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Abstract. We consider the role of the Kervaire–Milnor invariant in the classification of closed,
connected, spin 4-manifolds, typically denoted by M , up to stabilisation by connected sums with

copies of S2 × S2. This stable classification is detected by a spin bordism group over the classifying

space Bπ of the fundamental group. Part of the computation of this bordism group via an Atiyah–
Hirzebruch spectral sequence is determined by a collection of codimension two Arf invariants. We

show that these Arf invariants can be computed by the Kervaire–Milnor invariant evaluated on
certain elements of π2(M). In particular this yields a new stable classification of spin 4-manifolds

with 2-dimensional fundamental groups, namely those for which Bπ admits a finite 2-dimensional

CW-complex model.

1. Introduction

Two smooth, closed, connected, oriented 4-manifolds M and N are called stably diffeomorphic if
there exist integers m,n ∈ N0 such that

M#m(S2 × S2) ∼= N#n(S2 × S2),

where ∼= denotes diffeomorphism. We require that the diffeomorphism respects orientations, and we
will always assume without comment that manifolds are smooth and connected. Note that we allow
m ̸= n, but n − m = (χ(M) − χ(N))/2, so by only considering 4-manifolds with the same Euler
characteristic one can enforce m = n.

The problem of giving algebraic invariants that determine whether two 4-manifolds are stably
diffeomorphic is the stable classification problem. For example, the isometry class of the equivariant
intersection form on the second homotopy group, up to stabilisation by hyperbolic forms, is such
an invariant. Two closed, simply-connected 4-manifolds are stably diffeomorphic if and only if their
intersection forms have the same parity and equal signatures.

Given an immersed 2-sphere S in M with vanishing self-intersection number, the Kervaire–Milnor
invariant arises as a secondary obstruction to homotoping S to an embedding. Our aim in this article
is to explain its role in the stable classification problem for spin 4-manifolds. There is an additional
condition, namely that S is RP2-characteristic, under which the Kervaire–Milnor invariant τ(S) ∈ Z/2
is well-defined, depending only on the homotopy class [S] ∈ π2(M). We defer the precise definitions
to Section 1.11.1.

For every closed, oriented 4-manifold M with π = π1(M) and 2-connected map f : M → Bπ, the
radical Rad(λM ) ⊆ π2(M) of the intersection form λM , which by definition is the kernel of the adjoint
λadM : π2(M) → π2(M)∗, is isomorphic to H2(π;Zπ). In more detail, the map PD ◦ f∗ : H2(π;Zπ) →
H2(M ;Zπ)

∼=−→ π2(M) is injective and has image kerλadM ⊆ π2(M), by [HKT09HKT09, Corollary 3.2]. Also,
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write red2 : H
2(π;Zπ) → H2(π;Z/2) for the map induced by modulo two augmentation, which we

also denote by red2 : Zπ → Z/2. Define

Sq := (Sq2 ◦ red2) : H2(π;Zπ) → H4(π;Z/2).

Note that Sq2 : H2(π;Z/2) → H4(π;Z/2) is the map x 7→ x ∪ x.
By restricting to the radical, [S] ∈ Rad(λM ), we guarantee vanishing self-intersection number. For

spin M we will show that restricting further to PD(f∗(ker Sq)) ⊆ Rad(λM ) ensures that S is RP2-
characteristic, and thus that τ gives rise to a stable diffeomorphism invariant of spin 4-manifolds, as
follows. We will restrict to spin M for the remainder of the article.

Theorem 1.1. Let M be a closed, spin 4-manifold with a 2-connected map f : M → Bπ.

(i) For every element x ∈ ker Sq ⊆ H2(π;Zπ), its image PD(f∗(x)) ∈ π2(M) has trivial self-
intersection number and is RP2-characteristic, so the Kervaire–Milnor invariant

τ(PD(f∗(x))) ∈ Z/2
is well-defined.

(ii) The induced map τM,f : ker Sq → Z/2 factors through Z/2⊗Zπ ker Sq.
(iii) If a closed, spin 4-manifold N is stably diffeomorphic to M , then there exists a 2-connected map

g : N → Bπ, so in particular π1(N) ∼= π, such that τM,f = τN,g as maps ker Sq → Z/2.

In Theorem 1.51.5 below, we explain how τM,f appears in the general stable classification pro-
gramme, in the case that f factors through a 2-dimensional complex. Theorem 1.51.5 requires some
more background in order to state, so for now we present its application in the case of geometrically
2-dimensional fundamental groups. A group π is (geometrically) d-dimensional if d is the least integer
for which the classifying space Bπ admits a finite d-dimensional CW-complex model. If d < ∞ then
each d-dimensional group is torsion-free. Note that for a 2-dimensional group H4(π;Z/2) = 0 so
ker Sq = H2(π;Zπ).

Theorem 1.2. Let π be a 2-dimensional group, let M and N be closed, spin 4-manifolds, and let
f : M → Bπ be a 2-connected map.

(i) The map τM,f is a homomorphism, i.e. an element of HomZπ(H
2(π;Zπ),Z/2).

(ii) The 4-manifolds M and N are stably diffeomorphic if and only if
(a) the signatures of M and N are equal, and
(b) There exists a 2-connected map g : N → Bπ, so in particular π1(N) ∼= π, such that the

Kervaire–Milnor invariants τM,f and τN,g coincide in HomZπ(H
2(π;Zπ);Z/2).

Hambleton, Kreck, and the third author [HKT09HKT09] previously classified 4-manifolds with 2-dimensional
fundamental groups, up to s-cobordism, in terms of the equivariant intersection form. They also as-
sumed that the assembly mapH4(Bπ;L⟨1⟩) → L4(Zπ) is injective, where L⟨1⟩ denotes the 1-connected
cover of the L-theory spectrum of the integers [Ran92Ran92]. This in particular holds for a torsion-free group
π whenever the Farrell–Jones conjecture holds for π by [Ham23Ham23, Lemma 3.3]. While Theorem 1.21.2 only
concerns the stable classification, it has the advantage that to apply it one only needs to compute a rel-
atively small number of Kervaire–Milnor invariants, compared with computing the entire intersection
form.

By Theorem 1.21.2, the map τM,f is a homomorphism if π is 2-dimensional. In Theorem 1.51.5, we will
see that this is also the case whenever f factors through a 2-dimensional complex. But in general the
following question remains open.

Question 1.3. Is the map τM,f : ker Sq → Z/2 always a homomorphism?
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Example 1.4. Let Σ be a closed, oriented surface with positive genus and suppose π = π1(M) ∼=
π1(Σ). Then the radical of λM is isomorphic to H2(π;Zπ) ∼= H2(Σ;Zπ) ∼= H0(Σ;Zπ) ∼= Z. In
this case our classification is particularly efficient since it requires the computation of just a single
Kervaire–Milnor invariant τ(S), where [S] generates Z/2 ⊗Z Rad(λM ) ∼= Z/2. In particular, τM,f is
independent of the choice of f .

Among closed, smooth 4-manifolds with π1(M) ∼= π1(Σ) and signature zero, there are two stable
diffeomorphism classes. The class with trivial τM is represented by M = Σ × S2 where the radical
Rad(λM ) = π2(M) ∼= Z is generated by an embedded sphere {pt} × S2. The second stable diffeo-
morphism class is represented by a 4-manifold M ′ constructed from Σ×T 2 by performing surgery on
framed circles representing a dual pair of generators of π1(T

2) ∼= Z
2, where the framing of the circles

is “twisted”. The generator of Rad(λM ′) ∼= Z cannot be represented by an embedding, even stably.

As mentioned above, Theorem 1.21.2 follows from our main technical theorem, Theorem 1.51.5, which
we will explain below. First we review the definition of the Kervaire–Milnor invariant and the refor-
mulation of the stable diffeomorphism question into bordism theory by Kreck [Kre99Kre99, Theorem C].

1.1. Review of the Kervaire–Milnor invariant. The Kervaire–Milnor invariant appeared previ-
ously in [FQ90FQ90], [Sto94Sto94], and [ST01ST01], following a closely related invariant defined in [FK78FK78, Mat78Mat78].
A version of this invariant was used by Freedman and Quinn to detect the Kirby–Siebenmann ob-
struction to smoothing the topological tangent bundle of a simply-connected topological 4-manifold
with odd intersection form, in particular detecting the difference between CP2 and its star partner
∗CP2. This is somewhat orthogonal to the appearance of this invariant in the stable classification of
spin 4-manifolds, since for spin topological 4-manifolds, it follows from Rochlin’s theorem that the
Kirby–Siebenmann invariant is computed as the signature divided by 8, and then modulo two.

Let M be a smooth, spin 4-manifold with fundamental group π and equivariant intersection form

λM : π2(M)× π2(M) → Zπ

(x, y) 7→ ⟨PD−1(y), x⟩.

To recall the definition of the Kervaire–Milnor invariant, suppose that x ∈ π2(M) ∼= H2(M ;Zπ) satis-
fies λM (x, x) = 0. Then we can represent x by a generic immersion S : S2 ↬M whose double points
can be paired up by generically immersed Whitney discs {Wi}; see e.g. [PR21PR21, Proposition 11.10],
or [KPRT24KPRT24]. By boundary twisting and pushing down [FQ90FQ90, Sections 1.3 and 2.5], the Whitney
discs can be chosen to be disjointly embedded, framed, and to intersect S transversely. Then the
Kervaire–Milnor invariant of S is

τ(S; {Wi}) :=
∑
i

|W̊i ⋔ S| mod 2.

Suppose that x is RP2-characteristic, meaning that for every map R : RP2 →M ,

λ2(red2(x), [R]) = 0,

where red2 : π2(M) ∼= H2(M ;Zπ) → H2(M ;Z/2) is again the map induced by the modulo two
augmentation, λ2 : H2(M ;Z/2)×H2(M ;Z/2) → Z/2 is the mod 2 intersection pairing, and [R] denotes
the image of the generator [RP2] ∈ H2(RP2;Z/2) under R∗. Then τ(S; {Wi}) is well-defined [ST01ST01]
on the homotopy class x ∈ π2(M), independent of the choices of S and the {Wi}, and so we write

τ(x) := τ(S; {Wi}) ∈ Z/2.
In Section 22 we will give more details on the Kervaire–Milnor invariant, as well as relating it with an
equivalent definition that is used in the proof of our theorems.
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1.2. Review of the stable classification via spin bordism. Kreck [Kre99Kre99, Theorem C] showed
that two closed, spin 4-manifolds with fundamental group π are stably diffeomorphic if and only if
there are choices of spin structures and identifications of the fundamental groups with π, giving rise

to equal elements in the bordism group ΩSpin
4 (Bπ). To understand this group of bordism classes

of pairs (M, c), where M is a closed 4-manifold with spin structure and c : M → Bπ classifies the

universal cover, we consider the Atiyah–Hirzebruch spectral sequence computing ΩSpin
4 (Bπ). Since we

will use this spectral sequence for spaces other than Bπ, we recall it in the necessary generality, for
an arbitrary topological space X. It takes the form:

E2
p,q = Hp(X; ΩSpin

q ) ⇒ ΩSpin
4 (X).

The Atiyah–Hirzebruch spectral sequence gives rise to a filtration whose iterated graded quotients are

Z ∼= ΩSpin
4 ⊆︸︷︷︸

E∞
2,2

F2,2 ⊆︸︷︷︸
E∞

3,1

F3,1 ⊆︸︷︷︸
E∞

4,0

ΩSpin
4 (X).

The first isomorphism is determined by the signature divided by 16. The signature extends to the

entire group ΩSpin
4 (X) and so we reduce our study to Ω̃Spin

4 (X), the kernel of the signature map. The
spectral sequence then reduces to a shorter filtration

E∞
2,2 ⊆︸︷︷︸

E∞
3,1

F ⊆︸︷︷︸
E∞

4,0

Ω̃Spin
4 (X),

where the subgroup F consists of bordism classes represented by signature zero 4-manifolds M with
spin structure such that c : M → X(3) lands in the 3-skeleton of X. Similarly, the smallest filtration
term E∞

2,2 is represented by elements (M, c) with c : M → X(2).

Now we restrict to X = Bπ. Since the E2
p,q term of the spectral sequence is Hp(π; Ω

Spin
q ), the

E∞
p,q-terms in this case are as follows:

E2,2 := E∞
2,2 = H2(π;Z/2)/ im(d2, d3);

E3,1 := E∞
3,1 = H3(π;Z/2)/ im(d2);

E4,0 := E∞
4,0 = ker(d2, d3) ⊆ H4(π;Z).

Moreover, by [Tei92Tei92, Theorem 3.1.3] the d2 differentials are given by the dual homomorphisms
Sq2 : Hi+2(π;Z/2) → Hi(π;Z/2) to the Steenrod squares Sq2 : Hi(π;Z/2) → Hi+2(π;Z/2), in the
case i = 3 precomposed with the homomorphism induced by reduction modulo 2, red2 : Hi+2(π;Z) →
Hi+2(π;Z/2). Following [Tei92Tei92], we obtain the primary invariant pri(M) = c∗[M ] ∈ E4,0, the sec-
ondary invariant sec(M) ∈ E3,1 and the tertiary invariant ter(M) ∈ E2,2.

1.3. Relating the tertiary and Kervaire–Milnor invariants. We studied the primary invariant
in [KPT22KPT22], and we studied the secondary and tertiary invariants in [KPT20KPT20], building on [KLPT17KLPT17].

In [KPT22KPT22] and [KPT20KPT20], we gave criteria which can decide whether (M, c) ∈ E2,2 ⊆ Ω̃Spin
4 (Bπ),

that is whether (M, c) is bordant to (M ′, c′) such that c′ : M ′ → Bπ factors through the 2-skeleton
Bπ(2) ⊆ Bπ. Our main theorem, stated next, says that assuming there is such a bordism, one can
compute the tertiary invariant ter(M ′) using the Kervaire–Milnor invariant.

One can compute ter(M ′) via a collection of codimension two Arf invariants. The difficulty with
this in practice is that one need to first find a homotopy of our 2-connected map to the 2-skeleton
of Bπ, take precise inverse images of regular points, and compute with spin structures. Since the
Kervaire–Milnor invariant is well-defined on homotopy classes, and does not depend on the choice of
spin structure, it represents a computational improvement.
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Theorem 1.5. Let M be a closed, smooth, spin 4-manifold with fundamental group π. Suppose that
there is a map f : M → K to a 2-complex K that is an isomorphism on fundamental groups. Let
i : K → Bπ be a 2-connected map.

(i) For each φ ∈ ker(Sq2 : H2(π;Z/2) → H4(π;Z/2)), there exists a lift φ̂ ∈ H2(K;Zπ) of i∗(φ) ∈
H2(K;Z/2).

(ii) The element PD(f∗(φ̂)) ∈ H2(M ;Zπ) ∼= π2(M) is RP2-characteristic and has trivial self-
intersection number, so that the Kervaire–Milnor invariant τ(PD(f∗(φ̂))) ∈ Z/2 is well-defined.

(iii) The map

τ̂M,f : ker Sq2 → Z/2

φ 7→ τM,f (φ̂) = τ(PD(f∗(φ̂)))

is well-defined (i.e. is independent of the choice of φ̂) and is a homomorphism.
(iv) Under the map

Hom(ker Sq2,Z/2)
∼=−→ H2(π;Z/2)/ im Sq2 → H2(π;Z/2)/ im(d2, d3),

where the first isomorphism is the inverse of the evaluation map, τ̂M,f is sent to ter(M). Here
d2 = Sq2 : H4(π;Z/2) → H2(π;Z/2) and d3 : H5(π;Z) → H2(π;Z/2)/ im(d2) are the differen-
tials in the Atiyah–Hirzebruch spectral sequence as in Section 1.21.2. In particular, the image of
τ̂M,f under the displayed map is independent of the choices of f and K.

Proof of Theorem 1.21.2 assuming Theorem 1.51.5. For π a 2-dimensional group, takeK = Bπ and f : M →
Bπ as in Theorem 1.21.2. Since H4(π;Z/2) = 0, we have that Sq2 = 0, and thus τ̂M,f is a homomor-
phism H2(π;Z/2) → Z/2 by Theorem 1.51.5 (iiiiii). For x ∈ H2(π;Zπ), we have τM,f (x) = τ̂M,f ([x]),
where [x] ∈ H2(π;Z/2) is the image of x under mod 2 augmentation. Hence τM,f : H

2(π;Zπ) → Z/2
is composition of two homomorphisms, so is a homomorphism. This shows Theorem 1.21.2 (ii).

Since E3,1 = E4,0 = 0,M andN are stably diffeomorphic if and only if their signatures are equal and
ter(M) = ter(N) ∈ H2(π;Z/2) by [Kre99Kre99, Theorem C]. Again Bπ is 2-dimensional, d2 = Sq2 = 0 and
d3 = 0, and hence the displayed map in Theorem 1.51.5 (iviv) is an isomorphism Hom(H2(π;Z/2),Z/2) →
H2(π;Z/2) that sends τ̂M,f to ter(M), and similarly for N . Thus ter(M) = ter(N) if and only if
τ̂M,f = τ̂N,g. Since by definition, τ̂M,f ([x]) = τM,f (x) and H2(π;Zπ) → H2(π;Z/2) is surjective, it
follows that τM,f = τN,g if and only if τ̂M,f = τ̂N,g. This completes the proof of Theorem 1.21.2. □

Organisation of the paper. In Section 22 we provide more details on the Kervaire–Milnor invariant
of immersed spheres, and give an alternative equivalent description in terms of π1-trivial immersed
surfaces. In Section 33 we explain how the Arf invariant arises in the Atiyah–Hirzebruch spectral
sequence computation of spin bordism. In Section 44 we show Theorem 1.51.5 by comparing the Kervaire–
Milnor invariant with the Arf invariant.
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2. The Kervaire–Milnor invariant

LetM be a smooth, closed, oriented, spin 4-manifold. In this section, a surface in M is an abstract
surface Σ together with a generic immersion F : Σ → M , meaning the map is an immersion, and
all intersections and self-intersections are transverse double points. In particular there are no triple
points. Moreover the boundary of Σ, if nonempty, is assumed to be embedded inM . We will typically
denote the data (Σ, F ) just by F for brevity.

Let S be a generically immersed sphere in M with λM ([S], [S]) = 0. Generalising Freedman–
Kirby [FK78FK78, p. 93], Guillou–Marin [GM80GM80], Matsumoto [Mat78Mat78], and Freedman–Quinn [FQ90FQ90, Defi-
nition 10.8], work of Schneiderman and the third-named author [ST01ST01] defined an invariant τ̃(S) with
values in a quotient of Z[π×π]. Which quotients of Z[π×π] one can take in order to get an invariant
of the homotopy class of Σ depends on the intersection numbers of Σ with other immersed surfaces
in M .

Assuming that S is RP2-characteristic, the image of τ̃(S) under the augmentation and reduction
modulo two map Z[π × π] → Z/2 is a well-defined invariant of the homotopy class of Σ. Following
the nomenclature of Freedman–Quinn, we call this image the Kervaire–Milnor invariant τ(S) ∈ Z/2
of [S] ∈ π2(M).

We will define τ(S) carefully in Section 2.12.1. Then in Section 2.22.2 we will extend the definition to
π1-trivial generically immersed closed, oriented surfaces in M .

2.1. The τ invariant for generically immersed spheres. As before, let M be a smooth, closed,
oriented, spin 4-manifold, and fix an identification π1(M) ∼= π.

Definition 2.1 (Self-intersection number [Wal99Wal99, Chapter 5], [FQ90FQ90, Section 1.7]). Let x ∈ π2(M).
Since M is spin, we can represent x by a generically immersed sphere S′ : S2 → M whose normal
bundle has even Euler number. Add cusp homotopies (see e.g. [Kir89Kir89, Chapter XII, p. 72] for the
local model) in a small open set to make the Euler number of the normal bundle zero, and call the
resulting sphere S. It can be checked in the local model that a cusp homotopy changes the Euler
number of the normal bundle by ±2.

Now count the self intersections of S with sign and group elements. The attribution of signs uses
the orientation of M . The group element is the image in π1(M) of a double point loop associated to
the self-intersection point, with some choice of orientation of the double point loop. This count gives
rise to an element

µ(x) ∈ Zπ/{g ∼ g−1 | g ∈ π}.
This self-intersection number is valued in a quotient abelian group of the Zπ-module Zπ. The inde-
terminacy arises because there is no canonical way to decide whether to associate g or g−1 to a given
double point of Σ. The number µ(x) is an invariant of the homotopy class of x.

Remark 2.2. The normalisation of µ(x) at 1 ∈ π, obtained by choosing the regular homotopy class

whose normal bundle has trivial Euler number, implies that λM (x, x) = µ(x) + µ(x) ∈ Zπ, where

(−) : Zπ → Zπ is determined by g 7→ g−1 and in order to see that the right hand side is well-defined
in Zπ we use that γ 7→ γ + γ factors through Zπ/{g ∼ g−1}. This normalisation works if the Euler

number e(νS) is even for every S, or equivalently if w2(M̃) = 0, i.e. the universal cover of M is spin.
On the other hand, using cusp homotopies it is always possible to change S so that the self-

intersection number of S at 1 is trivial, even if the universal cover of M is not spin. This gives an
element µ′(x) ∈ Zπ/{g ∼ g−1} which again only depends on the homotopy class of x. Using this
convention, µ′(x) is an obstruction to representing x by an embedded sphere. In the setting of this
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paper, our 4-manifolds are spin and we usually assume that λM (x, x) = 0. In that case, the two
conventions agree and µ(x) = µ′(x) = 0.

The following lemma is rather useful, since that it tells us that it is enough to consider the equi-
variant intersection pairing in order to find spheres with vanishing self-intersection number.

Lemma 2.3. For a closed, oriented, spin 4-manifold M , if λM (x, x) = 0 for x ∈ π2(M), then
µ(x) = 0.

Proof. Using a representative as in Definition 2.12.1, we can assume that 0 = λM (x, x) = µ(x) + µ(x).

Suppose that
∑

g ngg ∈ Zπ is a lift of µ(x). Then µ(x) + µ(x) = 0 implies that ng + ng−1 = 0 for

every g ∈ π. If g = g−1 then we immediately see ng = 0. For the remaining group elements, in the
value group of µ we have g ∼ g−1, so ngg + ng−1g−1 = (ng + ng−1)g = 0 · g = 0. Sum over a set of
representatives for the subsets {g, g−1} with g ̸= g−1, to obtain µ(x) = 0. □

Definition 2.4. Let λ2 : H2(M ;Z/2)×H2(M ;Z/2) → Z/2 be the Z/2-valued intersection pairing.

(1) An element α ∈ π2(M) is called S2-characteristic if red2(λM (α, β)) = 0 ∈ Z/2 for all β ∈
π2(M). Let SC ⊆ π2(M) denote the subset of S2-characteristic elements α with µ(α) = 0.

(2) An element α ∈ π2(M) is called RP2-characteristic if λ2(red2(α), [R])) = 0 ∈ Z/2 for every
map R : RP2 →M . Let RC ⊆ π2(M) denote the subset of RP2-characteristic elements α with
µ(α) = 0.

Lemma 2.5. An RP2-characteristic sphere α ∈ π2(M) is S2-characteristic. Moreover if π1(M) has
no elements of order two, then α is S2-characteristic if and only if it is RP2-characteristic.

Proof. A generic immersion f : S2 ↬ M determines a map RP2 → RP2/RP1 = S2 f−→ M , which can
be perturbed to a generic immersion of RP2 into M with the same intersection behaviour with α as
the original S2. Thus RP2-characteristic implies S2-characteristic.

On the other hand, if no element of π1(M) has order 2, then for every generic immersion R of RP2,
the induced map π1(RP2) → π1(M) is the zero map. Therefore R is homotopic to a map that factors

as RP2 → RP2/RP1 = S2 f−→ M , and intersections with f(S2) agree with intersections with R. It
follows that S2-characteristic implies RP2-characteristic. □

Let S : S2 ↬M be a generically immersed 2-sphere with vanishing self-intersection number µ(S) =
0. Then the self-intersection points of S can be paired up so that each pair consists of two points
having oppositely signed but equal group elements associated to their double point loops. Therefore,
one can choose a Whitney discWi for each pair of self-intersections, and arrange that all the boundary
arcs are disjoint. The normal bundle to the disc Wi has a unique framing, and the Whitney framing
of the normal bundle of Wi restricted to ∂Wi differs from the restriction of the disc framing by an
integer ni ∈ Z. (The Whitney framing is determined by a section of the normal bundle νWi |∂Wi that
lies in DS(TS2)∩ νWi along one boundary arc of ∂Wi and lies in νS2 ∩ νWi along the other boundary
arc.)

Definition 2.6. If S is RP2-characteristic, then

τ(S) :=
∑
i

|W̊i ⋔ S|+ ni mod 2.

Lemma 2.7. The expression τ(S) is independent of the choice of pairings of double points, sheet
choices and Whitney arcs, and Whitney discs. Moreover, τ(S) only depends on the regular homotopy
class of the generic immersion.
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Proof. The lemma essentially follows from [ST01ST01, Theorem 1]. A key observation here is due to
Stong [Sto94Sto94]. We make a couple of remarks on how to translate the version in [ST01ST01] to the current
version. First note that in the formulation of [ST01ST01], as mentioned above the intersections were dec-
orated with a pair of fundamental group elements, to give an invariant in a quotient of Z[π × π] by
certain relations. Since we consider the augmentation followed by the reduction modulo two, all but
the last relation given in [ST01ST01, Theorem 1] are vacuous. In addition their last relation is irrelevant be-
cause we consider RP2-characteristic elements. Secondly, the formulation of Schneidermann–Teichner
requires that Whitney discs be framed, whereas we do not, and include the framing coefficient as part
of the definition. However by boundary twisting [FQ90FQ90, Section 1.3], one can alter ni to be zero at

the cost of introducing |ni| intersection points in W̊i ⋔ S, and so the two ways of computing τ(S)
agree. □

For every element of π2(M), we fix a regular homotopy class within the homotopy class by the
requirement that the Euler number of the normal bundle be zero. That fixing the Euler number
determines a regular homotopy class of immersions is a consequence of Smale–Hirsch immersion theory;
for details specific to surfaces in 4-manifolds, see for example [KPRT24KPRT24, Theorem 2.32 (3)]. Thus τ
becomes well-defined on RC ⊆ π2(M). So we have defined a map

τ : RC → Z/2.

Remark 2.8. If S is not S2-characteristic then τ(S) is not well-defined, since adding a sphere that
intersects S in an odd number of points to one of the Whitney discs would change the sum in the
definition of τ by one.

If S is S2-characteristic but not RP2-characteristic, then τ(S) is also not well-defined, as observed
by Stong [Sto94Sto94]. In this case, a change in choice of Whitney arcs, can also change τ(S).

2.2. The τ invariant for π1-trivial generically immersed surfaces. In this subsection we in-
troduce the following extension of the τ invariant, which is defined on RP2-characteristic, π1-trivial,
generically immersed surfaces instead of on RP2-characteristic generically immersed spheres. We will
not need the full version of this invariant, only the embedded version. But we anticipate that the full
version might be useful in the future, so we include it here, as it requires little extra work.

As before let M be a smooth, closed, oriented, spin 4-manifold together with an identification
π1(M) ∼= π. We call a generically immersed, closed, oriented surface F : Σ ↬ M a π1-trivial surface
if F∗ : π1(Σ) → π1(M) is the trivial map.

Definition 2.9. A π1-trivial generically immersed surface F : Σ ↬M is said to be RP2-characteristic
if it intersects every generically immersed RP2 in general position in an even number of points i.e.
if the element of π2(M) determined by F via the Hurewicz isomorphism H2(M ;Zπ) ∼= π2(M) is
RP2-characteristic.

A π1-trivial RP2-characteristic generically immersed surface F has a self-intersection number µ(F ) ∈
Zπ/{g ∼ g−1 | g ∈ π} defined as follows. Change F by cusp homotopies such that its normal bundle
is trivial; this is possible since F is S2-characteristic by Lemma 2.52.5. Now count self-intersection points
of the generically immersed surface with group elements and sign. We use π1-triviality to see that the
associated group elements do not depend on the choice of double point loop on F used to compute it.

Let F : Σ ↬ M be a generically immersed π1-trivial surface with µ(F ) = 0, and let α be an
embedded circle in Σ such that the restriction of F to α is an embedding. The circle F (α) bounds a
disc C in M , since F is π1-trivial. The normal direction of α in Σ, pushed forward into M , gives a
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section of the normal bundle of C at the boundary F (α). Therefore, the relative Euler number e(C)
of the normal bundle of C is a well-defined integer. We define

ϖ(α) := |C̊ ⋔ F |+ e(C) mod 2,

where |C̊ ⋔ F | is the number of transverse intersections between the interior of C and F (Σ).

Lemma 2.10. If F is S2-characteristic, then the count ϖ(α) does not depend on the choice of C.

Proof. Let C and C ′ be two choices of discs with boundary F (α), and letϖC(α) andϖC′(α) temporar-
ily denote the count made using C and C ′ respectively. Perform boundary twists [FQ90FQ90, Section 1.3]
in order to arrange that C and C ′ are framed with respect to their boundaries, i.e. e(C) = e(C ′) = 0.
Boundary twists do not change the counts ϖC(α) and ϖC′(α), since a boundary twist changes the
relative Euler number of the disc by one and produces a single new intersection between the disc being
twisted and F . Now rotate C ′ near F (α) so that the union of C and C ′ is a generically immersed
2-sphere. Since F is S2-characteristic, we have

0 = λ2([F ], [C ∪α C
′]) = ϖC(α) +ϖC′(α) ∈ Z/2

as desired. □

Consider a hyperbolic basis of H1(Σ;Z) represented by embedded circles a1, . . . , an, b1, . . . , bn that
are disjoint from each other except that ai intersects bi transversely in a single point. Suppose that
the restriction of F to each of the ai and the bj is an embedding.

Since µ(F ) = 0, all double points of F can be paired up by generically immersed Whitney discs
W1, . . . ,Wm ↪→ M whose boundary arcs on F (Σ) are disjoint from each other, the F (ai), and the
F (bi). Let nj again denote the framing coefficient of the Whitney discs discussed in Section 2.12.1. Then
define:

τ(F ) :=

n∑
i=1

ϖ(ai)ϖ(bi) +

m∑
j=1

|W̊j ⋔ F |+ nj mod 2.

Remark 2.11. Note that in the case that Σ has genus zero, this reduces to the τ invariant of the
previous subsection since the first sum vanishes. Also note that in the case of an embedded surface,
only the first summand appears, and again the definition simplifies. The restriction to the case that F
is an embedding is similar to the version of τ from [FK78FK78]. In this case it is the Arf invariant of the
quadratic form given by ϖ.

Next we will show that τ(F ) is independent of the choice of basis {ai, bi}, as well as the choice of
Whitney discs Wj .

Lemma 2.12. If F is RP2-characteristic, then the expression τ(F ) ∈ Z/2 is independent of the
choices of ai, bi, C and Wj made in its definition. Moreover, τ(F ) only depends on the regular
homotopy class of the generic immersion.

Proof. We already showed in Lemma 2.102.10 that τ(F ) is independent of the choices of the discs C.
Choose a path in M from each component of F (Σ) to the base point of M . Since these paths are

1-dimensional we can choose them so that the interiors of the paths do not intersect F . Since F is

π1-trivial, it lifts to a generically immersed surface in M̃ , and hence defines an element of H2(M̃ ;Z) ∼=
π2(M). The strategy is to relate τ(F ) to τ(S) for S ∈ π2(M), and use that τ(S) is well-defined
by [ST01ST01].

Choose generic null-homotopies Ci : D
2 → M for F (ai) and C ′

i : D
2 → M for F (bi). As in the

proof of Lemma 2.102.10, perform boundary twists to arrange e(Ci) = e(C ′
i) = 0. Again, this does not
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change ϖ(α). We can turn F into a generically immersed 2-sphere S by performing surgeries along
all the F (ai), and gluing in two parallel copies of each of the Ci in place of a neighbourhood νF (ai)
of F (ai). We make the following observations.

(i) Each intersection C̊i ⋔ F yields a pair of cancelling self-intersections of S paired by a Whitney
disc constructed from (a parallel copy of) C ′

i union a band. A schematic is shown in Figure 11.

C

C ′

Figure 1. A schematic of a genus one surface F in M with a cap C ′ attached to
the longitude, two parallel copies of a cap C attached to the meridian, each of which
intersect F in a single point. A band is shown that, together with the cap C ′, forms
a Whitney disc pairing the two self-intersection points of the sphere obtained from
surgery on F using C.

(ii) Each self-intersection of Ci yields two pairs of cancelling self-intersections of S, each with gener-
ically immersed Whitney disc a parallel copy of C ′

i, union a band. A schematic is shown in
Figure 22.

The boundary arcs of the new Whitney discs are disjoint from the boundary arcs of the old Whitney
discs. Thus modulo two we see that

τ(S) =

n∑
i=1

(
|C̊i ⋔ F | · |C̊ ′

i ⋔ F |+ 2|C̊i ⋔ C̊i| · |C̊ ′
i ⋔ F |

)
+

m∑
j=1

|W̊j ⋔ F |+ nj

=

n∑
i=1

ϖ(ai)ϖ(bi) +

m∑
j=1

|W̊j ⋔ F |+ nj = τ(F ).

The first summand of the first summand corresponds to (ii) and the second summand corresponds
to (iiii).

Note that S and F determine the same element of π2(M), with the right choice of basing paths,

since S and F determine the same element of H2(M̃ ;Z), which in turn holds because the difference
[S]− [F ] (viewed as singular chains instead of homology classes) bounds the trace of the surgery along
the F (ai). It follows that S is RP2-characteristic. We know that the number τ(S) only depends on the
homotopy class of S by [ST01ST01]. But the homotopy class of S is determined by the regular homotopy
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C

C ′

Figure 2. A schematic of a genus one surface F with a cap C ′ attached to the
longitude and two parallel copies of a cap C attached to the meridian. The cap C
has a single self-intersection points, which gives rise to four self-intersection points of
the sphere resulting from surgery on F using C. For one pair of these four points,
a band is shown, that together with the cap C ′, forms a Whitney disc pairing these
two self-intersection points.

class of the generic immersion F and does not depend on the choices of ai, bi, Ci, C
′
i,Wj . Hence the

fact that τ(S) is well-defined implies that τ(F ) is too. □

3. The Arf invariant in the stable classification

We will prove Theorem 1.51.5 by comparing the Kervaire–Milnor invariant to a codimension two Arf

invariant that arises in the Atiyah–Hirzebruch spectral sequence for ΩSpin
4 (Bπ). Let us explain how

this Arf invariant appears.
Let M be a closed, smooth, oriented, spin 4-manifold, where the spin structure will be fixed from

now on. Let K be a 2-complex with fundamental group π and let i : K → Bπ be the 2-connected
map. Let f : M → K be a map that is an isomorphism on fundamental groups.

Denote the barycentres of the 2-cells {e2i }i∈I of K by {b2i }i∈I . Denote the regular preimage of the

barycentre b2i ∈ K by Nf
i ⊆ M . We can consider [Nf

i ] ∈ ΩSpin
2 since the normal bundle of Nf

i in M

is trivialised as a pullback of the normal bundle of b2i in e2i , and hence Nf
i inherits a spin structure

from M . The next lemma is well-known; see [KLPT17KLPT17, Lemma 2.5] for a proof.

Lemma 3.1. The homomorphism ΩSpin
4 (K) → H2(K; ΩSpin

2 ) from the Atiyah–Hirzebruch spectral
sequence coincides with composition of the map

ΩSpin
4 (K) → Hcell

2 (K; ΩSpin
2 )

[f : M → K] 7→
[ ∑
i∈I

[Nf
i ] · e2i

]
,

and the canonical isomorphism Hcell
2 (K; ΩSpin

2 ) ∼= H2(K; ΩSpin
2 ). Moreover this maps to ter(M) under

H2(K; ΩSpin
2 ) ∼= H2(K;Z/2) → H2(π;Z/2) → H2(π;Z/2)/ im(d2, d3).
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Remark 3.2. The homomorphism in the statement of the lemma ΩSpin
4 (K) → H2(K; ΩSpin

2 ) arises

as follows. The abutment of the Atiyah–Hirzebruch spectral sequence ΩSpin
4 (K) = F4,0 maps to its

quotient by the first filtration step F0,4 = F1,3 that differs from F4,0. This term is indeed F1,3,
since the homology of K vanishes in degrees greater than 2, thus E2

p,q = E∞
p,q = 0 for all p > 2.

Moreover, because K is a 2-complex no differentials have image in Ek
2,2, for any k, so E∞

2,2 ⊆ E2
2,2.

The composition

ΩSpin
4 (K) = F4,0 → F4,0/F1,3

∼=−→ E∞
2,2 → E2

2,2 = H2(K; ΩSpin
2 ).

gives the desired map.

We will need a slight variation of Lemma 3.13.1. For φ ∈ H2(K;Z/2), represent φ by a map K →
S2 ⊆ K(Z/2, 2) and let F f

φ ⊆ M be a regular preimage of a point s ∈ S2 under φ ◦ f : M → S2. As

before, a framing of the normal bundle of s in S2 induces a framing of the normal bundle of F f
φ in M ,

and since M is spin, we obtain a spin structure on F f
φ . Thus we can again consider [F f

φ ] in ΩSpin
2 .

Lemma 3.3. The composition

ΩSpin
4 (K) → H2(K;Z/2)

x 7→⟨−,x⟩−−−−−−→ HomZ/2(H
2(K;Z/2),Z/2)

maps [f : M → K] to
(
φ 7→ [F f

φ ] ∈ ΩSpin
2

∼= Z/2
)
.

Proof. By a homotopy of f we can assume that the b2i are regular points. The first map sends

ΩSpin
4 (K) → H2(K;Z/2)

[f : M → K] 7→
∑
i∈I

[Nf
i ] · e

2
i

with Nf
i := f−1(b2i ) as in Lemma 3.13.1. Let p ∈ S2 be a basepoint and let s ∈ S2 be antipodal to p.

As above, given φ ∈ H2(K;Z/2), we represent φ by a map K → S2 ⊆ K(Z/2, 2). We can choose the
representative φ : K → S2 so that for each 2-cell e2i of K, either: (i) φ|e2i sends the whole closed 2-cell

to p, or (ii) φ|e2i factors as the quotient map followed by a homeomorphism e2i → e2i /∂e
2
i
∼= S2, with

φ(∂e2i ) = p, φ(b2i ) = s, and such that b2i ∈ e2i is a regular preimage of s ∈ S2. Let E(φ) ⊆ I be the
subset of indices corresponding to the cells for which the latter option (ii) holds. Then ⊔i∈E(φ)b

2
i is a

regular preimage of s ∈ S2 under φ.
Let F f

φ := (φ◦f)−1({s}), as above. As usual, [F f
φ ] does not depend on the choice of a representative

for φ since different choices give spin bordant surfaces. Hence F f
φ = ⊔i∈E(φ)N

f
i . Then(

φ 7→ [F f
φ ] =

∑
i∈E(φ)

[Nf
i ] ∈ ΩSpin

2
∼= Z/2

)
∈ HomZ/2(H

2(K;Z/2),Z/2)

is the image of
∑
i∈I

[Nf
i ] · e2i under the evaluation map H2(K;Z/2) −→ HomZ/2(H

2(K;Z/2),Z/2), as

needed. □

For our comparison of the Kervaire–Milnor invariant with the codimension 2 Arf invariant, we

need to recall the definition of the Arf invariant Arf : ΩSpin
2

∼=−→ Z/2. Let Σ be spin surface. One
defines a quadratic refinement of the Z/2 intersection form of Σ, Υ: H1(Σ;Z/2) → Z/2 as follows.
Represent [α] ∈ H1(Σ;Z/2) by a simple closed curve α in Σ. Since the normal bundle νΣα of α in Σ
is one dimensional, the normal bundle νΣα has a canonical framing, where the choice of the direction
comes from the orientations. Therefore, together with the spin structure on Σ, this determines a
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spin structure on α, so we may consider it as an element of ΩSpin
1 . We define Υ([α]) = 0 if and

only if α is spin null-bordant. Then Arf(Σ) is defined to be the Arf invariant of the quadratic form
(H1(Σ;Z/2), λΣ,Υ).

4. Proof of Theorems 1.11.1 and 1.51.5

First let us recall the setup of Theorem 1.51.5. Let M be a closed, smooth, oriented, spin 4-manifold
with fundamental group π, and suppose that there is a map f : M → K to a finite 2-complex K that
is an isomorphism on fundamental groups. Let i : K → Bπ be a 2-connected map.

We start by proving Theorem 1.51.5 (ii); it follows immediately from the next lemma.

Lemma 4.1. The map red2 : H
2(K;Zπ) → H2(K;Z/2) is surjective.

Proof. This follows from Bockstein sequence associated with 0 → ker(red2) → Zπ
red2−−−→ Z/2 → 0,

using that H3(K; ker(red2)) = 0 since K is 2-dimensional. □

We move on to the proof of Theorem 1.51.5 (iiii). It states: The element PD(f∗(φ̂)) ∈ H2(M ;Zπ) ∼=
π2(M) is RP2-characteristic and has trivial self-intersection number, so that the Kervaire–Milnor
invariant τ(PD(f∗(φ̂))) ∈ Z/2 is well-defined.

Let M (3) be the 3-skeleton of M for some chosen handle decomposition. The following lemma
is more general than needed in the paper, since it starts with g : M (3) → K only defined on the
3-skeleton, but we give the generalisation here since we appeal to it in [KPT20KPT20].

Lemma 4.2. Let g : M (3) → K be a map that is an isomorphism on fundamental groups. Let
j : M (3) → M be the inclusion of the 3-skeleton. For every φ ∈ ker Sq2 ⊆ H2(π;Z/2) and every lift
φ̂ ∈ H2(K;Zπ) of i∗φ ∈ H2(K;Z/2), the element

(PD ◦ (j∗)−1 ◦ g∗)(φ̂) ∈ H2(M ;Zπ) ∼= π2(M)

is RP2-characteristic.

In Lemma 4.24.2 we used the following sequence of maps:

φ̂ ∈ H2(K;Zπ)
g∗

−→ H2(M (3);Zπ)
(j∗)−1

−−−−→ H2(M ;Zπ)
PD−−→ H2(M ;Zπ) ∼= π2(M).

Proof. Fix a map β : RP2 → M . Let c : M → Bπ be a 2-connected map such that i∗ ◦ g∗ = c∗ ◦
j∗ : π1(M

(3)) → π1(Bπ) = π, from which it follows that i ◦ g and c ◦ j are homotopic. The following
equalities prove that PD((j∗)−1g∗φ̂) ∈ π2(M) is RP2-characteristic. We will give justification for
each of the equalities afterwards.

λ2(red2(PD((j∗)−1g∗(φ̂))), β∗[RP2]) = λ2(β∗[RP2], red2(PD((j∗)−1g∗(φ̂))))

= ⟨red2((j∗)−1g∗(φ̂)), β∗[RP2]⟩ = ⟨(j∗)−1g∗red2(φ̂), β∗[RP2]⟩
= ⟨(j∗)−1g∗i∗(φ), β∗[RP2]⟩ = ⟨(j∗)−1j∗c∗(φ), β∗[RP2]⟩
= ⟨c∗(φ), β∗[RP2]⟩ = ⟨β∗c∗(φ), [RP2]⟩.

The first equality uses symmetry of λ2. The second equality is the algebraic definition of the inter-
section form. The third equality uses the naturality of the reduction mod 2. The fourth equality uses
that, by definition of φ̂, red2(φ̂) = i∗φ. The fifth equality uses that i ◦ g and c ◦ j are homotopic. The
last equality uses the naturality of the evaluation.

Using obstruction theory and the fact that Bπ is aspherical, the map c ◦ β : RP2 → Bπ extends
to a map β′ : RP∞ → Bπ. Now assume for a contradiction that ⟨β∗c∗(φ), [RP2]⟩ is nontrivial. Then
β∗c∗(φ) ∈ H2(RP2;Z/2) is nontrivial and hence also (β′)∗(φ) ∈ H2(RP∞;Z/2) is nontrivial. In this
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case, also Sq2((β′)∗(φ)) = (β′)∗Sq2(φ) ∈ H4(RP∞;Z/2) has to be nontrivial. But we assumed that φ
lies in the kernel of Sq2. Hence ⟨β∗c∗(φ), [RP2]⟩ has to be trivial, as desired. □

As explained in Section 2.12.1, the Kervaire–Milnor invariant is well-defined on RP2-characteristic
spheres with vanishing self-intersection number, so Theorem 1.51.5 (iiii) follows from the next two lemmas.

Lemma 4.3. The element PD(f∗(φ̂)) ∈ H2(M ;Zπ) = π2(M) is RP2-characteristic.

Proof. This follows directly from Lemma 4.24.2 applied to the composition f ◦ j : M (3) → K, where as
in that lemma j : M (3) →M is the inclusion of the 3-skeleton. □

Lemma 4.4. For every x, y ∈ H2(K;Zπ), we have that λM (PD(f∗(x)), PD(f∗(y))) = 0. In partic-
ular, the self-intersection number vanishes: µ(PD(f∗(x))) = 0.

Proof. Since K is 2-dimensional we have f∗([M ]) = 0, and thus

λ(PD(f∗(x)), PD(f∗(y))) = ⟨f∗(y), PD(f∗(x))⟩ = ⟨y, f∗(f∗(x) ∩ [M ])⟩
= ⟨y, x ∩ f∗([M ])⟩ = ⟨y, 0⟩ = 0.

The last sentence in the statement, that µ(PD(f∗(x))) = 0, now follows from Lemma 2.32.3. □

This completes the proof of Theorem 1.51.5 (iiii). The methods used in its proof also allow us to prove
Theorem 1.11.1. Recall that we have to show: (i) For every element x ∈ ker Sq, PD(f∗(x)) ∈ π2(M) has
trivial self-intersection number and is RP2-characteristic. (ii) The induced map τM,f : ker Sq → Z/2
factors through Z/2⊗Zπ ker Sq. (iii) τM,f , up to the action of Aut(π) on the choice of f , is a stable
diffeomorphism invariant.

Proof of Theorem 1.11.1. By Lemma 4.44.4 every element in the radical Rad(λM ) has trivial self-intersection
number. We will now show that every element in PD(f∗(ker Sq)) is also RP2-characteristic. Let
x ∈ ker Sq ⊆ H2(π;Zπ) and fix a map β : RP2 →M . As in the proof of Lemma 4.24.2,

λ2(red2(PD(f∗(x))), β∗[RP2]) = ⟨red2(f∗(x)), β∗[RP2]⟩ = ⟨red2(β∗f∗(x)), [RP2]⟩.

Let β′ : RP∞ → Bπ be an extension of f ◦ β. We continue to follow the pattern of the proof of
Lemma 4.24.2. Assume for a contradiction that ⟨red2(β∗f∗(x)), [RP2]⟩ is nontrivial. Then red2(β

∗f∗(x)) ̸=
0 ∈ H2(RP2;Z/2), so red2 ◦ (β′)∗(x) is nontrivial in H2(RP∞;Z/2). Therefore

(β′)∗(Sq(x)) = (β′)∗(Sq2 ◦ red2(x)) = Sq2 ◦ red2((β′)∗(x)) ∈ H4(RP∞;Z/2)

is also nontrivial. This contradicts that x ∈ ker(Sq). We deduce that ⟨red2(β∗f∗x), [RP2]⟩ vanishes,
so that PD(f∗(x)) is RP2-characteristic as desired, proving (ii).

Since stabilisation does not change the value of τ , it follows that τM,f is a stable diffeomorphism
invariant, up to the choice of f , as asserted in (iiiiii).

It remains to show (iiii), that τM,f factors through Z/2⊗Zπker Sq. Assume [x] = [y] ∈ Z/2⊗Zπker Sq.
Then there are zi ∈ ker Sq and κi ∈ ker(red2 : Zπ → Z/2) such that x = y +

∑n
i=1 κizi. As µ(y) =

µ(zi) = λ(y, zi) = 0, it follows from [KLPT17KLPT17, Lemma 8.3] that τ(y) = τ(y +
∑n

i=1 κizi) = τ(x). □

Now we continue with the proof of Theorem 1.51.5. We have proven Theorem 1.51.5 (iiii), and so we may
define τ(PD(f∗(φ̂))) ∈ Z/2. We will prove Theorem 1.51.5 (iiiiii) and (iviv) by comparing the Kervaire–
Milnor invariant to the Arf invariant.

Recall that we have to show the following.

(iii) The map τ̂M,f : ker Sq2 → Z/2; φ 7→ τ(PD(f∗(φ̂))) is a well-defined homomorphism.
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(iv) Under the map Hom(ker Sq2,Z/2)
∼=−→ H2(π;Z/2)/ im Sq2 → H2(π;Z/2)/ im(d2, d3), τ̂M,f is

sent to ter(M).

Remark 4.5. Let us explain the strategy of the rest of the proof. It follows from Lemmas 3.13.1
and 3.33.3 that computing the Arf invariant Arf(f∗i∗(φ)) gives rise to a well-defined homomorphism in
Hom(ker Sq2,Z/2) that determines ter(M). Thus, to show (iiiiii) and (iviv), we shall prove that the Arf
invariant Arf(f∗i∗(φ)) coincides with the Kervaire–Milnor invariant τ(PD(f∗(φ̂))), where as before
φ̂ ∈ H2(K;Zπ) is a lift of i∗φ ∈ H2(K;Z/2). For this we will use the description of the Kervaire–
Milnor invariant for π1-trivial (embedded) surfaces from Section 2.22.2.

For a π1-trivial, closed, oriented, generically immersed surface F : Σ ↬ M , the definition of τ(F )
uses a quadratic refinement ϖ : H1(Σ;Z/2) → Z/2 of the Z/2-intersection form of Σ that uses, for
each curve γ on Σ, a relative Euler number and a count of intersections arising from F (γ).

For the specific F that arise in our situation, which will be embedded, we will show that after picking
a correctly framed disc, the relative Euler number in the definition of ϖ agrees with Υ. (Recall that Υ
is the quadratic refinement we use for computing the Arf invariant.) Then we will show that for such
a disc the intersection component of the quadratic refinement ϖ is always even, so does not contribute
to the calculation of ϖ. It will follow that ϖ and Υ coincide, and therefore the Arf invariant and the
Kervaire–Milnor invariant of F agree.

Next, we want to produce, for each φ̂ ∈ H2(K;Zπ), a suitable surface F on which to compare
the two invariants. Recall that H2(K;Zπ) is isomorphic to the compactly supported cohomology

H2
cs(K̃;Z) of the universal cover K̃ of K. An element φ̂ ∈ H2(K;Zπ) ∼= H2

cs(K̃;Z) can be represented

as a map φ̂ : K̃ → S2 with compact support (i.e. the closure of the inverse image of S2 \ {∗} is

compact). This follows from the fact that K̃ is 2-dimensional, and the definition of cohomology with

compact support as a colimit of H2(K̃, K̃ \ L) over compact subsets L ⊆ K̃.

Let f̃ : M̃ → K̃ be a lift of the map f : M → K. We want to consider f̃∗φ̂ as an element of

H2
cs(M̃ ;Z), and thus we need the following lemma.

Lemma 4.6. The map f̃ is proper, i.e. closed and preimages of compact sets are compact.

Proof. Since M is compact and both M and K are Hausdorff, standard arguments show that the

map f is proper. This implies that f̃ is proper since pullbacks of proper maps are proper. This is
well-known but we give a short proof. Recall that a map h is called universally closed if every pullback
of h is closed. By [Sta24Sta24, Tag 005RTag 005R], a map is proper if and only if it is univerally closed. Hence it
remains to show that pullbacks of universally closed maps are universally closed. If g is a pullback
of a universally closed map h, then every pullback of g is also a pullback of h and hence is closed. It
follows that g is universally closed, as needed. □

Lemma 4.7. Let x ∈ S2 be a regular value of φ̂ ◦ f̃ : M̃ → S2. Then the inverse image of x ∈ S2

yields a surface F̂ : Σ → M̃ such that F̂ (Σ) represents PD(f̃∗(φ̂)) ∈ H2(M̃ ;Z).

Proof. We start with a general remark about the compact case. For Y a compact 4-manifold, each
cohomology class y in H2(Y, ∂Y ;Z) can be represented by a map hy : (Y, ∂Y ) → (CP2, ∗) (upon post-

composing with the inclusion CP2 → CP∞ ≃ K(Z, 2)), and the inverse image of CP1 ⊆ CP2 is the
Poincaré dual to the original class y.

Since f̃ is proper by Lemma 4.64.6, and φ̂ has compact support, it follows that φ̂ ◦ f̃ : M̃ → S2

has compact support. Take the composition with the inclusion ι : S2 → CP2. This yields a map

https://stacks.math.columbia.edu/tag/005R
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ι ◦ φ̂ ◦ f̃ : M̃ → CP2 representing f̃∗(φ̂) ∈ H2
cs(M̃ ;Z). We have an isomorphism

H2
cs(M̃ ;Z) = colim

L
H2(M̃, M̃ \ L;Z)

where L belongs to the collection of compact subsets of M̃ ordered by inclusions. Our class f̃∗(φ̂) is

represented in the colimit by an element of H2(M̃, M̃ \ L;Z), for some compact set L containing the

support of ι ◦ φ̂ ◦ f̃ . We may and shall assume that L is a compact codimension zero submanifold

in M̃ . We consider the maps shown in the next diagram.

H2
cs(M̃ ;Z) H2(M̃, M̃ \ L;Z) H2(L, ∂L;Z) H2(L;Z) H2(M̃ ;Z)

f̃∗(φ̂) ι ◦ φ̂ ◦ f̃ ι ◦ φ̂ ◦ f̃ |L (ι ◦ φ̂ ◦ f̃)|−1
L (CP1) (ι ◦ φ̂ ◦ f̃)−1(CP1)

∼=
exc

∼=
PD incl

∈ ∈ ∈ ∈ ∈

Consider ι ◦ φ̂ ◦ f̃ ∈ H2(M̃, M̃ \ L;Z). We argued above that this maps to the left to f̃∗(φ̂). By

naturality of cap products, PD(f̃∗(φ̂)) is given by the image of ι ◦ φ̂ ◦ f̃ in H2(M̃ ;Z), under the

composition shown. In the diagram we claim that this image is (ι◦ φ̂◦ f̃)−1(CP1). To see this, use the
fact for compact manifolds from the first paragraph of the proof, to see that Poincaré duality maps

ι ◦ φ̂ ◦ f̃ |L to the inverse image of CP1 ⊆ CP2, as shown. Since ι ◦ φ̂ ◦ f̃ is supported in L, the claim
follows. We see that

PD(f̃∗(φ̂)) = (ι ◦ φ̂ ◦ f̃)−1(CP1) = (φ̂ ◦ f̃)−1(x),

which proves the desired statement. Here for the second equality we use that, since the map φ̂◦f̃ : M̃ →
CP2 factors through S2, the inverse image of a generic CP1 is the inverse image of the point x ∈ S2. □

Lemma 4.8. After potentially perturbing the map φ̂ : K̃ → S2, the composition F : Σ
F̂−→ M̃ →M is

a π1-trivial embedding with µ(F ) = 0 and such that [F ] is RP2-characteristic.

Proof. Note that F̂ is an embedding, since it is the inverse image of the point x ∈ S2. Since π1(M̃) = 0,

F̂ is π1-trivial. We can perturb the map φ̂ : K̃ → S2 so that (φ̂)−1(x) ⊆ K̃ is a finite (coming from
compact support) discrete set, which satisfies that no two points of (φ̂)−1(x) have the same image

under K̃ → K. Then F is still an embedded π1-trivial surface, representing a class [F ] ∈ H2(M ;Zπ) ∼=
π2(M). By Lemma 4.34.3, [F ] is RP2-characteristic. By Lemma 4.44.4, µ(F ) = 0. □

Definition 4.9. Let (v1, v2) ∈ TxS
2⊕TxS2 be a framing of the point x. For each simple closed curve

α in Σ we pick a generically immersed disc Cα in M with boundary F (α), such that the image of the
normal vector of S1 ⊆ D2 in

TCα(y)M ∼= DF (TCα(y)Σ)⊕ νMF |Cα(y)

agrees with (0, (φ̂ ◦ f)∗v1) for every y ∈ S1. We can construct such a disc Cα by taking an annulus

S1 × I ⊆ M with S1 × {0} = F (α) and such that a nonvanishing section of νS
1×I

S1×{0}, pushed forward

into TM , agrees with (0, (φ̂ ◦ f)∗v1). Then cap off S1 × {1} with the trace of a null-homotopy in M .
We say that Cα is an f -cap for α.

Lemma 4.10. Let α be a simple closed curve on Σ and let Cα be an f -cap for α. The spin bordism

class of α, as an element of ΩSpin
1

∼= Z/2, is equal to the relative Euler number e(Cα) of Cα.
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Proof. The bundle ν
F (Σ)
F (α) is 1-dimensional, and thus we obtain a canonical framing w from the ori-

entation. The framing (w, (φ̂ ◦ f)∗v1, (φ̂ ◦ f)∗v2) of νMF (α) together with the given spin structure on

νR
∞

M |F (α) determines the spin structure on α.

As νR
∞

M |α extends over Cα and νCα

F (α) agrees with (φ̂ ◦ f)∗v1, α is spin null bordant if and only if

the framing (w, (φ̂ ◦ f)∗v2) stably extends over Cα. Since νMCα
is 2-dimensional, the normal vector w

extends over Cα if and only if (w, (φ̂ ◦ f)∗v2) extends over Cα. Thus (w, (φ̂ ◦ f)∗v2) can stably be
extended over Cα if and only if the relative Euler number e(Cα) is even, so is zero modulo 2. This
completes the proof of the lemma. □

We have one final lemma for the proof of Theorem 1.51.5.

Lemma 4.11. Let α be a simple closed curve on F and let Cα be an f -cap for α. The interior of the
image of Cα intersects F transversely in an even number of points.

Proof. The image of the boundary S1 under f ◦ Cα : D
2 → K is a point. Thus f ◦ Cα factors as

f ◦ Cα : D
2 → S2 j−→ K, where j is defined by this factorisation.

Recall that we have a map φ̂ : K̃ → S2 representing φ̂ ∈ H2
cs(K̃;Z) ∼= H2(K;Zπ) that lifts

i∗φ ∈ H2(K;Z/2), where i : K → Bπ is the inclusion of the 2-skeleton. Let p : K̃ → K be the
projection and define a map ψ : K → S2 that sends the points p((φ̂)−1(x)) to x and sends everything
outside a small neighbourhood of these points to the base point of S2. Choose a model for K(Z/2, 2)
with 2-skeleton S2. Then ψ : K → S2 composed with the inclusion ϱ : S2 → K(Z/2, 2) represents
i∗φ ∈ H2(K;Z/2).

Since the normal bundle of S1 ⊆ D2 underDCα : TD
2 → TM agrees with the direction of (φ̂◦f)∗v1,

and F (Σ) is the preimage of the points p((φ̂)−1(x)), the mapping degree of ψ ◦ j : S2 → S2 agrees

with the number of transverse intersections of C̊α with F .
Compose ψ ◦ j : S2 → S2 with the inclusion of the 2-skeleton ϱ : S2 → K(Z/2, 2). The map

ϱ◦ψ◦j : S2 → K(Z/2, 2) factors through Bπ by definition of ψ = i∗φ, and therefore is null homotopic,
since Bπ is aspherical. It follows that the mapping degree of ψ◦j is even, which proves the lemma. □

Proof of Theorem 1.51.5. As already mentioned, (iiii) follows directly from Lemma 4.34.3 and Lemma 4.44.4.
By Lemmas 3.13.1 and 3.33.3, ter(M) can be computed using the codimension two Arf invariant and the

latter determines a homomorphism. Hence to prove (iiiiii) and (iviv) it suffices to show Arf(F ) = τ(F )
for the surface F defined in Lemma 4.84.8: it will follow that τ̂M,f is a homomorphism and that this
homomorphism maps to ter(M) under the composition displayed in Theorem 1.51.5 (iviv). In that lemma
we also showed that F is π1-trivial, RP2-characteristic and µ(F ) = 0. Therefore we can compute and
compare both Arf(F ) and τ(F ).

The Arf invariant of F depends only on the relative Euler numbers of the f -caps by Lemma 4.104.10,
whereas the τ invariant depends on the relative Euler number and the intersections of the form C̊ ⋔ F .
Lemma 4.114.11 shows that the latter do not contribute to the calculation of the τ invariant. Therefore
we have Arf(F ) = τ(F ), as desired, which completes the proof. □
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