FAKE TORI

Wu-Chung Hsiang and Julius L. Shaneson

_ A basic problem in geometric topology is the classification of piecewise
linear (PL) manifolds of a given homotopy type. This paper considers this
problem for one of the simplest of ali homotopy types, that of the n-dimen-
sional torus 7" = §! x ... x S

Theorem A. Let F be a free abelian group of rank n. Let GL{F)[ = GL(n, 2)]
be the group of automorphisms of F. Then for n > 5, the set of PL equivalence
classes of PL manifolds of the homotopy type of T™ is in one-to-one correspon-
dence with the set of orbits of (N"7°F) ® Z,, under the natural action of GL{F).
The standard torus corresponds to the zero element under this action.

For example, there exist several nonstandard 5-dimensional tori. We
call a nonstandard PL torus a Jake torus. Results concerning the smooth
fake tori can also be obtained, but we do not consider them here.

The somewhat surprising conclusion of Theorem A is perhaps of interest
as an application of the tools that have been developed during the past few
years for the analysis of nonsimply connected manifolds. The methods
3nvolved in the proof of Theorem A also apply to questions posed by 'Ki'rby
in Il"elation to the annulus conjecture, the triangulation problem for topo-
logical manifolds, and the Hauptvermutung. For example, a given fake
torus can be covered by those tori which are not as counterfeit. In particular
we have ’

Tl}eorem B. For n = 5 every fake torus is covered by the standard torus.

Kirby [18] has shown that Theorem B implies the stable homeomorphisms

conjecture for dimension greater than four. Thus this conjecture and its -

important corollary, the annulus conjecture, are true in dimensions greater
than four.

On the other hand, coverings of fake tori correspondingwto subgroups of
the fundamental group of odd index are still fake. This fact has been used to
show that the Hauptvermutung for manifolds is false {((19] and [36]).
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Kirby also originally posed the following question:

QUESTION S(k, n). Let h:D* x T" - W"** be a homeomeorphism of PL
manifolds whose restriction to the boundary is PL, where D* = k-disk.
Is there a PL homeomorphism f: D¥ x T" — W"*¥ that agrees with h on
the boundary?

Kirby [17] (also see [19]) showed that an affirmative answer to S(k, n)
would imply the Hauptvermutung for PL manifolds and the existence of
combinatorial triangulations for topological manifolds. In fact, it would
suffice to have an affirmative answer to the weaker question S"(k, n), in which
the conclusion is asked to be true only after passage to finite covers.

Theorem C. Let k + n = 5. For k = 4, Sk, n) has an affirmative answer.
The answers to 8(1, n) and §(2, n) are affirmative. For S(3, n) there is at most a
Z,-obstruction. .

Of course, it follows from the disproof of the Hauptvermutung that
8(3, n)y is false. Thus there is an essentially unique counterexample to
53, n).

We actually give a result formally stronger than Theorem C in that it
applies when h = D* x T" — W**" is only a homotopy equivalence that is
PL on the boundary. Theorem C plays a role in the work of Kirby-Sieben-
mann [19] and Lashof-Rothenberg [23] on triangulation of manifolds and
the Hauptvermutung. Using this work one can improve upon, reformulate,
and generalize the results of this paper. For example, one can show that
every topological manifold of the homotopy type of T" n = 5, is homeo-
morphic to T" [48].

The main theorems in this paper were gotten independently by C. T. C.
Wall [47] and A. Casson. We announced the results in [14].

The paper is organized as follows: First we review the splitting theorem
of [13] and its application to Wall’s surgery obstruction groups given in [35].
Then, via Sullivan’s reformulation of the Browder—Novikov theory, which
we also review, we prove Theorems A and B and related results in detail.
Next, we study manifolds of the homotopy type of ¥ x T" S* the standard
k-sphere. As a consequence of this study, we derive Theorem C in the case
k + n = 6. We also show in a final section how to derive Theorem C (and a
theoretically stronger result concerning homotopy equivalence as well as
homeomorphism) via the relative Browder-Novikov—Sullivan theory {(this
point of view is due to Wall) and we indicate a comparison of the two

approaches.

1. A Splitting Theorem for Manifolds with 7, = G x Z

Let G be a finitely presented group and let Z denote the group of integers-
(written multiplicatively). In this section we review the splitting theorem of
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[13] for the special case of orientable manifolds with fundamental group
G x Z

Let Z(G) be the integral group ring of G. Let C(G) denote the reduced
Grothendieck group on pairs [P, v], P a projective (right) Z(G)-module, and
va nilpotent endomorphism of P. Addition in C(G) is by exact sequences : If

0_>(P1,V1)—>(P,V)-—’(Pz,vz)**o
is exact, we say

[P> VJ = [Pla vl] + [P2= Vz]-

The “forgetting functor” that forgets the nilpotent endomorphism induces
a split epimorphism i

C(G) » Ko(G),

where IEO(G) is the projective class group of G. Let €(G) be the kernel of this
epimorphism. C(G) here is just (G, id) of [13]. Let Wh{G) be the Whitehead
group G, with conjugation x — x* induced by group inversion.

Theorem 1.1 ([3)). There is a direct decomposition

Wh(G x 2) = Wh(G) @ Ro(0) @ C(6) @ J(G).

REMARKS. 1. The factor WHh(G) is induced by the inclusion.

2. The conjugation of WhiG x Z) leaves the factors Wh(G), Ky(G)
invariant and interchanges the two copies of C(G).

3. There is a generalization to twisted extensions [13]. _

By projecting on, say, the first copy of €(G) and using the décomposition
C(G) = C(G) @ Ro(G), we get a map p: Wh(G x Z) -» C(G).

Let Q" be a2 smooth or PL manifold of dimension mn>6LetLs Qbe
4 (locaily flat) submanifold of codimension 1, with 2L = 00 N L, 8L meeting
dQ transversely. Suppose L= G, 7,Q =G x Z and the map.induced by

inclusion is the natural inclusion of Ginto G x Z.Suppose given a homotopy
equivalence

¢ (M, oM) - (Q, 60),

transverse to L and 8L. Assume in addition that ¢ restricts to a homotopy
equivalence of (M, ¢~ Y8L)) with (30, dL); in this case we say @|loM is

split along JL. We say @ is splittable along 1. if @ is homotopic relative to
oM to y such that

1. ¢ is transverse to L ; and

20N =y L), ¢ (M, N) - {Q, L) is a homotopy equivalence.

Theorem 1.2 ([13]). The map @ is splittable along L if and onl yif ple(@)) = 0,
where t(p) e Wh(G x Z) is the torsion of ¢. h
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REMARKS. 1. Actually one only needs (2, 20) to bea ﬁnlte Pom({)al; Pan"a ;)éf
formal dimension n and (L,éL) = (2,0Q) a codlmf_ansmn onedsu -Poinc
pair of formal dimension (n — 1) with a product nelghporhoo - —

2. It seems that the definition of p invqived an arbitrary chowi ea\;t; ”
the two copies of C(G) in the decompqsi‘tlon of Wh(G % Z)}.1 liut if ¢
split along AL as in Theorem 1.2, then it is not hard to see tha

e} = (-1 el + &

with ¢ e Wh(G). Thus the component of p(z(¢)) in C(.G) changes by a sign
at most if we change the choice involved in the deﬁn'ltl-on of 2 WHG)
Proposition 1.3. If @ is splittable along L, then ©(¢) is in the image of Wh(
der the map induced by the inclusion. . ‘
unTi:e proof of this fact is elementary. In fact, suppose that_ @ 1 split. Let
$=¢N:N > L and let ¢, : My - @, be obtained by splitting along N
and L. Then

(@) = i ("(P) — (@)

Corollary 1.4. ¢ is splittable if and only if «(p) comes from Wh(G)_ur{t)der
the map induced from the inclusion. In particular, @ is splittable if o(@)} = 0.

2. Kiinneth Formula for Surgery Obstructions

Let X"bea PL manifold, n > 5. For simplicity, assume that X is orlentatt))lf.
Let v be a vector bundle over X of the same fiber homotopy type as tiie sta e;
neormal bundle of X. Let B{X, v) denote the s‘et of cobordism ¢ aslsesitoh
triples (M, ¢, F), where ¢ : (M, 0M) — (X,_ dX) 1s a map of de},;;r.ee St\;rble
@l0M : M — 0X a simple homotopy equivalence ; and where ; 18 at. .
trivialization of (M) @ @*v, 1(M) the tangent bundleA of M. The no ion !
cobordism is the obvious one; in particular, we require an s—cobordlsm o
boundaries. If we insist only that ¢|oM : M — X l?e a homotopy gquwa;
lence and require only an A-cobordism of boundaries in the definition o
cobordism, we get a bordism set Bi(X, v).

According to [46), there is a map

6 :BAX,v) = Lfm X)

such that (M, ¢, F) = 0 if and only if (M, ¢, F) is cob_ordantb t? (N, l/;(; l(l})
with v a simple homotopy equivalence. Here L(n; X) is an ? e 1§n gr lopi
which depends functorially on 7; X. We use tl?e same symbol or L e ar:a_
gousmap 6 : BX(X, v} —» L¥(r, X); this map vanishes on f classh whic ;o_rfl 2111312
just a homotopy equivalence. We havg L,= L, Ly = L',,+4, ?n CIPZ) -
is the complex projective space and H is the standard framing of (
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W(CP?), where w(CP?) is the stable normal bundle of CP?, then, by [46],
M, 0, F) = O(M x CP2 ¢ x id, F x H).

(In the simply connected case this formula is due to Sullivan.)

Suppose X = L x S, with n,L = Goand n=5 or n>6 if L%
Let (M, @, F) represent an element of B,(X, v). By Corollary 1.4, ¢|3M is
splittable along 4L = 3L x (pt) = AL x S%; let us therefore assume that
@|0M is split. We may also assume that @ is transverse to L, Let N == p L.
Let iy = ¢{N:N - L. Then we put

CCL(MS q0= F) = H(Na !)b!FIN)

an element of L!_,(G). According to [35], &, is a well-defined cobordism
invariant which vanishes on classes containing a simple homotopy equiva-
lence.

Suppose that I""! = K x [ K closed, n > 7 and I =10,1] the unit
interval. Then by [46] every element of LiG »x Z) can be realized as
(M, @, F), where (M, @, F) represents an element of B(K x I x §',v) with
@|¢_-M a PL equivalence of 3_M with K x 0 x S!. We put

WK)[OM, @, F)] = agx, (M, @, F).
Leti:G > G x Z be the inclusion.

Theorem 2.1 ([35]). The relation A K) is a well-defined komomor phism and
the following sequence is exact and splits :

0= Li(G) 5 LG x 2% 14 (6) > 0.
A splitting is given by taking products with a circle.
The proof of this theorem uses Corollary 1.4. We really need this result

only for G = Z", the free abelian group on n generators; for this case the

result was given in [33]. In fact, since Wh(Z") = 0 by [3], we will never need
to worry about the torsion,

Proposition 2.2. o(K) = o(K x CP,

This is immediate from the definitions,

We will also use the well-known computation of surgery obstruction for
the simply connected case in terms of the index in dimension 4k, the Arf-
Kervaire invariant in dimension 4k + 2, and zero in other dimensions.
(See [5] and [16]) Given (M, 0, F) representing an element of B,(X, v), one
can always define the #(index), Arf-Kervaire, or zero invariants, for n = 0
(mod 4), n = 2(mod4), or n = 1 {mod 2), respectively. These are cobordism
invariants ; in fact, they are the image in Ly(e) of 8(M, ¢, F) under the naturai
map of L{n,X) onto L.{e). By abuse of language, we call these invariants
“simply connected surgery obstructions.” They satisty the product formula
of Sullivan (see [5]). We write (M, @, F) for the index obstruction.
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3. Browder-Novikov-Sullivan Theory

Let M™ be an orientable PL manifold. Tlllen by h.t(ﬂl, M) we dfenote tﬁe
equivalence classes of (simple) homotopy trlaggula.tlons of M relative to the
boundary. A (simple) homotopy triangulathn is a '{snnple) .homotc(;%
equivalence h:(K, éK) — (M, M) of PL mrfmlfolc_ls with hlé)f'( : ajK .

a PL homeomorphism. The triangulation h_ls equivalent to h :SK , (z‘K ).—;1
{M, 8M) if there exists a PL homeomorphism f: (X, 0K) — (K , 0K") W}t
k' f homotopic to h relative to K. If M = Qi,_we write hi( M) tqr
ht(M, dM). The distinction between homotopgl and simple homotopy tri-

ions will not arise in the cases we consider. '

an]%:}ca:c? (K, 0K) - (M, éM) be a homotopy triangulatlog. Let g be1 a
homotopy inverse with {g|dM) = (héK)~ 1. Let N be a large ;nteger, and let
R¥ = N-dimensional euclidean space. Let 3 = M — K x R¥ be an embedi
ding that approximates (g, 0) and equals (g, 0) on dM. Let v be the norn;i
bundle of the embedding . v|dM is obviously trivial. By epgulﬁng or the
weak h-cobordism theorem [15], we can find a PL equniaiefice c: E(w)—
K x R™ whose restriction to the zero section agrees with 2 and Whose
restriction to E(v|0M) agrees with g x (identity). The composite {(h x id)ec
is a fiber homotopy trivialization of v that ig PL on vioM. Let G/PL be ﬂf
classifying space for fiber homotopy trivializations otj PL bunc_llés P(J[L}
and [30]). Then (k x id) e ¢ determines an element.n(h) in [M/OM; é pl]:
the group of homotopy classes of maps of M/&M 1nt‘? the H -space /PL.
This is Sullivan’s definition of **normal invariant’ or ““characteristic G/PL-
bundle™ of A. It depends only on the equivalence class of h, and so defines

a map
5+ ht(M, 8M) — [M/GM ; G/PL].

Let £{e[M/0M, G/PL]. Then we can define a surgery (_)bst.ruction
Su(&) e L{rn,M). Choose a representative fiber homotopy trivialization

E(U) 4L M x RY
P \/‘n:
M

for &, with t| E(v|0M) an equivalence of PL bundles. Since ¢ is a proper map,
we can change it by a homotopy relative to the boundary to a new map ¢,
transverse to M x 0. Let K = (¢,)” '(M). Let h = pJK. Via ¢ we get a
trivialization of the normal bundle of K in E(I.J). The tangent bundle of E(v}
is pf(v @ 1(M)). So the trivialization determme§ a stabIe. bund‘le mapd(l)

¥(K), the tangent bundle of K, to v @ ©(M), covering h. So if ¥(£) is a bundle

- stably equivalent to (v @ ®(M)), then we have a stable framing F of

(M) @ h*v(&). Thus (M, k, F) represents an element of B (M, v()); call it
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B(&). Tt is easy to see that B(&) really is well defined in terms of £. We put
Sul&} = 0(B(E)).

(\;fhen no confusion is possible, we write § = S»- To get a definition in low
umensions, we put Sy{&) = 0(f(&) x CP?),if dim M < 5. This i i
with the above definition. = > Thisis consisent
. Prop(:)sition 3.1 ({44]; see also [46)). $7Y0)=Tmy, n=5. For all n
[+) 17 = A ’
Now G/PL'is an_H—space, so [M/6M, G/PL] is an abelian group. Un-
fortunately, § is not in general a homomorphism. But suppose M = L x D*
(k = 1). Then M/éM = 3%L,), where L is the union of L with a disjoint

point. So in this case [M/éM, G/PL] aiso receives a group structure from the -

co-H-space structure of 5L _). It is a standard result of algebraic topology

that the two structures coincide. Usin it i
. g the structure from Z*L, | it
show the following: w iseesrto

Proposition 3.2 ([46])

S [Z*Ly, G/PL] » Lm M)
is a homomorphism.

Next, L, (7 M) acts on ht{M, 3M). To sec this, let (W, @, F) represent an
el;ment of B,,(M x I, v}, v some bundle over M. We assume 8W = g_ (]
oW u 64,_W, withh, = 0. W:0_.W - M x Oandh, = @0, . W : 9, W->
I\/IIax Wl 81(1;1][3‘;?6 h[?VI;;otopy equivalences, with 0,W = HE_-W) x I and
oW = (hy]6(0_ x id. Let [k;] be the cl fhi
ploom ~ ) ] class of h; in ht(M, 3M). Then

0¥, @, F)[hy] = [hs).

Lllimg the reali%ati-on theorem of [46] (or 1.1 of [35]) and the addition theorem
ga. " %gx[?f];,( ﬁl;)‘ls casy to see that this really defines an action; Le.,

The following is straightforward :

Pr(?posiﬁon 3.3. Let x,ye hi{M, dM). Let n > 5. Then w(x) = n(y) if and
only_ if x and y are in the same orbit under the action of L, , \(z, M)

Finally, we define & Lyt 3y M) — he(M, M) by 3y ="y[id].I .

4. Normal Invariants for Fake Tori

Theorem 4.1, Forall n, 5 ht(T"y — [T" G/PL) is trivial.

Corollary 4.2. [f<"isq PL manifold of the homot " T
pam”eliéable_‘ f omotopy type of T", t* is stably
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‘Proof. The composite ht{T™ 5 [T", G/PL] — [T", BPL], the second in-
duced by the natural map, is trivial. But this carries the class of a homotopy
triangulation # : 1" — T" to the classifying map for the stable normal bundle
of t".

Corollary 4.3. Ifz"isa PL manifold of homotopy type of T", 1" is smoothable,
n=3

Proof. 8: Ly, (m, 7" — ht(T") is onto, and the surgery obstructions
have smooth realizations.

REMARK. Actually, smooth fake tori are (smoothly) stably parallelizable.
For [T", BO] — [T" BPL] is monomeorphic. This can be seen as a con-
sequence of the facts that m{BO)— n{BPL) is monomorphic for all i,
BO and BPL are infinite loop spaces, and T" suspends to a wedge of
spheres. :

Theorem 4.1 actually follows from the “characteristic variety theorem”
of Sullivan [44], the fact that the product of a characteristic variety with CP?
is still & characteristic variety, and Theorem 1.2. One can also use a part
of the proof of the characteristic variety theorem to compute the map
S:[T" G/PL] = L{n,T". The Hirzebruch classes ;& H{(G/PL; Q) and
the Kervaire classes k; € H**%(G/PL; Z,), defined by Sullivan, are involved.
However, the extreme regularity of 7" allows one to give an inductive proof
of Theorem 4.1 that does not require such deep knowledge of the homotopy
theory of G/PL. We give such a proof. The possibility of an inductive proof
was suggested to us by J. Levine.

We show by induction on n that if £ [T G/PL], S(£) = 0 only if £ = 0.
For n = 1, this is trivial, since 7,(G/PL) = 0. So let » = 2, and suppose that
the result is true for n — 1. Let 7"~ < T" be a standard subtorus (i.e., one
obtained by holding one coordinate fixed). Let i : T"~! € T" be the in-
clusion. Let 7: 7" x CP* — T"and =; : T*" ! x CP* —» T""! be the stan-
dard projections. Let £e[T" G/PL] be an element with Sy«(&) = 0 in
L(m, T"). Then Sy . cp2*(€) = 0. Hence there exists a homotopy equivalence
h:W o T" x CP? with (h) = =*£ By Theorem 1.2, h is splittable along
771 x CP2 Let us assume that # is split and let @ = &~ {T"™' x CP?).
Let f = hQ:Q — T ! x CP2 Then it is easy to see that

ol f) = ({ x 1y n*().

But mwe(i x 1) = iem,. Hence Spn-1,cpfndi*()) = 0. By pericdicity of
surgery obstructions or by definition in low dimensions, this means that

e, Bt

Wl
e
;
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. Th.us the restriction of & to every standard subtorus is trivial. But G/PL
Is an infinite loop space [4]; hence there is a space Y such that, as sets

[T%, G/PL] = [T Q*Y] = [£2T" Yl

Moreover, Z*T" is a one-point union of s
) : pheres, up to homotopy. It
follows e_asﬂy that ¢ is trivial on the (n — 1)-skelet0npof T b T ew
Thus if C:T"— 5" is the map that collapses the (n — 1)-skeleton, then

& =C¥u, pen,(G/PL). 1t is not hard t i i
Sl o see that the following diagram

[T", G/PL] 5 L,(r,T™
e 1
[$", G/PL] 5 Lye)

ghe unlabeled map i§ induced by the inclusion of the trivial group {e}.
1;; the lower § is an Isomorphism in all dimensions n 4;forn =4 itis
still 2 monomorphism ([31] and [44]). By general nonsense, the unlabeled

map is monomorphic. Hence x4 = 0 and so £ = 0. This
inductive step and proves Theorem 4.1 2 rompletes the

5. Classification of 4:(T")

. V;fe ifier;:ify Z; 1with T I;“i;ﬁ(ing a standard orientation of §*, the various
rcies in T" = §° x .- x S' determine a basis ¢ " Thi i
b fxed through Sevtion o 15 bn fOF Z". This notation

Pr_oposmon'S.l.nThe set h{T") is in one-to-one correspondence with the
quotient of Ly, ((Z7) by the subgroup of elements acting trivially on [id] (ie
by the subgroup of x with &(x) = id}). -

Proof. Immediate from Theorem 4.1 and Proposition 3.2,

LetJ = {1,., n} Let|Jj denote the number of clements of J. Corresponding
to eacltll Jbthere isa stanldard subtorus T(J) = T, where T(J) = {(% 130y )]
x;= the base pointof S' fori¢ J}. IfH = {1 0} — J onic?
decomposition T — T(J) T(H}). {L,...,n} , we have a canonical

JFor each J V:Ith m = |J| = 1(mod 2), we are going to define an element
15:(‘ ,n}eL,,_J,l(Z ). When no confusion is possibie, we write EJ) = &, n).
irst consmle.r the case m = 5. Choose a generator of the cyclic gr(;up
L, +i(e);callit 1. [Thisis Zifm + 1 = 0 (mod4),Z,ifm + 1 = 2 (mod 4).]
]Iget (M, h, f) rgpresent an element of B, (D" ¢), ¢ the trivial bundlé.
y the realization theorem {plumbing) of Kervaire-Milnor for simply con-
nected surgery [5], we can take 8(M, h, F) to be the chosen generator. Note

tSE,at by the generalized Poincaré conjecture, 3M is PL homeomorphic to
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Let K be obtained from T(J) x I and M by taking a boundary con-
nected sum along T(J) x 1, the upper boundary of T(J) x I. We write
K = (T(J) x I) 1 M. (The notation is due to Browder [5]) Similarly, we
can take connected sums of maps and framings to get f : K — (T(J) x DU
D7+t = T(J) x Iand E, a stable framing of o(K) @ f*, v the stable normal
bundle of T(J) x I. We write

(K, f,E)Y=(T(J) x DL1{M, h, F).

Using the definitions of even-dimensional nonsimply connected surgery
obstructions in [45], it is not hard to see that 8(K, f, E) is the image of the
chosen generator of L, (e) in L, (7,(T(J)) under the map induced by
inclusion, Let H = {l,..,n} — J. Let D be the standard framing of
1(T(H)) ® v(T(H)). Define

) = 0K x T(H), f x 1,E x D).

Next consider the case [J| = m = 1. There is an element (S! x S, b F),
representing a class in By(S?, &) with 8(S* x S*, b, F) # 0. The existence of
this class follows from the Thom Pontrjagin construction applied to the
nonzero element of m,(G). Alternatively, it is easy to construct the “wrong
framing” F on §* x S! and show that it gives a nonzero Kervaire invariant.
To define &T) in this case, we proceed as above, except that we take a
connected sum with T(J) x I in the interior. We omit the details.

Finally, let |J] = M = 3. We cannot make the same definition, essentially
because there is no almost parallelizable PL manifold of index 8. Instead,
let (M, h, F) represent an clement of Bg(D8, &) with (M, h, F) a generator of
Lg(e). Let

(X, £, E) = (T(J) x I x CPH1I(M, h, F).

Let &(J) = (K x T(H), f x 1, E x D) where H = {1,.., n} — J again. Then
&(J) is an element of L, 444+ 1(Z") = L4 (Z7).

Of course, one can propose a similar definition for all the &(J). Using the
periodicity of (simply connected) surgery obstructions it is not hard to see
that this would change nothing,

Similarly, one can show that to obtain 2&(J),|J| = 3, one begins with
(M, h, F)representing an element of B4(D%, &) with 8(M, h, F)twice a generator
of L{e), takes the boundary connected sum with T(J) x I, takes the product
of the result with the complementary T(H), and evaluates the surgery ob-
struction of the result. The existence of (M, h, F) follows easily from the exist-
ence of an almost-parallelizable smooth or PL manifold of index 16 [29].

Lemma 5.2. Every element of L, ((Z7) has a unique expression ZH(NE),
where the sum is over & #J < {1,..,n} with |J| = 1{mod 2), and where
BN eZif|J = —1(mod 4) and B(J) e Z; if |J] = 1 (mod 4).
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'JIF_or3!.ﬁ 17:31, it is apple;rent that {(J) acts trivially on [id]e ht(T"). For
) clear t 3 A
rivially rom the paragraph preceding Lemma 5.2 that 2&(J) acts

Lemma 5.3. The subgroup of L, (27 generated by {E(J)||J| # 3} u

{26 || = 3} is precisely the kernel of @ {i.e., the subgroup of elements

p Se tWO Ie]llmas N
L q i t(] ) l}IduCES a one-ig-one Orres ORAenC
Cj"‘L Z C ZZ vith lt(i )' ‘ p )

Here we note that if 4 : 7" — T»
! : represents a nonzero element o "
1" cannot be PL homeomorphic to 7™ i '), ther

6. Proof of Lemmas

OHSEEF’(C)SZIII;; ;fh; {1,...n} with m = Ml = 1{mod 2). Let n > 5 from now
" . " i- Then ex_act]y asfor &(J, n), we define I, HeL,, W (TH)));
¢ take the produ_ct with a complementary torus to T(J) in T(H) rath ’
'than in T™ In particular, if H = {1,..n}, &J, H) = &(J, n.ITH =17, &J ,‘J:'I).
is tShe Image of a generator of L, . 1(€) under the map induced by incl,usioh '
uppose J < H < {1,..{.»,,11} with |J] = |H| — 1. Let m = {J]. Then b
Theorem 2.1, we have a-well-defined map . Y

HTU) x CP2): L, o(my(T(H)) — Lo s, (T()).

X\I/:: ;vzte a(( T({%; Cl:) = ofJ, H), which we viewasa map of L, . »(r,(T(H))
' T - ;
o +1m(T(). For m = 6, we can define a(T(J)), and, by Proposition
ATW) = AT(J) x CP?) = ofJ, H)

To simplify the notation, we write 7
' , 1(J) for =, (T(J)), for example,
. For arbitrary J = H < {1,.., n}, choose the unique sequence

J:JOCJ1C'-'CJk=H

with |J)] = |7, | + 1 and with max(J; — J) < max(J;;, - J). Define

k
alJ, H) = Jo, Ji)o--ro (i, Jo) = H alf;_ g, J).
i=1
We put «J, J) = identit i i H) -
) = ¥, and if H = {1,...,n}, we write JH) =
When no confusion is possible, we write «(J) fo}r a(J, n). HRH) = ol
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The order of the deletion to get from H to J really is not relevant to the
definition of a(Jf, H). We will show this algebraically in Section 8, the only
place we will need to use this fact. One could also prove it geometrically,
straight from the definitions.

By w(J) we denote the natural projection of Ly 4+ ((m(J)) on Ly 1 1{e).

Lemma 6.1. ForJ < K < H,|[J| = 1(mod 2),

a(K, H)E(J, H) = £(J, K).

Proof. Immediate from the definitions.
Lemma 6.2. For K = H, J < Hbut K 2 J,|J| = 1{mod 2),

o K, H),(J, H) = 0.

Proof. Let K = Ky < --- = K, = H be as in the definition of «(K, H).
Let i be the first integer such that K;,;, 2 J. Then ofK, H) = ofK, K)o
Ky, Kiv1)oa(K;ry, H). By Lemma 6.1, oK;yy, HX(J, H) = &(J, Kiy o).
It suffices to show that a(K;, K;. )« &J, K;4,) = 0.

So we may as well take K; ., = H-and suppose that K is obtained from J
by deleting the largest element. Let L be obtained from J by deleting the
same element. Recall that &J,J} can be defined as &(W, ¢, E), where
(W, 9, E) = (M, h, YLL(T(J) x I x CP?), (M, h, F) representing an element
of Bjjj+5(DY1*%, t) with 0(M, h, F) a generator of Lyy+s(e). We can take the
boundary connected sum along a disk that misses T(L) x I x CP* <
T(J) x I x CP?. Thus we have T(L) x I x CP?* = W, ¢ transverse to
T(L) x I x CP?*, ¢ YT(L) x I x CP?)=T(L) x I x CP? and ¢{T{L) x
I x CP? the identity, which is a homotopy equivalence. But once we set the
thing up this way, the result is a simple consequence of the definitions.

Let (H,Jy=0for H + J. 8(J, ) =1eZif |H = —1(mod 4), 8(J, J) =
leZ,if |Ji = 1{mod 4), 8(J, J) = 0 for |J] = 0 (mod 2).

Proposition 6.3. Let |J| = 1 (mod 2). Then

w(H)o(H, n)é(J, n) = 8(H, J).

Proof. w(Da(J, n}e(J, n) = w(J)é(J, J) = 1. [Recall that 1 is the chosen
generator of Ly, q(e)] If J £ H, then o(H,n){(J.n) = 0 by Lemma 6.2.
Suppose that J & H. Then a(H, n)é(J, n) = &(J, H). But as the index of a
torus is zero, it follows from the product formula for simply connected
surgery obstruction [5] that w(H)E(J, H) = 0.

REMARK. It is convenient, but not necessary, for us to use the case of
Proposition 6.3 that follows from the product formula for simply connected
surgery obstructions. For example, using induction on |J|, the reader can
easily rewrite the following proof of Lemma 5.2 to avoid using Proposition

6.3. One can also prove 6.3 using 1.2 of [35].
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Proof of Lemma 5.2. Take the free abelian group on subsets J < {1,.., n}
with |J] = 1{(mod 2), and introduce the relation 2J = 0 if |J] = I (mod 4),
Let A be the resulting abelian group. Define p : L, ,(Z") > A by

PIE) = Z(w(DaJ, n)E)J.

By Proposition 6.3, p is an epimorphism. By Theorem 2.1, applied induc-
tively, L,+ (Z") and A are abstractly isomorphic finitely generated abelian
groups. Hence p is an isomorphism. Clearly this implies Lemma 5.2,

REMARK. Using Lemma 5.2 and the fact that SN, 1] # 3,and 2&(), [J] = 3,
act trivially, we can get an upper-bound estimate on the size of h(T"). We
could then pass to a study of the finite covering spaces of the possible fake
tori, using methods similar to those in Section 9 below, and prove Theorem B.
Thus the annulus conjecture does not involve Lemma 5.3 and so does not
use Rohlin’s theorem [29], which is crucial to the proof of Lemma 5.3. A
similar remark will apply to Theorem C and its consequences for the tri-
angulation of manifolds and the Hauptvermutung.

Proof of Lemma 5.3. Suppose ¢ = Za(JY(J) acts trivially on [id] e ht(T™).
The sum is as in Lemma 5.2. We want to show that |.J| = 3 implies a(J) = 0.
Suppose for a particular H with |H| = 3, a(H) # 0. Even multiples of &(H)
acttrivially, so we may as well assume a(H) = 1. Then we have w{Hju(H)Y =
Let us interpret this fact geometrically and derive a contradiction to Rohlin’s
theorem [29].

Let (W, @, F) represent an-element B, 1(T" x I, g} with &(W, o, F)=¢
and with @{d_ W:d WS T"x0 a PL equivalence. Since we are
supposing ¢ acts trivially on [id], we may also assume that PO W:8, W
T" x 1 is a PL equivalence. But then Ple-W and @{é, W are obviously
transverse to the various subtori of T x ( and T" x 1, and the restrictions
to inverse images are, in fact, PL homeomorphisms. As a result, we can
successively peel off the circles complementary to T(H) x I without in-
voking the splitting theorem, 1.2. In particular, there is no necessity to take
the product with CP? in order to raise the dimensions enough to ensure the
applicability of this theorem.

Thus we obtain a triple (P, £, E) representing an element of BAT(H) x L¢)
with the following properties :

L flo-P:0_P - T(H) x Oand f10,P:8,.P - T(H) x 1are PL equiva-
lences; '

2. (P, f, E} x CP?%) = o(H)¢ € Lg(m,(H)).
But we have

I{(P.£E) x CPY) = w(H)O(P, £, .E}) x CP?).
So

I(P,f E) x CP?) = w(H)(H)¢ = a(H) = 1,

1
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iodici i bstructions, I(P, f, E) =1,
riodicity of simply connected surgery o =L
31):: geenerator 3'c()f L4(e). Identify T(H) with T>. We can assume aft_er ng}lﬁﬁzt
tion of f, if necessary, that f: P — T x I'inducesan, 1lsjom01§)h1§nt1[sec.tion
, , : 3 % I). Then the inter

be the kernel of f, : Ha(Py— Hy(T" x

fuzx(iﬁa)ers define a nonsin*:gular bilinear form Bfg(x, y) on K,(P), and
B, = 8.

E) = ¥ Index B, ([5] and [45]). So Index B
I(I:,’i)c::w )T3 gas T? % J.rS'1 and glue copies of T? ><_D2 along &P an;i 2. P
sing flo_P and f16.P, respectively, for identlﬁcat.lons.of boun aries.
;et I%V be t_he manifold obtained. The union of fand the identity on the copies

of T? x D? defines a map
g: W —(T? x DHu(T® x Du(T? x DY)
= T2 X Sz.

It is obvious from Mayer—Vietoris sequences that K;V(P} is. isolmorglgii \2111};12
i i i t is also
der the map induced by inclusion P < V..
gz(EcW)) L;nBeEc y). So Index By = Index B, = 8. Butit1s 2easy t;) see ([15], flor
eiarilgle) ihait Index, B, = Index W — Index(T” x 5%). Clearly,
T? x 87) = 0. So W has index 8. o
Intﬁ:i(rlg excisgon and the Kiinneth formula, it is casy to seeH thaft:
HYW,P:Z,) =0 and that § : H(P;Z;) —> HXW,P;Z,) is 4:)1111:0.t er:{:lt
Hi(WjZ,) — HY(P; Z,) is monomorphic for i = 1, 2. Let 7 be t le ;ng !
bundlé ozf W ; then 7|P, the tangent bundle of P, is trivial. So w (1| I_ia.n
w?(z|P), the ,ﬁrst and second Stiefel-Whitney cia‘.sses, vanish. Hence
wl(W) — w?(W) = 0 also, by naturality of Stiefel—Wlélltneg ]isla;lss(;:_s;. iona]
n ! ientable -dim
finally we have produced a cl.ose‘d, orien ' .
masl?ifolgavg of index 8 and with vanishing second Stiefel-Whitney 1class.t
Since ', = ', = I'y = 0, Wis smoothable [21]; S0 we get 2 smooth, al En.ots
arallelilzablc, closed 4-dimensional manifold of lndgx 8. Thls conltrta 1&1 :
Ehe theorem of Rohlin [29]. So ¢ cannot act trivially on [id). This completes

proof of Lemma 5.3,

7. Geometric Description of Invariants

In this section we give a geometric description for tPe con}p}:etglsetnc})’f
invariants for At{T™, n = 5. Let x be an element of ht('l:). 1Let }_as i,r.;.,the,
|J| = 3, and choose the sequence J = Jo < -+ < Ji —t{f,gn Rl
beginning of Section 6. Let (W, ¢, F) rcpresent an eleng:n p{?- ; ,,%1/ r ),( 1,
withld _ W . 0_W > T" X 0aPL egmv_alen:i and @0 W 6.,

. ooy o P Lok f — 1d % 9. Then by Theorem 1.2 and
the homotopy ;xtension property, f, is homotopic relative to 8_-W to f;
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sugh thalt Jd&+ W transverse to T(J,_. ;) x 1 x CP?, with the restriction of
fk. inducing a homotopy equivalence of (£)é, W) (T(J,_,)} x 1 x CP?%
with T(J,_;) x 1 x CP2. In addition, we can assume that f, is transverse
to T ) xIxCP: Let W, =f (TWU.) xIxCPY Ilet
fi1: W;f_l‘ — T(Jg—1) x I x CP? be the restriction of f,, and let F,:_ be
the restriction of F x D, where D is a standard framing of t(CP?) @ v(Cle)
Clearly, we can apply the same procedure to (W, _ 1, fi— 1, Foe 1) Eventually.
we get (W, fo, Fo), representing an element of Bg(T(J) x I x CP?, & x v(CPZ)),
Let A4(x) be the reduction mod 2 of the index invariant I(W5, f(:, Fo). .

Thef)rem.7.1. The invariants 4,, J < {1...., n), are well defined and are a full
set of invariants for ht(T"). Each possible collection of integers mod 2 indexed
by J < {l...,n} with |J| = 3 is realized as {A,(x)}, for some x € ht(T")

Proof. Let £ = (W, ¢, F). Then, clearly l

A5 (%) = w(DNa(NE (mod 2).

So, if £ = Za(H)E(H), the sum bein i i
>0, , g as in Lemma 5.2, a(J) reduced
just A;(x). The result follows. @) reduced mod 21s

These . invariants satisfy a certain naturali i
! ] ality property. Consider, f
example, the standard inclusion T 1c T n>6. Let );1 M-S T ’beoai
homotopy equivalence representing x¢€ ht(T"). By Theorem 1.2 we may
assumme t@e}t h is transverse to T""! and that if ¢! = p=Y(T""1)
He~ 1tz o T"~! is a homotopy equivalence. Let ye ht(T""1) be thé
CIE;;S of this homotopy equivalence. Then the following is clear : .
roposition 7.2. Let J < {1,.., n — 1}, with |J] = 3. Then A,(y) = 0 i

 Fropositon 7 b with |J) = 3. Then 4,(y) = 0 if and
t Wet also remark at this point that one can use methods similar to the above
o get an upper bound on the number of A-cobordism class

. : es of h
triangulations of T*, There are at most four. omotopy
5 (t)nfft;am;_otlﬁnd an analogue of Proposition 7.2 for higher codimensions

ut with a little care one can show that for n = 10, i : 7" "i i :
T > 10, h: 7" -+ T"is equivalent

[xgit?xd>TPx T8 forp+g=np=5g25

‘if anc'l only if A,(h) # 0 only when J < {1,..,p} or J < {p+ 1,..,n}. The
invariants o.f fand g can be determined as in Proposition 7.2. The proof
involves taking products with CP2 several times and the fact that §* x CP?

has no nontrivial homotopy triangulations [35). We leave the details as an
exercise.
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8. Proof of Theorem A

In [35] we state Theorem 2.1 for a closed manifold K, but a similar result
holds for a manifold with boundary. The same proof goes through; one
simply has to keep track of some extra portion of the boundary on which
nothing ever happens. If K is an orientable manifold of dimension = 5,
withm K = G,andif{: G - G X Z is the inclusion, then using the geometric
interpretation {35, lemma 5.2] of the map of surgery obstruction groups
induced by J, it is not hard to see that the following diagram commutes:

Ln+3(G X Z)W%LnJrj(G X Z % Z)

WK x Iy oK x §')
{ :
Ly: G ———"—Lys2(G % Z).

From now on in this section let n = 5, and fet Z° = n; T" be written
additively for notational convenience with basis 1,,..., {, determined by the
respective circles, and let Z({t;})jer = Z(J) be the subgroup generated by
{t]jeJ}. Using the above diagram and results of Section 6, it is not hard
to prove the following: .

Lemma 8.1. If1J] = 3, J, = J,|Ji| = 4, where J, S {1,.., n}, then £(J, J1)
is the image of a generator of Ls(Z(J, — J )) under the map induced by inclusion.
IfJ, 20, =50 % {1,.., n}, then &(J, J2) is the image of an infinite
eyclic generator of Le(Z(J2 — J)) under the map induced by inclusion.

The lemma also follows from the naturality of inclusion induced by the
maps with respect to taking products with a circle. (This naturality also
seems to require a geometric proof.) :

Proposition 8.2, Let J & {1,.., ny. Let J=Jog< = Jp= {1,...,n} with
|Ji — 1 =1|J;—|. Then

ald,n) = alJo, Ja}e--o o Jx—1, Jo)-

_Proof. By Lemma 5.2 it suffices to show that both sides have the same
value on &(H, n), all H € {L,..,n}, with |[H| = 1 (mod 2). If H = J, we apply
Lemma 6.1 to see that both sides yield &(H, J). f H ¢ J, choose the first i
with J,,,; » H. Then by Lemmas 6.1 and 6.2,

|:1_[ a(']qs 'Iq+ 1):] é(H: H) = |:I—[ a(']q: Jq+ 1):‘“(']:" Ji+ l)é(H: J)
g<i

But a(Jy Jis )3(H, Ji+ 1) = 0 by Lemma 6.2. So in this case, both sides yield

zero on E(H, n). '

Now we start the proof of Theorem A. Let GL{n, Z) be the group of auto-
morphisms of Z*, This group acts on ht(T™) as follows : for each U € GL(n, Z),
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let U: T" -» T" be a PL equivalence with the map induced by U on n,(T")
equal to U. This determines U up to a homotopy. Given : M — T" a
homotopy equivalence of PL manifolds, define the action of I/ on [#] by
Ulh] = [U - h].

Every clement of ht(T") determines a PL cquivalence class of manifolds of
the homotopy type of T". Since any homotopy equivalence of T" with itself
is homotopic to a PL homeomorphism, two elements of ht(T") are in the
same orbit under GL(n, Z) if and only if they determine the same class of
manifolds.

For J < {l..,n}, let H={l.,n} —J. Assume that |J| = 3. Let
H = {i},.., i, 3} and let

tJ = tH = (til /\ e A ti"_s) ® IE(A"_SZ") ® Zz.
For each x € ht(T"), let

Ax)= % A
=3
This defines a bijection A: ht(T") - (A" 32" ® Z,, by Theorem 7.1.

Now GL(n, Z) acts naturally on (A" 372" ® Z,. For example,
U, A--- Aty ) = Ut, A+ A Ut,_,.So to prove Theorem A, we need
to show the following:

Theorem 8.3. 1 is GL(n, Z)-equivariant ; ie.,

MUX) = UNx)  for xe hi(T" and U e GL{n, 2). 7

Now GL(n, Z)actson L, ;(Z") by induced transformations; let U, be the
transformation induced by U. Suppose (W, @, F) represents an element of
B,.(T" x I, &); then it is not bard to see that

00, (T x 1)o ¢, F) = U,0(W, o, F)

Hence 8 : L, ; ((Z") — ht(T™) is GL(n, Z)-equivariant.

We use the basis ty,.., 1, to represent elements of GL{(n, Z} by matrices.
Every element of GL(n, Z) is a product of a diagonal matrix and elemeniary
matrices I + aE, i + j), where I is the identity matrix and E;; is the matrix
with 1 in the (i, j)th place and zeros elsewhere. But (I +aE)(I + bE;) =
I + (a + b)E,;. So elements of GL(n, Z) are all products of a diagonal matrix
and elementary matrices I + E,;. Hence it suffices to prove equivalence of 4
with respect to these elements of GL{n, Z).

First consider Ve GL{n, 2), V(t) = +t. Then V acts trivially on
(A"32") ® Z,. So we have to show, |J] = 3, x € ht(T"), that 2 HVx} = A 4{x).
Let x = 8¢ But for ¥, we can take V(xy,..., x,) = (x7 4., x;* 1), the inverse
being taken in the field C of complex numbers. Then it is clear that the
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only effect of ¥ is a possible change of orientations, so that we have
w(DalJ, BV,& = T w(N)e(J, ). Hence A4(x) = 4,(Vx). . '

Before proceeding further, we state a lemma. The proof is straightforward
and so is omitted. .

Lemma 8.4. Let J € H < {1,..,n}. Let S be an automorphism of m,(H) =
7, (T(H)). Assume that S(t;) = t; for ie H — J and S(z,(J)) = n;(J}. Then if
£ € L)+ (7, (H)),

ol J, H)S & = (S|me(IN)oelJ, HYE,

Now consider U e GL(n, Z) with U(t) = t;for i # j and U(t) = t; + ety
k s i, &8 = +1. We want to show that A(Ux) = UA(x), all x € kt(T"). But we
have

MUEE + m) = HB(UL + Uyp) = 48U L) + MU )
= AU28) + AU (an)-

This follows from the fact that & is GL(n, Z)-equivariant and that Ay isinduced
by homomorphisms of L, (Z") onto Z,, namely w(H)a(H, n) fol]owed‘ by
reduction mod 2. (See the proof of Theorem 7.1.) Hence it suffices to cons_lder
x = 8&(J), |J| = 3,J < {1..,n}, and to show that A(Ux) = UA(x) for this x.
Note that A(x) =t’, and recall that 1,(3f) is the mod 2 reduction of
w(H)a(H){&).

(CZzs(e 1).(?6 J, ke J. Then Ul(x) = Ut’ =t = Ax); so we must show that

x = Ux;le, Ag(Ux) = Ax(x) for all H with |H| = 3.

© Suppose that H #J. Let H=Hyc Hy c--- < H,_3 = {1,..,n} with
|H =|H;_1 + 1. Suppose first that i H. If ke H also, then by Lemmas
8.4 and 6.2,
«(H)U L) = (Ulm(H))olHYC(J) = 0.
If k¢ H, take H; = H u {k}. Then
a(H)U &(J) = ofH, H)o{H)U E(J)
= o(H, Hy)(V|ry(H 1)) e(H )E0).

The I.ast expression vanishes unless H; o J, in which case it is o(H, H B
(Ulmy(H )E(J, Hy). Let Hy = Jw {l} in this case. Then, by Lemma 81
&J, H,) is in the image of Ls(Z(t)) in =n,{(H ). But U(t)) = t;, so by naturality
{since L is a functor),

. (Ulr(H ), &, Hy ) = &, Hy).

But a(H, H,)é(J, Hy) = 0. So if ie H # J, a(H)E(S) ='O. Now suppose th'ftt
i¢ H ke H, take H; = Hu {i}. Say H; > J. The 1mage'of Ls(m (H)) in
Ls(ny(H,)) is (pointwise) fixed under (U|n,(H,)},., by naturality. But &(J, H,)
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is in this image; this follows either from Lemma 8.1 or from Theorem 2.1

and the fact that w(H, H)EJ, H) =0. So (Ulmy(H ), E(J, Hy) = ¢&J,H)).

But then A H)U &) = o, H)(Ulm (H L)), &, Hy)=0 1Ir Hl’;é J,

(VU () = alH, H\)(Uly(H L)), 50) = 0 alor, ’
Suppose that i¢ K and ¢ H. Then we take H 1 =Hu{k} and

HZS = f[ 1 L;l {Ht} and argue similarly to show e YU E(J) = 0.

- So, fora #J,Jincase |, 4{Ux) = 0. i

AAUx) = 1. Hence AMUx) = Ax), gc(> U))c = ())c e Ux Hel e must have
Case2. icJ k ¢J. Say that H = J. Ifke H, then

AU ) = (Ulmy () H)E(J) = 0.

UK¢HletH, = H o {k}and arguesimilarly to show that aH)UEN) =0
and hence e HYU &(J) = 0, As in case 1, this shows that AUx) = A(x) and
S0 C['Ix =3 x. Clearly Ui(x) = A(x). This concludes case 2.
ase.i¢J,k¢J.SaythatH;éJ.LetH =H U {ik}. Théen H, % J
80 a(H1)E(J) = 0. So : ' (4. Then H, 2 -

S 0 = (Ulmi(H )l H )E(S) = w(H YU £(J).
]

(H)U L) = ofH, HiolH YU LET) = 0.
So 7
AUx) = Ax).

Clearly Ui(x) = i(x). So this concludes case 3,

Casc'a 4. i¢ J, k¢ J. Thisis the hardest of the four cases. LetJ = {k, | m}
H = {i, ], m}. Then clearly we have UMx) = Ut' = ¢/ + 1. S0 we have tc;
show that /IH(Ux) = 4(Ux) = 1, and all the other invariants vanish for Ux.
Let K = {k, i, my, L = {k, |, i}. We first study Ag(Ux), 2, (Ux), A/ (Ux), and
Ag(Ux). Let J, = J [} Letv = Ulmy(J4). We have

- AR TV, ) = VK, JI)EJT) = 0.
It follows easily from this using Lemma 8.4 agaj i i
his, - again (as we have in earlier
cases) that 1,(Ux) = 0, Similarly, 4,( Ux) = 0. By Lemma 5.2 this shows that
Vil J1) = y&(J, 7)) + 86(H, J 1) {mod torsion).

The following diagram commultes :

LsfZ{t) ~————s L (1,7 )

l vizep) J ¥,

Ls(Z(t; + et)) —"— L(x,(J ).
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Here h is inclusion, and the upper horizontal map is also induced by inclu-
sion. By Lemma 8.1 the upper map carries an infinite cyclic generator to
S, Jo)-Letm : Z(ty) — Z(t; + et,) be given by mity) = t; + ety Letn 1 my(J ) >
Z(t;) be the natural projection. Then T H.m, = (Lid), ; ie, the following
commutes : '

Ls(Z(t; + et ) —"— La(m,(J,))

Ls(Z{t0) — =% L(Z(z,).

~From these squares we see that . Vo l(J, J1} must be an infinite cyclic

generator of rank one group Ls(Z(t,)).

Now we assert that n,&(J, J,) = 0. First £(J, J1) is in the image of the
map Ls(Z(t)) — Ls(m(T(J,))) induced by inclusion; hence m,&(J, J|) is in
the image of the map Ls(Z(t,) - Ls(Z(t;)) induced by the trivial map. This
map factors through Ls(e) = 0, because L is a functor. Hence it is trivial.

On the other hand, it follows from Lemma 8.1 that . C{H, J;) is an
infinite generator. Thus we conclude that § = +1. Similarly, y = +1.

By Lemma 8.4 and what we have just proved,

05(-’1)U*f(j) = +{(J,J1) + &H, J,)(mod torsion).

Since W(H)x(H, J,) and W(J)dJ, J,) vanish on torsion, we can apply each of
these to the above equation to conclude that 2 AUx} = 1g(Ux) = 1.

Suppose that [I] =3and I ¢ J,. IfieTand ke I, then using Lemma 8.4
(DU E(J) = (Ulry(D) o DEJ) = 0. If i e T and k¢l let I = I'u {k}. Since
Iy 7, a(I)U E(J) = 0, using Lemma 8.4 as usual, and so ol)U, &J) = 0,
Note that in this case I, = Jis impossible, since then we would have I 1 =,
and so I < J;. S0 A{Ux) = 0 in this case.

Suppose i¢ I and kel Thenlet J, = I U {i}. Then I, #J, as i¢ J and
I # J. 8o in this case we argue as before, using Lemmas 8.4 and 6.2 to show
that «(HU ,&(J) = 0, and so A{Ux) = 0.

Say thati¢ Jand k¢ I Let K = T U {;, k}, Ky = K — {i}. Let V = Ulrn,(K).
As usual, using Lemma 8.4, we want to show that

oI, KV, K) = 0;

this implies that A(Ux) = 0.

Ky % J, &, K)is in the image of Leg(m1(K 1)) under inclusion, by Lemma
8.1, for example; by naturality this image is invariant under V,. Since
a(l, K) = o1, K)u(K, K) vanishes in this image, the result follows.
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Suppose K; = J. Write J = {k,/,m} as before. Let {sf=1—-1nJ,;
then {I, m, s} = I. We have a commutative diagram

Le(Z(t, t)) ———— Ly(n,(K))

Le(Z(t, t; + et,)) —— Le(n,(K)):

h = inclusion and the unlabeled map is induced by inclusion. So V.E(J, K)
is the image of an infinite cyclic generator under . [Recall that, by Theorem
2L L(Zx ) =2 Z,.) '

Now, in general, if y, pe K and n{y, p) iy (K) — Z(t,, t,) is the natural
projection and iy, p) the natural inclusion [so (i, p)i(y, p) = id), then for
maps induced on Lg of the appropriate groups we have

i, Pl © i1, p'), = 0(mod torsion)

unless {u, p} = {p, p'}; for if {p p} # {1, p’}, this composite factors
through Le(Z(2,)), Le(Z(z,)), ot Lgle), all of which are Z,.Soforany P = K,
[Pl = 3, nly, p),&(P, K) is an element of order 2 unless P U {m.p} =K, in
which case it is an infinite cyclic generator, by Lemma 8.1.

On the other hand, =(s, i} /1 is an isomorphism; hence (s, i), V,(&(J, K))
is an infinite cyclic generator. Similarly, so is #(s, k)(V,&(J, K)). If {mp} #
{s, i} or {s, k}, then n(u, p) - & factors through Z and so n(y, p)V,&(J, K) will
have order 2, as Lg(Z) = Z,. Thus modulo elements of order 2,

where H = {i, [, m}. So this shows that «(J, KW EJ. K)=0,as I # Jand
I # H. So A{Ux) = 0. Incidently, this reproves Ag(Ux) = A)(Ux) = 1, in
a somewhat more complicated way.

This concludes case 4. We see that AfUx) = 0if I = Jor H and A4(Ux) =
A[{Ux) = 1; this is what is needed.

So Theorem 8.3 and Theorem A are proved.

9. Finite Coverings of Fake Tori

Let X" n > 6, be a closed connected orientable manifold. Let ¥ be the
normalbundleof X x I andlet B(X x I,v) = BY(X x I, v)and BYX x I, v)
be as in the first paragraph of sec. 5 of [35]. Let p: ¥ — X be a finite covering
map, with Y connected. The differential dp : 1Y) = ©(X) is a bundle map
covering p and so theré is a natural identification of the normal bundie of
Y x I with w=(p x 1y*v. Given (M, ¢, F) representing an element of
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B.{X x Lv), let ¢*(p) : E(¢*(p)) = M be the covering iqduced by ¢ froril P,
let & : E(¢*(p)) — Y be the natural covering map covering 2 and let o*(F)
be the induced framing of ©(E(¢*(p)) ® $*W. Then sending (M, ¢, F) to
(E(e*(1)), &, @*(F)) induces a map

p* 1 BAX x Lv) > B(Y x Iw),

and it is easy to see that there is an induced homomorphism

P L{m X) = L{m, ¥)

with p'0(x) = 8(p*x) for x e B(X x I, v). Similarly, we define
p' i Li{m, X) — Li(m, Y).

REMARK. It appears that p' depends in an essential way only upon the
image of =, ¥ in wy X under the map induced by p. But we do not try to prove
this here.

Suppose, for example, that X = L x §*, n; L = G. Let p(x, y) = (x, y™),
y& S = C = the complex numbers. Then we have

Proposition 9.1. The following commutes:

(L)

LG x Z)—"—= L. (G}

A

LG x 2)

The proof is a very simple application of the definitions and is omitted.
Let j be the inclusion of G in G x Z. Then we have
Lemma 9.2, Let p:L x §' = L x 8! be p(x, y) = (x, y™). Then

P8 = mjy(d).

Proof. Let (Q,, E) represent an element of B(L x I xI o|L) x I x I)
with (0, , E} = &. By theorems 5.8 and 6.5 of [46], we can -take 80 =
(LxIxOulxolx Dud,Qwithy(@, Q=L x [ x‘Iw1t.h v,!/|(.aQ -
8,Q) the identity, and with E compatible with the natural identification (_)f
L x0x Iand L x 1 x I. Gluing up these parts of the boundary by this
identification, we get (M, ¢, F), representing an element of B(L x S' x I,
v x I). By lemma 5.2 of [35],

B(M, ¢, F) = jo(&).

(Here we identify S' = 1/8, using the map ¢ - ™)
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Now we construct p*(M, g, F) explicitly. Let (Q, 4, E), 1 <i < m,
=0, - L xIx], be m disjoint copies of (@, ¥, E). We have, for example
00 =(L; x I x 0y (L, Xl x NUd,0;
Lett;=L x I x I—>LxIx Ibegiven by
t{x,a,b) = (x,a,(b + (i - 1))/m), 1<i<m
Then let P be the union of Q,,...,Q,, with L; x 1 x I identified with L, , x

1

0 x I in the obvious way for 1 <i<m— 1. Let f=fiy,u--uiy,,
and let H = E; -+« E,. Then

]

0P = (L x Ix 0 u(L, XOx Du(L,x1xHud,P,

and it is not hard to see that p*(M, @, F) can be obtained from gluing

Li}[; ]0 x I'and L, x 1 x I by the natural identification. So by lemma 5.2
of [35],

Pix(&} = j 0P, f, H).
By the additive property of surgery obstructions [46],
(P, f, H) = mé,
So

Now suppose that p: T" — T" is a finite covering map, n > 5. Then if
h:M — T"is a homotopy triangulation, we can take induced covering M
ar'1d the induced map of coverings # covering h to get a new homotopy
triangulation. This induces a map of A#( T") to itself; we denote this by

P2 he(T") = he(T™).

We want to study the effect of p' with respect to the invariants 2.
Lemma 9.3. The following diagram commutes :

Ly, T —2 hy(1™)
7 P
Ly 1 (7, T =2 hi(T")
Proof. Obvious.

Let us study the effect of the simplest type of covering transformation

]

PX 1 X)) = (X1y0ey X7,y X,

i

let t; = (¢, A

FAKE TORI 41

for i fixed, x;eS* = C,1 <j<n Let J = {l,.,n}, [J = 3. If i¢J, then it
is clear from the definitions (or from Lemma 9.1 applied inductively) that
PEJ) = &) Ified, let H = {1,.,n} — {i}. Then a(H)¢(J) = 0 by Lemma
6.2, so by Theorem 2.1 £(J) is in the image of L, (n,(H)) under the map
induced by inclusion. Hence, by Lemma 9.3, p'&(J) = m&(J). So we have -

0 o+#J,
A(p'(GE(N) =1 1 H =] i¢J,
m(mod2) H=Jiel

Now, let us define 2* : ht(T") = (A’Z") @ Z, as follows: If J = {i}, i3, i5},
t, A t,) @ 1 and set A¥(x) = Z; - 34,(x)t;. Let

A*P) (A2 R Z, - (A*ZN R Z,

be induced by the map sending ¢; to ¢; for j # i and ¢; to mt;. Then we have
shown that

A¥(p'x) = *(p)A*(x).

Suppose that p(xy,.., %) = (xT%... xJ"). Then p =p;eo---op, where
D% s Xp) = (X 1p0es Xy X,). Then p* = pjo---opy. Let A*(p) = A*(p,)»
--o A%(p,), the map induced by #; — mt;. Then it follows that we have
Theorem 9.4. For p(xq,.... Xp) = (x4, X527

X(p'x) = AMp)A*(x).

Every covering map gq:7T" — T can be written as g = Uop where
UeGL(n, Z) and p is as in Theorem 9.4. But U’ ht(T") — ht(T") is just
U'x = U/ 'x. Let 'U denote the transpose of U with respect to the basis
ty,.., Io. It acts on A’°Z" ® Z, naturally.

Lemma 9.5. 1*(U™'x) = "UA¥(x).

Proof. Let D :(A""32" ® Z, — (A*Z") ® Z, be the standard duality map.
Then A*(x) = DA(x). On the other hand, for ye (A" *Z) ® Z,, DU 'y =
‘UDy. This follows from an easy calculation. So

MU x) = DU 1i(x) = 'UDA(x) = "UA*(x).
Theorem 9.6. Let g = U o p be as above. Then
A*(g'x) = A*(pYUAM(x).
Suppose wé view t; as a class of H,{T"; Z). Then if x € ht(T"), we can view

Ax)e H, 5(T";Z,). Then the dual class, A*(x), becomes an element of
H3(T":Z,) and we can reformulate Theorem 9.6 as follows.
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Theorem 9.7. Let ¢: 7" = T pe 4 covering map. Then the Jollowing
diagram commutes :

hi(T" —= H¥(T"; 7,)
q ) T
(T~ HY(T™; 7).

This formulation is due to Wali. Since every finite covering space of
T" is PL homeomorphic to 17, this covers all finite covering spaces of
fake tori.

Theorem B. Every fake torus 1" is covered by T" n > 5,

Proof. Apply Theorem 9.4 to p(x,,... Xa) = (x%,., x2).

Corollary 9.8. Lez p(x,,..., Xp) = (XTserey XI™) with My, m,odd, n > 5 Then
Jor x e hi(T™, p'x = x.

Proof. A*(p) = identity.

Corollary 9.8 (essentially) is crucial for Siebenmann’s proof that there is
a fake torus homeomorphic to the standard torus {36].

10. Manifolds Tangentially Cobordant to S* x ™

In this section we indicate how to use our methods to obtain some results
on manifolds of the homotopy of §* x. T" k = 2. We have the sequence

Lovis (2" 5 hi(S* x T - [$* x T" G/PL]
3 Ly 20,

In this case, # is nontrivial. For example, any composite $2 x T" 5 77
G/PL, where the first map is the natural projection, is the normal invariant
of some homotopy equivalence.

However, we can use the same ideas as for the torus to determine the
map &. By [44], every homeomorphism h: M — §* x T", k x n = 5, repre-
sents an element in the image of 8. If h: M — S x T” is any homotopy
equivalence representing an element in the image of 8, we say that M is
tangentially cobordant to S* x T

ForJc {L,n} with |J) =m = +« 1(mod 2) we define classes &N =
&Sk, nyeL,., e+ 1027 analogously to what we did in Section 5. We take
the image of a generator of L,y 4(e) in Lot gr 1 (3 () = Lyt e+ 5(m 1 (J))
and realize it as g(W, @, F), where (W, ¢, F) represents an element of
Brniwas(S* x T(I) x I x CP?, V), V the normal bundle of §* x T(J)) x
I x CP? and @@_W:0_W— §* x T(J) x 0 x CP? a PL equivalence.
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Let H = {1,..,n} — J. We take
&(J) = OU(W, @, F) x T(H)].

i ust allow J = F; let T((F) be a point.
! f\lssiildg;;?of 5, we need né? take produc't with CP? if {J] + 1> 4 or
|J| + k& + 1 = 2. This implies that (&) = [1d] for such J. For |J| + k +
1 = 4, we still have, as in Section 5, H2&(J)) = [id).
We can also introduce the maps

aldy = ald, k, n) : Lys g 1(Z2% — Lot i+ (i)

for |J| = m, and the projections
W) Lot g 171N} = Lops g 1(e).

We have the formula w(H)e(H)E(J) = 6(H, J), as in Proposition 6.3. Again
we may have H = (; let n;(H} = {e}. From this, we can prove .

Lemma 10.1. Every element of L,z (2% has a unique expresszo;
Za(N)e(J), the sum over J < {1,..,n} with |J] = 1 + k(mod 2), where a(J) e ‘
M= -1+ kimodanda(DNeZ, if |J =1 +kk (mo:l 4_1). N

Theorem 10.2. Fork = 3,3 : Lyi 0 1(Z") — ht(S* x T is tr'w-:al. .

Proof. |J] + k+ 1 > 4forall J < {l...,n}, so C(J_’) acts trmgll)f on [éd;l.
By Lemma 10.1, this implies that L, (Z" acts trivially on [id]; ie., @ is
trivial. '

let & = 2 or 3. Then using Rohlin’s theorem [29], we can prove

E;:ma 10.3. The subgroup {£|0¢ = [id]} is generated by {E(Nk + |J| #h
3} u {28k + [J| = 3}. In fact, if h: M — §* XHT" represents 0(J) wit
k + |J| = 3, then M is not PL equivalent to §* x T".

The first statement is proved exactly as Lemma 5.3. To prove the second

t one needs the following

StaSul:lIlﬁ:lllnma 10.4. Let pand q be integers,p>1,g> 1. Let {: 87 x T?>
8% x T? be a homotopy equivalence. Let T* ! < ’{q be a stan_dlani subtczr:uf.
Then f is homotopic to g, tralnsuerse to 87 x T, so that g7 '(8? x T* 1)
i ivalent to 8% x T7 _
) E}ozgug:tlen 187 x T9— §! be the standard projectioln with ﬁ;t?er S7 x
7971 Since §' = K(Z, 1), = represents an element zeH (87 x T*, Z), aild
7o frepresentsf*z. Letd : T —» T9bea PL equiv-allence with(I x dy*z =f f 2.
Then n - f is homotopic to 7o d. By the covering homotopy property or
the fibration =, there is 2 map g, homotopic to f, so that mog = mo d. It is
obvious that g satisfies the conclusion of the sublemma.

Assuming now that M in Lemma 10.3 were PL equivalept to 5% x T",
we use Sublemma 10.4 to peel off circles and argue as in Section 6 to derive
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a contradiction to Rohlin’s theorem [29]. We did not need a lemma like
Sublemma 10.4 in the torus case because any homotopy equivalence of
T with itself is homotopic to a PL equivalence,

For k = 3, the only invariant of the image of 3: L, , ,(Z" - ht(S® ") is

Ag(&) = W(Za(Z)E mod 2.

So we have the following, except for the last sentence.

Theorem 10.5. For k = 3, n=2 the image of & has two elements. There
is a unigue manifold M, up to PL equivalence, that is, tangentially cobordant
108 x T, Every finite cover of M is PL homeomorphic to M.

The final sentence of Theorem 10.5 follows from Proposition 9.1 and the
fact that 2 detects M., ‘

REMARKS. 1. M"*3 5 > 3 as in Theorem 105, let K™*2.c M"*3 be a
fiber of a PL fibration of M over a circle [12]. Then it is not hard o see that
K is the unique manifold tangentially cobordant but not PL equivalent to
$*x T" 'andthat M = K x §! (cf. Proposition 7.2).

2. If there is a fake 3-sphere I3 with X* = 3 and Index(W*) = 8, then
the unique manifold of dimension (n + 3) of Theorem 10.5is 53 x T™

3. It follows from the classification theorem of Kirky-Siebenmann that
the manifolds of Theorem 10.5 are homeomorphic to $* x 7" In fact,
this follows from [19] and the disproof of the Hauptvermutung [36].

As for the fake tori, we can also define invariants A; for the elements of the
image of §:L,,4(Z") — hi(S* x T7), n2 3. We let 1(3¢) be the mod?2
reduction of w({£;})x({t,})¢. Let L5 ty be the standard basis of (S x T
and let 19 =(z; A ... A L, ) ®1e A" 12" ® Z,. For xeIm d, let A(x) =
Zis 1A, As in the torus case, we have

Theorem 10.6. 1 :Im 3 — (A""1Z") ® Z, is a bijection.

We can define an action of GL(n, Z) on ht(S® x T" as follows: If
UeGL(n,2), et U:T" » T induce U on the fundamental group and set
Uhl=[1 x O)eh), h: M - §2 x T» a homotopy equivalence. Then it is
clear that U(a¢) = UL, so ITm @ is invariant, As in Section 8, one can

show: .

Theorem 10.7. 2 is GL(n, Z)-invariant.

Corollary 10.8. There is a unigue manifold M tangentially cobordant but
not PL equivalent to §* x T

Proof. The natural action of GL(n, Z) on (A" 2" ® Z, is tramsitive on
nonzero elements, :

As in Section 9, we can define a dual invariant A* : Im 8 -» ANZNR 2z, =
(Z?). If we view ; as homology classes, then Axye H,. 1($* x T";Z,) and
A*(x)e HY(S* x T":Z,) and we have
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Theorem 10.9. Let p: 5% x T" = 8§82 x T" be a covering map. Then the
Sollowing diagram commutes:
Imd > HYS? x T"; Z,)

T

Imd 2> HY(S? x T"; Z,).

Finally, using the technique involved in Theorem 10.2, one can show the
fol'i'oll\:(l)?i’nuil(;l.%0[.44 J%et P4, g > 4, be a simply connected closec.i' PL.mamf(;Tld.
Assume thath:M - P? x T" g +n = 5 hasa trivfol narmal mvaﬂrtzantil Then
h is homotopic to a PL equivalence. In particular, if H (P x T, 2) las HO
2-torsion and h is a homeomorphism, then h is homotopzc to a PL equiva 8?012
REMARK. The second author has proved (‘unlpuliléshid) that any manifo
type of P* x §! is PL equivalent to it.
Ofg:}t;'{})ll‘l);?; ;(:]I?{l.y?f M is tangentially cobordant to S* x T", k = 2,3,
k + n = 3, then M embeds in R* 7513 with trivial normal bundle. .
Using product formulas for nonsimply coknnectsd suggery obstructions,
we can show that M x §? is PL equivalent $¥ x 7" x §2.

11. Application to Questions S{k, #)

Let h: D¥ x T" » W be a homeomorphism that is PL on the bm.lkllclf:l;)j;I
The question S(k, n} asks that there be a PL homeomonhlsim of D k>< .
with W that agrees with & on the boundaty. .The question S(k, n} asks ((z)r
the same conclusion after passage to some finite covering spaces. We stu ();
these statements as an application of Section 10, and we prove Theorem

i tion fork + n = 6. '
OfIt_.}; itll:::cgllrf with the case k = 5. We can assume that h'IS PL ona colla;
neighborhood of the boundary. Let B < Int D*bea smallcl dlSkn()f dlmens;"c:n.
with B x T* lying inside this collar. Then k = hjcl(D* x T — ’1113" xB 1 h1<s:
a homecmorphism, PL on the boundary, onto W — h{Int B x T"). h‘y ne
s-cobordism theorem (see [5]), this manifold is PL homeoinlorp ic f
0B x T" x I via a PL homeomorphism ¢ with .(p(x) = (h (.;c), 0)] or
xe& hiB x T". The domain of k is PL homeomorphic ‘to 0B x T xd via
a PL equivalence ¢, carrying B x T"to 8B x T" x 0in the standard way.
Then if we identify §*~! = 8B,
f=ko ;S x T"x I8 x T x I
is a homeomorphism that is the identity on "' x T% x 0 and PL on a

neighborhood of §571 x T" x 1. We are going to try to show that f is PI}
pseudoisotopic to the identity; ie., there is a PL homeomorphism o
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ST % T™ x I with itself extendin =1

. I with g/1871 x T" x &I Let M be the map-
pmgtoru.s qff gk-t X T" x 1;1e, let M be obtained from $¥~! x T* pr
by 1fient1fy1ng (x,0) with £~ '(x, 1) for xeS§*! x T" Then M is a PL
manifold and f determines a homeomorphism ‘

g:M 81 x T 5L

Up to this point our constructions all
: go through for a2 homotopy equi-
vzﬂence h that is .PL on the‘ boundary. But then ¢ would necessarily be (glnly
2 homotopy equivalence. Since g is a homeomorphism, #(g) = 0 by [44] and
50 by Theorem 10.2 or 10.10 g is homotopic to a PL equivalence
d:M - S 1 roy g1
. ;Fhe ch;{e::tion nof Sk X T" x I on I induces a PL fibration z: M — S,
neo iy .h x T" x 87 - §! be the projection on the last factor. Then
Bl g dlS omotopic to w and so 7, o d is also homotopic to n. By a trick of
; rowder [8},- We can assume, after a pseudoisotopy of d, if necessary, that
Or a preassigned base point * of S, (x, od)”I(*) = g 1(*). View :S'l as
f}/}@] and let (*) = {8I}. Browder’s trick works here because Farrell’s fibering
fuzg:;rln [II%} and t(1:11“6h S-cobordism theorem are valid for a free abelian
mental group. {The trick is given in the proof of
of [8] is itself slightly misstated.) P etlemmna 20f(8). Lemma 2
Now spiit :-the i
morohs n;: it along the fibers of 7 ané 7y ;-then d determines a PL homeo-
WiSF Tl X T [ SEL s T g

with !,//(f"l(x), 1) = (x,0). Let g = WISF 1 x T x 0, Then £1§5~1 x T x
i= (lﬁpl X id) e (]§¥7 x T" x 1), So F = (5! x id) 4 is a PL homeo-
I;?rphlsm of 871 % T" x I with itself with FIS¥™1 % T" x af = fI§*-! (>)<
(hlexaé.n ;I)‘.he PL homeomorphism asked for in S(k, n)is then just (@~ 'Fo,) U

So this proves: S(k, n} has an affirmative answer for k > 35

_Flor k ks_:l, the argument could break down onlyﬁbe(.:ause the map
g:M — 871 » T" x $! may not be homotopic to a PL equivalence

Suppose k = 4. By construction M is fibered over §! with fiber S3. x T
So by Remark 1 after Theorem 10.5, M is PL equivalent to §3 x T x S
and hence g must be homotopic to a PL homeomorphism. So S(k i) has
an aﬂ‘irmatrge answer for k = 4. Suppose k = 2. Then M is a possib] fake
toruls. Consider the invariant A*x)e H{T"*2,Z7,), x the class ofy i
ST x T" x §Y) = (T %), Let p:T7+2 ,1'""2“"2 be plx;, x xg .
!J)CH%)}I: (%1, X3y X241, Xu+2). (Recall that x;e §' = C)) Then lé*f;(';) :(1):
tr);ang :;:grg;l; .9.7. Hence A*(p'x) = [id] and so P'x is the trivial homotopy
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Thus if §:M — S' x T" x §* is the induced map on the induced cover
M of M, g is homotopic to a PL homeomorphism. Since we used a covering
map p of the form 1 x g x 1, ¢ : T" — T" a covering, it is easy (o see from
our argument above that 52, n) has an affirmative answer.

We leave the case k = 1 as an exercise.

Suppose k = 3. We have a homeomorphism

g:M - S§* x T" x S.

We have the invariants A(x), x € ht(S* x T" x §'), the class of g, 1 < i <
n + 1. By construction g~ (82 x T" x (*)) is PL equivalent with $* x T”,
and the restriction of g is a PL equivalence. Hence A{x} = 0for 1 <i < n.
(Compare Proposition 7.2.) So we have an obstruction 4,.,(x)eZ; for
S(k, n). It is easy to see that this obstruction depends only upon the homeo-
morphism h:D? x T" — W and not upon any of the intervening con-
structions. If we start with a covering map h:D? x T" —» W for h, and
perform the same constructions we get §: M — §* x T" x S* covering g.
But the construction does not involve the last S! and so, by Theorem 10.9,
Aws 1(B) = Ay 1(B). Hence there is a Z,-obstruction to S(k, n), k = 3. This
proves Theorem Cfork + n = 6.

(By Kirby—Siebenmann [19] and Siebenmann [36}, we know that 53, n)
cannot have an affirmative answer.)

Theorem 11.1. Let f:S$*" ' »x T" > § ' x T", k+n=6, be a PL
homeomorphism that is topologically pseudoisotopic to the identity. If
k = 4, then f is PL pseudoisotopic to the identity. If k < 2, f is covered by a
map of finite covers that PL pseudoisotopic to the identity. For k = 3, f* is
PL pseudoisotropic to the identity.

Proof. We have seen everything except the last statement. For k =3,
let F:82 x T" x I - 8% x T" x I be a topological pseudoisotopy of f
with the identity. Let M be the mapping torus of f '. Then F induces a
homeomorphism

g M — 8% x T" x 81,

and we saw that A{[g]) = 0 if i ¢ n + 1. Let p(x, y,2) = (x, 3 2%, x& 5%,
ye T" ze 8* = C. Then, by Theorem 10.9 p'[g] = 0. This implies the con-

clusion.

12. Another Approach to Theorem C

In this section we outline a slightly different approach to Theorem C.
Let f:W—oS"'x T xI, k+n=5 be a homotopy equivalence of
PL manifolds which restricts to a PL homeomorphism of boundaries. Then,
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asﬂ in Slection 11,. S determines a homotopy equivalence g: M — 8§71 x
T xk §1, M obta_mcd from W by identifying f~(x, 0) with f “x, 1) for
xe§ x T" It is easy to see that this determines a map ’
MRS TP x LS« Tk oI
- h(S*1 x T x 8Y).
?lfe writf:lhr(Sk“ x T" x I, 8) for the domain of .#. Let p: 8t x 77 x
=S5 X T ISF % T x 81 = %(§*! x T"). be the natural quo-

ﬁrS 43 Ct T

Theorem 12.1. The following diagram commutes ;

Lyviis(Z) == ht(S*" ' x T x I3} L[S(s* x T, G/PL]

Li L

p*
Ln+k+1(zn+1)_f_,ht(sk—1 X Tn+1)_ﬁ)[sk71 i ot G/PL]
= Lo ifZ)
» Li
— L, (2.

Further, p* and .4 are one-to-one.
T"NO\.;‘, given f 1 W= §¥1 x T x |, representing an element of (S5~ x
x I, 0), we can use (f|0W)™" to attach D* x T* to the lower boundary

of W by identifying f~(x, 0) with x. Then if we call the result Q, G = fuU

id : @ — D* x T represents an element of ht(D* x T" ). This defines
FhS x T x 1,3) > ht(D* x T, d),

In Section 11, we essentially saw that

. : : was onto, and we approached
The(zrem C by studying a lift to ho(S*~! x 7" x I, d) of eli,gmenc; Et:)f
ht(D* x T", d) represented by a homeomorphism.

There is a natural quotient map
mi I = DR ox TSR x T I(SE x 7,
. =S x T x IS T ox Bl

obtained by viewing $*! x T" x I as a boundary collar of D x T™:

7 just collapses D* x T" - (Int S~ ! x 7" x I i
to a point, One :
Theorem 12.2. The following diagram commutes ’ Fan show:

g D" x T",8) ———— [3*T7 G/PL]_,

vl z"
+i+1( )é Tﬁ I"' L, (27

h(S*=1 x T" x I, 6)1)[>;‘(S"“1 x T, G/PL]S./S'
&(Im & is @ monomorphism,
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REMARK. The last statement follows from the fact that, loosely speaking,
the surgery problems can be pushed into any part of the manifold which
carries the fundamental group. This is the “local character” of surgery
obstructions.

Using Section 10 and these two theorems, it is easy to analyze
8 1Ly ur (2 — ht(D* x T",8). Using the fact that T*T% is a one-point
union of spheres, it follows easily for k > 1 that the homomorphism § is
monomorphic. Hence 5 = 0. Thus we see that Theorem Cis truefork +n =35
and that it remains true if we replace the homeomorphism 4 : D* x T" —» W
of S(k, n) with a homotopy equivalence that induces a PL homeomorphism
of boundaries. It follows from [36] and [19], however, that this does not, in
fact, add any generality.
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