
FUNDAMENTA
MATHEMATICAE

227 (2014)

Shrinking of toroidal decomposition spaces

by

Daniel Kasprowski (Münster) and
Mark Powell (Bloomington, IN, and Bonn)

Abstract. Given a sequence of oriented links L1, L2, L3, . . . each of which has a
distinguished, unknotted component, there is a decomposition space D of S3 naturally
associated to it, which is constructed as the components of the intersection of an infinite
sequence of nested solid tori. The Bing and Whitehead continua are simple, well known
examples. We give a necessary and sufficient criterion to determine whether D is shrink-
able, generalising previous work of F. Ancel and M. Starbird and others. This criterion
can effectively determine, in many cases, whether the quotient map S3 → S3/D can be
approximated by homeomorphisms.

1. Introduction. In this paper N := N>0, the set of positive integers,
and N0 := N ∪ {0}.

A decomposition of a manifold X is a collection D = {∆i} of pairwise
disjoint closed subsets of X with

⋃
D = X. A decomposition of a compact

manifold is said to be shrinkable, in the sense of R. H. Bing, if the associated
quotient map which identifies the elements of D to points can be approxi-
mated by homeomorphisms, so that there is a sequence of homeomorphisms
{fj : X → X/D} converging to the quotient map f : X → X/D. The adjec-
tive “shrinkable” arises from the method typically used to construct such a
sequence. One constructs homeomorphisms hj : X → X such that the sub-
sets hj(∆i) become progressively smaller; that is, they shrink. See Section 2
for more details.

In particular, for a shrinkable decomposition, the spaces X and X/D are
seen to be homeomorphic. When specifying a decomposition D, following
custom we only specify the subsets which are not singletons.

Suppose we are given a sequence of oriented links L = L1, L2, L3, . . .
in S3, where Li = Li0 t Li1 t · · · t Lini

is an oriented (ni + 1)-component
link with a specified component Li0 unknotted. The aim of this paper is
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to give general conditions to decide whether the following decomposition
D of S3 associated to L shrinks. Each link Li determines a link Li1 t
· · · t Lini

in S3 \ νLi0, the complement of an open regular neighbourhood
of Li0. The orientation of Li0 and the embedding in S3 determine a canonical
diffeomorphism (up to ambient isotopy) S3 \ νLi0

∼=−→ S1 × D2, since they
determine an orientation of the S1 factor and a zero framing. A closed
regular neighbourhood cl(ν(Li \Li0)) of Li \Li0 is in the same way canonically
diffeomorphic to a disjoint union of solid tori. Therefore, every link Li

determines an embedding L̂i :
⊔ni
k=1 S

1×D2 ↪→ S1×D2. These embeddings
determine a sequence T0 ⊃ T1 ⊃ T2 ⊃ · · · where T0 ⊂ S3 is a single unknotted
solid torus and each subsequent term Ts =

⋃
Is
S1×D2 is a disjoint union of

solid tori, with Is :=
∏s
i=1 ni and I0 := 1. For s ∈ N, the subset Ts ⊂ Ts−1

is obtained as

Ts =
⋃
Is−1

ns⊔
k=1

S1 ×D2
⋃
L̂s

↪−→
⋃
Is−1

S1 ×D2 = Ts−1.

We define the decomposition D as the connected components of their
intersection

⋂
s∈N Ts. Such decomposition spaces are called toroidal. As above

the notions of a link in S3 with a distinguished unknotted component L0

and a link in a solid torus are considered in this paper as interchangeable
via S3 \ νL0

∼= S1 ×D2.
We note that our results also apply if S3 is replaced by a submanifold

of S3 which contains T0. Isotopies of the defining links can change the actual
decomposition, although the homeomorphism type of the quotient S3/D
remains unaltered.

A good example to keep in mind, and indeed one of the motivating ex-
amples which this work aims to generalise, is when Li is either the Whitehead
link or the Borromean rings. Then in a solid torus we have, respectively,
either a Whitehead double of the unknot S1×{0} ⊂ S1×D2 or a Bing double
of this unknot. We say that a decomposition is pure if the same link is used
at every step of its defining sequence, i.e. Li is a fixed link L for all i. The
pure decompositions arising from the Borromean rings and the Whitehead
link are referred to as the Bing and Whitehead continua respectively.

The Bing continua are shrinkable [Bin52]; it turns out that this implies
that the double of the complement in S3 of the Alexander horned ball (this
complement has also been called the Alexander gored ball) is homeomorphic
to S3.

The Whitehead continuum Wh is not shrinkable, although interestingly
{Wh×{r} | r ∈ R} is shrinkable in S3 × R (see [AR65]).

A decomposition which is defined using a combination of these two links
is known as a mixed Bing–Whitehead decomposition. These decomposition



Shrinking of toroidal decomposition spaces 273

spaces describe the frontiers of Freedman–Quinn handles, which are con-
structed in the proof of the 4-dimensional disc embedding theorem in [FQ90].
For a concise discussion of the relationship between mixed Bing–Whitehead
decomposition spaces and convergent grope-disc towers see the introduction
to [AS89], where F. Ancel and M. Starbird give a precise answer to the
shrinking question for these spaces.

Now we turn to describing our results, which generalise those of Ancel
and Starbird to decompositions defined using arbitrary links. To every link L
in a solid torus we will associate, in Definition 2.9, a function DL : N0 → N0

called the disc replicating function of L. These functions provide a way to
decide whether a decomposition obtained from a sequence of such links is
shrinkable. Now we state our main theorem.

Theorem 3.1. A decomposition D of S3 obtained from a sequence of
links {Li}i∈N is shrinkable if and only if

lim
p→∞

(DLm+p ◦ · · · ◦DLm)(k) = 0

for all k,m ∈ N.

We note that in fact, due to [Arm66, Theorems 3 and 9], for the decom-
positions we consider the quotient S3/D is homeomorphic to S3 if and only
if D is shrinkable. For details see Remark 3.3.

The proof of Theorem 3.1 is given in Section 3. As mentioned above,
the main idea is to associate, to each link L in a solid torus of the defining
sequence, a functionDL : N0 → N0 which we call the disc replicating function
of L. To define DL we need the notion of a k-interlacing of a solid torus
(Definition 2.3); roughly speaking this is a collection of 2k meridional discs
labelled alternately A and B. Given a k-interlacing the defining property of
the function DL is that it gives the maximal integer DL(k) for which, after
any ambient isotopy of L inside the solid torus, there exists a component Lj
of L such that cl(νLj) has at least a DL(k)-interlacing arising from a subset
of its intersections with the A and B discs. Equivalently, these functions
can be defined by the property that with input k they give the minimal
nonnegative integer such that there exists an ambient isotopy of L so that
all components have at most a DL(k)-interlacing. Intersections with the A
and B discs are then used to control the size of decomposition elements,
and thus to show that the Bing shrinking criterion (Theorem 2.1) is either
satisfied or not, as appropriate.

The initial reason for thinking about this was to try to understand and
provide some context for the arguments of Bing [Bin52, Bin62] and Ancel and
Starbird [AS89] that describe when certain decompositions do and do not
shrink; see also R. Daverman [Dav07, Section 9]. These arguments were first
introduced to the authors in lectures of M. Freedman on the 4-dimensional
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disc embedding theorem for the semester on 4-manifolds and their combi-
natorial invariants hosted by the Max Planck Institute for Mathematics in
Bonn.

We reformulate and generalise results of Sher [She67, Theorem 4] and
S. Armentrout [Arm70, Theorem 1] on this topic, and as mentioned above
we generalise the formula of Ancel and Starbird [AS89] (also proved later by
D. Wright [Wri89]) that describes precisely which mixed Bing–Whitehead
decompositions shrink. We give new examples of decompositions for which
we can determine whether they shrink. As far as we are aware, our conditions
supersede all previously known results on the shrinking or nonshrinking of
these toroidal decompositions.

While upper bounds on DL can be found easily by repositioning the link,
in Section 4 we will show how to compute lower bounds for DL using Milnor
invariants. With these methods we can determine the function DL for every
(n,m)-link L. An (n,m)-link is formed from a meridian of a solid torus and
a chain of n unknots inside this solid torus, each of which links the previous
and the next with linking number 1, with the last also linking the first, such
that the whole chain has winding number m around the solid torus, and
there is no additional entangling of the links in the chain. Figure 1 shows a
(4, 3)-link. The (n,m)-links give a nice and large class of examples which we
will investigate thoroughly. Note that the Bing link is a (2, 1)-link and the
Whitehead link is a (1, 1)-link.

Fig. 1. A (4, 3)-link with the meridian of the solid torus omitted

Proposition 5.1. Let L be an (n,m)-link. Then the disc replicating func-
tion DL is given by

DL(k) = max{d2mk/ne − 1, 0}.
In particular the disc replicating function for the Bing link is DL(k) =

k − 1, while for the Whitehead link it is DL(k) = 2k − 1; these functions
appear in [AS89, Wri89].

From this and Theorem 3.1 we deduce the following. Let D be a decom-
position of S3 arising from a sequence of links L1, L2, L3, . . . where Li is an
(ni,mi)-link.
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Corollary 5.2. Define τi := ni/(2mi).

(1) If
∑∞

j=1

∏j
i=1 τi converges, then the decomposition D does not shrink.

(2) If
∑∞

j=1 n
−1
j

∏j
i=1 τi diverges, then D does shrink.

In particular we have:

(3) If supi∈N ni < ∞, then D shrinks if and only if
∑∞

j=1

∏j
i=1 τi di-

verges.
(4) If the sequence of links is periodic, that is, if there exists p ∈ N with

Li = Li+p for all i ∈ N, then D shrinks if and only if
∏p
i=1 τi ≥ 1.

More background on (n,m)-links and the proof of Proposition 5.1 and
Corollary 5.2 are given in Section 5. Furthermore we will use these criteria
to show how the aforementioned results of Ancel–Starbird, Sher and Armen-
trout follow as corollaries of Theorem 3.1 and Proposition 5.1.

We finish the introduction by noting a possible extension of our work.

Challenge. Extend our techniques to deal with decompositions which
have defining sequences given by nested handlebodies. See [Bin57] for an ex-
ample.

2. Background and definitions

2.1. Shrinking a decomposition. A decomposition of a compact met-
ric space X is a collection D = {∆i} of pairwise disjoint closed subsets
of X with

⋃
D = X. Following custom we abuse notation and refer to the

decomposition as the elements of D which are not singletons, with the under-
standing that once the nontrivial decomposition elements have been specified
the rest of the space is decomposed into singleton sets. We are interested in
the topology of the space X/D obtained by collapsing each ∆i to a point.
We say that a decomposition D of a compact manifold X is shrinkable if
the quotient map q : X → X/D can be approximated by homeomorphisms.
That is, there exists a sequence of homeomorphisms which converges to q
in the supremum norm. In particular this implies that X is homeomorphic
to X/D.

Note that we may have to appeal to the Urysohn metrisation theorem in
order to endow the quotient space with a metric. We assume that decompo-
sitions are such that the quotient is Hausdorff, in order to apply the Urysohn
metrisation theorem. This follows if the decomposition is upper semicontinu-
ous [Dav07, pp. 8–15], which will always hold for the toroidal decompositions
studied in this paper.

Approximating a map by homeomorphisms is possible if and only if the
Bing shrinking criterion holds, which in R. Edwards’ formulation [Edw80,
Section 9] is as follows.



276 D. Kasprowski and M. Powell

Theorem 2.1 (Bing shrinking criterion). A surjective map f : X → Y of
compact metric spaces can be approximated by homeomorphisms if and only
if for any ε > 0, there exists a homeomorphism hε : X → X such that the
following conditions are satisfied:

(1) the homeomorphism hε does not move points very far in the metric
of Y :

dY (f(x), f ◦ hε(x)) < ε for all x ∈ X;

(2) the inverse image sets become sufficiently small under hε:

diamX(hε(f
−1(y))) < ε for all y ∈ Y .

A detailed proof is given in [Dav07, Section 5]. We provide a brief heuris-
tic. If we can find a sequence h1/n which converges in the supremum norm
(see [Fer, pp. 5–7] for how to construct such a sequence) then we can see that
f can be approximated by homeomorphisms as follows. Let h∞ be the limit
of the sequence of functions h1/n in the supremum norm. Then f factors
through h∞, as in the diagram

X
f //

h∞   

Y

X
f ′

>>

Here f ′ is defined by f ′(x) := f(h−1∞ (x)). This makes sense because h∞ and f
have the same point inverses by property (2), i.e. h∞(z) = h∞(z′) if and only
if f(z) = f(z′). The map f ′ is a bijection. It is continuous, by the following
argument. For a closed subset C ⊆ Y we have (f ′)−1(C) = h∞(f−1(C)) and
we claim this is closed: f is continuous, so f−1(C) is closed and therefore
compact since X is compact. Then h∞ is continuous, so h∞(f−1(C)) is a
compact subset of a metric space and therefore closed as claimed. Thus f ′
is a continuous bijection between compact Hausdorff spaces and is therefore
a homeomorphism. By construction f ′ ◦ h1/n approximates f .

The beauty of the Bing shrinking criterion is that in order to see that a
map can be approximated by homeomorphisms, we do not need to see the
existence of homeomorphisms hε which converge; rather for different ε they
can be constructed independently.

2.2. Interlacing discs in a solid torus. The following two definitions
appear in Ancel–Starbird [AS89] and Wright [Wri89, Appendix A].

Definition 2.2 (Meridional discs). A meridian of a solid torus T is a
simple closed curve in ∂T which bounds a disc in T but not in ∂T . A merid-
ional disc of T is a locally flat disc ∆ ⊂ T such that ∂T ∩ ∆ = ∂∆ is a
meridian of T .
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Definition 2.3 (Interlacing discs). Let T be a solid torus. Two dis-
joint collections of pairwise disjoint meridional discs A =

⋃k
i=1 Ai and

B =
⋃k
j=1 Bj for T are called a k-interlacing collection of meridional discs

if each component of T \ (A ∪ B) has precisely one Ai and one Bj in its
closure. We make the convention that a 0-interlacing of meridional discs is
the empty set.

We say that two disjoint subsets A,B ⊂ T form a k-interlacing for T ,
for k ≥ 1, if there are subsets A′ ⊆ A and B′ ⊆ B which form a k-interlacing
collection of meridional discs for T , as in the previous paragraph, such that it
is impossible to find such subsets which form a (k+1)-interlacing collection
of meridional discs for T .

Definition 2.4 (Meridional k-interlacing). We call a k-interlacing a
meridional k-interlacing if all components of A and B are meridional discs
of T .

For a decomposition inside a torus T defined as the intersection of nested
tori as above we will use k-interlacings for T to measure the size of the nested
tori. We will show that the decomposition is shrinkable if and only if there
is an ambient isotopy of the nested tori such that for every interlacing there
exists a stage such that each torus of this stage meets at most one of the
discs of the interlacing. This motivates the next definition.

We will define a function DL : N0 → N0 called the disc replicating func-
tion of a link L. First we will define functions UL, DL which assign a number
to each k-interlacing. Then we will show that these functions only depend
on k and not on the specific interlacing. Furthermore we will show that
UL = DL for all interlacings.

Definition 2.5. Let A,B be a meridional k-interlacing of a torus T . For
a link L in T we define UL(A,B) to be the maximal integer k such that for
any link L′ which is ambient isotopic to L and any closed regular neighbour-
hood cl(νL′) which intersects A,B only in meridional discs there is at least
one connected component cl(νL′j) of cl(νL

′) such that the intersection with
A,B gives rise to at least a UL(A,B)-interlacing for the solid torus cl(νL′j).
Since cl(νL′) intersects A,B only in meridional discs, this will always be a
meridional UL(A,B)-interlacing. In particular, UL(∅) = 0.

Definition 2.6. Let A,B be a meridional k-interlacing of a torus T .
For a link L in T we define DL(A,B) to be the maximal integer k such that
for any link L′ which is ambient isotopic to L and any closed regular neigh-
bourhood cl(νL′) whose boundary intersects A,B transversely and only in
meridians, there is at least one connected component cl(νL′j) of cl(νL

′) such
that the intersection with A,B gives rise to at least a DL(A,B)-interlacing
for the solid torus cl(νL′j). In particular, DL(∅) = 0.
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Remark 2.7. The difference between Definitions 2.5 and 2.6 is that
for UL, only intersections in meridional discs of cl(νL′) are allowed, while for
DL intersections where the boundary ∂(cl(νL′)) intersects A,B in meridians
are permitted. In the latter case, for example, there might be an annulus in
(A ∪B) ∩ cl(νL′) such that both boundary curves are meridians of cl(νL′).

Now we show that the interlacing numbers defined above do not depend
on the interlacing A,B.

Lemma 2.8. For any two meridional k-interlacings (A,B) and (A′, B′),
and any link L, the numbers DL(A,B) and DL(A

′, B′) agree; moreover so
do the numbers UL(A,B) and UL(A′, B′).

Proof. We first note that for two collections of k meridional discs A and
A′ in T , by the Schönflies theorem, there exists an orientation preserving
homeomorphism h : T → T such that h(A) = A′.

Now let two meridional k-interlacings (A,B) and (A′, B′) and a link L
be given. Let L′ be a link ambient isotopic to L and let νL′ be a regular
neighbourhood of L′ such that the intersection of each component of cl(νL′)
with A,B gives rise to a (meridional) m-interlacing with m ≤ DL(A,B)
(respectivelym ≤ UL(A,B)). Such an ambient isotopy can always be found by
definition ofDL(A,B) (respectivelyUL(A,B)).We can push off enough copies
of parallel discs of the discs in A and B such that there exists an orientation
preserving homeomorphism h : T → T with h(A′) ⊆ A and h(B′) ⊆ B.
(There might be extra consecutiveA orB discs in a given k-interlacing, which
get deleted in order to form a k-interlacing collection of meridional discs.)

Let E be the union of A together with the discs pushed off A, and let F
be the union of B together with the discs pushed off B. Since we can push off
copies in a small neighbourhood, we can achieve that E,F is again a merid-
ional k-interlacing and that the intersection of each component of cl(νL′)
with E,F gives rise to a (meridional) m-interlacing with m ≤ DL(A,B)
(respectively m ≤ UL(A,B)). By [BZ85, Proposition 1.10], which says that
a homeomorphism of the ambient space carrying one link to another is the
same as an ambient isotopy between the links, the link h−1(L′) is ambi-
ent isotopic to L and the intersection of each component of h−1(cl(ν(L′)))
with A′, B′ gives rise to a (meridional) m-interlacing with m ≤ DL(A,B)
(respectively m ≤ UL(A,B)), since h(A′) ⊆ E and h(B′) ⊆ F . Therefore,
DL(A

′, B′) ≤ DL(A,B) (and UL(A′, B′) ≤ UL(A,B)). Since the situation is
symmetric in A,B and A′, B′, this proves the lemma.

Definition 2.9 (Disc replicating function). For a link L in a torus T , the
functions UL : N0 → N0 andDL : N0 → N0 are defined by UL(k) := UL(A,B)
and DL(k) := DL(A,B) where A,B is any meridional k-interlacing of T ,
UL(A,B) is from Definition 2.5 and DL(A,B) is from Definition 2.6. These
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functions are well defined by Lemma 2.8 and have the property DL(0) =
UL(0) = 0.

By Lemma 2.11 below, these two functions coincide. Thus we call DL the
disc replicating function of the link L.

In Lemma 2.11 we will make use of the following technical lemma of
Ancel and Starbird [AS89, p. 301], which we state here for the convenience
of the reader.

Lemma 2.10 (Ancel–Starbird technical lemma). Suppose P1, . . . , Pm is
a sequence of parallel planes in R3 such that if 1 ≤ i < j < k ≤ m, then Pj
separates Pi and Pk. Set P = P1∪ · · ·∪Pm. Suppose T is a solid torus in R3

such that ∂T is transverse to P , each component of ∂T ∩ P is a meridian
of T , and T ∩ Pi 6= ∅ for 1 ≤ i ≤ m. Then there is a sequence A1, . . . , A2m

of pairwise disjoint meridional discs of T in cyclic order on T such that
Ai ∪A2m+1−i ⊂ Pi for 1 ≤ i ≤ m.

In general, even though intersections of the planes Pi with ∂T are always
meridians, the intersections with T may be discs, annuli, or discs with holes.
Ancel and Starbird define a notion of the height of a component of Pi ∩ ∂T ,
which is the maximal integer h such that there is a subset of Pi ∩ ∂T which
comprises h concentric circles, whose outside circle is the given component of
Pi∩∂T . If the height is one for all components of P ∩T , then all intersections
are meridional discs and the reasoning is straightforward; it is given in the
proof of Lemma 4.7. Ancel and Starbird’s argument uses induction to lower
the number of components with height greater than one.

Lemma 2.11. The functions UL, DL : N0 → N0 coincide.

Proof. Since, in the definition of UL, only regular neighbourhoods which
intersect the interlacing in meridional discs are allowed, we have the in-
equality UL(k) ≥ DL(k) for all k ∈ N0. It is a priori possible that ambient
isotopies which allow disc-with-holes intersections could reduce the number
of the induced interlacing. The current proof shows that this is not the case.

Our aim is to show that UL(k) ≤ DL(k) for all k ∈ N0. To achieve this
we start with a k-interlacing of a solid torus T which intersects a regular
neighbourhood of the link components in such a way that the intersections
with the boundary ∂ cl(νLi) are in meridians for all i. We want to alter
the interlacing so that intersections with cl(νLi), for all i, are meridional
discs, without increasing the interlacing number. Then since the interlacing
number is independent of the interlacing, by Lemma 2.8, we will see that
UL(k) ≤ DL(k) for all k ∈ N0.

So let T be a solid torus, let Li be a component of a link L ⊂ T and let
a meridional k-interlacing A,B of T be given. For the rest of this proof we
denote T1 := cl(νLi).
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Claim. Either (A ∪ B) ∩ T1 = ∅ or there exists at least one meridional
disc ∆ in (A ∪B) ∩ T1.

To prove the Claim suppose that (A ∪ B) ∩ T1 6= ∅. Let G be a disc of
the interlacing which intersects T1. Look at an innermost circle in G of the
intersections of ∂T1 and G. This either bounds a disc inside T1 or outside T1,
since it is innermost. The circle of intersection is a meridian of T1, and so
if it bounds a disc in the complement of T1, then a meridian of the knot
Li would be null homotopic in the complement S3 \ νLi of Li. Thus the
innermost circle bounds a meridional disc in T1, as desired. This completes
the proof of the Claim.

Choose one meridional disc ∆ in (A ∪ B) ∩ T1, and let C ∈ {Ai, Bj} be
the disc of the k-interlacing which gives rise to it. Starting at the meridian
of ∆ on the boundary of T1 and travelling in the direction of the orientation
of Li, let E be the disc of the interlacing from which arises the next intersec-
tion of T1 with A ∪ B; since we only have intersections in meridians on the
boundary, there is a well defined next intersection. Also let F be the disc of
the interlacing from which arises the next intersection in a meridional disc.

Claim. Either E = C or E = F .
Suppose that E is neither equal to C nor to F . Then the discs C and F

give rise to two parallel planes in R3, thought of as R2 × R, the universal
cover of the interior of T . Since E intersects T1 in between C and F , it gives
rise to a parallel plane in R3 between the other two. Now cut off T1 at its
meridional discs of intersection with C and F and build a new torus as in
Figure 2. In the figure, the cylinder that is added is labelled Y.

C E FT

T1

Y

Fig. 2. Adding a cylinder Y to build a solid torus intersecting C, E and F (at least) twice
each

The additional part of this new torus is embedded in a standard way, and
chosen so as to have its intersections with C,E and F to be meridional discs.
This new torus only intersects E in one meridional disc, a contradiction to
Lemma 2.10. Thus we deduce that the Claim holds.

Now we change the interlacing of T in the following way. We cut off E at
its intersection with Li and replace it with a parallel copy of the boundary
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of T1 and a parallel copy of C ∩ T1 = ∆. See Figure 3 for an indication of
how to alter the interlacing. Here the new interlacing disc is labelled E′.

C

E

T

T1

E′

Fig. 3. Altering the interlacing disc E to E′, so that the intersection E′∩T1 is a meridional
disc

The new interlacing of T gives rise to an interlacing of T1 with only
one new meridional disc in T1 (and maybe fewer interlacings in T1 or other
components of νL, since E might intersect νL elsewhere). But since T1 had
a meridional disc coming from E at the same position, anyway this new
meridional disc only gives rise to an interlacing of T1 of the same number
as before. Also the move has not changed the number of the interlacing
of T : this is still k. Inductively, by repeating this move as many times as
required (which is finitely many times since discs are locally flat and both
the discs and the tori are compact), we can remove all intersections which
are not meridional discs and obtain an induced interlacing of T1 which has
at most the same interlacing number as the old induced interlacing of T1.
Therefore UL(k) ≤ DL(k). Since we already know that DL(k) ≤ UL(k), we
have equality.

As stated in Definition 2.9, from now on we denote both UL and DL

by DL.

3. Proof of the main theorem. We remind the reader our main the-
orem.

Theorem 3.1. A decomposition D of S3 obtained from a sequence of
links {Li}i∈N is shrinkable if and only if

lim
p→∞

(DLm+p ◦ · · · ◦DLm)(k) = 0

for all k,m ∈ N.
For the proof we need the following lemma.

Lemma 3.2. Suppose that there are nonnegative integers k,m such that
for some r and for any k-interlacing A∪B for (Tm−1)r, for any s ≥ m there
is a connected component (Ts)r′ of Ts which has nonempty intersection with
both of the collections of discs A and B. Then D is not shrinkable.
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It suffices to have the hypothesis hold for some r, but due to the symmetry
of the construction of our decompositions, if the hypothesis holds for one r,
then it holds for all r.

Lemma 3.2 follows the strategy employed by Bing [Bin62] and others
after him e.g. [She67], [Dav07], [AS89], [Wri89]. For the convenience of the
reader we provide a proof.

Proof of Lemma 3.2. We need to show that the Bing shrinking criterion
(Theorem 2.1) does not hold. Assume, for a contradiction, that it does. That
is, assume the existence of homeomorphisms hε with the required properties,
for all ε. Note that hε moves points outside of T0 by at most δ(ε), with
limε→0 δ(ε) = 0. Otherwise hε would move points too far in the quotient
space for the first condition of the Bing shrinking criterion to hold. Indeed,
there is an integer s, depending on ε and tending to infinity as ε→ 0, such
that hε must be arbitrary close to the identity outside Ts in order to satisfy
Theorem 2.1(1). We restrict our interest to ε small enough so that s ≥ m.
In particular, the image hε(Tm−1)r of (Tm−1)r will not shrink as ε goes to
zero but will be close to (Tm−1)r itself.

We then choose a k-interlacing of meridional discs A∪B in the solid torus
hε(Tm−1)r, after the putative homeomorphism hε has acted on S3. The discs
A and B must be chosen sufficiently far apart, so that dS3(A,B) > ε. For
sufficiently small ε, this is always possible; we only require a contradiction for
suitably small values of ε. We now have two reasons to restrict to small values
of ε. The separation of A and B will imply the existence of a decomposition
element which has large diameter, as we now explain.

Note that h−1ε (A ∪ B) is a k-interlacing of (Tm−1)r. By hypothesis, for
every s ≥ m there is a component (Ts)r which intersects both h−1ε (A) and
h−1ε (B). Therefore hε(Ts)r intersects both A and B. By passing to the infinite
intersection there must be a decomposition element which intersects both of
the subsets A and B in the k-interlacing. As the collections of discs A and B
are far apart (their distance apart is bounded below by some ε), that element
has diameter at least ε, which contradicts the assumptions on hε.

We have shown that for sufficiently small ε there does not exist a homeo-
morphism hε : S

3 → S3 which satisfies the conditions of the Bing shrinking
criterion (Theorem 2.1) with respect to f = q : S3 → S3/D, and thus that
D is not shrinkable.

Using this we are now able to prove Theorem 3.1.

Proof of Theorem 3.1. For the “only if” direction suppose there exist k,m
such that bs := (DLs ◦ · · · ◦DLm)(k) is positive for all s ≥ m. Let A,B be a
k-interlacing of (Tm−1)r.

For all s, we can perturb A and B keeping them away from any com-
ponent (Ts)r they did not intersect before and such that they intersect the
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boundary of all Ts transversely and only in meridians. We refer to [Bin62,
Theorem 3] and [AS89, proof of Lemma 3], where an innermost disc argument
is used to discount intersections of ∂Ts with A and B which are inessential
curves in ∂Ts and a small ambient isotopy is used to remove longitudinal
intersections. By [Bin62, Theorem 1] all intersections are either inessential,
a meridian or a longitude. In general these operations require moving a given
A and B; first remove inessential and longitudinal intersections of A and B
with the tori Tm, and then proceed inductively.

For the proof of nonshrinking we use the definition of the disc replicating
functions DLi via Definition 2.6. By the property of the DLi , at each stage
s ≥ m of the defining sequence there is always at least one solid torus
(Ts)r′ for which the intersections with A and B form a bs-interlacing. In the
inductive procedure here, at each stage of the application of the property of
disc replicating functions we forget any component of (A∪B)∩ (Ts)r′ which
is not a meridional disc.

Since bs is always positive, the assumptions of Lemma 3.2 are satisfied
(the assumptions of this lemma are also satisfied for the old interlacing, i.e.
the interlacing before perturbation, since our perturbations did not create
any new intersections). Then by Lemma 3.2, D does not shrink.

Now assume that

lim
p→∞

(DLp ◦ · · · ◦DLm)(k) = 0

for all m, k ∈ N. We need to show that the Bing shrinking criterion (Theo-
rem 2.1) holds. Let ε > 0. As in Bing’s original argument [Bin52], by going
sufficiently deep into the defining sequence, we only need to measure diam-
eter along the S1 direction of the solid torus T0. Also go sufficiently deep in
the defining sequence, to a collection of tori Ts, so that as long as we apply
a homeomorphism of S3 which is the identity outside of Ts, we will always
have Theorem 2.1(1) satisfied.

Look at the collection of tori Ts ⊆ T0. For k large enough we can find
meridional k-interlacings Ar, Br for each component (Ts)r such that each
component of (Ts)r \ (Ar ∪Br) has diameter less than ε/2, measured longi-
tudinally in T0.

For the proof of shrinking we use the definition of the disc replicating
functions DLi via Definition 2.5. For a link Li, we may also regard DLi(k) as
giving the minimal integer such that there exists a link L′ ambient isotopic
to Li and a regular neighbourhood cl(νL′) which intersects a given merid-
ional k-interlacing only in meridional discs, and for which all components
of cl(νL′) have at most a DLi(k)-interlacing arising from their intersections
with Ar, Br. Such an ambient isotopy of Li determines a homeomorphism
of S3 \ νLi0 which fixes the boundary, and maps a given regular neighbour-
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hood νLi \Li0 to νL′ \L′0. Each connected component of Ts is identified with
S3 \ νLs0.

Apply, to each connected component of Ts, the homeomorphism which
the defining property of the disc replicating function DLs gives to us. This
homeomorphism arranges the components of Ts+1 so that each of them has a
meridional q-interlacing for some q ≤ DLs+1(k). Then apply the homeomor-
phism given to us by the defining property of the disc replicating function
DLs+2 to the connected components of Ts+2, and so on. That is, apply the
homeomorphism arising from DLs+p to the connected components of Ts+p.

Since the sequence bp := (DLp+s ◦ · · · ◦DLs+1)(k) contains only nonnega-
tive integers, note that converging to 0 is equivalent to ending with infinitely
many zeros. Thus after finitely many steps we will have a homeomorphism of
S3 such that every component of Ts′ , for some s′, has a 0-interlacing from its
intersections with A∪B. Thus each component of Ts′ intersects at most one
of A and B, and therefore has diameter less than ε. Passing to the infinite
intersection, the decomposition elements have therefore also been arranged
to all have diameter less than ε, so (2) of the Bing shrinking criterion of
Theorem 2.1 is also satisfied.

Remark 3.3. If D shrinks, then S3/D is homeomorphic to S3. As re-
marked in the Introduction, the converse also holds. This was pointed out
by Sher [She67, preamble to Theorem 4]. Suppose D does not shrink. The
decompositions which we consider are monotone (that is, the decomposition
elements are compact continua), and the image of the nondegenerate ele-
ments of D under the quotient map S3 → S3/D is a compact 0-dimensional
set, since it is a subset of some Cantor set. Therefore by [Arm66, Theo-
rems 3 and 9] the quotient S3/D is not homeomorphic to S3. We use [Arm66,
Theorem 9] to show the validity of the hypothesis of [Arm66, Theorem 3]
that the decomposition is point-like, given that it is monotone, the image
of the nondegenerate elements of D is a compact 0-dimensional set and
the decomposition is definable by 3-cells with handles. A decomposition is
point-like if the complement of each decomposition element is homeomorphic
to S3 \ {point}. Armentrout’s Theorem 3 says that a point-like decomposi-
tion satisfying the assumptions above whose quotient space is homeomorphic
to S3 would satisfy the Bing shrinking criterion.

4. Computable lower bounds via Milnor invariants. To show that
a decomposition is shrinkable or nonshrinkable, it often suffices to have a
sufficiently strong upper or lower bound, respectively, for the disc replicating
functions DL. For convenience we make the following definition.

Definition 4.1 (Upper and lower disc replicating functions). We say
that a function fL : N0 → N0 is a lower disc replicating function for a link L
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if fL(k) ≤ DL(k) for all k. Similarly we say that a function gL : N0 → N0 is
an upper disc replicating function for a link L if gL(k) ≥ DL(k) for all k.

To construct lower disc replicating functions we will use Milnor invariants.

4.1. Background on Milnor invariants. J. Milnor defined his µ-in-
variants in [Mil57]. These (residue classes of) integers µI(L) are ambient
isotopy invariants which are associated to an n-component oriented link L
and a multi-index I. For a given I, µI(L) measures the nontriviality of the
longitudes of L in a certain lower central series quotient of the link group.
The depth in the lower central series corresponds to the length of I. See e.g.
[Coc90] for a comprehensive study of Milnor invariants.

For the convenience of the reader we now briefly recall the definition
of Milnor invariants. The ensuing exposition follows [Mil57, pp. 289–292].
The fundamental group π1(S

3 \ νL) of the link complement is normally
generated by choices of meridians m1, . . . ,mn of the link components. Let
x1, . . . , xn denote generators of the free group F on n generators and define
ρ : F → π1(S

3\νL) by sending xi to mi. Let λi be the zero framed longitude
of the component Li and let wi be a word in the xi such that ρ(wi) = λi.

The beginning of the construction of Milnor invariants is the following
theorem. For a group G we denote its qth lower central subgroup by Gq;
recall that G1 := G and Gq+1 := [Gq, G] for q ≥ 1.

Theorem 4.2 ([Mil57, Theorem 4]). The nilpotent quotients of the fun-
damental group of the exterior of an n-component oriented link L ⊂ S3 are
such that

π1(S
3 \ νL)/π1(S3 \ νL)q ∼= 〈x1, . . . , xn | [x1, w1], . . . , [xn, wn], Fq〉.

This means that if the longitudes of the link lie in Fq−1, i.e. wi ∈ Fq−1
for all i, then the link group has the same qth lower central series quotient
as the free group. Nonvanishing Milnor invariants associated to I of length q
measure the failure of the zero framed longitudes to lie in Fq.

The Magnus expansion of wi is obtained by substituting

xj = 1 + κj and x−1j =

∞∑
`=0

(−1)`κ`j .

Multiplying out, wi determines a formal power series in noncommuting vari-
ables κ1, . . . , κn. Let µj1...jsi(L) denote the coefficient of κj1 . . . κjs , so that

wi = 1 +
∑

µj1...jsi(L)κj1 . . . κjs .

Equivalently, in terms of the Fox differential calculus,

µj1...jsi(L) = ϕ

(
∂swi

∂xj1 · · · ∂xjs

)
,

where ϕ : Z[F ]→ Z is the augmentation homomorphism.
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Let ∆i1...ir(L) denote the greatest common divisor of all integers of the
form µj1...jp(L), where 2 ≤ p < r, and where j1 . . . jp ranges over all multi-
indices obtained by deleting one or more of the indices from i1 . . . ir and
cyclically permuting those which remain.

Let µi1...ir(L) denote the residue class of µi1...ir(L) modulo ∆i1...ir(L).

Theorem 4.3 ([Mil57, Theorem 5]). For r ≤ q, the residue classes
µi1...ir(L) ∈ Z∆i1...ir

(L) are ambient isotopy invariants of L.

4.2. Computable lower bounds. In this section we define a lower
disc replicating function fL : N0 → N0 (as in Definition 4.1), associated to
an oriented link L with L0 unknotted, which bounds the link’s disc fertility
from below. More precisely, recall that fL should satisfy the property that if
a component of a solid torus Ts has a k-interlacing, and the next stage of the
defining sequence is determined by L, then there is at least one component
Lj of L\L0 for which the intersections of the k-interlacing discs with cl(νLj)
give rise to an h-interlacing for the solid torus cl(νLj), for some h ≥ fL(k).

Let L = L0 t L1 t · · · t Lm be an m-component oriented link in S3

where L0 is unknotted. From this, we produce another link J by some choice
of the following sequence of operations:

(1) Take the d-fold branched cover of S3 with branching set L0, and let
J̃ be the pre-image of L, where J̃0 is the pre-image of L0. This is
again a link in S3.

(2) Take a sublink Ĵ of J̃ which includes J̃0 as Ĵ0.
(3) Blow down (perform ±1 Dehn surgery) along ` unknotted compo-

nents of Ĵ \ Ĵ0, each of which lies in an open 3-ball in S3 \ νĴ0. Call
the resulting link J , with Ĵ0 becoming J0.

For k = 0 define fJL (k) = 0. If J is such that no multi-index I exists
which contains at least one zero and for which the corresponding Milnor
invariant is nonzero, then we define

fJL (k) := 0

for all k ∈ N.
Now suppose that a link J can be produced from L with µI(J) 6= 0

for some multi-index I which contains at least one 0. If there is such a
multi-index with |I| = 2, i.e. I = (0j) or I = (j0) for some j, then we let

fJL (k) := µI(J)k

for all k ∈ N. Let n+1 be the number of components of J=J0tJ1t· · ·tJn.
If |I| > 2, then we put

fJL (k) :=

⌈
2dk

n+ `

⌉
− 1
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for all k ∈ N. Finally we define the function

fL(k) := max{fJL (k) | J is reached from L by the operations (1)–(3)}.

Remark 4.4. In practice, it is usually not necessary to find the function
fL precisely, only to find a J which gives a sufficiently large lower bound.
Even if we did find fL precisely, it still may not equal DL. Nevertheless,
this will not overly concern us since if a sequence of integers defined using
functions fL never reaches zero, then neither does a sequence defined using
the functions DL.

Having said that, we actually will be able to determine DL precisely for
(n,m)-links in Section 5.

Now we show that the functions fL defined above are indeed lower disc
replicating functions.

Theorem 4.5 (Lower disc replicating functions). Suppose T = S3 \ νL0

has a meridional k-interlacing A,B. Then for any link L′ which is ambient
isotopic to L and such that cl(νL′) intersects A,B only in meridional discs,
there is a component L′j of L

′ such that cl(νL′j) has an h-interlacing arising
from its intersections with the k-interlacing for T , for some h ≥ fL(k).

Remark 4.6. Theorem 4.5 implies fL(k) ≤ UL(A,B) = UL(k) = DL(k),
by Definition 2.5, Lemma 2.8 and Lemma 2.11 respectively.

Proof of Theorem 4.5. First observe that it suffices to prove the result
for a given choice of link J obtained from L by the operations (1)–(3) above.
Since the Milnor invariants which define fL are ambient isotopy invariants,
and since an ambient isotopy of L induces ambient isotopies of Ĵ and J , the
conclusion also holds for any L′ ambient isotopic to L.

For the case that there is no multi-index I for which µI(J) 6= 0, so that
fJL (k) = 0 for all k, the theorem is immediate.

Let T̃ be the d-fold cover of the solid torus T with covering map π : T̃ → T .
Then a k-interlacing for T lifts to a kd-interlacing for T̃ . We will refer to the
discs of this kd-interlacing as Ã = Ã1 t · · · t Ãkd and B̃ = B̃1 t · · · t B̃kd.
In this proof we forget about any extra discs and focus on a subset of
the interlacing which is an interlacing collection of meridional discs (recall
Definition 2.3).

In the case that |I| = 2, so that we can assume I = (0j) for some j,
the definition of linking number implies that every meridional disc in the
collections Ã and B̃ must intersect Jj at least µ0j(J) times all with the
same intersection number. Each intersection gives rise to an intersection
with cl(νJj) which by hypothesis must be a meridional disc. Ignoring any
other intersections, this translates to a µI(J)kd-interlacing, which at least
descends to a µI(J)k-interlacing of cl(π(νJj)). The function fJL (k) = µI(J)k,
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when the Milnor invariant has length 2, will offer the sharpest possible bound
when d = 1.

We now turn to the case that |I| > 2. After performing the operations
(1) and (2) we have a link Ĵ . Not including Ĵ0, we have n+ ` components.

Define a function [ · ]1/2 : R → 1
2Z by [x]1/2 := 1

2d2xe. The effect is to
round up to the nearest half-integer.

Our aim is to show that some component of Ĵ \ Ĵ0 intersects at least
[kd/(n+ `)]1/2 pairs of consecutive discs in the kd-interlacing of T̃ . We have
the following lemma, in which perhaps unsurprisingly we interpret half a
pair of discs to mean a single disc. We do not specify whether the extra disc
is an Ã or a B̃ disc. We also regard a negative number of pairs of discs as
zero discs.

Let T be a solid torus and let T∞ ≈ R ×D2 be the infinite cyclic cover
of T . Let S ⊂ T be an embedded solid torus and let S̃ be its pre-image
in T∞.

Lemma 4.7. Suppose that S̃ is such that ∂S̃ has nonempty intersections
with each disc in r ∈ 1

2Z consecutive pairs of meridional discs P for T∞,
which are a subset of the pre-images of an m-interlacing collection of merid-
ional discs for T , for some m. Suppose that each component of S̃ ∩ P is a
meridional disc of S̃. Moreover suppose that the winding number of S in T is
zero. Then the intersections of S with the m-interlacing collection of merid-
ional discs for T give rise to an n-interlacing of S for some n ≥ 2r − 1.

Proof. Since S has winding number zero, the lift S̃ is again a solid torus
in T∞. Forgetting the A and B labels we denote the r pairs of meridional
discs by P1 ∪ · · · ∪ P2r. The interior int(T∞) is homeomorphic to R3 in
such a way that the discs P are sent to disjoint parallel planes {pi} × R2,
p1 < · · · < p2r, which we also denote by Pi. By hypothesis every intersection
of S̃ with a plane Pi is a meridional disc of S̃ and therefore can contribute
to an interlacing of S.

The proof is now the same as the (straightforward) height one case of
the technical lemma of Ancel and Starbird [AS89, p. 301], stated as our
Lemma 2.10. For the convenience of the reader we give it here. Choose a
simple closed curve γ starting at a point q on ∂S̃ with first coordinate in R3

less than p1, which intersects each component of Pi ∩ ∂S̃ transversely in
a single point. Let u be a point on γ with first coordinate in R3 greater
than p2r. For i = 1, . . . , 2r, let Ci be the meridional disc in S̃ ∩Pi which one
meets first while traversing γ from q to u, and let C4r+1−i be the meridional
disc in S̃ ∩ Pi which one meets first while traversing γ from u to q. The
meridional discs C1, . . . , C4r for S̃, with their appropriate A and B labels
reinstated, give rise to a (2r− 1)-interlacing of S̃ and therefore their images
in T give rise to a (2r − 1)-interlacing for S.
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Continuing the proof of Theorem 4.5, we make the following Claim.

Claim. Some component of Ĵ ′ := Ĵ \ Ĵ0 intersects at least [kd/(n+`)]1/2
pairs of consecutive discs in the kd-interlacing of T̃ .

Assuming that the Claim holds, the lift of that component to T∞ also inter-
sects at least [kd/(n+ `)]1/2 pairs of discs. Then Lemma 4.7 implies that this
component has at least a (2[kd/(n+ `)]1/2−1 = d2kd/(n+ `)e−1 = fJL (k))-
interlacing, which is what we want to show. Lifting the intersections to
T∞ we see that the hypotheses of Lemma 4.7 apply. Then observe that
intersections of cl(νĴ ′) with Ã and B̃ descend to similar intersections of
cl(π(νĴ ′)) with A and B; once we know that the requisite interlacing
arises in T∞ we can deduce its existence in T̃ and in T , since there is
a tower of covering spaces T∞ → T̃ → T . Thus it remains to prove the
Claim.

Since each blown down component Ĵ ′p is contained in a 3-ball in T̃ and is
unknotted, it also bounds a disc in that 3-ball. This 3-ball can be shrunk so
that it misses all discs C of Ã∪ B̃ for which Ĵ ′p∩C = ∅. Blowing down along
the component Ĵ ′p can be realised by twisting along a disc whose boundary
is Ĵ ′p. Thus if a meridional disc of T̃ misses Ĵ ′, then there is an ambient
isotopy of J \ J0 such that after the ambient isotopy we are sure that J \ J0
misses that meridional disc. However, this is not possible, as the nonvanishing
of a Milnor invariant µI(J) with at least one zero in the multi-index implies
that the longitude λ0 of J0 is nontrivial in π1(S

3 \ νJ)/π1(S3 \ νJ)q for
q = |I|. Therefore each meridional disc of Ã ∪ B̃ must intersect at least one
component of Ĵ ′.

So, we have an (n+ `)-component link Ĵ ′ in T̃ . Suppose that each com-
ponent hits fewer than [kd/(n+ `)]1/2 pairs of meridional discs of T̃ , that is,
at most [kd/(n+ `)]1/2−1/2. We will show that this implies that fewer than
kd pairs of discs in total can be intersected by the link Ĵ ′. Then the contra-
positive of this implication, coupled with our knowledge from the previous
paragraph that every disc is intersected, implies the Claim.

To see that fewer than kd pairs of discs are intersected, we note that[
kd

n+ `

]
1/2

− 1

2
<

kd

n+ `
+

1

2
− 1

2
=

kd

n+ `
,

and hence

(n+ `)

([
kd

n+ `

]
1/2

− 1

2

)
< (n+ `)

kd

n+ `
= kd.

The left hand side of the last inequality is the maximum number of pairs of
meridional discs in the interlacing Ã ∪ B̃ which Ĵ ′ can intersect, given the
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assumption that each component intersects fewer than [kd/(n+ `)]1/2 pairs
of meridional discs. This completes the proof of Theorem 4.5.

Remark 4.8. We point out that we could conceivably use some other
method than blow downs and Milnor invariants to see that there exists a
component of Ĵ which intersects each meridional disc. However this method
lends itself nicely to geometric computation, as we will see in the next section.
Moreover using Milnor invariants means that Theorem 3.1 can be applied to
vast classes of examples, whereas previous results in the literature focused
on certain special links.

The examples in the next section constitute a large class of links, but we
note that the class of links with nonvanishing Milnor invariants is of course
much larger, and the lower disc replicating functions defined in this section
can be applied to decompositions constructed using these as well.

5. Examples: (n,m)-links. Let n ≥ 1 and m ≥ 1. Suppose we have
a chain of n unknots in T0, each of which links the next in the chain with
linking number ±1, such that the last knot of the chain (in the world outside
topology it would be called a ‘link’ of the chain) also links the first with
linking number ±1, and such that the whole chain travels around T0 with
winding number m. There should be no additional entangling of the links
in the chain. If n = 1, then the knot clasps itself after winding m times
around T0. Taking the union of the resulting link with a meridian of T0, we
obtain an (n,m)-link. See Figure 1 for a picture of a (4, 3)-link.

Note that the single defining link of the Bing decomposition of [Bin52] is
a (2, 1)-link, while Bing’s example of a decomposition which does not shrink
(see [Bin62], [Dav07, Chapter 9, Example 6], [Fre82, p. 416]) has a (2, 2)-link
as its defining link.

Let L be an (n,m)-link. Them-fold covering space of T0 containsm copies
of a chain of length n with winding number 1 in T̃0, i.e. there is an (n, 1)-link
Ĵ as a sublink of J̃ ; see Figure 4.

Fig. 4. A (4, 1)-link as a sublink of the 3-fold covering link J̃ of the (4, 3)-link from Figure 1

Assume n ≥ 2. Perform n − 2 blow downs on this link, to obtain the
2-component link of the Bing decomposition inside the solid torus; see Fig-
ure 5. The link J is the 3-component link obtained by including a meridian
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of the solid torus. Note that J is the Borromean rings (or the Borromean
rings with a clasp changed, depending on the signs of the original linking
numbers and of the blow downs) and so has µ012(J) = ±1. Even if a clasp is
changed so that two of the components have linking number 2, the length 3
Milnor invariant is still well defined modulo 2.

Fig. 5. The link J obtained by blowing down two of the components of the link of Figure 4.
With the meridian of the solid torus, this is the Borromean rings with a clasp changed.

Proposition 5.1. For an (n,m)-link L the disc replicating functions DL

is given by
DL(k) = max{d2mk/ne − 1, 0}.

Proof. For n > 1, to see that DL(k) ≥ max{d2mk/ne−1, 0} construct J
by taking an m-fold cover, and as described above blow down n− 2 compo-
nents. This leaves 2 components inside the solid torus, and the meridian of
the solid torus as J0. By Theorem 4.5 we have fJL (k) = max{d2mk/ne−1, 0}.
If n = 1, then a sublink J of the m-fold cover is the Whitehead link. The
Whitehead link has µ0011(J) = ±1, so we obtain the lower disc replicating
function fJL (k) = 2mk − 1. This proves the lower bound.

A

A

A

A

A

A A

A

B

B

B

B
B

B B

B

Fig. 6. A (3, 2)-link with an 8-interlacing. In this case DL(8) = 10

As shown in the example in Figure 6 it is not too hard to isotope the
link so that every component inherits at most a (d2mk/ne − 1)-interlacing.
Since we can arrange that every intersection of the regular neighbourhood
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of the link with the meridional k-interlacing is again a meridional disc, this
is an upper bound for DL(k).

Combining Theorem 3.1 and Proposition 5.1 we get the following criteria
for shrinking or nonshrinking of a decomposition arising from a sequence of
(ni,mi)-links. The answer is particulary nice when the sequence of links is
periodic, and still quite nice when supi∈N ni <∞.

Corollary 5.2. Let Li be an (ni,mi)-link. Define τi := ni/(2mi).

(1) If
∑∞

j=1

∏j
i=1 τi converges, then the decomposition D does not shrink.

(2) If
∑∞

j=1 n
−1
j

∏j
i=1 τi diverges, then D does shrink.

In particular we have:

(3) If supi∈N ni < ∞, then D shrinks if and only if
∑∞

j=1

∏j
i=1 τi di-

verges.
(4) If the sequence of links is periodic, that is, if there exists p ∈ N with

Li = Li+p for all i ∈ N, then D shrinks if and only if
∏p
i=1 τi ≥ 1.

Proof. (1) Assume that
∑∞

j=1

∏j
i=1 τi converges. Let gi : Q → Q be de-

fined by gi(k) = τ−1i k− 1 and choose k0 >
∑∞

j=1

∏j
i=1 τi. Such an integer k0

exists since we assume that the right hand side converges. Then for all r ≥ 1
we compute

gr ◦ · · · ◦ g1(k0) =
( r∏
i=1

τ−1i

)
k0 −

r∑
j=1

r∏
i=j+1

τ−1i

=
( r∏
i=1

τ−1i

)(
k0 −

r∑
j=1

j∏
i=1

τi

)
> 0.

By Proposition 5.1, for all k > 0, and in particular for k = k0, we have

DLi(k) = dτ−1i ke − 1 ≥ gi(k),

so by Theorem 3.1 the above inequality implies that D does not shrink.
(2) For any fixed k0,m ∈ N, let r be such that

r+m∑
j=m

1

nj

j∏
i=1

τi >
(m−1∏
i=1

τi

)
k0.

The right hand side is now a fixed integer. Since we are assuming that the
series

∑∞
j=1 n

−1
j

∏j
i=1 τi diverges, so does the sequence

∑∞
j=m n

−1
j

∏j
i=1 τi.

Therefore there exists a partial sum larger than any given integer.
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Now define gi(k) := τ−1i k − 1/ni. Then for all r ≥ 0 we compute

gr+m ◦ · · · ◦ gm(k0) =
(r+m∏
i=m

τ−1i

)
k0 −

r+m∑
j=m

(
1

nj

r+m∏
i=j+1

τ−1i

)

=
(r+m∏
i=1

τ−1i

)((m−1∏
i=1

τ−1i

)
k0 −

r+m∑
j=m

(
1

nj

j∏
i=1

τi

))
< 0.

By Proposition 5.1, for all k>0 we haveDLi(k) = dτ−1i ke−1≤max{gi(k), 0},
so by Theorem 3.1 the above inequality implies that D does shrink.

(3) Let B := supj∈N nj . Then
∞∑
j=1

1

nj

j∏
i=1

τi >
1

B

∞∑
j=1

j∏
i=1

τi

and therefore
∑∞

j=1 n
−1
j

∏j
i=1 τi diverges if

∑∞
j=1

∏j
i=1 τi diverges, so D

shrinks by (2). The “only if” direction is immediate.
(4) In this case supi∈N ni <∞ and so (3) applies. Since τi is also periodic

with period p, we have
∞∑
j=1

j∏
i=1

τi =
( p∑
j=1

j∏
i=1

τi

) ∞∑
j=0

( p∏
i=1

τi

)j
and

∑∞
j=0(

∏p
i=1 τi)

j diverges if and only if
∏p
i=1 τi ≥ 1.

5.1. The results of Ancel and Starbird. Let w0 < w1 < w2 < · · ·
be a sequence of positive integers. Let Lwi be the Whitehead link and let
Lj be the Borromean rings for j /∈ {wi | i ∈ N}. Then the associated
links in the solid torus are the Bing and Whitehead doubles of the unknot
respectively. Let D be the associated decomposition. By Proposition 5.1 a
disc replicating function for the Borromean rings is D1(k) = k−1 and a disc
replicating function for the Whitehead link is D2(k) = 2k − 1. These agree
with the formulae in Lemmas 4 and 5 of [AS89].

Let c1 := w1 − 1 and ci := wi − wi−1 − 1 for i > 1. These denote the
number of Bing/Borromean links between successive Whitehead links.

The following theorem was proved by F. Ancel and M. Starbird [AS89],
and also later by D. Wright [Wri89].

Theorem 5.3 (Ancel, Starbird). The decomposition D shrinks if and
only if

∑∞
i=1 ci/2

i diverges.

Proof. Let τwi = 1/2 and let τ` = 1 for ` /∈ {wi | i ∈ N}, as is consistent
with the definition of the τj in Corollary 5.2. By Corollary 5.2(3) the decom-
position D shrinks if and only if

∑∞
j=1

∏j
i=1 τi = 2

∑∞
j=1 cj/2

j diverges.
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5.2. The results of Sher and Armentrout. Sher’s theorem [She67,
Theorem 4] was generalised by Armentrout [Arm70, Theorem 1] as follows.
Let Li be an (ni,mi)-link for i ∈ N. As always, let D denote the associated
decomposition space of S3.

Theorem 5.4 (Armentrout, Sher). Suppose that ni < 2mi for all i. Then
D does not shrink.

Proof. By Proposition 5.1 the disc replicating function DLi of Li is given
by

DLi(k) = d2mik/nie − 1.

Since ni < 2mi, it follows that d2mik/nie > k, and therefore DLi(k) ≥ k.
By Theorem 3.1 this implies that D does not shrink.

5.3. More examples of (n,m)-links. In this subsection we give two
examples of mixed decomposition of (n,m)-links for which neither criterion
of Corollary 5.2 applies. The first does not shrink, the second does. This
shows that parts (1) and (2) of Corollary 5.2 are not sharp. In these examples
both ni and mi tend to infinity as i tends to infinity.

Example 5.5. For our first example, let Li be a (2i, i + 1)-link. Then
τi = i/(i+ 1) and we have
∞∑
j=1

j∏
i=1

τi =
∞∑
j=1

1

j + 1
=∞ and

∞∑
j=1

1

j + 1

j∏
i=1

τi =
∞∑
j=1

1

(j + 1)2
<∞.

Thus none of the conditions from Corollary 5.2 is satisfied. However since
τi < 1 for all i, we know from the theorem of Sher and Armentrout (Theo-
rem 5.4) that D does not shrink.

Example 5.6. For our second example, let L2s be a (2s2, 1)-link and let
L2s+1 be a (2, (s + 1)2)-link. Then τ2s = s2, τ2s+1 = 1/(s + 1)2, n2s = 2s2

and n2s+1 = 1. Therefore,
∞∑
j=1

j∏
i=1

τi =

∞∑
j=1

(
1 +

1

j2

)
=∞ and

∞∑
j=1

1

nj

j∏
i=1

τi =

∞∑
j=1

3

2j2
<∞.

So once again none of the conditions from Corollary 5.2 is satisfied. This time,
by Proposition 5.1 we haveD2s(k) = dk/s2e−1 andD2s+1(k) = (s+1)2k−1.
Therefore,

D2s+2(D2s+1(k)) = dk − 1/(s+ 1)2e − 1 = k − 1

and so by Theorem 3.1 we see that D shrinks.
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