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INFINITE HOMOTOPY STABLE CLASS
FOR 4-MANIFOLDS WITH BOUNDARY

ANTHONY CONWAY, DIARMUID CROWLEY AND MARK POWELL

We show that for every odd prime q, there exists an infinite family {Mi }
∞

i=1 of
topological 4-manifolds that are all stably homeomorphic to one another, all
the manifolds Mi have isometric rank one equivariant intersection pairings
and boundary L(2q, 1)#(S1 × S2), but they are pairwise not homotopy equiv-
alent via any homotopy equivalence that restricts to a homotopy equivalence
of the boundary.

1. Introduction

In what follows a manifold is understood to mean a compact, connected, oriented,
topological manifold. Let Wg := #g(S2

× S2) be the g-fold connected sum of
S2

× S2 with itself. Two 4-manifolds M and N with the same Euler characteristic
are stably homeomorphic, denoted M ∼=st N , if there exists a nonnegative integer g
and a homeomorphism

M#Wg ∼= N#Wg.

Surgery theory suggests two ways to classify 4-manifolds. The classical Browder–
Novikov–Sullivan–Wall [Wall 1999] approach is to classify up to homotopy equiv-
alence and then employ the surgery exact sequence. Kreck’s modified surgery
approach [1999] seeks to classify up to stable homeomorphism, and then attempt
to destabilise. A natural question then arising is to compare the homotopy and
stable classifications. To do this precisely for 4-manifolds with boundary we fix a
4-manifold M and define the homotopy stable class:

Sst
h (M) := {N | N ∼=st M}/homotopy equivalence of pairs.

Here, we understand a homotopy equivalence of pairs N1 ≃ N2 to be one that
restricts to a homotopy equivalence between the boundaries. When the manifolds
are closed, this recovers the usual notion of homotopy equivalence.

Using the equivariant intersection form λN of N as an invariant, Sst
h (M) can

be arbitrarily large: for example, one can use Freedman’s work [1982] to realise
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distinct positive definite symmetric bilinear forms with the same signature and
rank by simply connected closed 4-manifolds with identical Kirby–Siebenmann
invariant. For this reason, we study the homotopy stable class one intersection form
at a time and set

Sst
h,λ(M) := {N | N ∼=st M, λN ∼= λM}/homotopy equivalence of pairs.

If M is closed and has π1(M) = 1, Z, or Z/n, or π1(M) is a solvable Baumslag–
Solitar group, then |Sst

h,λ(M)| = 1: stably homeomorphic manifolds with isometric
equivariant intersection forms are homeomorphic for π1 = 1 by [Freedman 1982],
for π1 ∼= Z by [Freedman and Quinn 1990], for π1 ∼= Z/n by [Hambleton and Kreck
1993, Theorem C], and for solvable Baumslag–Solitar group by [Hambleton, Kreck
and Teichner 2009, Theorem A]. On the other hand, Kreck and Schafer [1984] found
pairs of smooth closed 4-manifolds with finite π1 and isometric equivariant inter-
section forms that are stably diffeomorphic but not homotopy equivalent. When the
boundary is nonempty and π1 = 1, one can use work of Boyer [1993] to produce sim-
ply connected 4-manifolds M with boundary and arbitrarily large (but necessarily fi-
nite) Sst

h,λ(M). Until now however, there have been no examples of 4-manifolds with
infinite Sst

h,λ(M). For every odd prime q , our main result describes a 4-manifold M
with fundamental group Z and infinite Sst

h,λ2q
(M), where the fixed Hermitian form is

λ2q : Z[t±1
] × Z[t±1

] → Z[t±1
]; (x, y) 7→ 2qx y.

Theorem 1.1. For every odd prime q , there exists an infinite family {Mi }
∞

i=1 of
4-manifolds with fundamental group Z that are all stably homeomorphic, and
all the manifolds Mi have equivariant intersection pairing isometric to λ2q and
boundary L(2q, 1)#(S1

× S2), but they are pairwise not homotopy equivalent via
any homotopy equivalence that restricts to a homotopy equivalence on the boundary.
In other words,

|Sst
h,λ2q

(M1)| = ∞.

For a fixed odd prime q, the manifolds in Theorem 1.1 all have fundamental
group Z, boundary

Yq := L(2q, 1)#(S1
× S2),

equivariant intersection form isometric to λ2q , and integral intersection form iso-
metric to

λZ
2q : Z × Z → Z; (x, y) 7→ 2qxy,

but are distinguished by an invariant, first introduced in [Conway, Piccirillo and
Powell 2022] and inspired by [Boyer 1993], related to the Blanchfield form of Yq .
While the manifold M1 is smooth, we cannot tell whether any of the other Mi admit
smooth structures. Their construction uses surgery methods, in particular a recent
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realisation result from [Conway, Piccirillo and Powell 2022], which a priori only
works in the topological category.

Before giving more details and describing the main steps in the proof of Theorem
1.1, we briefly compare the study of the homotopy stable class in dimension 4 with
the situation in higher dimensions.

Remark 1.2. Kreck and Schafer [1984] found pairs of closed smooth 4k-manifolds,
for k ≥ 1, that are stably diffeomorphic and have hyperbolic equivariant intersection
forms, but are pairwise not homotopy equivalent. In [Conway, Crowley, Powell
and Sixt 2023], we gave the first examples of simply connected, closed, smooth
4k-manifolds, for k ≥ 2, with hyperbolic intersection form and arbitrarily large
homotopy stable class Sst

h,λ. In [Conway, Crowley, Powell and Sixt 2021] for
k ≥ 2, we produced smooth closed 4k-manifolds with fundamental group Z, again
with hyperbolic intersection form, and such that the homotopy stable class Sst

h,λ is
infinite. In those papers we were unable to obtain examples in dimension 4. In
[Conway, Crowley, Powell and Sixt 2023], in lieu of this we defined a spinc version
of the stable class in dimension 4, and we showed that this spinc stable class can be
arbitrarily large. This article shows that a variation on those methods, with analogous
underlying algebra, does produce examples of 4-manifolds with nonempty boundary
and fundamental group Z that have infinite homotopy stable class.

Next we describe the main steps in the proof of Theorem 1.1. Fix an odd prime q .
The first observation is that if N1, N2 are 4-manifolds with integral intersection
forms isometric to λZ

2q , then there can be no orientation-reversing homotopy equiv-
alence between N1 and N2. For this reason, and for the purpose of proving our
main theorem, we restrict to orientation-preserving homotopy equivalences (o.p.
homotopy eq. for short) and therefore consider

Sst
h+,λ(M) := {N | N ∼=st M, λN ∼= λM}/o.p. homotopy eq. of pairs.

We now restrict to 4-manifolds M with fundamental group Z such that the inclusion
∂M ⊆ M induces a surjection ϕ :π1(∂M)↠π1(M)

∼=−→ Z (we say that M has ribbon
boundary) and for which H1(∂M; Z[t±1

]) is a Z[t±1
]-torsion module. Here and

throughout the paper we assume that the fundamental groups of our 4-manifolds are
equipped with a preferred isomorphism to Z; to indicate this we write π1(M) = Z.

Given two such manifolds N1 and N2, we write ∂N1 ∼=B ∂N2 if there exists
an orientation-preserving homeomorphism f : ∂N1

∼=−→ ∂N2 that intertwines the
inclusion induced epimorphisms ϕi : π1(∂Ni ) ↠ π1(Ni ) and, in the case that N1

and N2 are spin, such that the union N1 ∪ f −N2 is spin. The terminology ∼=B is
motivated by modified surgery theory [Kreck 1999], in which B is the standard
notation for the normal 1-type.
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Next, if N1 and N2 have fundamental group Z, ∂N1 ∼=B ∂N2, the same Kirby–
Siebenmann invariant, and λN1

∼= λN2 , then they are stably homeomorphic. Indeed,
N1 and N2 must have isometric integral intersection forms (in particular with the
same type and the same signature) and the same Kirby–Siebenmann invariant, so
[Kreck 1999, Theorem 2] ensures they are stably homeomorphic; see Lemma 4.1
for details.

Put differently, if M is a 4-manifold with infinite cyclic fundamental group, then

Sst
h+,λ(M) =

{N | ∂N ∼=B ∂M, π1(N ) = Z, λN ∼= λM , ks(N ) = ks(M)}

o.p. homotopy eq. of pairs
.

This next step is to recast Sst
h+,λ

(M) in terms of the group Aut(Bl∂M) of isome-
tries of the Blanchfield form Bl∂M (whose definition we recall in Section 3).
Firstly, as we recall in Section 5, the group hAut+ϕ (∂M) of orientation-preserving
homotopy equivalences h : ∂M ≃ ∂M that intertwine the inclusion induced map
ϕ : π1(∂M) → π1(M) = Z acts on Aut(Bl∂M). Secondly, as we also recall in
Section 5, the group Aut(λM) of isometries of λM also acts on Aut(Bl∂M), and the
two actions commute with one another. Quotienting out by these two actions leads
to an orbit set Aut(Bl∂M)/(Aut(λM)×hAut+ϕ (∂M)). Note that it need not be group.

In order to account for our 4-manifolds being spin, we will in fact need to work
with a smaller set of isometries. Namely, if M is spin, then Bl∂M admits a quadratic
enhancement

µBl∂M : H1(∂M; Z[t±1
]) →

{b ∈ Q(t) | b = b}

{a + a | a ∈ Z[t±1]}

and we write Aut(Bl∂M , µBl∂M ) ⊆ Aut(Bl∂M) for those isometries of Bl∂M that also
preserve µBl∂M . Writing hAut+,q

ϕ (∂M) for those homotopy equivalences whose
induced map on the Alexander module preserves µBl∂M leads to the orbit set

Aut(Bl∂M , µBl∂M )/(Aut(λM) × hAut+,q
ϕ (∂M)).

One of the main steps in the proof of Theorem 1.1 is the following partial description
of Sst

h+,λ
(M) for a large class of 4-manifolds M with infinite cyclic fundamental

group and ribbon boundary. As we will explain in Proposition 5.2, this result
follows fairly promptly from the machinery developed in [Conway, Piccirillo and
Powell 2022]. In the following proposition, and throughout the paper, spin refers to
a manifold that admits a spin structure compatible with the orientation.

Proposition 1.3. If M is a spin 4-manifold with ribbon boundary, π1(M) = Z, and
nondegenerate equivariant intersection form λM , then there is a surjection

b : Sst
h+,λ(M) ↠ Aut(Bl∂M , µBl∂M )/(Aut(λM) × hAut+,q

ϕ (∂M)).

The surjection is described explicitly in Construction 5.1.
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Fix an odd prime q and let X2q(U ) denote the 2q-trace on the unknot U , i.e.
the smooth 4-manifold obtained from D4 by attaching a 2q-framed 2-handle along
the unknot. The final part of the proof of Theorem 1.1, which is carried out in
Proposition 6.8, consists of proving that for M = X2q(U )♮(S1

× D3), the set

Aut(Bl∂M , µBl∂M )/(Aut(λM) × hAut+,q
ϕ (∂M))

is countably infinite. Modulo this statement, we can now conclude the proof of
Theorem 1.1, which states that Sst

h,λ2q
(M) is infinite.

Proof of Theorem 1.1. Fix an odd prime q and consider M := X2q(U )♮(S1
× D3).

This 4-manifold is spin, has ribbon boundary, admits an identification π1(M) = Z,
and has nondegenerate equivariant intersection λM ∼= (2q). Since for any two
4-manifolds N1 and N2 with integral intersection forms isometric to λZ

2q , there is no
orientation reversing homotopy equivalence between them, Sst

h,λ2q
(M)= Sst

h+,λ2q
(M).

We therefore prove that Sst
h+,λ2q

(M) is infinite. To prove this we apply Proposition 1.3,
which implies that Sst

h+,λ2q
(M) surjects onto the orbit set

Aut(Bl∂M , µBl∂M )/(Aut(λM) × hAut+,q
ϕ (∂M))

and this latter set is countably infinite by Proposition 6.8. □

Remark 1.4. The existence of M with infinite

Aut(Bl∂M , µBl∂M )/(Aut(λM) × hAut+,q
ϕ (∂M))

is what makes it possible for us to obtain an example where the homotopy stable
class Sst

h,λ is infinite. While an analogue of Proposition 1.3 can be proved in the
simply connected case using results of [Boyer 1993], the corresponding algebra
always remains finite for trivial fundamental group.

All of the infinite sets we discuss are necessarily countable. Primarily, this has
to be the case because there are only countably many compact manifolds [Cheeger
and Kister 1970]. On the algebraic side it is also evident that the orbit set onto
which the homotopy stable class surjects in Proposition 1.3 is countable, essentially
because all the homology groups involved are finitely generated over Z[t±1

].

Next we discuss a variation on Proposition 1.3 that may be of independent
interest. The surjection in Proposition 1.3 can be improved to a bijection if we
require the homotopy equivalences N1 ≃ N2 to restrict to homeomorphisms on the
boundary; i.e. if we consider

S
st,∂
h+,λ

(M) :=
{N | N ∼=st M, λN ∼= λM}

o.p. homotopy eq. that restricts to a homeo. on the boundary
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and change the target accordingly, i.e. consider

Aut(Bl∂M , µBl∂M )/(Aut(λM) × Homeo+,q
ϕ (∂M))

instead of
Aut(Bl∂M , µBl∂M )/(Aut(λM) × hAut+,q

ϕ (∂M)).

In fact, the same result is obtained with

Sst
+,λ(M) :=

{N | N ∼=st M, λN ∼= λM}

o.p. homeomorphism
.

Proposition 1.5. If M is a spin 4-manifold with π1(M) = Z, ribbon boundary and
nondegenerate equivariant intersection form λM , then there are bijections

S
st,∂
h+,λ

(M) ≈
−→ Aut(Bl∂M , µBl∂M )/(Aut(λM) × Homeo+,q

ϕ (∂M)),

Sst
+,λ(M) ≈

−→ Aut(Bl∂M , µBl∂M )/(Aut(λM) × Homeo+,q
ϕ (∂M)).

The bijections are induced by the map b that will be introduced in Construction 5.1.
For M := X2q(U )♮(S1

× D3), with q an odd prime, the sets above are countably
infinite.

Proof. The surjectivity follows from the same argument that we will use in
Proposition 5.2. We prove injectivity. If b(N1) = b(N2), then [Conway, Piccirillo
and Powell 2022, Theorem 1.1] shows that the manifolds N1 and N2 are orientation-
preserving homeomorphic. Since the quotient with Homeo+,q

ϕ (∂M) replaced by
hAut+,q

ϕ (∂M) is infinite, and since Homeo+,q
ϕ (∂M) ⊆ hAut+,q

ϕ (∂M), it follows that
the sets in the statement are infinite. □

We now characterise M := X2q(U )♮(S1
× D3) within Sst

+,λ(M) in terms of the
knottedness of the sphere S2

l := {pt} × S2
⊆ ((S1

× S2) \ Int(D3)) ⊆ ∂M and the
connect sum sphere S2

c ⊆ M :

Theorem 1.6. For M = X2q(U )♮(S1
× D3) and N ∈ Sst

+,λ(M), the following are
equivalent:

(1) N is homeomorphic to M.

(2) S2
l ⊆ ∂N bounds a locally flat D3

⊆ N.

(3) S2
c bounds a locally flat D3

⊆ N.

Proof. The implications (1) ⇒ (2) and (1) ⇒ (3) are immediate.
We prove the implication (2) ⇒ (1). Cut N along the D3 with boundary S2

l
to obtain a simply connected 4-manifold with boundary L(2q, 1) and H2 = Z.
Theorem 0.1 of [Boyer 1986] implies that such a manifold is homeomorphic
to X2q(U ). Glue back the D3

× [0, 1] that we removed to recover N as M .
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Finally, we prove the implication (3)⇒ (1). Cut N open along the separating D3,
resulting in a disjoint union of two 4-manifolds. The first is simply connected with
H2 = Z and boundary L(2q, 1) and is therefore homeomorphic to X2q(U ) [Boyer
1986, Theorem 0.1]. The second has π1 = Z, no H2 and boundary S1

× S2; it is
thus homeomorphic to S1

× D3 [Freedman and Quinn 1990, §11.6]. Glue back the
D3

× [0, 1] that we removed to recover N as M . □

Organisation. In Sections 2 and 3, we review some facts about linking forms and
in particular the Blanchfield form. In Section 4 we give a criterion that implies
stable homeomorphism of 4-manifolds with fundamental group Z and nonempty
boundary. In Section 5, we prove Proposition 1.3. In Section 6 we show that for
M = X2q(U )♮(S1

× D3), with q an odd prime, the set

Aut(Bl∂M , µBl∂M )/(Aut(λM) × hAut+,q
ϕ (∂M))

is infinite.

Conventions. We work in the topological category unless otherwise stated. All
manifolds are assumed to be compact, connected, based, and oriented. If a manifold
has a nonempty boundary, then the basepoint is assumed to be in the boundary.
For a 4-manifold M with fundamental group Z, we fix an identification an write
π1(M) = Z. We say that M is spin if M admits a spin structure compatible with
the orientation. We write p 7→ p for the involution on Z[t±1

] induced by t 7→ t−1.
Given a Z[t±1

]-module H , we write H for the Z[t±1
]-module whose underlying

abelian group is H but with module structure given by p · h = ph for h ∈ H and
p ∈ Z[t±1

]. We write H∗
:= HomZ[t±1](H, Z[t±1]).

2. Linking forms and unions

Since a large part of this paper is concerned with the Blanchfield form and isometries
thereof, we start by recalling terminology related to the underlying algebra. In
Section 2.1 we recall symmetric and quadratic linking forms. In Section 2.2 we
recall how a Hermitian form has a boundary which is a symmetric linking form, and
the boundary of an even form has the additional structure of a quadratic refinement.
In Section 2.3 we recall how isometries of these linking forms can be used to glue
two linking forms together, and we show that the union of two even forms along an
isometry of their boundary quadratic linking forms is again an even form.

2.1. Symmetric and quadratic linking forms. Everything in this subsection is
the special case for Z[t±1

] of a general theory for arbitrary rings with involution
developed by Ranicki [1981, §3.4].

Definition 2.1. A symmetric linking form over Z[t±1
] is a pair (T, ℓ), where T is a

torsion Z[t±1
]-module, and ℓ : T × T → Q(t)/Z[t±1

] is a Hermitian, sesquilinear,
nonsingular pairing.
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We write S := Z[t±1
] \ {0}, and set

Q1(Q(t)/Z[t±1
]) :=

{b ∈ Q(t) | b − b ∈ Z[t±1
]}

Z[t±1]
,

Q1(Z[t±1
], S) :=

{b ∈ Q(t) | b = b}

{a + a | a ∈ Z[t±1]}
,

Q1(Z[t±1
], S) :=

{b ∈ Q(t) | b − b = a − a for some a ∈ Z[t±1
]}

Z[t±1]

⊆ Q1(Q(t)/Z[t±1
]).

For a symmetric linking form (T, ℓ), we have that ℓ(x, x) ∈ Q1(Q(t)/Z[t±1
])

for all x ∈ T . The symmetric linking form is called even if ℓ(x, x) ∈ Q1(Z[t±1
], S)

for all x ∈ T . We define a map

q : Q1(Z[t±1
], S) → Q1(Z[t±1

], S), [b] 7→ [b].

Definition 2.2. A quadratic refinement of an even symmetric linking form (T, ℓ)

is a function µ : T → Q1(Z[t±1
], S) satisfying

(i) µ(r x) = rµ(x)r ∈ Q1(Z[t±1
], S) for all x ∈ T and for all r ∈ Z[t±1

];

(ii) µ(x + y) = µ(x)+µ(y)+ ℓ(x, y)+ ℓ(x, y) ∈ Q1(Z[t±1
], S) for all x, y ∈ T ;

(iii) q(µ(x)) = ℓ(x, x) ∈ Q1(Z[t±1
], S) for all x ∈ T .

A triple (T, ℓ, µ) consisting of a symmetric linking form together with a quadratic
refinement is called a quadratic linking form over Z[t±1

].

For aficionados of [Ranicki 1981], we emphasise that we are using the nonsplit
version of quadratic linking forms.

We will also need to consider isometries and automorphisms of symmetric and
quadratic linking forms.

Definition 2.3. Let (T, ℓ) and (T ′, ℓ′) be symmetric linking forms over Z[t±1
] and

let µ : T → Q1(Z[t±1
], S) and µ′

: T ′
→ Q1(Z[t±1

], S) be respective quadratic
refinements.

(1) An isomorphism f : T → T ′ is an isometry of symmetric linking forms if

ℓ′( f (x), f (y)) = ℓ(x, y)

for every x, y ∈ T .

(2) The isometry of symmetric linking forms f is moreover an isometry of
quadratic linking forms, f : (T, ℓ, µ) ∼= (T ′, ℓ′, µ′) if µ′( f (x)) = µ(x) for
every x ∈ T .
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(3) If (T, ℓ) = (T ′, ℓ′), then f as in (1) is an automorphism of symmetric linking
forms. We write Aut(T, ℓ) for the group of automorphisms.

(4) If (T, ℓ, µ) = (T ′, ℓ′, µ′), then f as in (2) is an automorphism of quadratic
linking forms. We write Aut(T, ℓ, µ) for the group of automorphisms.

Remark 2.4. Given a quadratic linking form (T, ℓ, µ) over Z[t±1
] with underly-

ing symmetric linking form (T, ℓ), we note that Aut(T, ℓ, µ) ⊆ Aut(T, ℓ). We
give an example showing that this can be a proper inclusion: multiplication by 3
induces an isomorphism Z[t±1

]/8 → Z[t±1
]/8 that preserves the linking form

ℓ(x, y) =
1
8 x y but does not preserve the quadratic refinement µ(x) =

1
8 xx . Indeed

µ(3) =
9
8 ̸=

1
8 = µ(1) ∈ Q1(Z[t±1

], S) because 1 cannot be written as a + a
with a ∈ Z[t±1

].

2.2. Boundaries of quadratic forms. We recall some terminology about Hermitian
forms. A Hermitian form refers to a pair (H, λ), where H is a free Z[t±1

]-module
and λ : H × H → Z[t±1

] is a sesquilinear Hermitian pairing. Given a Hermitian
form (H, λ) over Z[t±1

], we use λ̂ : H → H∗
=: HomZ[t±1](H, Z[t±1]) to denote

the linear map defined by λ̂(y)(x) = λ(x, y). We often refer to λ̂ as the adjoint
of λ. We say that λ is nondegenerate if λ̂ is injective and nonsingular if λ̂ is an
isomorphism. We also recall that a Hermitian form (H, λ) is called even if for all
x ∈ H , there exists a ∈ Z[t±1

] such that λ(x, x) = a + a.
We describe how a nondegenerate even Hermitian form over Z[t±1

] determines
a quadratic linking form, following [Ranicki 1981, p. 243].

Definition 2.5. The boundary symmetric linking form of a nondegenerate Hermitian
form (H, λ) over Z[t±1

] is the symmetric linking form (coker(λ̂), ∂λ), where ∂λ

is defined as

∂λ : coker(λ̂) × coker(λ̂) → Q(t)/Z[t±1
], ([x], [y]) 7→

1
s
(y(z)),

where, as coker(λ̂) is Z[t±1
]-torsion, there exists s ∈ Z[t±1

] and z ∈ H such that
sx = λ̂(z).

If (H, λ) is additionally assumed to be even, then its boundary quadratic link-
ing form is the quadratic linking form (coker(λ̂), ∂λ, µ∂), where the quadratic
refinement of ∂λ is

µ∂ : coker(λ̂) → Q1(Z[t±1
], S), [y] 7→

1
s
(y(z)),

with s ∈ Z[t±1
] and z ∈ H such that sy = λ̂(z).

We assert that ∂λ is independent of the choices involved, and is nonsingular,
sesquilinear, and Hermitian. These can all be verified directly. To enable us to
give a reference to existing literature, note that the boundary symmetric linking
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form is the linking form on H 1(C∗) associated with the 1-dimensional Q(t)-acyclic
symmetric Poincaré complex (C∗, ϕ) over Z[t±1

] given by

C0
= H λ //

ϕ0=Id
��

C1
= H∗

ϕ0=Id
��

C1 = H λ∗
=λ // C0 = H∗

In [Powell 2016, Propositions 3.3, 3.4, and 3.8] it was shown that such a linking
form is well-defined, nonsingular, sesquilinear, and Hermitian.

The next proposition is implicit in [Ranicki 1981, p. 243]. As far as we know
such a proof has not appeared in the literature, so we provide the details of the proof.

Proposition 2.6. The function µ∂ is a well-defined function coker(λ̂)→Q1(Z[t±1
],S),

and is a quadratic refinement of the boundary symmetric linking form ∂λ of (H,λ),
i.e. µ∂ satisfies the requirements of Definition 2.2.

Proof. First we show it is well-defined. Let y, z, and s be as in Definition 2.5.
Express λ̂ as a Hermitian matrix A = AT over Z[t±1

] with respect to some basis
of H . Then A is invertible over Q(t) because λ is nondegenerate, so det(A) ̸= 0.
We have µ∂(y) = yT A−1 y. Therefore

µ∂(y) = µ∂(y)T
= (yT A−1 y)T

= yT A−1T y = yT (AT )−1 y = yT A−1 y = µ∂(y).

Hence µ∂(y) ∈ Q1(Z[t±1
], S).

Next we show that the choices of z and s do not change µ∂(y). Let y ∈ H and
let y ∈ coker(λ̂), s ∈ Z[t±1

], and z ∈ H be as in Definition 2.5, with λ̂(z) = sy.
Let s ′

∈ Z[t±1
] and z′

∈ H be another pair of choices, such that λ̂(z′) = s ′y. Since
µ∂(y) ∈ Q1(Z[t±1

], S), we have

1
s ′

y(z′) =
1
s ′

y(z′).

The difference between the two computations of µ∂(y) yields

1
s

y(z) −
1
s ′

y(z′) =
1
s

y(z) −
1
s ′

y(z′) =
1
s

y(z) s ′

s ′
−

1
s ′

y(z′)
s
s

=
1
s
(s ′y)(z) 1

s ′
−

1
s ′

(sy)(z′)
1
s

=
1
s
λ̂(z′)(z) 1

s ′
−

1
s ′

λ̂(z)(z′)
1
s

=
1
s
λ(z, z′)

1
s ′

−
1
s ′

λ(z, z′)
1
s

= 0 ∈ Q1(Z[t±1
], S).

Next we show that µ∂ does not depend on the representative y for the class in
coker(λ̂). Replace y ∈ coker(λ̂) by another representative y + λ̂(u), for some u ∈ H .
Then λ̂(z + su) = s(y + λ̂(u)). Therefore

µ∂(y + λ̂(u)) =
1
s
(y + λ̂(u))(z + su) =

1
s

y(z) +
1
s
λ̂(u)(z) + y(u) + λ̂(u)(u).
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We have

λ̂(u)(z) = λ(z, u) = λ(u, z) = λ̂(z)(u) = (sy)(u) = y(u)s = sy(u).

Substituting, we obtain that

µ∂(y + λ̂(u)) =
1
s

y(z) + y(u) + y(u) + λ(u, u).

The last term is symmetric over Z[t±1
], which implies it is of the form a+a. Hence

up to terms of the form a + a, we have

µ∂(y + λ̂(u)) =
1
s

y(z) = µ∂(y),

as desired.
Now we know that µ∂ is well-defined, we prove that it satisfies the conditions

in Definition 2.2 for it to be a quadratic refinement of the boundary symmetric
linking form ∂λ. For (i), let y ∈ coker(λ̂), let r ∈ Z[t±1

], and let z ∈ H be such that
λ̂(z) = sy. Then λ̂(r z) = rsy = sr y. Thus

µ∂(r y) =
1
s
((r y)(r z)) =

r
s
(y(z))r = rµ∂(y)r ,

as desired. Next, aiming for (ii), we compute µ∂(x + y), for x, y ∈ coker(λ̂).
Let r, s ∈ Z[t±1

] and w, z ∈ H be such that λ̂(w) = r x and λ̂(z) = sy. Then
λ̂(sw + r y) = sr x + rsy = rs(x + y). Hence

µ∂(x + y) =
1
rs

(x + y)(sw + r z) =
1
r

x(w) +
1
s
(y)(z) +

1
r

y(w) +
1
s

x(z)

= µ∂(x) + µ∂(y) + ∂λ(x, y) + ∂λ(y, x).

Since ∂λ is Hermitian, this proves (ii). Condition (iii) is immediate from the
formulae. □

Remark 2.7. We note for later use that an isomorphism F : H0 → H1 induces an
isomorphism F−∗

:= (F∗)−1
: H∗

0 → H∗

1 and that if additionally the isomorphism F
is an isometry, then F−∗ descends to an isomorphism

∂ F := F−∗
: coker(λ̂0) → coker(λ̂1)

which determines an isometry of quadratic linking forms. Hence Aut(λ) acts both on
Aut(coker(λ̂), ∂λ) and on the subset Aut(coker(λ̂), ∂λ, ∂µ∂) by F · h = h ◦ ∂ F−1.

2.3. Algebraic unions. We recall the definition of the union of two Hermitian
forms along an isometry of their boundary linking forms. The definition appears for
the ring Z in [Crowley 2002, Lemma 3.6] and was generalised to the ring Z[t±1

] in
[Conway and Powell 2023, Construction 2.7]. The goal of this section is to prove that
if the isometry preserves the quadratic refinements, then the union is an even form.
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Construction 2.8. Let (H0, λ0) and (H1, λ1) be nondegenerate Hermitian forms
over Z[t±1

], and let h : (coker(λ̂0), ∂λ0) → (coker(λ̂1), ∂λ1) be an isometry of their
boundary symmetric linking forms. Consider the pair (H0 ∪h H1, λ0 ∪h −λ1) with

H0 ∪h H1 := ker
(
hπ0 − π1 : H∗

0 ⊕ H∗

1 → coker(λ̂1)
)

λ0 ∪h −λ1

((
x0
x1

)
,
(

y0
y1

))
=

1
s0

y0(z0) −
1
s1

y1(z1) ∈ Q(t),

where, since coker(λ̂i ) is torsion, there exists si ∈ Z[t±1
] and zi ∈ Hi such that

si xi = λ̂i (zi ). Since the Hermitian forms λ0 and λ1 are nondegenerate, it is not
difficult to prove that the pairing λ0 ∪h −λ1 does not depend on the choice of
s0, s1, z0, z1. One verifies that λ0 ∪h −λ1 is a sesquilinear, Hermitian form and
takes values in Z[t±1

]; see [Conway and Powell 2023, Proposition 2.8]. This pairing
will be referred to as the algebraic union of λ0 and λ1.

Lemma 2.9. Let (H0, λ0), (H1, λ1) and (H, λ) be nondegenerate Hermitian forms
over Z[t±1

], and let h : (coker(λ̂0), ∂λ0) → (coker(λ̂1), ∂λ1) be an isometry of the
boundary linking forms. If F : λ0 ∼= λ1 is an isometry, then there is an isometry

λ0 ∪h −λ1 ∼= λ1 ∪h◦∂ F−1 −λ1.

Proof. See [Conway and Powell 2023, Proposition 2.8]. □

Lemma 2.10. Let (H0, λ0) and (H1, λ1) be two nondegenerate even Hermitian
forms over Z[t±1

]. Suppose that F : (H0, λ0) ∼= (H1, λ1) is an isometry and that

h : (coker(λ̂0), ∂λ0, (µ∂)0) → (coker(λ̂1), ∂λ1, (µ∂)1)

is an isometry of quadratic linking forms. Then the algebraic union λ0 ∪h −λ1

is even.

Proof. Using Lemma 2.9 we can assume without loss of generality that H0 = H1

and λ0 = λ1 and (µ∂)0 = (µ∂)1. Write them both as (H, λ, µ∂). This means
composing h with ∂ F , but since ∂ F is an isometry of quadratic linking forms too,
this does not affect the argument. We abuse notation and without loss of generality
use h to denote the new isometry of boundary quadratic linking forms.

It thus suffices to check that for every x0, x1 ∈ H∗ such that h ◦π0(x0) = π1(x1),
the self-intersection λ ∪h −λ

(
(x0, x1), (x0, x1)

)
is of the form a + a for some

a ∈ Z[t±1
].

Pick z0, z1 ∈ H and s0, s1 ∈ Z[t±1
] such that s0x0 = λ̂(z0) and s1x1 = λ̂(z1). This

implies both that

µ∂(πi (xi )) =
1
si

(xi (zi )) ∈ Q1(Z[t±1
], S)

and that
λ ∪h −λ

(
(x0, x1), (x0, x1)

)
=

1
s0

x0(z0) −
1
s1

x1(z1) ∈ Z[t±1
].
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Passing to Q1(Z[t±1
], S), by the definition of µ∂ this equals

µ∂(π0(x0)) − µ∂(π1(x1)) = µ∂(π0(x0)) − µ∂(h ◦ π0(x0)) = 0.

The first equality used h ◦π0(x0) = π1(x1). The second equality used that h is an
isometry of quadratic linking forms.

Now we just have to note that the indeterminacy in Q1(Z[t±1
], S) consists entirely

of even elements {a + a | a ∈ Z[t±1
]}, and therefore λ ∪h −λ

(
(x0, x1), (x0, x1)

)
⊆

{a + a | a ∈ Z[t±1
]}. It follows that λ ∪h −λ is even, as desired. □

3. The Blanchfield form

In Section 3.1 we review the definition of the Blanchfield form and how it is related
to the equivariant intersection form of a 4-manifold with fundamental group Z.
Then in Section 3.2 we review isometries of Blanchfield forms. In Section 3.3 we
prove promised the spin gluing result, which demonstrates how isometries of the
Blanchfield form together with a quadratic refinement can be used to ensure that
the union of two spin 4-manifolds is again spin.

3.1. The Blanchfield form. We recall the definition of the Blanchfield form BlY
of a closed 3-manifold Y equipped with an epimorphism ϕ : π1(Y ) ↠ Z and how,
if M is a 4-manifold with ribbon boundary, then Bl∂M is related to the equivariant
intersection form λM of M .

Construction 3.1. Let Y be a closed 3-manifold and let ϕ :π1(Y )↠Z be an epimor-
phism. Assume that the Alexander module H1(Y ; Z[t±1

]) is torsion so that, in par-
ticular, the Bockstein homomorphism BS : H 1(Y ; Q(t)/Z[t±1

]) → H 2(Y ; Z[t±1
])

is an isomorphism. Consider the composition of Poincaré duality, the inverse
Bockstein homomorphism and the evaluation homomorphism:

8 : H1(Y ; Z[t±1
]) PD,∼=−−−→ H 2(Y ; Z[t±1

]) BS−1,∼=−−−−→ H 1(Y ; Q(t)/Z[t±1
])

ev
−→ Hom(H1(Y ; Z[t±1]), Q(t)/Z[t±1]).

Using the universal coefficient spectral sequence, one can check that the evaluation
map is an isomorphism, and thus so is 8. Thus the pairing (x, y) 7→ 8(y)(x) is
nonsingular. It is straightforward to see that this pairing is sesquilinear. It is also
Hermitian; see e.g. [Powell 2016].

Definition 3.2. Let Y be a closed 3-manifold and let ϕ : π1(Y ) ↠ Z be an
epimorphism such that the Alexander module H1(Y ; Z[t±1

]) is torsion. The
Blanchfield form

BlY : H1(Y ; Z[t±1
]) × H1(Y ; Z[t±1

]) → Q(t)/Z[t±1
]

is the sesquilinear, nonsingular, Hermitian form defined by BlY (x, y) = 8(y)(x).
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Let M be a 4-manifold with π1(M) = Z, nondegenerate equivariant intersec-
tion form λM and ribbon boundary (meaning that the inclusion induced map
π1(∂M) → π1(M) is surjective). We now outline why the symmetric boundary
linking form ∂λM (that was described in Section 2.2) is isometric to −Bl∂M .

As explained in [Conway and Powell 2023, Remark 3.3], the connecting homo-
morphism δ in the long exact sequence of the pair (M, ∂M), together with Poincaré
duality and the evaluation map, determines an isomorphism

DM : coker(λ̂M)
∼=−→ H1(∂M; Z[t±1

]), [x] 7→ δ ◦ PD ◦ ev−1(x)

that fits into the following commutative diagram:

(1)

0 // H2(M; Z[t±1
])

λ̂M //

=

��

H2(M; Z[t±1
])∗ //

PD ◦ ev−1∼=

��

coker(λ̂M) //

DM∼=

��

0

0 // H2(M; Z[t±1
])

j
// H2(M, ∂M; Z[t±1

]) δ // H1(∂M; Z[t±1
]) // 0

Proposition 3.3 [Conway and Powell 2023, Proposition 3.5]. Let M be a 4-manifold
with π1(M) = Z, whose boundary is ribbon and with torsion Alexander module.
The isomorphism DM induces an isometry of symmetric linking forms

DM : ∂(H2(M; Z[t±1
]), λM) = (coker(λ̂M), ∂λM)

∼=−→ (H1(∂M; Z[t±1
]), − Bl∂M).

Construction 3.4. Suppose M is a spin 4-manifold with π1(M) = Z, whose bound-
ary is ribbon and with torsion Alexander module. Since M is spin, the equivariant
intersection form of M is even. Then Bl∂M admits a preferred quadratic refinement

µBl∂M : H1(∂M; Z[t±1
]) → Q1(Z[t±1

], S), x 7→ µ∂(D−1
M (x)).

Here recall from Definition 2.5 that µ∂ refers to the quadratic refinement of the
symmetric linking form ∂λM ; it exists because λM is even.

By construction

DM : (coker(λ̂M), ∂λM , µ∂)
∼=−→ (H1(∂M; Z[t±1

]), − Bl∂M , −µBl∂M )

is an isometry of quadratic linking forms.

3.2. Homotopy equivalences and isometries of the Blanchfield form. Given 3-
manifolds Y0, Y1 equipped with epimorphisms ϕi : π1(Yi ) ↠ Z, we recall when
homotopy equivalences of 3-manifolds induce isometries of the corresponding
Blanchfield forms. We then apply these considerations to boundaries of 4-manifolds
with π1 = Z.

Proposition 3.5 [Conway and Powell 2023, Proposition 3.7]. Let Y0, Y1 be 3-
manifolds equipped with epimorphisms ϕi :π1(Yi )↠Z and assume that the resulting
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Alexander modules are torsion for i = 0, 1. If an orientation-preserving homotopy
equivalence f : Y0 → Y1 satisfies ϕ1◦ f∗ =ϕ0 on π1(Y0), then it induces an isometry
between the Blanchfield forms

f̃∗ : H1(Y0; Z[t±1
]) → H1(Y1; Z[t±1

]).

The proof of Proposition 3.5 is fairly straightforward: the condition that

ϕ1 ◦ f∗ = ϕ0

ensures that f lifts to the infinite cyclic covers, and the required isometry is then
obtained by taking the induced map on H1(−; Z[t±1

]).

Remark 3.6. Let M and N be 4-manifolds with fundamental group Z, whose
boundaries are ribbon and with torsion Alexander modules.

• A consequence of Proposition 3.5 is that an orientation-preserving homotopy
equivalence f :∂M →∂N that intertwines the epimorphisms π1(∂M)↠π1(M)

and π1(∂N ) ↠ π1(N ) induces an isometry f̃∗ : Bl∂M ∼= Bl∂N . However, in
general f̃∗ need not preserve the boundary quadratic refinements.

• Consider the group hAut+ϕ (∂M) of orientation-preserving homotopy equiva-
lences f : ∂M → ∂M that satisfy ϕ ◦ f∗ = f∗ : π1(∂M) → Z. We write

hAut+,q
ϕ (∂M) ⊆ hAut+ϕ (∂M)

for the subset consisting of homotopy equivalences such that f̃∗ preserves
µBl∂M . Proposition 3.5 implies that hAut+ϕ (∂M) acts on Aut(Bl∂M) and that
hAut+,q

ϕ (∂M) acts on Aut(Bl∂M , µBl∂M ) ⊆ Aut(Bl∂M).

• In fact Aut(Bl∂M) and Aut(Bl∂M , µBl∂M ) also admit actions of Aut(λM). In
more detail, we can use DM to transport the action on Aut(∂λM) (recall
Remark 2.7) to an action on Aut(Bl∂M): the action of F on h ∈ Aut(Bl∂M) is
by F · h := h ◦ (DM ◦ ∂ F ◦ D−1

M ). Since ∂ F also preserves µ∂ it follows that
Aut(∂λM) also acts on Aut(Bl∂M , µBl∂M ) ⊆ Aut(Bl∂M).

• Remark 2.4 leads to an example where µBl∂M , the quadratic refinement of
the Blanchfield form, depends on the choice of coboundary M . Consider the
4-manifold M := (S2

×̃8 D2)♮(S1
×D3), where S2

×̃8 D2 denotes the total space
of the D2-bundle over S2 with Euler number 8. Multiplication by 3 induces an
automorphism of the symmetric linking form of ∂M = L(8, 1)#(S1

× S2) that
is not induced by Aut(λM) nor by Homeo+

ϕ (∂M). Hence [Conway, Piccirillo
and Powell 2022] implies there is a nonhomeomorphic 4-manifold M ′ with
the same boundary and intersection form as M . The quadratic refinements of
Bl∂M induced by M and M ′ do not even lie in the same Homeo+

ϕ (∂M) orbits,
and so depend strongly on the choice of coboundary.
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• It is an interesting question whether it is possible to define the quadratic
refinement on Bl∂M intrinsically, using only the spin structure M induces
on ∂M . An analogue of this result is known for the standard linking form on
∂M ; see [Deloup and Massuyeau 2005, §2.4 & 2.5]. We leave this problem
for later work.

3.3. Unions of spin 4-manifolds. We describe how the union construction from
Section 2.3 and quadratic isometries of the Blanchfield form can be used to ensure
that certain unions of spin 4-manifolds with fundamental group Z remain spin.

In order to cut down on notation, we identify (H1(∂M; Z[t±1
]), −Bl∂M , −µBl∂M )

with (coker(λ̂M), ∂λM , µ∂) i.e. we temporarily omit the isometry DM mentioned in
Proposition 3.3 from the notation. In particular, given an isometry h : Bl∂M ∼= Bl∂N ,
we allow ourselves to write λM ∪h −λN .

The next proposition recalls how the algebraic union can be used to understand
the equivariant intersection form of a union of two 4-manifolds with fundamental
group Z.

Lemma 3.7 [Conway and Powell 2023, Proposition 3.9]. Let M and N be two 4-
manifolds with fundamental group Z, nondegenerate equivariant intersection forms,
and whose boundaries are ribbon. If there is an orientation-preserving homeo-
morphism f : ∂M0 ∼= ∂M1 that intertwines the inclusion-induced epimorphisms
π1(∂M0) ↠ π1(M0) and π1(∂M1) ↠ π1(M1), then there is an isometry

λM0 ∪ f̃∗ −λM1
∼= λM0∪ f −M1

Note that the intersection form being nondegenerate implies that the Alexander
modules are Z[t±1

]-torsion, via the long exact sequences of the pairs (M, ∂M) and
(N , ∂N ) with Z[t±1

] coefficients.

Proposition 3.8. Let M and N be spin 4-manifolds with fundamental group Z,
nondegenerate equivariant intersection forms, and whose boundaries are ribbon. If
λM ∼= λN and f : ∂M ∼= ∂N is a homeomorphism that induces an isometry between
the boundary quadratic linking forms of ∂M and ∂N , then M ∪ f −N is spin.

Proof. Pick an isometry F : λM ∼= λN . Applying successively Lemma 3.7 and
Lemma 2.9 we obtain

λM∪ f −N ∼= λM ∪ f̃∗ −λN ∼= λN ∪ f̃∗◦∂ F−1 −λN .

Since f̃∗ and ∂ F preserve the quadratic linking forms, so does f̃∗ ◦ ∂ F−1.
As N is spin, it follows that λN is even. Lemma 2.10 implies that so is

λN ∪ f̃∗◦∂ F−1 −λN . Therefore λM∪ f −N is even. Since the fundamental group of
M ∪ f −N is Z (see e.g. [Conway and Powell 2023, Proposition 3.8]) and therefore
has no 2-torsion, this implies that M ∪ f −N is spin, as required. □
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4. Stable homeomorphism

In this section, we collect some facts about stable homeomorphism of 4-manifolds
with fundamental group Z and nonempty boundary. We then focus on the case of
4-manifolds whose boundary is ribbon and has torsion Alexander module.

Given two 4-manifolds M and N with fundamental group π1(M) = Z = π1(N )

that are either both spin or both nonspin, we call a homeomorphism f : ∂M ∼=−→ ∂N
a B-compatible homeomorphism if the diagram

π1(∂M)
f∗ //

��

π1(∂N )

��

π1(M) = // Z π1(N )=oo

commutes, and if, in the case that M and N are spin, the union M ∪ f −N is spin.
We write ∂M ∼=B ∂N if such a homeomorphism exists, and say that ∂M and ∂N
are B-homeomorphic.

The terminology “B-compatible” and “B-homeomorphic” is motivated by our
use of modified surgery below, where B is shorthand for the normal 1-type of the
manifolds involved.

Lemma 4.1. Let M and N be two 4-manifolds with fundamental group Z and
nonempty B-homeomorphic boundaries. Suppose that M and N have the same
Kirby–Siebenmann invariant and isometric equivariant intersection forms. Then M
and N are stably homeomorphic.

In particular, there is an equality

Sst
h+,λ(M) =

{N | ∂N ∼=B ∂M, π1(N ) = Z, λN ∼= λM , ks(N ) = ks(M)}

o.p. homotopy eq. of pairs
.

Proof. Theorem 2 of [Kreck 1999] ensures that M and N are stably homeomorphic
if and only if there is a B-compatible homeomorphism f : ∂M ∼=−→ ∂N such that the
union M∪ f −N vanishes in the bordism group �STOP

4 (S1)∼=Z⊕Z2 (when M and N
are nonspin) or �

TOPSpin
4 (S1) ∼= Z (when M and N are spin). In the nonspin case,

this bordism group is detected by the signature and Kirby–Siebenmann invariant
whereas in the spin case, it is detected by the signature alone. Since λM ∼= λN , we
deduce that M and N have the same signature and Wall additivity implies that the
union M ∪ f −N has vanishing signature. The fact that M ∪ f −N has vanishing
Kirby–Siebenmann invariant follows from the additivity of this invariant; see e.g.
[Friedl, Nagel, Orson and Powell 2019, Theorem 8.2]. □

Given a 4-manifold M with π1(M) = Z, nondegenerate equivariant intersection
form and ribbon boundary, as we will describe below, the methods of [Conway,
Piccirillo and Powell 2022] produce 4-manifolds N with π1(N ) = Z, ribbon bound-
ary, λM ∼= λN , ks(M) = ks(N ) and a preferred identification g : ∂M ∼= ∂N . Since
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λM ∼= λN and π1(M) = Z = π1(N ) has no 2-torsion, either M and N are both
spin or both nonspin. By Lemma 4.1, in order to prove that M and N are stably
homeomorphic, it therefore suffices to know that in the spin case, the union M∪g−N
is spin, for which we use Proposition 3.8.

Proposition 4.2. Let M and N be spin 4-manifolds with fundamental group Z,
nondegenerate equivariant intersection forms, and whose boundaries are ribbon. If
λM ∼= λN , and g : ∂M ∼= ∂N is a homeomorphism that induces an isometry between
the boundary quadratic linking forms of ∂M and ∂N , then M and N are stably
homeomorphic.

Proof. Proposition 3.8 implies that the homeomorphism ∂M ∼= ∂N is B-compatible
and the result therefore follows from Lemma 4.1. □

5. From stable homeomorphism to isometries of the Blanchfield form

In this section, M denotes a spin 4-manifold with an identification π1(M) = Z,
ribbon boundary (the inclusion induced map ϕ : π1(∂M) → π1(M) is surjective),
and nondegenerate equivariant intersection form λM . As we recalled in Section 3,
since λM is nondegenerate, the Alexander module H1(∂M; Z[t±1

]) is torsion and
supports the Blanchfield form,

Bl∂M : H1(∂M; Z[t±1
]) × H1(∂M; Z[t±1

]) → Q(t)/Z[t±1
],

which is nonsingular, sesquilinear, and Hermitian. The goal of this section is to
describe in more detail the set Aut(Bl∂M , µBl∂M )/(Aut(λM) × hAut+,q

ϕ (∂M)) that
was mentioned in the introduction and then to prove Proposition 1.3.

We start by recalling the aforementioned actions of hAut+,q
ϕ (∂M) and Aut(λM)

on the group Aut(Bl∂M , µBl∂M ) of isometries of the quadratic refinement of the
Blanchfield form of ∂M induced by the even form λM . Here recall that hAut+,q

ϕ (∂M)

denotes the group of orientation-preserving homotopy equivalences f : ∂M → ∂M
that satisfy ϕ ◦ f∗ = f∗ : π1(∂M) → Z and preserve µBl∂M , while Aut(λM) denotes
the set of isometries of λM .

• We recall the action of hAut+,q
ϕ (∂M) on Aut(Bl∂M , µBl∂M ). Since any homo-

topy equivalence f ∈ hAut+ϕ (∂M) satisfies ϕ ◦ f∗ = f∗, it lifts to a homotopy
equivalence f̃ on the Z-covers that induces a Z[t±1

]-linear map on homology;
we denote this map by f̃∗. Since f is orientation-preserving, so is f̃ and it
follows that f̃∗ is an isometry of the Blanchfield form. The action of f on
h ∈ Aut(Bl∂M , µBl∂M ) is then by f · h = f̃∗ ◦ h.

• We describe the action of Aut(λM) on Aut(Bl∂M , µBl∂M ). Recall from Section 3
that the even Hermitian form λM determines an adjoint map

λ̂M : H2(M; Z[t±1
]) → H2(M; Z[t±1

])∗,
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and a Q(t)/Z[t±1
]-valued quadratic linking form

(2)
∂λM : coker(λ̂M) × coker(λ̂M) → Q(t)/Z[t±1

]; ∂λM([x], [y]) = y(z)/p,

µ∂ : coker(λ̂M) → Q+(Z[t±1
], S); µ∂([x]) = x(z)/p.

Here p ∈ Z[t±1
] and z ∈ H2(M; Z[t±1

]) satisfy px = λ̂M(z). In Section 3 we
also recalled the definition of the isometry

DM : −∂λM ∼= Bl∂M ,

and that an isometry F ∈ Aut(λM) induces an isometries ∂ F : −∂λM ∼=− Bl∂M

and ∂ F : µ∂
∼= −µBl∂M by noting that the isomorphism (F∗)−1 descends to an

isometry on the cokernels. The action of F on h ∈ Aut(Bl∂M , µBl∂M ) is then
by F · h := h ◦ (DM ◦ ∂ F ◦ D−1

M ).

Note that the actions commute, because one acts by precomposition and the other
acts by postcomposition. We obtain an action of the product Aut(λM)×hAut+,q

ϕ (∂M)

on Aut(Bl∂M , µBl∂M ). Now that we have made sense of the orbit set

Aut(Bl∂M , µBl∂M )/(Aut(λM) × hAut+,q
ϕ (∂M)),

we describe its relation to the homotopy stable class of M . Recall from Lemma 4.1
that

(3) Sst
h+,λ(M) =

{N | ∂N ∼=B ∂M, π1(N ) = Z, λN ∼= λM , ks(N ) = ks(M)}

o.p. hom. equiv. of pairs
.

In order to relate Sst
h+,λ

(M) to the orbit set

Aut(Bl∂M , µBl∂M )/(Aut(λM) × hAut+,q
ϕ (∂M)),

we recall a construction from [Conway, Piccirillo and Powell 2022, Construction 1]
which has its origins in [Boyer 1993].

Construction 5.1. We describe a map

b : Sst
h+,λ(M) → Aut(Bl∂M)/(Aut(λM) × hAut+ϕ (∂M)).

Given a 4-manifold N ∈ Sst
h+,λ

(M), pick a homeomorphism g : ∂N ∼= ∂M and an
isometry F :λM ∼=λN . Since N ∈Sst

h+,λ
(M), it also has ribbon boundary and torsion

Alexander module, thus ensuring that the isometry DN : −∂λN ∼= Bl∂N is defined.
Now set

b(N ) := g∗ ◦ DN ◦ ∂ F ∈ Aut(Bl∂M)/(Aut(λM) × hAut+ϕ (∂M)).

One verifies that b(N ) is independent of the choices of F, g and the orientation-
preserving homotopy equivalence class of (N , ∂N ). See [Conway, Piccirillo and
Powell 2022] for details.
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Suppose that in addition we assume the homeomorphism g is such that the
induces homomorphism g∗ : H1(∂N ; Z[t±1

]) → H1(∂M; Z[t±1
]) intertwines the

quadratic refinements µBl∂N and µBl∂M . To see that such a homeomorphism exists,
restrict a stable homeomorphism 8 : M#Wr ∼= N#Wr to the boundaries: this will
intertwine the quadratic refinements because stabilising a Hermitian form by

( 0
1

1
0

)
does not affect the boundary quadratic linking form. Since both DN and ∂ F preserve
the quadratic refinements, it follows that b in fact defines a map

b : Sst
h+,λ(M) → Aut(Bl∂M , µBl∂M )/(Aut(λM) × hAut+,q

ϕ (∂M)).

The next proposition proves Proposition 1.3 from the introduction.

Proposition 5.2. If M is a spin 4-manifold with π1(M) = Z, ribbon bound-
ary and nondegenerate equivariant intersection form λM , then the map b from
Construction 5.1 defines a surjection

b : Sst
h+,λ(M) ↠ Aut(Bl∂M , µBl∂M )/(Aut(λM) × hAut+,q

ϕ (∂M)).

Proof. According to [Conway, Piccirillo and Powell 2022, Theorem 1.15], after
fixing one choice of isometry ∂λM ∼= − Bl∂M (we will use DM ) every element
Aut(Bl∂M)/ Aut(λM) is realised by a 4-manifold N with π1(N ) = Z, ribbon bound-
ary ∂N homeomorphic to ∂M via a homeomorphism g : ∂N ∼= ∂M , equivariant inter-
section form λN isometric to λM via an isometry F : λM ∼= λN , and ks(N ) = ks(M).
In particular we can realise every element

b ∈ Aut(Bl∂M , µBl∂M )/(Aut(λM) × hAut+,q
ϕ (∂M))

by such a manifold N .
As indicated in [Conway, Piccirillo and Powell 2022, Proof of Proposition 4.14],

we have b = g∗ ◦ DN ◦ ∂ F . Since b, DN , and ∂ F are isometries that preserve
quadratic refinements, so does g.

Proposition 4.2 now ensures that M and N are stably homeomorphic. We have
therefore produced N ∈ Sst

h+,λ
(M) with b(N ) = b, as required. □

6. Infinite automorphism sets

In this section, we conclude the proof of Theorem 1.1 by showing that

Aut(Bl∂M , µBl∂M )/(Aut(λM) × hAut+,q
ϕ (∂M))

is countably infinite when

M = X2q(U )♮(S1
× D3),

with q an odd prime. Here X2q(U ) denotes the 2q-trace on the unknot U , i.e. the
smooth 4-manifold obtained from D4 by attaching a 2q-framed 2-handle along the
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unknot. The plan is to first study Aut(Bl∂M , µBl∂M )/ Aut(λM) and then to consider
the action by the self-homotopy equivalences of ∂M . In fact we will show in
Lemma 6.3 that Aut(Bl∂M , µBl∂M )/ Aut(λM) = Aut(Bl∂M)/ Aut(λM). So first we
will consider the latter set, ignoring quadratic refinements for a moment.

To study Aut(Bl∂M)/ Aut(λM), recall from Section 5 that Bl∂M is isometric to
the linking form ∂λM defined in (2), at the start of Section 5. In particular, the
isometry DM : −∂λM ∼= Bl∂M induces a bijection

Aut(Bl∂M)/ Aut(λM) ∼= Aut(∂λM)/ Aut(λM).

For rank one forms (such as (H2(M; Z[t±1
]), λM) = (Z[t±1

], λ2q)), this set admits
a particularly convenient description.

Given a ring R with involution x 7→ x , the group of unitary units U (R) refers
to those u ∈ R such that uu = 1, with the group operation given by restricting the
multiplication on R. For example, when R = Z[t±1

], all units are unitary and are
of the form ±tk with k ∈ Z. In what follows, we make no distinction between
rank one Hermitian forms and symmetric Laurent polynomials. The next lemma
follows by unwinding the definition of Aut(∂λ); see also [Conway and Powell 2023,
Remark 1.16; Conway, Piccirillo and Powell 2022, Lemma 7.1].

Lemma 6.1. If λ ∈ Z[t±1
] is a symmetric Laurent polynomial, then

Aut(∂λ)/ Aut(λ) = U (Z[t±1
]/λ)/U (Z[t±1

]).

Proposition 6.2. Given an odd prime q, the map

2 : Z
∼=−→ U (Z[t±1

]/2q)/U (Z[t±1
]), n 7→ (q−1)tn

+ q

is a group isomorphism.

Proof. One verifies that (q−1)tn
+ q is a unitary unit by using that q(q−1) ≡

0 mod 2q (recall that q is odd). We then check that 2 is a homomorphism:

n + m 7→ ((q−1)tn
+ q)((q−1)tm

+ q) = (q−1)2tn+m
+ q(q−1)(tm

+ tn) + q2

∼ −(q−1)tn+m
− q

∼ (q−1)tn+m
+ q.

Here the penultimate equivalence uses that (q−1)2
= q(q−1)− (q−1) ≡ −(q−1)

mod 2q and q2
≡ q ≡ −q mod 2q . The last equivalence uses that −1 ∈ U (Z[t±1

]).
Next we show that 2 is injective. If (q−1)tn

+ q were trivial, we would have
(q−1)tn

+ q = ±tk
∈ Z[t±1

]/2q for some k, but this is true only if n = 0.
Now we show that 2 is surjective. An explicit verification shows that the

following map is an isomorphism:

U (Z[t±1
]/2) × U (Z[t±1

]/q) → U (Z[t±1
]/2q), (a, b) 7→ qa − (q−1)b.
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To see this one should check that (qa − (q−1)b)(qa − (q−1)b) ≡ 1 when aa =

1 = bb, which implies that the map lands in the claimed target. The inverse
is given by x 7→ ([x]2, [x]q), i.e. considering the coefficients modulo 2 and q
respectively. Checking that this is the inverse homomorphism implies that the map
is an isomorphism as asserted.

The units of Z[t±1
]/2 are of the form tm for m ∈ Z. On the other hand, since q

is an odd prime, the unitary units of Z[t±1
]/q are of the form ±tn for n ∈ Z. It

follows that

U (Z[t±1
]/2q) ∼= {qtm

+ (q−1)εtn
| n, m ∈ Z, ε ∈ {±1}}.

Passing to the quotient by U (Z[t±1
]) yields the required isomorphism, because once

we can multiply by ±tk for any k ∈ Z, we have qtm
+(q−1)εtn

∼ (q−1)εtn−m
+q .

Also
−(q−1)tn−m

+ q ∼ −(q−1)tn−m
− q ∼ (q−1)tn−m

+ q,

so we can ignore the ε, and every element of U(Z[t±1
]/2q) is of the form (q−1)tk

+q
for some k ∈ Z. So 2 is indeed surjective, which completes the proof that 2 is an
isomorphism. □

Lemma 6.3. Given an odd prime q ∈ Z, for the Hermitian form λ = 2q ∈ Z[t±1
],

one has
Aut(∂λ, µ∂)/ Aut(λ) = Aut(∂λ)/ Aut(λ).

Proof. The inclusion Aut(∂λ, µ∂)/ Aut(λ) ⊆ Aut(∂λ)/ Aut(λ) always holds. So,
thanks to Proposition 6.2, the lemma reduces to proving that for every n ∈ Z

multiplication by (q − 1)tn
+ q as a map Z[t±1

]/2q → Z[t±1
]/2q preserves the

quadratic refinement

µ∂(x) =
1

2q
x .

Writing q = 2k + 1, a direct calculation in Q1(Z[t±1
], S) now shows that

1
2q

((q −1)tn
+q)((q −1)t−n

+q) =
1

2q
((q −1)2

+q2)+
1

2q
(q(q −1)(tn

+ t−n))

=
1

2q
+2k +k(tn

+ t−n) ≡
1

2q
.

This concludes the proof of the lemma. □

For q an odd prime, the combination of Lemma 6.1, Proposition 6.2, and
Lemma 6.3 implies that for M = X2q(U )♮(S1

× D3) we have

Aut(Bl∂M , µBl∂M )/ Aut(λM) = Aut(Bl∂M)/ Aut(λM) ∼= Z.

We now study the effect of factoring out by hAut+,q
ϕ (∂M).
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Remark 6.4. Our strategy will be to determine hAut+ϕ (∂M) and show that the
effect of its action on Aut(Bl∂M)/ Aut(λM) is given by multiplication by elements
of the form ±tn , n ∈ Z. This will automatically imply that hAut+,q

ϕ (∂M) also acts
on Aut(Bl∂M , µBl∂M )/ Aut(λM) by multiplication by elements of the form ±tn .

In fact we will make this argument in a slightly more general setting. Con-
sider the 3-manifold Y := N#(S1

× S2), where N is a 3-manifold with finite
fundamental group. We fix an identification H1(S1

× S2) = Z, an identification
π1(Y ) = π1(N ) ∗ Z, and consider the finite abelian group A := T H1(Y ) ∼= H1(N ).
Let ϕ : π1(Y ) → H1(Y )/T H1(Y ) = Z be the canonical projection onto the free part
of H1(Y ). In what follows, to distinguish H1(S1

× S2) = Z from the free Z-factor
of π1(Y ) ∼= π1(N ) ∗ Z, we will exclusively write H1(S1

× S2) as ⟨t⟩.
Summarising the notation, we have

A := TH1(Y ) ∼= H1(N ), ϕ : π1(Y ) ↠ ⟨t⟩,

θ : π1(N ) ab
−↠ H1(π1(N )) = H1(N ) = A.

The example we have in mind is Yq = ∂M = L(2q, 1)#(S1
× S2), where M =

X2q(U )♮S1
× D3, so that A ∼= Z/2q and ϕ : π1(Yq) ↠ ⟨t⟩ coincides with the

inclusion induced map π1(∂M) ↠ π1(M) = Z.
Returning to the more general setting where Y = N#(S1

× S2) with N a
3-manifold with π1(N ) finite, the epimorphism ϕ : π1(Y ) ↠ ⟨t⟩ induces an infinite
cyclic cover Y ∞ with

H1(Y ∞) ∼= H1(Y ; Z[t±1
]) ∼= H1(ker(ϕ)).

Our goal is now to describe the isomorphism type of this Z[t±1
]-module (this is the

content of Construction 6.5 and Lemma 6.6 below) and to then deduce the effect of
the action of hAut+ϕ (Y ) on H1(Y ; Z[t±1

]) in Proposition 6.7.
In what follows, we write A[t±1

] for the abelian group of Laurent polynomials
with coefficients in the finite abelian group A.

Construction 6.5. We construct a group homomorphism 9 : A[t±1
] → H1(ker(ϕ)).

Elements of A[t±1
] are of the form

∑
i ai t i with ai ∈ A. As the map ϕ :π1(N )∗Z→Z

is surjective, we can write each t i as ϕ(gi ) = t i for some gi ∈ π1(N ) ∗ Z. The
abelianisation θ : π1(N ) → A = H1(π1(N )) is also surjective, so we can write each
a ∈ A as a = θ(p) for some p ∈π1(N ). We can therefore write an element of A[t±1

]

as
∑

i θ(pi )ϕ(gi ). Since pi ∈ π1(N ), gi ∈ π1(N ) ∗ Z and A ⊆ ker(ϕ), we can con-
sider the element gi pi g−1

i as an element of ker(ϕ) ⊆ π1(N )∗Z and use [gi pi g−1
i ] ∈

H1(ker(ϕ)) to denote its image in the abelianisation. Define the map 9 as

9 : A[t±1
] → H1(ker(ϕ)),

∑
i

ai t i
=

∑
i

θ(pi )ϕ(gi ) 7→
∑

i
[gi pi g−1

i ].
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We show that 9 does not depend on the choice of the pi and the gi . First we argue
that the definition of 9 does not depend on the choice of the pi . It suffices to show
that if θ(p) = θ(p′), then 9(θ(p)ϕ(g)) = 9(θ(p′)ϕ(g)) for every g ∈ π1(N ) ∗ Z.
Since θ(p(p′)−1) = 0, we know that p p′−1 lies in the commutator subgroup
π1(N )(1)

= [π1(N ), π1(N )]. Therefore, since π1(N )(1) is normal, gp p′−1g−1
=

(gpg−1)(g p′−1g−1) ∈ π1(N )(1) for all g ∈ π1(N ) ∗ Z. Since π1(N ) ⊆ ker(ϕ), it
follows that π1(N )(1)

⊆ (ker(ϕ))(1), and therefore (gpg−1)(g p′−1g−1)∈ (ker(ϕ))(1),
from which it follows (gpg−1)(g p′−1g−1) = 0 ∈ H1(ker(ϕ)). We deduce that
[gpg−1

] = [gp′g−1
] ∈ H1(ker(ϕ)) and thus

9(θ(p)ϕ(g)) = [gpg−1
] = [gp′g−1

] = 9(θ(p′)ϕ(g)) ∈ H1(ker(ϕ)).

This proves that 9 does not depend on the choice of the pi .
Next, we argue that the definition of 9 does not depend on the choice of

the gi . This time, it suffices to prove that if ϕ(g) = ϕ(g′) and p ∈ π1(N ),
then 9(θ(p)ϕ(g)) = 9(θ(p)ϕ(g′)). This latter equality holds if and only if
[gpg−1g′ p−1g′−1

]= 0 ∈ H1(ker(ϕ)), which in turn, by conjugating with g−1, holds
if and only if [pg−1g′ p−1g′−1g] = 0 ∈ H1(ker(ϕ)). But since pg−1g′ p−1g′−1g
is a commutator of p and g−1g′, which both lie in ker(ϕ), we indeed obtain
[pg−1g′ p−1g′−1g] = 0 ∈ H1(ker(ϕ)).

This concludes the verification that 9 does not depend on any of the choices we
made. One also verifies readily that 9 is a group homomorphism. This completes
Construction 6.5.

As in Construction 6.5, for each h ∈⟨t⟩, we fix a g ∈π1(N )∗Z such that ϕ(g)= h.
This choice will be used again in the next lemma which establishes that the map 9

is an isomorphism.

Lemma 6.6. The map 9 : A[t±1
] → H1(ker(ϕ)) from Construction 6.5 is an

isomorphism.

Proof. We construct an inverse 2 : H1(ker(ϕ)) → A[t±1
] to 9. A word w ∈

ker(ϕ) ⊆ π1(N )∗Z representing an element of H1(ker(ϕ)) is a product of elements
of π1(N ) and Z.

By introducing cancelling pairs of the type g−1
i gi in between each occurrence

of a p′

k ∈ π1(N ) in w, we can arrange that for some elements g̃k ∈ π1(N ) ∗ Z and
p′

k ∈ π1(N ), the word w is of the form

w =
∏
k

g̃k p′

k g̃−1
k .

Here it is crucial to use that w ∈ ker(ϕ). For example if w = p′

1n1 p′

2n2 p′

3n3, for
pi ∈ π1(N ) and n j ∈ Z, then since w ∈ ker(ϕ) we know that n3 = (n1n2)

−1
=

(n2n1)
−1. Therefore we can express w as w = p′

1n1 p′

2n−1
1 (n1n2)p′

3(n1n2)
−1.
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As was mentioned before the lemma, we fixed a preferred g j ∈ π1(N ) ∗ Z with
ϕ(g j ) = ϕ(g̃k). Arguing as in Construction 6.5 (when we showed that the choice
of the gi is immaterial), up to commutators in [ker(ϕ), ker(ϕ)], we can replace
g̃k p′

k g̃−1
k with g j p′

k g−1
j . Next, working in H1(ker(ϕ)) = ker(ϕ)ab and collecting

terms with the same conjugating element g j , we obtain an element of the form∑
j [g j p j g−1

j ], where p j =
∏

{k|ϕ(g̃k)=ϕ(g j )}
p′

k . We can therefore define a map

2 : H1(ker(ϕ)) → A[t±1
], [w] 7→

∑
j

θ(p j )ϕ(g j ).

One checks that the map 2 is a homomorphism and is the inverse to 9. Thus 9 is
an isomorphism. □

We are now able to describe the action of hAut+ϕ (Y ) on H1(Y ; Z[t±1
]).

Proposition 6.7. Let atℓ
∈ H1(Y ; Z[t±1

]) ∼= A[t±1
]. The action of f ∈ hAut+ϕ (Y )

sends atℓ
7→ a′tk+ℓ, for some k ∈ Z and for some element a′

∈ A having the same
order as a.

Proof. As in Construction 6.5, we can represent any element of A[t±1
] as a sum of

θ(p)ϕ(g), where p ∈ π1(N ) and g ∈ π1(N ) ∗ Z. We will describe f∗(θ(p)ϕ(g)).
In fact, since we have the commutative diagram of isomorphisms

A[t±1
]

9

∼= //

f∗ ∼=

��

H1(ker(ϕ))

f∗ ∼=

��

A[t±1
]

9

∼= // H1(ker(ϕ))

it is equivalent to describe 9−1
◦ f∗ ◦ 9(θ(p)ϕ(g)). First, the definition of 9

implies that 9(θ(p)ϕ(g)) = [gpg−1
] ∈ H1(ker(ϕ)). Applying f∗, we then obtain

[ f∗(g) f∗(p) f∗(g)−1
] ∈ H1(ker(ϕ)).

But now, under an isomorphism π1(N )∗Z
∼=−→π1(N )∗Z, every element of π1(N )

is sent to an element of finite order, since π1(N ) is finite. This implies that for every
p ∈ π1(N ), we have that f∗(p) = hp′h−1

∈ π1(N ) ∗ Z for some p′
∈ π1(N ) and

some h ∈ π1(N ) ∗ Z. This follows by considering the cyclic subgroup generated
by f∗(p) and applying the Kurosh subgroup theorem, which implies that a finite
subgroup of a free product of nontrivial groups is a conjugate of a finite subgroup
of one of the factors.

Next, since f∗ is an isomorphism, [ f∗(p)] = [hp′h−1
] has the same order as

[p] in H1(ker(ϕ)). Since they are conjugate, in π1(N ) ∗ Z, we know that hp′h−1

and p′ have the same order. We claim that [hp′h−1
] has the same order as [p′

] in
H1(ker(ϕ)).

To prove the claim, suppose that ord([p′
]) = k. Then [(p′)k

] = 0 ∈ H1(ker(ϕ)),
i.e. (p′)k

∈ ker(ϕ)(1). Since ker(ϕ) is normal, for every x ∈ ker(ϕ) we have that
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hxh−1
∈ ker(ϕ), and therefore since h[x, y]h−1

= [hxh−1, hyh−1
], for every z ∈

ker(ϕ)(1) we have that hzh−1
∈ ker(ϕ)(1). Thus h(p′)kh−1

= (hp′h−1)k
∈ ker(ϕ)(1),

and therefore ord([hp′h−1
])≤ k = ord([p′

]). Since p′ is also a conjugate of hp′h−1,
by symmetry we also have ord([p′

]) ≤ ord([hp′h−1
]), and so we have equality.

This completes the proof of the claim.
The claim implies that in H1(ker(ϕ)) we have

ord([p′
]) = ord([hp′h−1

]) = ord([ f∗(p)]) = ord([p]).

Returning to the main arc of the proof, so far we have

f∗ ◦ 9(θ(p)ϕ(g)) = [ f∗(g) f∗(p) f∗(g)−1
] = [ f∗(g)hp′h−1 f∗(g)−1

]

and it remains to apply 9−1. The effect of 9−1 is θ(p′)ϕ(h)ϕ( f∗(g)) ∈ A[t±1
].

Since f ∈ hAut+ϕ (Y ), we have ϕ ◦ f∗ = ϕ and therefore

f∗(θ(p)ϕ(g)) = 9−1
◦ f∗ ◦ 9(θ(p)ϕ(g)) = θ(p′)ϕ(h)ϕ(g) ∈ A[t±1

].

We can now calculate f∗(atℓ). Pick g ∈ π1(N ) ∗ Z and p ∈ π1(N ) such that we
have ϕ(g) = tℓ and θ(p) = a. Now f∗(atℓ) = f∗(θ(p)ϕ(g)) = θ(p′)ϕ(h)tℓ, so the
lemma follows by writing ϕ(h) = tk and a′

:= θ(p′). Then since [p′
] has the same

order as [p], it follows that a′ has the same order as a. □

We can now prove the main result of this section.

Proposition 6.8. Fix an odd prime q. For M = X2q(U )♮(S1
× D3), the sets

Aut(Bl∂M)/(Aut(λM) × hAut+ϕ (∂M)),

Aut(Bl∂M , µBl∂M )/(Aut(λM) × hAut+,q
ϕ (∂M))

are countably infinite.

Proof. Fix identifications π1(M) = Z and (H2(M; Z[t±1
]), λM) = (Z[t±1

], λ2q).
Lemma 6.1 implies that Aut(Bl∂M)/ Aut(λM) = U (Z[t±1

]/2q)/U (Z[t±1
]). We

know from Proposition 6.2 that U (Z[t±1
]/2q)/U (Z[t±1

]) ∼= Z, every element of
which is of the form (q−1)tn

+ q with n ∈ Z. We will now show that there is a
bijection of sets

Aut(Bl∂M)/(Aut(λM) × hAut+ϕ (∂M)) ∼= Z.

In the notation of Proposition 6.7, we have N = L(2q, 1) with π1(L(2q, 1))∼= Z/2q
as well as A = H1(π1(N )) = π1(N ) = Z/2q .

Using Proposition 6.7, we will argue that any automorphism of the group
H1(∂M; Z[t±1

])∼= (Z/2q)[t±1
] induced by a homotopy equivalence f ∈Aut+ϕ (∂M)

is of the form p(t) 7→±tk p(t), for some k ∈Z. To see this, given p(t)∈ (Z/2q)[t±1
],

by Z[t±1
]-linearity of f∗ we have f∗(p(t)) = p(t) f∗(1). By Proposition 6.7,
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f∗(1) = a · tk , for some k ∈ Z and some a ∈ Z/2q. We need to show that a = ±1.
Since f∗ is an isometry of Bl∂M , we also know that a2

= 1 ∈ Z[t±1
]/2q; this holds

because
−1
2q

= Bl∂M(1, 1) = Bl∂M( f∗(1), f∗(1))

= Bl∂M(a · tk, a · tk) =
−a2

2q
∈ Q(t)/Z[t±1

],

which implies that a2
= 1 ∈ Z[t±1

]/2q. Then since a ∈ Z/2q we have that a2
=

1 ∈ Z/2q. Here we used that Bl∂M ∼= −∂λ2q to compute the Blanchfield form
[Conway and Powell 2023, Proposition 3.5].

However the only elements of A = Z/2q with a2
= 1 are ±1 ∈ Z/2q. Indeed

such an a belongs to U (Z/2q) ∼= U (Z/q) × U (Z/2). However U (Z/2) is trivial,
so in fact U (Z/2q) ∼= U (Z/q). We will show that U (Z/q) = {±1}. To see this,
recall that for q an odd prime the units (Z/q)× is a cyclic group of order q − 1,
and in such a group there is precisely one element of order 2. Taken together with
the trivial element there are therefore precisely two solutions to x2

= 1 ∈ (Z/q)×,
namely ±1. So we see that U (Z/2q) ∼= U (Z/q) = {±1}. It follows that a = ±1 and

f∗(p(t)) = p(t) f∗(1) = ±tk p(t),

as asserted above. In particular, observe that the action of a homotopy equivalence
f ∈ hAut+ϕ (∂M) is the same as the action by an element of Aut(λM) ∼= U (Z[t±1

]).
We deduce that

Aut(Bl∂M)/(Aut(λM) × hAut+ϕ (∂M)) ∼= Aut(Bl∂M)/Aut(λM).

But in Proposition 6.2 we computed the latter set to be

Aut(Bl∂M)/Aut(λM) ∼= U (Z[t±1
]/2q)/U (Z[t±1

]) ∼= Z.

The inverse of these isomorphisms sends n ∈ Z to the automorphism given by
multiplying by (q−1)tn

+ q. Since the action of an element of hAut+ϕ (∂M) is the
same as the action by an element Aut(λM) ∼= U (Z[t±1

]), the same can be said
for elements of hAut+,q

ϕ (∂M) ⊆ hAut+ϕ (∂M). As we mentioned in Remark 6.4,
Lemma 6.3 now implies that

Aut(Bl∂M,µBl∂M)/(Aut(λM)×hAut+,q
ϕ (∂M))∼=Aut(Bl∂M)/(Aut(λM)×hAut+ϕ (∂M)).

The second assertion in Proposition 6.8 therefore follows from the first. □
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