Appendix B: SUBMERGING A PUNCTURED TORUS

This contains verbatim a letter from J. Milnor of October, 1969, which gives an elementary construction of a submersion of the punctured torus T^n —point into euclidean space R^n . It is used in §3. A different elementary construction was found by D. Barden [Bar] [Ru] earlier in 1969, and another by S. Ferry, [Fe] 1973. Milnor produces a smooth C^∞ (= DIFF) submersion. A secant approximation to it in the sense of J. H. C. Whitehead [Mu], §9] provides a piecewise-linear (= PL) submersion.

"Let M be a smooth compact manifold.

HYPOTHESIS. M has a codimension 1 embedding in euclidean space so that, for some smooth disk $D \subset M$ and some hyperplane P in euclidean space, the orthogonal projection from M-D to P is a submersion.

THEOREM. If M satisfies this hypothesis, so does $M \times S^1$.

It follows inductively that every torus satisfies the hypothesis.

PROOF. Suppose that $M = M^{k-1}$ embeds in R^k so that M - D projects submersively to the hyperplane $x_1 = 0$. We will assume that the subset $M \subset R^k$ lies in the half-space $x_k > 0$. Hence, rotating R^k about R^{k-1} in R^{k+1} , we obtain an embedding $(x,\theta) \leftrightarrow (x_1,...,x_{k-1},x_k\cos\theta,x_k\sin\theta)$ of $M \times S^1$ in R^{k+1} . This embedding needs only a mild deformation in order to satisfy the required property.

Let e_1 ,..., e_{k+1} be the standard basis for \mathbb{R}^{k+1} . Let \mathbf{r}_{θ} be the rotation

Let $n(x) = n_1(x)e_1 + \cdots + n_k(x)e_k$ be the unit normal vector to M in \mathbb{R}^k .

† And still another by A. Gramain [Gra] 1973.

For $x\in M\text{-}D$ we can assume that n_1 is bounded away from zero . Say $n_1\geqslant 2\alpha>0$.

Suppose that M lies in the open slab $0 < x_k < \beta$ of R^k . Choose $\epsilon > 0$ so that the correspondence $(x, t) \Rightarrow x + tn(x)$ embeds $M \times (-\epsilon, \epsilon)$ diffeomorphically in this slab.

Choose a smooth map $t: S^1 \to (-\epsilon, \epsilon)$ so that

$$\frac{dt}{d\theta} \ge 2\beta/\alpha$$
 when $\theta = 0$; $\cos \theta \frac{dt}{d\theta} \ge 0$ always.

The required embedding $M \times S^1 \to R^{k+1}$ is now given by

$$(x, \theta) \leftrightarrow r_{\theta}(x + t(\theta)n(x))$$
.

Computation shows that the normal vector to this embedding is $p/\|p\|$ where

$$\int_{\mathcal{L}_k} p(x, \theta) = (x_k + t n_k) r_{\theta}(n) - \frac{dt}{d\theta}$$

Let $v = e_1 - \alpha e_{k+1}$. Then $p \cdot v = A + B$ where

$$A = (x_k + t n_k)(n_1 - \alpha \sin\theta \ n_k) \quad \text{and} \quad B = \alpha \cos\theta \ \frac{dt}{d\theta} \ \geqslant \ 0 \ .$$

Thus if $x \in M - D$ we have

$$A \ge (x_k + tn_k)(2\alpha - \alpha) > 0$$

hence $p \cdot v > 0$. On the other hand , for any $x \in M$, if $\theta = 0$, we have

$$A \geqslant -\beta$$
, $B \geqslant \alpha(2\beta/\alpha)$.

Hence $p \cdot v > 0$ for $\theta = 0$, and therefore $p \cdot v > 0$ for all sufficiently small θ ; say for $|\theta| \le \eta$.

It now follows that the complement $(M \times S^1) - (D \times [\eta, 2\pi - \eta])$ projects submersively to the hyperplane v^{\perp} . This completes the proof.