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Abstract. For every k ≥ 2 and n ≥ 2 we construct n pairwise homotopically inequivalent
simply-connected, closed 4k-dimensional manifolds, all of which are stably diffeomorphic
to one another. Each of these manifolds has hyperbolic intersection form and is stably
parallelisable. In dimension 4, we exhibit an analogous phenomenon for spinc structures
on S2 × S2.

For m ≥ 1, we also provide similar (4m−1)-connected 8m-dimensional examples, where
the number of homotopy types in a stable diffeomorphism class is related to the order of the
image of the stable J-homomorphism π4m−1(SO)→ πs

4m−1.

1. Introduction

Let q be a positive integer and let Wg := #g(S
q × Sq) be the g-fold connected sum of the

manifold Sq×Sq with itself. Two compact, connected smooth 2q-manifolds M0 and M1 with
the same Euler characteristic are stably diffeomorphic, written M0

∼=st M1, if there exists a
non-negative integer g and a diffeomorphism

M0#Wg →M1#Wg.

Note that Sq×Sq admits an orientation-reversing diffeomorphism. Hence the same is true of
Wg and it follows that when the Mi are orientable the diffeomorphism type of the connected
sum does not depend on orientations.

A paradigm of modified surgery, as developed by Kreck [Kre99], is that one first seeks
to classify 2q-manifolds up to stable diffeomorphism, and then for each M0 one tries to
understand its stable class:

Sst(M0) := {M1 |M1
∼=st M0}/diffeomorphism.

The efficacy of this method was first demonstrated by Hambleton and Kreck, who applied it
to 4-manifolds with finite fundamental group in a series of papers [HK88a, HK88b, HK93b,
HK93a].

On the other hand, the Browder-Novikov-Sullivan-Wall surgery exact sequence [Wal99]
aims instead to classify manifolds within a fixed homotopy class. In general there is no
obvious relationship between homotopy equivalence and stable diffeomorphism, although in
some cases there are implications e.g. [Dav05]. To enable a comparison between the two
approaches, we define the homotopy stable class of M0 to be

Sst
h (M0) = {M1 |M1

∼=st M0}/homotopy equivalence.
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Our aim is to investigate the cardinality of Sst
h (M0), and in particular we shall exhibit new

examples of simply-connected manifolds with arbitrarily large homotopy stable class.

Throughout this article we will consider closed, connected, simply-connected, smooth man-
ifolds. In order to define the intersection form and related invariants we orient all manifolds.
When necessary, to achieve unoriented results, we will later factor out by the effect of the
choice of orientation.

When the dimension is 4k+2, Kreck showed that the stable class of such manifolds is triv-
ial [Kre99, Theorem D]. We therefore focus on dimensions 4k with k > 1 (dimension 4 will be
discussed separately below). Kreck also showed that for every such simply-connected manifold
M4k, the stable class of M4k#W1 is trivial. But as pointed out by Kreck and Schafer [KS84,
I], for k > 1 examples of closed, simply-connected (2k−1)-connected 4k-manifolds M with
arbitrarily large homotopy stable class have been implicit in the literature since Wall’s classi-
fication of these manifolds up to the action of the group of homotopy spheres [Wal62]. These
examples are distinguished by their intersection form

λM : H2k(M ;Z)×H2k(M ;Z)→ Z,
which must be definite (in order to have inequivalent forms) and in order to realise the
forms by closed, almost-parallelisable manifolds they must have signature divisible by 8|bP4k|,
where |bP4k| is the order of the group of homotopy (4k−1)-spheres which bound parallelisable
manifolds [MK60, Corollary on p. 457].

In this paper we consider examples where the intersection form is isomorphic to the stan-
dard hyperbolic form

H+(Z) =

(
Z2,

(
0 1
1 0

))
and where there is an additional invariant, a homomorphism f : Z2 → Z. The pair (H+(Z), f)
is an example of an extended symmetric form; see Definition 3.5. The isometries of the rank
two hyperbolic form are highly restricted: they are generated by switching the two basis
vectors and multiplying both basis vectors by −1. As such the unordered pair

{a, b} := {f(1, 0), f(0, 1)}/(±1),

considered up to multiplication of both integers by −1, gives an invariant of the isometry
class of the extended symmetric form (H+(Z), f). On the other hand, in the Witt class,
or stable equivalence class, only the divisibility d := gcd(a, b) and the product A = ab are
invariants. Since a fixed number A can often be factorised in many ways as a product of
coprime integers a, b, if we can define a suitable f , this simple algebra has the chance to
detect large stable classes. In the proof of our first main theorem, we will define such an f
using the cohomology ring of the manifolds we construct.

Theorem 1.1. Fix positive integers n and k ≥ 2. There are infinitely many stable dif-
feomorphism classes of closed, smooth, simply-connected 4k-manifolds {[Mi]st}∞i=1, such that

|Sst
h (Mi)| ≥ n. Moreover Sst

h (Mi) contains a subset {M j
i }nj=1 of cardinality n, where M1

i = Mi,

and each M j
i is stably parallelisable and has hyperbolic intersection form.

Here stably parallelisable means that the tangent bundle becomes trivial after taking the
Whitney sum with a trivial bundle of sufficiently high rank. More than one notion of stabil-
isation appears in this article, one for manifolds and one for vector bundles.
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Kreck and Schafer [KS84] constructed examples of 4k-manifolds M with nontrivial finite
fundamental groups, such that the homotopy stable class of M contains distinct elements
with hyperbolic intersection forms. However as far as we know our construction gives the
first simply-connected examples and the first for which the homotopy stable class has been
shown to have arbitrary cardinality. In a companion paper [CCPS21], we will investigate the
homotopy stable class in more detail, also for manifolds with nontrivial fundamental group,
and we shall relate the homotopy stable class to computations of the `-monoid from [CS11].

The manifolds we construct in order to prove Theorem 1.1 are shown to be homotopically
inequivalent using their cohomology rings. An alternative construction to obtain nontrivial
homotopy stable class instead uses Pontryagin classes to define the homomorphism f in an
extended symmetric form. This was alluded to in [KS84], but not carried through. Section 3
proves a theorem which implies the following result.

Theorem 1.2. For every m ≥ 1 there exists a pair of closed, smooth, (4m−1)-connected
8m-manifolds M1 and M2 with hyperbolic intersection forms, that are stably diffeomorphic
but not homotopy equivalent.

Compared with the manifolds from Theorem 1.1 (for even m, in the notation of that
theorem), the manifolds M1 and M2 from Theorem 1.2 are not stably parallelisable, but on
the other hand since they are (4m−1)-connected and have the same intersection pairing, their
cohomology rings are isomorphic. In particular, once again the intersection form does not
help.

To show that the manifolds in Theorem 1.2 are not homotopy equivalent, we use Wall’s
homotopy classification of (4m−1)-connected 8m-manifolds [Wal62, Lemma 8], which makes
use of an extended symmetric form (H+(Z), f : Z2 → Z/jm), where jm is the order of the
image of the stable J-homomorphism J : π4m−1(SO)→ πs4m−1; see Section 3.

Remark 1.3. The limiting factor preventing us from exhibiting arbitrarily large homo-
topy stable classes in Theorem 1.2 is that our lower bound depends only on the number of
primes dividing jm. This grows with m, but in a fixed dimension cannot be made arbitrarily
large. On the other hand, if we instead count diffeomorphism classes, then we show in Theo-
rem 3.3 (2) that the stable class can be arbitrarily large for (4m−1)-connected 8m-manifolds
with hyperbolic intersection forms.

Dimension 4. Dimension 4 was absent from the above discussion. This is because closed,
smooth, simply-connected 4-manifolds M and N are stably diffeomorphic if and only if they
are homotopy equivalent. Here is an outline of why this holds. First, two such 4-manifolds
are stably diffeomorphic if and only if there are orientations such that they have the same
signatures, Euler characteristics, and w2-types i.e. σ(M) = σ(N), χ(M) = χ(N), and their
intersection forms have the same parity (even or odd). Thus homotopy equivalence implies
stable diffeomorphism. For the other direction, σ(M) = σ(N) and χ(M) = χ(N) implies
that the intersection forms are either both definite or both indefinite. In the definite case, the
intersection forms must be diagonal by Donaldson’s theorem [Don83], and so the intersections
forms are isometric and therefore the manifolds are homotopy equivalent [Whi49, Mil58a].
In the indefinite case, the intersection form is determined up to isometry by its rank, parity,
and signature, and so again M and N are homotopy equivalent. Thus the assumption that
k ≥ 2 was essential in Theorem 1.1.
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One way in which an analogous phenomenon does occur in dimension 4 is by considering
spinc structures. Seiberg-Witten invariants of 4-manifolds and Heegaard-Floer cobordism
maps are indexed by spinc structures. The first Chern class c1 of the spinc structure then
defines the map f in the extended symmetric forms. We illustrate this in Section 4, using
the 4-manifold S2 × S2.

Theorem 1.4. Let C ∈ Z with |C| ≥ 16 and 8 | C. Define P (C) to be the number of distinct

primes dividing C/8. There are n := 2P (C)−1 stably equivalent spinc structures s1, . . . , sn on
S2 × S2 with c1(si)

2 = C ∈ H4(S2 × S2) ∼= Z, that are all pairwise inequivalent.

Organisation. Section 2 proves Theorem 1.1, Section 3 proves Theorem 1.2, and Section 4
proves Theorem 1.4.

Conventions. Throughout this paper all manifolds are compact, simply-connected, and
smooth. As mentioned above we will also equip our manifolds with an orientation. For
the remainder of this paper all (co)homology groups have integral coefficients. We write
N0 := N ∪ {0}.

Acknowledgements. We would like to thank Manuel Krannich for advice about the ho-
motopy sphere ΣQ, Jens Reinhold for comments on an earlier draft of this paper, and Csaba
Nagy for pointing out a mistake in a previous version of the proof of Theorem 4.11.

MP is grateful to the Max Planck Institute for Mathematics in Bonn, where he was a visitor
while this paper was written. MP was partially supported by EPSRC New Investigator grant
EP/T028335/1 and EPSRC New Horizons grant EP/V04821X/1.

2. Simply-connected 4k-manifolds with arbitrarily large stable class

We prove Theorem 1.1 by stating and proving Proposition 2.2 below. In the proposition,
we construct a collection of 4k-manifolds Na,b, for each unordered pair of positive integers
{a, b} such that (2k)! divides 2ab. If {a, b} 6= {a′, b′}, then Na,b and Na′,b′ are not homotopy
equivalent. On the other hand ab = a′b′ if and only if Na,b and Na′,b′ are stably diffeomorphic.
Moreover every manifold Na,b is closed, simply-connected, has hyperbolic intersection form,
and is stably parallelisable. Thus the proposition immediately implies Theorem 1.1.

First we have a lemma. In order to rule out orientation-reversing homotopy equivalences,
we shall appeal to the following observation.

Lemma 2.1. Let N and N ′ be closed, oriented 4k-manifolds. Suppose that a class z freely
generates H2(N) and satisfies that z2k = n for some nonzero n ∈ Z = H4k(N), and similarly
for (N ′, z′). Then any homotopy equivalence f : N → N ′ must be orientation preserving.

Proof. Assume that f is of degree ε = ±1. Since f is a homotopy equivalence, N and N ′

have isomorphic cohomology rings. In particular H2(N ′) ∼= Z is generated by z′ = (f∗)−1(z).

Since z′2k = n in H4k(N ′) ∼= Z, and f∗(z′2k) = z2k, properties of the cap and cup products
show that

n = f∗(z
2k ∩ [N ]) = f∗(f

∗(z′
2k

) ∩ [N ]) = z′
2k ∩ f∗([N ]) = z′

2k ∩ ε[N ′] = εn.

Since n 6= 0, this implies that f must be orientation-preserving. �

Now we proceed with the construction of the promised manifolds.
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Proposition 2.2. Fix k > 1. Given an unordered pair {a, b} of positive coprime integers
such that (2k)! divides 2ab, there exists a closed, oriented, 4k-manifold N4k

a,b with the following
properties.

(i) The manifold Na,b is simply-connected and stably parallelisable.
(ii) The ring H∗(Na,b) has generators w, x, y, z and 1 of degrees 2k+2, 2k, 2k, 2 and 0

respectively, with zk = ax + by, x2 = 0 = y2, 2abw = zk+1, xz = bw, yz = aw and xy
generates H4k(Na,b).

In particular, the intersection form of Na,b is hyperbolic and z2k = 2abxy is 2ab times a
fundamental class of Na,b. If {a, b} 6= {a′, b′} then Na,b and Na′,b′ have non-isomorphic
integral cohomology rings and so are not homotopy equivalent. Moreover ab = a′b′ if and
only if Na,b and Na′,b′ are stably diffeomorphic.

Proof. Note that if we have a manifold Na,b and if we choose a stable normal framing on Na,b,
then the pair (Na,b, z) corresponds to a (normally) framed manifold over CP∞ using the iden-
tification H2(Na,b) ∼= [Na,b,CP∞]. This motivates the method we shall use, constructing Na,b

by framed surgery on stably normally framed manifolds over CP∞. It will then follow auto-
matically that the manifolds we obtain are stably parallelisable, since a manifold with trivial
stable normal bundle has trivial stable tangent bundle too.

We start with S2 together with the unique framing of its stable normal bundle correspond-
ing to a choice of orientation, and consider the corresponding dual orientation class α ∈
H2(S2). Take the 2k-fold product of S2 with itself,

X0 := S2 × · · · × S2,

and define β0 ∈ H2(X0) to be the class that restricts to α in each S2 factor. This means that
under the inclusion

ιj : {∗} × · · · × S2 × · · · {∗} → S2 × · · · × S2

in the jth factor, ι∗j (β0) = α. Equivalently, let pi : S
2 × · · · × S2 → S2 be the ith projection.

Then β0 =
∑2k

i=1 p
∗
i (α). An elementary calculation shows that

β2k
0 = (2k)![X0]∗ ∈ H4k(X0).

Here we write [X0]∗ ∈ H4k(X0) for the dual of the fundamental class [X0] ∈ H4k(X0). To

make this calculation, use β0 =
∑2k

i=1 p
∗
i (α) and note that:

(i) p∗i (α) ∪ p∗j (α) = p∗j (α) ∪ p∗i (α) for i 6= j,

(ii) p∗i (α) ∪ p∗i (α) = p∗i (α ∪ α) = p∗i (0) = 0, and
(iii) p∗1(α) ∪ · · · ∪ p∗2k(α) = [X0]∗.

By assumption there is a positive integer j such that 2ab = j(2k)!. Take X1 := #jX0 to be
the framed j-fold connected sum of X0 and β1 ∈ H2(X1) to be the class that restricts to β0

in each summand. That is, H2(X1) ∼=
⊕j H2(X0) and β1 = (β0, . . . , β0). Then

β2k
1 = jβ2k

0 = j(2k)![X1]∗ = 2ab[X1]∗ ∈ H4k(X1).

The element β1 ∈ H2(X1) and the normal framing on X1 defines a normal map

(β1, β1) : X1 → CP∞,
where we take the trivial bundle over CP∞. By surgery below the middle dimension, the nor-
mal map (β1, β1) is normally bordant to a 2k-connected map (β2, β2) : X2 → CP∞. Since X0
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has signature zero, the same holds for X1 and X2. Since the stable normal bundle of X2 is
framed, so is the stable tangent bundle. Therefore the stable tangent bundle has trivial 2k-th
Wu class vanishes and so the intersection form on X2 is even. Let z∞ ∈ H2(CP∞) be the
generator restricting to α ∈ H2(CP 1) = H2(S2) via the inclusion CP 1 → CP∞, and consider
the Poincaré dual of β∗2(zk∞),

u := PD(β∗2(zk∞)) ∈ H2k(X2).

Since β2 : X2 → CP∞ is 2k-connected,H2k(X2)→ H2k(CP∞) ∼= Z is onto and therefore splits
since Z is free. Since all homology groups are torsion-free, the dual map can be identified
with the map β∗2 : H2k(CP∞) → H2k(X2) on cohomology. The splitting for β2 dualises
to a splitting for β∗2 , so the image of a generator β∗2(zk∞) generates a summand. Applying
Poincaré duality we see that u ∈ H2k(X2) is a primitive element; i.e. u generates a summand
of H2k(X2).

We take connected sum with an additional copy of S2k × S2k with null-bordant framing
and trivial map to CP∞ to obtain

X3 := X2#(S2k × S2k)

and a normal map (β3, β3) : X3 → CP∞. Note that up until this point we have only used
the product ab, rather than the data of the pair {a, b}. This will change for the upcoming
construction of X4 = Na,b.

The intersection form λX3 of X3 has an orthogonal decomposition corresponding to the
connected sum decomposition of X3:

(H2k(X3), λX3) = (H2k(X2), λX2)⊕H+(Z),

where H+(Z) is the standard symmetric hyperbolic form. Let {e, f} be a standard basis
for H+(Z). Since a and b are coprime, we may and shall choose integers c, d such that ad−bc =
1. We also write u = PD(β∗3(zk∞)). Here note that u is essentially the same element as the
element u ∈ H2(X2) that we defined above thinking of H2(X2) as a subgroup of H2(X3).
Keeping this in mind, we have that

λX3(u, u) = 〈β∗3(zk∞) ∪ β∗3(zk∞), [X3]〉 = 〈β∗3(z2k
∞ ), [X3]〉 = 〈z2k

∞ , (β3)∗[X3]〉 = 2ab,

since z2k
∞ generatesH4k(CP∞) and since (β3)∗ sends [X3] to the same multiple of the generator

of H4k(CP∞) as (β1)∗ sends [X1] to. Since u ∈ H2k(X2) ⊆ H2k(X3) is primitive and since
λX2 is nonsingular, there is an element v′′ ∈ H2k(X2) ⊆ H2k(X3) such that

λX3(u, v′′) = λX2(u, v′′) = 1.

Now set v′ := (ad+ bc)v′′ as well as

v := v′ + e+
2cd− λX3(v′, v′)

2
f.

Since u ∈ H2(X2) and e, f ∈ H+(Z), we observe that λX3(u, e) = λX3(u, f) = 0. As a
consequence, the elements u, v span a subspace Hu,v ⊆ H2k(X3) where λX3 restricted to Hu,v

has matrix

A =

(
2ab ad+ bc

ad+ bc 2cd

)
,

which has determinant 4abcd− (ad+ bc)2 = −(ad− bc)2 = −1. Hence Hu,v is an orthogonal
summand of (H2k(X3), λX3) and a calculation shows that Hu,v is hyperbolic with standard
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basis {e1, f1} where u = ae1 + bf1 and v = ce1 + df1. To see this, let P :=
(
a b
c d

)
and note

that P ( 0 1
1 0 )P T = A.

The orthogonal complement of Hu,v, namely H⊥u,v, has signature equal to the signature

of X3, which is zero and hence since the intersection form is even, H⊥u,v is stably hyperbolic.

We assert that H⊥u,v maps trivially to H2k(CP∞) under β3∗. To see this, first note

that H2k(CP∞) ∼= Z, generated by zk∞. We have an isomorphism

zk∞ ∩ − : H2k(CP∞)
∼=−→ H0(CP∞) ∼= Z.

Recall that now u = PD(β∗3(zk∞)) ∈ Hu,v and let x ∈ H⊥u,v. Then

0 = λX3(u, x) = PD−1(u) ∩ x = β∗3(zk∞) ∩ x = zk∞ ∩ (β3)∗(x).

Since zk∞ ∩ − is an isomorphism, this implies that (β3)∗(x) = 0, which proves the assertion.
Now, since β3 : X3 → CP∞ is 2k-connected and since H⊥u,v maps trivially to H2k(CP∞),

the Hurewicz theorem and the linked long exact sequences

· · · // π2k+1(CP∞, X3)

∼=
��

// π2k(X3)

��

// π2k(CP∞)

��

// · · ·

· · · // H2k+1(CP∞, X3) // H2k(X3)
(β3)∗ // H2k(CP∞) // · · ·

show that every element of H⊥u,v is represented by a map from a 2k-sphere in π2k(X3). Hence

standard surgery arguments allow us to perform framed surgery on (β3, β3) : X3 → CP∞ to
kill H⊥u,v. We obtain a normal map (β4, β4) : X4 → CP∞, with intersection form isomorphic
to (Hu,v, λX3 |Hu,v). The manifold

Na,b := X4

is the required manifold, as we verify next. For the rest of the proof we shall write N := Na,b

for brevity. We use the orientation corresponding to the fundamental class [Na,b] induced
from tracking [X0] through the construction.

We have already noted at the beginning of the proof that the construction via normally
framed surgery implies that Na,b is stably parallelisable. As the map β4 : Na,b → CP∞ is 2k-
connected and since there is an isomorphism θ : H2k(Na,b)→ Hu,v

∼= Z2, the manifold Na,b is
simply-connected and has the correct integral (co)homology groups. To verify that Na,b has
the required cohomology ring we set

z := β∗4(z∞), x := PD−1(θ−1(e1)), y := PD−1(θ−1(f1)).

Since u = ae1+bf1, it follows that zk = ax+by. Since θ−1(e1), θ−1(f1) form a standard hyper-
bolic basis for (H2k(Na,b), λNa,b

), it follows that xy generates H4k(Na,b) and z2k ∩ [Na,b] > 0.

Finally, since zk−1 generates H2k−2(Na,b) ∼= Z, there is a generator w ∈ H2k+2(Na,b) such

that zk−1w = xy. The remaining properties of H∗(Na,b) follow from Poincaré duality.

Finally, let 〈zk〉 ⊆ H2k(Na,b) be the subgroup generated by zk and consider the isomor-

phism class of the pair (H2k(Na,b), 〈zk〉). This pair, modulo the action of the self-equivalences

of Na,b on H2k(Na,b), is a homotopy invariant of Na,b. Since z2k 6= 0, and since z2k∩[Na,b] > 0,
every self-homotopy equivalence of Na,b is orientation preserving by Lemma 2.1.
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Thus 〈zk〉 modulo the action of Aut(H+(Z)) is a homotopy invariant. We claim that the
pair {a, b} is an invariant of this action. To see this, from the form of the matrix A above, it
is easy to see that the automorphisms of the hyperbolic form are

± Id and ±
(

0 1
1 0

)
.

So automorphisms can change the sign of both a and b simultaneously, and they can switch
a and b. Then since we always take a, b > 0, the unordered pair of positive integers {a, b} is
an invariant of the homotopy type. Hence if there is a homotopy equivalence Na,b → Na′,b′ ,
then we have {a, b} = {a′, b′}.

Now we address the final statement of the proposition, which concerns stable diffeomor-
phism. Observe that Z ∼= H2(Na,b) ∼= H2(Na,b#S

2k × S2k), and that the image of z, which

we call zst ∈ H2(Na,b#S
2k × S2k), satisfies the equality z2k

st = 2ab[Na,b#S
2k × S2k]. Since

this property of zst and the fundamental class are preserved under diffeomorphism, it follows
that if Na,b and Na′,b′ are stably diffeomorphic, then ab = a′b′.

On the other hand, for a fixed product ab = a′b′, the manifolds Na,b and Na′,b′ are obtained

from the 4k-manifold X3 by surgering away a stably hyperbolic form H⊥u,v. Recall that u and
v depend on a, b, so in particular we may need to stabilise a different number of times for
H⊥u,v versus H⊥u′,v′ to make them hyperbolic. Let h(u, v) and h(u′, v′) be the number of

stabilisations required, and let h := max{h(u, v), h(u′, v′)}. Then for some g we have

Na,b#Wg
∼= X3#Wh

∼= Na′,b′#Wg,

as desired. So indeed ab = a′b′ if and only if Na,b
∼=st Na′,b′ . �

3. (4m−1)-connected 8m-manifolds with nontrivial homotopy stable class

In this section, for every m ≥ 1 we construct (4m−1)-connected 8m-manifolds with hyper-
bolic intersection form and with nontrivial homotopy stable class. Specifically, we describe
certain 8m-manifolds Ma,b, for positive integers a and b, and we will give bounds from above
and below on the size of the homotopy stable class of Ma,b in terms of a, b, and m. In
particular, for each m there are infinitely many choices of a, b such that |Sst

h (Ma,b)| > 1.
In contrast to the manifolds in the previous section, the homotopically inequivalent mani-

folds constructed here have isomorphic integral cohomology rings, but are not stably paral-
lelisable. We will detect that our manifolds are not homotopy equivalent using a refinement
of the mth Pontryagin class.

This section is organised as follows. In Section 3.1 we recall some facts about exotic spheres
and the J homomorphism, which we will need for the statement and the proof of Theorem 3.3.
We state this theorem in Section 3.2. In Section 3.3 we recall Wall’s classification of (4m−1)-
connected 8m-manifolds up to the action of the group of homotopy 8m-spheres, then in
Section 3.4 we determine the stable classification of such manifolds, again up to the action
of the homotopy spheres. Next, in Section 3.5 we construct the manifolds Ma,b appearing in
Theorem 3.3 and we prove this theorem in Section 3.6.

3.1. Exotic spheres and the J-homomorphism. Let Θn denote the group of h-cobordism
classes of homotopy n-spheres, that is closed, connected, oriented n-manifolds that are homo-
topy equivalent to Sn, with the group operation given by connected sum. By [KM63] these
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are finite abelian groups. We will briefly recall some of what is known about them, focussing
on dimensions n = 8m and n = 8m−1, for m ≥ 1.

Recall that bPn+1 ⊆ Θn is the subgroup of h-cobordism classes of homotopy n-spheres
which bound parallelisable (n+1)-manifolds. Kervaire and Milnor showed that this is a finite
cyclic group, and for n+1 = 4` > 4 the order of bPn+1 is given by a formula in terms
of Bernoulli numbers and the image of the J-homomorphism [KM63]. Following results
of Adams [Ada66] and Quillen [Qui71] on the J-homomorphism, this formula led to the
computation of |bP4`|; we will give more details shortly. The group bP4` is generated by the
boundary of Milnor’s E8 plumbing [Bro72, V], a 4`-manifold obtained from plumbing disc
bundles according to the E8 lattice.

Let

Jn : πn(SO)→ πsn

be the stable J-homomorphism [Whi42, §3], where πsn is the stable n-stem. Kervaire and
Milnor [KM63] showed that Θ8m

∼= coker J8m and that there is a short exact sequence

0→ bP8m → Θ8m−1 → coker J8m−1 → 0.

Later Brumfiel [Bru68] defined a splitting Θ8m−1 → bP8m and so proved that

Θ8m−1
∼= bP8m ⊕ coker J8m−1.

Consider a (4m−1)-connected 8m-manifold W with boundary ∂W ∈ Θ8m−1. Extending
work of Stolz [Sto85] and Burklund, Hahn and Senger [BHS19], Burklund and Senger [BS20,
Theorem 1.2] proved that [∂W ] ∈ bP8m, except possibly when m = 3, when they also show
that 2[∂W ] ∈ bP24. For our purposes later in this section, we also assume that W has
signature 0 and this ensures that ∂W is a multiple of the homotopy sphere denoted ΣQ by
Krannich and Reinhold [KR20, §2] (see just below Lemma 3.9 for the definition of ΣQ.)

Definition 3.1. Let bpm be the order of ΣQ in Θ8m−1.

Remark 3.2. The precise value of bpm can be calculated, assuming knowledge of the relevant
Bernoulli numbers, from [KR20, Lemma 2.7]. In particular, bpm | |bP8m|. This is clear when
m 6= 3, since ΣQ ∈ bP8m. It follows from a direct calculation when m = 3, given that the
projection of ΣQ to bP24 has order divisible by 2.

We now recall some facts about the J-homomorphism for context and later use. We start
with the stable J-homomorphism J4m−1 : π4m−1(SO)→ πs4m−1 and write

jm := | Im(J4m−1)|.

For example

j1 = 24, j2 = 240, and j3 = 504.

Later we will use the fact that 4 | jm, for m = 1, 2, as we see here. Since the stable homotopy
groups of spheres are finite, so is jm. Since π4m−1(SO) ∼= Z, in fact Im(J4m−1) ∼= Z/jm.
By [Ada66] (see e.g. [Lüc02, Theorem 6.26]), jm can be computed using the denominator of
the rational number Bm/4m, where Bm ∈ Q is the mth Bernoulli number, defined by the
generating function

et

et − 1
= 1− t

2
+

∞∑
n=1

(−1)n+1Bn
(2n)!

t2n.
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By [KM63, Section 7], |bP8m|/(24m−2(24m−1−1)) equals the numerator of the rational number
2B2m/m, from which one can compute |bP8m|.

Next we consider the unstable J-homomorphism, J4m−1,4m : π4m−1(SO4m)→ π8m−1(S4m),
which, along with the stable J-homomorphism, the Euler class e and the Hopf-invariant H,
fits into the following commutative diagram with exact rows:

(*) 0 // π4m−1(SO4m)
e⊕S //

J4m−1,4m

��

Z⊕ π4m−1(SO)

Id⊕J4m−1

��

// Z/2

=

��

// 0

0 // π8m−1(S4m)
H⊕S // Z⊕ πs4m−1

// Z/2 // 0

The commutativity of left hand square in (*) is equivalent to the classical statements that
e = H ◦ J4m−1,4m and that the J-homomorphism commutes with stabilisation [JW54, 1.2
& 1.3]. That e ⊕ S is injective with index 2 is reviewed in [Wal62, p. 171]. That the same
statements hold for H ⊕ S follows from Toda’s calculations in the exceptional cases m = 1, 2
[Tod62, V, (iii) & (vii)] and from Adam’s solution of the Hopf invariant 1 problem for m > 2
[Ada60]. For m > 2, both e(π4m−1(SO4m)) ⊆ Z and H(π8m−1(S4m)) ⊆ Z are index two
subgroups and stabilisation is a split surjection, [BM58, Ada60]. In particular this means
that for m > 2 the Euler class e is always even for rank 4m oriented vector bundles over S4m.
When m = 1, 2, the maps e and H are both onto and e = H ◦ J4m−1,4m ≡ S mod 2 [Wal62,
p. 171] and H ≡ S mod 2 by Toda’s computations mentioned above. These computations
show that for m = 1, H ⊕ S : π7(S4) ∼= Z⊕Z/12→ Z⊕Z/24 sends (x, y) 7→ (x, x+ 2y). For
m = 2, the map H⊕S : π15(S8) ∼= Z⊕Z/120→ Z⊕Z/240 is also given by (x, y) 7→ (x, x+2y).
It follows that H ≡ S mod 2 as asserted.

3.2. Estimating Sst
h (M). In this section we give upper and lower bounds for the homotopy

stable class of certain (4m−1)-connected 8m-manifolds. To state these bounds we require a
certain amount of notation.

Let m be a positive integer and let {a, b} be a pair of positive integers. Since the dimensions
8 and 16 are exceptional, we introduce the factor

cm :=

{
2 m = 1 or 2,

1 m > 2,

to handle the exceptional dimensions. We define

d := gcd(a, b)cm

and write

acm = da′ and bcm = db′

for some coprime a′, b′. Set

A := a′b′ = abc2
m/d

2.

For a positive integer n we let Pn be the set of prime factors of n:

Pn := {p ∈ N : p prime, p | n}.

We set jm = jm/ gcd(jm, d) and consider the sets PA, Pjm and their intersection

PA,m := PA ∩ Pjm
,
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the set of primes dividing both jm and A. We define the non-negative integers

qA := |PA| − 1 and qA,m := |PA,m| − 1.

Now we can state the main theorem of this section. Its proof will occupy the remainder of
the section.

Theorem 3.3. Let m be a positive integer and let {a, b} be a pair of positive integers such
that bpm | ab. If d = gcd(a, b) and jm = jm/ gcd(jm, d), then the closed, (4m−1)-connected
8m-manifolds Ma,b constructed in Section 3.5 satisfy the following:

(1) Ma,b has hyperbolic intersection form,
(2) |Sst(Ma,b)/Θ8m| = 2qA, and

(3) 2qA,m ≤ |Sst
h (Ma,b)| ≤

⌊
j
2
m+2jm+4

4

⌋
.

Adam’s work on jm [Ada66], a theorem of von Staudt and Clausen (see [IR90, Theorem
3, p. 233]) on the denominator of Bm, and a result of von Staudt on the numerator of Bm
(see [Mil58b, Lemma 2]) combine to show that

Pjm = {p prime : (p− 1) | 2m}.

Since 2 and 3 certainly lie in the latter set, |Pjm | ≥ 2. Now define

qm := |Pjm | − 1 ≥ 1.

By choosing a and b with some care, we obtain the following corollary, which implies Theo-
rem 1.2.

Corollary 3.4. Let m be a positive integer and let {a, b} be a pair of positive, coprime
integers such that bpm | ab and jm/cm | A = abc2

m. Then the closed, (4m−1)-connected
8m-manifolds Ma,b constructed in Section 3.5 have hyperbolic intersection form and satisfy
that 2 ≤ 2qm ≤ |Sst

h (Ma,b)|.

In particular, any coprime, positive a, b such that bpm · jm/cm divides A = abc2
m satisfies

the hypotheses of the corollary. Note that changing A does not alter the lower bound, which
is purely a function of m.

Proof. Since a and b are coprime, d = cm, jm = jm/cm and Pjm
= Pjm (using 4 | jm for m =

1, 2). Since jm/cm = jm | A we see that Pjm
⊆ PA and therefore PA,m = Pjm

= Pjm , so that

qA,m = qm. Since qm ≥ 1, the corollary follows from the lower bound in Theorem 3.3 (3). �

3.3. The almost-diffeomorphism classification of (4m−1)-connected 8m-manifolds.
In this section we recall the relevant part of Wall’s classification results for closed, (4m−1)-
connected 8m-manifolds. Recall that two closed manifolds M0 and M1 are almost diffeomor-
phic if there is a homotopy sphere Σ and a diffeomorphism f : M0#Σ→M1.

Let M be a closed, (4m−1)-connected 8m-manifold, and equip M with an orientation.
The intersection form of M is a symmetric bilinear form

λM : H4m(M)×H4m(M)→ Z.

The obstruction class of M is the homomorphism

SαM : H4m(M)→ π4m−1(SO) ∼= Z
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defined by representing a homology class x by a smoothly embedded sphere S4m
x ↪→M , whose

existence is ensured by Hurewicz theorem and [Hae61, Theorem 1(a)], and then taking the
homotopy class of the clutching map of the stable normal bundle of S4m

x . The map SαM
is the stabilisation of a map αM defined by taking the normal bundle of S4m

x . This will be
important in the proof of Theorem 3.7 below. As shown by Wall [Wal62, p. 171 & Lemma 2],
if m = 1, 2 then the existence of rank 4m vector bundles over S4m with odd Euler class
implies that the obstruction class is characteristic for the intersection form; i.e. if m = 1 or
2 then for all x ∈ H4m(M)

(†) λM (x, x) ≡ SαM (x) mod 2.

For m > 2, by Wall [Wal62, p. 171], there is no relation between SαM and λM . As also shown
in [Wal62, p. 171 & Lemma 2], since e = H ◦ J4m−1,4m and since for m > 2 we have that
H ◦ J4m−1,4m is even, the Euler number is always even and therefore λM (x, x) ≡ 0 mod 2
for all x ∈ H4m(M).

For the homotopy classification, we consider the stable J-homomorphism

J4m−1 : π4m−1(SO)→ Z/jm ⊆ πs4m−1.

The homotopy obstruction class of M , Sαh
M , is the composition of SαM with J4m−1,

Sαh
M := J4m−1 ◦ SαM : H4m(M)→ Z/jm.

Since j1 and j2 are divisible by 2 the congruence of (†) implies that if m = 1, 2 then

(1) λM (x, x) ≡ Sαh
M (x) mod 2.

We now define the invariants we use to classify (4m−1)-connected 8m-manifolds up to
almost diffeomorphism and homotopy equivalence.

Definition 3.5 (Extended symmetric form). Fix a homomorphism v : G → Z/2 from an
abelian group G to Z/2. An extended symmetric form over v consists of a triple (H,λ, p)
where:

(1) H is a finitely generated free Z-module;
(2) λ : H ×H → Z is a symmetric, bilinear form; and
(3) f : H → G is a homomorphism such that λ(x, x) ≡ v ◦ f(x) mod 2.

Two extended symmetric forms (H,λ, f) and (H ′, λ′, f ′) are equivalent if there is an isometry
h : (H,λ)→ (H ′, λ′) such that f ′ ◦ h = f : H → G.

In our applications to 8m-manifolds, the group G will either be the infinite cyclic group
π4m−1(SO) ∼= Z or the finite cyclic group Im(J4m−1) ∼= Z/jm. Due to the existence of rank
4m bundles over S4m with odd Euler number when m = 1, 2, and the non-existence of such
bundles for m ≥ 3, we set v to be nonzero for m = 1, 2 (recall 2 | j1 and 2 | j2) and zero
for m > 2. Hence for m > 2, (3) is just the requirement that λM be even. With these
conventions on v, the following assignments define extended symmetric forms.

Definition 3.6 (The extended symmetric forms of M). Let M be an oriented (4m−1)-
connected 8m-manifold.

(1) The smooth extended symmetric form of M is the triple(
H4m(M), λM , SαM

)
with G ∼= Z.
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(2) The homotopy extended symmetric form of M is the triple(
H4m(M), λM , Sα

h
M

)
with G ∼= Z/jm.

The following result is a direct consequence of classification results of Wall [Wal62, p. 170
& Lemma 8].

Theorem 3.7 (Wall). Let M1 and M2 be closed, oriented, (4m−1)-connected 8m-manifolds.
The manifolds M1 and M2 are:

(1) almost diffeomorphic, via an orientation-preserving diffeomorphism, if and only if
their smooth extended symmetric forms are equivalent;

(2) homotopy equivalent, via a degree one homotopy equivalence, if and only if their ho-
motopy extended symmetric forms are equivalent.

When applying these classifications, we will later have to factor out by the effect of the
orientation choice on the extended symmetric forms.

Proof. We start with the almost diffeomorphism classification (1). As mentioned above, the
homomorphism SαM is the stabilisation of a certain quadratic form, the extended quadratic
form of M , which is the map

αM : H4m(M)→ π4m−1(SO4m),

defined by representing a homology class by a smoothly embedded sphere S4m ↪→ M , and
then taking the classifying map in π4m−1(SO4m) of the normal bundle of the embedded
sphere. For all x, y ∈ H4m(M), [Wal62, Lemma 2] (and the fact that e = H ◦ J4m−1,4m)
proves that αM relates to the intersection form of M by the equations

λM (x, x) = e(αM (x)) and αM (x+ y) = αM (x) + αM (y) + λ(x, y)τ.

Here the map e: π4m−1(SO4m) → Z is the Euler number of the corresponding bundle
and τ ∈ π4m−1(SO4m) is the clutching function of the tangent bundle of S4m. Wall also
proved [Wal62, p. 170] that the triple (H4m(M), λM , αM ) is a complete almost diffeomor-
phism invariant of M . In fact, Wall stated his classification in terms of almost closed mani-
folds: compact manifolds with boundary a homotopy sphere. But this also yields the almost
diffeomorphism classification, as follows. If the extended symmetric forms of two closed
(4m−1)-connected 8m-manifolds are equivalent then by the almost closed classification the
manifolds are diffeomorphic after removing a ball D8m from each. Gluing the balls back in
compatibly with the diffeomorphism might change one of the manifolds by connected sum
with a homotopy sphere, but nonetheless the two closed manifolds are almost diffeomorphic.
On the other hand almost diffeomorphic manifolds are diffeomorphic after removing a ball
from each, and then by the classification the extended symmetric forms are equivalent.

As mentioned above, SαM := S ◦αM , where S : π4m−1(SO4m)→ π4m−1(SO) is the stabil-
isation homomorphism. The homotopy exact sequence of the fibration SO4m → SO4m+1 →
S4m shows that the kernel of S is generated by τ [Lev85, Lemma 1.3 and Theorem 1.4] and
since

e⊕ S : π4m−1(SO4m)→ Z⊕ π4m−1(SO)
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is injective by (*) it follows that the pair (λM (x, x), SαM (x)) =
(
e(αM (x)), S(αM (x))

)
∈

Z ⊕ π4m−1(SO) ∼= Z ⊕ Z determines αM (x) for all x ∈ H4m(M). The theorem now follows
from Wall’s almost diffeomorphism classification.

The proof of the homotopy classification is similar. By Wall [Wal62, Lemma 8], the triple
(H4m(M), λM , α

h
M := J4m−1,4m ◦ αM ) is a complete homotopy invariant of the manifolds

under consideration. Since e = HJ and

H ⊕ S : π8m−1(S4m)→ Z⊕ πs4m−1

is injective by (*), it follows that the pair (λM (x, x), Sαh
M (x)) =

(
H(αh

M (x)), S(αh
M (x))

)
∈

Z ⊕ πs4m−1 determines αh
M (x) for all x ∈ H4m(M). The theorem now follows from Wall’s

homotopy classification. �

3.4. Stable almost-diffeomorphism classification of (4m−1)-connected 8m-manifolds.
In this section we give the stable classification of closed (4m−1)-connected 8m-manifolds up
to connected sum with homotopy 8m-spheres. Define the non-negative integer dM by the
equation

SαM (H4m(M)) = dMZ.
Equivalently, dM is the divisibility of SαM ∈ H4m(M), where, since M is (4m−1)-connected,
we may regard SαM as an element of the group H4m(M) via the inverse of the evaluation
map ev : H4m(M) → Hom(H4m(M),Z), which is an isomorphism. In particular, it makes
sense to consider the class (SαM )2 ∈ H8m(M) ∼= Z.

Theorem 3.8. Two closed, oriented, (4m−1)-connected 8m-manifolds M and N with the
same Euler characteristic are almost stably diffeomorphic, via an orientation-preserving dif-
feomorphism, if and only if the following hold:

(1) dM = dN ,
(2) σ(M) = σ(N),
(3) 〈(SαM )2, [M ]〉 = 〈(SαN )2, [N ]〉.

Proof. First, we note that dM , the signature, and (SαM )2 are invariants of orientation pre-
serving almost stable diffeomorphisms, so one implication holds.

For the other implication we assume that M and N are such that dM = dN , σ(M) = σ(N),
and (SαM )2 = (SαN )2 and we show that M and N are stably diffeomorphic. The normal
(4m−1)-type of M and N is determined by d = dM = dN and is described as follows. Let d
be a non-negative integer. Let BO〈4m−1〉 → BO be the (4m−1)-connected cover of BO and
let p ∈ H4m(BO〈4m−1〉) ∼= Z be a generator. We regard ρd(p), the mod d reduction of p,
as a map ρd(p) : BO〈4m−1〉 → K(Z/d, 4m) and define BO〈4m−1, dM 〉 to be the homotopy
fibre of ρd(p). The normal (4m−1)-type of M and N is represented by the fibration given by
the composition

BO〈4m−1, d〉 → BO〈4m−1〉 → BO.

For brevity, use (Bd, ηd) to denote the fibration ηd : BO〈4m−1, d〉 → BO. We assert that M
and N admit unique normal (4m−1)-smoothings νM : M → Bd and νN : N → Bd. We prove
the assertion for M , as the proof for N is identical. Since M is 4m-connected, its stable
normal bundle νM : M → BO lifts (up to homotopy) uniquely to ν4m : M → BO〈4m〉. In
order to lift ν4m to Bd, we consider the long exact sequence (of pointed sets) of the fibration

0 = H4m−1(M ;Z/d)→ [M,Bd]→ [M,BO〈4m〉]→ H4m(M ;Z/d)→ · · · ,
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where on the left, we used [M,ΩK(Z/d, 4m)] = [M,K(Z/d, 4m− 1)] = H4m−1(M ;Z/d) = 0,
because M is 4m-connected. The assertion is now proved by noting that ν4m ∈ [M,BO〈4m〉]
maps to SαM ∈ H4m(M ;Z/d), which is zero by definition of the divisibility dM .

By [Kre99, Theorem 2], M and N are orientation preserving stably diffeomorphic if

[M,νM ] = [N, νN ] ∈ Ω8m(Bd, ηd).

Since homotopy 8m-spheres have a unique (Bd, ηd)-structure, there is a well-defined homo-
morphism Θ8m → Ω8m(Bd, ηd). Now the arguments in Wall’s computation of the Grothendieck
groups of almost closed (4m−1)-connected 8m-manifolds [Wal62, Theorem 2] show that there
is an exact sequence

(Ω) Θ8m → Ω8m(Bd, ηd)
(σ, (Sα)2)−−−−−−→ Z2,

where σ([M,νM ]) = σM and Sα2([M,νM ]) = (SαM )2([M ]). It follows that there is a homo-
topy 8m-sphere Σ such that [M#Σ, νM#Σ] = [N, νN ] ∈ Ω8m(Bd, η). Hence M#Σ and N are
stably diffeomorphic and so M and N are almost stably diffeomorphic. �

3.5. Construction of the manifolds Ma,b. In this section we construct the manifolds Ma,b

appearing in Theorem 3.3. Let a and b be positive integers such that bpm | ab. We will build
simply-connected, closed 8m-manifolds Ma,b with the cohomology ring of S4m × S4m by
attaching handles to an 8m-ball. We attach two 4m-handles hx and hy, diffeomorphic to
D4m ×D4m, to D8m using attaching maps φx, φy : S4m−1 × {0} → S8m−1 with linking num-
ber 1. Note that for m ≥ 1, 2-component links S4m−1 t S4m−1 ↪→ S8m−1 are classified up to
smooth isotopy by the linking number, an integer [Hae62, Theorem in Section 5]. There is
more data needed for the attaching maps, which for each 4m-handle corresponds to a choice
of framing for the attaching sphere S4m−1 ⊆ S8m−1. The framings that induce a given orien-
tation are in one to one correspondence with homotopy classes of maps [S4m−1, SO4m] where
the class of the constant map corresponds to the framing which extends over an embedded
4m-disc D4m ⊆ S8m−1. Recall from (*) that π4m−1(SO4m) ∼= Z ⊕ Z, detected by e ⊕ S
(although this map is not an isomorphism). We are attaching 4m-handles hx hy; let x and y
denote the corresponding classes in (4m)th homology and let ξx, ξy ∈ π4m−1(SO4m) be the
framings for the attaching maps.

Since we want λ(x, x) = 0, we require that e(ξx) = 0 but we are otherwise free to choose ξx.
Recall that cm = 2 if m = 1, 2 and cm = 1 if m> 2, fix an isomorphism π4m−1(SO) = Z
and choose ξx such that S(ξx) = acm. By the discussion following (*), we can find such a ξx
for any choice of a. Similarly, we attach the handle hy with e(ξy) = 0 and S(ξy) = bcm.
Again, we can find such a ξy for any b. After attaching the pair of 4m-handles, we write
W := Wa,b for the resulting compact 8m-manifold with boundary. Note that there is a
homotopy equivalence W ' S4m∨S4m. As above let x and y be generators of Z2 ∼= H4m(W )
and let {x∗, y∗} be the dual basis for Z2 ∼= H4m(W ) = H4m(W )∗. The manifold W = Wa,b

has smooth extended symmetric form given by(
H4m(W ), λW , SαW

)
=

(
Z2,

(
0 1
1 0

)
,

(
acm
bcm

)
: Z2 → Z

)
,

where the notation for SαW means that SαW (x) = acm and SαW (y) = bcm.
Alternatively, the construction thus far can be achieved by taking the two D4m-bundles

over S4m determined by ξx and ξy, and plumbing them together once.
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The boundary of Wa,b is a homotopy (8m−1)-sphere, which we denote by Σa,b. In partic-
ular, ∂W1,1 is by definition the homotopy sphere ΣQ from [KR20, §2]. More generally, ∂Wa,b

is given as follows.

Lemma 3.9. [∂Wa,b] = [abΣQ] ∈ Θ8m−1.

Proof. Recall from [Wal67, §17] the group A
〈4m〉
8m of bordism classes of (4m−1)-connected

8m-manifolds with boundary a homotopy sphere, where the bordisms are required to be h-
cobordisms on the boundary. Addition is via boundary connected sum. Taking the boundary

defines a homomorphism A
〈4m〉
8m → Θ8m−1, and the characteristic numbers σ and (Sα)2 of

(Ω) are also well-defined on A
〈4m〉
8m . Indeed, Wall [Wal62, Theorems 2 & 3] proved that

σ ⊕ (Sα)2 : A
〈4m〉
8m → Z2 is an injective homomorphism. Since Wa,b satisfies σ(Wa,b) = 0 and

(SαWa,b
)2 = 2abc2

m, we have that (SαW1,1)2 = 2c2
m and so

(SαWa,b
)2 = 2abc2

m = ab(SαW1,1)2 = (Sα\abW1,1
)2,

where the last equality used that (Sα)2 is a homomorphism. Since σ ⊕ (Sα)2 is injective,

Wa,b = \abW1,1 ∈ A
〈4m〉
8m . So ∂Wa,b and ∂(\abW1,1) = abΣQ are h-cobordant and therefore

diffeomorphic. �

From Lemma 3.9 and our assumption that bpm | ab, it follows that [Σa,b] = 0 ∈ bP8m, so
that there is a choice of diffeomorphism f : Σa,b → S8m−1. We write Ma,b,f = Wa,b ∪f D8m

for the closure of Wa,b built using a diffeomorphism f : Σa,b → S8m−1. We will also use Ma,b

to ambiguously denote any Ma,b,f . For any other choice of diffeomorphism f ′, Ma,b,f and
Ma,b,f ′ are almost diffeomorphic.

Let us record the values of the key invariants on Ma,b. The stable almost diffeomorphism
invariants of Ma,b are dMa,b

= gcd(a, b)cm, σ(Ma,b) = 0, and (SαMa,b
)2 = 2abc2

m. The
extended symmetric form of M := Ma,b is the same as that of W :(

H4m(M), λM , SαM
)

=

(
Z2,

(
0 1
1 0

)
,

(
acm
bcm

)
: Z2 → Z

)
.

This completes the construction of the manifolds Ma,b.

3.6. The proof of Theorem 3.3. Now that we have constructed the (4m−1)-connected
8m-manifolds Ma,b, we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. Let a and b be positive integers such that bpm | ab. By construc-
tion the oriented manifolds Ma,b have hyperbolic intersection form, so Theorem 3.3 (1) is
immediate.

As before write d := gcd(a, b)cm and define A := abc2
m/d

2. Let p1, . . . , pqA+1 be the prime-
power factors of A, which are powers of pairwise distinct primes. Then there are 2qA ways
to express A as a product yizi of coprime positive integers, counting unordered pairs {yi, zi}.
We consider the 8m-manifolds

{Mi := Mdyi,dzi}
2qA
i=1 .

For each i, dMi = d, σ(Mi) = 0, and 〈(SαMi)
2, [Mi]〉 = 2dyidzi = 2d2A = 2abc2

m. Therefore
the manifolds Mi are pairwise almost stably diffeomorphic by Theorem 3.8. A priori they
could not all lie in Sst(Ma,b), but the ambiguity of whether they are actually stably diffeomor-
phic can be removed by more carefully choosing the diffeomorphisms fi : Σi → S8m−1 used
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to glue on D8m in the construction of the Mi. By changing the choice of the identification
fi we can change Mi by connected sum with an exotic sphere of our choice. The Mi were
only determined up to this choice in our construction, so let us assume we have made this
consistently so that Mi ∈ Sst(Ma,b) for every i = 1, . . . , 2qA . In Sst(Ma,b)/Θ8m this choice of
the fi is in any case irrelevant.

When we discuss extended symmetric forms on Z2, we will always mean with respect to a
particular choice of basis. For Mi, with its fixed choice of fundamental class [Mi], we shall
use a basis with respect to which the intersection form is represented by H+(Z) = ( 0 1

1 0 ). We
have constructed the Mi so that with respect to such a basis SαMi : Z2 → Z is represented
by
( acm
bcm

)
with ab > 0 and cm ∈ {1, 2}.

The smooth extended symmetric forms of the Mi are pairwise distinct, since isometries of
the rank two hyperbolic intersection form can only change the sign and permute the basis
elements. The map SαMi : Z2 → Z is given by (dyi, dzi). Since the unordered pairs {dyi, dzi}
are pairwise distinct, by the almost diffeomorphism classification of Theorem 3.7 (1), the Mi

are pairwise distinct up to orientation-preserving almost diffeomorphism. We will be able
to deduce that |Sst(Ma,b)/Θ8m| ≥ 2qA once we have factored out by the effect of the choice
of orientation of the Mi. In other words we must show that there are also no orientation-
reversing almost diffeomorphisms from Mi to Mj , for i 6= j, or equivalently that there is no
orientation-preserving diffeomorphism Mi

∼= −Mj .
Changing the orientation of Mj changes the smooth extended symmetric form (with respect

to the same basis for H4m(M)) by altering the sign of the intersection form, but does not
affect SαMj . To see this, note that while changing the orientation of Mj changes the induced
orientation of the fibres of the normal bundle of an embedded sphere x, SαMj (x) ∈ π4m−1(SO)
is the clutching map of this normal bundle, and this is unaffected by the orientation of the
fibres.

The isometries from the rank 2 hyperbolic form H+(Z) = ( 0 1
1 0 ) to its negative −H+(Z)

consist of the self-isometries of the hyperbolic form, namely ± Id and ( 0 1
1 0 ), composed with

either
(

1 0
0 −1

)
or
(−1 0

0 1

)
. Thus an orientation-reversing almost diffeomorphism could identify

the smooth extended symmetric form characterised by (H+(Z),±{v, w}) with one of the
extended symmetric forms (−H+(Z),±{−v, w}) or (−H+(Z),±{v,−w}). But for both Mi

and −Mi, the corresponding pair of integers is ±{v, w} = ±{dyi, dzi}, where both elements
have the same sign. So our manifolds {Mi} are indeed distinct up to almost diffeomorphism.
This proves that |Sst(Ma,b)/Θ8m| ≥ 2qA .

Next we prove that |Sst(Ma,b)/Θ8m| ≤ 2qA . Any closed 8m-manifold M that is almost
stably diffeomorphic to Ma,b is also necessarily (4m−1)-connected, the divisibility of SαM
is d, and the intersection form is rank 2, indefinite, and even, and therefore either hyperbolic
or −H+(Z). If M and Ma,b are almost stably diffeomorphic then there is an orientation on
M such that M and Ma,b are almost stably diffeomorphic via an orientation-preserving stable
diffeomorphism. Use this orientation, and choose a basis for H4m(M) with respect to which
the intersection form of M is H+(Z). Observe that the manifolds Mi cover all possibilities
for SαM while keeping (SαM )2 a fixed multiple of the dual fundamental class. (If SαM =(−acm
bcm

)
, for example, then (SαM )2 = −2abc2

m < 0, whereas (SαMa,b
)2 = 2abc2

m > 0. This
would contradict that Ma,b and M are orientation-preserving almost stably diffeomorphic.) It
follows by Theorem 3.7 (1) that every such M is almost-stably diffeomorphic to one of the Mi,
and therefore |Sst(Ma,b)/Θ8m| ≤ 2qA as desired. This completes the proof of Theorem 3.3 (2).
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To prove (3), we need to estimate the size of the homotopy stable class of Ma,b from
above and below. We begin with the upper bound. As above, every closed 8m-manifold M
stably diffeomorphic to Ma,b has an orientation such that M has hyperbolic intersection form

and dM = d. The possibilities for SαhM , up to equivalence of extended symmetric forms,
are therefore given by an unordered pair of elements of Z/jm, both of which are divisible
by d. Such an element of Z/jm lies in the subgroup generated by gcd(jm, d), and so there
are jm = jm/ gcd(jm, d) possibilities. We assert that there are

jm(jm + 1)

2

such pairs. To see this, there are
(
jm
2

)
=

jm(jm−1)
2

choices with distinct elements (x, y), and

jm choices of the form (x, x). Then
jm(jm − 1)

2
+ jm =

jm(jm+1)
2

, which is the count asserted.

Next, we also factor out by the action of Z/2 on our set of unordered pairs which multiplies

both numbers by −1. In the case that jm is even, there are
jm
2

+1 fixed points of this action

of the form (x,−x), and also (0,
jm
2

) is a fixed point. Thus there are precisely
jm
2

+ 2 fixed

points of a Z/2 action on a set with
jm(jm+1)

2
elements. A short calculation then shows that

there are
j
2
m + 2jm + 4

4

orbits. A similar calculation for jm odd gives

(jm + 1)2

4
=
⌊
j
2
m + 2jm + 4

4

⌋
orbits. The right hand side is equal for both parities of jm, and gives our desired upper bound.
Note that this upper bound does not take into account the requirement for the product ab
to be constant within a stable diffeomorphism class.

It remains to prove that 2qA,m ≤ |Sst
h (Ma,b)|. As above let p1, . . . , pqA+1 be the prime-power

factors of A, which are powers of pairwise distinct primes. By reordering if necessary, assume
that p1, . . . , pqA,m+1 are the prime-powers of the form p` where p | jm. (It could be that the

highest exponent of p that divides jm is less than the highest exponent of p that divides A.)
Recall that d = gcd(a, b)cm and write

d′ := d ·
qA+1∏

ι=qA,m+2

pι and A′ :=

qA,m+1∏
ι=1

pι.

Note that d′A′ = dA. There are 2qA,m essentially distinct ways to express A′ as a product viwi
of coprime positive integers, counting unordered pairs {vi, wi}. We consider the 8m-manifolds

{Mi := Mdvi,d′wi
}2

qA,m

i=1 .

For each i, dMi = d, σ(Mi) = 0, and 〈(SαMi)
2, [Mi]〉 = 2dvid

′wi = 2dd′A′ = 2d2A = 2abc2
m.

Therefore the Mi are pairwise almost stably diffeomorphic by Theorem 3.8, so up to homotopy
equivalence they are all stably diffeomorphic. As above, the ambiguity of whether they are
actually stably diffeomorphic can be removed by more carefully choosing the diffeomorphisms
fi : Σ→ S8m−1 used to glue on D8m in the construction of the Mi. Let us assume once again
that we have made this choice consistently so that Mi ∈ Sst

h (Ma,b) for every i = 1, . . . , 2qA,m .
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Next we show that the Mi are distinct up to homotopy equivalence. For this, by Theo-
rem 3.7 we need to distinguish their homotopy extended symmetric forms, by showing that
the maps SαhMi

: Z2 → Z/jm are pairwise distinct, up to precomposing with an isometry
of the hyperbolic form, or to allow for the possibility of an orientation-reversing homotopy
equivalence, up to an isometry between the hyperbolic form and its negative. This means we
have to show that the unordered pair of elements of Z/jm determining SαhMi

and SαhMj
are

distinct up to changing signs.
Let Mi and Mj be two of our manifolds, for i 6= j. We will show that they are not

homotopy equivalent. First, gcd(d, jm) divides d, so divides dvi and d′wi. As above write
jm := jm/ gcd(d, jm). The map SαhMi

: Z2 → Z/jm factors as

SαhMi
: Z2 → Z/jm → Z/jm

for all i, where Z/jm → Z/jm is the standard inclusion sending 1 7→ gcd(d, jm). Define

d :=
d

gcd(d, jm)
and d

′
:=

d′

gcd(d, jm)
= d ·

qA+1∏
ι=qA,m+2

pι.

We obtain

SαhMi
=

(
dvi
d
′
wi

)
: Z2 → Z/jm.

It suffices to prove that for i 6= j the resulting pairs {dvi, d
′
wi} and {dvj , d

′
wj} are distinct,

up to signs and switching the orders. Note that gcd(d, jm) = 1 = gcd(d
′
, jm).

Let p be a prime dividing A′. Up to possibly changing the orders of vi and wi, and
of vj and wj , assume that p divides vi and vj . If so, p does not divide wi and wj , since
gcd(vi, wi) = 1 = gcd(vj , wj).

Now let q 6= p be a prime dividing A′ such that either:

(i) q divides wj but q does not divide wi; or
(ii) q divides wi but q does not divide wj .

Without loss of generality suppose that (i) holds. Then also q divides vi but q does not
divide vj , since both pairs (vi, wi) and (vj , wj) are coprime. There exists such a q, unless
qA,m = 0, in which case 2qA,m = 1 and we have nothing to prove anyway. So we can assume
that qA,m is positive and that such a q exists. The idea is that the primes p and q are chosen
so that they divide the same element of the unordered pair associated with the homotopy
extended symmetric form for Mi, but divide different elements of the unordered pair for Mj .
It is this distinction we want to detect.

We consider the images of the four elements dvi, d
′
wi, dvj , and d

′
wj of Z/jm under the

canonical surjections
ρp : Z/jm → Z/p and ρq : Z/jm → Z/q.

Since p and q divide jm and gcd(d, jm) = 1 = gcd(d
′
, jm), we know that p and q do not divide

d and do not divide d
′
. Therefore for the Z/p reductions we have

ρp(dvi) = 0, ρp(d
′
wi) 6= 0, ρp(dvj) = 0, and ρp(d

′
wj) 6= 0,

while for the Z/q reductions we have:

ρq(dvi) = 0, ρq(d
′
wi) 6= 0, ρq(dvj) 6= 0, and ρq(d

′
wj) = 0.
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We indicate one of these calculations briefly, that ρp(d
′
wi) 6= 0, to give the idea. If d

′
wi were

0 modulo p then for some a, b ∈ Z we would have ap = d
′
wi + bjm ∈ Z. But p | jm and so p

divides d
′
wi, which is a contradiction.

Note that switching the sign of an element in Z/jm preserves whether or not its image

under ρp or ρq is zero. Let us summarise the calculations above. For {dvi, d
′
wi}, one element

is zero under the reductions modulo p and q, while the other element is nonzero under both

reductions. On the other hand, for the pair {dvj , d
′
wj} we have shown that precisely one

element is zero under each of the modulo p and modulo q reductions. Switching the orders of
the elements and switching signs preserves these descriptions, and therefore Mi and Mj are
not homotopy equivalent. It follows that |Sst

h (Ma,b)| is at least 2qA,m , as desired. �

4. spinc structures on 4-manifolds

As explained in the introduction, the homotopy stable class is trivial for every closed,
simply-connected 4-manifold. However a parallel phenomenon occurs when one considers
equivalence classes of spinc structures on the tangent bundle. In this section we illustrate
this on S2 × S2.

For all n ≥ 2, the group Spinn is the connected double cover of SOn and the group Z/2
acts by deck transformations. The group Z/2 acts on U(1) ∼= S1 by complex conjugation.
We quotient out by the diagonal action on the product to obtain:

Spincn := U(1)×Z/2 Spinn

There are well-defined maps

U(1) Spincn
pr2 //pr1oo SOn

obtained as the composition of the double cover Spincn → U(1)× SOn with the projections.
There are natural inclusions Spincn ↪→ Spincn+1 and the stable spinc group is defined by

Spinc := colimn→∞ Spincn. There are also stable projections

U(1) Spinc
pr2 //pr1oo SO,

where SO is the stable special orthogonal group. We will use the same notation pr1, pr2 for
the induced maps on classifying spaces.

Definition 4.1. Let M be a closed, oriented n-manifold. A spinc structure on M is a lift

B Spinc

pr2
��

M

s
;;

τM // BSO

of the stable tangent bundle’s classifying map to B Spinc.

For more background on spinc structures on 4-manifolds, we refer to e.g. [GS99, Section 2.4.1]
and [Sco05, Sections 10.2 & 10.7].

Lemma 4.2 ([GS99, Prop. 2.4.16]). Every oriented 4-manifold admits a spinc structure.
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Proof. In [GS99], spinc structures on 4-manifolds are defined by using B Spinc4 in place of
B Spinc, and [GS99, Prop. 2.4.16] proves the existence of a lift of the classifying map of the
(unstable) tangent bundle to B Spinc4. Composing with the maps to the colimit, this implies
the existence of a spinc-structure in the sense of Definition 4.1. �

Definition 4.3 (Equivalence of spinc structures). Let M be a closed, oriented 4-manifold.

(1) Two spinc structures s1 and s2 on M are equivalent if there is an orientation-preserving
diffeomorphism f : M → M such that s1, s2 ◦ f : M → B Spinc are homotopic over
BSO; i.e. there is homotopy K and a commutative diagram

B Spinc

pr2
��

M × I

K
99

τM×I // BSO

where K restricts to s1 on M × {0} and s2 ◦ f on M × {1}.
(2) Two spinc structures s1 and s2 are homotopic if they are equivalent as in the previous

item, with f = IdM .

Recall that the projection onto the first component gives a compatible collection of maps
pr1 : B Spincn → BU(1), n ∈ N. Therefore, passing to the colimit and keeping the same
notation, we obtain a map pr1 : B Spinc → BU(1).

Definition 4.4. Via the map pr1 : B Spinc → BU(1), a spinc structure s : M → B Spinc on
a 4-manifold M determines a line bundle Ls. The first Chern class of s is defined by

c1(s) := c1(Ls) ∈ H2(M).

Noting that BU(1) is a K(Z, 2), c1(s) corresponds to pr1 ◦s : M → BU(1) under the
isomorphism H2(M) ∼= [M,BU(1)]. The map pr1 can be interpreted as a determinant,
and Ls is called the determinant line bundle of s. The next lemma follows from [GS99,
Proposition 2.4.16].

Lemma 4.5. Let M be a closed, oriented 4-manifold.

(i) For every spinc structure s on M , reduction modulo two is such that:

H2(M)→ H2(M ;Z/2)

c1(s) 7→ w2(M),

where w2(M) is the second Stiefel-Whitney class.
(ii) There is a transitive action of H2(M) on the set of homotopy classes of spinc structures

on M , such that for x ∈ H2(M) we have

c1(x · s) = c1(s) + 2x ∈ H2(M).

(iii) If H1(M) is 2-torsion free, then this action is free.

Proof. As mentioned during the proof of Lemma 4.2, in [GS99] spinc structures are defined
by using B Spinc4 in place of B Spinc and therefore the Chern class of a spinc-structure is
defined using pr1 : B Spinc4 → BU(1). However, since the map B Spinc4 → BU(1) factors
through B Spinc, both definitions of the Chern class coincide and so the lemma follows from
[GS99, Proposition 2.4.16]. �
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As a consequence every characteristic cohomology class y ∈ H2(M) can be realised as the
first Chern class of some spinc structure on M , and if H1(M) is 2-torsion free then this spinc

structure is uniquely determined by y. Here recall that y being characteristic means that
〈x ∪ x, [M ]〉 ≡ 〈x ∪ y, [M ]〉 mod 2 for every x ∈ H2(M).

The next lemma is immediate from the fact that the Chern class is an invariant of a spinc

structure, and is natural.

Lemma 4.6. If two spinc structures s1 and s2 on a closed, oriented 4-manifold M are equiva-
lent, then there is an isometry of the intersection form on H2(M) sending c1(s1) to c1(s2). �

To define stable equivalence of spinc structures, fix once and for all the preferred spinc

structure sg on Wg := #gS2 × S2, to be the spinc structure with c1(sg) = 0 ∈ H2(Wg). Such
a spinc structure exists by Lemma 4.5.

Definition 4.7 (Stable equivalence of spinc structures). Two spinc structures s1 and s2 on
a closed, oriented 4-manifold M are stably equivalent if there exists g ∈ N0 such that the
induced spinc structures on M#Wg, extending s1 and s2 using the fixed spinc structure sg on
Wg, are equivalent.

The stable classification of spinc structures s on simply-connected 4-manifolds M is analo-
gous to the almost stable classification of (4m−1)-connected 8m-manifolds from Theorem 3.8.

We will want to apply Kreck’s stable diffeomorphism theorem [Kre99, Theorem C], with
appropriate 1-smoothings. In particular, a 1-smoothing has to be 2-connected. While we will
work with simply-connected 4-manifolds, so π1(M) = 0 = π1(B Spinc), the mapM → B Spinc

classifying a spinc structure need not be surjective on π2. To mitigate this we make the
following definition.

Given (M, s) we define the divisibility d(s) ∈ N0 of c1(s) by the equation

c1(s)(H2(M)) = d(s)Z.
Let B Spinc(d) be the homotopy fibre of the mod d spinc first Chern class, so that there is a
fibre sequence

B Spinc(d)
π−→ B Spinc → K(Z/d, 2).

By construction, π : B Spinc(d)→ B Spinc is a fibration, and the universal stable bundle over
B Spinc pulls back to a stable bundle over B Spinc(d).

Definition 4.8. Let M be a closed, oriented n-manifold. A spinc(d) structure on M is a lift

B Spinc(d)

pr2 ◦π
��

M

s(d)
99

τM // BSO

of the stable tangent bundle’s classifying map to B Spinc(d). We denote a manifold with a

B Spinc(d)-structure by (M, s(d)) and the corresponding bordism groups by Ω
Spinc(d)
∗ .

Lemma 4.9. The following assertions hold:

(1) π2(B Spinc(d)) = Z for d 6= 0 and π2(B Spinc(d)) = 0 for d = 0;
(2) if (M, s) is a Spinc-manifold, then M is a Spinc(d)-manifold for d := d(s) and the

map s(d) : M → B Spinc(d) is 2-connected.
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Proof. We have π2(B Spinc) ∼= Z, and so the long exact sequence of a fibration in homotopy
groups yields

0 = π3(K(Z/d, 2))→ Z→ Z � Z/d = π2(K(Z/d, 2)) −→ 0.

Since also π1(B Spinc) = 0 we have that B Spinc(d) is 1-connected and π2(B Spinc(d)) ∼= Z
for d 6= 0. A similar calculation shows that π2(B Spinc(0)) = π2(B Spin) = 0. In fact it
then follows from Whitehead’s theorem that the map B Spin → B Spinc(0), obtained from
factoring the canonical mapB Spin→ B Spinc throughB Spinc(0), is a homotopy equivalence.
This concludes the proof of the first assertion.

We now assume that (M, s) is a Spinc-manifold and prove the second assertion. The first
point follows by observing that in the exact sequence

[M,B Spinc(d)]→ [M,B Spinc]→ [M,K(Z/d, 2)] = H2(M ;Z/d),

the spinc structure s ∈ [M,B Spinc] is mapped to zero, by definition of d(s). It only remains
to show that s(d) is 2-connected. Since this is clear for d = 0, we assume that d 6= 0. As we
know that π2(B Spinc) = Z and π2(B Spinc(d)) = Z, the long exact sequence of the fibration
and the definition of d = d(s) imply that Im(s∗) = dZ ⊆ Z = π2(B Spinc) and therefore s(d)
is surjective on π2, as required. �

Our aim is now to construct an injective map Ω
Spinc(d)
∗ → Z ⊕ Z. The first component of

this map will be the signature, while the second will arise as a characteristic number obtained
from s(d) : M → B Spinc(d) by pulling back a universal class c1/d ∈ H2(B Spinc(d)) that we
now define. For d 6= 0, Lemma 4.9 implies that H2(B Spinc(d)) is an infinite cyclic group. It
is generated by a class c1/d ∈ H2(B Spinc(d)) such that the pullback π∗(c1) of the spinc first
Chern class, satisfies

($) d
(
c1/d

)
= π∗(c1) ∈ H2(B Spinc(d)).

For d = 0, H2(B Spinc(0)) = H2(B Spin) = 0, and we set c1/d = 0. As is conventional for
characteristic classes, given a Spinc(d)-structure s(d) : M → B Spinc(d) we write c1/d(s(d)) :=
s(d)∗(c1/d) ∈ H2(M).

Lemma 4.10. There is an injective homomorphism

Θ: Ω
Spinc(d)
4 → Z⊕ Z

[N, s(d)] 7→
(
σ(N), 〈(c1/d(s(d)))2, [N ]〉

)
.

Proof. The given map is a homomorphism, and is a bordism invariant because the signature
is bordism invariant, and because c2

1 is a characteristic number and therefore so is (c1/d)2.
It remains to prove injectivity of Θ. Let (M, s(d)) be a spinc(d)-manifold with vanishing

signature and (c1/d(s(d)))2 = 0. Since π1(B Spinc(d)) = 0, after preliminary surgeries over
B Spinc(d) we may assume that M is simply-connected. Since σ(M) = 0, the homeomorphism
classification of smooth simply-connected 4-manifolds [Fre82] means that we can assume that
M is homeomorphic to one of the following model manifolds:

M ∼=TOP

{
Wg d even,

Xg d odd,
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where Xg := #gS2×̃S2. In other words M is a possibly exotic Wg or Xg. Now, exotic
pairs of simply-connected 4-manifolds are h-cobordant [Wal64, Theorem 2], and the spinc(d)-
structure on M propagates along an h-cobordism to a spinc(d) structure on either Wg or Xg,
as appropriate. Hence we may assume that (M, s(d)) is diffeomorphic to either (Wg, s

′
g(d)) or

(Xg, s
′′
g(d)) for some spinc(d)-structures s′g(d) or s′′g(d). Now, M has a standard coboundary

N , ∂N = M , where

N ∼=

{
Yg d even,

Zg d odd.

Here Yg := \gD3 × S2 and Zg := \gD3×̃S2, where D3×̃S2 → S2 is the nontrivial bundle.
By assumption (c1/d(s(d)))2 = 0 and it follows that c1/d(s(d)) ∈ L, for some lagrangian
L ⊆ H2(M). Now, the automorphisms of the intersection form act transitively on the set of
lagrangians (see for example [Wal64, pp. 144-5]), and Wall [Wal64, p. 144] also showed that
every isometry of the intersection form of H2(M) is realised by a diffeomorphism. Hence we
may assume that c1/d(s(d)) ∈ H2(M) lies in the standard lagrangian of H2(M), and so is
the restriction to the boundary of c for some c ∈ H2(N). Since H2(N) → H2(M) is onto a
summand, it follows that N admits a spinc(d)-structure sN (d) that restricts to s(d). Hence
(N, sN (d)) is a spinc(d) null-bordism of (M, s), and so Θ is indeed injective. �

Next, using Lemma 4.10 we deduce the stable classification of spinc structures on simply-
connected 4-manifolds.

The fibration sequence defining B Spinc(d) gives rise to an exact sequence

[M,ΩK(Z/d, 2)]→ [M,B Spinc(d)]→ [M,B Spinc]→ [M,K(Z/d, 2)].

If M is simply-connected then [M,ΩK(Z/d, 2)] ∼= [M,K(Z/d, 1)] ∼= H1(M ;Z/d) = 0, so if a
lift of Spinc structure s to a spinc(d) structure s(d) exists, then it is essentially unique.

A spinc(d) structure s(d) on M induces a spinc(d) structure on M#Wg, for any g: as in
Definition 4.7 we extend the associated Spinc(d) structure on M by the spinc(d) structure
on Wg with c1 = 0. By the previous paragraph, since Wg is simply connected, there is an
essentially unique such Spinc(d) structure on Wg. Then a lift to a spinc(d) structure on M
determines such a lift on M#Wg. We can therefore define stable equivalence of spinc(d)
structures. The definition is identical to the definition for spinc(d) structure, just replacing
Spinc with Spinc(d) throughout Definition 4.3 (1) and Definition 4.7.

Theorem 4.11. Let M be a closed, oriented, simply-connected 4-manifold. Two spinc

structures s1 and s2 on M are stably equivalent if and only if d(s1) = d(s2) ∈ N0 and
c1(s1)2 = c1(s2)2 ∈ H4(M).

Proof. For the forward direction, the square of the Chern class and its divisibility are pre-
served by stable equivalence because we fixed the spinc structure on Wg to be the structure
with trivial first Chern class, and because equivalence of spinc structures preserve Chern
numbers and the divisibility.

For the reverse direction, by Lemma 4.10, for a fixed 4-manifold M , two spinc structures
s1 and s2 on M with d(s1) = d(s2) = d determine B Spinc(d)-structures s1(d) and s2(d),

and therefore elements of Ω
Spinc(d)
4 . Since c1(s1)2 = c1(s2)2, it follows that (c1/d(s1(d)))2 =

(c1/d(s2(d)))2: for d = 0 this is automatic; for d 6= 0 apply π∗ to c1(s1)2 = c1(s2)2 and use ($).
Therefore, since σ(M) is independent of tangential structures, by Lemma 4.10 (M, s1(d))
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and (M, s1(d)) are bordant over B Spinc(d). Then we apply Kreck’s stable diffeomorphism
theorem [Kre99, Theorem C], which in the current situation implies that Spinc(d) structures
on M are stably equivalent if they are bordant. Here we use that the maps M → B Spinc(d)
are 1-smoothings by Lemma 4.9. Via π : B Spinc(d) → B Spinc, a stable equivalence of
Spinc(d) structures determines a stable equivalence of Spinc structures. �

Now we are ready to prove the main result of this section. Let C ∈ Z be such that |C| ≥ 16
and 8 | C. Define P (C) := |PC/8|, namely the number of distinct primes dividing C/8. We

consider S2×S2 with a fixed orientation. This determines an identification H4(S2×S2) = Z.

Theorem 4.12. For every C ∈ Z with |C| ≥ 16 and 8 | C, there are n := 2P (C)−1 stably
equivalent spinc structures s1, . . . , sn on S2 × S2 with c1(si)

2 = C ∈ H4(S2 × S2) = Z, that
are all pairwise inequivalent.

Proof. Let M := S2×S2. Let x, y ∈ H2(M) ∼= Z2 be generators dual to [pt×S2] and [S2×pt]
respectively. So xy = 1 ∈ H4(M) while x2 = y2 = 0. Henceforth we identify H4(M) ∼= Z.
Let Q := C/8. There are P (C) prime powers dividing Q. Up to switching the order and

multiplying both by −1, there are 2P (C)−1 ways to write Q as a product of coprime integers
Q = q1q2. For each such factorisation, let si be a spinc structure with

c1(si) = 2q1x+ 2q2y.

Such spinc structures exist by Lemma 4.5: every characteristic element of H2(M) can be
realised as the first Chern class of some spinc structure. Note that

c1(si)
2 = 8q1q2 = 8Q = C ∈ Z = H4(S2 × S2)

and d(si) = 2 for every i. Thus by Theorem 4.11, all the si are stably equivalent to one
another. But as we saw in the proof of Proposition 2.2 there is no isometry of the intersection
pairing of M that sends (2q1, 2q2) to (2q′1, 2q

′
2) in H2(M) ∼= Z2 for distinct unordered pairs

{q1, q2} and {q′1, q′2}. By Lemma 4.6 it follows that the {si} are pairwise inequivalent spinc

structures. �
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