Lecture on Proper Homotopy Theory

Nima Hoda
April 26, 2017

Abstract

Drawing from Chapters 11, 16 and 17 of Geoghegan [I], we define
some proper homotopy invariants of spaces and use them to show that
the Whitehead manifold W is not homeomorphic to R?, though W is an
open and contractible 3-manifold.
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1 Pro-objects and pro-categories

A directed set is a preorderd set (I, <) in which every pair of elements x,y €
has an upper bound, i.e., a z € I such that z < z and z < y. A pre-ordered
(I, <) may be viewed as a category by letting the elements of I be the objects
and setting a unique arrow z — y whenever z < y.

Let C be the category Group of groups or the category Ab of abelian
groups. A pro-object of C is a contravariant functor F': I — C from some
directed set I to C. That is, for each x € I, an object F, of C and a morphism
Fyy: Fy — F, whenever x < y such that F, yoF, ., = F, . whenever z <y < z.
The F, , are called the bonding maps of F'.

We will define a category of pro-objects of C called the pro-category of
C and denoted pro(C). Let F': I — C and G: J — C be two pro-objects
of C. A morphism F — G in pro(C) is represented by a J-indexed family
{fj: Fi; = Gj}jes of C-morphisms subject to the following constraint. For



each j < j' in I, there exists an ¢ in I, with 7 > i; and ¢ > 4;,, such that the
following diagram commutes.

F;

F;. Fi i
RN
Fi; F;,
l}% fj’J/

G ——— Gy
J G, 4 J

Morphisms of pro(C) are equivalence classes of such families of C-morphisms.
Specifically, two families {f;: Fi;, — G;}jes and {fj: Fix — G;}e represent
the same morphism of pro(C) if, for every j € J, there is an ¢ € I, with 7 > i,
and ¢ > i;-, such that the following diagram commutes

F.

F;
F Fi/i
N
G,

The composition of pro(C)-morphisms is the obvious one and is well defined.
Given a pro-object F': I — C, we can take its categorical limit

lim F = {(gi)i e[ F s Fiurlgr) = gi for all i < i’ in I}

in C (this is often called the inverse limit or projective limit). Using the universal
property of the categorical limit we see that lim is a functor from pro(C) to C.
In the case C = Ab, pro(Ab) is an abelian category and @ is left-exact. Its

first derived functor is denoted lim'.

For our purposes we are mostly interested in pro-objects F': N — C, where
N has its usual ordering. These are called towers. We give an explicit description
of ml(F) for F' a tower. Consider the map

S: HF” — HF”
(xn)n = (xn - Fn,n+1(xn+1))n

.. e 1 .
The kernel of s is @F The cokernel of s is @1 F,i.e.,

l'gllF = H F,, /image(s).



This defines a functor @11: AbYN — Ab. We can partially generalize this

construction to Group™ obtaining a functor lim': Group™ — Set,, where
Set. is the category of based sets. For F': N — Group, we set

where (gn)n ~ (g5,)n if there exists (k) such that

g;L = hngnFn,nJrl(h;Jlrl)a

for all n.
A tower F': N — Group is semi-stable if, for each n,

F,, D image(Fy, n+1) 2 image(F,, nt2) 2 image(F, piy2) D - -

eventually stabilizes. Semi-stability of F is equivalent to F' being pro(Group)-
isomorphic to a tower F': N — Group with the F), . all epimorphisms.

1, m

Theorem 1.1. Let F': N — Group be a tower of countable groups. Then F
s semi-stable if and only if 1&11(17) 18 trivial.

2 Proper maps and proper homotopy

In this lecture spaces are locally finite, connected simplicial complexes.

A continuous map f: X — Y of spaces is proper if the preimage f~(K) is
compact for every compact set K C Y. A proper homotopy F: X x I — Y is
a homotopy that is proper. We can define proper homotopy equivalences and
proper homotopy types using proper homotopies.

Example 2.1. The real line R is not proper homotopy equivalent to a point.

3 Ends and strong ends

Let X be a space. We are interested in proper homotopy invariants of X which
describe its behaviour “at infinity”, i.e., away from arbitrarily large compact
subspaces. We begin by discussing “0-dimensional” properties. One such prop-
erty is the set & (X) of strong ends of X. These are the proper homotopy
classes of proper maps [0,00) — X. This meets our “at infinity” criterion be-
cause any such proper map w: [0,00) — X must eventually escape any compact
K C X, ie., w([n,00) € X \ K for large enough n. Moreover, w is proper
homotopic to w|[n’oc) for any n.

Example 3.1. The plane R? has a single strong end. The line R has two
strong ends. The bi-infinite ladder (i.e. the 1-skeleton of the combinatorial line
cross an edge) has infinitely many strong ends.



The last example shows that this notion may be a bit too strong for some
purposes. We may choose a coarser equivalence relation than proper homotopy
equivalence as follows. We say w: [0,00) — X and w’: [0,00) — X determine
the same end of X if there is a proper map from the infinite ladder (i.e. the
1-skeleton of the combinatorial ray cross an edge) such that w and w’ factor
through its two sides. The resulting equivalence classes are the set &(X) of
ends of X. Another construction giving &(X) is

&(x) = lmmo(X \ K)
K

where the limit is taken in Set, the K range over the compact subspaces of X
and the bonding maps are the inclusions. Because X is a connected, locally finite
simplicial complex, we can exhaust it with a filtration of compact subspaces

Ko CKi1CKyCK3C---
with U, K,, = X so, by cofinality, we have

&(X) = 1'£17T0(X\Ki)-

4 Homtopy groups at infinity

We would like to define higher proper homotopy invariants at infinity of X. To
do so we need an analog at infinity of the basepoint. Let w: [0,00) — X be
a proper map. Generalizing .7&(X), we define the strong nth homotopy group

7&(X,w) as the set of proper homotopy classes of maps

(S” x [0, 00), {*} x [0700)) = (X,w)

with multiplication performed pointwise along [0, c0) for n > 1. This is clearly
a proper homotopy invariant and we have 7§(X,w) = (.Z&(X), se(w)).

To generalize &(X) we will first generalize the pro-object mo(X \ K;). We
choose a filtration (K,,), of X by compact subspaces and, if necessary, repa-
rameterize w so that w(n) € K, 11 \ K, (this can always be done by a proper
homotopy). The actual choice of K,, does not matter. The nth homotopy pro-
group 7P (X, w): N — Group of (X,w) is the pro-object of Group with

WZ(wa)k = 7Tn(X \ Knaw(n))

where the bonding maps 7% (X, w) s are given by whiskering along w| x/-
Finally, the Cech nth homotopy group of (X, w) is defined by

(X, w) = ]'&nﬂ'g(X,w).

Note that #o(X,w) = (£(X),e(w)).



Figure 1: Figure for the definition of the Whitehead manifold.

Example 4.1. Let X’ be [0,00) a circle wedged at each integer vertex. Let w
be the inclusion of [0,00) in X’ and let w’ be a proper ray in X’ passing once
through each edge of X’. Let X” = [0,00) x S and let X be the union of
X’ and X" glued along [0,00). Then X has one end but 7, (X,w) = Z but
7 (X, W) is trivial.

The example shows that the Cech homotopy groups, and hence the homotopy
pro-groups, are not invariant under a change of w to some w’ which determines
the same end of X. These groups are, however, invariant under a change of
baseray within the same strong end of X.

Proposition 4.2. Let /& (X, e(w)) be the set of strong ends of X which de-
termine e(w). Then @1 (1 (X,w)) = SE(X, e(w)).

It follows that if @1 (77 (X,w)) is trivial then 7% (X, w), and hence, 7, (X, w)
are invariant under a change of baseray within the same end. Recall that trivi-
ality of @11 (7}(X,w)) is equivalent to semi-stability of 7} (X, w).

Theorem 4.3. There is a natural short exact sequence
0 — lim' (1 (X, w)) = 77, (X, w) = @ (X, w) = 0

of based sets when n = 0, of groups when n = 1 and of abelian groups when
n > 2.

5 The Whitehead manifold

Consider the sequence
Sy Eh 5y 225 5y B



where S; =2 D? x S! for all 4 and ¢;: S; — S;y1 is the embedding depicted in
Figure [1] Note that ¢; is homotopically trivial.

The colimit
W =limS; =| |S; / ~

(x ~ @i(x) for all z € S; and all i) is the Whitehead manifold. The Whitehead
manifold is an open 3-manifold. It is contractible by Whitehead’s theorem
since the ¢; are homotopically trivial. However, we will see that W is not
homeomorphic to R3.

Let Ag be S; and let A; be the closure of S;11\S; fori > 1. Then A;NA; 11 =
0Sit1. Set U; = U;’iin. Set U; = U;’iin. Then Uy = W and Uj is the closure
of W\ U/Z!'S; for j > 1. So U; = Uy for all 5,5 > 1.

Choose a base ray w in W so that W|n C U;05;41 and the embedding
W — W sending S; to Siy1 via ¢; restricts to a homeomorphism wj; i1 —
W|i+1,i+2)- The boundary tori of A;, i > 1, mi-inject into A;, so

T (Uj,w(4)) = m(A),w () *m08,40) 71 (Ujpr, w(j + 1))

with 71 (95;4+1) embedding in both free factors. So the bonding maps of 7} (W, w)
are non-epimorphic monomorphisms. Hence 7} (W, w) cannot be pro-epimorphic
and so 77 (W, w) is not semi-stable and & (W) is non-trivial. It follows that
W 2 R? since R? has only one strong end.
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