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Abstract. For ` > 1, we develop L(2)-signature obstructions for (4` − 3)-dimensional
knots with metabelian knot groups to be doubly slice. We construct an infinite family
knots on which our obstructions are non-zero, but for which double sliceness is not
obstructed by any previously known invariant.

1. Introduction

All manifolds considered in this article are topological and submanifolds are the images
of locally flat embeddings (unless otherwise stated). An n-knot is an oriented submanifold
of Sn+2 homeomorphic to Sn. An n-knot is slice if it is ambiently isotopic to the equatorial
cross section of some (n + 1)-knot J , and is moreover doubly slice if J may be taken to
be the (n+ 1)-dimensional unknot.

For n > 1, the question of which knots are slice is considered solved. All even-
dimensional knots are slice [Ker65], and odd-dimensional knots with n > 1 are slice if
and only if they are algebraically slice (Definition 5.9) [Lev69]. Kervaire and Levine
worked in the smooth category, but after Marin provided topological transversality and
Kirby and Siebenmann proved that codimension two locally flat embeddings have normal
bundles, the results of Kervaire and Levine also apply in the topological category.

In contrast the doubly slice problem is unsolved in every dimension. This fact is partic-
ularly striking for n > 1, considering the effectiveness of the techniques of classical Surgery
Theory for studying codimension 2 embedding problems. The first stage to the Kervaire-
Levine solution is to show that every n-knot K with n > 1 is concordant to a knot with
knot group Z. Because this can always be done, whether such a knot is slice has nothing to
do with the particular knot group and only depends on the abelianisation. While similar
abelian invariants do obstruct double sliceness, no such general simplification is possible
for the doubly slice problem. This fact was first exploited by Ruberman [Rub83, Rub88]
to provide examples in every dimension of algebraically doubly slice knots that are not
doubly slice. These use the existence of non abelian representations of some knot groups,
in the manner of the Casson-Gordon invariants [CG86]. The effectiveness of these ob-
structions highlights an interesting similarity between the high-dimensional doubly slice
problem and the low-dimensional slice problem. In this paper we continue the study of
non abelian doubly slice obstructions. Our main theorem is the following.

Theorem 1.1. For all ` > 1, there exists an infinite family of mutually non ambiently
isotopic, non doubly slice (4`− 3)-knots {Ki}, such that for each Ki:

(1) There is a Z[Z]-homology equivalence between the exterior of Ki and the exterior of
a doubly slice knot J , that is the identity on the boundary, so particular preserves
meridians.

(2) Ruberman’s Casson-Gordon invariants do not obstruct Ki from being doubly slice.
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Point (1) implies that the knots Ki have hyperbolic Seifert and Blanchfield pairings,
so are algebraically doubly slice in the sense of Sumners [Sum71]. In particular every Ki

is slice. Points (1) and (2) combine to show that no previously known obstruction could
detect the fact that these knots are not doubly slice.

Metabelian groups, L(2) signature obstructions and concordance. Recall that
for a group G, the ith derived subgroup G(i) is defined inductively by G(0) := G and
G(i+1) := [G(i), G(i)]. We say a group G is metabelian if G(2) = 0. In other words, a group
is metabelian if it has abelian commutator subgroup.

The classical algebraic concordance invariants used by Levine [Lev69] rely only on
the representation of the knot group given by abelianisation. The abelianisation of a
group is the first subquotient of the derived series of the group. For 1-knots, it is now
known that each subquotient of the derived series of the knot group can be used to
provide obstructions beyond algebraic concordance [COT03]. In this way the topological
knot concordance group can be filtered. The first examples of non abelian concordance
obstructions were the Casson-Gordon invariants [CG86], which may be interpreted as
metabelian-level obstructions in the Cochran-Orr-Teichner filtration of the (topological)
knot concordance group [COT03, §9].

To obstruct deeper stages of the filtration, Cochran, Orr and Teichner developed the
use of L(2) signature defects, also called L(2) ρ-invariants. The use of L(2) cohomology for
the study of non compact manifolds has a long history, for which we refer the reader to
the book of Lück [Lüc02]. The use of these techniques to study knot concordance began
with the work of Cochran-Orr-Teichner, where the non compact manifold in question is
the covering space of the knot exterior corresponding to a representation of the the knot
group to an infinite group. These techniques were further developed by Cha-Orr and
by Cha [CO12, Cha14]. Since Cochran-Orr-Teichner, these ideas have been successfully
applied to the study of concordance of 1-knots by many authors, including [Kim05],
[CK08], [CHL09], [CHL11], and [Fra13]. Particularly relevant to this paper is the work of

Taehee Kim [Kim06], who used L(2) ρ-invariants to obstruct double sliceness of 1-knots.
Inspired by these techniques, and by the work of Ruberman, this paper investigates

further applications of low-dimensional slice obstructions to the high-dimensional doubly
slice problem. We will focus on n = 4`− 3, where ` > 1. When the fundamental group of
the knot complement is metabelian, we develop new obstructions to being doubly slice,
based on L(2) ρ-invariants, and analogous to Kim’s obstructions [Kim06]. We use Wall
realisation to produce an infinite family of non isotopic knots in dimensions 4` − 3 > 1.
The knots in this family are obstructed from being doubly slice by our invariants. By
making careful choices in our construction, we prove that our knots cannot be shown to
be non doubly slice by any previous method.

Further questions. The most classical obstruction to double sliceness is algebraic dou-
ble sliceness (Definition 5.9), which is an abelian obstruction. In Section 5 we will dis-
cuss abelian obstructions to double sliceness more generally, proving that (1) implies the
knots Ki from Theorem 1.1 are algebraically doubly slice in the stronger algebraic sense
of [Lev83] and in the stronger algebraic sense of [Ors17]. The subject of this paper is
the existence of doubly slice obstruction beyond the abelian, but (stepping backwards
a little) the class of knots for which even these strong algebraic doubly slice conditions
characterise double sliceness is still unknown. More precisely the following is open.
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Question 1.1. Is an algebraically doubly slice knot with knot group Z necessarily doubly
slice? Is an algebraically doubly slice knot strongly algebraically doubly slice?

There are two natural generalisations of the results of this paper. They both present
significant technical challenges.

Question 1.2. When n 6≡ 1 (mod 4), do there exists strongly algebraically doubly slice
n-knots with metabelian knot groups that are not doubly slice but for which Ruberman’s
invariants are ineffective for detection?

Question 1.3. Can further subquotients of the derived series of the knot group be ex-
ploited to obstruct double sliceness high-dimensionally?

The challenge in answering Question 1.2 is that in these dimensions modulo 4, there is
no developed obstruction theory coming from L(2) cohomology.

Considering the filtration framework established in [COT03], answering Question 1.3
seems like another natural next step. But that the knot group was metabelian was impor-
tant to the proof of our main obstruction Theorem 3.6 because of the way the knot group
interacts with the slice disc groups. The challenge of extending our techniques beyond
the metabelian level is that the fundamental groups of the exteriors of complementary
slice discs for a doubly slice knot do not necessarily interact with representations of the
knot group in such a natural way.

Acknowledgements. We thank Stefan Friedl and Matthias Nagel for helpful discus-
sions.

2. Conventions and preliminary results

For X a manifold and Y ⊂ X a proper, neat submanifold of codimension either 1 or 2
there is an open tubular neighbourhood; see [KS77] for ambient dimension 6= 4 and [FQ90,
Section 9.3] for dimX = 4. Denote such a neighbourhood by νY ⊂ X.

For G a group, the group ring Z[G] has an involution λ 7→ λ defined by linearly
extending the involution g := g−1. For a left Z[G]-module A, let A denote the right Z[G]-
module with the same underlying abelian group and with the Z[G]-action a · λ = λ · a.
Modules are left modules unless specified otherwise. Write Hermr×r(Z[G]) for the group of
r×r matrices U with values in Z[G] and such that UT = U . We say U ∈ Hermr×r(Z[G]) is
non-degenerate if the corresponding endomorphism of (Z[G])r is injective, and nonsingular
if it is moreover an isomorphism.

Let K be an n-knot. Write XK := Sn+2 \ νK(Sn) for the exterior. Write πK :=
π1(XK) for the group of the knot. Write MK := XK ∪S1×Sn S1 × Dn+1 for the surgery
manifold. When n = 1, this glueing is specified by using the 0-framing of the knot.
When n > 1, any homeomorphism of S1 × Sn extends over S1 × Dn+1, so MK is well-
defined up to homeomorphism. Indeed, Gluck, Browder and Kato [Glu62, Bro67, Kat69]
showed that for every n ≥ 2, the group of pseudo-isotopy classes of PL-homeomorphisms
of S1 × Sn is (Z/2)3, generated by reflections in the Sn and S1 factors, and the Gluck
twist (θ, x) 7→ (θ, ρ(θ) · x), with ρ : S1 → SO(n+ 1) a homotopically essential map. Each
of these maps extends over S1 × Dn+1, and so every PL-homeomorphism of S1 × Sn

extends. A homeomorphism f : M → N between closed PL manifolds is homotopic
through homeomorphisms to a PL homeomorphism if and only if the Casson-Sullivan
invariant κ(f) ∈ H3(M ;Z/2) vanishes [RCS+96]. For n = 4`− 3, H3(S1 × Sn;Z/2) = 0,
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so every homeomorphism is homotopic to a PL homeomorphism. It follows that every
homeomorphism of S1 × Sn extends to a homeomorphism of S1 ×Dn+1.

By Alexander duality, XK has the homology of S1 and hence the abelianisation π1(XK)→
Z determines an infinite cyclic cover XK → XK . The inclusion XK ⊂ MK induces an
isomorphism π1(XK) ∼= π1(MK) and so there is also an infinite cyclic cover MK →MK .
With respect to these covers, we take homology with coefficients in Z[Z] and, as MK is
of the form MK

∼= XK ∪R×Sn R×Dn+1, we have that H∗(XK ;Z[Z]) ∼= H∗(MK ;Z[Z]).
For a Z[Z]-module A, let TZA ⊂ A denote the Z-torsion submodule and let FA :=

A/TZA denote the Z-torsion free quotient module.

Definition 2.1. Write S := {p(t) ∈ Z[t, t−1] | p(1) = ±1} ⊂ Z[Z] for the Alexander
polynomials.

A finitely generated Z[Z]-module A is torsion with respect to S if there exists p ∈ S such
that pA = 0. The module A is torsion with respect to S if and only multiplication by 1−t is

an automorphism of A; see e.g. [Ors17, Lemma 4.5]. The reduced homology H̃∗(XK ;Z[Z])
is torsion with respect to S; see [Lev77, 1.3]. Writing Q(Z) for the field of fractions of Z[Z],

this implies that the reduced homology H̃∗(MK ;Q(Z)) ∼= H̃∗(XK ;Q(Z)) = 0. We will
call a finitely generated Z[Z]-module chain complex S-acyclic if the homology is torsion
with respect to S.

A slice disc for an n-knot K is a proper, neat submanifold (D,K) ⊂ (Dn+3, Sn+2),
homeomorphic to (Dn+1, Sn). Recall that K is slice if and only if K is the boundary of
a slice disc, and that K is doubly slice if and only if K is the boundary of two slice discs
D± that are complementary, in the sense that D+ ∪K D− is unknotted in Sn+3.

2.1. Cyclic branched covers of n-knots. Let r ∈ N and let K be an n-knot. De-
note by Σr(K) the r-fold cyclic branched cover of Sn+2 branched over K. Later in this
paper we would like to use several results about cyclic branched covers from the low-
dimensional topology literature. We now state these results and check they still apply
high-dimensionally.

Notation 2.2. Given a group homomorphism ξ : π → G to a finite group G, define
ξ′ : π → G → U(C[G]), the canonically induced unitary representation given by left
multiplication. Note C[G] is a finite dimensional vector space of dimension |G|.

We record a straightforward lemma for later use.

Lemma 2.3. Let π be group and T be a finitely generated Z[π]-module. Suppose ϕ : π → G
is a homomorphism to a finite group. Then there is a natural decomposition of complex
vector spaces

C[G]⊗ϕ′ T ∼=
∑
α

V dim(α)
α ⊗α◦ϕ′ T

where α ranges over all conjugacy classes of complex irreducible unitary representations
of G, and Vα is the irreducible representation at α.

Proof. The left regular representation for a finite group G is conjugate to the sum of
representations

C[G] ∼=
∑
α

V dim(α)
α .

�



DOUBLY SLICE KNOTS AND METABELIAN OBSTRUCTIONS 5

For the convenience of the reader, we provide a proof of the following well known fact,
originally observed by Fox [Fox56]. We were not able to find a complete proof in the
literature (Gordon [Gor72, Gor78] comments that Fox’s proof requires modification), so
we provide one here.

Proposition 2.4. Suppose 0 → P
A−→ P → T → 0 is a short exact sequence of Z[t, t−1]-

modules such that P is finitely generated and free. Let Cr = {e, x, . . . , xr−1} denote the
cyclic group of order r ∈ N, and define a homomorphism ϕ : Z〈t〉 → Cr by ϕ(t) = x.
Then Z[Cr]⊗ϕ T , considered as an abelian group, has order

±
r−1∏
j=0

det(A(exp(2πij/r))),

where if this product is 0, we interpret this as infinite order.

Proof. Observe that, writing k for the free rank of P and choosing a free basis, A can be
written as a sum A(t) =

∑∞
−∞Ait

i for some Ai ∈ GL(k,Z), such that Ai is nonzero for
only finitely many i. We will use this later.

The presentation of T determines an exact sequence of Z[Cr]-modules

Z[Cr]⊗ϕ P
Id⊗ϕA−−−−→ Z[Cr]⊗ϕ P → Z[Cr]⊗ϕ T → 0.

Choose an isomorphism Z[Cr] ∼= Zr of free Z-modules. We may now view Id⊗ϕA as an
endomorphism of a rank rk free abelian group. The determinant of this endomorphism
is nonzero if and only if Z[Cr] ⊗ϕ T is a finite abelian group, in which case the absolute
value of the determinant computes the order of the group.

We calculate this determinant by passing to complex coefficients and considering C[G]⊗ϕ
P ∼= Cr ⊗ϕ P . Apply Lemma 2.3 with π = Z, G = Cr, noting that the irreducible uni-
tary representations of Cr are the complex 1-dimensional representations χ0, χ1, . . . , χr−1

where χj(x) = ωjr . We write ϕj = χj ◦ ϕ′. Thus as an endomorphism of the vector space
Cr ⊗ϕ P , we calculate that

det(Id⊗ϕA) = det
(

Id⊗ϕ
(∑

i

Ait
i
))

= det
(∑

i

xi ⊗ϕ Ai
)

= det

( r−1⊕
j=1

(∑
i

ωijr ⊗ϕj Ai

))
=

r−1∏
j=0

det
(∑

i

(ωjr)
i ⊗ϕj Ai

)

=
r−1∏
j=0

det
(
IdC⊗ϕjA(ωjr)

)
=

r−1∏
j=0

det
(
A(ωjr)

)
,

as claimed. �

Definition 2.5. For a knot K define the Alexander polynomial to be any generator of
the minimal principal ideal that contains the first elementary ideal of H1(XK ;Z). The
polynomial ∆K(t) is well-defined up to units in Z[t, t−1].

Remark 2.6. In the case that the first elementary ideal of H1(XK ;Z) is principal, as is
always the case for 1-knots, there is an exact sequence

0→ P
A−→ P → H1(XK ;Z)→ 0,

where P is a finitely generated free Z[t, t−1]-module. In this case, det(A) = ∆K(t).
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Corollary 2.7. Let K be an n-knot and suppose that πK has a deficiency 1 presentation.
Then for all r ∈ N, the abelian group H1(Σr(K);Z) has order

±
r−1∏
j=0

∆K(exp(2πij/r)),

where if this product is 0, we interpret this as infinite order.

Proof. If a group G has G/G(1) ∼= Z, and G has a deficiency 1 presentation then the first

elementary ideal of G(1)/G(2) is principal. The module Z[Cr]⊗ϕH1(XK ;Z) is well-known
to be equal to H1(Σr(K);Z); see [Gor78, Section 5] for a proof when n = 1 that easily
generalises to n ≥ 1. Combining this with Proposition 2.4 and Remark 2.6, the result
follows. �

The following theorem is a result of Livingston [Liv02, Theorem 1.2] when n = 1. The
following high-dimensional version is also true.

Theorem 2.8. Let K be an n-knot such πK has a deficiency 1 presentation, and suppose
that r ∈ N is a prime power. If all irreducible factors of ∆K are cyclotomic polynomials
Φm(t), with m divisible by at least three distinct primes, then H1(Σr(K);Z) = 0.

Proof. Use Corollary 2.7 and then proceed exactly as in the proof of [Liv02, Theorem
1.2]. �

2.2. Knots with metabelian group. For n ≥ 3, n-knots with a given knot group can
be constructed using the following theorem of Kervaire [Ker65, Théorème I.1].

Theorem 2.9 (Kervaire). All knot groups π are finitely presented, with H1(π) ∼= Z,
H2(π) = 0, and π normally generated by one element. When n ≥ 3, for any group π with
these properties there exists a knot K with group π.

Kervaire’s construction even holds in the category of smooth knots. To work in maximal
generality, we also state the next proposition in that category.

Proposition 2.10. Let n > 3 be an integer and let π be a group satisfying the conditions
in Theorem 2.9. Then there exists a smooth doubly slice n-knot K with πK = π.

The additional fact that for n > 3, K may be taken to be doubly slice was observed by
Ruberman [Rub88, Proof of Proposition 3.1], but he did not give a proof, so we offer one
here. Our proof will follow that of [Ker65, Théorème I.1], with necessary modifications
to obtain the desired result.

Proof. Let π = 〈x1, . . . , xa | r1, . . . , rb〉 be a group presentation of π, where H1(π) ∼= Z,
H2(π) = 0, and π is normally generated by one element. Write W1 for the boundary
connected sum of a copies of S1 ×Dn+1. Fix an isomorphism π1(W1) ∼= 〈x1, . . . , xa〉 by
sending the homotopy class of S1 × pt in the ith copy of S1 × Dn+1 to xi. Note this
also determines an isomorphism π1(∂W1) ∼= 〈x1, . . . , xa〉, and using this, choose b disjoint
embedded closed curves in ∂W1 representing the words rj in the generators. As ∂W1 is
orientable, we may extend the embedded curves to disjointly embedded copies of S1×Dn.
Use these tubular neighbourhoods as attaching regions and attach 2-handles to W1, to
obtain W2. Note that π1(W2) ∼= π. By a theorem of Hopf, there is an exact sequence,
π2(∂W2)→ H2(∂W2;Z)→ H2(π)→ 0. By hypothesis, H2(π) = 0, and hence any element
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of H2(∂W2;Z) may be represented by a continuous map S2 → ∂W2. As the dimension of
∂W2 is n+ 2 > 4, Whitney’s embedding theorem means we may assume the elements of
H2(∂W2;Z) are represented by disjointly embedded 2-spheres. Since the manifold ∂W2

is stably parallelisable (being homotopy equivalent to a 2-complex), we may extend the
2-sphere embeddings to disjoint embeddings of copies of S2 × Dn−1. Use these tubular
neighbourhoods as attaching regions and attach 3-handles to W2, to obtain W3. Note
that π1(∂W3) = π1(W3) = π and that Hr(∂W3) = 0 for r > 1. We refer to the proof
of [Ker65, Théorème I.1] for the details.

Attach a 2-handle toW3 along an embedded S1×Dn ↪→ ∂W3 that represents a generator
of H1(∂W3;Z) ∼= Z. This results in a contractible (n + 2)-manifold W with boundary
a homotopy (n + 1)-sphere. Write ∆: Dn ↪→ W for the cocore of the final 2-handle
attachment and ∆|∂Dn = J : Sn−1 ↪→ ∂W . We note that π1(∂W \J(Sn−1)) = π1(∂W3) =
π and the inclusion ∂W \ J(Sn−1) ⊂ W \∆(Dn) induces an isomorphism on π1. Define
a locally flat embedding of Sn by −∆ ∪J ∆: Sn ↪→ −W ∪∂W W . Note that the closed
(n + 2)-manifold −W ∪∂W W =: M is homotopy equivalent to Sn+2. For n > 2, the set
of smooth closed homotopy (n+ 2)-spheres is a finite abelian group. Let N be the group
inverse of M , so that N#M is diffeomorphic to Sn+2, and K := Im(−∆ ∪J ∆) ⊂ N#M
is a smooth n-knot. By [Lev83, Theorem B], doubled disc knots are doubly slice, so K is
doubly slice. By the Seifert-Van-Kampen theorem, πK = π ∗π π ∼= π. �

We record a well known fact about knot groups.

Proposition 2.11. If a knot K has metabelian fundamental group then πK ∼= Z n
H1(XK ;Z[Z]), where the splitting depends on a choice of homomorphism Z→ πK , corre-
sponding to a choice of oriented meridian.

Proof. For any group G, there is then an exact sequence

0→ G(1)/G(2) → G/G(2) → G/G(1) → 0.

Now let X be a topological space with π1(X)/π1(X)(1) ∼= H1(X;Z) ∼= Z. We see that the

abelianisation of the commutator subgroup of πK is π1(X)(1)/π1(X)(2) ∼= H1(X;Z[Z]),
with Z[Z]-coefficients determined by the abelianisation of π1(X). Setting G = π1(X), the
sequence above splits. This gives

π1(X)/π1(X)(2) ∼= Z nH1(X;Z[Z]).

In particular, suppose K is an n-knot such that πK ∼= πK/π
(2)
K is metabelian. Let H :=

π
(1)
K /π

(2)
K = π

(1)
K = H1(XK ;Z[Z]). Make a choice of oriented meridian µ ⊂ Sn+2 for K.

This determines a homomorphism Z = πK/π
(1)
K → πK by 1 7→ [µ]. This homomorphism

splits the sequence
0→ H → πK → Z→ 0,

on the right, resulting in an isomorphism πK ∼= Z nH. �

The next result provides examples of metabelian knot groups for high-dimensional
knots.

Proposition 2.12. Let A be a finitely generated Z[Z]-module such that multiplication
by t − 1 acts as an automorphism on A. For all n ≥ 3, there is an n-knot K such that
the group of K is the metabelian group Z nA, and for n > 3 this knot may be chosen to
be doubly slice.



8 PATRICK ORSON AND MARK POWELL

Proof. By Theorem 2.9 and Proposition 2.10, it is sufficient to check that ZnA satisfies
Kervaire’s conditions. The group Z nA is normally generated by one element because

(0,−h)(1, 0)(0, h) = (1, (t− 1)h),

and for any h′ ∈ A there is an h such that (t−1)h = h′. Thus (0,−h)(1, 0)(0, h)(n−1, 0) =
(n, h′), so (n, h′) can be realised as a product of conjugates of (1, 0). Since t − 1 acts as
an automorphism of A, it certainly does on the homology of A, t − 1 = Id: Hi(A;Z) →
Hi(A;Z), for i > 0. For i = 0, multiplication by t − 1 induces the zero map. Then the
Wang sequence

H2(A)
t−1=Id−−−−→ H2(A)→ H2(Z nA)

→H1(A)
t−1=Id−−−−→ H1(A)→ H1(Z nA)

→H0(A) ∼= Z t−1=0−−−−→ H0(A) ∼= Z

computes that the group homology H2(Z nA) = 0 and H1(Z nA) ∼= Z. �

Example 2.13. Let p(t) ∈ Z[t, t−1] such that p(1) = ±1. Then 1− t acts on the module
A = Z[t, t−1]/p(t) by automorphism. Moreover, A is finitely generated as an abelian
group. This provides a good source of modules for Proposition 2.12.

Remark 2.14. When n = 1, the only knot with a metabelian group is the unknot. To
see this, consider that when a 1-knot has nontrivial Alexander polynomial, the longitude

of the knot always lies in the group π
(2)
K , so by the loop theorem this group is non-

vanishing and πK is not metabelian. Now if K has trivial Alexander polynomial then

H1(XK ;Z) = 0, so that πK/π
(2)
K
∼= Z n {e}. If πK is also metabelian then πK ∼= Z,

meaning K is the unknot. Our main doubly slice obstruction (Theorem 3.6) requires a
metabelian fundamental group, so is not interesting for 1-knots.

2.3. Strebel’s class. We collect some additional group theoretic definitions and result
which we will use later.

Definition 2.15. A group G is poly-torsion-free-abelian (PTFA) if there exists a subnor-
mal series

G = G0 ≥ G1 ≥ G2 ≥ · · · ≥ Gn = {e},
such that each subquotient Gi/Gi+1 is torsion free abelian.

Definition 2.16. A group G is residually finite if there exists a descending chain of
normal subgroups G ⊃ G1 ⊃ G2 ⊃ . . . , each of finite index |G/Gi| < ∞, and such that⋂
iGi = {e}

We recall a definition due to Strebel [Str74, §1.1].

Definition 2.17. Let R be a ring with unit 1 6= 0 and involution. Suppose for a group G
that given any homomorphism θ : P → Q of projective left RG-modules such that the
homomorphism 1R ⊗RG θ : R⊗RG P → R⊗RG Q is injective, we have that θ is injective.
Then we say G belongs to the Strebel class D(R).

The following is a consequence of results in [Str74].

Lemma 2.18. For all R, any PTFA group is in D(R).
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Proof. By [Str74, Proposition 1.5(ii)], it is enough to show that for all R any torsion free
abelian group G ∼= ΠiZ is in D(R). If for some R and all i ∈ I, some index set, groups Gi
are in D(R), then ΠiGi is in D(R) [Str74, Proposition 1.5(iii)]. So it is enough to show
that, for all R, Z is in D(R). This is shown in [Str74, Proposition 1.3]. �

3. Metabelian L(2) ρ-invariants for (4`− 1)-manifolds

Suppose (M,ϕ) consists of a closed, oriented, topological (4`−1)-manifold M together
with a map ϕ : M → BG, where G is a discrete group. We now recall how to obtain a
topological invariant ρ(2)(M,ϕ) ∈ R using an L(2)-signature defect.

We recall some definitions and features of von Neumann algebras; see [Lüc02, Chapter
1] for a more complete account. Let Γ be a countable discrete group and let `2Γ be the
Hilbert space of square summable formal sums of group elements with complex coefficients.
For a Hilbert space H, denote by B(H) the C∗-algebra of bounded linear operators from
H to itself. The group von Neumann algebra of Γ is a C-algebra with involution NΓ,
consisting of the Γ-equivariant elements of B(`2Γ). By convention, an element of CΓ
determines a linear operator on `2Γ by left multiplication, and in this way there are
inclusions of C-algebras with involution CΓ ⊆ NΓ ⊆ B(`2Γ).

Any projective NΓ-module P has an associated NΓ-dimension dimNΓ P ∈ [0,∞);
see [Lüc02, Chapter 6]. A finitely generated projective NΓ-module P with an NΓ-
module homomorphism λ : P → P ∗ = HomNΓ(P,NΓ) comprise a hermitian form (P, λ) if

λ(x)(y) = λ(y)(x) for all x, y ∈ P . A hermitian form is nonsingular if λ has the property
dimNΓ ker(λ) = 0 = dimNΓ coker(λ). Using the NΓ-dimension function it is then possible

to define an L(2)-signature homomorphism from the Witt group sgn(2) : L0
p(NΓ)→ R; see

[Cha14, Section 3.1]. When P is moreover free, of rank n (say), a hermitian form (P, λ)

may be described by some U ∈ Hermn×n(NΓ), and the L(2)-signature is given by

sgn(2)(U) = trΓ(p+(U))− p−(U)) ∈ R.
Here trΓ : K0(NΓ) → C is the von Neumann trace of NΓ [Lüc02, Definition 1.2]. The
operators p+, p− : Hermn×n(NΓ) → K0(NΓ) are defined by taking the characteristic
functions of (0,∞) and (−∞, 0) respectively, considering these as operators on the spec-
trum of a hermitian matrix, then applying the functional calculus; see [COT03, Definition
5.2], and the preceding discussion there.

Suppose there exists a connected, oriented, compact, topological 4`-manifoldW cobound-
ing r disjoint copies of M . Suppose further that there is an injective group homomorphism
j : G ↪→ Γ, where Γ is also a discrete group, and a map ψ making the following diagram
of maps of spaces commute

(1)

⊔
rM BG

W BΓ

⊔
r ϕ

i Bj

ψ

Using the inclusions ZΓ ⊂ CΓ ⊆ NΓ, the representation ψ, and a cellular chain complex
for W , define a chain complex C(W ;NΓ) := NΓ⊗ZΓC(W ;ZΓ) of free, finitely generated
left modules over NΓ, and from this define homology NΓ-modules H∗(W ;NΓ). There is
a NΓ-coefficient hermitian intersection form

λ : H2l(W ;NΓ)×H2l(W ;NΓ)→ NΓ.
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The form (H2l(W ;NΓ), λ) becomes a nonsingular form on a projective NΓ-module after
applying the NΓ projectivisation functor P (see [Cha14, §3.1]), so that we may define

sgn(2)(W,ψ) := sgn(2)(P(H2l(W ;NΓ)),P(λ)) ∈ R.

Definition 3.2. Given (M,ϕ) as above and for any (W,Γ, j, ψ) as above, the L(2) ρ-
invariant of (M,ϕ) is defined to be

(3) ρ(2)(M,ϕ) :=
1

r

(
sgn(2)(W,ψ)− sgn(W )

)
∈ R,

where sgn(W ) is the ordinary signature of W .

Given ϕ : M → BG, the required group homomorphism j : G ↪→ Γ and pair (W,ψ)

always exist. Moreover the resulting ρ(2)(M,ϕ) ∈ R is well-defined, independent of the
choice (W,Γ, j, ψ). We refer to [Cha16, §2.1] for proof of both these facts (the discussion
in the next remark recalls the development of Cha’s proof).

Remark 3.4. It is a result of Hausmann [Hau81, Theorem 5.1] that a closed, connected,
oriented, topological manifold that bounds, must in fact bound some W such that the
inclusion induced map π1(M) → π1(W ) is an injection. Chang and Weinberger [CW03]

used this result, together with Novikov additivity and L(2)-induction, to show ρ(2)(M,ϕ)
exists and is well-defined in the case ϕ is the identity map for π1(M). In their paper, they
also provided a different argument for Hausmann’s result. Cha [Cha16, §2.1] observed
that this new Chang-Weinberger argument generalises to arbitrary ϕ and used this to
prove ρ(2)(M,ϕ) exists and is well-defined in general.

3.1. Metabelian doubly slice obstruction from L(2) ρ-invariants. For each prime p,
write Fp for the field with p elements.

Definition 3.5. Let A be a finitely generated left Z[Z]-module and let ϕ : G → Z n A
be a group homomorphism. Write

ϕQ : G
ϕ−→ Z nA → Z n

(
Q[Z]⊗Z[Z] A

)
,

and for each prime p ∈ N write

ϕFp : G
ϕ−→ Z nA → Z n

(
Fp[Z]⊗Z[Z] A

)
for the homomorphisms given by post-composing ϕ with the respective tensor products.
Define a set of representations

H(ϕ) :=
{
ϕQ, ϕFp | p ∈ N a prime

}
.

The following is our main doubly slice obstruction.

Theorem 3.6. Let K be a (4` − 3)-knot with metabelian group πK ∼= Z n H. If K is
doubly slice then then there exists a decomposition of Z[Z]-modules H ∼= A⊕B such that
for the homomorphisms

ϕA : πK → Z nA,

ϕB : πK → Z nB,

corresponding to the projections of H to A and B respectively, we have that

ρ(2)(MK , ϕ) = 0, for all ϕ ∈ H(ϕA) ∪H(ϕB).
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Proof. As in Proposition 2.11, there is an isomorphismH ∼= H1(XK ;Z[Z]) ∼= H1(MK ;Z[Z]).
Let DA, DB ⊆ D4` be complementary slice discs for K with respective disc exteriors
WA,WB. The modules

A := ker
(
H1(MK ;Z[Z])→ H1(WA;Z[Z])

)
B := ker

(
H1(MK ;Z[Z])→ H1(WB;Z[Z])

)
determine a decomposition of Z[Z]-modules A⊕B ∼= H1(MK ;Z[Z]) ∼= H, since WA ∪XK

WB is the exterior of an unknot, so Hi(WA ∪XK
WB;Z[Z]) = 0 for i = 1, 2.

Fix ϕ ∈ H(ϕA) ∪ H(ϕB). We will assume that ϕ ∈ H(ϕA), the case of ϕ ∈ H(ϕB)
can be argued entirely similarly. We have ϕ = ϕF

A for one of F = Q or F = Fp, for some
prime p ∈ N. Write jB : MK ↪→ WB for the inclusion of the boundary. The inclusions of
the boundary determine an isomorphism H1(MK ;Z[Z]) ∼= H1(WA;Z[Z])⊕H1(WB;Z[Z]).
This implies there is an isomorphism A ∼= H1(WB;Z[Z]) such that, under the isomorphism
A⊕B ∼= H1(MK ;Z[Z]) ∼= H, the map (jB)∗ corresponds to the projection of H to A. In
particular, the sequence of maps

ψ : π1(WB)→ π1(W )/π1(W )(2) ∼= Z nH1(WB;Z[Z]) ∼= Z nA→ Z n (F[Z]⊗Z[Z] A)

determines an extension of the representation ϕ to π1(WB).

Define Γ := Z n
(
F[Z]⊗Z[Z] A

)
. We wish to use (WB, ψ) to calculate ρ(2)(MK , ϕ) = 0.

First, note that as H∗(WB;Q) ∼= H∗(S
1;Q) we have that sgn(WB) = 0, so if we can show

that sgn(2)(WB, ψ) = 0, then the proof will be complete. In fact we will show the stronger
statement that dimNΓH2l(WB;NΓ) = 0.

Recall a locally compact topological group G is amenable if G admits a finitely-additive
measure which is invariant under the left multiplication; see e.g. [Pat88]. We now recall
the theorem of Cha-Orr [CO12, Theorem 6.6] which states that if G is an amenable
group in the Strebel class D(R), for some R, and C is a bounded chain complex of
finitely generated left Z[G]-modules, then when Hi(R⊗Z[G] C) = 0 for i ≤ n we also have
dimNGH∗(NG⊗Z[G] C) = 0 for i ≤ n.

As F is a field, the group Γ is PTFA as the normal subgroup F[Z] ⊗Z[Z] A is already
torsion free abelian. It is well known that all solvable groups, a class which includes PTFA
groups, are amenable, and we saw in Lemma 2.18 that all PTFA groups are in D(F).
To apply the theorem of Cha-Orr, we will set R = F, G = Γ, and must choose an
appropriate chain complex C. Let S1 ↪→ WB be an inclusion representing a generator
of H1(WB;Z) ∼= Z, so in particular the obvious map π1(S1) ∼= Z → Z n A is compatible
with ψ and we may take ZΓ-coefficient homology for this S1 compatibly with WB. It now
makes sense to define C := cone(C(S1;ZΓ)→ C(WB;ZΓ)), the algebraic mapping cone.
A straightforward Mayer-Vietoris argument using the decomposition D4` = WB∪D4`−2×S1

D4`−2 ×D2 shows that H∗(WB, S
1;Z) = 0, so in particular H∗(F⊗ZΓ C) = 0 and hence

dimNΓHi(NΓ⊗ZΓ C) = 0 for all i ∈ Z by the Cha-Orr theorem.
Denote the chain complex desuspension functor by Σ−1. The short exact sequence of

cellular ZΓ-module chain complexes

0→ C(WB;ZΓ)→ cone(C(S1;ZΓ)→ C(WB;ZΓ))→ Σ−1C(S1;ZΓ)→ 0

is split exact in every homological degree (by construction), so applying the functor
NΓ ⊗ZΓ − results in another short exact sequence and hence there is an induced long
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exact sequence of NΓ-modules

· · · → Hi−1(NΓ⊗ZΓ C)→ Hi(S
1;NΓ)→ Hi(WB;NΓ)→ Hi(NΓ⊗ZΓ C)→ . . .

As dimNΓHi(NΓ ⊗ZΓ C) = 0 for all i ∈ Z, this shows that for all i ∈ Z we have that
dimNΓHi(S

1;NΓ) = dimNΓHi(WB;NΓ); see [Lüc02, Theorem 6.7(4b)]. But the chain
complex C(S1;ZΓ) is concentrated in degrees 0 and 1, so H2l(S

1;NΓ) = 0 and hence we
obtain dimNΓH2l(WB;NΓ) = dimNΓH2l(S

1;NΓ) = 0 as claimed. �

3.2. Calculation of L(2) ρ-invariants. The main method for calculating L(2) ρ-invariants
is to identify a cyclic subgroup Γ′ ⊂ Γ and use the following consequence of L(2) induction;
see [Lüc02, Theorem 6.29].

Proposition 3.7. If Φ: Γ′ → Γ is an injective homomorphism, then for each n ∈ N,
there is a commutative diagram

Hermn×n(NΓ′) Hermn×n(NΓ)

R
sgn(2) sgn(2)

Proof. The commutative diagram of [COT03, Proposition 5.13] (below, left) induces a
commutative diagram in K-theory (below, right).

NΓ′ NΓ K0(NΓ′) K0(NΓ)

C C
trΓ′ trΓ trΓ′ trΓ

The proposition now follows immediately from the description of the L(2)-signature of a
hermitian matrix as a trace sgn(2)(U) = trΓ(p+(U))− p−(U)). �

This proposition provides a computational strategy first exploited in [COT03]. If we
can identify a cyclic subgroup, then we can make our calculations using coefficients in this
restricted setting. When working over a cyclic group, the computation of L(2) signatures,
and thus ρ-invariants, is very well understood in terms of ordinary signatures.

Let Γ be a group and fix g ∈ Γ, with order ord(g). Let Γ′ = 〈u |uord(g) = 1〉 be a cyclic
group of order ord(g) and define an injective homomorphism Φg : Γ′ → Γ by Φg(u) = g.
For each n ∈ N, there is an induced map Φg : Hermn×n(Z[Γ′]) → Hermn×n(Z[Γ]). Let
ω ∈ S1 ⊂ C. We define a further map

εω : Im(Φg : Hermn×n(Z[Γ′])→ Hermn×n(Z[Γ]))→ Hermn×n(C); g 7→ ω.

The following proposition is essentially due to Cochran, Orr, and Teichner [COT03, §5].

Proposition 3.8. Let M be a closed, oriented (4` − 1)-manifold and ϕ : M → BG for
some group G. Suppose we have chosen (W,Γ, j, ψ) as in Diagram (1), with the further
property that sgn(W ) = 0. Fix g ∈ Γ and suppose that the ψ-twisted intersection form of
W is represented by a matrix U ∈ Im(Φg) ⊂ Hermn×n(Z[Γ]).

(1) Suppose g has finite order k ∈ N. Then

ρ(2)(M,ϕ) =
1

rk

k∑
j=1

sgn(εωj (U)),
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where ω ∈ S1 ⊂ C is a primitive kth root of unity.
(2) Suppose g has infinite order. Then

ρ(2)(M,ϕ) =
1

2πr

∫
ω∈S1

sgn(εω(U)).

Proof.

(1) Write Γ′ = Ck = 〈u |uk = 1〉 for the cyclic group of order k. Write V ∈ Hermn×n(Z[Ck])

for the matrix such that Φg(V ) = U . By Proposition 3.7, the signature sgn(2)(W,ψ) =

sgn(2)(U) is given by sgn(2)(V ). Using as basis 1, u, . . . , uk−1, we obtain an iso-
morphism C[Ck] ∼= Ck. For clarity, we will write V as V C when we view it as an
automorphism of (Ck)n via the left regular representation. Because Ck is a finite
group, there is equality C[Ck] = NCk, and the von Neumann trace of a general el-
ement a = a0 + a1u + . . . ak−1u

k−1 ∈ C[Ck] is trNΓ(a) = a0 ∈ C. On the other
hand, recall that the standard trace of a ∈ C[Ck] under the regular representation
is given by tr(aC) = k · a0, and that ordinary signature sgn(V C) may be interpreted
as an ordinary trace tr : K0(CΓ) → Z. Comparing the two types of trace applied to

p+(V )− p−(V ) ∈ K0(NΓ) = K0(CΓ), we obtain k · sgn(2)(V ) = sgn(V C). It remains
to calculate sgn(V C), but this is standard.

Decompose (C[Ck])
n according to Lemma 2.3, noting that the irreducible repre-

sentations of Ck are given by the one-dimensional characters χj(u) = ωj ∈ C, j =
1, . . . , k. The signature of V C restricted to the ωj-eigenspace is given by sgn(εωj (U)),
and hence

sgn(2)(V ) =
1

k
sgn(V C) =

1

k

k∑
j=1

sgn(εωj (U)).

The claimed result follows, as sgn(W ) = 0 by assumption.
(2) Write Γ′ = Z〈u〉. Write V ∈ Hermn×n(Z[u, u−1]) for the matrix such that Φg(V ) = U .

By Proposition 3.7, the signature sgn(2)(W,ψ) is given by sgn(2)(V ). By [COT03,
Lemma 4.5] this may be calculated as

sgn(2)(V ) =
1

2π

∫
ω∈S1

sgn(εω(U)).

The claimed result follows, as sgn(W ) = 0 by assumption.

�

4. New non doubly slice knots

Definition 4.1. Let G be a group. We will call a matrix U ∈ Hermr×r(Z[G]) even if it

is of the form U = V + V
T

for some matrix V with entries in Z[G].

For a group homomorphism α : G → H, we abuse notation and also use α to denote
the induced homomorphisms Z[G]→ Z[H] and Hermr×r(Z[G])→ Hermr×r(Z[H]).

Definition 4.2. Let α : G → H be a group homomorphism. Then U ∈ Hermr×r(Z[G])
is α-nonsingular if α(U) is nonsingular. In the particular case that K is a knot and
α : πK → Z is the abelianisation, we will call an α-nonsingular matrix Z[Z]-nonsingular.
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An even, α-nonsingular matrix represents an element of the Cappell-Shaneson homol-
ogy surgery obstruction group Γ4`(α : Z[G]→ Z[H]) [CS74]. We recall the standard pro-
cedure for realising such elements as the surgery obstruction associated to a 4`-manifold
with boundary.

Theorem 4.3 ([CS74, Theorem 1.8 & Addendum 1.8]). Let ` > 1, and let (X, ∂X) be
a (4` − 1)-manifold with boundary. Suppose there is a group homomorphism ϕ : π → G,
where π = π1(X). Let U ∈ Hermr×r(Z[G]) be even. Then there exists a 4`-dimensional
manifold triad (W ; ∂+W,∂−W ) such that ∂+W = −X t Y , ∂−W = ∂X × [0, 1] (implying
∂Y = ∂X), and such that:

• There is a degree one map (f, Id) : (Y, ∂Y ) → (X, ∂X) such that πi(f) is an
isomorphism for 0 ≤ i ≤ 2`− 2.
• There is a degree one map F : W → X × [0, 1] such that πi(F ) is an isomorphism

for 0 ≤ i ≤ 2` − 1, and the middle dimensional homology H2`(W ;Z[G]) is a free
module and the middle dimensional intersection form with coefficients in Z[G] is
given by U .
• If U is α-nonsingular for some α : G → H, the map f induces an isomorphism

on homology with Z[H]-coefficients.

For our purposes, this has the following corollary.

Corollary 4.4. For ` > 1, let K be a (4` − 3)-knot. Let ϕ : πK → G be a surjective
homomorphism factoring through the abelianisation of πK and let U ∈ Hermr×r(Z[G]) be
even. Then there exists a (4` − 3)-knot K ′ with πK′ = πK and such that MK and MK′

are cobordant, via a 4`-manifold Z, where Z has Z[G]-coefficient intersection form U .
If U is moreover Z[Z]-nonsingular, then there is a Z[Z]-homology equivalence between

the exterior of K and the exterior of K ′, that is the identity on the boundary and preserves
meridians.

Proof. Apply Theorem 4.3 to (XK , ∂XK = S4`−3 × S1), to obtain (W ; ∂+W,∂−W ) with
interior boundary ∂−W = S4`−3 × S1 × [0, 1] and exterior boundary ∂+W = −XK t Y .
To confirm that Y is the exterior of some knot K ′, glue a copy of S4`−3 ×D2 along ∂Y .
The resulting manifold is homotopy equivalent to S4`−1, and thus homeomorphic to S4`−1

by the (topological) Poincaré conjecture. The glued-in core S4`−3 × {pt} =: K ′ is the
promised knot.

Now construct a 4`-manifold with boundary (Z,−MK tMK′) by

Z := W ∪∂−W
(
D4`−2 × S1 × [0, 1]

)
.

This glueing is unambiguous, as every homeomorphism of S4`−3 × S1 × [0, 1] extends to
a homeomorphism of D4`−2 × S1 × [0, 1]. �

Remark 4.5. We could change the construction so that we have a diffeomorphism to S4`−3,
just by connect summing with the appropriate exotic sphere away from the knot. This
will not change any L(2)-signature obstruction, since that is a homeomorphism invariant.

Proof of Theorem 1.1. Fix n > 3 odd and let H = Z[t, t−1]/p(t) where p(t) ∈ Z[t, t−1]
is irreducible. Use Proposition 2.12 to build a doubly slice n-knot K with metabelian
fundamental group πK ∼= ZnH. By Theorem 3.6, we obtain a decomposition of Z[t, t−1]-
modules H ∼= A⊕B. As p is irreducible we may assume that B = 0 and A = H. Denote
by α : πK → πK the identity map.
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Regarding H as an abelian group, choose an element of infinite order g ∈ H and write
Φg : Z〈u〉 → πK for the injective group homomorphism defined by u 7→ g. For every
r ∈ N, this extends to a homomorphism Φg : Hermr×r(Z[u, u−1]) → Hermr×r(Z[πK ]).
Suppose we have chosen an even matrix U ∈ Im(Φg) such that U becomes nonsingular
upon applying the abelianisation induced map Z[πK ]→ Z[t, t−1], and moreover has van-
ishing signature under the augmentation t 7→ 1 (we will choose such a U later). Apply
Corollary 4.4 to U and K, to obtain a new knot K ′ and the 4`-dimensional manifold Z,
with intersection form U . As U was Z[Z]-nonsingular, there is a Z[Z]-homology equiva-
lence between XK and XK′ that is the identity on the boundary and preserves meridians.
We note that πK′ = Z nH.

Applying Proposition 3.8, we may calculate that

(6) ρ(2)(MK′ , α
Q)− ρ(2)(MK , α

Q) =
1

2π

∫
w∈S1

sgn(εω(U)),

where, recall,

εω : Im(Φg : Hermr×r(Z[u, u−1])→ Hermr×r(Z[πK ]))→ Hermr×r(C); g 7→ ω.

As K is doubly slice, by Theorem 3.6, we have ρ(2)(MK , α
Q) = 0.

Our next task is to choose U with the properties specified above and so that the integral
in Equation 6 in nonzero. A second application of Theorem 3.6 will then complete the
proof that K ′ is not doubly slice. We argue just as in [COT03, §5] that the matrix

U :=

(
g − 2 + g−1 1

1 g − 2 + g−1

)
∈ Herm2×2(Z[πK ])

works. First, U = V + V
T

, where V is the matrix

V :=

(
g − 1 1

0 g − 1

)
∈ Mat2×2(Z[πK ]),

so U is even. Next, because g lies in π
(1)
K , g is sent to 1 under the abelianisation πK → Z〈t〉

and the matrix becomes the standard hyperbolic matrix, confirming U is Z[Z]-nonsingular.
The further map induced by augmentation t 7→ 1, does not change the matrix, so the
augmentation matrix has vanishing signature as required. It remains to calculate that
the integral is nonzero. We have

det(εω(U)) = (ω − 2 + ω−1)2 − 1 = (ω − 1 + ω−1)(ω − 3 + ω−1),

which is nonzero for ω ∈ S1 except at the primitive sixth roots of unity. The circle
S1 is separated into two arcs with boundary these roots of unity, and the signature
sgn(εω(U)) is constant on each arc. The reader may easily check that sgn(ε1(U)) = 0 and
sgn(ε−1(U)) = −2. Thus

1

2π

∫
ω∈S1

sgn(εω(U)) =
2

3
· (−2) +

1

3
· 0 = −4

3
6= 0.

It follows that K ′ is not doubly slice.
We next produce an infinite family of different knots using the construction above. For

this, denote by Φm the mth cyclotomic polynomial and recall the well-known property of
cyclotomic polynomials that if m 6= 1 and m is not a prime power then Φm(1) = 1. So
Φm(t) is an irreducible Alexander polynomial. Denote by K(U,m) the non doubly slice
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knot obtained by applying the construction above to the matrix U and the cyclotomic
polynomial m when m 6= 1 is not a prime power. Define

F = {K(U,m) | m is divisible by at least 3 distinct primes}.

This is the infinite family we seek. As noted above, we must have that the knot group
of K(U,m) is Z n (Z[Z]/Φm), which shows that the knots in the family F are pairwise
distinct.

Finally, we will show that Ruberman’s Casson-Gordon invariants vanish for the knots in
the family F . The first stage in defining Ruberman’s obstructions [Rub83, Theorem 2.2]
for an (4`−3)-knot K to be doubly slice is to first pass to some r-fold cyclic branched cover
Σr(K), where r is a prime power (this is the “M” in the notation of [Rub83, Theorem
2.2]). Next one must find a homomorphism from H1(Σr(K)) to a finite cyclic group
Z/dZ. As the Alexander polynomials of the knots in F are, by construction, cyclotomic
of order divisible by at least 3 distinct primes, we may apply Theorem 2.8. That shows
that any homomorphism H1(Σr(K))→ Z/dZ is trivial for knots in F . As a consequence,
Ruberman’s invariants vanish for the knots in F . �

5. Abelian obstructions vanish on our knots

In this section we recall the various notions of algebraic sliceness and algebraic double
sliceness that have been defined using abelian coefficient systems. All the non doubly slice
knots we constructed for Theorem 1.1 will be algebraically doubly slice in the strongest
sense we describe below. In [Ors17, Proposition 4.11], the first author gave a strong
version of algebraic double sliceness using the entire chain complex of the knot exterior
as an obstruction. Another such condition, using the full cohomology ring of the knot
exterior, was given in [Lev83, Theorem A]. We will define a single strong algebraic double
sliceness condition that implies all other previous versions and that is satisfied by all the
non doubly slice knots in our family F .

5.1. Strong algebraic slices. We briefly recall some elements of Ranicki’s Algebraic
Theory of Surgery [Ran80a, Ran80b], suppressing many details and highlighting only the
relevant features for our purposes. Suppose C∗ is a finitely generated Z[Z]-module chain
complex such that Cr = 0 outside of the range 0 ≤ r ≤ n. An n-dimensional symmetric
structure is an equivalence class of collections of (higher) chain maps

ϕ = {ϕs ∈ HomZ[Z](C
n−r+s, Cr) | r ∈ Z, s ≥ 0},

satisfying certain interrelations [Ran81, p. 7]. A symmetric complex (C,ϕ) is called
Poincaré if the chain map

ϕ0 : Cn−r → Cr, r ≥ 0,

is a chain homotopy equivalence. Suppose D is a finitely generated Z[Z]-module chain
complex such that Dr = 0 outside of the range 0 ≤ r ≤ n+1. Given a chain map f : C →
D, an (n+ 1)-dimensional symmetric structure is an equivalence class of collections

(δϕ, ϕ) = {(δϕs, ϕs) ∈ HomZ[Z](D
n+1−r+s, Dr)⊕HomZ[Z](C

n−r+s, Cr) | r ∈ Z, s ≥ 0},

satisfying certain interrelations [Ran81, p. 15] (that depend on f). A symmetric pair
(f : C → D, (δϕ, ϕ)) is called Poincaré if the chain map

(δϕ0 ϕ0) : cone(f)n+1−r = Dn+1−r ⊕ Cn−r → Dr, r ≥ 0
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is a chain homotopy equivalence. Two symmetric Poincaré pairs (f± : C → D±, (δ±ϕ,ϕ)),
indicated by ‘+’ and ‘−’, are complementary if(

f+

f−

)
: C → D+ ⊕D−

is a chain homotopy equivalence.
The Blanchfield complex (CK , ϕK) of an n-knot K is constructed in [Ran81, Chapter

7.8] using Ranicki’s symmetric construction [Ran80b, Proposition 1.2], and developed
further in [Ors17, Section 4]. Briefly, (CK , ϕK) is an (n + 2)-dimensional symmetric
Poincaré complex, such that the isomorphism class of (CK , ϕK) is an invariant of the
isotopy class of K. By construction there is a decomposition

CK ⊕ C∗(Dn+1 × S1) ' C∗(XK).

So in particular there is an isomorphism in reduced homologyH∗(CK ;Z[Z]) ∼= H̃∗(XK ;Z[Z]) ∼=
H̃∗(MK ;Z[Z]), and similarly reduced cohomology. From this CK is seen to be S-acyclic.

Definition 5.1. A strong algebraic slice for an n-knot K is a symmetric Poincaré pair
(f : CK → D, (δϕK , ϕK)), such that the image of the induced morphism on cohomology
f∗ : H∗(D;Z[Z])→ H∗(CK ;Z[Z]) is closed under cup product.

A knot that admits a strong algebraic slice is called strongly algebraically slice and
a knot that admits two strong algebraic slices that are complementary as symmetric
Poincaré pairs is called strongly algebraically doubly slice.

Proposition 5.2. A slice disc for K determines a strong algebraic slice for K. Comple-
mentary slice discs for K determine complementary strong algebraic slices for K.

Proof. Let D be a slice disc for K. The slice disc exterior W := Dn+3 \ νD has bound-
ary the surgery manifold MK . We refer the reader to [Ors17, Proposition 4.11] for the
proof that (W,MK) determines an algebraic nullbordism for (CK , ϕK) as required. The
condition on the cup product is also immediate from the construction in that proof and
naturality of the cup product under inclusion. �

5.2. The Blanchfield pairing. For the reader’s convenience we recall a standard de-
scription of the Blanchfield pairing. The description is based on [Lev77, §1–4].

Proposition 5.3. Suppose that f : C → D is a map of finitely generated Z[Z]-module
chain complexes that are S-acyclic. Suppose that (f : C → D, (δϕ, ϕ)) is an (m + 1)-
dimensional Poincaré pair. Then for 1 < i < m there is a nonsingular pairing

Bl : FH i(D;Z[Z])× FHm−i+1(D,C;Z[Z])→ Q(Z)/Z[Z].

The proof of Proposition 5.3 is based on the following proposition from [Lev77, §2].

Proposition 5.4 (Levine). Suppose R and S are rings with unit, and R has homological
dimension 2 (that is, any finitely generated module over R has a length 2 resolution by
projective R-modules). Suppose X is a projective left R-module chain complex and G is
an (R,S)-bimodule. If HomR(Hp(X;R), G) = 0 for all p ∈ Z, then for all r ∈ Z there is
a short exact sequence of right S-modules

0→ Ext2
R(Hr−2(X;R), G)→ Hr(X;G)→ Ext1

R(Hr−1(X;R), G)→ 0.
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Proof of Proposition 5.3. To prove the proposition, we will describe a sequence of four
right Z[Z]-module morphisms and show they are all isomorphisms. The pairing will then
be defined as the adjoint of the composed maps in the sequence. This description will
also show that the pairing is nonsingular.

We will describe and analyse the maps in the sequence:

FH i(D;Z[Z])
UCT−−−→ Ext1

Z[Z](Hi−1(D;Z[Z]),Z[Z]) ∼=

Ext1
Z[Z](FHi−1(D;Z[Z]),Z[Z])

∼=←− HomZ[Z](FHi−1(D;Z[Z]),Q(Z)/Z[Z])

PD←−− HomZ[Z](FH
m−i+1(D,C;Z[Z]),Q(Z)/Z[Z]).

For the first map, note H∗(D;Q(Z)) = 0 implies that HomZ[Z](Hp(D;Z[Z]),Z[Z]) = 0
for all p ∈ Z. Then as Z[Z] has homological dimension 2 we may apply Proposition 5.4
to the case that R = Z[Z], X = D, and G = Z[Z] considered as a (Z[Z],Z[Z])-bimodule.
This results in exact sequences of right Z[Z]-modules for all r ∈ Z:

0→ Ext2
Z[Z](Hr−2(D;Z[Z]),Z[Z])→ Hr(D;Z[Z])

→ Ext1
Z[Z](Hr−1(D;Z[Z]),Z[Z])→ 0.

For a general Z[Z]-moduleA, F Ext2
Z[Z](A,Z[Z]) = 0 and F Ext1

Z[Z](A,Z[Z]) = Ext1
Z[Z](A,Z[Z]);

see [Lev77, 3.2, 3.3]. Hence by applying the functor F to our exact sequence, and setting
r = i, we obtain the first of our claimed isomorphisms in the sequence, called UCT .

The second isomorphism in the sequence follows from another general fact about Z[Z]-
modules A, that Ext1

Z[Z](A,Z[Z]) = Ext1
Z[Z](FA,Z[Z]).

The fourth isomorphism in our sequence follows from considering the long exact Ext se-
quence associated to the change of rings exact sequence 0→ Z[Z]→ Q(Z)→ Q(Z)/Z[Z]→
0, applied to a Z[Z]-module A:

· · · → HomZ[Z](A,Q(Z))→ HomZ[Z](A,Q(Z)/Z[Z])

→ Ext1
Z[Z](A,Z[Z])→ Ext1

Z[Z](A;Q(Z))→ · · ·

But setting A = FHi−1(Y, ∂1Y ), the outer two terms vanish because A is Z[Z]-torsion.
The central map is then the next isomorphism we seek.

The final map is induced by using the 0th chain map in the collection (θ, ϕ ⊕ −ϕ).

Namely it is the Poincaré-Lefschetz duality chain map
(

δϕ0

±ϕ0f∗

)
: Dn+1−∗ → cone(f)∗.

This is an isomorphism from cohomology to homology by hypothesis, as the pair (f : C →
D, (δϕ, ϕ)) was assumed to be Poincaré. Thus, when we apply the functor F it is still an
isomorphism, and the result follows. �

Corollary 5.5. Suppose (Y, ∂Y ) is an oriented m-dimensional manifold with (possibly
empty) boundary, together with a homomorphism π1(Y ) → Z defining homology with

Z[Z] coefficients. Suppose further that the reduced homology, H̃i(Y ;Z[Z]), H̃i(∂Y ;Z[Z])
is Z[Z]-torsion, and that multiplication by 1−t is an isomorphism on these modules. Then
for 0 < i < m− 1 there is a nonsingular pairing

Bl : FH i(Y ;Z[Z])× FHm−i+1(Y, ∂Y ;Z[Z])→ Q(Z)/Z[Z].
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Proof. The homomorphism π1(Y ) → Z, determines a map Y → K(Z, 1) = S1. This S1

may be thickened so that there is a commutative diagram of spaces

∂Y Y

S1 × Sm−2 S1 ×Dm

f

where the vertical maps may be assumed to be degree one. Apply Ranicki’s symmetric

construction to the diagram to obtain C := C̃∗(∂Y ;Z[Z]) and D := C̃∗(Y ;Z[Z]), together
with symmetric structures. By hypothesis, C and D are torsion with respect to Z[t, t−1]
and (1 − t) acts as an automorphism. Together, these two conditions are equivalent to
being torsion with respect to the set S of Alexander polynomials. So the hypotheses of
Proposition 5.4 are satisfied and the result follows. �

Definition 5.6. The pairing obtained in the proof of Corollary 5.5 is called the Blanchfield
pairing of (Y, ∂Y ), or simply the Blanchfield pairing of Y if ∂Y = ∅.

Theorem 5.7. Given a strong algebraic slice (f : CK → D, (δϕK , ϕK)) for an n-knot
K, the images Ai := Im(f∗ : H i(D;Z[Z]) → H i(CK ;Z[Z])) are such that Bl(FAi ×
FAn+3−i) = 0.

In the proof of Theorem 5.7, we will use the following lemma, which is a straightforward
functoriality consequence of the construction of the sequence in Proposition 5.4. We omit
the proof, which is standard homological algebra.

Lemma 5.8. Let R, S, G be as in Proposition 5.4. Let f : X → Y be a morphism of pro-
jective left R-module chain complexes with HomR(Hp(X;R), G) = 0 = HomR(Hp(Y ;R), G)
for all p ∈ Z. The following is a commutative diagram for all r ∈ Z

0→ Ext2
R(Hr−2(Y ;R), G) Hr(Y ;R) Ext1

R(Hr−1(Y ;R), G)→ 0

0→ Ext2
R(Hr−2(X;R), G) Hr(X;R) Ext1

R(Hr−1(X;R), G)→ 0

Ext2
R(f∗,G) f∗ Ext1

R(f∗,G)

where the rows are the short exact sequences of Proposition 5.4.

Proof of Theorem 5.7. The pair (f : CK → D, (δϕK , ϕK)) satisfies the hypotheses of
Proposition 5.3 (with C ′ = 0). For any finitely generated Z[Z]-module T , define T∧ :=
HomZ[Z](T,Q(Z)/Z[Z]). The following diagram has exact rows coming from the long exact
sequence of the map f : CK → D and vertical maps given by the adjoints to the various
Blanchfield pairings, which are all isomorphisms:

FH i(D;Z[Z]) FH i(C;Z[Z]) FH i+1(D,C;Z[Z])

(FHn+4−i(D,C;Z[Z]))∧ (FHn+3−i(C;Z[Z]))∧ (FHn+3−i(D;Z[Z]))∧

Bl∼= Bl∼= Bl∼=

If the diagram is commutative, it is a standard diagram chase to show that Bl(FAi ×
FAn+3−i) = 0.

To see that the diagram of Blanchfield maps above commutes, recall that the map Bl
from Proposition 5.3 was constructed as a composite of four isomorphisms. The diagram
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of Blanchfield maps above can thus be decomposed using these four isomorphisms into
a diagram with five rows (and three columns). Each row is a different exact sequence
coming from the map f : CK → D. The diagram of Blanchfield maps commutes if the
decomposed diagram commutes. But the only part of this decomposed diagram that is
not well known to commute is the part which comes from the UCT map. This part can
be seen to commute by applying the functor F to the diagram in Lemma 5.8. �

By Corollary 5.5, for k > 1, a (2k − 3)-dimensional knot K determines a middle-
dimensional Blanchfield pairing

Bl : FHk(MK ;Z[Z])× FHk(MK ;Z[Z])→ Q(Z)/Z[Z].

A submodule j : L ↪→ FHk(MK ;Z[Z]), is called a lagrangian if the sequence

0→ L
j−→ FHk(MK ;Z[Z])

j∧◦(Bl)ad−−−−−−→ L∧ → 0

is exact, where as above ‘∧’ denotes the functor −∧ := HomZ[Z](−,Q(Z)/Z[Z]).

Definition 5.9. An odd-dimensional knotK is algebraically slice if the middle-dimensional
Blanchfield pairing admits a lagrangian. The knot K is algebraically doubly slice if the
middle-dimensional Blanchfield pairing admits two lagrangians that are complementary
as submodules.

The following corollary is immediate from Proposition 5.2 and Theorem 5.7.

Corollary 5.10. If an odd-dimensional knot K is strongly algebraically (doubly) slice
then K is algebraically (doubly) slice.

Remark 5.11. For n > 1, an n-knot is strongly algebraically slice if and only if it is slice.
One proof of this fact is that for n > 1, there is an isomorphism from the n-dimensional
knot concordance group to the symmetric L-group Cn → Ln+3(Z[Z], S) given by sending
K to the class of (CK , ϕK). An algebraic nullcobordism is then exactly the condition
required for vanishing in Ln+3(Z[Z], S).

Levine [Lev83] constructed examples of knots whose cohomology rings failed to decom-
pose into complementary subalgebras, with Q[Z]-coefficients, implying these knots are
not strongly algebraically doubly slice. However as Levine observes in that paper, and is
still the case, there are no known examples of this phenomenon for algebraically doubly
slice knots. There are also no known examples of this phenomenon that use knots with
πK ∼= Z. It seems likely that understanding the difference between algebraically slice and
strongly algebraically slice, for knots with πK ∼= Z, could lead to a substantial character-
isation of double-sliceness high-dimensionally. This would also clarify exactly how much
abelian invariants can say about the doubly slice problem and where the techniques of
Ruberman and of this paper become essential to the question.
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[Lüc02] Wolfgang Lück. L2-invariants: theory and applications to geometry and K-theory, volume 44

of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys
in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern
Surveys in Mathematics]. Springer-Verlag, Berlin, 2002.

[Ors17] Patrick Orson. Double L-groups and doubly slice knots. Algebr. Geom. Topol., 17(1):273–329,
2017.

[Pat88] Alan L. T. Paterson. Amenability, volume 29 of Mathematical Surveys and Monographs. Amer-
ican Mathematical Society, Providence, RI, 1988.



22 PATRICK ORSON AND MARK POWELL

[Ran80a] A. A. Ranicki. The algebraic theory of surgery. I. Foundations. Proc. London Math. Soc. (3),
40(1):87–192, 1980.

[Ran80b] A. A. Ranicki. The algebraic theory of surgery. II. Applications to topology. Proc. London
Math. Soc. (3), 40(2):193–283, 1980.

[Ran81] A. A. Ranicki. Exact sequences in the algebraic theory of surgery, volume 26 of Mathematical
Notes. Princeton University Press, Princeton, N.J., 1981.

[RCS+96] A. A. Ranicki, A. J. Casson, D. P. Sullivan, M. A. Armstrong, C. P. Rourke, and G. E. Cooke.
The Hauptvermutung book, volume 1 of K-Monographs in Mathematics. Kluwer Academic Pub-
lishers, Dordrecht, 1996. A collection of papers of the topology of manifolds.

[Rub83] Daniel Ruberman. Doubly slice knots and the Casson-Gordon invariants. Trans. Amer. Math.
Soc., 279(2):569–588, 1983.

[Rub88] Daniel Ruberman. The Casson-Gordon invariants in high-dimensional knot theory. Trans.
Amer. Math. Soc., 306(2):579–595, 1988.

[Str74] Ralph Strebel. Homological methods applied to the derived series of groups. Comment. Math.
Helv., 49:302–332, 1974.

[Sum71] D. W. Sumners. Invertible knot cobordisms. Comment. Math. Helv., 46:240–256, 1971.

Department of Mathematics, Boston College, USA
E-mail address: patrick.orson@bc.edu

Department of Mathematical Sciences, Durham University, UK
E-mail address: mark.a.powell@durham.ac.uk


	1. Introduction
	Metabelian groups, L(2) signature obstructions and concordance
	Further questions
	Acknowledgements

	2. Conventions and preliminary results
	2.1. Cyclic branched covers of n-knots
	2.2. Knots with metabelian group
	2.3. Strebel's class

	3. Metabelian L(2) -invariants for (4-1)-manifolds
	3.1. Metabelian doubly slice obstruction from L(2) -invariants
	3.2. Calculation of L(2) -invariants

	4. New non doubly slice knots
	5. Abelian obstructions vanish on our knots
	5.1. Strong algebraic slices
	5.2. The Blanchfield pairing

	References

