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Abstract

Drawing from Chapters 11, 16 and 17 of Geoghegan [1], we define
some proper homotopy invariants of spaces and use them to show that
the Whitehead manifold W is not homeomorphic to R3, though W is an
open and contractible 3-manifold.
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1 Pro-objects and pro-categories

A directed set is a preorderd set (I,≤) in which every pair of elements x, y ∈ I
has an upper bound, i.e., a z ∈ I such that z ≤ x and z ≤ y. A pre-ordered
(I,≤) may be viewed as a category by letting the elements of I be the objects
and setting a unique arrow x→ y whenever x ≤ y.

Let C be the category Group of groups or the category Ab of abelian
groups. A pro-object of C is a contravariant functor F : I → C from some
directed set I to C. That is, for each x ∈ I, an object Fx of C and a morphism
Fx,y : Fy → Fx whenever x ≤ y such that Fx,y ◦Fy,z = Fx,z whenever x ≤ y ≤ z.
The Fx,y are called the bonding maps of F .

We will define a category of pro-objects of C called the pro-category of
C and denoted pro(C). Let F : I → C and G : J → C be two pro-objects
of C. A morphism F → G in pro(C) is represented by a J-indexed family
{fj : Fij → Gj}j∈J of C-morphisms subject to the following constraint. For

1



each j ≤ j′ in I, there exists an i in I, with i ≥ ij and i ≥ ij′ , such that the
following diagram commutes.

Fi

Fij Fij′

Gj Gj′

Fij ,i
Fi

j′ ,i

fj fj′

Gj,j′

Morphisms of pro(C) are equivalence classes of such families ofC-morphisms.
Specifically, two families {fj : Fij → Gj}j∈J and {f ′

j : Fi′j
→ Gj}j∈J represent

the same morphism of pro(C) if, for every j ∈ J , there is an i ∈ I, with i ≥ ij
and i ≥ i′j , such that the following diagram commutes

Fi

Fij Fi′j

Gj

Fij ,i
Fi′

j
,i

fj fj′

The composition of pro(C)-morphisms is the obvious one and is well defined.
Given a pro-object F : I → C, we can take its categorical limit

lim←−F =
{
(gi)i ∈

∏
i

Fi ; Fi,i′(gi′) = gi for all i ≤ i′ in I
}

inC (this is often called the inverse limit or projective limit). Using the universal
property of the categorical limit we see that lim←− is a functor from pro(C) to C.
In the case C = Ab, pro(Ab) is an abelian category and lim←− is left-exact. Its

first derived functor is denoted lim←−
1.

For our purposes we are mostly interested in pro-objects F : N→ C, where
N has its usual ordering. These are called towers. We give an explicit description
of lim←−

1(F ) for F a tower. Consider the map

s :
∏
n

Fn →
∏
n

Fn

(xn)n ↦→
(
xn − Fn,n+1(xn+1)

)
n

The kernel of s is lim←−F . The cokernel of s is lim←−
1F , i.e.,

lim←−
1F =

∏
n

Fn/ image(s).
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This defines a functor lim←−
1 : AbN → Ab. We can partially generalize this

construction to GroupN obtaining a functor lim←−
1 : GroupN → Set∗, where

Set∗ is the category of based sets. For F : N→ Group, we set

lim←−
1(F ) =

∏
n

Fn

/
∼,

where (gn)n ∼ (g′n)n if there exists (hn)n such that

g′n = hngnFn,n+1(h
−1
n+1),

for all n.
A tower F : N→ Group is semi-stable if, for each n,

Fn ⊇ image(Fn,n+1) ⊇ image(Fn,n+2) ⊇ image(Fn,n+2) ⊇ · · ·

eventually stabilizes. Semi-stability of F is equivalent to F being pro(Group)-
isomorphic to a tower F ′ : N→ Group with the F ′

n,m all epimorphisms.

Theorem 1.1. Let F : N → Group be a tower of countable groups. Then F
is semi-stable if and only if lim←−

1(F ) is trivial.

2 Proper maps and proper homotopy

In this lecture spaces are locally finite, connected simplicial complexes.
A continuous map f : X → Y of spaces is proper if the preimage f−1(K) is

compact for every compact set K ⊆ Y . A proper homotopy F : X × I → Y is
a homotopy that is proper. We can define proper homotopy equivalences and
proper homotopy types using proper homotopies.

Example 2.1. The real line R is not proper homotopy equivalent to a point.

3 Ends and strong ends

Let X be a space. We are interested in proper homotopy invariants of X which
describe its behaviour “at infinity”, i.e., away from arbitrarily large compact
subspaces. We begin by discussing “0-dimensional” properties. One such prop-
erty is the set S E (X) of strong ends of X. These are the proper homotopy
classes of proper maps [0,∞) → X. This meets our “at infinity” criterion be-
cause any such proper map ω : [0,∞)→ X must eventually escape any compact
K ⊆ X, i.e., ω([n,∞) ⊆ X \ K for large enough n. Moreover, ω is proper
homotopic to ω|[n,∞) for any n.

Example 3.1. The plane R2 has a single strong end. The line R has two
strong ends. The bi-infinite ladder (i.e. the 1-skeleton of the combinatorial line
cross an edge) has infinitely many strong ends.
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The last example shows that this notion may be a bit too strong for some
purposes. We may choose a coarser equivalence relation than proper homotopy
equivalence as follows. We say ω : [0,∞) → X and ω′ : [0,∞) → X determine
the same end of X if there is a proper map from the infinite ladder (i.e. the
1-skeleton of the combinatorial ray cross an edge) such that ω and ω′ factor
through its two sides. The resulting equivalence classes are the set E (X) of
ends of X. Another construction giving E (X) is

E (x) = lim←−
K

π0(X \K)

where the limit is taken in Set, the K range over the compact subspaces of X
and the bonding maps are the inclusions. BecauseX is a connected, locally finite
simplicial complex, we can exhaust it with a filtration of compact subspaces

K0 ⊆ K1 ⊆ K2 ⊆ K3 ⊆ · · ·

with ∪nKn = X so, by cofinality, we have

E (X) = lim←−
i

π0(X \Ki).

4 Homtopy groups at infinity

We would like to define higher proper homotopy invariants at infinity of X. To
do so we need an analog at infinity of the basepoint. Let ω : [0,∞) → X be
a proper map. Generalizing S E (X), we define the strong nth homotopy group
πe
n(X,ω) as the set of proper homotopy classes of maps(

Sn × [0,∞), {∗} × [0,∞)
)
→ (X,ω)

with multiplication performed pointwise along [0,∞) for n ≥ 1. This is clearly
a proper homotopy invariant and we have πe

0(X,ω) =
(
S E (X), se(ω)

)
.

To generalize E (X) we will first generalize the pro-object π0(X \Ki). We
choose a filtration (Kn)n of X by compact subspaces and, if necessary, repa-
rameterize ω so that w(n) ∈ Kn+1 \Kn (this can always be done by a proper
homotopy). The actual choice of Kn does not matter. The nth homotopy pro-
group πp

n(X,ω) : N→ Group of (X,ω) is the pro-object of Group with

πp
n(X,ω)k = πn(X \Kn, ω(n))

where the bonding maps πp
n(X,ω)k,k′ are given by whiskering along ω|[k,k′].

Finally, the C̆ech nth homotopy group of (X,ω) is defined by

π̆n(X,ω) = lim←−πp
n(X,ω).

Note that π̆0(X,ω) =
(
E (X), e(ω)

)
.
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Figure 1: Figure for the definition of the Whitehead manifold.

Example 4.1. Let X ′ be [0,∞) a circle wedged at each integer vertex. Let ω
be the inclusion of [0,∞) in X ′ and let ω′ be a proper ray in X ′ passing once
through each edge of X ′. Let X ′′ = [0,∞) × S1 and let X be the union of
X ′ and X ′′ glued along [0,∞). Then X has one end but π̆n(X,ω) = Z but
π̆n(X,ω′) is trivial.

The example shows that the C̆ech homotopy groups, and hence the homotopy
pro-groups, are not invariant under a change of ω to some ω′ which determines
the same end of X. These groups are, however, invariant under a change of
baseray within the same strong end of X.

Proposition 4.2. Let S E
(
X, e(ω)

)
be the set of strong ends of X which de-

termine e(ω). Then lim←−
1
(
πp
1(X,ω)

) ∼= S E
(
X, e(ω)

)
.

It follows that if lim←−
1
(
πp
1(X,ω)

)
is trivial then πp

n(X,ω), and hence, π̆n(X,ω)
are invariant under a change of baseray within the same end. Recall that trivi-
ality of lim←−

1
(
πp
1(X,ω)

)
is equivalent to semi-stability of πp

1(X,ω).

Theorem 4.3. There is a natural short exact sequence

0→ lim←−
1
(
πp
n+1(X,ω)

)
→ πe

n(X,ω)→ π̆n(X,ω)→ 0

of based sets when n = 0, of groups when n = 1 and of abelian groups when
n ≥ 2.

5 The Whitehead manifold

Consider the sequence

S1
φ1−→ S2

φ2−→ S3
φ3−→ · · ·
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where Si
∼= D2 × S1 for all i and φi : Si → Si+1 is the embedding depicted in

Figure 1. Note that φi is homotopically trivial.
The colimit

W = lim−→Si =
⨆
i

Si

/
∼

(x ∼ φi(x) for all x ∈ Si and all i) is the Whitehead manifold. The Whitehead
manifold is an open 3-manifold. It is contractible by Whitehead’s theorem
since the φi are homotopically trivial. However, we will see that W is not
homeomorphic to R3.

Let A0 be S1 and let Ai be the closure of Si+1\Si for i ≥ 1. Then Ai∩Ai+1 =
∂Si+1. Set Uj = ∪∞i=jAi. Set Uj = ∪∞i=jAi. Then U0 = W and Uj is the closure

of W \ ∪j−1
i=1Sj for j ≥ 1. So Uj

∼= Uj′ for all j, j
′ ≥ 1.

Choose a base ray ω in W so that W |N ⊆ ∪i∂Si+1 and the embedding
W → W sending Si to Si+1 via φi restricts to a homeomorphism ω|[i,i+1] →
ω|[i+1,i+2]. The boundary tori of Ai, i ≥ 1, π1-inject into Ai, so

π1

(
Uj , ω(j)

) ∼= π1

(
Aj , ω(j)

)
∗π1(∂Sj+1) π1

(
Uj+1, w(j + 1)

)
with π1(∂Sj+1) embedding in both free factors. So the bonding maps of πp

1(W,ω)
are non-epimorphic monomorphisms. Hence πp

1(W,ω) cannot be pro-epimorphic
and so πp

1(W,ω) is not semi-stable and S E (W ) is non-trivial. It follows that
W ̸∼= R3 since R3 has only one strong end.
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