left(\operatorname{odd}\left(h_{m}^{-}\right)\right)=\log n \geq C \frac{m \log m}{\log \log m}
$$

which is the required bound.
We will now consider the parity of h_{m} and h_{m}^{-}. Whilst we will not explicitly make use of it, we will record the following basic observation which dates back to Kummer (see, for example, [Has52, Satz 45], [Yos98, Remark 1]).
Lemma 15.10. Let $m \geq 2$. Then h_{m} is odd if and only if h_{m}^{-}is odd.
We will now state more detailed results in the case where m is a prime power.
Lemma 15.11. Let p be a prime such that $p \leq 509$ and let $n \geq 1$. Then:
(i) h_{p} is odd if and only if

$$
p \notin\{29,113,163,197,239,277,311,337,349,373,397,421,463,491\} .
$$

(ii) $h_{p^{n}}$ is odd if and only if h_{p} is odd.

Proof. (i) This was proven by Schoof [Sch98, Table 4.4].
(ii) The case $p=2$ is proven in [Has52, Satz 36'], but the original result is attributed to an 1886 article of Weber [Web86]. See also [Yos98, p. 2590]. For $n \geq 1$ and $p \leq 509$ an odd prime, it was shown by Ichimura-Nakajima that $h_{p^{n}} / h_{p}$ is odd [IN12, Theorem 1 (II)]. The result follows.
Remark 15.12. Prior to the results of Ichimura-Nakajima, it was shown by Washington that $h_{p^{n}} / h_{p}$ is odd for $p=3,5$ [Was75]. Note that both results of Washington and Ichimura-Nakajima
all depend on Iwasawa theory. As far as we are aware, this is an essential ingredient in all known proofs that there exists an odd prime p such that $h_{p^{n}}$ is odd for all $n \geq 1$.
15.4. Kernel groups of $\mathbb{Z} C_{m}$. The aim of this section will be to determine the involution on $D\left(\mathbb{Z} C_{m}\right)$ which is induced by the involution on $C\left(\mathbb{Z} C_{m}\right)$ (see Proposition 13.13).

We will begin with the following classical result due to Rim [Rim59, Theorem 6.24] (see also [CR87, Theorem 50.2]). Recall that, if p is a prime and Γ_{p} is the maximal order in $\mathbb{Q} C_{p}$ containing $\mathbb{Z} C_{p}$, then $\Gamma_{p} \cong \mathbb{Z} \times \mathbb{Z}\left[\zeta_{p}\right]$ and so $C\left(\Gamma_{p}\right) \cong C\left(\mathbb{Z}\left[\zeta_{p}\right]\right)$ since \mathbb{Z} is a PID.
Lemma 15.13. Let p be a prime. Then the map $\mathbb{Z} C_{p} \rightarrow \mathbb{Z}\left[\zeta_{p}\right], x \mapsto \zeta_{p}$ induces an isomorphism $C\left(\mathbb{Z} C_{p}\right) \cong C\left(\mathbb{Z}\left[\zeta_{p}\right]\right)$. In particular, $D\left(\mathbb{Z} C_{p}\right)=0$.

We will now determine $D\left(\mathbb{Z} C_{m}\right)$, as well as its involution, in the case where m is square-free. This will be used in the proofs of Theorems 16.1 and 16.2. As usual, we will view an abelian group with involution as a $\mathbb{Z} C_{2}$-module.

Let $\pi_{1}=1$, let $\pi_{p}=1-\zeta_{p}$ for a prime p and, more generally, let $\pi_{m}=\prod_{p \mid m} \pi_{p}$ for an integer $m \geq 2$. Note that $\mathbb{Z}\left[\zeta_{m}\right] / \pi_{m} \cong \bigoplus_{p \mid m} \mathbb{Z}\left[\zeta_{m}\right] / \pi_{p}$ since the π_{p} are coprime (see, for example, [CR87, p. 249]). Let $\Psi_{m}: \mathbb{Z}\left[\zeta_{m}\right]^{\times} \rightarrow\left(\mathbb{Z}\left[\zeta_{m}\right] / \pi_{m}\right)^{\times}$be the natural map.
Definition 15.14. For a square-free integer $m \geq 2$, define

$$
V_{m}=\operatorname{coker}\left(\Psi_{m}: \mathbb{Z}\left[\zeta_{m}\right]^{\times} \rightarrow\left(\mathbb{Z}\left[\zeta_{m}\right] / \pi_{m}\right)^{\times}\right)
$$

We will view this as a $\mathbb{Z} C_{2}$-module with the involution induced by the conjugation map

$$
\because\left(\mathbb{Z}\left[\zeta_{m}\right] / \pi_{m}\right)^{\times} \rightarrow\left(\mathbb{Z}\left[\zeta_{m}\right] / \pi_{m}\right)^{\times}, \quad \zeta_{m} \mapsto \zeta_{m}^{-1}
$$

Note that, if p is prime, then $\mathbb{Z}\left[\zeta_{p}\right] / \pi_{p} \cong \mathbb{F}_{p}$. We can then see that $\Psi_{p}: \mathbb{Z}\left[\zeta_{p}\right]^{\times} \rightarrow \mathbb{F}_{p}^{\times}$is surjective by considering the cyclotomic units $1+\zeta_{p}+\cdots+\zeta_{p}^{i-1} \in \mathbb{Z}\left[\zeta_{p}\right]^{\times}$for $(i, p)=1$. In particular, $V_{p}=1$. We will now show how $D\left(\mathbb{Z} C_{m}\right)$ is related to V_{d} for $d \mid m$.
Lemma 15.15. Let $m \geq 2$ be a square-free integer. Let d_{1}, \ldots, d_{n} be the distinct nontrivial positive divisors of m, ordered such that d_{i+1} has at least as many prime factors as d_{i} (so d_{1} is prime and $\left.d_{n}=m\right)$. Then there is a chain of $\mathbb{Z} C_{2}$-modules

$$
1=A_{0} \leq \cdots \leq A_{n}=D\left(\mathbb{Z} C_{m}\right)
$$

such that $A_{i} / A_{i-1} \cong V_{d_{n-i+1}}$ for $1 \leq i \leq n$.
It is proven in [CR87, Theorem 50.6] that $\left|D\left(\mathbb{Z} C_{m}\right)\right|=\prod_{d \mid n}\left|V_{d}\right|$. Our proof will involve following the argument given there, and extending it to determine the group structure and the involution.
Proof. First recall that $\Gamma=\bigoplus_{d \mid m} \mathbb{Z}\left[\zeta_{d}\right]$ is the unique maximal order in $\mathbb{Q} C_{m}$ which contains $\mathbb{Z} C_{m}$. In particular, this implies that there is a pullback square:

By [CR87, p. 246] this induces an exact sequence

$$
\left(\mathbb{Z} C_{m} / m \Gamma\right)^{\times} \oplus \Gamma^{\times} \xrightarrow{\left(j_{1}, j_{2}\right)}(\Gamma / m \Gamma)^{\times} \xrightarrow{\partial} D\left(\mathbb{Z} C_{m}\right) \rightarrow 0
$$

where $\partial: u \mapsto M(u)$ where

$$
M(u)=\left\{(x, y) \in\left(\mathbb{Z} C_{m} / m \Gamma\right) \times \Gamma \mid j_{1}(x)=j_{2}(y) u \in \Gamma / m \Gamma\right\}
$$

is the $\mathbb{Z} C_{m}$-module with action $\lambda \cdot(x, y)=\left(i_{1}(\lambda) x, i_{2}(\lambda) y\right)$ for $\lambda \in \mathbb{Z} C_{m}$. We now claim that the conjugation map on $(\Gamma / m \Gamma)^{\times}$induces the involution on $D\left(\mathbb{Z} C_{m}\right)$. First note that, by Proposition 13.14, the involution on $D\left(\mathbb{Z} C_{m}\right)$ is induced by the natural involution $x \mapsto x^{-1}$ on the idèle group $J\left(\mathbb{Q} C_{m}\right) \subseteq \prod_{p} \mathbb{Q}_{p} C_{m}$. For all primes p, we have $\mathbb{Z}_{p} C_{m} \subseteq \Gamma_{p} \oplus\left(\mathbb{Z} C_{m} / m \Gamma\right)_{p} \subseteq \mathbb{Q}_{p} C_{m}$. If $M(u)=\mathbb{Z} C_{m} \alpha$ for $\alpha=\left(\alpha_{p}\right) \in J\left(\mathbb{Q} C_{m}\right)$, then [CR87, Exercise 53.1] implies that

$$
\alpha_{p}= \begin{cases}(1,1) \in \Gamma_{p} \oplus\left(\mathbb{Z} C_{m} / m \Gamma\right)_{p}, & \text { if }(p, m)=1 \\ \left(u_{p}, 1\right) \in \Gamma_{p} \oplus\left(\mathbb{Z} C_{m} / m \Gamma\right)_{p}, & \text { if }(p, m) \neq 1\end{cases}
$$

where $u_{p} \in \Gamma_{p}$ is any element such that $j_{2}\left(u_{p}\right)=[u] \in(\Gamma / m \Gamma)_{p}$. By the same argument as in the proof of Proposition 15.1, the involution on $J\left(\mathbb{Q} C_{m}\right)$ induces an involution on $J\left(\mathbb{Q}\left(\zeta_{d}\right)\right)$ which coincides with the involution induced by conjugation. In particular, the involution maps $\alpha_{p} \mapsto(1,1)$ or $\left(\bar{u}_{p}, 1\right)$ where $-: \Gamma_{p} \rightarrow \Gamma_{p}$ is induced by conjugation on Γ. In particular, this coincides with the involution induced by conjugation on $(\Gamma / m \Gamma)^{\times}$.

By [CR87, Lemma 50.7], j_{1} can be replaced by the map $\alpha:\left(\mathbb{Z} C_{m} / m \mathbb{Z} C_{m}\right)^{\times} \rightarrow(\Gamma / m \Gamma)^{\times}$. By [CR87, Lemma 50.8], coker $(\alpha) \cong \bigoplus_{d \mid m}\left(\mathbb{Z}\left[\zeta_{d}\right] / \pi_{d}\right)^{\times}$and it follows from the proof that conjugation map on $(\Gamma / m \Gamma)^{\times}$induces conjugation on $\left(\mathbb{Z}\left[\zeta_{d}\right] / \pi_{d}\right)^{\times}$for each $d \mid m$. If $\gamma: \Gamma^{\times} \rightarrow \operatorname{coker}(\alpha)$ is the map induced by j_{2}, then we obtain an exact sequence

$$
\bigoplus_{d \mid m} \mathbb{Z}\left[\zeta_{d}\right]^{\times} \xrightarrow{\gamma} \bigoplus_{d \mid m}\left(\mathbb{Z}\left[\zeta_{d}\right] / \pi_{d}\right)^{\times} \xrightarrow{\bar{\sigma}} D\left(\mathbb{Z} C_{m}\right) \rightarrow 0 .
$$

Let d_{1}, \ldots, d_{n} be the ordered sequence of divisors of m. By [CR87, p. 250] we have that

$$
\left.\gamma\right|_{\mathbb{Z}\left[\zeta_{d_{i}}\right] \times}: \mathbb{Z}\left[\zeta_{d_{i}}\right]^{\times} \rightarrow\left(\mathbb{Z}\left[\zeta_{d_{i}}\right] / \pi_{d_{i}}\right)^{\times} \oplus \bigoplus_{p \left\lvert\, \frac{m}{d_{i}}\right.}\left(\mathbb{Z}\left[\zeta_{p d_{i}}\right] / \pi_{p}\right)^{\times} \subseteq \bigoplus_{j \geq i}\left(\mathbb{Z}\left[\zeta_{d_{j}}\right] / \pi_{d_{j}}\right)^{\times}, \quad x \mapsto\left(x, x^{-1}, \ldots, x^{-1}\right)
$$

where the last inclusion comes from the fact that $\mathbb{Z}\left[\zeta_{d}\right] / \pi_{p} \subseteq \bigoplus_{q \mid d} \mathbb{Z}\left[\zeta_{d}\right] / \pi_{q} \cong \mathbb{Z}\left[\zeta_{d}\right] / \pi_{d}$ for primes q since the π_{q} are pairwise coprime in $\mathbb{Z}\left[\zeta_{d}\right]$. If $x \in \mathbb{Z}\left[\zeta_{k}\right]^{\times}$, then $x^{-1} \in\left(\mathbb{Z}\left[\zeta_{k}\right] / \pi_{p}\right)^{\times} \subseteq\left(\mathbb{Z}\left[\zeta_{p k}\right] / \pi_{p}\right)^{\times}$.

For $1 \leq i \leq n$, this shows that γ restricts to a map $\gamma_{i}: \bigoplus_{j \geq i} \mathbb{Z}\left[\zeta_{d_{j}}\right]^{\times} \rightarrow \bigoplus_{j \geq i}\left(\mathbb{Z}\left[\zeta_{d_{j}}\right] / \pi_{j}\right)^{\times}$ where $\gamma=\gamma_{1}$. By a mild generalisation of [CR87, Exercise 50.2], this implies that there is an exact sequence induced by the projection map:

$$
1 \rightarrow \operatorname{coker}\left(\gamma_{i+1}^{\prime}: W \rightarrow \bigoplus_{j \geq i+1}\left(\mathbb{Z}\left[\zeta_{d_{j}}\right] / \pi_{j}\right)^{\times}\right) \rightarrow \operatorname{coker}\left(\gamma_{i}\right) \rightarrow \operatorname{coker}\left(\Psi_{d_{i}}\right) \rightarrow 1
$$

where $W=\left\{x \in \mathbb{Z}\left[\zeta_{d_{i}}\right]^{\times} \mid x \equiv 1 \bmod \pi_{d_{i}}\right\} \oplus \bigoplus_{j \geq i+1} \mathbb{Z}\left[\zeta_{d_{j}}\right]^{\times} . \quad$ By [CR87, p. 252], we have $\operatorname{Im}\left(\gamma_{i+1}^{\prime}\right)=\operatorname{Im}\left(\gamma_{i+1}\right)$ and so $\operatorname{coker}\left(\gamma_{i+1}^{\prime}\right)=\operatorname{coker}\left(\gamma_{i+1}\right)$. Let $A_{i}=\operatorname{coker}\left(\gamma_{n-i+1}\right)$ for $1 \leq i \leq n$ and $A_{0}=1$. Then we have that $1=A_{0} \leq \cdots \leq A_{n}=\operatorname{coker}(\gamma)=D\left(\mathbb{Z} C_{m}\right)$ such that there are isomorphisms $A_{i} / A_{i-1} \cong \operatorname{coker}\left(\Psi_{d_{n-i+1}}\right)$ as abelian groups.

Since the involution on $D\left(\mathbb{Z} C_{m}\right)$ is induced by conjugation on $(\Gamma / m \Gamma)^{\times}$, it follows that it restricts to A_{i} where it acts via conjugation on the $\mathbb{Z}\left[\zeta_{d}\right]$. Hence, with respect to the involution, $A_{i} \leq D\left(\mathbb{Z} C_{m}\right)$ is a $\mathbb{Z} C_{2}$-modules and the chain $A_{0} \leq \cdots \leq A_{n}$ is a chain of $\mathbb{Z} C_{2}$-modules. Under the abelian group isomorphism

$$
A_{i} / A_{i-1} \cong \operatorname{coker}\left(\Psi_{d_{n-i+1}}: \mathbb{Z}\left[\zeta_{d_{n-i+1}}\right]^{\times} \rightarrow\left(\mathbb{Z}\left[\zeta_{d_{n-i+1}}\right] / \pi_{d_{n-i+1}}\right)^{\times}\right)
$$

the involution on coker $\left(\Psi_{d_{n-i+1}}\right)$ induced by the involution on A_{i} coincides with the involution induced by conjugation on $\left(\mathbb{Z}\left[\zeta_{d_{n-i+1}}\right] / \pi_{d_{n-i+1}}\right)^{\times}$. Hence there is an isomorphism of $\mathbb{Z} C_{2}$-modules $A_{i} / A_{i-1} \cong V_{n-i+1}$, as required.

Let $m \geq 2$ be a square-free integer. We will now give a method for analysing the involution on $V_{m}=\operatorname{coker}\left(\Psi_{m}\right)$. For a field \mathbb{F} and $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$, we will write $\mathbb{F}\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ to denote $\mathbb{F} \otimes_{\mathbb{Z}} \mathbb{Z}\left[\alpha_{1}, \ldots, \alpha_{n}\right]$. Note that this may not be a field and so need not coincide with $\mathbb{F}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

First note that, as described above, we have that

$$
\Psi_{m}: \mathbb{Z}\left[\zeta_{m}\right]^{\times} \rightarrow \bigoplus_{p \mid m}\left(\mathbb{Z}\left[\zeta_{m}\right] / \pi_{p}\right)^{\times}
$$

where p ranges over the prime factors of m. If $p \mid m$ then, since m is square-free, we have $m=p k$ where $(k, p)=1$ and so we can take $\zeta_{m}=\zeta_{p} \cdot \zeta_{k}$. This implies that $\mathbb{Z}\left[\zeta_{m}\right]=\mathbb{Z}\left[\zeta_{p}, \zeta_{k}\right]$ and so

$$
\mathbb{Z}\left[\zeta_{m}\right] / \pi_{p} \cong \mathbb{Z}\left[\zeta_{p}, \zeta_{k}\right] / \pi_{p} \cong \mathbb{F}_{p}\left[\zeta_{k}\right]
$$

Let $m=p_{1} \cdots p_{n}$ for distinct primes p_{i}. Then Ψ_{m} can be written as

$$
\Psi_{m}: \mathbb{Z}\left[\zeta_{m}\right]^{\times} \rightarrow \bigoplus_{i=1}^{n} \mathbb{F}_{p_{i}}\left[\zeta_{m / p_{i}}\right]^{\times}
$$

where $\zeta_{m}=\prod_{j} \zeta_{p_{j}}, \zeta_{m / p_{i}}=\prod_{j \neq i} \zeta_{p_{j}}$ and the map $\mathbb{Z}\left[\zeta_{m}\right]^{\times} \rightarrow \mathbb{F}_{p_{i}}\left[\zeta_{m / p_{i}}\right]^{\times}$is the map sending $\zeta_{p_{i}} \mapsto 1$. This motivates the following definition.

Definition 15.16. For a square-free integer $m \geq 2$, define

$$
\tilde{V}_{m} \cong \operatorname{coker}\left(\Psi_{m}^{+}: \mathbb{Z}\left[\zeta_{m}\right]^{\times} \rightarrow \bigoplus_{i=1}^{n} \frac{\mathbb{F}_{p_{i}}\left[\zeta_{m / p_{i}}\right]^{\times}}{\mathbb{F}_{p_{i}}\left[\lambda_{m / p_{i}}\right]^{\times}}\right),
$$

where $\mathbb{F}_{p_{i}}\left[\lambda_{m / p_{i}}\right]^{\times} \leq \mathbb{F}_{p_{i}}\left[\zeta_{m / p_{i}}\right]^{\times}$is induced by the inclusion $\mathbb{Z}\left[\lambda_{m / p_{i}}\right] \leq \mathbb{Z}\left[\zeta_{m / p_{i}}\right]$ and Ψ_{m}^{+}is the composition of Ψ_{m} with the quotient maps $\mathbb{F}_{p_{i}}\left[\zeta_{m / p_{i}}\right]^{\times} \rightarrow \mathbb{F}_{p_{i}}\left[\zeta_{m / p_{i}}\right]^{\times} / \mathbb{F}_{p_{i}}\left[\lambda_{m / p_{i}}\right]^{\times}$.

We will view this as a $\mathbb{Z} C_{2}$-module with the involution induced by the conjugation map

$$
\because: \mathbb{F}_{p_{i}}\left[\zeta_{m / p_{i}}\right]^{\times} \rightarrow \mathbb{F}_{p_{i}}\left[\zeta_{m / p_{i}}\right]^{\times}, \quad \zeta_{m / p_{i}} \mapsto \zeta_{m / p_{i}}^{-1}
$$

Lemma 15.17. Let $m \geq 2$ be a square-free integer.
(i) There is a surjective $\mathbb{Z} C_{2}$-module homomorphism $V_{m} \rightarrow \widetilde{V}_{m}$.
(ii) $\widetilde{V}_{m}=\widetilde{V}_{m}^{-}$, i.e. if $x \in \widetilde{V}_{m}$, then $\bar{x}=-x \in \widetilde{V}_{m}$.

Proof. (i) For $1 \leq i \leq n$, we let $f_{i}=\operatorname{Id}_{\mathbb{F}_{p_{i}}} \otimes_{\mathbb{Z}} \iota_{i}$, where $\iota_{i}: \mathbb{Z}\left[\lambda_{m / p_{i}}\right] \hookrightarrow \mathbb{Z}\left[\zeta_{m / p_{i}}\right]$ is the natural inclusion map. Then the surjective homomorphism $V_{m} \rightarrow \widetilde{V}_{m}$ is induced by noting that

$$
\begin{aligned}
\widetilde{V}_{m} & \cong \operatorname{coker}\left(\left(\Psi_{m}, f_{1}, \ldots, f_{n}\right): \mathbb{Z}\left[\zeta_{m}\right]^{\times} \oplus \bigoplus_{i=1}^{n} \mathbb{F}_{p_{i}}\left[\lambda_{m / p_{i}}\right]^{\times} \rightarrow \bigoplus_{i=1}^{n} \mathbb{F}_{p_{i}}\left[\zeta_{m / p_{i}}\right]^{\times}\right) \\
& \cong \operatorname{coker}\left(\left(f_{1}, \ldots, f_{n}\right): \bigoplus_{i=1}^{n} \mathbb{F}_{p_{i}}\left[\lambda_{m / p_{i}}\right]^{\times} \rightarrow V_{m}\right)
\end{aligned}
$$

(ii) We first claim that, if p is prime and n is an integer, then $\alpha \in \mathbb{F}_{p}\left[\zeta_{n}\right]$ implies $\alpha \cdot \bar{\alpha} \in \mathbb{F}_{p}\left[\lambda_{n}\right]$. Let $\beta=\alpha \cdot \bar{\alpha}$. Since $\mathbb{Z}\left[\zeta_{n}\right]$ has integral basis $\left\{\zeta_{n}^{i}\right\}_{i=0}^{n-1}$, we can write $\beta=\sum_{i=0}^{n-1} a_{i} \otimes \zeta_{n}^{i}$ for $a_{i} \in \mathbb{F}_{p}$. Note that $\bar{\beta}=\beta$ which implies that

$$
\sum_{i=0}^{n-1} a_{i} \otimes \zeta_{n}^{i}=\sum_{i=0}^{n-1} a_{n-i} \otimes \zeta_{n}^{i} \in \mathbb{F}_{p}\left[\zeta_{n}\right]
$$

Since $\mathbb{F}_{p}\left[\zeta_{n}\right]=\mathbb{F}_{p} \otimes_{\mathbb{Z}} \mathbb{Z}\left[\zeta_{n}\right] \cong \mathbb{F}_{p}^{n}$ as an abelian group, we get that $a_{n}=a_{n-i} \in \mathbb{F}_{p}$ for all i and so

$$
\beta=a_{0}+\sum_{i=1}^{\left\lfloor\frac{n-1}{2}\right\rfloor} a_{i} \otimes\left(\zeta_{n}^{i}+\zeta_{n}^{-i}\right)+\varepsilon \in \mathbb{F}_{p}\left[\lambda_{n}\right]
$$

where $\varepsilon=-a_{n / 2}$ for n even and $\varepsilon=0$ for n odd.
Finally, let $f: V_{m} \rightarrow \widetilde{V}_{m}$ be the map described above and let $\alpha=\left[\left(\alpha_{1}, \ldots \alpha_{n}\right)\right]$, where $\alpha_{i} \in$ $\mathbb{F}_{p_{i}}\left[\zeta_{d / p_{i}}\right]^{\times}$. We have shown that $\alpha_{i} \cdot \bar{\alpha}_{i} \in \mathbb{F}_{p_{i}}\left[\lambda_{d / p_{i}}\right]^{\times}$for all i and so

$$
f(\alpha) \cdot f(\bar{\alpha})=\left[\left(\alpha_{1} \cdot \bar{\alpha}_{1}, \ldots, \alpha_{n} \cdot \bar{\alpha}_{n}\right)\right]=[(1, \ldots, 1)]=1
$$

and $f(\bar{\alpha})=f(\alpha)^{-1}$. Since f is surjective and induces the involution on \tilde{V}_{m}, this implies that $\bar{x}=-x$ for all $x \in \widetilde{V}_{m}$, where we now write the inverse as $-x$ rather than x^{-1} since \widetilde{V}_{m} is an abelian group.

We will now deduce the following, which is the main result of this section. Note that this is analogous to Proposition 15.4 which applied in the case of ideal class groups. Recall that, for an integer m, we let $\operatorname{odd}(m)$ denote the unique odd integer r such that $m=2^{k} r$ for some k.

Proposition 15.18. Let $m \geq 2$ be a square-free integer. Let d_{1}, \ldots, d_{n} be the distinct nontrivial positive divisors of m, ordered such that d_{i+1} has at least as many prime factors as d_{i}, and let A_{i} be the $\mathbb{Z} C_{2}$-modules defined in Lemma 15.15. Then there is a chain of abelian subgroups

$$
1=\left\{x-\bar{x} \mid x \in A_{0}\right\} \leq \cdots \leq\left\{x-\bar{x} \mid x \in A_{n}\right\}=\left\{x-\bar{x} \mid x \in D\left(\mathbb{Z} C_{m}\right)\right\}
$$

and, for each $1 \leq i \leq n$, there are surjective group homomorphisms

$$
\left\{x-\bar{x} \mid x \in A_{i}\right\} /\left\{x-\bar{x} \mid x \in A_{i-1}\right\} \rightarrow\left\{x-\bar{x} \mid x \in V_{d_{n-i+1}}\right\} \rightarrow 2 \cdot \widetilde{V}_{d_{n-i+1}}
$$

In particular, $\prod_{d \mid m} \operatorname{odd}\left(\left|\widetilde{V}_{d}\right|\right)$ divides $\left|\left\{x-\bar{x} \mid x \in D\left(\mathbb{Z} C_{m}\right)\right\}\right|$.

Proof. The chain of abelian subgroups follows direct from Lemma 15.15 and Lemma 14.3 (ii). Let $1 \leq i \leq n$. By Lemma 15.15, there is a short exact sequence of $\mathbb{Z} C_{2}$-modules

$$
0 \rightarrow A_{i-1} \rightarrow A_{i} \rightarrow V_{d_{n-i+1}} \rightarrow 0
$$

By Lemma 14.3 (ii), there are injective and surjective maps:

$$
\left\{x-\bar{x} \mid x \in A_{i-1}\right\} \hookrightarrow\left\{x-\bar{x} \mid x \in A_{i}\right\} \rightarrow\left\{x-\bar{x} \mid x \in V_{d_{n-i+1}}\right\} .
$$

Since the composition is necessarily the zero map, this gives the first surjective homomorphism. The second is a direct consequence of both parts of Lemma 15.17 as well as Lemma 14.3 (ii) again.

For the last part, the two statements we have proved so far imply that

$$
\left|\left\{x-\bar{x} \mid x \in D\left(\mathbb{Z} C_{m}\right)\right\}\right|=\prod_{i=1}^{n}\left|\left\{x-\bar{x} \mid x \in A_{i}\right\} /\left\{x-\bar{x} \mid x \in A_{i-1}\right\}\right|
$$

and $\left|2 \cdot \widetilde{V}_{d_{n-i+1}}\right|$ divides $\left|\left\{x-\bar{x} \mid x \in A_{i}\right\} /\left\{x-\bar{x} \mid x \in A_{i-1}\right\}\right|$ for all $1 \leq i \leq n$. It now suffices to note that odd $\left(\left|\widetilde{V}_{d_{n-i+1}}\right|\right)$ divides $\left|2 \cdot \widetilde{V}_{d_{n-i+1}}\right|$ by the same argument as in the proof of Proposition 15.4.

Remark 15.19. In order to obtain a complete analogue of Proposition 15.4, it would be desirable to also obtain bounds on $\left|\left\{x \in D\left(\mathbb{Z} C_{m}\right) \mid x=-\bar{x}\right\}\right|$. However, unlike Proposition 15.4 , the bounds we obtain in Proposition 15.18 are obtained by subquotients rather than just subgroups. We therefore can't simply apply Lemma 14.3 (i) since the final map in the sequence need not be surjective in general (see Remark 14.4). As we shall see in Section 16, it is possible to circumvent the need for such bounds in the proof of Theorem 16.1.

We now conclude this section with a result which holds in the case that m is not square-free. Firstly an analogue of Lemma 15.15 holds in the case that m is a prime power, by KervaireMurthy [KM77, Theorem 1.2]. For brevity, we will not state this result here. We will instead make do with the following consequence of their result in the case that $p=2$ which will be used in the proof of Theorem 16.3. Note that $V_{2^{n+1}}$ is directly analogous to the $\mathbb{Z} C_{2}$-modules V_{m} defined in Definition 15.14 in the case that m is square-free.

Proposition 15.20. Let $n \geq 1$. Then there exists an exact sequence of $\mathbb{Z} C_{2}$-modules

$$
0 \rightarrow V_{2^{n+1}} \rightarrow D\left(\mathbb{Z} C_{2^{n+1}}\right) \rightarrow D\left(\mathbb{Z} C_{2^{n}}\right) \rightarrow 0
$$

where $V_{2^{n+1}}=\bigoplus_{i=1}^{n-2}\left(\mathbb{Z} / 2^{i}\right)^{2^{n-i-2}}$ with the involution acting by negation.
Proof. This is a consequence of results of Kervaire-Murthy [KM77]. Specifically, in [KM77, p. 419] they show that there is an exact sequence of $\mathbb{Z} C_{2}$-modules

$$
0 \rightarrow V_{2^{n+1}} \rightarrow \widetilde{K}_{0}\left(\mathbb{Z} C_{2^{n+1}}\right) \xrightarrow{\alpha} \widetilde{K}_{0}\left(\mathbb{Z} C_{2^{n}}\right) \oplus \widetilde{K}_{0}\left(\mathbb{Z}\left[\zeta_{2^{n+1}}\right]\right) \rightarrow 0
$$

where α is induced by the natural map of rings $\mathbb{Z} C_{2^{n+1}} \rightarrow \mathbb{Z} C_{2^{n}} \times \mathbb{Z}\left[\zeta_{2^{n+1}}\right]$. Since the maximal order $\mathbb{Z} C_{2^{n}} \subseteq \Gamma_{2^{n}} \subseteq \mathbb{Q} C_{2^{n}}$ is given by $\Gamma_{2^{n}}=\bigoplus_{i=1}^{n} \mathbb{Z}\left[\zeta_{2^{i}}\right]$, we get that

$$
\operatorname{ker}(\alpha) \cong \operatorname{ker}\left(\beta: D\left(\mathbb{Z} C_{2^{n+1}}\right) \rightarrow D\left(\mathbb{Z} C_{2^{n}}\right)\right)
$$

where β is the $\mathbb{Z} C_{2}$-module homomorphism induced by map $\mathbb{Z} C_{2^{n+1}} \rightarrow \mathbb{Z} C_{2^{n}}$. This gives an exact sequence of the required form. It follows from [KM77, Theorem 1.1] and the discussion which follows that $V_{2^{n+1}}$ is as described.
15.5. Divisibility and lower bounds for kernel groups. The aim of this section will be to establish divisibility results for $\left|D\left(\mathbb{Z} C_{m}\right)\right|$ and odd $\left(\left|\widetilde{V}_{m}\right|\right)$. These results are necessary for determining the involution on $D\left(\mathbb{Z} C_{m}\right)$ in an analogous way to how divisibility results for class numbers h_{m} were necessary for determining the involution on $C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)$ (see Section 15.3). The results on $\operatorname{odd}\left(\left|\widetilde{V}_{m}\right|\right)$ are motivated by Proposition 15.18.

We begin by recalling the following result, which can be found in [CR87, Theorem 50.18].
Proposition 15.21. If p is a prime and G is a finite p-group, then $D(\mathbb{Z} G)$ is an abelian p-group. In particular, if $p \neq 2$, then $|D(\mathbb{Z} G)|$ is odd.

We will now find conditions on $m \geq 2$ square-free for which $\operatorname{odd}\left(\left|\widetilde{V}_{m}\right|\right) \neq 1$. Our strategy is motivated by the bounds d such that $d\left|\left|D\left(\mathbb{Z} C_{m}\right)\right|\right.$ which were obtained by Cassou-Noguès in [CN72, CN74]. In particular, our argument shows that these bounds actually give factors of $\left|\widetilde{V}_{m}\right|$. Recall that $\widetilde{V}_{m}=\operatorname{coker}\left(\Psi_{m}^{+}\right)$, where

$$
\Psi_{m}^{+}: \mathbb{Z}\left[\zeta_{m}\right]^{\times} \rightarrow \bigoplus_{i=1}^{n} \frac{\mathbb{F}_{p_{i}}\left[\zeta_{m / p_{i}}\right]^{\times}}{\mathbb{F}_{p_{i}}\left[\lambda_{m / p_{i}}\right]^{\times}}
$$

is the map defined in Definition 15.16.
Lemma 15.22. Let $m \geq 2$ be an integer, let p be a prime such that $p \nmid m$, let $f_{p}=\operatorname{ord}_{m}(p)$ denote the order of p in \mathbb{Z} / m and let $g_{p}=\varphi(m) / 2 f_{p}$.
(i) The inclusion $\mathbb{Z}\left[\lambda_{m}\right] \subseteq \mathbb{Z}\left[\zeta_{m}\right]$ induces inclusion $\mathbb{F}_{p}\left[\lambda_{m}\right] \subseteq \mathbb{F}_{p}\left[\zeta_{m}\right]$.
(ii) If $m \geq 3$, then $\left|\mathbb{F}_{p}\left[\zeta_{m}\right]^{\times}\right|=\left(p^{f_{p}}-1\right)^{g_{p}}$.
(iii) If $m \geq 3$, then $\left|\mathbb{F}_{p}\left[\lambda_{m}\right]^{\times}\right|= \begin{cases}\left(p^{\frac{f_{p}}{2}}-1\right)^{g_{p}}, & \text { if } f_{p} \text { is even } \\ \left(p^{f_{p}}-1\right)^{\frac{g_{p}}{2}}, & \text { if } f_{p} \text { is odd. }\end{cases}$

If $m=2$, then $\zeta_{2}, \lambda_{2} \in \mathbb{Z}$ and so $\left|\mathbb{F}_{p}\left[\zeta_{2}\right]^{\times}\right|=\left|\mathbb{F}_{p}\left[\lambda_{2}\right]^{\times}\right|=p-1$.
Proof. The proofs of (ii) and (iii) are analogous. We will prove (iii) only as it is more complicated. First note that $\mathbb{Q}\left(\lambda_{m}\right) / \mathbb{Q}$ is a Galois extension and p is unramified in $\mathbb{Q}\left(\lambda_{m}\right) / \mathbb{Q}$ since it is unramified in $\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}$ (see, for example, [Was97, Lemma 15.48]). This implies that $p \cdot \mathbb{Z}\left[\lambda_{m}\right]=\mathcal{P}_{1} \cdots \mathcal{P}_{g}$ for some $g \geq 1$, where the $\mathcal{P}_{i} \subseteq \mathbb{Z}\left[\lambda_{m}\right]$ are distinct prime ideals. The \mathcal{P}_{i} coincide under the Galois action and the $\mathbb{Z}\left[\lambda_{m}\right] / \mathcal{P}_{i}$ all coincide with the splitting field $\mathbb{F}_{p}\left(\lambda_{m}\right)$ and so

$$
\mathbb{F}_{p}\left[\lambda_{m}\right] \cong \mathbb{Z}\left[\lambda_{m}\right] /(p) \cong \mathbb{F}_{p}\left(\lambda_{m}\right)^{g}
$$

which implies that $\mathbb{F}_{p}\left[\lambda_{m}\right]^{\times} \cong\left(\mathbb{F}_{p}\left(\lambda_{m}\right)^{\times}\right)^{g}$.
Let $f=\left[\mathbb{F}_{p}\left(\lambda_{m}\right): \mathbb{F}_{p}\right]$. Since $\operatorname{Gal}\left(\mathbb{F}_{p}\left(\lambda_{m}\right) / \mathbb{F}_{p}\right)$ is generated by the Frobenius element $\operatorname{Frob}_{p}: x \mapsto$ x^{p}, we get that f is the smallest positive integer such that $\operatorname{Frob}_{p}^{f}=\operatorname{Id}_{\mathbb{F}_{p}\left(\lambda_{m}\right)}$. Note that $\operatorname{Frob}_{p}^{f}\left(\lambda_{m}\right)=$ $\zeta_{m}^{p^{f}}+\zeta_{m}^{-p^{f}}$. This implies that $\operatorname{Frob}_{p}^{f}=\operatorname{Id}_{\mathbb{F}_{p}\left(\lambda_{m}\right)}$ if and only if $\zeta_{m}^{p^{f}}=\zeta_{m}^{ \pm 1}$ and so f is the order of p in $(\mathbb{Z} / m)^{\times} /\{ \pm 1\}$. Since $\left[\mathbb{Q}\left(\lambda_{m}\right): \mathbb{Q}\right]=\varphi(m) / 2$, we have that $\left|\mathbb{F}_{p}\left[\lambda_{m}\right]\right|=p^{\varphi(m) / 2}$. Since $\left|\mathbb{F}_{p}\left(\lambda_{m}\right)^{g}\right|=p^{f g}$, this gives that $g=\varphi(m) / 2 f$. Hence we have $\left|\mathbb{F}_{p}\left[\lambda_{m}\right]^{\times}\right|=\left|\mathbb{F}_{p}\left(\lambda_{m}\right)^{\times}\right|^{g}=\left(p^{f}-1\right)^{g}$. Note that $f=f_{p}$ if and only if f_{p} is odd, and otherwise $f=f_{p} / 2$.

Finally, (i) follows by comparing the expressions for $\mathbb{F}_{p}\left[\lambda_{m}\right]$ and $\mathbb{F}_{p}\left[\zeta_{m}\right]$ as products of fields.
We will now use Lemma 15.22 to obtain bounds on $\left|\widetilde{V}_{p q}\right|$ for p, q distinct odd primes, and for $\left|\widetilde{V}_{2 p}\right|$, where p is an odd prime respectively.
Proposition 15.23. Let p and q be distinct odd primes. Let $f_{p}=\operatorname{ord}_{q}(p), g_{p}=(q-1) / 2 f_{p}$, $f_{q}=\operatorname{ord}_{p}(q)$ and $g_{q}=(p-1) / 2 f_{q}$. Define

$$
c_{p q}= \begin{cases}\frac{1}{2 p q}\left(p^{\frac{f_{p}}{2}}+1\right)^{g_{p}}\left(q^{\frac{f_{q}}{2}}+1\right)^{g_{q}}, & \text { if } f_{p}, f_{q} \text { are even } \\ \frac{1}{2 p q}\left(p^{\frac{f_{p}}{2}}+1\right)^{g_{p}}\left(q^{f_{q}}-1\right)^{\frac{g_{q}}{2}}, & \text { if } f_{p} \text { is even and } f_{q} \text { is odd } \\ \frac{1}{2 p q}\left(p^{f_{p}}-1\right)^{\frac{g_{p}}{2}}\left(q^{\frac{f_{q}}{2}}+1\right)^{g_{q}}, & \text { if } f_{p} \text { is odd and } f_{q} \text { is even } \\ \frac{1}{2 p q}\left(p^{f_{p}}-1\right)^{\frac{g_{p}}{2}}\left(q^{f_{q}}-1\right)^{\frac{g_{q}}{2}}, & \text { if } f_{p}, f_{q} \text { are odd. }\end{cases}
$$

Then $c_{p q}| | \widetilde{V}_{p q} \mid$. In particular, if $\operatorname{odd}\left(c_{p q}\right) \neq 1$, then $\operatorname{odd}\left(\left|\widetilde{V}_{p q}\right|\right) \neq 1$.
Proof. Let $E=\left\langle\zeta_{p q}, \mathbb{Z}\left[\lambda_{p q}\right]^{\times}\right\rangle \leq \mathbb{Z}\left[\zeta_{p q}\right]^{\times}$. By [Was97, Corollary 4.13], E has index two with $\mathbb{Z}\left[\zeta_{p q}\right]^{\times} / E \cong \mathbb{Z} / 2$ generated by $1-\zeta_{p q}$. Let $\psi_{p}: \mathbb{Z}\left[\zeta_{p q}\right]^{\times} \rightarrow \mathbb{F}_{p}\left[\zeta_{q}\right]^{\times}$be the map sending $\zeta_{p} \mapsto 1$. If $\alpha \in \mathbb{Z}\left[\lambda_{p q}\right]^{\times}$, then $\alpha=\sum_{i=0}^{\frac{p q-1}{2}} a_{i}\left(\zeta_{p q}^{i}+\zeta_{p q}^{-i}\right)$ for some $a_{i} \in \mathbb{Z}$ and so

$$
\psi_{p}(\alpha)=\sum_{i=0}^{\frac{q-1}{2}} \widetilde{a}_{i}\left(\zeta_{q}^{i}+\zeta_{q}^{-i}\right) \in \mathbb{F}_{p}\left[\lambda_{q}\right]^{\times}
$$

where $\widetilde{a}_{i}=\sum_{k=0}^{\frac{p-1}{2}} a_{i+k q}$. Hence the composition $\mathbb{Z}\left[\zeta_{p q}\right]^{\times} \xrightarrow{\psi_{p}} \mathbb{F}_{p}\left[\zeta_{q}\right]^{\times} \rightarrow \frac{\mathbb{F}_{p}\left[\zeta_{q}\right]^{\times}}{\mathbb{F}_{p}\left[\lambda_{q}\right]^{\times}}$is trivial and so

$$
\tilde{V}_{p q}=\operatorname{coker}\left(\Psi_{p q}^{+}\right)=\operatorname{coker}\left(\mathbb{Z} / p q \oplus \mathbb{Z} / 2 \rightarrow \frac{\mathbb{F}_{p}\left[\zeta_{q}\right]^{\times}}{\mathbb{F}_{p}\left[\lambda_{q}\right]^{\times}} \oplus \frac{\mathbb{F}_{q}\left[\zeta_{p}\right]^{\times}}{\mathbb{F}_{q}\left[\lambda_{p}\right]^{\times}}\right)
$$

where $1 \in \mathbb{Z} / p q$ maps to $\Psi_{p q}^{+}\left(\zeta_{p q}\right)$ and $1 \in \mathbb{Z} / 2$ maps to $\Psi_{p q}^{+}\left(1-\zeta_{p q}\right)$. In particular, this implies that $\left|\widetilde{V}_{p q}\right|$ is divisible by $\frac{1}{2 p q} \cdot\left|\frac{\mathbb{F}_{p}\left[\zeta_{q}\right]^{\times}}{\mathbb{F}_{p}\left[\lambda_{q}\right]^{\times}}\right| \cdot\left|\frac{\mathbb{F}_{q}\left[\zeta_{p}\right]^{\times}}{\mathbb{F}_{q}\left[\lambda_{p}\right]^{\times}}\right|$. The result now follows from Lemma 15.22 .

Remark 15.24. The argument of Proposition 15.23 also applies in the case $q=2$ and gives the bound

$$
\frac{1}{4 p} \cdot\left|\frac{\mathbb{F}_{p}\left[\zeta_{2}\right]^{\times}}{\mathbb{F}_{p}\left[\lambda_{2}\right]^{\times}}\right| \cdot\left|\frac{\mathbb{F}_{2}\left[\zeta_{p}\right]^{\times}}{\mathbb{F}_{2}\left[\lambda_{p}\right]^{\times}}\right|= \begin{cases}\frac{1}{4 p}\left(2^{\frac{f_{2}}{2}}+1\right)^{g_{2}}, & \text { if } f_{2} \text { is even } \\ \frac{1}{4 p}\left(2^{f_{2}}-1\right)^{\frac{g_{2}}{2}}, & \text { if } f_{2} \text { is odd }\end{cases}
$$

for $\left|\widetilde{V}_{2 p}\right|$. However, this bound in improved upon in the proposition below.
Proposition 15.25. Let p be an odd prime. Let $f_{2}=\operatorname{ord}_{p}(2)$ and $g_{2}=(p-1) / 2 f_{2}$. Define

$$
c_{2 p}= \begin{cases}\frac{1}{p}\left(2^{\frac{f_{2}}{2}}+1\right)^{g_{2}}, & \text { if } f_{2} \text { is even } \\ \frac{1}{p}\left(2^{f_{2}}-1\right)^{\frac{g_{2}}{2}}, & \text { if } f_{2} \text { is odd } .\end{cases}
$$

Then $c_{2 p}| | \widetilde{V}_{2 p} \mid$. In particular, if $\operatorname{odd}\left(c_{2 p}\right) \neq 1$, then $\operatorname{odd}\left(\left|\widetilde{V}_{2 p}\right|\right) \neq 1$.
Proof. Let $\pi_{2 p}: \mathbb{Z}\left[\zeta_{p}\right]^{\times} \rightarrow \mathbb{F}_{2}\left[\zeta_{p}\right]^{\times}$be reduction mod 2. Since $\zeta_{2 p}=-\zeta_{p}$ and $\zeta_{2}=-1$, we have $\Psi_{2 p}: \mathbb{Z}\left[\zeta_{p}\right]^{\times} \rightarrow \mathbb{F}_{2}\left[\zeta_{p}\right]^{\times} \oplus \mathbb{F}_{p}^{\times}$. It is shown in [CR87, Theorem 50.14] that projection induces an isomorphism $V_{2 p}=\operatorname{coker}\left(\Psi_{2 p}\right) \cong \operatorname{coker}\left(\pi_{2 p}\right)$. Similarly, if $\pi_{2 p}^{+}: \mathbb{Z}\left[\zeta_{p}\right]^{\times} \rightarrow \frac{\mathbb{F}_{2}\left[\zeta_{p}\right]^{\times}}{\mathbb{F}_{2}\left[\lambda_{p}\right]^{\times}}$, then $\widetilde{V}_{2 p}=$ $\operatorname{coker}\left(\Psi_{2 p}^{+}\right) \cong \operatorname{coker}\left(\pi_{2 p}^{+}\right)$. By [Was97, Corollary 4.13], $\mathbb{Z}\left[\zeta_{p}\right]^{\times}=\left\langle\zeta_{p}, \mathbb{Z}\left[\lambda_{p}\right]^{\times}\right\rangle$. The same argument as Proposition 15.23 implies that $\left|\operatorname{coker}\left(\pi_{2 p}^{+}\right)\right|$is divisible by

$$
\frac{1}{p} \cdot\left|\frac{\mathbb{F}_{p}\left[\zeta_{2}\right]^{\times}}{\mathbb{F}_{p}\left[\lambda_{2}\right]^{\times}}\right| \cdot\left|\frac{\mathbb{F}_{2}\left[\zeta_{p}\right]^{\times}}{\mathbb{F}_{2}\left[\lambda_{p}\right]^{\times}}\right|=\frac{1}{p} \cdot\left|\frac{\mathbb{F}_{2}\left[\zeta_{p}\right]^{\times}}{\mathbb{F}_{2}\left[\lambda_{p}\right]^{\times}}\right| .
$$

The result now follows from Lemma 15.22.

16. Proof of main results on the involution on $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)$

The aim of this section will be to prove the following three theorems. As we saw previously, these theorems are required to prove Theorems 5.14, 5.15, and 5.17 respectively.
Theorem 16.1. Let $m \geq 2$ be a square-free integer. Then
(i) $\left|\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \mid \bar{x}=-x\right\}\right|=1$ if and only if $m \in\{2,3,5,6,7,10,11,13,14,17,19\}$; and
(ii) $\left|\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \mid \bar{x}=-x\right\}\right| \rightarrow \infty$ super-exponentially in m.

Theorem 16.2. Let $m \geq 2$ be a square-free integer. Then
(i) $\left|\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\}\right|=1$ if and only if $m \in\{2,3,5,6,7,10,11,13,14,15,17,19,29\}$; and
(ii) $\left|\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\}\right| \rightarrow \infty$ super-exponentially in m.

Theorem 16.3. Let $m \geq 2$ be an integer. Then
(i) $\left|\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \mid \bar{x}=-x\right\} /\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\underset{Z}{ } C_{m}\right)\right\}\right|=1$ for infinitely many m; and
(ii) $\sup _{n \leq m}\left|\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \mid \bar{x}=-x\right\} /\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\}\right| \rightarrow \infty$ exponentially in m.
16.1. Proof of Theorems $\mathbf{1 6 . 1}$ and 16.2. The proofs of Theorems 16.1 and 16.2 are best handled together since $\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\} \leq\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \mid \bar{x}=-x\right\}$. In particular, it suffices to prove the following four statements.
(A1) $\left|\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\}\right| \rightarrow \infty$ super-exponentially in m.
(A2) If $m \notin\{2,3,5,6,7,10,11,13,14,15,17,19,29\}$, then $\left|\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\}\right| \neq 1$.
(A3) If $m \in\{2,3,5,6,7,10,11,13,14,17,19\}$, then $\left|\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \mid \bar{x}=-x\right\}\right|=1$.
(A4) If $m \in\{15,29\}$, then $\left|\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\}\right|=1$ and $\left|\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \mid \bar{x}=-x\right\}\right| \neq 1$.
To see this, note that (A1) coincides with Theorem 16.2 (ii) and implies Theorem 16.1 (ii). The forwards direction of Theorem 16.1 (i) is implied by (A2) and (A4), and the backwards direction coincides with (A3). The forwards direction of Theorem 16.2 (i) coincides with (A2) and the backwards direction is implied by (A3) and (A4).

Recall from Section 13.1 that $\widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \cong C\left(\mathbb{Z} C_{m}\right)$ is an isomorphism of $\mathbb{Z} C_{2}$-modules, where $C\left(\mathbb{Z} C_{m}\right)$ denotes the locally free class group. We therefore have the following short exact sequence of $\mathbb{Z} C_{2}$-modules established in Section 15.1:

$$
0 \rightarrow D\left(\mathbb{Z} C_{m}\right) \rightarrow \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \rightarrow \bigoplus_{d \mid m} C\left(\mathbb{Z}\left[\zeta_{d}\right]\right) \rightarrow 0
$$

where $D\left(\mathbb{Z} C_{m}\right)$ has the induced involution, and each $C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)$ has the involution induced by conjugation. Each of statements (A1)-(A4) will be proven via the following lemma.

Lemma 16.4. Let $m \geq 2$ be an integer. Then
(i) $\left|\left\{x-\bar{x} \mid x \in D\left(\mathbb{Z} C_{m}\right)\right\}\right| \leq\left|\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\}\right|$;
(ii) $\prod_{d \mid m}\left|\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)\right\}\right| \leq\left|\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\}\right|$;
(iii) if $\left|\left\{x-\bar{x} \mid x \in D\left(\mathbb{Z} C_{m}\right)\right\}\right| \neq 1$ or $\left|\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}\right| \neq 1$, then $\left|\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\}\right| \neq 1$ (and so also $\left|\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \mid \bar{x}=-x\right\}\right| \neq 1$); and
(iv) if $\left|\left\{x \in D\left(\mathbb{Z} C_{m}\right) \mid \bar{x}=-x\right\}\right|=1$ and $\prod_{d \mid m}\left|\left\{x \in C\left(\mathbb{Z}\left[\zeta_{d}\right]\right) \mid \bar{x}=-x\right\}\right|=1$, then $\left|\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \mid \bar{x}=-x\right\}\right|=1\left(\right.$ and so also $\left.\left|\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\}\right|=1\right)$.
Proof. By Lemma 14.3, there is an exact sequence

$$
0 \rightarrow\left\{x \in D\left(\mathbb{Z} C_{m}\right) \mid \bar{x}=-x\right\} \rightarrow\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \mid \bar{x}=-x\right\} \rightarrow \bigoplus_{d \mid m}\left\{x \in C\left(\mathbb{Z}\left[\zeta_{d}\right]\right) \mid x=-\bar{x}\right\}
$$

as well as injective and surjective maps

$$
\left\{x-\bar{x} \mid x \in D\left(\mathbb{Z} C_{m}\right)\right\} \hookrightarrow\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\} \rightarrow \bigoplus_{d \mid m}\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)\right\}
$$

The second sequence implies (i) and (ii), with (iii) as a corollary. The first sequence implies (iv).
Remark 16.5. Part (iii) might look as though it is weaker than it needs to be since, by (ii), $\left|\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)\right\}\right| \neq 1$ for some $d \mid m$ also implies that $\left|\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\}\right| \neq 1$. However, by Lemma 14.3 (ii), $\left|\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)\right\}\right| \neq 1$ for some $d \mid m$ implies $\left|\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}\right| \neq 1$.

We will now proceed to prove each of statements (A1)-(A4). We will begin with the following which, by Lemma 16.4 (ii), implies (A1).
Proposition 16.6. We have that $\left|\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}\right| \rightarrow \infty$ super-exponentially in m.
Proof. It was shown in Proposition 15.4 that odd $\left(h_{m}^{-}\right)$divides $\left|\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}\right|$. The result now follows from that fact that, by Proposition 15.9, odd $\left(h_{m}^{-}\right) \rightarrow \infty$ super-exponentially in m.

We will now prove (A2). Our approach will be to use Lemma 16.4 (iii). In particular, we will begin by classifying the $m \geq 2$ square-free for which $\left|\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}\right|=1$. We will then determine the subset of these values for which $\left|\left\{x-\bar{x} \mid x \in D\left(\mathbb{Z} C_{m}\right)\right\}\right|=1$.

Proposition 16.7. The complete list of $m \geq 2$ square-free for which $\left|\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}\right|=1$ is as follows:

$$
m= \begin{cases}p, & \text { where } p \in\{2,3,5,7,11,13,17,19,29\} \\ 2 p, & \text { where } p \in\{3,5,7,11,13,17,19,29\} \\ p q \text { or } 2 p q, & \text { where }(p, q) \in\{(3,5),(3,7),(3,11),(5,7),(3,13)\}\end{cases}
$$

Proof. First note that $h_{m}^{-}=1$ implies $\left|\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}\right|=1$. On the other hand, it follows from Proposition 15.4 that $\operatorname{odd}\left(h_{m}^{-}\right) \neq 1$ implies $\left|\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}\right| \neq 1$. In Proposition 15.8 (i), it is shown that the $m \geq 2$ square-free for which odd $\left(h_{m}^{-}\right)=1$ and $h_{m}^{-} \neq 1$ are precisely the $m \in S$, where $S=\{29,39,58,65,78,130\}$. It remains to determine for which $m \in S$ we have $\left|\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}\right|=1$.

Suppose $m \in S$. By [Was97, p. 421], we have $h_{m}^{+}=1$ and so $C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)=C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)^{-}$by Lemma 15.2 (ii). In particular, we have:

$$
\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}=2 \cdot C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)
$$

If $m=29$ or 68 , then $C\left(\mathbb{Z}\left[\zeta_{m}\right]\right) \cong(\mathbb{Z} / 2)^{3}$ and $2 \cdot C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)=0$ [Was97, p. 412]. If $m=39$ or 78 , then $h_{m}=2$ and $C\left(\mathbb{Z}\left[\zeta_{m}\right]\right) \cong \mathbb{Z} / 2$ and $2 \cdot C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)=0$ [Was97, p. 412]. If $m=65$ or 130, then [Hor93, Proposition 1 (iv)] gives that $C\left(\mathbb{Z}\left[\zeta_{m}\right]\right) \cong(\mathbb{Z} / 2)^{2} \times(\mathbb{Z} / 4)^{2}$ and $2 \cdot C\left(\mathbb{Z}\left[\zeta_{m}\right]\right) \cong(\mathbb{Z} / 2)^{2}$.

Hence we have shown that, for $m \geq 2$ square-free, $\left|\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}\right|=1$ if and only if $h_{m}^{-}=1$ or $m \in\{29,39,58,78\}$. The result now follows by Proposition 15.6 (i).

We now prove the following. By Lemma 16.4 (iii), this completes the proof of (A2).
Proposition 16.8. The complete list of $m \geq 2$ square-free for which $\left|\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}\right|=1$ and $\left|\left\{x-\bar{x} \mid x \in D\left(\mathbb{Z} C_{m}\right)\right\}\right|=1$ is as follows:

$$
m= \begin{cases}p, & \text { where } p \in\{2,3,5,7,11,13,17,19,29\} \\ 2 p, & \text { where } p \in\{3,5,7\} \\ p q, & \text { where }(p, q)=(3,5)\end{cases}
$$

That is, $m \in\{2,3,5,6,7,10,11,13,14,15,17,19,29\}$.
Before turning to the proof, we will begin by recalling that Cassou-Noguès determined the integers $m \geq 2$ for which $D\left(\mathbb{Z} C_{m}\right)=0$ [CN74, Theorème 1] (see also [CN72]). The following can be deduced by comparing this with Proposition 16.7.

Lemma 16.9. Let $m \geq 2$ be a square-free integer such that $\left|\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}\right|=1$. Then $D\left(\mathbb{Z} C_{m}\right)=0$ if and only if m is prime or $m=2 p$ where $p \in\{3,5,7\}$.

Proof of Proposition 16.8. Suppose $m \in\{2,3,5,6,7,10,11,13,14,15,17,19,29\}$. If $m \neq 15$, then Lemma 16.9 implies that $D\left(\mathbb{Z} C_{m}\right)=0$ and so $\left|\left\{x-\bar{x} \mid x \in D\left(\mathbb{Z} C_{m}\right)\right\}\right|=1$. If $m=15$, then it is shown in [CN72, p. 48] that $\left|D\left(\mathbb{Z} C_{15}\right)\right|=2$. This implies that $D\left(\mathbb{Z} C_{15}\right) \cong \mathbb{Z} / 2$ has the trivial action and so $\left|\left\{x-\bar{x} \mid x \in D\left(\mathbb{Z} C_{15}\right)\right\}\right|=1$.

By Proposition 16.7, the remaining $m \geq 2$ square-free for which $\left|\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}\right|=1$ are:

$$
m= \begin{cases}2 p, & \text { where } p \in\{11,13,17,19,29\} \\ p q, & \text { where }(p, q) \in\{(3,7),(3,11),(5,7),(3,13)\} \\ 2 p q, & \text { where }(p, q) \in\{(3,5),(3,7),(3,11),(5,7),(3,13)\}\end{cases}
$$

By Proposition 15.18 , we have that $\prod_{d \mid m} \operatorname{odd}\left(\left|\widetilde{V}_{d}\right|\right)$ divides $\left|\left\{x-\bar{x} \mid x \in D\left(\mathbb{Z} C_{m}\right)\right\}\right|$, where \widetilde{V}_{d} is as defined in Definition 15.16. It therefore suffices to prove that, for each m listed above, we have $\operatorname{odd}\left(\left|\widetilde{V}_{d}\right|\right) \neq 1$ for some $d \mid m$.

In the case $m=2 p$, the bound $c_{2 p}$ from Proposition 15.25 is computed as in the following table.

p	11	13	17	19	29
$c_{2 p}$	3	5	17	27	565

In each case, $\operatorname{odd}\left(c_{2 p}\right) \neq 1$ and so $\operatorname{odd}\left(\left|\widetilde{V}_{2 p}\right|\right) \neq 1$. Hence $\left|\left\{x-\bar{x} \mid x \in D\left(\mathbb{Z} C_{m}\right)\right\}\right| \neq 1$ for $m=2 p$ where $p \in\{11,13,17,19,29\}$.

In the case $m=p q$ for odd primes p, q, the bound $c_{p q}$ from Proposition 15.23 is computed as in the following table.

(p, q)	$(3,5)$	$(3,7)$	$(3,11)$	$(5,7)$	$(3,13)$
$c_{p q}$	2	4	44	90	104

In the cases $(p, q) \in\{(3,11),(5,7),(3,13)\}, \operatorname{odd}\left(c_{p q}\right) \neq 1$ and so odd $\left(\left|\widetilde{V}_{p q}\right|\right) \neq 1$. Hence $\mid\{x-\bar{x} \mid$ $\left.x \in D\left(\mathbb{Z} C_{m}\right)\right\} \mid \neq 1$ for $m=p q$ or $2 p q$ where $(p, q) \in\{(3,11),(5,7),(3,13)\}$.

We will deal the the three remaining cases $m=21,30$ and 42 directly from the definition of \widetilde{V}_{m} :

$$
\widetilde{V}_{m} \cong \operatorname{coker}\left(\Psi_{m}^{+}: \mathbb{Z}\left[\zeta_{m}\right]^{\times} \rightarrow \bigoplus_{i=1}^{n} \frac{\mathbb{F}_{p_{i}}\left[\zeta_{m / p_{i}}\right]^{\times}}{\mathbb{F}_{p_{i}}\left[\lambda_{m / p_{i}}\right]^{\times}}\right)
$$

First suppose that $m=30$. Then we have

$$
\Psi_{30}^{+}: \mathbb{Z}\left[\zeta_{15}\right]^{\times} \rightarrow \frac{\mathbb{F}_{2}\left[\zeta_{15}\right]^{\times}}{\mathbb{F}_{2}\left[\lambda_{15}\right]^{\times}} \oplus \frac{\mathbb{F}_{3}\left[\zeta_{5}\right]^{\times}}{\mathbb{F}_{3}\left[\lambda_{5}\right]^{\times}} \oplus \frac{\mathbb{F}_{5}\left[\zeta_{3}\right]^{\times}}{\mathbb{F}_{5}\left[\lambda_{3}\right]^{\times}}
$$

and $E=\left\langle\zeta_{15}, \mathbb{Z}\left[\lambda_{15}\right]^{\times}\right\rangle$has index two in $\mathbb{Z}\left[\zeta_{15}\right]^{\times}$. By the same argument as Proposition 15.23, we get that $\left|\widetilde{V}_{30}\right|=\left|\operatorname{coker}\left(\Psi_{30}^{+}\right)\right|$is divisible by

$$
c_{30}=\frac{1}{30} \cdot\left|\frac{\mathbb{F}_{2}\left[\zeta_{15}\right]^{\times}}{\mathbb{F}_{2}\left[\lambda_{15}\right]^{\times}}\right| \cdot\left|\frac{\mathbb{F}_{3}\left[\zeta_{5}\right]^{\times}}{\mathbb{F}_{3}\left[\lambda_{5}\right]^{\times}}\right| \cdot\left|\frac{\mathbb{F}_{5}\left[\zeta_{3}\right]^{\times}}{\mathbb{F}_{5}\left[\lambda_{3}\right]^{\times}}\right|=c_{15} \cdot\left|\frac{\mathbb{F}_{2}\left[\zeta_{15}\right]^{\times}}{\mathbb{F}_{2}\left[\lambda_{15}\right]^{\times}}\right|=2 \cdot\left(2^{\frac{f_{2}}{2}}+1\right)^{g_{2}}=10
$$

since $f_{2}=\operatorname{ord}_{15}(2)=4$ and $g_{2}=1$. Since odd $\left(c_{30}\right) \neq 1$, this implies that $\operatorname{odd}\left(\left|\widetilde{V}_{30}\right|\right) \neq 1$. Hence $\left|\left\{x-\bar{x} \mid x \in D\left(\mathbb{Z} C_{15}\right)\right\}\right| \neq 1$.

We will deal with the remaining cases $m=21,42$ by computing the involution on \widetilde{V}_{21} explicitly. This turns out to be necessary since, by Remark 16.13 , we have $\left|D\left(\mathbb{Z} C_{m}\right)\right|=4$ in each case and so $\operatorname{odd}\left(\left|\widetilde{V}_{21}\right|\right)=\operatorname{odd}\left(\left|\widetilde{V}_{42}\right|\right)=1$. If $\left|\left\{x-\bar{x} \mid x \in D\left(\mathbb{Z} C_{m}\right)\right\}\right|=1$ for $m=21$ or 42 then, by Proposition 15.18, we would have $\left|2 \cdot \widetilde{V}_{21}\right|=1$. Hence it suffices to prove that $\left|2 \cdot \widetilde{V}_{21}\right| \neq 1$.

We now claim that $\widetilde{V}_{21}=\operatorname{coker}\left(\Psi_{21}^{+}\right) \cong \mathbb{Z} / 4$, which implies that $2 \cdot \widetilde{V}_{21} \cong \mathbb{Z} / 2$. First note that, by the proof of Proposition 15.23, we have that

$$
\operatorname{coker}\left(\Psi_{21}^{+}\right) \cong \operatorname{coker}\left(\mathbb{Z} / 21 \oplus \mathbb{Z} / 2 \rightarrow \frac{\mathbb{F}_{3}\left[\zeta_{7}\right]^{\times}}{\mathbb{F}_{3}\left[\lambda_{7}\right]^{\times}} \oplus \frac{\mathbb{F}_{7}\left[\zeta_{3}\right]^{\times}}{\mathbb{F}_{7}\left[\lambda_{3}\right]^{\times}}\right)
$$

where $1 \in \mathbb{Z} / 21$ maps to $\Psi_{21}^{+}\left(\zeta_{21}\right)$ and $1 \in \mathbb{Z} / 2$ maps to $\Psi_{21}^{+}\left(1-\zeta_{21}\right)$.
Since $g_{3}=1, \mathbb{F}_{3}\left[\zeta_{7}\right] \cong \mathbb{F}_{3}\left(\zeta_{7}\right)$ is a field and $\mathbb{F}_{3}\left[\lambda_{7}\right]=\mathbb{F}_{3}\left[\lambda_{7}\right]$ is a subfield. This implies that $\frac{\mathbb{F}_{3}\left[\zeta_{7}\right]^{\times}}{\mathbb{F}_{3}\left[\lambda_{7}\right]^{\times}} \cong \frac{\mathbb{Z} /\left(3^{6}-1\right)}{\mathbb{Z} /\left(3^{3}-1\right)} \cong \mathbb{Z} / 28$. We have $\mathbb{F}_{7}\left[\zeta_{3}\right]=\mathbb{Z}[x] /\left\langle 7,1+x+x^{3}\right\rangle=\mathbb{Z}[x] /\langle 7,(x-2)(x-4)\rangle \cong$ $\mathbb{F}_{7} \times \mathbb{F}_{7}$ where $\zeta_{3} \mapsto(2,4)$ and so $\mathbb{F}_{7}\left[\zeta_{3}\right]^{\times} \cong(\mathbb{Z} / 6)^{2}$. Since $\mathbb{F}_{7}\left[\lambda_{3}\right]^{\times}=\mathbb{F}_{7}^{\times} \cong \mathbb{Z} / 6$, this implies that $\frac{\mathbb{F}_{7}\left[\zeta_{3}\right]^{\times}}{\mathbb{F}_{7}\left[\lambda_{3}\right]^{\times}} \cong \mathbb{Z} / 6$. Hence $D:=\frac{\mathbb{F}_{3}\left[\zeta_{7}\right]^{\times}}{\mathbb{F}_{3}\left[\lambda_{7}\right]^{\times}} \oplus \frac{\mathbb{F}_{7}\left[\zeta_{3}\right]^{\times}}{\mathbb{F}_{7}\left[\lambda_{3}\right]^{\times}} \cong \mathbb{Z} / 28 \oplus \mathbb{Z} / 6$.

Now $\Psi_{21}^{+}\left(\zeta_{21}\right)=\left[\left(\zeta_{7}, \zeta_{3}\right)\right]$ where $\left[\zeta_{7}\right] \in \mathbb{Z} / 28$ has order 7 and $\left[\zeta_{3}\right] \in \mathbb{Z} / 6$ has order 3 . This implies that $\operatorname{coker}(\mathbb{Z} / 21 \rightarrow D) \cong \mathbb{Z} / 4 \oplus \mathbb{Z} / 2$. Note that $\Psi_{21}^{+}\left(1-\zeta_{21}\right)=\left[\left(1-\zeta_{7}, 1-\zeta_{3}\right)\right]$. The isomorphism $\mathbb{F}_{7}\left[\zeta_{3}\right]^{\times} / \mathbb{F}_{7}\left[\lambda_{3}\right]^{\times} \rightarrow \mathbb{Z} / 6$ sends $1-\zeta_{3} \mapsto 1-2=-1$ and so the image of $\Psi_{21}^{+}\left(1-\zeta_{21}\right)$ in $\operatorname{coker}(\mathbb{Z} / 21 \rightarrow D) \cong \mathbb{Z} / 4 \oplus \mathbb{Z} / 2$ has the form $(*,-1)$. Since it has order two, this implies that $\operatorname{coker}\left(\Psi_{21}^{+}\right) \cong \operatorname{coker}(\mathbb{Z} / 21 \oplus \mathbb{Z} / 2 \rightarrow D) \cong \mathbb{Z} / 4$ as required.

We will now prove (A3). Our approach will be to use Lemma 16.4 (iv), and will be analogous to our proof of (A2). In particular, we will begin by classifying the $m \geq 2$ square-free for which $\prod_{d \mid m}\left|\left\{x \in C\left(\mathbb{Z}\left[\zeta_{d}\right]\right) \mid x=-\bar{x}\right\}\right|=1$. We will then determine the subset of these values for which $\left|\left\{x \in D\left(\mathbb{Z} C_{m}\right) \mid x=-\bar{x}\right\}\right|=1$.

Proposition 16.10. Let $m \geq 2$ be square-free. Then $\prod_{d \mid m}\left|\left\{x \in C\left(\mathbb{Z}\left[\zeta_{d}\right]\right) \mid x=-\bar{x}\right\}\right|=1$ if and only if $h_{m}^{-}=1$.

Proof. If $h_{m}^{-}=1$, then $h_{d}^{-}=1$ for all $d \mid m$ and so $\prod_{d \mid m}\left|\left\{x \in C\left(\mathbb{Z}\left[\zeta_{d}\right]\right) \mid x=-\bar{x}\right\}\right|=1$. Conversely, if $h_{m}^{-} \neq 1$ and $m \notin\{29,39,58,78\}$, then Proposition 16.7 implies that $\left|\left\{x-\bar{x} \mid x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)\right\}\right| \neq 1$ and so $\left|\left\{x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right) \mid x=-\bar{x}\right\}\right| \neq 1$. It now suffices to show that, if $m \in\{29,39,58,78\}$, then $\left|\left\{x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right) \mid x=-\bar{x}\right\}\right| \neq 1$.

Suppose $m \in\{29,39,58,78\}$. By Proposition 16.7, we have that $C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)=C\left(\mathbb{Z}\left[\zeta_{m}\right]\right)^{-}$and so

$$
\left\{x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right) \mid x=-\bar{x}\right\}=\left\{x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right) \mid 2 x=0\right\} .
$$

If $m=29$ or 58 , then $C\left(\mathbb{Z}\left[\zeta_{m}\right]\right) \cong(\mathbb{Z} / 2)^{3}$ and so $\left\{x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right) \mid 2 x=0\right\} \cong(\mathbb{Z} / 2)^{3}$ [Was 97 , p. 412]. If $m=39$ or 78 , then $C\left(\mathbb{Z}\left[\zeta_{m}\right]\right) \cong \mathbb{Z} / 2$ and so $\left\{x \in C\left(\mathbb{Z}\left[\zeta_{m}\right]\right) \mid 2 x=0\right\} \cong \mathbb{Z} / 2$ [Was97, p. 412].

We will now prove the following. By Lemma 16.4 (iv), this completes the proof of (A3).
Proposition 16.11. The complete list of $m \geq 2$ square-free for which

$$
\prod_{d \mid m}\left|\left\{x \in C\left(\mathbb{Z}\left[\zeta_{d}\right]\right) \mid x=-\bar{x}\right\}\right|=1 \quad \text { and } \quad\left|\left\{x \in D\left(\mathbb{Z} C_{m}\right) \mid x=-\bar{x}\right\}\right|=1
$$

is as follows:

$$
m= \begin{cases}p, & \text { where } p \in\{2,3,5,7,11,13,17,19\} \\ 2 p, & \text { where } p \in\{3,5,7\}\end{cases}
$$

That is, $m \in\{2,3,5,6,7,10,11,13,14,17,19\}$.

Proof. If $\left|\left\{x \in D\left(\mathbb{Z} C_{m}\right) \mid x=-\bar{x}\right\}\right|=1$, then $\left|\left\{x-\bar{x} \mid x \in D\left(\mathbb{Z} C_{m}\right)\right\}\right|=1$. By Propositions 15.6, 16.8, and 16.10, the $m \geq 2$ square-free for which $\prod_{d \mid m}\left|\left\{x \in C\left(\mathbb{Z}\left[\zeta_{d}\right]\right) \mid x=-\bar{x}\right\}\right|=1$ and $\left|\left\{x-\bar{x} \mid x \in D\left(\mathbb{Z} C_{m}\right)\right\}\right|=1$ are as follows:

$$
m= \begin{cases}p, & \text { where } p \in\{2,3,5,7,11,13,17,19\} \\ 2 p, & \text { where } p \in\{3,5,7\} \\ p q, & \text { where }(p, q)=(3,5)\end{cases}
$$

If $m=p$ for $p \leq 17$ prime or $m=2 p$ for $p \in\{3,5,7\}$, then Lemma 16.9 implies that $D\left(\mathbb{Z} C_{m}\right)=0$ and so $\left|\left\{x \in D\left(\mathbb{Z} C_{m}\right) \mid x=-\bar{x}\right\}\right|=1$. If $m=15$, then it is shown in [CN72, p. 48] that $\left|D\left(\mathbb{Z} C_{15}\right)\right|=2$. This implies that $D\left(\mathbb{Z} C_{15}\right) \cong \mathbb{Z} / 2$ has the trivial action and so $\left\{x \in D\left(\mathbb{Z} C_{m}\right) \mid\right.$ $x=-\bar{x}\} \cong \mathbb{Z} / 2$.

Finally, we will now prove (A4). Note that these results are implied by computations used the proofs of Propositions 16.8 and 16.11 , but we will repeat them here for the convenience of the reader.

Proposition 16.12.

(i) $\left\{x-\bar{x} \mid x \in \widetilde{\widetilde{K}}_{0}\left(\mathbb{Z} C_{15}\right)\right\}=0$ and $\left\{x \in \widetilde{\widetilde{K}}_{0}\left(\mathbb{Z} C_{15}\right) \mid x=-\bar{x}\right\} \cong \mathbb{Z} / 2$.
(ii) $\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{29}\right)\right\}=0$ and $\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{29}\right) \mid x=-\bar{x}\right\} \cong(\mathbb{Z} / 2)^{3}$.

Proof. (i) By [Was97, p. 412], we have $h_{15}=1$ and so $\widetilde{K}_{0}\left(\mathbb{Z} C_{15}\right) \cong D\left(\mathbb{Z} C_{15}\right)$. It is shown in [CN72, p. 48] that $\left|D\left(\mathbb{Z} C_{15}\right)\right|=2$ and so $D\left(\mathbb{Z} C_{15}\right) \cong \mathbb{Z} / 2$ has the trivial involution. Hence we have $\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{15}\right)\right\}=0$ and $\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{15}\right) \mid x=-\bar{x}\right\} \cong \mathbb{Z} / 2$.
(ii) By Lemma 16.9 , we have $D\left(\mathbb{Z} C_{29}\right)=0$ and so $\widetilde{K}_{0}\left(\mathbb{Z} C_{29}\right) \cong C\left(\mathbb{Z}\left[\zeta_{29}\right]\right)$. By [Was97, p. 412], we have that $C\left(\mathbb{Z}\left[\zeta_{29}\right]\right) \cong(\mathbb{Z} / 2)^{3}$. We also have $C\left(\mathbb{Z}\left[\zeta_{29}\right]\right)^{+}=1$ [Was97, p. 412] and so, by Lemma 15.2 (ii), $C\left(\mathbb{Z}\left[\zeta_{29}\right]\right)=C\left(\mathbb{Z}\left[\zeta_{29}\right]\right)^{-}$and so has the trivial involution. Hence we have $\{x-\bar{x} \mid$ $\left.x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{29}\right)\right\}=0$ and $\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{29}\right) \mid x=-\bar{x}\right\} \cong(\mathbb{Z} / 2)^{3}$.

This completes the proofs of statements (A1)-(A4) and so, by the discussion at the start of this section, completes the proofs of Theorems 16.1 and 16.2.

Remark 16.13. Note that statements (A3) and (A4) only require the computation of $D\left(\mathbb{Z} C_{m}\right)$ and its involution for finitely many m. Similarly, the proof of (A2) involves the verification of lower bounds for $\left|\widetilde{V}_{m}\right|$ for finitely many m which in turn give lower bounds for $\left|D\left(\mathbb{Z} C_{m}\right)\right|$. It is therefore possible to do both problems computationally. While we have not implemented an algorithm to determine the involution on $D\left(\mathbb{Z} C_{m}\right)$, we have computed $D\left(\mathbb{Z} C_{m}\right)$ for all relevant m using the algorithm described in [BB06] and implemented in Magma by Werner Bley.

We checked that $D\left(\mathbb{Z} C_{m}\right)=0$ for the m listed in Lemma 16.9, we checked that all the bounds c_{m} computed in the proof of Proposition 16.8 divide $\left|D\left(\mathbb{Z} C_{m}\right)\right|$ and we computed $D\left(\mathbb{Z} C_{21}\right) \cong \mathbb{Z} / 4$, $D\left(\mathbb{Z} C_{42}\right) \cong \mathbb{Z} / 2$ and $D\left(\mathbb{Z} C_{15}\right) \cong \mathbb{Z} / 2$ which is consistent with the calculations above.
16.2. Proof of Theorem 16.3. For $m \geq 2$, let

$$
A_{m}:=\frac{\left\{x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right) \mid x=-\bar{x}\right\}}{\left\{x-\bar{x} \mid x \in \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right\}} \cong \widehat{H}^{1}\left(C_{2} ; \widetilde{K}_{0}\left(\mathbb{Z} C_{m}\right)\right)
$$

where the isomorphism comes from Proposition 14.5. Similarly to the proofs of Theorems 16.1 and 16.2, we will begin by noting that it now suffices to prove the following two statements.
(B1) If $n \geq 1$, then $\left|A_{3^{n}}\right|=1$
(B2) If $n \geq 1$, then $\left|A_{2^{n}}\right| \cdot\left|A_{2^{n+1}}\right| \geq 2^{2^{n-2}-1}$.
To see this, note that (B1) directly implies Theorem 16.3 (i). Next, Theorem 16.3 (ii) follows from (B2) since it implies that

$$
\begin{aligned}
\sup _{n \leq m}\left|A_{n}\right| & \geq \max \left\{\left|A_{2^{\left\lfloor\log _{2}(m)\right\rfloor}}\right|,\left|A_{2^{\left\lfloor\log _{2}(m)\right\rfloor-1} \mid}\right|\right\} \geq \sqrt{\left|A_{2^{\left\lfloor\log _{2}(m)\right\rfloor}}\right| \cdot\left|A_{2^{\left\lfloor\log _{2}(m)\right\rfloor-1}}\right|} \\
& \geq 2^{\left.2 \log _{2}(m)\right\rfloor-3}-1
\end{aligned} 2^{\frac{m}{16}-1}
$$

which tends to infinity exponentially in m.

We will again make use of the following short exact sequence of $\mathbb{Z} C_{2}$-modules established in Section 15.1:

$$
0 \rightarrow D\left(\mathbb{Z} C_{m}\right) \rightarrow C\left(\mathbb{Z} C_{m}\right) \rightarrow \bigoplus_{d \mid m} C\left(\mathbb{Z}\left[\zeta_{d}\right]\right) \rightarrow 0
$$

where $D\left(\mathbb{Z} C_{m}\right)$ has the induced involution, and each $C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)$ has the involution induced by conjugation. Each of statements (B1) and (B2) will be proven via the following lemma.

Lemma 16.14. Let $m \geq 2$. Then there is a 6 -periodic exact sequence of finite abelian groups

Furthermore, we have that:
(i) If h_{m} is odd, then $A_{m} \cong \widehat{H}^{1}\left(C_{2} ; D\left(\mathbb{Z} C_{m}\right)_{(2)}\right)$
(ii) If $\left|D\left(\mathbb{Z} C_{m}\right)\right|$ is odd, then $A_{m} \cong \bigoplus_{d \mid m} \widehat{H}^{1}\left(C_{2} ; C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)_{(2)}\right)$.
(iii) If h_{m} and $\left|D\left(\mathbb{Z} C_{m}\right)\right|$ are both odd, then $A_{m}=0$.

Proof. By Proposition 14.11, we have that $A_{m} \cong \widehat{H}^{1}\left(C_{2} ; C\left(\mathbb{Z} C_{m}\right)_{(2)}\right)$. The short exact sequence stated above induces a short exact sequence on their 2-primary submodules:

$$
0 \rightarrow D\left(\mathbb{Z} C_{m}\right)_{(2)} \rightarrow C\left(\mathbb{Z} C_{m}\right)_{(2)} \rightarrow \bigoplus_{d \mid m} C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)_{(2)} \rightarrow 0
$$

This follows since, for example, localisation is an exact functor. The existence of the required 6 -periodic exact sequence now follows from Proposition 14.7 and the fact that

$$
\widehat{H}^{n}\left(C_{2} ; \bigoplus_{d \mid m} C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)_{(2)}\right) \cong \bigoplus_{d \mid m} \widehat{H}^{n}\left(C_{2} ; C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)_{(2)}\right)
$$

for $n \in \mathbb{Z}$ by Proposition 14.2 (ii).
To prove (i), suppose h_{m} is odd. Then h_{d} is odd for all $d \mid m$ since $h_{d} \mid h_{m}$ [Was97, p. 205]. This implies that $C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)_{(2)}=0$ for all $d \mid m$ and so $\bigoplus_{d \mid m} \widehat{H}^{n}\left(C_{2} ; C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)_{(2)}\right)=0$ for all $n \in \mathbb{Z}$. The 6-periodic exact sequence then gives that $A_{m} \cong \widehat{H}^{1}\left(C_{2} ; D\left(\mathbb{Z} C_{m}\right)_{(2)}\right)$.

To prove (ii), suppose that $\left|D\left(\mathbb{Z} C_{m}\right)\right|$ is odd. Then $D\left(\mathbb{Z} C_{m}\right)_{(2)}=0, \hat{H}^{n}\left(C_{2} ; D\left(\mathbb{Z} C_{m}\right)_{(2)}\right)=0$ for all $n \in \mathbb{Z}$, and so the 6-periodic exact sequence gives that $A_{m} \cong \bigoplus_{d \mid m} \widehat{H}^{1}\left(C_{2} ; C\left(\mathbb{Z}\left[\zeta_{d}\right]\right)_{(2)}\right)$.

If both h_{m} and $\left|D\left(\mathbb{Z} C_{m}\right)\right|$ are odd, then $D\left(\mathbb{Z} C_{m}\right)_{(2)}=0$ and so $A_{m} \cong \widehat{H}^{1}\left(C_{2} ; D\left(\mathbb{Z} C_{m}\right)_{(2)}\right)=0$, which proves (iii).

We will now prove the following which implies (B1) since $h_{3}=1$ is odd (see, for example, Proposition 15.6). Note that it also implies that $\left|A_{p^{n}}\right|=1$ for $n \geq 1$ and other primes $p \neq 3$.
Proposition 16.15. Let $n \geq 1$ and let $p \leq 509$ be an odd prime such that h_{p} is odd. Then $\left|A_{p^{n}}\right|=1$.

Remark 16.16. By Lemma 15.11 (i), this condition holds precisely for the odd primes $p \leq 509$ with $p \notin\{29,113,163,197,239,277,311,337,349,373,397,421,463,491\}$.

Proof. Since p is an odd prime, Proposition 15.21 implies that $\left|D\left(\mathbb{Z} C_{p^{n}}\right)\right|$ is odd. Since $p \leq 509$ and h_{p} is odd, Lemma 15.11 (ii) implies that $h_{p^{n}}$ is odd. Hence $\left|A_{p^{n}}\right|=1$ by Lemma 16.14 (iii).

We will now prove (B2). By the discussion above, this completes the proof of Theorem 16.3.
Proposition 16.17. If $n \geq 1$, then $\left|A_{2^{n}}\right| \cdot\left|A_{2^{n+1}}\right| \geq 2^{2^{n-2}-1}$.
Proof. By Lemma 15.11 (ii), $h_{2^{n}}$ is odd and so Lemma 16.14 (i) implies that

$$
A_{2^{n}} \cong \widehat{H}^{1}\left(C_{2} ; D\left(\mathbb{Z} C_{2^{n}}\right)_{(2)}\right)
$$

By Propositions 14.7 and 15.20 , we have a 6 -periodic exact sequence of finite abelian groups:

Furthermore, by Proposition 14.8, we have that $\widehat{H}^{0}\left(C_{2} ; D\left(\mathbb{Z} C_{2^{k}}\right)\right) \cong A_{2^{k}}$ as abelian groups for all $k \geq 1$, and $\widehat{H}^{1}\left(C_{2} ; V_{2^{n+1}}\right) \cong \widehat{H}^{0}\left(C_{2} ; V_{2^{n+1}}\right)$ as abelian groups.

Since the involution on $V_{2^{n+1}}$ acts by negation, we have that

$$
\widehat{H}^{1}\left(C_{2} ; V_{2^{n+1}}\right) \cong V_{2^{n+1}} / 2 V_{2^{n+1}} \cong \bigoplus_{i=1}^{n-2}(\mathbb{Z} / 2)^{2^{n-i-2}} \cong(\mathbb{Z} / 2)^{2^{n-2}-1}
$$

This implies that the 6 -periodic exact sequence restricts to:

$$
A_{2^{n}} \xrightarrow{\alpha}(\mathbb{Z} / 2)^{2^{n-2}-1} \xrightarrow{\beta} A_{2^{n+1}} .
$$

By the first isomorphism theorem and exactness, we get that:

$$
2^{2^{n-2}-1}=|\operatorname{ker}(\beta)| \cdot|\operatorname{Im}(\beta)|=|\operatorname{Im}(\alpha)| \cdot|\operatorname{Im}(\beta)| \leq\left|A_{2^{n}}\right| \cdot\left|A_{2^{n+1}}\right|
$$

which was the required bound.

References

[Bak75] Anthony Bak, Odd dimension surgery groups of odd torsion groups vanish, Topology 14 (1975), no. 4, 367-374.
[Bak76] Anthony Bak, The computation of surgery groups of finite groups with abelian 2-hyperelementary subgroups, Algebraic K-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), 1976, pp. 384-409. Lecture Notes in Math., Vol. 551.
[Bak78] Anthony Bak, The computation of even dimension surgery groups of odd torsion groups, Comm. Algebra 6 (1978), no. 14, 1393-1458.
[Bar63] Dennis Barden, The structure of manifolds, Ph.D. Thesis, 1963.
[Bas68] Hyman Bass, Algebraic K-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968.
[Bas74] Hyman Bass, L_{3} of finite abelian groups, Ann. of Math. (2) 99 (1974), 118-153.
[BB06] Werner Bley and Robert Boltje, Computation of locally free class groups, Algorithmic number theory, 2006, pp. 72-86.
[BHS64] Hyman Bass, Alex Heller, and Richard G. Swan, The Whitehead group of a polynomial extension, Inst. Hautes Études Sci. Publ. Math. 22 (1964), 61-79.
[BM67] Hyman Bass and M. Pavaman Murthy, Grothendieck groups and Picard groups of abelian group rings, Ann. of Math. (2) 86 (1967), 16-73.
[Bro94] Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original.
[CE56] Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, NJ, 1956.
[Cha74] Thomas A. Chapman, Topological invariance of Whitehead torsion, Amer. J. Math. 96 (1974), 488-497.
[CN72] Philippe Cassou-Noguès, Classes d'idéaux de l'algèbre d'un groupe abélien, Ph.D. Thesis, 1972.
[CN74] Philippe Cassou-Noguès, Classes d'idéaux de l'algèbre d'un groupe abélien, Journées Arithmétiques (Grenoble, 1973), 1974, pp. 23-32. Bull. Soc. Math. France, Mém. No. 37.
[Coh73] Marshall M. Cohen, A course in simple-homotopy theory, Graduate Texts in Mathematics, Vol. 10, Springer-Verlag, New York-Berlin, 1973.
[CR87] Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. II, Pure and Applied Mathematics (New York), John Wiley \& Sons, Inc., New York, 1987. With applications to finite groups and orders, A Wiley-Interscience Publication.
[DK01] James F. Davis and Paul Kirk, Lecture notes in algebraic topology, Graduate Studies in Mathematics, vol. 35, American Mathematical Society, Providence, RI, 2001.
[Far77] F. Thomas Farrell, The nonfiniteness of Nil, Proc. Amer. Math. Soc. 65 (1977), no. 2, 215-216.
[FQ90] Michael Freedman and Frank Quinn, Topology of 4-manifolds, Princeton Mathematical Series, vol. 39, Princeton University Press, 1990.
[Frö75] Albrecht Fröhlich, Locally free modules over arithmetic orders, J. Reine Angew. Math. 274(275) (1975), 112-124.
[Fri81] Eduardo C. Friedman, Ideal class groups in basic $\mathbf{Z}_{p_{1}} \times \cdots \times \mathbf{Z}_{p_{s}}$-extensions of abelian number fields, Invent. Math. 65 (1981/82), no. 3, 425-440.
[Has52] Helmut Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, Berlin, 1952.
[Hat02] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.
[Hau80] Jean-Claude Hausmann, Manifolds without middle dimensional handles, 1980. Preprint, available at https://www.unige.ch/math/folks/hausmann/hausmannMWMDH.pdf.
[HJ83] W. C. Hsiang and B. Jahren, A remark on the isotopy classes of diffeomorphisms of lens spaces, Pacific J. Math. 109 (1983), no. 2, 411-423.
[Hor89] Kuniaki Horie, On the class numbers of cyclotomic fields, Manuscripta Math. 65 (1989), no. 4, 465-477.
[Hor93] Kuniaki Horie, On the exponents of ideal class groups of cyclotomic fields, Proc. Amer. Math. Soc. 119 (1993), no. 4, 1049-1052.
[HW54] Godfrey Harold Hardy and Edward Maitland Wright, An introduction to the theory of numbers, Oxford, at the Clarendon Press, 1954. 3rd ed.
[IN12] Humio Ichimura and Shoichi Nakajima, On the 2-part of the class numbers of cyclotomic fields of prime power conductors, J. Math. Soc. Japan 64 (2012), no. 1, 317-342.
[JK15] Bjorn Jahren and Slawomir Kwasik, How different can h-cobordant manifolds be?, Bull. Lond. Math. Soc. 47 (2015), no. 4, 617-630.
[JK17] Bjorn Jahren and Slawomir Kwasik, Whitehead torsion of inertial h-cobordisms, 2017. Preprint, available at https://arxiv.org/pdf/1711.04546.pdf.
[JK18] Bjorn Jahren and Slawomir Kwasik, Whitehead torsion of inertial h-cobordisms, Topology Appl. 249 (2018), 150-159.
[Kha17] Qayum Khan, Free transformations of $S^{1} \times S^{n}$ of square-free odd period, Indiana Univ. Math. J. 66 (2017), no. 5, 1453-1482.
[KM77] Michel A. Kervaire and M. Pavaman Murthy, On the projective class group of cyclic groups of prime power order, Comment. Math. Helv. 52 (1977), no. 3, 415-452.
[KOPR21] Min Hoon Kim, Patrick Orson, JungHwan Park, and Arunima Ray, Good groups, The disc embedding theorem, 2021.
[KPR22] Daniel Kasprowski, Mark Powell, and Arunima Ray, Counterexamples in 4-manifold topology, EMS Surv. Math. Sci. 9 (2022), no. 1, 193-249.
[Kre85] Matthias Kreck, An extension of results of Browder, Novikov and Wall about surgery on compact manifolds, 1985. Preprint, Mainz, available at https://www.maths.ed.ac.uk/~v1ranick/papers/kreck0.pdf.
[KS77] Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Princeton University Press, Princeton, N.J., 1977. With notes by John Milnor and Michael Atiyah, Annals of Mathematics Studies, No. 88.
[Lan78] Serge Lang, Cyclotomic fields, Graduate Texts in Mathematics, Vol. 59, Springer-Verlag, New YorkHeidelberg, 1978.
[Lüc02] Wolfgang Lück, A basic introduction to surgery theory, Topology of high-dimensional manifolds. Proceedings of the school on high-dimensional manifold topology, Trieste, Italy, 2002, pp. 1-224.
[Mar75] Robert D. Martin, Nilgroups of finite abelian groups, Ph.D. Thesis, 1975.
[Mat02] Yukio Matsumoto, An introduction to Morse theory, Translations of Mathematical Monographs, vol. 208, American Mathematical Society, Providence, RI, 2002. Translated from the 1997 Japanese original by Kiki Hudson and Masahico Saito, Iwanami Series in Modern Mathematics.
[Maz63] Barry Mazur, Relative neighborhoods and the theorems of Smale, Ann. of Math. (2) 77 (1963), 232-249.
[Met79] Wolfgang Metzler, Two-dimensional complexes with torsion values not realizable by self-equivalences, Homological group theory (Proc. Sympos., Durham, 1977), 1979, pp. 327-337. With an appendix by C. Terence C. Wall.
[Mil65] John Milnor, Lectures on the h-cobordism theorem, Princeton University Press, Princeton, N.J., 1965. Notes by L. Siebenmann and J. Sondow.
[Mil66] John Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426.
[MM76] J. Myron Masley and Hugh L. Montgomery, Cyclotomic fields with unique factorization, J. Reine Angew. Math. 286(287) (1976), 248-256.
[Moi52] Edwin E. Moise, Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung, Ann. of Math. (2) 56 (1952), 96-114.
[Nic23] John Nicholson, Stably free modules and the unstable classification of 2-complexes, 2023. Preprint, available at arXiv:2108.02220.
[Oli88] Robert Oliver, Whitehead groups of finite groups, London Mathematical Society Lecture Note Series, vol. 132, Cambridge University Press, Cambridge, 1988.
[OPR21] Patrick Orson, Mark Powell, and Arunima Ray, Surgery theory and the classification of closed, simply connected 4-manifolds, The disc embedding theorem, 2021.
[PRT20] Mark Powell, Arunima Ray, and Peter Teichner, The 4-dimensional disc embedding theorem and dual spheres, 2020. Preprint, available at arXiv:2006.05209.
[Rad26] Tibor Radó, Über den Begriff der Riemannschen Fläche, Acta Szeged 2 (1926), 101-121.
[Ran02] Andrew Ranicki, Algebraic and geometric surgery, Oxford Math. Monogr., Oxford: Oxford University Press, 2002.
[Ran80] Andrew Ranicki, The algebraic theory of surgery. I. Foundations, Proc. London Math. Soc. (3) 40 (1980), no. 1, 87-192.
[Ran86] Andrew Ranicki, Algebraic and geometric splittings of the K - and L-groups of polynomial extensions, Transformation groups, Poznań 1985, 1986, pp. 321-363.
[Rei35] Kurt Reidemeister, Homotopieringe und Linsenräume, Abh. Math. Sem. Univ. Hamburg 11 (1935), no. 1, 102-109.
[Rei68] Irving Reiner, The effect of an involution in $\widetilde{K}_{0}(\mathbb{Z} G)$, Mat. Zametki 3 (1968), 523-527.
[Rei75] Irving Reiner, Maximal orders, London Mathematical Society Monographs, No. 5, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1975.
[Rim59] Dock Sang Rim, Modules over finite groups, Ann. of Math. (2) 69 (1959), 700-712.
[RS82] Colin P. Rourke and Brian J. Sanderson, Introduction to piecewise-linear topology, Springer Study Edition, Springer-Verlag, Berlin-New York, 1982.
[Sch98] René Schoof, Minus class groups of the fields of the lth roots of unity, Math. Comp. 67 (1998), no. 223, 1225-1245.
[Ser79] Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New YorkBerlin, 1979. Translated from the French by Marvin Jay Greenberg.
[Sha69] Julius L. Shaneson, Wall's surgery obstruction groups for $G \times Z$, Ann. of Math. (2) 90 (1969), 296-334.
[Sma61] Stephen Smale, Generalized Poincaré's conjecture in dimensions greater than four, Ann. of Math. (2) 74 (1961), 391-406.
[Sma62] Stephen Smale, On the structure of manifolds, Amer. J. Math. 84 (1962), 387-399.
[Sta65] John R. Stallings, Whitehead torsion of free products, Ann. of Math. (2) 82 (1965), 354-363.
[Sta67] John R. Stallings, Lectures on polyhedral topology, Notes by G. Ananda Swarup. Tata Institute of Fundamental Research Lectures on Mathematics, No. 43, Tata Institute of Fundamental Research, Bombay, 1967.
[Swa60] Richard G. Swan, Induced representations and projective modules, Ann. of Math. (2) 71 (1960), 552-578.
[Swa70] Richard G. Swan, K-theory of finite groups and orders, Lecture Notes in Mathematics, Vol. 149, SpringerVerlag, Berlin-New York, 1970.
[Swa80] Richard G. Swan, Strong approximation and locally free modules, Ring theory and algebra, III (Proc. Third Conf., Univ. Oklahoma, Norman, Okla., 1979), 1980, pp. 153-223.
[TS33] William Threlfall and Herbert Seifert, Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes (Schluß), Math. Ann. 107 (1933), no. 1, 543-586.
[Uch71] Kôji Uchida, Class numbers of imaginary abelian number fields. I, Tohoku Math. J. (2) 23 (1971), 97104.
[Vol13] Klaus Volkert, Lens spaces in dimension 3: a history, Bulletin of the Manifold Atlas (2013). Available at http://www.map.mpim-bonn.mpg.de/Lens_spaces_in_dimension_three:_a_history.
[Wal66] C. Terence C. Wall, Classification problems in differential topology. IV. Thickenings, Topology 5 (1966), 73-94.
[Wal74] C. Terence C. Wall, Norms of units in group rings, Proc. London Math. Soc. (3) 29 (1974), 593-632.
[Wal99] C. Terence C. Wall, Surgery on compact manifolds, Second, Mathematical Surveys and Monographs, vol. 69, American Mathematical Society, Providence, RI, 1999. Edited and with a foreword by A. A. Ranicki.
[Was75] Lawrence C. Washington, Class numbers and \mathbf{Z}_{p}-extensions, Math. Ann. 214 (1975), 177-193.
[Was97] Lawrence C. Washington, Introduction to cyclotomic fields, Second, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997.
[Web86] Heinrich Weber, Theorie der Abel'schen Zahlkörper, Acta Math. 8 (1886), no. 1, 193-263.
[Wei09] Charles Weibel, $N K_{0}$ and $N K_{1}$ of the groups C_{4} and D_{4}. Addendum to "Lower algebraic K-theory of hyperbolic 3-simplex reflection groups" by J.-F. Lafont and I. J. Ortiz [mr2495796], Comment. Math. Helv. 84 (2009), no. 2, 339-349.
[Wei13] Charles A. Weibel, The K-book, Graduate Studies in Mathematics, vol. 145, American Mathematical Society, Providence, RI, 2013. An introduction to algebraic K-theory.
[Whi36] Hassler Whitney, Differentiable manifolds, Ann. Math. (2) 37 (1936), 645-680.
[Whi39] J. Henry C. Whitehead, Simplicial Spaces, Nuclei and m-Groups, Proc. London Math. Soc. (2) 45 (1939), no. 4, 243-327.
[Whi41] J. Henry C. Whitehead, On incidence matrices, nuclei and homotopy types, Ann. of Math. (2) 42 (1941), 1197-1239.
[Whi49] J. Henry C. Whitehead, Combinatorial homotopy. I, Bull. Amer. Math. Soc. 55 (1949), 213-245.
[Whi50] J. Henry C. Whitehead, Simple homotopy types, Amer. J. Math. 72 (1950), 1-57.
[Yos98] Ken-Ichi Yoshino, Class number parity for cyclotomic fields, Proc. Amer. Math. Soc. 126 (1998), no. 9, 2589-2591.

School of Mathematics and Statistics, University of Glasgow, United Kingdom
Email address: csaba.nagy@glasgow.ac.uk
School of Mathematics and Statistics, University of Glasgow, United Kingdom
Email address: john.nicholson@glasgow.ac.uk
School of Mathematics and Statistics, University of Glasgow, United Kingdom
Email address: mark.powell@glasgow.ac.uk

[^0]: 2020 Mathematics Subject Classification. Primary 57N65, 57Q10; Secondary 19A31, 19B28, 19J10.

