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Abstract
Wemodify the proof of the disc embedding theorem for 4-manifolds, which appeared
as Theorem 5.1A in the book “Topology of 4-manifolds” by Freedman and Quinn, in
order to construct geometrically dual spheres. These were claimed in the statement but
not constructed in the proof. We also prove Proposition 1.6 from the Freedman-Quinn
book regarding generic homotopies of discs or spheres in a 4-manifolds, which was
not proven there.

Mathematics Subject Classification 57K40 · 57N35

1 Introduction

The disc embedding theorem [7] combines work of Casson, Freedman, and Quinn.
In a topological 4-manifold with good fundamental group, the theorem replaces an
immersed disc with embedded boundary and a framed algebraically dual sphere by a
locally flat embedded disc with the same boundary as the original disc. Consequences
include topological 4-dimensional surgery theory and the topological 5-dimensional
s-cobordism theorem, both for good fundamental groups.

Freedman’s original proofwas restricted to the simply connected case and usedCas-
son handles, built out of layers of (thickened) immersed discs. The full disc embedding
theoremwasfirst stated in the book “Topologyof 4-manifolds” byFreedmanandQuinn
[5, Theorem 5.1A]. This book expanded on Freedman’s argument by using a gener-
alisation of Casson handles built out of capped gropes, variously called a skyscraper
[1], a cope [7], or a generalized infinite tower [5]. The Freedman-Quinn capped grope
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approach is key to the proof of the disc embedding theorem for nontrivial fundamental
groups.

The goal of this article is to modify part of the Freedman-Quinn proof of the disc
embedding theorem, in order to fill a gap in the proofs of [5, Theorem 5.1A and Corol-
lary 5.1B] related to geometrically dual spheres. Briefly, one needs algebraically dual
spheres for the input of the disc embedding theorem, while for many applications one
needs geometrically dual spheres in the output. Here we say that two surfaces are
geometrically dual if they intersect transversely in precisely one point. The proof in
[5] produces algebraically dual spheres in the output, rather than geometrically dual
spheres.

Part II of Freedman-Quinn [5] is the principal reference for the tools required to do
any nontrivial work with topological 4-manifolds. These include the annulus theorem
[5, Theorem 8.1A], smoothing away from a point [5, Theorem 8.2], transversality [5,
Theorem 9.5A], and the existence and uniqueness of normal bundles for locally flat
submanifolds [5, Section 9.3]. Every theorem in Chapters 7, 8, and 9 of [5] relies on
Theorem 5.1A, including the latter’s assertion of geometrically dual spheres. In turn
the classification results of Chapters 10 and 11, and indeed all classification results
proven since then, make essential use of these tools. Thus it is important to have a
complete proof of Theorem 5.1A of [5], from the point of view of both the rest of that
book and of much of the rest of the literature on topological 4-manifolds.

In the spirit of addressing foundational omissions from [5], we also prove [5, Propo-
sition 1.6] on homotopies between immersed surfaces in a 4-manifold. This states that
a homotopy between generic immersions of a surface in a 4-manifold is homotopic to
a composition of homotopies, each of which is a regular homotopy or a cusp homotopy
in some ball, or the inverse of a cusp homotopy. This important proposition was stated
but not proven in the Freedman-Quinn book. We will discuss the details in Sect. 1.3.

One might wonder whether our concern about the existence of geometrically dual
spheres is valid, and whether, for example, the algebraically dual spheres produced in
the proof in [5] might suffice for the above mentioned applications. However, surgery
on an embedded, framed sphere without a geometrically dual sphere might change the
fundamental group of the ambient 4-manifold, whereas geometrically dual spheres
guarantee control over the fundamental group. Therefore, many applications hinge on
providing geometric duals together with the embedded spheres. We also note that a 2-
sphere in a 4-manifoldwith an algebraically dual sphere need not admit a geometrically
dual sphere, a phenomenon not seen in higher dimensions due to the Whitney trick.
In dimension four, geometric duals cannot be found post hoc. An example of a sphere
in S2 × S2 with an algebraically dual sphere but no geometrically dual sphere, was
produced in [31, Section 3; 30, Example 4.1] cf. [16, Figure 9]. In the construction
one begins with a 2-knot � ⊆ S4 and performs surgery on a simple closed curve in
S4 � � which is homologous to the meridian. The result is an embedded sphere S
in S2 × S2. By a judicious choice of �, one may ensure that π1((S2 × S2) � S) is a
nontrivial perfect group, implying that S does not admit a geometrically dual sphere.
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1.1 The disc embedding theorem

The equivariant intersection form of a connected 4-manifold M is a pairing

λ : H2(M, ∂M; Z[π1M]) × H2(M; Z[π1M]) −→ Z[π1M].

As well as having nonempty boundary, the topological 4-manifold M may be nonori-
entable or noncompact. For topological 4-manifolds, we will explain the reduced
self-intersection number

μ̃ : π2(M) −→ Z[π1M]/〈g − w(g)g−1, Z · 1〉

in Sect. 1.3. If M is orientable, the quantity μ̃ is determined by λ. In this case, the
assumptions μ̃(gi ) = 0 below are implied by λ(gi , gi ) = 0.

Given maps { fi }ki=1 of discs or spheres to M , a second collection {gi : S2 →
M}ki=1 is algebraically dual to the { fi }ki=1 if the algebraic intersection form satisfies
λ( fi , g j ) = δi j . If this is true geometrically, we say that the collection {gi } is geomet-
rically dual to the { fi }. More precisely, this means that fi ∩ g j is a single, transverse
point for i = j and is empty for i �= j . An intersection point between fi and gi is
said to be transverse if there are local coordinates R

4 ↪→ M in which fi and gi are
linear. Here, and throughout the paper, we conflate the maps fi , gi with their images
fi (S2)/ fi (D2) and gi (S2), as well as with the corresponding homology/homotopy
classes.

We remark that [5] uses the terminology of ‘algebraically transverse spheres’ which
by definition have trivial normal bundles. We make the condition on normal bundles
more explicit in our nomenclature. Our algebraically dual spheres need not have trivial
normal bundles. When the latter condition is required, we state it explicitly.

Theorem A (Disc embedding theorem cf. [5, Theorem 5.1A]) Let M be a connected
4-manifold with good fundamental group. Consider a continuous map

F = ( f1, . . . , fk) : (D2 � · · · � D2, S1 � · · · � S1) −→ (M, ∂M)

that is a locally flat embedding on the boundary and that admits algebraically dual
spheres {gi }ki=1 satisfying λ(gi , g j ) = 0 = μ̃(gi ) for all i, j . Then there exists a
locally flat embedding

F = ( f 1, . . . , f k) : (D2 � · · · � D2, S1 � · · · � S1) ↪→ (M, ∂M)

such that F has the same boundary as F and admits a generically immersed, geomet-
rically dual collection of framed spheres {gi }ki=1, such that gi is homotopic to gi for
each i .

Moreover, if fi is a generic immersion, then it induces a framing of the normal
bundle of its boundary circle. The embedding f i may then be assumed to induce the
same framing.
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Remark 1.1 Our statement of Theorem A differs from [5, Theorem 5.1A] in that we
emphasise that the input is purely homotopy theoretic, and we control the homotopy
classes of the dual spheres. The interested reader can use the discussion in Remark
6.3 to see that even the original continuous maps fi induce framings modulo 2 on the
boundary circles.

Remark 1.2 The geometrically dual spheres in the conclusion of the disc embedding
theorem imply that inclusion induces an isomorphism π1(M) ∼= π1(M \ ⋃

i f i ). As
in [5], we refer to a collection of immersed surfaces whose removal does not change
the fundamental group as π1-negligible.

We discuss topological immersions in Sect. 1.3, where we also explain why a
topological generic immersion f admits a linear normal bundle ν( f ) whose total
space is embedded in M apart from finitely many plumbings. If the base of ν( f ) is a
disc, and so in particular contractible, then this bundle has a unique trivialisation, or
framing, which is used in the last paragraph of the statement of Theorem A.

We recall the notion of a good group, from [9, 17], in Definition 3.2. For applica-
tions, it suffices to know that the class of good groups is known to contain groups of
subexponential growth [9, 19], and to be closed under subgroups, quotients, exten-
sions, and colimits [5, p. 44]. In particular, all finite groups and all solvable groups
are good. It is not known whether non-abelian free groups are good.

The proof of the disc embedding theorem from [5] begins with immersed discs and
has three distinct steps. We describe the k = 1 case for ease of exposition. First use [5,
pp. 86-7, Proposition 2.9 and Lemma 3.3] to upgrade the immersed disc f to a 1-storey
capped tower T with at least four surface stages, whose attaching region coincides
with the framed boundary of f . Then use [5, Proposition 3.8] to show that every 1-
storey capped tower with at least four surface stages contains a skyscraper with the
same attaching region. Finally, using decomposition space theory, [5, Theorem 4.1]
shows that every skyscraper is homeomorphic to a handle D2 × D2 relative to its
attaching region. The proof given in [5, pp. 86-7] does not mention geometrically
dual spheres, although they appear in the theorem statement. However, the claimed
geometrically dual spheres in the output are used multiple times in [5], as we indicate
in Sect. 2.

In this article we give a modified proof of the disc embedding theorem, includ-
ing the construction of the claimed geometrically dual spheres. Specifically, we only
modify the first step of the proof, producing 1-storey capped towers equipped with
geometrically dual spheres. Our modification utilises dual capped surfaces obtained
fromClifford tori. Such capped surfaces allow us to create arbitrarily many collections
of pairwise disjoint geometrically dual spheres. The key insight in our argument is
that the Clifford tori are close to the corresponding double points, which allows us
to ensure that the tracks of certain null homotopies do not intersect them. This small
amount of extra disjointness is just enough to make the argument work. In Remark
1.4 we also explain an alternative argument suggested by a referee.

Remark 1.3 For experts, we explain the problem with the proof in [5] in more detail.
That proof begins with immersed discs with geometrically transverse spheres and
upgrades the former to capped gropes with arbitrarily many surface stages, still
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equipped with geometrically transverse spheres {gi }. The key step is finding a fur-
ther stage of caps, constructing a 1-storey capped tower. The tower caps come from
null homotopies for the double point loops in the caps of the capped grope, which
exist due to the assumption on fundamental groups. The null homotopies cannot be
easily controlled, and therefore the tower caps may intersect the dual spheres {gi },
as well as the lower stages of the tower, arbitrarily. The final step in the proof of [5,
Lemma 3.3] is to push intersections of the tower caps with the grope caps or surfaces
stages down to the base stage and tube into the spheres {gi }. One sees then that the
intersections between {gi } and the tower caps have not been controlled. These could
be pushed down into the surface stages, but in that case the 1-storey capped towers
would still only have algebraically dual spheres.

It seems to have been tacitly assumed in [5, Proposition 3.3 and pp. 86–7] that [5,
Lemma 3.3] provides geometrically dual spheres. In fact, the first paragraph of the
proof on page 86 does not mention how to construct transverse spheres, and Lemma
3.3 does not claim to provide them. So [5] gives a correct proof of Theorem 5.1A
without the last four words ‘and with transverse spheres’ (known as geometrically
dual spheres in our terminology). On the other hand, as discussed above, it is assumed
throughout Part II of [5] that Theorem 5.1A constructs geometrically dual spheres.

1.2 Outline of the proof

For experts, here is an outline of our argument – more details can be found in Sects. 4
and 5. The beginning follows that of [5, Theorem 5.1A]: assume the collections { fi }
and {gi } are generically immersed, and after cusp homotopies that the intersections
and self-intersections of {gi } are algebraically cancelling. Tube the { fi } into the {gi } to
ensure that the intersections and self-intersections of { fi } are algebraically cancelling,
and further arrange that { fi } and {gi } are geometrically dual by the geometric Casson
lemma (Lemma 3.3).

Let {Dj } denote framed, immersed Whitney discs pairing the intersections within
and among the { fi }. Clifford tori at the double points of { fi } are geometrically dual
to {Dj }. These tori can be capped by meridional discs for { fi }, tubed into {gi } so that
they lie in the complement of { fi }, so we have dual capped tori {Tj } to the {Dj }.

Now comes our modification. Tube the intersections among {Dj } into the {Tj } to
produce capped surfaces {D′

j } with the same framed boundary. The caps of {D′
j } and

of the {Tj } can be separated as follows. The intersections between the two sets of caps
are paired by framed, immersed Whitney discs. These may be assumed to be disjoint
from the Clifford tori since the tori are located in a tubular neighbourhood of { fi },
and they can be made disjoint from the bodies of {D′

j } by pushing down and tubing
into geometrically dual spheres for {D′

j } produced by contracting parallel copies of
the {Tj }. Now the geometric Casson lemma, applied to these new Whitney discs,
separates the two families of caps, without creating any new undesirable intersections.
Next we similarly upgrade the caps of {D′

j } to capped surfaces, with caps disjoint
from those of the {Tj }. To do so, push the cap intersections for {D′

j } down and tube
into {Tj } to obtain height two capped gropes pairing the intersections among { fi }.
Then separate the caps of these height two capped gropes from the caps of the {Tj }
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using the separation argument above, so that the final height two capped gropes are
geometrically dual to the {Tj }.

The remainder of the proof is standard. By grope height raising and the good group
hypothesis replace the height two capped gropes by height four capped gropes with
null-homotopic double point loops and the same framed boundary. Let {C	} denote
immersed discs bounded by these double point loops, arising from the null homotopies
and with the appropriate boundary framing. We may assume that {C	} is disjoint from
the Clifford tori (not their caps), since these lie in a tubular neighbourhood of { fi }. For
any intersections of {C	} with the rest of the height four gropes, push down and tube
into geometrically dual spheres produced by contracting parallel copies of {Tj }. Now
the height four capped gropes can be equipped with {C	} as tower caps to produce
1-storey capped towers {T c

j }. Finally, the {Tj } are contracted to spheres {R j } which
are geometrically dual to {T c

j }. By tubing {gi } into {R j }, we acquire spheres {gi }
that are geometrically dual to { fi } and do not intersect {T c

j }. Freedman and Quinn [5,
Chapters 3 and 4] (see also [1, Parts II and IV]) showed that 1-storey capped towers
with at least four surface stages contain embedded topological discs with the same
framed boundary. These can be used to perform the Whitney move on { fi } to produce
the desired embeddings { f i } with geometric duals {gi }.

Finally, in order to see that each gi is homotopic to gi , we note that the latter
only changes by homotopy and tubing into the spheres {R j }. But each sphere R j is
null-homotopic in M since it is constructed by contracting a Clifford torus (Lemma
4.4).

Remark 1.4 We now describe an alternative method to obtain the geometrically dual
spheres in Theorem A suggested by the referee.

As in the outline above, we can arrange that { fi } and {gi } are generically immersed,
that the intersections and self-intersections of both { fi } and of {gi } are algebraically
cancelling, and further that { fi } and {g j } are geometrically dual. Therefore the inter-
sections and self-intersections of { fi } are paired by framed, immersed Whitney discs.
By tubing { fi } to itself along one of each pair of Whitney arcs, the collection is
upgraded to capped surfaces { f ′

i }. Meridional discs and the Whitney discs provide the
caps, after tubing into {gi } to ensure disjointness from the bodies of { f ′

i }.
Next, repeat the argument for the caps, as follows. First push all the intersections

of {gi } with the caps of { f ′
i } down to the body and then into the (unpushed) {gi }. This

preserves the algebraic intersection conditions on {gi }, while ensuring that the {gi } no
longer intersect the caps of { f ′

i }. Now the intersections among the caps of { f ′
i } are

pushed down and tubed into the {gi }, to arrange that the intersections among the caps
of { f ′

i } are algebraically cancelling. Then we can assume that the cap intersections are
paired by framed, immersed Whitney discs. Tube along one of each pair of Whitney
arcs, and cap with meridional and Whitney discs, with intersections with { f ′

i } pushed
down and tubed into {gi } as needed, to upgrade { f ′

i } to a collection of height two
capped gropes.

Now apply grope height raising and the good group hypothesis to this collection to
produce height four capped gropes with the same framed attaching region as { fi } and
null-homotopic double point loops.
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Let {C	} denote immersed discs bounded by these double point loops, arising from
the null homotopies and with the appropriate boundary framing. For every intersection
of {C	} with the height four capped gropes, push down and tube into parallel copies
of {gi }. Now the height four capped gropes can be equipped with {C	} as tower caps
to produce 1-storey capped towers {T c

i }. This is the outcome of [5, Lemma 3.3]. Note
that {gi } and the bodies of {T c

i } are geometrically dual, but we do not have any control
yet on the intersections between {gi } and {C	}.

Now we have the modification proposed by the referee. Take parallel push-offs of
{gi }, which we call {g′

i }. For every intersection of {C	} with {gi }, push {gi } down
to the base surface of the tower, and tube into copies of {g′

i }. Still call the result
{gi }. Note that we have now arranged that the intersections between {C	} and {gi }
are algebraically cancelling, since by the pushing down procedure, each intersection
between some element of {C	} and the original set of spheres {gi } has led to some
even number of (algebraically cancelling) tubings into {g′

i }. Let {Wj } denote a set
of framed, immersed Whitney discs pairing the intersections between {C	} and {gi }.
Remove any intersections between {Wj } and anything in the 1-storey towers {T c

i }
below the tower caps by pushing down and tubing into {g′

i }. Now use the geometric
Casson lemma (Lemma 3.3) with {Wj } to separate the caps of {T c

i } from {gi }. The
result is a new collection of 1-storey capped towers with geometrically dual spheres
{gi }.

The rest of the argument consists of first upgrading the 1-storey capped towers to
skyscrapers, also equipped with geometrically dual spheres, and then showing that the
homeomorphism from any skyscraper to D2 × D2, relative to the attaching region,
preserves the geometrically dual spheres. One can verify that the proofs of [5, Propo-
sition 3.8 and Theorem 4.1] accomplish this, by moving the intersection point with
the dual spheres sufficiently close to the preserved attaching region.

Finally we check that the geometrically dual spheres produced are homotopic to the
algebraically dual spheres in the hypotheses. Note that in the construction above each
gi has been changed by homotopies and by tubing into {g′

i }. Since the tubing occurred
after pushing down, each g′

j is used for these tubing operations an algebraically can-
celling number of times and therefore there is no change in the homotopy class of gi ,
as desired.

1.3 Generic immersions and intersection numbers

Homotopy classes of smooth maps of a compact surface to a 4-manifold are repre-
sented by generic immersions, which are immersions whose only singularities are
transverse double points in the interior. In the topological category, we use this local
description as the definition of a generic immersion. In particular, a generic immersion
is locally a flat embedding and hence restricts to a locally flat embedding of the bound-
ary. A regular homotopy in the smooth category is a homotopy through immersions. A
smooth regular homotopy of generically immersed surfaces in a 4-manifold is gener-
ically a concatenation of (smooth) isotopies, finger moves, and Whitney moves [10,
Section III.3]. A topological regular homotopy of generically immersed surfaces in a
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4-manifold is by definition a concatenation of (topological) isotopies, finger moves,
and Whitney moves.

In order to work effectively in a topological 4-manifold, it is key to be able to
assume that a continuous map of a surface can be perturbed to a topological generic
immersion [5, Lemma 1.2]. For instance, this is the first step in the proof of the disc
embedding theorem in a topological 4-manifold. It also follows that a topological
generic immersion f : � � M has a linear normal bundle ν( f ). Similarly, it is also
essential to be able to decompose a topological homotopy into a sequence of regular
homotopies and cusp homotopies [5, Proposition 1.6]. This latter proposition was
stated in [5] without a proof, so we provide one.

Specifically, the combination of [5, Lemma 1.2 and Proposition 1.6] can be stated
in the following useful way, which is what we prove in Sect. 6.

Theorem 1.5 Let� be a disjoint union of discs or spheres, and let M be a 4-manifold.
The subspace of generic immersions in the space of all continuous maps leads to a
bijection

{( f1, . . . , fm) : �=�1 � · · · � �m � M | μ( fi )1=0, i =1, . . . ,m}
{isotopies, finger moves, Whitney moves} ←→ [�, M]∂ ,

where μ( fi )1 ∈ Z denotes the signed sum of double points of fi whose double point
loops are trivial in π1(M), and [�, M]∂ denotes the set of homotopy classes of con-
tinuous maps that restrict on ∂� to locally flat embeddings disjoint from the image
of the interior of �. Moreover, any such homotopy between generic immersions is
homotopic rel.� ×{0, 1} to a sequence of isotopies, finger moves and Whitney moves.

As usual, the self-intersection number μ( f ) of a generic immersion f of a disc or
sphere into M is obtained by summing signed group elements g ∈ π1(M) correspond-
ing to double points in the interior of f [35, Chapter 5; 5, Section 1.7]. The ambiguity
of the choice of sheets at each double point leads to the relations g − w(g)g−1 in
Z[π1M]. Local cusp homotopies allow us to change the coefficient μ( f )1 at the triv-
ial fundamental group element 1 at will, and correspondingly we factor out by Z · 1.
We obtain the reduced self-intersection number, already used in the assumptions of
Theorem A:

μ̃ : π2(M) −→ Z[π1M]/〈g − w(g)g−1, Z · 1〉.
While μ( f ) depends on the choice of generically immersed representative f : S2 �
M , the reduced version μ̃ only depends on [ f ] ∈ π2(M). Any two generic immersions
homotopic to f are of course themselves homotopic. By the injectivity in Theorem
1.5 we see that μ̃ is well-defined on π2(M), since the quantity is evidently unchanged
by isotopies, finger moves, and Whitney moves.

For any f : S2 � M , the invariant μ satisfies

λ( f , f ) = μ( f ) + μ( f ) + e( f ) · 1 ∈ Z[π1M] (1.1)

where e( f ) ∈ Z is the Euler number of the normal bundle ν( f ) and the involution
g := w(g)g−1 is extended linearly to the group ring. Apply the augmentation map
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ε : Z[π1M] → Z to this equation, to see that modulo 2, ε(λ( f , f )) ≡ e( f ) only
depends on the homotopy class of f . This is also the Stiefel-Whitney number w2( f ) ∈
Z/2 of ν( f )which will be used in the assumption of TheoremB in the next section. As
in the discussion above one sees thatw2(a) = 0 if and only if a ∈ π2(M) is represented
by a generic immersion f : S2 � M that can be framed, i.e. whose normal bundle is
trivial.

Conventions

All manifolds are assumed to be based, in order to define homotopy groups and equiv-
ariant intersection numbers. Topological embeddings are always assumed to be locally
flat.

Outline

In Sect. 2 we give applications of the disc embedding theoremwith geometrically dual
spheres from the literature. In particular we recall the sphere embedding theorem, and
the hyperbolic embedding theorem, which gives us the ability to represent a rank 2k
hyperbolic summand of the intersection form by an #ki=1S

2× S2 connected summand.
In Sect. 3, we review the objects, geometric constructions, and further results needed
for the proof of the disc embedding theorem, then Sect. 4 contains the main technical
results needed for the construction of geometrically dual spheres. These results are
applied in Sect. 5 to prove the disc embedding theorem (Theorem A). Here we also
explain an alternative argument kindly suggested by a referee. Finally, in Sect. 6 we
discuss generic immersions and prove Theorem 1.5.

2 Applications of geometrically dual spheres in the literature

2.1 The sphere embedding theorem

A central application of the disc embedding theorem is to prove the sphere embed-
ding theorem. The existence and exactness of the topological surgery sequence in
dimension four are proven by changing a collection of generically immersed spheres
with vanishing intersection and self-intersection numbers, by a regular homotopy, to
pairwise disjoint embedded spheres [5, Theorem 11.3A]. The sphere embedding theo-
rem describes precisely when such embedded spheres may be found. The proof of [5,
Theorem 11.3A] neglects to mention that geometrically dual spheres are essential for
performing surgery on 4-manifolds without inadvertently modifying the fundamental
group. The sphere embedding theorem is also integral to any known classification
result for topological 4-manifolds, including those that use Kreck’s modified surgery
theory [20], for example [15]. Another example is the main step in [13, Lemma 4.1],
which uses sphere embedding to move from the easier stable classification up to con-
nected sums with copies of S2 × S2 to unstable classification results. We refer to [23,
Section 20.3] for a proof of the sphere embedding theorem.
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Theorem B (Sphere embedding theorem with framed duals) Let M be a connected
4-manifold with good fundamental group and consider a continuous map

F = ( f1, . . . , fk) : (S2 � · · · � S2) −→ M

satisfying μ̃( fi ) = 0 for every i and λ( fi , f j ) = 0 for i �= j , with a collection of
algebraically dual spheres {gi }ki=1 with w2(gi ) = 0 for each i . Then there is a locally
flat embedding

F = ( f 1, . . . , f k) : (S2 � · · · � S2) ↪→ M

with F homotopic to F andwith a generically immersed, geometrically dual collection
of framed spheres {gi }ki=1, such that gi is homotopic to gi for each i .

Moreover, if fi is a generic immersion and e( fi ) ∈ Z is the Euler number of the
normal bundle ν( fi ), then f i is regularly homotopic to fi if and only if e( fi ) =
λ( fi , fi ).

Remark 2.1 The assumption μ̃( fi ) = 0 implies that λ( fi , fi ) ∈ Z · 1 ⊆ Z[π1M],
by (1.1). In this case, (1.1) gives an equation of integers λ( fi , fi ) = 2 ·μ( fi )1 + e( fi )
and hence the last condition e( fi ) = λ( fi , fi ) in Theorem B is equivalent to the
vanishing of μ( fi ).

Remark 2.2 Ifwe assume in addition to the hypotheses ofTheoremB thatλ( fi , fi ) = 0
for all i , then we can get disjointly embedded framed spheres { f i } as an output, since
then w2( f i ) = w2( fi ) ≡ ε(λ( fi , fi )) = 0 for all i , by the equality (1.1). As a
consequence, we can surger M along { f i } to obtain a 4-manifold M ′. The existence
of the geometric duals gi implies that π1(M ′) ∼= π1(M), but indeed more is true:
each intersection (or self-intersection) of some g j with a fixed gi can be tubed into the
unique intersection point between gi and (a parallel copy of) f i , resulting in geometric
duals hi to f i that are now disjointly embedded. This means that each pair ( f i , hi )
has a regular neighbourhood that is a sphere bundle over S2, with a 4-ball removed.
The sphere bundle is trivial if and only if w2(hi ) = w2(gi ) = 0.

So in the setting of Theorem B where all w2(gi ) are assumed to vanish, we get a
connected sum decomposition M as a connected sum with copies of S2 × S2. Note
that the ai := [ fi ] form the first Lagrangian, but the second Lagrangian generated
by bi := [hi ] is formed by linear combinations of the [gi ] and [ fi ] induced by the
geometric manoeuvres above.

We record an important special case of the situation described in Remark 2.2 in the
following theorem.

Theorem 2.3 (Hyperbolic embedding theorem) Let M be a connected 4-manifold with
good fundamental groupand let H beahyperbolic form in (π2(M), λM , μ̃M ),meaning
that H is aZ[π1(M)]-submodule ofπ2(M), generated by a hyperbolic basis consisting
of classes a1, . . . , ak, b1, . . . , bk ∈ H with

λ(ai , b j ) = δi j , λ(ai , a j ) = 0 = λ(bi , b j ) and μ̃(ai ) = 0 = μ̃(bi ) for all i, j .
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Then there is a homeomorphism M ≈ (#ki=1S
2 × S2)#M ′ with a connected sum that

on π2 sends ai to [S2i ×{pti }] and bi to [{pti }× S2i ]. In particular, H is an orthogonal
summand freely generated by {ai , bi } and π2(M) ∼= H ⊥ π2(M ′).

Theorem 2.3 was stated on the first page of Freedman’s ICM talk [7]. Together
with Donaldson’s theorem on definite intersection forms for smooth 4-manifolds [3],
it implies the existence of infinitely many non-smoothable 4-manifolds. For example,
a simply connected, closed 4-manifold with intersection form E8⊕E8 can be obtained
from the K3 surface by removing a hyperbolic form of rank 6. Since the form E8⊕E8
is definite but not diagonalisable, it cannot be realised by a closed, smooth, 4-manifold.

Proof of Theorem 2.3 Represent the ai and bi by framed generic immersions, using
Proposition 6.2 and the fact that in Z/2 we have w2(ai ) ≡ ε(λ(ai , ai )) = 0 and
w2(bi ) ≡ ε(λ(bi , bi )) = 0 for all i . Apply Theorem B to these framed generic immer-
sions. The output is as in Remark 2.2, except that we have the additional information
that λ(bi , b j ) = 0 = μ̃(bi ) for all i, j . This means that the operations of tubing into
the { f i } occur in such a way that up to homotopy there is no effect, i.e. the resulting
disjointly embedded spheres {hi } still represent the {bi } in π2(M). ��
Remark 2.4 In this paper we prove the disc embedding theorem with geometrically
dual spheres, and then use it to deduce the sphere embedding theorem with geomet-
rically dual spheres. Since the former is used throughout [5], our proof fills the gap
in that source. However, for applications in surgery theory, one begins with a dual
spherical sublagrangian of the intersection form, as in Theorem 2.3. In this case, the
following proof of Theorem 2.3 is available, which applies the disc embedding theo-
rem without geometrically dual spheres. The idea is due to Casson [2]; we thank Slava
Krushkal for reminding us of it.

Suppose we are given classes a1, . . . , ak, b1, . . . , bk ∈ π2(M) for a topological
4-manifold M with good fundamental group satisfying

λ(ai , b j ) = δi j , λ(ai , a j ) = 0 = λ(bi , b j ) and μ̃(ai ) = 0 = μ̃(bi ) for all i, j .

Assume {ai } and {bi } are represented by immersed spheres {Ai } and {Bi } respec-
tively. Let {A+

i } and {B+
i } denote push-offs of {Ai } and {Bi } respectively. For each

i , choose small 4-discs around the unpaired intersection point between Ai and Bi ,
not intersecting {A+

i } and {B+
i }. Tube the discs together using embedded 1-handles

in M without intersecting {Ai } ∪ {A+
i } ∪ {Bi } ∪ {B+

i }, and call the result D. The
portion of {Ai } and {Bi } lying in M \ D are immersed discs {A0

i } and {B0
i } with trivial

intersection and self-intersection numbers, equipped with algebraically dual spheres
{B+

i } ∪ {A+
i }. Apply local cusp moves to {A0

i } and {B0
i } to ensure that the unreduced

self-intersection numbers vanish. Apply the version of [5, Corollary 5.1B] without
geometrically dual spheres to {A0

i } and {B0
i }, to produce regularly homotopic, dis-

joint, embedded discs with the same framed boundary. Replacing the portions of {Ai }
and {Bi } within D produces the desired geometrically transverse embeddings in the
classes a1, . . . , ak, b1, . . . , bk ∈ π2(M).

It is tempting to attempt a similar strategy to prove the general disc and sphere
embedding theorems with geometrically dual spheres. However, this does not work,
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even for sphere embedding. In the general sphere embedding scenario, one set of
spheres may not have the requisite triviality of intersection and self-intersection num-
bers. This arises in applications, for example in the construction of star partners for
4-manifolds with odd intersection form [5, Section 10.4], [18, 33, 34]. Also, it was
essential that we were working with spheres, since ‘dual discs’ are not as helpful.

2.2 Other instances of geometrically dual spheres

First we consider the book [5], which is generally regarded as the canonical source
for the ramifications of the disc embedding theorem.

(1) On page 105 of [5], in Part II of the book,within the proof of the technical version of
h-cobordism theorem, it is claimed that 1-storey capped towers with geometrically
dual spheres were constructed in Part I. Geometrically dual spheres are used on
page 107, where they are key to proving the negligibility property.

(2) The technical version of the h-cobordism theorem is used in the proof of the
technical controlled h-cobordism theorem ( [5, Theorem 7.2C]), which in turn
appears in the proofs of the proper h-cobordism theorem (Corollary 7.3C) and the
annulus conjecture (Theorem 8.1A). The negligibility property (called a regular
homotopy property in the proof of 8.1A) is invoked in an essential way.

(3) The annulus conjecture is used in [5] to prove topological transversality (Sec-
tion 9.5), existence and uniqueness of normal bundles (Section 9.3), and smoothing
results (Chapter 8).

(4) The geometrically dual spheres claimed in Theorem B ( [5, Corollary 5.1B]) also
arise in [5] in the proof of the π1-negligible embedding theorem (Theorem 10.5A),
the plus construction (Theorem 11.1A), and the π − π lemma (p. 216).

Next we consider geometrically dual spheres elsewhere in the literature.

(5) Similar to classical surgery theory, uses of Kreck’s modified surgery [20] to obtain
classification results on 4-manifolds, for example in [13, 14] and [15], needs geo-
metrically dual spheres to avoid changing the fundamental group by surgery on
embedded spheres obtained using the sphere embedding theorem.

(6) For M a compact 4-manifold with π1(M) good, every element of the White-
head group Wh(π1(M)) is realised as the Whitehead torsion of an h-cobordism
(W ; M, M ′) based on M . To prove this, one builds a cobordism with 2- and 3-
handles. When attaching the 3-handles, one can find smoothly embedded spheres
in the desired homotopy classes, but it is not known how to find such embeddings
smoothly that also come with geometrically dual immersed spheres. Without the
geometric duals, the inclusion induced map π1(M ′) → π1(W ) need not be an
isomorphism. Thus the sphere embedding theorem is needed to obtain topolog-
ically locally flat embeddings for the 3-handle attachments, with geometrically
dual spheres. See [18, Theorem 3.5].

(7) Geometrically dual spheres are needed to show that the complement of the topo-
logical slice disc produced in [11] for a knot with Alexander polynomial one has
fundamental groupZ, and similarly in [8] for slice disc exteriors with fundamental
group Z � Z[1/2].
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The papers of Casson [2] and Freedman [6, 7] do not have problems relating to
geometrically dual spheres. A minor point is that in [6, Theorem 1.2], Freedman
claimed to prove the exactness of the surgery sequence by embedding half of each
hyperbolic pair representing the surgery kernel in a simply connected manifold by an
embedded sphere, however this can be easily fixed using the method of Remark 2.4
instead.

3 Definitions and operations

We shall assume that a Whitney disc is a generic immersion W : D2 � M , which
in particular implies that the boundary is embedded, with each Whitney arc lying on
one of the sheets whose intersection points are paired by W . We allow interior self-
intersections of W as well as intersections with other surfaces (and other Whitney
discs) but assume that these are transverse, using topological transversality. As usual,
a Whitney disc W is said to be framed if the Whitney section of the normal bundle
ν(W ) ofW restricted to its boundary extends to a non-vanishing section of ν(W ). The
relative normal Euler number of W in Z is by definition the unique obstruction for
the existence of a framing of ν(W ) extending the Whitney section. The framing of a
Whitney disc can be altered by interior twists and boundary twists; see [5, Section 1.3].

Given twoWhitney discs, the correspondingWhitney circles may a priori intersect
one another. We can ensure that Whitney circles are disjoint by pushing one Whitney
circle along the other. From now on, we will assume that Whitney circles are pairwise
disjoint and embedded.

In our proofs, wewill construct gropes and ultimately towers, as defined in [26] (see
also [5, Chapters 2 and 3]). We assume the reader is familiar with these definitions.
We will need the following generalisation of the notion of dual spheres.

Definition 3.1 (Dual cappedgropes and surfaces)Let {Ai }be a collection of immersed
discs, gropes, or towers,with orwithout caps.A collection {T c

i } of (sphere-like) capped
gropes is said to be (geometrically) dual to {Ai } if T c

i � A j is a single transverse
point when i = j , located in the bottom stages of T c

i and Ai , and T c
i � A j is empty

otherwise. For {Ai } a generically immersed collection of discs, the bottom stage of Ai

is simply itself. Note that all the caps of {Ai } are required to be disjoint from the caps
of {T c

i }. Additionally, note that intersections are allowed within the collection {T c
i }.

If each T c
i is a capped grope of height one, then we say that {T c

i } is a collection of
dual capped surfaces for {Ai }.

We will use the definition of a good group in the proof of Lemma 4.2, so we recall
it here.

Definition 3.2 ( [9, 17]) A group � is said to be good if for every height 1.5 disc-like
capped grope Gc, with some choice of basepoint, and for every group homomorphism
φ : π1(Gc) → �, there exists an immersed disc D � Gc whose framed boundary
coincides with the attaching region of Gc, such that the double point loops of D,
considered as fundamental group elements by making some choice of basing path, are
mapped to the identity element of � by φ.
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We will need the following lemma, to trade intersections between distinct surfaces
for self-intersections.

Lemma 3.3 (Geometric Casson lemma [6, Lemma 3.1] (see also [24, Lemma 15.3])
Let F and G be transverse generic immersions of compact surfaces in a connected
4-manifold M. Assume that the intersection points {p, q} ⊂ F � G are paired by a
Whitney disc W. Then there is a regular homotopy from F ∪ G to F ∪ G such that
F � G = (F � G) � {p, q}, that is the two paired intersections have been removed.
The regular homotopy may create many new self-intersections of F and G; however,
these are algebraically cancelling. Moreover, the regular homotopy is supported in a
small neighbourhood of W.

Applications of this lemma, proven inductively on the number of intersection points,
include the following.

(i) Making F and G disjoint, if all intersection points F ∩G are paired by Whitney
discs.

(ii) Turning algebraically dual spheres G for F into geometrically dual spheres G.

The process of contraction and push-off, introduced in [5, Section 2.3] (see also
[24, Section 15.2.5]) will be important in our proof. Contraction converts a capped
surface into an immersed disc using two parallel copies of both caps. Given a capped
grope, we can iteratively contract caps, to eventually obtain a collection of immersed
spheres or discs called the total contraction.

After contracting a surface, any other surface that intersected the caps can (but
does not necessarily have to) be pushed off the contraction. This reduces the number
of intersection points between the resulting contraction and the pushed off surfaces.
Suppose that a surface A intersects a cap of the capped surface, and a surface B
intersects a dual cap. Then after pushing both A and B off the contraction, we obtain
two intersection points between A and B. The contraction push-off operation is shown
in Fig. 1.

Lemma 3.4 The homotopy class of the sphere or disc resulting from symmetric con-
traction of a fixed surface is independent of the choice of caps, provided the boundaries
of the different choices of caps coincide.

Proof As explained in [5, Section 2.3], an isotopy in the model induces a homotopy
of the immersed models, so the symmetric contraction is homotopic to the result of
surgery along one cap per dual pair. Now let {Ci , Di }gi=1 and {C ′

i , D
′
i }gi=1 be two sets

of caps for a surface of genus g, such that ∂Ci = ∂C ′
i and ∂Di = ∂D′

i are a dual pair of
curves on the surface for each i . Then symmetric surgery on {Ci , Di }gi=1 is homotopic
to surgery on the {Ci }, which is homotopic to symmetric surgery on {Ci , D′

i }gi=1. This
is homotopic to asymmetric surgery on the caps {D′

i }, which finally is homotopic to
the result of symmetric surgery on {C ′

i , D
′
i }gi=1, as asserted. ��

4 Constructing capped gropes and towers with dual spheres

Our main technical lemma, given below, shows how to upgrade a collection of
immersed discs with certain types of dual capped surfaces to a collection of gropes
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Fig. 1 Contraction and push-off. Note the intersections of pushed-off surfaces that occur between diagrams
one and two and between diagrams four and five in the bottom row of figures, namely one intersection in
the past and one intersection in the future between each pair of surfaces pushed off dual caps

whose attaching regions coincide with the framed boundary of the original discs, as
well as the same dual capped surfaces. The requirement on the dual capped surfaces is
that the bodies be located close to the boundary of the ambient manifold. This property
enables us to find Whitney discs which do not intersect the bodies, at various steps of
the argument. The extra power of the dual capped surfaces, compared to dual spheres,
is that we can use them to produce dual spheres multiple times in succession.

Lemma 4.1 Consider a generically immersed collection of discs in a 4-manifold M

D = (D1, . . . , Dk) : (D2 � · · · � D2, S1 � · · · � S1) � (M, ∂M).

Suppose that {T c
i } is a dual collection of capped surfaces for the {Di } such that

λ(C	,Cm) = μ(C	) = 0 (4.1)

for every pair of caps C	 and Cm of {T c
i }. Assume in addition that the body Ti of each

T c
i is contained in a collar neighbourhood of ∂M, and that otherwise only boundary

collars of each of the Di and the C	 lie in the collar neighbourhood.
Then there exists a collection of mutually disjoint capped gropes {Gc

i }, properly
embedded in M, with arbitrarily many surface stages and pairwise disjoint caps with
algebraically cancelling double points, such that parallel copies of the {T c

i }, after
a regular homotopy of the caps, provides a dual collection of capped surfaces for
the {Gc

i }. Moreover, for each i , the attaching region of Gc
i coincides with the framed

boundary of Di .
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Proof Parameterise the collar neighbourhood of ∂M as ∂M × [0, 1] ⊆ M , where
∂M = ∂M × {0}. Assume that initially the bodies {Ti } of the dual capped surfaces
lie in ∂M × (5/6, 1). We will take parallel copies of the T c

i throughout the proof
of this lemma, and also in the proof of Lemma 4.2 below, such that the bodies lie
progressively closer to ∂M ×{0}, in regions of the form ∂M × ((6−n)/6, (7−n)/6),
n = 1, . . . , 6, and caps are obtained as parallel copies of the original caps extended
at the boundary collar.

Let {C	} denote the caps of the {T c
i }. Tube all the intersections and self-intersections

among the {Di } into parallel copies of the dual surfaces {T c
i }, with bodies {Ti } con-

tained in ∂M×(5/6, 1). This produces amutually disjoint collection of capped surfaces
{D′

i } with the same framed boundaries as {Di }. Let {C ′
n} denote the caps for {D′

i }.
Now we will separate the collections {C	} and {C ′

n}. For each i , take a parallel
copy of Ti in ∂M × (4/6, 5/6), along with its caps, and contract to obtain a sphere
Si . Push nothing off the contraction. The collection {Si } is geometrically dual to {D′

i }.
By construction and (4.1), all the intersections between {C	} and {C ′

n} can be paired
by framed Whitney discs {Wk}. Since ∂Wk lies in M \ (∂M × [0, 4/6)), we may
and shall assume that {Wk} does not intersect ∂M × [0, 4/6); this follows since each
constituent Whitney disc is obtained as a track of a null homotopy, and because the
inclusionmapM\(∂M×[0, 4/6)) ↪→ M is a homotopy equivalence. Fromnowonwe
consider parallel copies of {T c

i }with each of the bodies Ti contained in ∂M×[0, 4/6).
We continue to denote these parallel copies by T c

i .
By tubing the {Wk} into the {Si } we can also arrange that {Wk} does not inter-

sect {D′
i }. Now the geometric Casson lemma (Lemma 3.3) applied with the Whitney

discs {Wk} ensures that there are no intersections between the collections {C	} and
{C ′

n}. The fact that Wk ∩ D′
j = ∅ = Wk ∩ Ti , for all i, j, k, implies that no unwanted

cap–body intersections are created whenever T c
i is a parallel copy whose body lies in

∂M × [0, 4/6).
Push the intersections and self-intersections of the caps {C ′

n} down to {D′
i } and

tube into parallel copies of {T c
i }, with bodies in ∂M × (3/6, 4/6), to produce height

two capped gropes {D′′
i }. Let {C ′′

p} denote the caps of {D′′
i }. Next we separate the

collections {C ′′
p} and {C	}, as we did above. The procedure is the same: contract

parallel copies of {T c
j } with bodies in ∂M × (2/6, 3/6), pushing nothing off the

contraction, to obtain a collection {S′
i } of framed spheres geometrically dual to { f ′′

i };
find framed Whitney discs for the intersections between {C ′′

p} and {C	} which have
interiors disjoint from ∂M × [0, 2/6), as well as from {D′′

i } by tubing into {S′
i }. Then

apply the geometric Casson lemma. Here, since the boundaries of the Whitney discs
lie on

⋃{C	} ∪ {C ′′
p} ⊆ M \ (∂M × [0, 2/6)), we may assume that the Whitney discs

created by choosing a null homotopy miss ∂M × [0, 2/6), and hence miss the body
Ti of any parallel copy of T c

i whose body lies in ∂M ×[0, 2/6). From now on we will
only consider such parallel copies of T c

i .
Apply grope height raising [5, Proposition 2.7] (see also [4, Proposition 17.1

and Lemma 17.7]) to the capped gropes {D′′
i }, to produce a collection of capped

gropes {Gc
i } with the same framed attaching region as the {D′′

i }, arbitrarily many sur-
face stages, and pairwise disjoint caps with algebraically cancelling double points.
Additionally, parallel copies of the surfaces {T c

i } with bodies in ∂M × [0, 2/6) are
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geometrically dual to {Gc
i }. Moreover, the first two stages of each Gc

i coincide with
the first two stages of D′′c

i , for each i . This completes the proof. ��
Next, we show that a collection of capped gropes with certain types of dual capped

surfaces, such as those produced by the previous lemma, can be replaced by a collection
of 1-storey capped towers,with the same framed attaching region as the original capped
gropes, and with geometrically dual spheres. The following lemma is the only point in
this paper that uses the hypothesis that the fundamental group of the ambient manifold
be good. Recall that, roughly speaking, a 1-storey capped tower can be built from a
capped grope, all of whose cap intersections are self-intersections, by adding a second
layer of caps to the double point loops of the caps of the grope i.e. to the tip regions
on the disc stage of the capped grope.

Lemma 4.2 Let M be a connected 4-manifold with π1(M) good. Let n be a non-
negative integer. Let {Gc

i } be a collection of capped gropes with height n + 2.5 and
mutually disjoint caps, properly embedded in M, with a geometrically dual collection
of capped surfaces {T c

i }, such that the body Ti of each T c
i is contained in a collar

neighbourhood ∂M × [0, 2/6) of ∂M. Suppose that otherwise only boundary collars
of the attaching regions of the Gc

i and the caps of the T c
i lie in ∂M × [0, 2/6).

Then there exists a collection of 1-storey capped towers {T c
i }, properly embedded

in M, where the first storey grope has height n, with a geometrically dual collection
of spheres {Ri }, such that T c

i and Gc
i have the same attaching region for each i .

Moreover, the first n surface stages of Gc
i and T c

i coincide and each Ri is obtained
from T c

i by contraction.

Remark 4.3 At first glance Lemma 4.2 seems remarkably close to [5, Proposition 3.3],
which claims to begin with a collection of properly immersed discs in a 4-manifold
M equipped with a collection of π1-null geometrically transverse capped surfaces,
and replace this with 1-storey capped towers with arbitrary grope height, the same
framed attaching region, and equipped with geometrically dual spheres. However, the
proof of [5, Proposition 3.3] does not construct the claimed geometrically transverse
spheres. We also note that the definition of geometrically transverse capped surfaces
in [5] allows intersections with the caps, which is different from our notion of dual
capped surfaces in Definition 3.1.

Proof Consider the union of the top 1.5 stages of the gropes {Gc
i }. Since π1(M) is

good (Definition 3.2) and the caps are mutually disjoint, each component contains an
immersed disc whose double point loops are null-homotopic in M , and whose framed
boundary coincides with the attaching region of the old top 1.5 stages. Attach these
discs to the lower stages, producing capped gropes {˜Gc

i } of height n + 1. Contract
the top stage to obtain capped gropes of height n, whose double point loops are still
null-homotopic in M , with caps still mutually disjoint, and such that the caps have
algebraically cancelling self-intersection points, since they arose from a symmetric
contraction. Here we are using the fact that the new double point loops are parallel
push-offs of the previous double point loops.

Null homotopies for the double point loops produce immersed discs {˜δα} bounded
by the double point loops of the new caps. These new discs may be assumed to miss
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{Ti }, since any null homotopy may be pushed off the collar ∂M × [0, 2/6), and since
the boundaries of these discs, the double point loops, are disjoint from ∂M × [0, 2/6)
because of the hypothesis that ˜Gc

i ∩ (∂M × [0, 2/6)) consists of a boundary collar of
the attaching region of ˜Gc

i , for each i . On the other hand the discs coming from the
null homotopies might intersect {˜Gc

i } arbitrarily.
Contract parallel copies of {T c

i }, with bodies in ∂M × (1/6, 2/6), to produce a
family of spheres {S′′

i } geometrically dual to {Gc
i }. Boundary twist the discs {˜δα} to

achieve the correct framing and then push down and tube into {S′′
i } to remove any

intersections of the resulting discs with {˜Gc
i }. Glue the resulting discs {δα} to {˜Gc

i } to
produce the 1-storey capped towers {T c

i }.
Now consider parallel copies of the {T c

i } with bodies in ∂M × (0, 1/6). At this
point the caps of {T c

i } only (possibly) intersect {T c
i } in the tower caps, and the body

Ti is geometrically dual to T c
i . Contract each T c

i along its caps and call this family of
spheres {Ri }. Push all intersections with tower caps off the contraction. The family of
dual spheres {Ri } is then geometrically dual to the resulting 1-storey capped towers
{T c

i }, as desired. ��

We need one more lemma, that we shall use to control the homotopy classes of the
geometrically dual spheres in the output of the disc embedding theorem.

Lemma 4.4 Let N be a 4-manifold and let

D = (D1, . . . , Dm) : (D2 � · · · � D2, S1 � · · · � S1) → (N , ∂N )

be a generic immersion of a collection of discs that admits a geometrically dual,
generically immersed collection {Ei }mi=1 of framed spheres in N. Let T c ⊆ N \
⋃m

i=1 νDi be a capped surface constructed by taking a Clifford torus corresponding
to an intersection point between Di and D j , where i = j is permitted, and tubing
meridional caps obtained from meridional discs for Di and D j into parallel copies of
Ei and E j . Let S : S2 → N \ ⋃m

i=1 νDi be the 2-sphere obtained by contracting T c.
Then ι∗[S] = 0 ∈ π2(N ), where ι : N \ ⋃m

i=1 νDi → N is the inclusion map.

Proof By Lemma 3.4, and as explained in [5, Section 2.3], the homotopy class of a
2-sphere obtained by contracting a torus along caps is independent of the choice of
caps, provided the boundaries of the different choices of caps coincide. Therefore in
N we may replace the caps constructed from Ei and E j by the meridional caps. The
sphere S′ resulting from contraction along the meridional caps is contained in a D4

neighbourhood in N of the intersection point giving rise to the Clifford torus. So S′ is
null-homotopic in N . It follows that ι ◦ S is null-homotopic. ��

5 Proof of the disc embedding theorem

In this section we prove Theorem A, which we recall below.
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Theorem A ([5, Theorem 5.1A]) Let M be a connected 4-manifold with good funda-
mental group. Consider a continuous map

F = ( f1, . . . , fk) : (D2 � · · · � D2, S1 � · · · � S1) −→ (M, ∂M)

that is a locally flat embedding on the boundary and that admits algebraically dual
spheres {gi }ki=1 satisfying λ(gi , g j ) = 0 = μ̃(gi ) for all i, j . Then there exists a
locally flat embedding

F = ( f 1, . . . , f k) : (D2 � · · · � D2, S1 � · · · � S1) ↪→ (M, ∂M)

such that F has the same boundary as F and admits a generically immersed, geomet-
rically dual collection of framed spheres {gi }ki=1, such that gi is homotopic to gi for
each i .

Moreover, if fi is a generic immersion, then it induces a framing of the normal
bundle of its boundary circle. The embedding f i may be assumed to induce the same
framing.

Proof By Theorem 1.5, we may assume that the collections { fi } and {gi } are gener-
ically immersed and transverse. By adding local cusps if necessary, assume that
μ(gi ) = 0 for each i . Tube each intersection and self-intersection within { fi } into {gi }
using the unpaired intersection point (after having chosen a pairing of all but one of the
fi -gi intersection points by Whitney discs, which is possible since λ( fi , gi ) = 1). We
then obtain a collection of discs, which we still call { fi }, where λ( fi , f j ) = μ( fi ) = 0
and λ( fi , g j ) = δi j for each i, j . Note also that the framing on the boundary of each
fi is unchanged since all g j are framed. Apply the geometric Casson lemma (Lemma
3.3) to arrange that { fi } and {gi } are geometrically dual, after a regular homotopy.

Since λ( fi , f j ) = μ( fi ) = 0 for all i, j , the intersections and self-intersections
among the { fi } can be paired up with framed Whitney discs {Dj }. By tubing into the
geometric duals {gi } we can assume that the interiors of {Dj } lie in the complement
of the { fi }.

Let M ′ := M \⋃

ν( fi ). We will apply Lemmas 4.1 and 4.2 in M ′, so we check the
hypotheses. The collection { fi } is π1-negligible in M so π1(M ′) ∼= π1(M) is good.
Let Tj be the Clifford torus at one of the double points paired by Dj . Cap each Tj

with meridional discs to { fi }, then tube the unique intersection point of each cap with
{ fi } into parallel copies of the dual spheres {gi }. The resulting capped surfaces {T c

j }
lie in M ′ as desired. The bodies lie in a collar neighbourhood of ∂M ′, and are are
geometrically dual to {Dj }, while the caps have algebraically cancelling intersections.
Contract a parallel copy of each T c

j to produce a dual sphere S j for Dj in M ′, and
push the collection {Dj } off the contraction. Remove the intersections between the
caps of {T c

j } and {Dj } by tubing into parallel copies of {S j }. The resulting caps for
{T c

j } no longer intersect {Dj }.
NowapplyLemmas4.1 and4.2 toM ′, to replace the discs {Dj }with 1-storey capped

towers {T c
j } whose framed attaching regions coincide with the framed boundary of

{Dj } and that have geometrically dual spheres {R j }. Remove intersections of {gi }
with {T c

j }, by pushing down into the base surface and tubing into {R j }. The resulting
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spheres {gi } are disjoint from {T c
j } and geometrically dual to { fi }. By [5, Chapters 3

and 4] (see also [22, Chapter 17; 1, Part IV]) every disc-like 1-storey capped tower
with at least four surface stages contains a locally flat embedded disc whose framed
boundary coincides with the attaching region of the capped tower. Applied to the
collection {T c

j }, this produces mutually disjoint, embedded and framedWhitney discs
pairing the intersections and self-intersections of the { fi } away from {gi }. Whitney
moves guided by these discs produce embedded discs { f i } geometrically dual to {gi }.
In the case that fi was initially generically immersed, we obtain the same framing on
the boundary of f i since these are regular homotopies in the interior.

It remains only to argue that each gi is homotopic in M to gi for each i . Observe
that to obtain gi , we have:

(i) homotoped gi by an application of the geometric Casson lemma, and then
(ii) tubed into parallel copies of the dual spheres {R j } for the towers {T c

j }.
However, R j was obtained by contracting T c

j , whose body is a Clifford torus for an
intersection point among the { fi }. Therefore by Lemma 4.4, R j is null-homotopic in
M , i.e. [R j ] = 0 ∈ π2(M). (Note that R j is nontrivial in π2(M ′).) It follows that gi
is homotopic in M to gi , as desired. This completes the proof. ��

6 Generic immersions in smooth and topological 4-manifolds

The goal of this section is to prove Theorem 1.5, rectifying another omission in [5].

Remark 6.1 During the proof we will use results that rely on the smooth-input disc
embedding theorem. Therefore the results of this section rely on a version of Theorem
AwhereM is assumed to be a smooth 4-manifold. Proposition 6.2was used in the proof
of Theorem A with a purely topological input, in order to find generic immersions.
The logical dependencies in the development of topological 4-manifold topology are
elucidated in [25].

Recall that for a compact surface � and 4-manifold M , a generic immersion in the
smooth category, written f : �2 � M4, is a smooth map which is an embedding,
except for a finite number of transverse double points in the interior. This means
that f is an embedding on ∂� and there are coordinates on � and on M such that
restricted to the interior, f coincides in local coordinates inM with either the inclusion
R
2 × {0} ⊂ R

4 or a transverse double point R
2 × {0} ∪ {0} × R

2 ⊂ R
4.

In a smooth 4-manifold M , the set of generic immersions is open and dense in
the Whitney topology on C∞(�, M). To see this, apply [12, Theorem 2.2.12] which
shows that immersions are dense in the space of smoothmaps, and then [10,Chapter III,
Corollary 3.3] shows that generic immersions are dense in the space of immersions.
These are exactly the stable maps in the smooth mapping space [10, Chapter III, The-
orem 3.11], where a map f is said to be stable if it has a neighbourhood inC∞(�, M)

such that every map in the neighbourhood can be obtained by pre-composing with
a diffeomorphism of � and post-composing with a diffeomorphism of M , with both
diffeomorphisms isotopic to the identity.
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It is well known that every continuous map between smooth manifolds is arbitrarily
close to a smooth map (see for example [21, Theorem 10.21] or [12, Theorem 2.2.6]).
Since moreover the collection of generic immersions is open and dense inC∞(�, M),
a smooth map can be further perturbed to a (smooth) generic immersion. Since the
perturbations may be chosen to be small, a proper continuous map may be perturbed
to a proper smooth generic immersion (see [32, Lemma 1]).

A continuous map between topological manifolds is called an immersion if it is
locally an embedding. A continuous map of a surface to a topological 4-manifold
with the same local behaviour as a smooth generic immersion will be called a generic
immersion in the topological category. Note that this implies that the map is a locally
flat embedding near points with a single inverse image.

A smooth homotopy H between smooth maps � → M is said to be generic if the
corresponding map � × [0, 1] → M × [0, 1] is a generic smooth map. Whitney’s
classification of singularities [36, 37] of genericmaps from3-manifolds to 5-manifolds
implies that the singularities of the track of a generic homotopy H as above consist
of finger moves, Whitney moves and cusps. These arise at finitely many times t ∈ I ,
when Ht : � → M is not a generic immersion but either:

(i) Ht has a tangency, increasing or decreasing the double point set by a pair with
opposite signs, corresponding to a finger/Whitney move, or

(ii) the rank of the derivative of Ht drops at a single point, creating a cusp where one
double point appears or disappears.

A topological generic homotopy is defined to be a concatenation of finger moves,
Whitney moves, and cusps.

A continuous homotopy between smooth maps � → M may be perturbed (rel.
boundary) to produce a smooth generic homotopy. Since the perturbation may be
chosen to be small, a proper homotopy may be perturbed to a proper smooth generic
homotopy.

Our goal in this section is to state and prove purely topological analogues of these
smooth facts. Here is the main technical result.

Proposition 6.2 Let � be a compact surface and let M be a 4-manifold.

(1) Every continuousmap f : (�, ∂�) → (M, ∂M) is homotopic to a generic immer-
sion, smooth in M \ {q} for some point q ∈ M.

(2) Every continuous homotopy H : (�, ∂�) × [0, 1] → (M, ∂M) that restricts to
a smooth generic immersion on � × {i} for each i = 0, 1, with respect to some
smooth structure on M minus a point q, is homotopic rel. � × {0, 1} to a generic
homotopy, that is smooth in some smooth structure on M \ {r} for some point
r ∈ M.

Proof First we prove (1), following [5, Corollary 9.5C]. We may assume without loss
of generality that M is connected. Choose a smooth structure on �. The complement
of a point p in the interior ofM is smoothable relative to any fixed chosen smoothing of
the boundary of M [5, Theorem 8.2; [27, 28]]. Choose a smooth structure on M \ {p}.

If the point p can be chosen disjoint from the image f (�) in (1), and disjoint from
H(�×[0, 1] in (2), thenwe have a continuousmap, and the result follows from smooth
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approximation and general position. The aim of the rest of the proof is therefore to
arrange that f (respectively H can be arranged to have image missing a point. The
proof given in [5, Corollary 9.5C] assumes that this holds without comment.

Homotope the restriction of f to ∂� to a smooth embedding, and extend this to a
homotopy of � supported in a collar near the boundary (or use a given embedding to
start with and work rel. boundary). Consider the smooth surface �p := � � f −1(p),
which comes with a proper map f | : �p → M � {p} that is properly homotopic to a
smooth proper map f ′. By Sard’s theorem, some point q in the interior of M � {p}
does not lie in the image of f ′. Moreover, as � is compact and the homotopy was
proper, f ′ maps each end of �p to p (as did f ). Send all of f −1(p) to p, to extend f ′
to a continuous map � → M � {q}, homotopic in M to the original map f . The latter
homotopy is produced from the proper homotopy between f | and f ′| by mapping
every end to p.

Now as explained above, the map f ′ is homotopic to a smooth generic immersion
f ′′ : � � M�{q}. Add q back in and forget the smooth structure to yield a topological
generic immersion, noting that as required f ′′ is smooth in some structure on M \ {q}
by construction.

Now, to prove (2), consider a homotopy H : � × [0, 1] → M whose restriction
H | : �×{i} → M is a smooth generic immersion in some smooth structure onM \{q}
for some q ∈ M , for each i = 0, 1. We follow a similar strategy as the proof of (1).
Use a smoothing of M away from q, and consider

(� × [0, 1])q := (� × [0, 1]) \ H−1({q}) ⊆ M � {q}.

The proper map (� × [0, 1])q → M \ {q} is properly homotopic rel. � × {0, 1} to a
proper smoothmap H ′ : (�×[0, 1])q → M\{q}, that bySard’s theoremmisses at least
one point r ∈ M . Since � ×[0, 1] is compact and the homotopy was proper, H ′ maps
each end of H−1(q) to q. Extend H ′ to a continuous map H ′′ : � ×[0, 1] → M \ {r}.
Choose a smooth structure on M \ {r}, such that H | = H ′′| : � × {0, 1} → M is a
smooth generic immersion. To achieve this, start with the original smooth structure
on M \ {q} restricted to a neighbourhood of H ′′(� ×{0, 1}) ⊆ M \ {q, r}, and extend
that structure to a smooth structure on M \ {r}.

Now homotope H ′′|�×[0,1] rel.�×{0, 1} to a smooth generic homotopy inM \{r}.
Add r back in and forget the smooth structure to yield a topological generic homotopy,
noting that as required H ′′ is smooth in some smooth structure on M \ {r}. ��
Remark 6.3 Let us discuss some consequences of Proposition 6.2 for normal bundles
of generic immersions. A generic immersion f : � � M has a linear normal bundle
ν( f ) → �, in both the smooth and topological categories [5, Section 9.3]. However
Proposition 6.2 tells us that f is generically homotopic to a smooth immersion in some
smooth structure on M \ {q}, so this gives an easier proof that up to homotopy f has a
linear normal bundle. Then f comes with a map ν( f ) → M of the total space into M ,
which is an embedding away from a finite number of plumbings near the double points
of f . In the case that� has nonempty boundary, assume that f −1(∂M) = ∂� and that
we are given a fixed framing of the normal bundle restricted to the boundary.We call f
framed if ν( f ) comes with a trivialisation and twisted if the (relative) Stiefel-Whitney
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class w2( f ) := w2(ν( f )) ∈ H2(�, ∂�; Z/2) is nonzero. If � is oriented, f |∂� is
framed and f is not twisted, then one can add local cusps to f (corresponding to a
non-regular homotopy between generic immersions) until the relative Euler number
in H2(�, ∂�; Z) of ν( f ) vanishes and hence ν( f ) becomes trivial and the framing
on f induces the given framing on ∂�.

Now we prove Theorem 1.5 about homotopy classes [�, M] of maps f : � → M ,
when � is a union of spheres or discs. We write {�, M}∂ for the subspace of all
continuous maps that restrict on ∂� to locally flat embeddings disjoint from the image
of the interior of �, and [�, M]∂ for the set of homotopy classes of such maps. In this
theorem we do not assume that f −1(∂M) = ∂�. Choose a local orientation of M at
the basepoint and assume that � comes with a whisker to the basepoint. The proof
will use topological transversality, which we state first.

Theorem 6.4 ([27, 29] (see also [5, Section 9.5]) Let �1 and �2 be locally flat proper
submanifolds of a topological 4-manifold M that are transverse to ∂M. There is an
isotopy of M, supported in any given neighbourhood of �1 ∩ �2, taking �1 to a
submanifold �′

1 transverse to �2.

Theorem 1.5 Let� be a disjoint union of discs or spheres, and let M be a 4-manifold.
The subspace of generic immersions in the space of all continuous maps leads to a
bijection

{( f1, . . . , fm) : �=�1 � · · · � �m � M | μ( fi )1=0, i =1, . . . ,m}
{isotopies, finger moves, Whitney moves} ←→[�, M]∂ ,

where μ( fi )1 ∈ Z denotes the signed sum of double points of fi whose double point
loops are trivial in π1(M), and [�, M]∂ denotes the set of homotopy classes of con-
tinuous maps that restrict on ∂� to locally flat embeddings disjoint from the image
of the interior of �. Moreover, any such homotopy between generic immersions is
homotopic rel.� ×{0, 1} to a sequence of isotopies, finger moves and Whitney moves.

Theorem 1.5 could be rephrased more succinctly, but perhaps less transparently, as
the statement that the inclusion of the space of generic immersions into {�, M}∂ is a
1-connected map.

Proof The map is well-defined since any isotopy, finger move, or Whitney move is
a homotopy. Note that for each i , μ( fi )1 can be changed arbitrarily by (non-regular)
cusp homotopies. Therefore by Proposition 6.2(1) the map is surjective.

For injectivity, consider generic immersions F, F ′ : � � M , which restrict to
embeddings on ∂� that miss the image of the interior, and assume that F and F ′ are
homotopic. Using topological transversality, we can assume that F and F ′ intersect
transversely after performing an isotopy.Choose a pointq ∈ M disjoint from the image
of both F and F ′. Since F and F ′ are generic immersions intersecting transversely,
there is a neighbourhood, namely the union of the images of the normal bundles, within
which F and F ′ are smooth generic immersions. Extend this smooth structure over
M � {q}.
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Now by Proposition 6.2(2), we can replace the homotopy from F to F ′ by a smooth
generic homotopy, by performing a homotopy rel. � × {0, 1}. Then we saw earlier
that the singularities of the track of this homotopy consists of finger moves, Whitney
moves and cusps. If μ( fi )1 = μ( f ′

i )1 for every i then the cusps arising in H can
be cancelled in pairs [5, p. 23], leading to a regular homotopy, which as desired is a
sequence of isotopies, finger moves, and Whitney moves. ��
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