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A Second Order Algebraic Knot Concordance Group

MARK POWELL

Let C be the topological knot concordance group of knotsS1 ⊂ S3 under connected sum
modulo slice knots. Cochran, Orr and Teichner defined a filtration:

C ⊃ F(0) ⊃ F(0.5) ⊃ F(1) ⊃ F(1.5) ⊃ F(2) ⊃ . . .

The quotientC/F(0.5) is isomorphic to Levine’s algebraic concordance group;F(0.5) is the
algebraically slice knots. The quotientC/F(1.5) contains all metabelian concordance obstructions.

Using chain complexes with a Poincaré duality structure, we define an abelian groupAC2 ,
our second order algebraic knot concordance group. We define a group homomorphismC →
AC2 which factors throughC/F(1.5), and we can extract the two stage Cochran-Orr-Teichner
obstruction theory from our single stage obstruction groupAC2 . Moreover there is a surjective
homomorphismAC2 → C/F(0.5), and we show that the kernel of this homomorphism is non–
trivial.

1 Introduction

A knot is an oriented, locally flat embedding ofS1 in the 3–sphere. We say that two knotsK and
K′ areconcordantif there exists an oriented, locally flat embedding of an annulus C = S1 × I in
S3 × I with C ∩ S3 × {0} = K andC ∩ S3 × {1} = −K′ . The monoid of knots under connected
sum becomes a group when we factor out by the equivalence relation of concordance, called the
knot concordance group, and denoted byC .

This paper unifies previously known obstructions to the concordance of knots by using chain
complexes with a Poincaré duality structure. In particular, we attempt to find an algebraic formulation
that computes portions of the knot concordance group as filtered by the work of T. Cochran, K. Orr
and P. Teichner.

We view this as an initial framework for extending the algebraic theory of surgery of A. Ran-
icki [Ran80] to classification problems involving 3– and 4– dimensionalmanifolds. In order to
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apply Ranicki’s machinery to low dimensional problems, we incorporate extra information which
keeps track of the effect of duality on the fundamental groups involved.

The paper [COT03] introduced a filtration of the classical knot concordance groupC by subgroups:

C ⊃ F(0) ⊃ F(0.5) ⊃ F(1) ⊃ F(1.5) ⊃ F(2) ⊃ . . . .

Knots in the subgroupF(n) are called (n)-solvable knots, forn ∈ 1
2N ∪ {0}. The subgroupsF(n)

are geometrically defined. A knot is (n)-solvable if there issome choiceof four manifold whose
boundary is zero-framed surgery on the knot, and which is annth order approximation to the exterior
of a slice disk (See Definition5.2).

In this paper, we focus on the (0.5), (1) and (1.5) levels of this filtration, corresponding to abelian
and metabelian quotients of knot groups and of the fundamental groups of appropriate 4–manifolds.
Our methods extend to the higher terms of the filtration, which will appear in a future paper. (For an
outline, see the appendix of [Pow11].) As in [COT03, Theorem 1.1 and Remark 1.3.2], the quotient
C/F(0.5) is isomorphic to Levine’s algebraic concordance group [Lev69], which we denoteAC1

(see Definition6.2). We produce a purelyalgebraically definedgroup of concordance invariants,
AC2, and prove the following theorem.

Theorem 1.1 There exists a second order algebraic knot concordance groupAC2, with a non-trivial
homomorphismC → AC2 which factors throughC/F(1.5) . There is a commutative diagram

C //

    B
B
B
B
B
B
B
B

AC2

����
AC1

with both of the maps toAC1 surjections. A knot whose image inAC2 is trivial has vanishing
Cochran-Orr-Teichner(1.5)-level obstructions. Moreover, the Cochran-Orr-Teichnerobstructions
can be extracted algebraically from an element ofAC2. In particular the Cheeger-Gromov Von
Neumannρ-invariants used in [COT03] can be defined purely algebraically and used to detect
non-triviality of elements ofAC2.

We will define (Definition7.4) a pointed set which encapsulates the Cochran-Orr-Teichner ob-
struction theory in a single object, which we denoteCOT (C/1.5). We summarise Theorem1.1in the
following commutative diagram, where dotted arrows are used to denote morphisms of pointed sets.
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Our aim is to compute the groupC/F(1.5) and we view Theorem1.1 as a first step toward this
goal.

Question 1.2 How close is our homomorphismC/F(1.5)→ AC2 to a (rational) isomorphism? Can
we identify elements in the kernel and cokernel?

The following corollary of Theorem1.1is a consequence of [Kim04] and [COT04].

Corollary 1.3 The kernel ofAC2→ AC1 is of infinite rank.

The first examples of knots which lie in the kernel of the mapC → AC1 were given by A. Casson
and C. Gordon in [CG86]. Their seminal work was the basis for the work of Cochran, Orr and
Teichner. We expect it to be the case that a knot whose image inAC2 is trivial also has vanishing
Casson-Gordon slice obstructions, but we do not directly address this in the present work.

Cochran-Orr-Teichner concordance obstructions are a secondary obstruction theory in a similar
manner to obstructions to lifting a map up a tower of fibrations, or extending a map over the skeleta
of a CW-complex. One uses the vanishing at each level of obstructions to define new obstructions,
which if they in turn vanish, can be used to define further obstructions, and so on. A knot being (n)-
solvable implies that there is some path of vanishing Cochran-Orr-Teichner obstructions of length
⌈n⌉. By contrast,AC2 contains well-defined knot concordance invariants, which do not need to be
indexed by choices of lower level vanishing.

The approach is partially inspired by work of Gilmer [Gil83]. He defined an analogue ofAC2

which attempted to capture invariants fromAC1 together with Casson-Gordon invariants. That
influential, and still important paper, has errors relatingto the universal coefficient theorem. We
avoid such problems by defining our group using chain complexes with symmetric structure instead
of forms defined on homology. A chain complex with symmetric structure is a purely algebraic
analogue of a Poincaré duality space. Consequently, our work has an altogether different character
from Gilmer’s.
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By avoiding homology pairings and the associated universalcoefficient theorem issues in the
definition of our invariant, we avoid Ore localisation, the ad-hoc introduction of principal ideal
domains, and we obtain agroupwith ahomomorphismC → AC2: the chain complexes behave well
under connected sum. Traditionally, cobordism groups use disjoint union to define their addition
operation. Our operation of addition mirrors much more closely the geometric operation of addition
of knots. The most important advantage derived from definingour obstruction in terms of chain
complexes is that we have asingle stageobstruction which captures the first two main stages of the
Cochran-Orr-Teichner obstruction theory. Finally, sincewe keep the whole chain complex as part of
our data, we potentially have more information than can be gleaned from the Cochran-Orr-Teichner
obstructions, although computable invariants are elusiveat present.

1.1 Organisation of the paper

The paper is devoted to the proof of Theorem1.1. Section2 contains some definitions and con-
structions which will be central to the rest of the paper, including the definition of a symmetric
Poincaŕe triad and the structure and behaviour of metabelian quotients of knot groups. We define a
monoid of chain complexesP in Section3, corresponding to the monoid of knots under connected
sum. In Section4, we impose an extra equivalence relation onP corresponding to concordance of
knots, and so define the groupAC2. Section5 contains the proof that (1.5)-solvable knots map to
the trivial element ofAC2. Section6 describes the homomorphism to the algebraic concordance
groups and proves the facts about Blanchfield forms which will be required in subsequent sections.
Section7 defines the Cochran-Orr-Teichner obstruction set, before Section8 shows how to extract
the Cochran-Orr-Teichner obstructions from an element ofAC2, showing thatAC2 is non-trivial.
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2 Preliminaries

2.1 Symmetric structures on chain complexes representing manifolds with boundary

All of the chain complexes in this paper will come equipped with an algebraic Poincaré duality
structure: the symmetric structure of Mischenko and Ranicki. In this section we collect the basic
constructions which we will need in order to define algebraiccobordisms. For more details on the
material presented here, see [Ran80, Part I], from which the definitions in this section are taken,
and [Pow11], where I gave an extended explanation of the derivation of symmetric structures, and
in particular of how to produce one explicitly for a knot exterior.

In the following we letA be a ring with involution. A symmetric chain complex overA is a
chain complexC together with an elementϕ ∈ Qn(C): we refer to [Ran80, Part I, Page 101]
for the definition of the symmetricQ-groupsQn(C). A symmetric pair overA is a chain map
f : C→ D with an element (δϕ, ϕ) ∈ Qn+1(f ). Likewise, we refer to [Ran80, Part I, Pages 133–4]
for the definition of the relativeQ-groups. Such complexes are said to be Poincaré if the symmetric
structure induces, respectively, the Poincaré and Poincaré-Lefschetz duality isomorphisms between
cohomology and homology.

We can represent a manifold with boundary in two ways: on the one hand, as a symmetric Poincaré
pair, and on the other hand as a symmetric complex which isnot Poincaŕe. The algebraic Thom and
algebraic Poincaré thickening constructions of the following definition makethe correspondence
between these two representations of a manifold with boundary precise.

Definition 2.1 ([Ran80]) An n-dimensional symmetric complex (C, ϕ ∈ Qn(C, ε)) is connected
if H0(ϕ0 : Cn−∗ → C∗) = 0. The algebraic Thom complexof an n-dimensionalε-symmetric
Poincaŕe pair overA

(f : C→ D, (δϕ, ϕ) ∈ Qn(f , ε))

is the connectedn-dimensionalε-symmetric complex overA

(C (f ), δϕ/ϕ ∈ Qn(C (f ), ε))

whereC (f ) is the algebraic mapping cone off , and

(δϕ/ϕ)s :=

(
δϕs 0

(−1)n−r−1ϕsf ∗ (−1)n−r+sTεϕs−1

)
: C (f )n−r+s

= Dn−r+s⊕ Cn−r+s−1→ C (f )r = Dr ⊕ Cr−1 (s≥ 0).

The boundaryof a connectedn-dimensionalε-symmetric complex (C, ϕ ∈ Qn(C, ε)) over A,
for n≥ 1, is the (n− 1)-dimensionalε-symmetricPoincaŕe complex overA

(∂C, ∂ϕ ∈ Qn−1(∂C, ε))
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given by:

d∂C =

(
dC (−1)rϕ0

0 ∂∗ = dCn−∗

)
: ∂Cr

= Cr+1⊕ Cn−r → ∂Cr = Cr ⊕Cn−r+1;

∂ϕ0 =

(
(−1)n−r−1Tεϕ1 (−1)r(n−r−1)ε

1 0

)
: ∂Cn−r−1

= Cn−r ⊕ Cr+1

→ ∂Cr = Cr+1⊕ Cn−r ;

and, fors≥ 1,

∂ϕs =

(
(−1)n−r+s−1Tεϕs+1 0

0 0

)
: ∂Cn−r+s−1

= Cn−r+s⊕ Cr−s+1

→ ∂Cr = Cr+1⊕ Cn−r .

See [Ran80, Part I, Proposition 3.4 and pages 141–2] for the full details on the boundary construction.

The algebraic Poincaŕe thickeningof a connectedε-symmetric complex overA, (C, ϕ ∈
Qn(C, ε)), is theε-symmetric Poincaré pair overA:

(iC : ∂C→ Cn−∗, (0, ∂ϕ) ∈ Qn(iC, ε)),

where iC = (0,1): ∂C = Cr+1 ⊕ Cn−r → Cn−r . The algebraic Thom complex and algebraic
Poincaŕe thickening are inverse operations [Ran80, Part I, Proposition 3.4].

Next, we give the definition of a symmetric Poincaré triad. This is the algebraic version of a
manifold with boundary where the boundary is split into two along a submanifold; in other words
a cobordism of cobordisms which restricts to a product cobordism on the boundary. Note that our
notion is not quite as general as the notion in [Ran81, Sections 1.3 and 2.1], since we limit ourselves
to the case that the cobordism restricted to the boundary is aproduct. We also circumvent the more
involved definitions of [Ran81], and define the triads by means of [Ran81, Proposition 2.1.1], with
a sign change in the requirement ofi− to be a symmetric Poincaré pair.

Definition 2.2 ([Ran81]) An (n+ 2)-dimensional (Poincaŕe) symmetric triadis a triad of finitely
generated projectiveA-module chain complexes:

C

g
∼

i− //

i+
��

D−

f−
��

D+ f+
// Y
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with chain mapsi±, f± , a chain homotopyg: f− ◦ i− ≃ f+ ◦ i+ and structure maps (ϕ, δϕ−, δϕ+,Φ)
such that: (C, ϕ) is ann-dimensional symmetric (Poincaré) complex,

(i+ : C→ D+, (δϕ+, ϕ)) and (i− : C→ D−, (δϕ−,−ϕ))

are (n+ 1)-dimensional symmetric (Poincaré) pairs, and

(e: D− ∪C D+ → Y, (Φ, δϕ− ∪ϕ δϕ+))

is a (n+ 2)-dimensional symmetric (Poincaré) pair, where:

e=
(

f− , (−1)r−1g , −f+
)

: (D−)r ⊕ Cr−1⊕ (D+)r → Yr .

See [Ran80, Part I, pages 117–9] for the formulae which enable us to gluetogether two chain com-
plexes along a common part of their boundaries with oppositeorientations: theunion construction.
We write (D′′ = D∪C′ D′, δϕ′′ = δϕ∪ϕ′ δϕ′) for the union of (D, δϕ) and (D′, δϕ′) along (C, ϕ′).

A chain homotopy equivalence of symmetric triads is a set of chain equivalences:

νC : C → C′; νD− : D− → D′
−

νD+
: D+ → D′

+; and νE : Y → Y′,

which commute with the chain maps of the triads up to chain homotopy, and such that the induced
maps onQ-groups map the structure maps (ϕ, δϕ−, δϕ+,Φ) to the equivalence class of the structure
maps (ϕ′, δϕ′

−, δϕ
′
+,Φ

′). See [Ran80, Part I, page 140] for the definition of the maps induced on
relativeQ-groups by an equivalence of symmetric pairs.

Definition 2.3 ([Ran80, Part I, pages 134–6]) Anε-symmetric cobordismbetween symmetric
complexes (C, ϕ) and (C′, ϕ′) is a (n+ 1)-dimensionalε-symmetric Poincaré pair with boundary
(C⊕ C′, ϕ ⊕−ϕ′):

((fC, fC′ ) : C⊕ C′ → D, (δϕ, ϕ ⊕−ϕ′) ∈ Qn+1((fC, fC′ ), ε)).

The next lemma contains a fact which is key for constructing algebraic cobordisms corresponding
to productsM× I . We place it here so as not to interrupt the main text; we will have repeated cause
to appeal to it. Although this is well-known to the experts, Ihave not found a proof in the literature.

Lemma 2.4 Given a homotopy equivalencef : (C, ϕ) → (C′, ϕ′) of n-dimensional symmetric
Poincaŕe chain complexes such thatf %(ϕ) = ϕ′ , there is a symmetric cobordism((f ,1): C⊕C′ →

C′, (0, ϕ ⊕−ϕ′)). This symmetric pair is also Poincaré.
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Proof We need to check that the symmetric structure maps (0, ϕ ⊕ −ϕ′) ∈ Qn+1((f ,1)) induce
isomorphisms:Hr ((f ,1))

≃
−→ Hn+1−r (C′). We use the long exact sequence in cohomology of a pair,

associated to the short exact sequence 0→ C′ j
−→ C ((f ,1)) → S(C ⊕ C′) → 0 to calculate the

homologyHr((f ,1)). The sequence is:

Hr−1(C′)
(f ∗,1∗)T

−−−−→ Hr−1(C⊕ C′)
∂
−→ Hr((f ,1))

j∗
−→ Hr(C′)

(f ∗,1∗)T

−−−−→ Hr (C⊕ C′).

We have that ker((f ∗,1∗)T : Hr(C′) → Hr(C⊕ C′)) ∼= 0, so j∗ is the zero map, and therefore∂ is
surjective. The image im((f ∗,1∗)T : Hr−1(C′) → Hr−1(C) ⊕ Hr−1(C′)) is the diagonal, so that the
images of elements of the form (0, y′) ∈ Hr−1(C)⊕ Hr−1(C′) generateHr((f ,1)).

The mapHr ((f ,1))→ Hn−r+1(C′) generated by (0, ϕ ⊕−ϕ′), on the chain level, is
(

0,
(

f 1
)( ϕ0 0

0 −ϕ′
0

))
: (C′)r ⊕ (C⊕ C′)r−1→ C′

n−r+1

which sendsy′ ∈ Hr−1(C′) to −ϕ′
0(y′). We therefore have an isomorphism on homology since

(C′, ϕ′) is a symmetric Poincaré complex, so we have a symmetric Poincaré pair

((f ,1): C⊕ C′ → C′, (0, ϕ ⊕−ϕ′)),

as claimed.

2.2 Second derived covers and connected sum

Our obstructions, since they aim to capture second order information, work at the level of the second
derived covers of the manifolds involved. We therefore needto understand the behaviour of the
second derived quotients of knot groups. We denote the exterior of a knotK ⊂ S3 by

X := S3 \ νK.

Proposition 2.5 Let φ be the quotient map

φ : π1(X)/π1(X)(2)→ π1(X)/π1(X)(1) ≃
−→ Z.

Then for each choice of splitting homomorphismψ : Z→ π1(X)/π1(X)(2) such thatφ ◦ ψ = Id, let
t := ψ(1). There is an isomorphism:

θ : π1(X)/π1(X)(2) ≃
−→ Z ⋉ H;

g 7→ (φ(g),gt−φ(g)),

whereH := H1(X;Z[Z]) is the Alexander module.

Proof This is well–known, so we omit the proof. See e.g. [Let00, page 307].
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Although the following proposition is well–known, the careful treatment of inner automorphisms,
used to take care of any ostensible dependence on the choice of splitting in Proposition2.5, will be
invaluable in Section3.

Proposition 2.6 Let K , K† and K‡ := K ♯K† be oriented knots, with associated exteriorsX,X†

and X‡ , and denoteH† := H1(X†;Z[Z]) and H‡ := H1(X‡;Z[Z]) . The behaviour of the second
derived quotients under connected sum is given by:

π1(X‡)/π1(X‡)(2) ∼= Z⋉ H‡ ∼= Z ⋉ (H ⊕ H†).

That is, we can take the direct sum of the Alexander modules.

Proof First we observe that
π1(X‡) ∼= π1(X) ∗Z π1(X†),

by the Seifert-Van-Kampen theorem: the knot exterior of a connected sum is given by gluing the
exteriors of the summands together along neighbourhoods ofmeridiansS1× D1 ⊂ ∂X, ∂X† . Note
that H , H† and H‡ are modules over the group ringZ[t, t−1] for the samet , which comes from
the preferred meridian of each ofX,X† and X‡ respectively; when the spaces are identified these
meridians all coincide.

Z ⋉ H‡ ∼= π1(X‡)/π1(X‡)(2) ∼= π1(X) ∗Z π1(X†)/(π1(X) ∗Z π1(X†))(2)

(1) ∼=

(
π1(X)
π1(X)(2) ∗Z

π1(X†)
π1(X†)(2)

)
/[π1(X)(1), π1(X†)(1)] ∼=

(Z ⋉ H) ∗Z (Z ⋉ H†)
[π1(X)(1), π1(X†)(1)]

.

We now need to be sure that the two group elements which we identify, which we call g1 ∈ π1(X)
andg†1 ∈ π1(X†), map to (1,0) ∈ Z⋉ H and (1,0†) ∈ Z⋉ H† respectively under the compositions

π1(X)→ π1(X)/π1(X)(2)→ Z ⋉ H andπ1(X†)→ π1(X†)/π1(X†)(2)→ Z ⋉ H†.

If we had chosenψ(1) = g1 ∈ π1(X)/π1(X)(2) andψ†(1) = g†1 ∈ π1(X†)/π1(X†)(2) then this would
be the case and we would have:

(Z ⋉ H) ∗Z (Z ⋉ H†)
[π1(X)(1), π1(X†)(1)]

∼=
Z ⋉ (H ∗ H†)

[H,H†]
∼= Z ⋉ (H ⊕ H†),

and the proof would be complete. The point is that we can always arrange that the image ofg1 is
(1,0) by applying an inner automorphism ofZ⋉H , and similarly forg†1 andZ⋉H† . Suppose that
θ(g1) = (1,h1). Recall [Lev77, Proposition 1.2] that 1− t acts as an automorphism ofH . We can
therefore chooseh′1 ∈ H such that (1− t)h′1 = h1 . Then we have that:

(0,h′1)−1(1,h1)(0,h′1) = (0,−h′1)(1,h1)(0,h′1) = (1,−h′1 + h1)(0,h′1)

= (1,−h′1 + h1 + th′1) = (1,h1 − (1− t)h′1) = (1,h1 − h1) = (1,0).
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So, as claimed, in the last isomorphism of (1), we can composeθ and θ† with suitable inner
automorphisms and so achieve the desired conditions on the meridians which we identify. Therefore
the second derived quotients of the fundamental groups indeed add under connected sum as claimed.

This concludes the preliminaries that we wish to collect prior to making our main definitions.

3 A Monoid of Chain Complexes

We shall define a set of purely algebraic objects which capture the necessary information to pro-
duce concordance obstructions at the metabelian level. We define a set comprising 3-dimensional
symmetric Poincaré triads over the group ringZ[Z ⋉ H] for certain Z[Z]-modulesH . In some
sense, we are to forget that these chain complexes originally arose from geometry, and to perform
operations on them purely with reference to the algebraic data which we store with each element.
The primary operation which we introduce in this section is away to add these chain complexes, so
that we obtain an abelian monoid. On the other hand, we would not do well pedagogically to forget
the geometry. The great merit of the addition operation we put forward here is that it closely mirrors
geometric addition of knots by connected sum.

A manifold triad is a manifold with boundary (X, ∂X) such that the boundary splits along a
submanifold into two manifolds with boundary,∂X = ∂X0 ∪∂X01 ∂X1. In our case of interest where
X is a knot exterior we have a manifold triad:

S1× S0 //

��

S1× D1

��
S1× D1 // X,

where the longitude is divided into two copies ofD1. Such a manifold triad gives rise to a
corresponding triad of chain complexes: noting that the knot exterior has the homology of a circle
and the inclusion of each of the boundary componentsS1 × D1 induces an isomorphism onZ-
homology, we obtain a chain complexZ-homology cobordism fromC∗(S1×D1) to itself, which is
a product along the boundary.

The chain complexes are taken over the group ringsZ[Z⋉H] of the semi–direct products which
arise, as in Proposition2.5, as the quotients of knot groups by their second derived subgroups, with
H an Alexander module (Theorem3.1). The crucial extra condition is a consistency condition,
which relatesH to the actual homology of the chain complex. Since the Alexander module changes
under addition of knots and in a concordance, this extra control is vital in order to formulate a
concordance obstruction theory.
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We quote the following theorem of Levine, specialised here to the case of knots in dimension 3,
and use it to define the notion of an abstract Alexander module. Recall that we denote the exterior
of a knotK by X := S3 \ νK .

Theorem 3.1 ([Lev77]) Let K be a knot, and letH := H1(X;Z[Z]) ∼= H1(X∞;Z) be its Alexander
module. TakeZ[Z] = Z[t, t−1] . ThenH satisfies the following properties:

(a) The Alexander moduleH is of type K : that is, H is finitely generated overZ[Z] , and
multiplication by1− t is a module automorphism ofH . These two properties imply thatH
is Z[Z] -torsion.

(b) The Alexander moduleH is Z-torsion free. Equivalently, forZ[Z] -modules of typeK , the
homological dimension1 of H is 1.

(c) The Alexander moduleH satisfies Blanchfield Duality:

H ∼= Ext1Z[Z](H,Z[Z]) ∼= Ext0Z[Z](H,Q(Z)/Z[Z]) ∼= HomZ[Z](H,Q(Z)/Z[Z])

whereH is the conjugate module defined using the involution defined by t 7→ t−1.

Conversely, given aZ[Z] -moduleH which satisfies properties (a), (b) and (c), there exists a knot K
such thatH1(X;Z[Z]) ∼= H .

Definition 3.2 We say that aZ[Z]-module which satisfies (a),(b) and (c) of Theorem3.1 is an
Alexander module, and denote the class of Alexander modulesby A.

Before we give the definition of our set of symmetric Poincaré triads, we exhibit some basic
symmetric chain complexes which correspond to the spacesS0× S1 andS1× D1.

Definition 3.3 Let H be an Alexander module. Leth1 ∈ H and defineg1 := (1,h1) ∈ Z[Z ⋉ H].
Moreover letla ∈ Z[Z⋉H], denotegq := l−1

a g1la and letlb := l−1
a . The symmetric Poincaré chain

complex (C′, ϕC′ = ϕ⊕−ϕ), of the form:

C′0 δ1 //

ϕ0⊕−ϕ0

��

C′1

ϕ0⊕−ϕ0

��
ϕ1⊕−ϕ1

xxppp
pp
pp
pp
pp
pp
pp
pp
pp

C′
1

∂1 // C′
0,

is given by:

1This is defined as the minimal possible length of a projectiveresolution.
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⊕
2 Z[Z ⋉ H]



 g−1
1 − 1 0

0 g−1
q − 1





//


 1 0

0 −1




��

⊕
2 Z[Z ⋉ H]


 g1 0

0 −gq




��



 1 0
0 −1





yysss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss

⊕
2 Z[Z ⋉ H]


 g1− 1 0

0 gq− 1




//
⊕

2 Z[Z ⋉ H].

Theannular chain complexes D′± fit into symmetric Poincaré pairs:

(i′± : C′ → D′
±, (δϕ± = 0, ϕC′ ));

(they are Poincaré pairs by Lemma2.4), defined as follows:

D′
− Z[Z⋉ H]

(
g1− 1

)

// Z[Z⋉ H]

C′

i′−

OO

i′
+

��

⊕
2 Z[Z ⋉ H]

 g1− 1 0
0 gq− 1





//


 1

l−1
a




OO



 l−1
b
1





��

⊕
2 Z[Z ⋉ H]


 1

l−1
a




OO



 l−1
b
1





��
D′
+ Z[Z⋉ H] (

gq− 1
) // Z[Z ⋉ H],

The chain complexesD′
± arise by taking the tensor productsZ[Z ⋉ H] ⊗Z[Z] C∗(S1;Z[Z]), with

homomorphismsZ[Z] → Z[Z⋉H] given by t 7→ g1 for D′
− andt 7→ gq for D′

+ . There is therefore
a canonical chain isomorphism̟ : D′

− → D′
+ given by

Z[Z⋉ H]
(g1−1) //

(la)
��

Z[Z ⋉ H]

(la)
��

Z[Z⋉ H]
(gq−1) // Z[Z⋉ H].

Definition 3.4 We define the setP to be the set of equivalence classes of triples (H,Y, ξ) where:
H ∈ A is an Alexander module;Y is a 3-dimensional symmetric Poincaré triad of finitely generated
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projectiveZ[Z⋉ H]-module chain complexes of the form:

(C, ϕC)

g
∼

i− //

i+
��

(D−, δϕ−)

f−
��

(D+, δϕ+)
f+ // (Y,Φ),

with the symmetric Poincaré pairs (i± : C → D±, (δϕ±, ϕC)) chain homotopy equivalent to
(i′± : C′ → D′

±, (0, ϕ ⊕ −ϕ)) from Definition 3.3, where the chain mapsf± induceZ-homology
equivalences, and with a chain homotopyg: f− ◦ i− ∼ f+ ◦ i+ : C∗ → Y∗+1; and

ξ : H
≃
−→ H1(Z[Z] ⊗Z[Z⋉H] Y)

is aZ[Z]-module isomorphism.

Moreover we require that the mapsδϕ± have the property that̟ δϕ−̟
∗ = −δϕ+ , and that

there is a chain homotopyµ : f+ ◦̟ ≃ f−. This implies that objects of our set are independent of
the choice off− and f+ .

The mapsf± must induceZ-homology isomorphisms; note thatH∗(Z⊗Z[Z⋉H] D±) ∼= H∗(S1;Z):

(f±)∗ : H∗(Z⊗Z[Z⋉H] D±)
≃
−→ H∗(Z⊗Z[Z⋉H] Y).

We call the condition that the isomorphismξ : H
≃
−→ H1(Z[Z] ⊗Z[Z⋉H] Y) exists, theconsistency

condition, and we callξ theconsistency isomorphism.

We say that two triples (H,Y, ξ) and (H%,Y%, ξ%) are equivalent if there exists aZ[Z]-module
isomorphismω : H

≃
−→ H%, which induces a ring isomorphismZ[Z ⋉ H]

≃
−→ Z[Z ⋉ H%], and if

there exists a chain equivalence of triadsj : Z[Z ⋉ H%] ⊗Z[Z⋉H] Y → Y
%, such that the following

diagram commutes:

H
ξ

∼= //

ω ∼=

��

H1(Z[Z] ⊗Z[Z⋉H] Y)

j∗ ∼=
��

H%
ξ%

∼= // H1(Z[Z] ⊗Z[Z⋉H%] Y%).

The induced mapj∗ onZ[Z]-homology makes sense, as there is an isomorphismZ[Z] ∼= Z[Z]⊗Z[Z⋉H%]

Z[Z⋉ H%], so that

H1(Z[Z] ⊗Z[Z⋉H] Y)
≃
−→ H1(Z[Z] ⊗Z[Z⋉H%] Z[Z ⋉ H%] ⊗Z[Z⋉H] Y).

It is easy to see that we have indeed described an equivalencerelation: symmetry is seen using the
inverses of the vertical arrows and transitivity is seen by vertically composing two such squares.



14 Mark Powell

Given a knotK with exteriorX, we define a triple (H,Y, ξ) as follows. LetH := π1(X)(1)/π1(X)(2)

considered as aZ[Z]-module via the action given by conjugation with a meridian. Let Y be the
triad of handle chain complexes associated to theπ1(X)(2)–cover of the manifold triad

S1× S0 //

��

S1× D1
+

��
S1× D1

−
// X,

with symmetric structures forC∗(S1×S0) andC∗(S1×D1
±) as given in Definition3.3, and with the

symmetric structure forC∗(X) given by the image under a chain level approximation to the diagonal
map

∆ : C(X;Z)→ C(X;Z[Z⋉ H]) ⊗Z[Z⋉H] C(X;Z[Z ⋉ H])

of a relative fundamental class [X, ∂X] ∈ C3(X;Z). Lastly, letξ be the Hurewicz isomorphism
ξ : H

≃
−→ H1(X;Z[Z]) ∼= H1(Z[Z] ⊗Z[Z⋉H] Y).

Then we have:

Proposition 3.5 Let Knots be the set of isotopy classes of locally flat oriented knots. The above
association of(H,Y, ξ) to a knotK defines a function:

Knots→ P.

Proof We take

Y := C(X;Z[Z ⋉ H]) := Z[Z ⋉ H] ⊗Z[π1(X)] C(X;Z[π1(X)]),

using the handle chain complex ofX with coefficients twisted by the group ring of the fundamental
group. We use a handle decomposition which contains a handledecomposition of a regular neigh-
bourhood of the boundary∂X× I as a subcomplex. We split the boundary into two annular pieces
S1 × S1 = S1 × D1

+ ∪S1×S0 S1 × D1
− , with the longitude split in two. We pick a meridian ofK

and call it g1 ∈ π1(X), and we letla and lb be the images inπ1(X)/π1(X)(2) of the two halves
of the longitude, suitably based. Take (C, ϕC), (D±, δϕ±) and i± to be the complexes defined in
Definition 3.3. Define the mapsf± andg to be the maps induced by the inclusion of the boundary.
The symmetric structureΦ on Y∗ = C∗(X;Z[Z ⋉ H]) is given, as described, by the image of a
relative fundamental class under a diagonal approximationchain map. Note that for the model chain
complexes,̟ = (la) : (D−)i → (D+)i so f+ ◦̟ = f− and we can takeµ = 0.

It is important that our objects do not depend on choices, so that equivalent knots define equivalent
triads. Different choices ofla and lb affect these elements only up to a conjugation, or in other
words an application of an inner automorphism, which means we can varyC,D+ andf+ by a chain
isomorphism and obtain chain equivalent triads. A different choice of elementg1 = (1,h1) ∈ Z⋉H
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is related by a conjugation, or in other words an applicationof an inner automorphism, as in the
proof of Proposition2.6, so that we can changeC,D± and Y by chain isomorphisms and obtain
chain equivalent triads. The point is that we need to make choices ofg1 and of la in order to write
down a representative of an equivalence class of symmetric Poincaŕe triads, but still different choices
yield equivalent triads. We investigate the effect of such changes on the consistency isomorphism
ξ . A change inla does not affect the isomorphismξ . A change ing1 affectsξ as follows. When we
wish to change the boundary maps and chain maps in a triad by applying an inner automorphism,
conjugating by an elementh ∈ Z⋉H say, we define the chain equivalence of triadsY → Y% which
maps basis elements of all chain groups as follows:ei 7→ hei : Y% has the same chain groups asY
but with the relevant boundary maps and chain maps conjugated by h. This induces an isomorphism
which by a slight abuse of notation we denoteh∗ : H1(Z[Z]⊗Z[Z⋉H] Y)

≃
−→ H1(Z[Z]⊗Z[Z⋉H%] Y%).

We takeω : H → H% = H as the identity. In order to obtain an equivalent triple, we therefore take
ξ% = h∗ ◦ ξ .

An isotopy of knots induces a homeomorphism of the exteriorsX
≈
−→ X%, fixing the boundary,

which itself induces an isomorphism

ω : π1(X)(1)/π1(X)(2)
= H

≃
−→ π1(X%)(1)/π1(X%)(2)

= H%.

Likewise the isotopy induces an equivalence of triadsZ[Z ⋉ H%] ⊗Z[Z⋉H] Y → Y
%. The geomet-

rically defined mapsξ andξ% fit into the commutative square as required in Definition3.4.

Finally, we should check that the conditions on homology foran element ofP are satisfied. First,

Z ⊗Z[Z⋉H] D± is given byZ
0
−→ Z, which has the homology of a circle. Alexander duality or an

easy Mayer-Vietoris argument using the decomposition ofS3 asX ∪∂X≈S1×S1 S1 × D2 shows that
H∗(C∗(X;Z)) ∼= H∗(S1;Z), with the generator ofH1(X;Z) being any of the meridians. So the chain
maps Id⊗Z[Z⋉H]f± : Z⊗ D± → C∗(X;Z) induce isomorphisms on homology.

The consistency condition is satisfied, since we have the canonical Hurewicz isomorphismH
≃
−→

H1(X;Z[Z]) as claimed. Therefore, we have indeed defined an element ofP .

Remark 3.6 In [Pow11], I gave an algorithm to construct a symmetric Poincaré triad explicitly,
given a diagram of a knot, using a handle decomposition of theknot exterior. The novel part of this
was to construct the symmetric structure maps explicitly, at the level of the universal cover.

We now define the notion of addition of two triples (H,Y, ξ) and (H†,Y†, ξ†) in P . In the
following, the notation should be transparent: everythingassociated toY† will be similarly decorated
with a dagger.

Definition 3.7 We define the sum of two triples

(H‡,Y‡, ξ‡) = (H,Y, ξ) ♯ (H†,Y†, ξ†),
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as follows. The first step is to make sure that the two triads are over the same group ring. Pick
a representative in the equivalence class of each of the triples on the right hand side which satisfy
g1 = (1,0) andg†1 = (1,0†) respectively. It was explained how to achieve this, with the application
of inner automorphisms ofZ⋉H andZ⋉H† , in the proofs of Propositions2.6and3.5. Now define
H‡ := H ⊕ H† . We use the homomorphisms

Z⋉ H → Z ⋉ (H ⊕ H†);
(n,h) 7→ (n, (h,0†))

and
Z ⋉ H† → Z⋉ (H ⊕H†);
(n,h†) 7→ (n, (0,h†))

to form the tensor productsZ[Z ⋉ H‡] ⊗Z[Z⋉H] Y and Z[Z ⋉ H‡] ⊗Z[Z⋉H†] Y
† , so that both

symmetric Poincaré triads are over the same group ring. This will be assumed forthe rest of the
present definition without further comment.

The next step is to exhibit a chain equivalenceν : C† ∼
−→ C. We show this for the models for each

chain complex from Definition3.3, since anyC,C† which can occur is itself chain equivalent to these
models. In fact, for the operation of connected sum which we define here, we describe how to add
our two symmetric Poincaré triadsY andY† using the models given fori± : (C, ϕC)→ (D±, δϕ±)
andi†± : (C†, ϕC† )→ (D†

±, δϕ
†
±) in Definition3.3, since there is always an equivalence of symmetric

triads mapping to one in whichC,C† and D†
± have this form, by definition. Note that, to achieve

this with g1 = (1,0) = g†1 , we may have to change the isomorphismsξ and ξ† as in the proof of
Proposition3.5.

The chain isomorphismν : C†
∗ → C∗ is given by:

⊕
2 Z[Z ⋉ H‡]

 g†1− 1 0
0 g†q− 1




//



 1 0
0 (l†a)−1la





��

⊕
2 Z[Z ⋉ H‡]



 1 0
0 (l†a)−1la





��⊕
2 Z[Z ⋉ H‡]



 g1− 1 0
0 gq− 1





//
⊕

2 Z[Z⋉ H‡].

In order to see that these are chain maps we need the relationg†1 = g1 ∈ Z ⋉ H‡ which, since by
definition gq = l−1

a g1la and g†q = (l†a)−1g†1l†a implies thatgq = l−1
a l†ag†q(l†a)−1la. We can also use

this to calculate thatν(ϕ† ⊕ −ϕ†)ν∗ = ϕ ⊕ −ϕ. Recall that we also have a chain isomorphism
̟ : D†

− = D− → D+ .

We now glue the two symmetric triads together. The idea is that we are following the geometric
addition of knots, where the neighbourhoods of a chosen meridian of each knot get identified. We
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have the following diagram:

(D−,0 = δϕ−)

f−

��

(C, ϕ⊕−ϕ = ϕC)
i−oo

i+

��

g
∼

yyrrr
rr
rr
rr
rr
rr
rr
r

(C†, ϕ† ⊕−ϕ† = ϕC† )
ν
≃oo

i†−

��

i†
+ //

g†
∼

&&MM
MM

MM
MM

MM
MM

MM
MM

(D†
+,0 = δϕ†

+)

f †
+

��
(Y,Φ) (D+,0 = δϕ+)

f+oo (D†
−,0 = δϕ†

−)
f †− //

̟
≃oo (Y†,Φ†)

where the central square commutes. We then use the union construction from [Ran80, Part I, pages 117–
9] to defineY‡ :

(C‡, ϕC‡ )

g‡
∼

i‡− //

i‡
+

��

(D‡
−, δϕ

‡
−)

f ‡−
��

(D‡
+, δϕ

‡
+)

f ‡
+

// (Y‡,Φ‡);

(C‡, ϕC‡ ) := (C†, ϕC† ); i‡+ := i†+; i‡− := i− ◦ ν;

(D‡
−, δϕ

‡
−) := (D−, δϕ− = 0); (D‡

+, δϕ
‡
+) := (D†

+, δϕ
†
+ = 0);

(Y‡,Φ‡) := (C ((−f+ ◦̟, f
†
−)T : D†

− → Y⊕ Y†),Φ ∪
δϕ†

−
Φ
†),

so that
Y‡

r := Yr ⊕ (D†
−)r−1⊕ Y†

r ;

dY‡ :=




dY (−1)r f+ ◦̟ 0
0 dD†

−
0

0 (−1)r−1f †− dY†


 : Y‡

r → Y‡
r−1;

f ‡− :=
(

f− 0 0
)T

: (D‡
−)r = (D−)r → Y‡

r = Yr ⊕ (D†
−)r−1⊕ Y†

r ;

f ‡+ =

(
0 0 f †+

)T
: (D‡

+)r = (D†
+)r → Y‡

r = Yr ⊕ (D†
−)r−1⊕ Y†

r ;

Φ
‡
s := (Φ ∪

δϕ†
−
Φ
†)s =




Φs 0 0
0 0 0
0 0 Φ

†
s


 :

(Y‡)3−r+s
= Y3−r+s⊕ (D†

−)2−r+s ⊕ (Y†)3−r+s → Y‡
r = Yr ⊕ (D†

−)r−1 ⊕ Y†
r (0 ≤ s ≤ 3);

g‡ :=
(

g ◦ ν (−1)r+1i†− g†
)T

: C‡
r = C†

r → Y‡
r+1 = Yr+1⊕ (D†

−)r ⊕ Y†
r+1.
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The mapping cone is of the chain map (−f+ ◦̟, f
†
−)T , with a minus sign to reflect the geometric

fact that when one adds together oriented knots; one must identify the boundaries with opposite
orientations coinciding, so that the resulting knot is alsooriented.

We therefore have the chain mapsi‡± , given by:

D‡
− = D− Z[Z ⋉ H‡]

(
g1− 1

)

// Z[Z ⋉ H‡]

C‡ = C†

i‡−=i−◦ν

OO

i‡
+
=i†

+

��

⊕
2 Z[Z⋉ H‡]

 g†1− 1 0
0 g†q− 1





//


 1

(l†a)−1




OO



 (l†b)−1

1





��

⊕
2 Z[Z ⋉ H‡]


 1

(l†a)−1




OO



 (l†b)−1

1





��
D‡
+ = D†

+ Z[Z ⋉ H‡] (
g†q− 1

) // Z[Z⋉ H‡],

which means we can takeg‡1 := g†1 = g1 ∈ Z ⋉ H‡ = Z ⋉ (H ⊕ H†), l‡a := l†a ∈ Z ⋉ H‡ and
l‡b := l†b ∈ Z⋉H‡, so thatg‡q := g†q ∈ Z⋉H‡. We have a chain isomorphism̟† : D− = D†

− → D†
+ .

To construct a chain homotopyµ‡ : (0,0, f †+ ◦̟
†)T ≃ (f−,0,0)T we first useµ† : (0,0, f †+ ◦̟

†)T ≃

(0,0, f †−)T. We then have a chain homotopy given by:

(0, Id,0)T : (D†
−)0→ Y‡

1 = Y1⊕ (D†
−)0⊕ Y†

1 and

(0,− Id,0)T : (D†
−)1→ Y‡

2 = Y2⊕ (D†
−)1⊕ Y†

2,

which shows that

(0,0, f †−)T ≃ (f+ ◦̟,0,0)T : D†
− → C ((−f+ ◦̟, f

†
−)T).

We finally haveµ : (f+ ◦̟,0,0)T ≃ (f−,0,0)T. Combining these three homotopies yields

µ‡ : (0,0, f †+ ◦̟
†)T ≃ (f−,0,0)T.

This completes our description of the symmetric Poincaré triad

Y‡ := Y ♯Y†.

Finally, easy Mayer-Vietoris arguments show thatf ‡± : H∗(D
‡
±;Z)

≃
−→ H∗(Y‡;Z) are isomorphisms

and that there is a consistency isomorphism

ξ‡ : H‡ ≃
−→ H1(Z[Z] ⊗Z[Z⋉H‡] Y‡),
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which shows that the consistency condition is satisfied and defines the third element of the triple
(H‡,Y‡, ξ‡) = (H,Y, ξ) ♯ (H†,Y†, ξ†) ∈ P.

This completes the definition of the addition of two elementsof P .

Proposition 3.8 The sum operation♯ on P is abelian, associative and has an identity, namely the
triple containing the fundamental symmetric Poincaré triad of the unknot. Therefore,(P, ♯) is an
abelian monoid.

Let “Knots” denote the abelian monoid of isotopy classes of locally flatoriented knots inS3 under
the operation of connected sum. Then the functionKnots→ P from Proposition3.5 becomes a
monoid homomorphism.

Proof The reader is referred to [Pow11, Proposition 6.8] for the proof of this proposition, which is
too long for the present paper, and is relatively straight–forward. It is hopefully intuitively plausible,
given that our algebraic connected sum so closely mirrors the geometric connected sum, that our
addition is associative, commutative, and that algebraic connected sum with the symmetric Poincaré
triad ({0},YU , Id) associated to the unknot produces an equivalent triad.

4 Algebraic Concordance

In this section we introduce an algebraic concordance relation on the elements ofP which closely
captures the notion of (1.5)-solvability, in the sense that the Cochran-Orr-Teichner obstructions
vanish if a knot is algebraically (1.5)-solvable (Definition4.3) which in turn holds if a knot is
geometrically (1.5)-solvable.

We proceed as follows. Given two triples (H,Y, ξ), (H†,Y†, ξ†) ∈ P , we formulate an algebraic
concordance equivalence relation, modelled on the concordance of knots and corresponding to
Z-homology cobordism of manifolds, with the extra control onthe fundamental group which is
evidently required, given the prominence of the Blanchfieldform in [COT03] when controlling
representations. We take the quotient of our monoidP by this relation, and obtain a group
AC2 := P/ ∼. Our goal for this section is to complete the set up of the following commuting
diagram, which has geometry in the left column and algebra inthe right column:

Knots //

����

P

����
C // AC2,

whereKnotsis the monoid of geometric knots under connected sum andC is the concordance group
of knots. We shall first define our concordance relation, and show that it is an equivalence relation.
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We will then define an inverse−(H,Y, ξ) of a triple (H,Y, ξ), and show that (H,Y, ξ) ♯−(H,Y, ξ) ∼
({0},YU , Id{0}), where ({0},YU , Id{0}) is the triple of the unknot, so that we obtain a groupAC2.

Proposition 4.1 Two knotsK andK† are topologically concordant if and only if the 3-manifold
Z := X ∪∂X=S1×S1 S1× S1× I ∪S1×S1=∂X† −X†

is the boundary of a topological 4-manifoldW such that

(i) the inclusioni : Z →֒ W restricts toZ-homology equivalences

H∗(X;Z)
≃
−→ H∗(W;Z)

≃
←− H∗(X

†;Z); and

(ii) the fundamental groupπ1(W) is normally generated by a meridian of (either of) the knots.

We omit the proof of this proposition, which is well-known tothe experts, and refer the interested
reader to [Pow11, Proposition 8.1]

We need to construct the algebraic version ofZ from two symmetric Poincaré triadsY andY†

so that we can impose conditions on the algebraic 4-dimensional complexes which have it as their
boundary. As part of the definition of a symmetric Poincaré triadY overZ[Z⋉H] (Definition 2.2),

(C, ϕC)

g
∼

i− //

i+
��

(D−, δϕ−)

f−
��

(D+, δϕ+)
f+ // (Y,Φ),

we can construct a symmetric Poincaré pair

(η : E := D− ∪C D+ → Y, (Φ, δϕ− ∪ϕC δϕ+))

where
η =

(
f− , (−1)r−1g , −f+

)
: Er = (D−)r ⊕ Cr−1⊕ (D+)r → Yr .

In our case of interest,E, for the standard models ofC,D± , is given by:

E2
∼=

⊕
2 Z[Z ⋉ H]

∂2−→ E1
∼=

⊕
4 Z[Z ⋉ H]

∂1−→ E0
∼=

⊕
2 Z[Z ⋉ H],

where:

∂1 =




g1− 1 0
1 la

l−1
a 1
0 gq − 1


 ; and∂2 =

(
−1 g1− 1 0 −la
−l−1

a 0 gq− 1 −1

)
,

with φ0 : E2−r → Er :
E0 δ1 //

φ0

��

E1 δ2 //

φ0

��

E2

φ0

��
E2

∂2 // E1
∂1 // E0
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given by:

⊕
2 Z[Z⋉ H]

δ1 //



 −1 la
0 0





��

⊕
4 Z[Z ⋉ H]

δ2 //




0 g1 −lagq 0
0 0 0 la
0 0 0 −1
0 0 0 0




��

⊕
2 Z[Z⋉ H]



 0 g1la
0 −gq





��⊕
2 Z[Z⋉ H]

∂2 //
⊕

4 Z[Z ⋉ H]
∂1 //

⊕
2 Z[Z ⋉ H].

We have replacedl−1
b with la here. Note that the boundary and symmetric structure maps still depend

on the group elementla. The next lemma shows that, over the group ringZ[Z ⋉ (H ⊕ H†)] =

Z[Z⋉H‡], the chain complexesE,E† of the boundaries of two different triadsY,Y† are isomorphic.
It is used to construct the top row of the triad in Definition4.3.

Lemma 4.2 There is a chain isomorphism of symmetric Poincaré complexes:

̟E : Z[Z ⋉ H‡] ⊗Z[Z⋉H] E→ Z[Z ⋉ H‡] ⊗Z[Z⋉H†] E†,

E2
∂2 //

̟E
��

E1
∂1 //

̟E
��

E0

̟E
��

E†
2

∂†
2 // E†

1

∂†
1 // E†

0

omitting Z[Z⋉ H‡]⊗Z[Z⋉H] andZ[Z⋉ H‡]⊗Z[Z⋉H†] from the notation of the diagram, given by:

⊕
2 Υ‡



 −1 g1− 1 0 −la
−l−1

a 0 gq− 1 −1





//



 1 0
0 l−1

a l†a





��

⊕
4 Υ‡




g1− 1 0
1 la

l−1
a 1
0 gq− 1




//




1 0 0 0
0 1 0 0
0 0 l−1

a l†a 0
0 0 0 l−1

a l†a




��

⊕
2 Υ‡



 1 0
0 l−1

a l†a





��⊕
2 Υ‡ 

 −1 g†1− 1 0 −l†a
−(l†a)−1 0 g†q− 1 −1




//
⊕

4 Υ‡



g†1− 1 0
1 l†a

(l†a)−1 1
0 g†q− 1




//
⊕

2 Υ‡
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whereΥ‡ := Z[Z⋉ H‡] .

Proof To see that̟ E is a chain map, as usual one needs the identities:

lagql−1
a = g1 = g†1 = l†ag†q(l†a)−1.

The maps of̟ E are isomorphisms, and the reader can calculate that̟Eφ̟
∗
E = φ†. Note that this

proof relies on the fact thatlalb = 1 and would require extra control over the longitude if we were
not working modulo the second derived subgroup, but insteadwere only factoring out further up the
derived series.

Definition 4.3 We say that two triples (H,Y, ξ), (H†,Y†, ξ†) ∈ P aresecond order algebraically
concordantor algebraically (1.5)-equivalent, written ∼, if there is aZ[Z] module H′ of type K ,
that isH′ satisfies the properties of (a) of Theorem3.1, with a homomorphism

(j♭, j
†
♭) : H ⊕ H† → H′

which induces homomorphisms

Z[Z ⋉ H] → Z[Z ⋉ H′] andZ[Z ⋉ H†] → Z[Z ⋉ H′],

along with a finitely generated projectiveZ[Z⋉ H′]-module chain complexV with structure maps
Θ, the requisite chain mapsj, j†, δ , and chain homotopiesγ, γ† , such that there is a 4-dimensional
symmetric Poincaré2 triad:

(Z[Z ⋉ H′] ⊗ (E, φ))⊕ (Z[Z ⋉ H′] ⊗ (E†,−φ†))

(γ,γ† )
∼

(Id,Id⊗̟E† )
//


 Id⊗η 0

0 Id⊗η†




��

Z[Z⋉ H′] ⊗ (E,0)

δ

��
(Z[Z ⋉ H′] ⊗ (Y,Φ))⊕ (Z[Z ⋉ H′] ⊗ (Y†,−Φ†))

(j,j†) // (V,Θ),

which satisfies two homological conditions. The first is that:

j : H∗(Z⊗Z[Z⋉H′] (Z[Z ⋉ H′] ⊗Z[Z⋉H] Y))
≃
−→ H∗(Z⊗Z[Z⋉H′] V) and

j† : H∗(Z⊗Z[Z⋉H′] (Z[Z ⋉ H′] ⊗Z[Z⋉H†] Y†))
≃
−→ H∗(Z⊗Z[Z⋉H′] V)

are isomorphisms, so thatH∗(Z⊗Z[Z⋉H′] V) ∼= H∗(S1;Z). The second homological condition is the
consistency condition, that there is a consistency isomorphism:

ξ′ : H′ ≃
−→ H1(Z[Z] ⊗Z[Z⋉H′] V),

such that the diagram below commutes:

2The top row is a symmetric Poincaré pair by Lemma2.4)
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H ⊕ H†
(j♭,j

†

♭
)

//



 ξ 0
0 ξ†



∼=

��

H′

ξ′∼=

��
H1(Z[Z] ⊗Z[Z⋉H] Y)⊕ H1(Z[Z] ⊗Z[Z⋉H†] Y†)

IdZ[Z] ⊗(j∗,j
†
∗)
// H1(Z[Z] ⊗Z[Z⋉H′] V).

We say that two knots are second order algebraically concordant if their triples are, and we say
that a knot issecond order algebraically sliceor algebraically (1.5)-solvableif it is second order
algebraically concordant to the unknot.

Remark 4.4 In what follows we frequently omit the tensor products when reproducing versions of
the diagram of the triad in Definition4.3, taking as understood that all chain complexes are tensored
so as to be overZ[Z⋉H′] and all homomorphisms act with an identity on theZ[Z⋉H′] component
of the tensor products.

Definition 4.5 The quotient ofP by the relation∼ of Definition4.3is thesecond order algebraic
concordance groupAC2. See Proposition4.7 for the proof that∼ is an equivalence relation and
Proposition4.9for the proof thatAC2 is a group.

Proposition 4.6 Two concordant knotsK andK† are second order algebraically concordant.

We postpone the proof of this result: Proposition4.6 is a corollary of Theorem5.1. See [Pow11,
Proposition 8.6] for a proof of this special case.

Proposition 4.7 The relation∼ of Definition 4.3 is an equivalence relation.

Proof We begin by showing that∼ is well–defined and reflexive: that (H,Y, ξ) ∼ (H%,Y%, ξ%),
where (H,Y, ξ) and (H%,Y%, ξ%) are equivalent in the sense of Definition3.4. This is the
algebraic equivalent of the geometric fact that isotopic knots are concordant. Suppose that we have
an isomorphismω : H → H%, and a chain equivalence of triadsj : Z[Z ⋉ H%] ⊗Z[Z⋉H] Y → Y

%,

such that the relevant square commutes, as in Definition3.4 (see below). To show reflexivity, we
takeH′ := H%, and take (j♭, j♭) = (ω, Id) : H ⊕ H% → H% and (V,Θ) := (Y%,0). We tensor all
chain complexes withZ[Z⋉ H%], which do not already consist ofZ[Z⋉ H%]-modules. We have,
induced byj , an equivalence of symmetric Poincaré pairs:

(jE, jY; k) : (Id⊗η : Z[Z ⋉ H%] ⊗Z[Z⋉H] E → Z[Z ⋉ H%] ⊗Z[Z⋉H] Y) → (η% : E% → Y%),
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wherek: η%jE ∼ jYη is a chain homotopy (see [Ran80, Part I, page 140]). We therefore have the
symmetric triad:

Z[Z ⋉ H%] ⊗Z[Z⋉H] (E, φ)⊕ (E%,−φ%)

(k,0)
∼

(jE,Id) //


 Id⊗η 0

0 η%




��

(E%,0)

η%

��
(Y,Φ)⊕ (Y%,−Φ%)

(jY,Id) // (Y%,0).

The proof of Lemma2.4 shows that this is a symmetric Poincaré triad. Applying the chain
isomorphism̟E% : E% ≃

−→ Z[Z ⋉ H%] ⊗Z[Z⋉H] E to the top right corner produces the triad:

Z[Z ⋉ H%] ⊗Z[Z⋉H] (E, φ)⊕ (E%,−φ%)

(k,0)
∼

(̟E%◦jE,̟E%)
//



 Id⊗η 0
0 η%





��

(Z[Z ⋉ H%] ⊗Z[Z⋉H] E,0)

η%◦(̟E%)−1

��
(Y,Φ)⊕ (Y%,−Φ%)

(jY,Id) // (Y%,0),

as required. The homological conditions are satisfied sincethe mapsj, j† from Definition 4.3 are
chain equivalences and the chain complexV = Y%. The consistency condition is satisfied since the
commutativity of the square

H
ξ

∼= //

ω ∼=

��

H1(Z[Z] ⊗Z[Z⋉H] Y)

j∗ ∼=
��

H%
ξ%

∼= // H1(Z[Z] ⊗Z[Z⋉H%] Y%),

which shows that (H,Y, ξ) and (H%,Y%, ξ%) are equivalent in the sense of Definition3.4, extends
to show that the square

H ⊕ H% (ω,Id) //



 ξ 0
0 ξ%





��

H%

ξ%

��
H1(Z[Z] ⊗Z[Z⋉H] Y)⊕ H1(Z[Z] ⊗Z[Z⋉H] Y%)

(j∗,Id∗) // H1(Z[Z] ⊗Z[Z⋉H′] Y%)

is also commutative. Therefore Definition4.3 is satisfied, so∼ is indeed a reflexive relation. It is
easy to see that∼ is symmetric; we leave the straight-forward check to the reader.

To show transitivity, suppose that (H,Y, ξ) ∼ (H†,Y†, ξ†) using (j♭, j
†
♭) : H ⊕ H† → H′ , and

also that (H†,Y†, ξ†) ∼ (H‡,Y‡, ξ‡), using (j†♭ , j
‡
♭) : H† ⊕ H‡ → H′, so that there is a diagram of
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Z[Z⋉ H′]-module chain complexes:

(E†, φ†)⊕ (E‡,−φ‡)

(γ†,γ‡ )
∼

(Id, ˜̟E‡ )
//


 η† 0

0 η‡




��

(E†,0)

δ

��
(Y†,Φ†)⊕ (Y‡,−Φ‡)

(j†,j‡) // (V,Θ).

In this proof the bar is a notational device and has nothing todo with involutions. To show that

(H,Y, ξ) ∼ (H‡,Y‡, ξ‡), first we must define aZ[Z]-module H′ so that we can tensor everything

with Z[Z ⋉ H′]. We will glue the symmetric Poincaré triads together to show transitivity; first we
must glue together theZ[Z]-modules. Define:

(j♭, j
‡
♭) : H ⊕ H‡ → H′ := coker((j†♭ ,−j†♭) : H† → H′ ⊕H′).

Now, use the inclusions followed by the quotient maps:

H′ → H′ ⊕ H′ → H′ andH′ → H′ ⊕H′ → H′

to take the tensor product of both the 4-dimensional symmetric Poincaŕe triads which show that

(H,Y, ξ) ∼ (H†,Y†, ξ†), and that (H,Y†, ξ†) ∼ (H‡,Y‡, ξ‡), with Z[Z ⋉ H′], so that both contain
chain complexes of modules over the same ringZ[Z ⋉ H′]. Then algebraically gluing the triads
together, as in [Ran81, pages 117–9], we obtain the 4-dimensional symmetric Poincaŕe triad:

(E, φ)⊕ (E‡,−φ‡)

γ=




γ 0
0 0
0 γ‡







Id 0
0 0
0 ˜̟E‡




//


 η 0

0 η‡




��

(E,−0∪φ† 0)

δ=




δ (−1)r−1γ† 0
0 η† 0
0 (−1)r−1γ† δ




��

(Y,Φ)⊕ (Y‡,−Φ‡) 


j 0
0 0
0 j‡




// (V,Θ).

where:
E := C ((̟E† , Id)T : E† → E⊕ E†);

V := C ((j†, j†)T : Y† → V ⊕ V); andΘ := Θ ∪Φ† Θ.
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We need to show that this is equivalent to a triad where the topright term is (E,0). First, to see that
E ≃ E, the chain complex ofE is given by:

E†
2

(
̟E†, ∂E†, Id

)T

// E2⊕ E†
1⊕ E†

2

∂E
2 // E1⊕ E†

0⊕ E†
1

∂E
1 // E0⊕ E†

0,

where:

∂E
2 =




∂E −̟E† 0
0 ∂E† 0
0 − Id ∂E†


 ; and∂E

1 =

(
∂E ̟E† 0
0 Id ∂E†

)
.

It is easy to see that the chain map:

ν ′ :=
(

Id , 0 , −̟E†

)
: Er ⊕ E†

r−1⊕ E†
r → Er ,

is a chain equivalence, with chain homotopy inverse:

ν ′−1 :=
(

Id , 0 , 0
)T

: Er → Er ⊕ E†
r−1⊕ E†

r .

We therefore have the diagram:

(E,0)

δ◦ν′−1

oo

(E, φ)⊕ (E‡,−φ‡)

(
Id,−̟E†◦ ˜̟E‡

)

((




Id 0
0 0
0 ˜̟E‡




//

γ
∼

��

(E,−0∪φ† 0)

≃

ν′

88qqqqqqqqqqqqqqqqqqqqqq

δ

��

k′
∼

(Y,Φ)⊕ (Y‡,−Φ‡) // (V,Θ).

The top triangle commutes, while the bottom triangle commutes up to a chain homotopyk′ : k′ gets
composed withγ to make the new triad. Furthermore,ν ′(−0∪φ† 0)ν ′∗ = 0, so that we indeed have
an equivalent triad with the top right as (E,0).

To complete the proof, we need to see that the consistency condition holds. The follow-
ing commutative diagram has exact columns, the right hand column being part of the Mayer-
Vietoris sequence. The horizontal maps are given by consistency isomorphisms. Recall that
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H′ := coker((j†♭ ,−j†♭) : H† → H′ ⊕ H′). All homology groups in this diagram are taken with
Z[Z]-coefficients.

H†

��

ξ†

∼=
// H1(Y†)

��
H′ ⊕ H′

��

∼=



 ξ′ 0
0 ξ′





// H1(V)⊕ H1(V)

��

H ⊕H‡

ffNNNNNNNNNNNN

xxq q
q
q
q
q
q
q

∼=



 ξ 0
0 ξ‡





// H1(Y)⊕ H1(Y‡)

55kkkkkkkkkkkkkkkk

))R
R

R
R

R
R

R
R

R

H′

��

∼=

ξ′ //____________________________ H1(V)

��
0 0

The diagonal dotted arrows are induced by the diagram, so as to make it commute. The horizontal

dotted arrowH′ → H1(Z[Z]⊗
Z[Z⋉H′]

V) is induced by a diagram chase: the quotient mapH′⊕H′ →

H′ is surjective. We obtain a well–defined isomorphism

ξ′ : H′ ≃
−→ H1(Z[Z] ⊗

Z[Z⋉H′]
V).

The commutativity of the diagram above implies the commutativity of the induced diagram:

H ⊕ H‡ //



 ξ 0
0 ξ‡





��

H′

ξ′

��

H1(Z[Z] ⊗Z[Z⋉H] Y)⊕ H1(Z[Z] ⊗Z[Z⋉H] Y‡) // H1(Z[Z] ⊗Z[Z⋉H′] V).

This completes the proof that∼ is transitive and therefore completes the proof that∼ is an
equivalence relation.

Definition 4.8 Given an element (H,Y, ξ) ∈ P , choose a representative with the boundary given
by the model chain complexes.

(C, ϕ⊕−ϕ)

g
∼

i− //

i+
��

(D−,0)

f−
��

(D+,0)
f+ // (Y,Φ).
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The following is also a symmetric Poincaré triad:

(C,−ϕ⊕ ϕ)

g
∼

i− //

i+
��

(D−,0)

f−
��

(D+,0)
f+ // (Y,−Φ),

which define as the element−Y . This is the algebraic equivalent of changing the orientation of the
ambient space and of the knot simultaneously. The chain equivalence:

ς =

(
0 la

l−1
a 0

)
: Ci → Ci

for i = 0,1 sendsϕ⊕−ϕ to −ϕ⊕ϕ and satisfiesi± ◦ ς = i± . We can therefore define the inverse
−(H,Y, ξ) ∈ P to be the triple (H,−Y, ξ), where−Y is the symmetric Poincaré triad:

(C, ϕ⊕−ϕ)

g◦ς
∼

i− //

i+
��

(D−,0)

f−
��

(D+,0)
f+ // (Y,−Φ).

Summarising, to form an inverse we replaceg with g ◦ ς , and change the sign on the symmetric
structures everywhere but onC in the top left of the triad.

Proposition 4.9 Recall that ({0},YU , Id{0}) is the triple of the unknot, and let(H,Y, ξ) and
(H†,Y†, ξ†) be two triples inP . Then

(H,Y, ξ) ♯ − (H†,Y†, ξ†) ∼ ({0},YU , Id{0})

if and only if (H,Y, ξ) ∼ (H†,Y†, ξ†).

Proof We omit the proof of this result, and instead refer the readerto [Pow11, Proposition 8.10]. It
is hopefully intuitively plausible, given that two knotsK,K† are concordant if and only ifK ♯ −K† is
slice. See Figures1 and2.

Proposition4.9completes the proof that we have defined an abelian group.

5 (1.5)-Solvable Knots are Algebraically(1.5)-Solvable

This section contains the proof of the following theorem.
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(Y,Φ) (D+,0)(D−,0)

(V,Θ)(D−,0) (D+,0)

(D†
−,0) (Y†,−Φ†) (D†

+,0)

(C, ϕ⊕−ϕ)

(C†, ϕ† ⊕−ϕ†)

Figure 1: The cobordism which shows thatY ∼ Y† .

Theorem 5.1 A (1.5)-solvable knot is algebraically(1.5)-solvable.

We begin by recalling the definition of (n)-solubility. We denote the zero framed surgery on a
knot K by MK .

Definition 5.2 [COT03, Definition 1.2] ALagrangianof a symmetric formλ : P× P→ R on a
free R-moduleP is a submoduleL ⊆ P of half-rank on whichλ vanishes.

For n ∈ N0 := N∪{0}, let λn be the equivariant intersection pairing, andµn the self-intersection
form, on the middle dimensional homologyH2(W;Z[π1(W)/π1(W)(n)]) of the covering spaceW(n)

corresponding to the subgroupπ1(W)(n) ≤ π1(W):

λn : H2(W;Z[π1(W)/π1(W)(n)]) × H2(W;Z[π1(W)/π1(W)(n)]) → Z[π1(W)/π1(W)(n)].

An (n)-Lagrangian is a submodule ofH2(W;Z[π1(W)/π1(W)(n)]), on which λn and µn vanish,
which maps via the covering map onto a Lagrangian ofλ0.

We say that a knotK is (n)-solvableif the zero framed surgeryMK bounds a topological spin
4-manifold W such that the inclusion induces an isomorphism on first homology and such thatW
admits two dual (n)-Lagrangians. In this setting, dual means thatλn pairs the two Lagrangians
together non-singularly and their images freely generateH2(W;Z).
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(Y,Φ)

D†
−D−

(V,Θ)D− D†
−

D− D− = YU D−

C

C

D+

D†
+

D†
+

(Y†,−Φ†)

C†

Figure 2: The cobordism which shows thatY ♯ − Y† ∼ YU .

We say thatK is (n.5)-solvable if in addition one of the (n)-Lagrangians is the image of an
(n+ 1)-Lagrangian.

An (n)-solution W is an approximation to a slice disc complement; ifK is slice then it is (n)-
solvable for alln, so if we can obstruct a knot from being (n)- or (n.5)-solvable then in particular
we show that it is not slice.

It is an interesting question (Question1.2) to wonder whether the converse of Theorem5.1holds.
At present,AC2 does not capture the subtle quadratic refinement information, encoded inµ2, which
is part of Definition5.2. Until the construction ofAC2 is improved so as to take the self intersection
form into account it is unlikely that the converse to Theorem5.1 should hold. Perhaps rationally
there is more hope.

The idea of the proof of Theorem5.1 is as follows. The Cappell-Shaneson technique [CS74]
looks for obstructions to being able to perform surgery on a 4-manifold W whose boundary is
the zero framed surgeryMK , in order to excise the secondZ-homology and create a homotopy
slice disc exterior. The main obstruction to being able to dothis surgery is the middle-dimensional
intersection form ofW, as in the Cochran-Orr-Teichner definition of (n)-solubility. However,
even if the Witt class of the intersection form vanishes, with coefficients inZ[π1(W)/π1(W)(2)]
for testing (1.5)-solubility, this does not imply that we have a half basis of the second homology
H2(W;Z[π1(W)/π1(W)(2)]) representable by disjointly embedded spheres, as our data for surgery:
typically the homology classes will be represented as embedded surfaces of non-zero genus, whose
fundamental group maps intoπ1(W)(2). We cannot do surgery on such surfaces.



A Second Order Algebraic Knot Concordance Group 31

However, the conditions on a (1.5)-solution are, as we shall see, precisely the conditions required
for being able to performalgebraic surgery on the chain complexof the (1.5)-solution. The (1.5)-
level algebra cannot see the differences between (2)-surfaces and spheres, so that we can obtain an
algebraic (1.5)-solution V.

In particular, the existence of the dual (1)-Lagrangian allows us to perform algebraic surgery
without changing the first homologyat theZ[Z] level, therefore maintaining the consistency con-
dition. When performing geometric surgery on a 4-manifoldW along a 2-sphere, we remove
S2 × D2 and glue inD3 × S1. Removing the thickeningD2 potentially creates new elements of
H1(W;Z[Z]). However, the existence of a dual surface to theS2 which we remove guarantees that
the boundaryS1 of the thickeningD2 bounds a surface on the other side, so that we do not create
extra 1-homology. This phenomenon will also be seen when performing algebraic surgery; as ever,
the degree of verisimilitude provided by the chain level approach is somewhat remarkable.

Definition 5.3 An n-dimensional symmetric complex (C, ϕ ∈ Qn(C, ε)) isconnectedif H0(ϕ0 : Cn−∗ →

C∗) = 0. An n-dimensional symmetric pair (f : C → D, (δϕ, ϕ) ∈ Qn(f , ε)) is connectedif
H0((δϕ0, ϕ0f ∗)T : Dn−∗ → C (f )∗) = 0.

Definition 5.4 [Ran80, Part I, page 145] Given a connectedn-dimensional symmetric chain com-
plex over a ringA, (C, ϕ ∈ Qn(C, ε)), an algebraic surgeryon (C, ϕ) takes as data a connected
(n+ 1)-dimensional symmetric pair:

(f : C→ D, (δϕ, ϕ) ∈ Qn+1(f , ε)).

The output, or effect, of the algebraic surgery is the connected n-dimensional symmetric chain
complex overA, (C′, ϕ′ ∈ Qn(C′, ε)), given by:

dC′ =




dC 0 (−1)n+1ϕ0f ∗

(−1)r f dD (−1)rδϕ0

0 0 (−1)rδD


 :

C′
r = Cr ⊕ Dr+1⊕ Dn−r+1→ C′

r−1 = Cr−1⊕ Dr ⊕ Dn−r+2,

with the symmetric structure given by:

ϕ′
0 =




ϕ0 0 0
(−1)n−r fTεϕ1 (−1)n−rTεδϕ1 (−1)r(n−r)ε

0 1 0


 :

C′n−r
= Cn−r ⊕ Dn−r+1⊕ Dr+1→ C′

r = Cr ⊕ Dr+1⊕ Dn−r+1; and

ϕ′
s =




ϕs 0 0
(−1)n−r fTεϕs+1 (−1)n−rTεδϕs+1 0

0 0 0


 :

C′n−r+s
= Cn−r+s⊕ Dn−r+s+1⊕ Dr−s+1→ C′

r = Cr ⊕ Dr+1⊕ Dn−r+1
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for s≥ 1.

The reader can check thatd2
C′ = 0 and that{ϕ′

s} ∈ Qn(C′, ε). Algebraic surgery on a chain
complex which is symmetric but not Poincaré preserves the homotopy type of the boundary: see
[Ran80, Part I, Proposition 4.1 (i)] for the proof.

Definition 5.5 The suspension morphism Son chain complexes raises the degree: (SC)r =

Cr−1; dSC = dC .

Proof of Theorem 5.1 We need to show that the triple (HK ,YK , ξK) of a (1.5)-solvable knotK ,
with a (1.5)-solutionW, is equivalent to the identity element ofAC2, which is represented by the
triple ({0},YU , Id{0}) corresponding to the unknot.

The chain complexNK := EK ∪EK⊕EU YK ⊕ YU is chain equivalent to the chain complex
C∗(MK ;Z[Z ⋉ H1(MK ;Z[Z])]) of the second derived cover of the zero framed surgery onK . Our
first attempt for a chain complex which fits into a 4-dimensional symmetric Poincaré triad as required
in Definition 4.3 is the chain complex of the second derived cover of the (1.5) solutionW

(V′,Θ′) := (C∗(W;Z[Z ⋉ H1(W;Z[Z])]) , \∆([W,MK ])),

so that
H′ := π1(W)(1)/π1(W)(2) ≃

−→ H1(W;Z[Z]),

and we have the triad:

(EK , φK)⊕ (EU,−φU)

(γK ,γU )
∼

(Id,Id⊗̟EK )
//



 ηK 0
0 ηU





��

(EK ,0)

δ

��
(YK ,ΦK)⊕ (YU,−ΦU)

(jK ,jU) // (V′,Θ′),

with a geometrically defined consistency isomorphism

H′ ≃
−→ H1(W;Z[Z]) = H1(Z[Z] ⊗Z[Z⋉H′] V).

The problem is thatH2(W;Z) is typically non-zero: if it were zero, we would have our topological
concordance exterior and in particularK would be second order algebraically slice. We therefore
need, as indicated above, to perform algebraic surgery onV′ to transform it into aZ-homology
circle. We form the algebraic Thom complex (Definition2.1):

C∗(W,MK;Z[Z ⋉ H′]) ≃ V := C ((δ, (−1)r−1γK , (−1)r−1γU,−jK ,−jU) :

(NK)r = EK
r ⊕ EK

r−1⊕ EU
r−1⊕ YK

r ⊕ YU
r → V′

r),

with symmetric structureΘ := Θ′/(0 ∪φK⊕−φU ΦK ⊕ −ΦU). In this section the bar is again a
notational device and has nothing to do with involutions.
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This gives us the input for surgery, since the input for algebraic surgery must be a symmetric
chain complex. Next, we need the data for surgery.

As in the proof of [COT03, Proposition 4.3], any compact topological 4-manifold hasthe homotopy
type of a finite simplicial complex: see [KS77, Annex B III, page 301]. In particular this means that
H2(W;Z) is finitely generated. We therefore have homology classesl′1, . . . , l

′
k ∈ H2(W;Z[Z⋉ H′])

which generate the (2)-Lagrangian whose existence is guaranteed by definition of a (1.5)-solution
W. There are therefore dual cohomology classesl1, . . . , lk ∈ H2(W,MK ;Z[Z ⋉ H′]), by Poincaŕe-
Lefschetz duality. Taking cochain representatives for these, we have mapsl i : V2→ Z[Z⋉H′]. We
then take as our data for algebraic surgery the symmetric pair:

(f : V → B := S2(
⊕

k

Z[Z ⋉ H′]), (0,Θ)),

where

f = (l1, . . . , lk)
T : V2→ B2 =

⊕

k

Z[Z ⋉ H′].

The fact that thel i are cohomology classes means thatl idV = 0, so that f is a chain map.
The requirement that thel′i generate a submodule ofH2(W;Z[Z ⋉ H′]) = H2(V′) on which the
intersection form vanishes means that the dualsl i generate a submodule ofH2(V) on which the cup
product vanishes. The cup product of any twol i , l j is given by:

∆
∗
0(l i ⊗ l j)([W,MK ]) = (l i ⊗ l j)(∆0([W,MK ])) = (l i ⊗ l j)Θ0,

which under the slant isomorphism isl iΘ0l∗j , and so we see that each of these composites vanishes.

The only possibility for non-zero symmetric structure in the data for surgery would arise when
s = n− 2r − 1 = 4− 2 · 2− 1 = −1, so no such non-zero structure maps exist. Therefore the
condition for our data for surgery to be a symmetric pair is that f Θ0f

∗
= 0; which is the condition

that thek × k matrix with (i, j)th entry l iΘ0l∗j , is zero. This is satisfied as we saw above, since
l iΘ0l∗j : Z[Z ⋉ H′] → Z[Z ⋉ H′] is a module homomorphism given by multiplication by the same
group ring element as the evaluation on the relative fundamental class [W,MK ] of the cup product
of two cohomology classes dual to the (2)-Lagrangian, and soequals the value ofλ2(l′i , l

′
j ). This

means that we can proceed with the operation of algebraic surgery to form the symmetric chain
complex (V,Θ), which is the effect of algebraic surgery, shown below. We may assume, sinceW is
a 4-manifold with boundary, that we have a chain complexV′ whose non-zero terms areV′

0,V
′
1,V

′
2

andV′
3. The non-zero terms inV will therefore be of degree less than or equal to four.
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The output of algebraic surgery, which we denote as (V,Θ) is then given, from Definition5.4, by:

V0



 d∗
V
0





//

(
Θ0

)

��

V1
⊕ B2

(
d∗

V
f
∗ )

//



 Θ0 0
0 1





��

V2



 d∗
V

−f Θ
∗
0





//

(
Θ0

)

��

V3
⊕ B2

(
d∗

V
0

)

//


 Θ0 0
−fTΘ1 −1




��

V4

(
Θ0

)

��
V4

 dV

0





// V3⊕ B2(
dV −Θ0 f

∗ )// V2 

 dV

f





// V1⊕ B2 (
dV 0

) // V0.

The higher symmetric structuresΘs are just given by the mapsΘs for s= 1,2,3,4 except for the
map:

Θ1 =
(
Θ1 , −f TΘ2

)T
: V4
→ V1⊕ B2.

Next, we take the algebraic Poincaré thickening (Definition2.1) of V to get:

iV : ∂V → V4−∗,

where, as in Section2, we define the complexV4−∗ by:

(V4−∗)r = HomZ[Z⋉H′](V4−r ,Z[Z ⋉ H′]),

with boundary maps∂∗ : (V4−∗)r+1 → (V4−∗)r given by ∂∗ = (−1)r+1d∗V, where d∗V is the
coboundary map. By [Ran80, Part I, Proposition 4.1 (i)], the operation of algebraic surgery does
not change the homotopy type of the boundary. There is therefore a chain equivalence:

(NK ,0∪φK⊕−φU Φ
K ⊕−ΦU)

∼
−→ (∂V, ∂Θ),

so that using the composition of the relevant maps in:

NK = EK ∪EK⊕EU YK ⊕ YU ∼
−→ ∂V → V4−∗

we again have a 4-dimensional symmetric Poincaré triad:

(EK , φK)⊕ (EU,−φU)

∼

//

��

(EK ,0)

��
(YK ,ΦK)⊕ (YU,−ΦU) // (V4−∗,0).
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To complete the proof we need to check the homology conditions of Definition4.3, namely that
V4−∗ has theZ-homology of a circle and the consistency condition that there is an isomorphism
ξ′ : H′ ≃

−→ H1(Z[Z] ⊗Z[Z⋉H′] V4−∗). We have:

H4(Z⊗Z[Z⋉H′] V4−∗) ∼= H0(Z⊗Z[Z⋉H′] V) ∼= H0(W,MK ;Z) ∼= H4(W;Z) ∼= 0, and

H0(Z⊗Z[Z⋉H′] V4−∗) ∼= H4(Z⊗Z[Z⋉H′] V) ∼= H4(W,MK ;Z) ∼= H0(W;Z) ∼= Z,

as required. For each basis element (0, . . . ,0,1,0, . . . ,0) ∈ B2, where the 1 is in thei th entry, we
have, forv ∈ V2,

f
∗
(0, . . . ,0,1,0, . . . ,0)(v) = (0, . . . ,0,1,0, . . . ,0)f (v)

= (0, . . . ,0,1,0, . . . ,0)(l1, . . . , lk)T(v) = l i(v).

This means, since nol i lies in the image ofd∗
V

: V1
→ V2, that the kernel ker((d∗

V
, f

∗
) : V1

⊕B2→ V2)

is isomorphic to ker(d∗
V

: V1
→ V2), so that:

H3(Z⊗Z[Z⋉H′] V4−∗) ∼= H1(Z⊗Z[Z⋉H′] V) ∼= H1(W,MK ;Z) ∼= 0.

Also, since thel i are in the image off
∗
, they are no longer cohomology classes ofV4−∗ as they

were ofV .

At this point we need the dual classes; recall that we have, from Definition5.2, classesd′1, . . . ,d
′
k ∈

H2(W;Z[Z]), whose images inH2(W;Z) we also denote byd′1, . . . ,d
′
k , which satisfyλ1(l′i ,d

′
j ) = δij .

We therefore have, by Poincaré–Lefschetz duality, classes:

d1, . . . ,dk ∈ H2(W,MK ;Z[Z]),

with representative cochains which we also denoted1, . . . ,dk ∈ V2.

Since, as above, the intersection form is defined in terms of the cup product, we have, overZ[Z]
andZ, that:

l iΘ
∗
0d∗j = δij .

We can useΘ
∗
0 = TΘ0 instead ofΘ0 to calculate the cup products due to the existence of the higher

symmetric structure chain homotopyΘ1. Then

−f Θ
∗
0(dj) = −f Θ

∗
0d∗j (1) = −(l1Θ

∗
0d∗j (1), . . . , lkΘ

∗
0d∗j (1))T

= −(0, . . . ,0,1,0, . . . ,0)T = −ej ,

where the 1 is in thej th position, and forj = 1, . . . , k we denote the standard basis vectors by
ej := (0, . . . ,0,1,0, . . . ,0)T ∈ B2. This means that thedj are not in the kernel of−fΘ

∗
0 . Then,

since d∗
V
(dj) = 0 as thedj are cocycles inV , we know that thedj are no longer cohomology

classes inH2(Z ⊗Z[Z⋉H′] V4−∗). The groupH2(Z ⊗Z[Z⋉H′] V) was generated by the classes
l1, . . . , lk,d1, . . . ,dk , which means that we now haveH2(Z⊗Z[Z⋉H′] V4−∗) ∼= 0.
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Moreover, over bothZ[Z] and Z, taking the elementD :=
∑k

i=1 ajdj , for any elements
a1, . . . ,ak ∈ Z[Z], we have that:

−f Θ
∗
0(−D) =

k∑

j=1

aj(f Θ
∗
0d∗j (1)) =

k∑

j=1

ajej ∈ B2.

This means that−f Θ
∗
0 is ontoB2. Therefore:

H1(Z⊗Z[Z⋉H′] V4−∗) ∼= H3(Z⊗Z[Z⋉H′] V) ∼= H3(W,MK ;Z) ∼= H1(W;Z) ∼= Z,

so the first homology remains unchanged at theZ level as required. Similarly, withZ[Z] coefficients,
we have the isomorphisms:

H′ ≃
−→ H1(W;Z[Z])

≃
−→ H3(W,MK ;Z[Z])

≃
−→ H3(Z[Z] ⊗Z[Z⋉H′] V)

≃
−→ H1(Z[Z] ⊗Z[Z⋉H′] V4−∗),

which define the map
ξ′ : H′ ≃

−→ H1(Z[Z] ⊗Z[Z⋉H′] V4−∗),

so that the consistency condition is satisfied. SinceH′ is isomorphic to theZ[Z]-homology
of a finitely generated projective module chain complex which is a Z-homology circle, we can
apply Levine’s arguments [Lev77, Propositions 1.1 and 1.2], to see thatH′ is of type K . This
completes the proof that (1.5)-solvable knots are second order algebraically slice, oralgebraically
(1.5)-solvable.

Theorem5.1shows that the homomorphism fromC to AC2 factors throughF(1.5) as claimed.

6 Extracting first order obstructions

In this section we obtain a surjective homomorphism fromAC2 to Levine’s algebraic concordance
groupAC1. In itself this is an important property which a respectablenotion of a second order
concordance group ought to have; moreover, this is the first step in defining the Cochran-Orr-Teichner
obstructions algebraically.

We give the definition ofAC1 in terms of Blanchfield forms. For proofs of its equivalence to the
standard definition in terms of Seifert forms, see [Kea75] and [Ran03].

Definition 6.1 TheBlanchfield form[Bla57] of a knotK is the non-singular Hermitian sesquilinear
pairing

Bl : H1(MK ;Z[Z]) × H1(MK ;Z[Z]) → Q(Z)/Z[Z] = Q(t)/Z[t, t−1]



A Second Order Algebraic Knot Concordance Group 37

adjoint to the sequence of isomorphisms

H1(MK ;Z[Z])
≃
−→ H2(MK ;Z[Z])

≃
−→ H1(MK ;Q(Z)/Z[Z])

≃
−→ HomZ[Z](H1(MK ;Z[Z]),

Q(Z)
Z[Z]

),

given by Poincaŕe duality, the inverse of a Bockstein homomorphism and the universal coefficient
spectral sequence (see [Lev77]).

We say that a Blanchfield form ismetabolic if it has a metaboliser. Ametaboliserfor the
Blanchfield form is a submoduleP⊆ H1(MK ;Z[Z]) such that:

P = P⊥ := {v ∈ H1(MK ;Z[Z]) | Bl(v,w) = 0 for all w ∈ P}.

Definition 6.2 The algebraic concordance group, first defined in [Lev69] and which we denote
AC1, is defined as follows. A Blanchfield form [Bla57] is an AlexanderZ[Z]-moduleH (Theorem
3.1) with a Z[Z]-module isomorphism:

Bl : H
≃
−→ H∧ := HomZ[Z](H,Q(Z)/Z[Z]),

which satisfies Bl= Bl∧ . We define the Witt group of equivalence classes of Blanchfield forms,
with addition by direct sum and the inverse of (H,Bl) given by (H,−Bl). We call an element
(H,Bl) metabolic if there exists a metaboliserP⊆ H such thatP = P⊥ with respect to Bl. We say
that (H,Bl) is equivalent to (H′,Bl ′) if (H ⊕ H′,Bl⊕ − Bl′) is metabolic. Lemma6.3 states the
rational version of the fact that this is transitive and is therefore an equivalence relation. The integral
version is harder, but follows from the proof (see e.g. [Ran03, Theorems 3.10 and 4.2]) of the fact
that the Witt group of Seifert forms and the Witt group of Blanchfield forms are isomorphic.

We only prove the rational version of the following lemma, since this is what we will need
in Proposition7.5 to see that the equivalence relation used to defineCOT (C/1.5) is transitive. In
particular, in the proof of Proposition7.5, we will need an explicit description of the new metaboliser,
as provided by Lemma6.3.

The proof given is, in the author’s opinion, the correct way to prove such a statement, since it
shows most clearly the correspondence of the algebra to the underlying geometry.

Lemma 6.3 Let (H,Bl) and(H′,Bl ′) be rational Blanchfield forms. Suppose that(H⊕H′,Bl⊕Bl′)
is metabolic with metaboliserP = P⊥ ⊆ H ⊕ H′ , and that(H′,Bl′) is metabolic with metaboliser
Q = Q⊥ ⊆ H′ . Then(H,Bl) is also metabolic, and a metaboliser is given by

R := {h ∈ H | ∃ q ∈ Q with (h,q) ∈ P} ⊆ H.
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Proof A Blanchfield form is the same as a 0-dimensional symmetric Poincaŕe complex in the
category of finitely generatedQ[t, t−1]-modules with 1− t acting as an automorphism. By [Ran81,
Propositions 3.2.2 and 3.4.5 (ii)], a metaboliserP for a Blanchfield form (H,Bl) is the same as a
1-dimensional symmetric Poincaré pair

(f : C→ D, (0,Bl∧)),

whereC = S0H∧ andD = S0P∧ , in the category of finitely generatedQ[t, t−1]-modules with 1− t
acting as an automorphism. This is an algebraic null–cobordism of (H∧,Bl∧). Let

(
g
g′

)
: P→ H ⊕ H′ andh: Q→ H′

be the inclusions of the metabolisers. We therefore have symmetric Poincaŕe pairs:

(
(

g∧ g′∧
)

: H∧ ⊕ H′∧ → P∧
= D0, (0,Bl∧⊕Bl′∧))

and
(h∧ : H′∧ → Q∧

= D′
0, (0,−Bl ′∧)).

We have introduced a minus sign in front of Bl′∧ , so that we can glue the two algebraic cobordisms
together alongH′∧ to yield another algebraic cobordism:

H′∧ = D′′
1



 g′∧

h∧





��
H∧ = C0


 g∧

0




// P∧ ⊕Q∧ = D′′
0.

From this we deduce that:
R := im

(
H0(D′′)→ H0(C)

)

is a metaboliser for Bl∧ : H0(C) = H∧∧×H∧∧ → Q(t)/Q[t, t−1], where the over–line indicates the
use of the involution. Since the identificationH∧∧ ∼= H involves an involution, we have that

R= R= im
( (

g 0
)

: ker
( (

g′ h
)

: P⊕Q→ H′
)
→ H

)
,

is a metaboliser for Bl. Finally, this is indeed equal to

{h ∈ H | ∃ q ∈ Q with (h,q) ∈ P},

as required.

To define the mapAC2 → AC1, we begin by taking an element (H,Y, ξ) ∈ AC2, and forming
the algebraic equivalent of the zero surgeryMK . Recall that we denote the triple associated to the
unknot by ({0},YU , Id{0}). We construct the symmetric Poincaré complex:

(N, θ) := ((Y⊕ (Z[Z ⋉ H] ⊗Z[Z] YU)) ∪E⊕(Z[Z⋉H]⊗Z[Z]EU) E, (Φ ⊕ 0)∪φ⊕−φU 0).
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In the case thatY = YK is the fundamental symmetric Poincaré triad of a knotK , we have that
N = NK ≃ C∗(MK ;Z[Z ⋉ H]). The key observation is that the Blanchfield form can be defined
purely in terms of the symmetric Poincaré complex (Z[Z] ⊗Z[Z⋉H] N, Id⊗θ).

In the following, recall the standard notation

(Z[Z] ⊗Z[Z⋉H] N)i
= HomZ[Z](Z[Z] ⊗Z[Z⋉H] Ni,Z[Z]).

Proposition 6.4 Given [x], [y] ∈ H1(Z[Z] ⊗Z[Z⋉H] N), the rational Blanchfield pairing of[x] and
[y] is given by:

Bl([x], [y]) =
1
s
z(x)

where:

x, y ∈ (Z[Z] ⊗Z[Z⋉H] N)1, z∈ (Z[Z] ⊗Z[Z⋉H] N)1;

∂∗(z) = sθ′0(y) for somes∈ Z[Z] − {0},

and

θ′0 : (Z[Z] ⊗Z[Z⋉H] N)1→ (Z[Z] ⊗Z[Z⋉H] N)2

is part of a chain homotopy inverse

θ′0 : (Z[Z] ⊗Z[Z⋉H] N)r → (Z[Z] ⊗Z[Z⋉H] N)3−r ,

so that

θ0 ◦ θ
′
0 ≃ Id, θ′0 ◦ θ0 ≃ Id .

The Blanchfield pairing is non-singular, sesquilinear and Hermitian.

We omit the proof, since it is long but essentially comprisesstraight-forward computations. See
[Pow11, Proposition 10.2].

Proposition 6.5 There is a surjective homomorphismAC2 → AC1, which makes following dia-
gram commute:

C //

����

AC2

����
C/F(0.5)

≃ //

66nnnnnnnnnnnnn
AC1.

The bottom map is an isomorphism: see [COT03, Remark 1.3.2].
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Proof Given an element (H,Y, ξ) ∈ AC2, we can find the Blanchfield form on theZ[Z]-module:

Bl : H1(Z[Z] ⊗Z[Z⋉H] N)× H1(Z[Z] ⊗Z[Z⋉H] N)→ Q(Z)/Z[Z],

as in Proposition6.4. To see that addition commutes with the mapAC2 → AC1, note that the
Alexander modules add as in Proposition2.6. The symmetric structures also have no mixing
between the chain complexes ofY and Y† in the formulae in Definition3.7, so that, noting that
there is a Mayer–Vietoris sequence isomorphismH1(Z[Z] ⊗Z[Z⋉H] Y)

≃
−→ H1(Z[Z] ⊗Z[Z⋉H] N),

the Blanchfield form of a connected sum inAC2 is the direct sum of the two Blanchfield forms
in the Witt group. Surjectivity follows from the fact (see [Lev77]) that every Blanchfield form is
realised as the Blanchfield form of a knot, and therefore as the Blanchfield form of the fundamental
symmetric Poincaré triad of a knot.

We will show the following, which we state as a separate result, and prove after the rest of the
proof of Proposition6.5:

Theorem 6.6 For triple (H,Y, ξ) ∈ AC2 which is second order algebraically concordant to the
unknot, via a 4-dimensional symmetric Poincaré pair:

(j : Z[Z ⋉ H′] ⊗Z[Z⋉H] N→ V, (Θ, θ)),

if we define:

P := ker(j∗ : H1(Q[Z] ⊗Z[Z⋉H′] Z[Z ⋉ H′] ⊗Z[Z⋉H] N)→ H1(Q[Z] ⊗Z[Z⋉H′] V)),

thenP is a metaboliser for the rational Blanchfield form onH1(Q[Z] ⊗Z[Z⋉H] N).

Before proving Theorem6.6, we will first show how it implies Proposition6.5. The Witt group
of rational Blanchfield forms is defined as in Definitions6.1 and6.2 and Proposition6.4, but with
the coefficient ringZ replaced byQ. Now recall that the Witt group of integral Blanchfield forms
injects into the Witt group of rational Blanchfield forms. Tosee this, first note that:

H1(Z[Z] ⊗Z[Z⋉H] N) ֌ H1(Q[Z] ⊗Z[Z⋉H] N) ∼= Q⊗Z H1(Z[Z] ⊗Z[Z⋉H] N).

The first map is an injection sinceH1(Z[Z] ⊗Z[Z⋉H] N) is Z-torsion free (Theorem3.1), while the
second map is an isomorphism asQ is flat as aZ-module. Then suppose that we have a metaboliser
PQ for the rational Blanchfield form. This restricts to a metaboliser

PZ := PQ ∩ (Z⊗Z H1(Z[Z] ⊗Z[Z⋉H] N))

for the integral Blanchfield form, since the calculation, restricted to the image ofH1(Z[Z]⊗Z[Z⋉H]N),
is the same for the two forms. The symmetric structure map in the rational case is just the integral
map tensored up with the rationals; (θ′0)Q = IdQ⊗Z(θ′0)Z .

Therefore, the only place that the two calculations could differ is if one tooks∈ Q[Z] \ Z[Z] or
z∈ (Q[Z]⊗Z[Z⋉H] N)1\(Z[Z]⊗Z[Z⋉H] N)1. Note that we can consider (Z[Z]⊗Z[Z⋉H] N)1 as a subset
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of (Q[Z]⊗Z[Z⋉H]N)1 sinceQ[Z]⊗Z[Z⋉H]N ∼= Q⊗ZZ[Z]⊗Z[Z⋉H]N, andQ[Z] ∼= Q⊗ZZ[Z]. In the
cases that such ans or such az are chosen, we can clear denominators in the equation∂∗(z) = sθ′0(y)
to get ∂∗(nz) = nsθ′0(y), for somen ∈ Z, so that nowns ∈ Z[Z] and nz ∈ (Z[Z] ⊗Z[Z⋉H] N)1 .
Then:

1
ns

(nz)(x) =
n
ns

z(x) =
1
s

z(x),

which is the same outcome. By Theorem6.6, second order algebraically slice triples map to
metabolic rational Blanchfield forms, which we have now seenrestrict to metabolic integral Blanch-
field forms. By applying Proposition4.9, we see that we have a well–defined homomorphism as
claimed. This completes the proof of Proposition6.5, modulo Theorem6.6.

Next, we will prove Theorem6.6. This theorem is an algebraic reworking of [COT03, Theo-
rem 4.4], which we state here (forn = 1).

Theorem 6.7 ([COT03] Theorem 4.4) SupposeMK is (1)-solvable viaW. Then the rational
Blanchfield form ofMK is metabolic, and in fact if we define:

P := ker(i∗ : H1(MK ;Q[Z]) → H1(W;Q[Z])),

thenP = P⊥ with respect toBl .

In Section8, Theorem6.6 will be crucial for the control which the Blanchfield form provides
on which 1-cycles ofQ[Z] ⊗Z[Z⋉H] N bound in some 4-dimensional pair, which in turn controls
which representations extend over putative algebraic slice disc exteriors. The proof will require
the following proposition (6.10) of [COT03]. Since we will also require the use of Proposition
6.10 when extracting the Cochran-Orr-Teichner obstructions, we give the statement here in the
non–commutative setting, even though this is not required for the proof of Theorem6.6. Before we
can do this, we need two definitions.

Definition 6.8 A Poly–Torsion–Free–Abelian, or PTFA, groupΓ is a group which admits a finite
sequence of normal subgroups{1} = Γ0 ⊳ Γ1 ⊳ ... ⊳ Γk = Γ such that the successive quotients
Γi+1/Γi are torsion-free abelian for eachi ≥ 0.

Definition 6.9 TheOre conditiondetermines whether a multiplicative subsetSof a non-commutative
ring without zero-divisors can be formally inverted. A ringA satisfies the Ore condition if, given
s∈ S anda ∈ A, there existst ∈ S andb ∈ A such thatat = sb. Then the Ore localisationS−1A
exists. IfS= A−{0} thenS−1A is a skew-field which we denote byK(A), or sometimes justK if
A is understood.
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Note that if A = Z[Z], thenK(A) = Q(Z). The rational group ring of a PTFA group satisfies
the Ore condition [COT03, Proposition 2.5]. See [Ste75, Chapter 2] for more details on the Ore
condition, such as for the fact that the Ore localisationK(A) is flat as a module overA.

Proposition 6.10 [COT03, Proposition 2.10] LetΓ be a PTFA group. IfC∗ is a nonnegative chain
complex overQΓ which is finitely generated projective in dimensions0 ≤ i ≤ n and such that
Hi(Q⊗QΓ C∗) ∼= 0 for 0≤ i ≤ n, thenHi(K ⊗QΓ C∗) ∼= 0.

The statement of [COT03, Proposition 2.10] is made with the hypothesis that the chain complex
is finitely generated free. We note that the statement can be relaxed toC being a finitely generated
projective module chain complex, since this still allows the lifting of the partial chain homotopies.

Proof of Theorem 6.6 A large part of this proof can be carried over verbatim from the proof of
[COT03, Theorem 4.4], subject to a manifold–chain complex dictionary, as follows. The homology
of MK with coefficients in a ringR should be replaced with the homology of:R⊗Z[Z⋉H] N;
the (co)homology ofW with coefficients inR should be replaced with the (co)homology of:
R⊗Z[Z⋉H′] V; and the homology of the pair (W,MK) with coefficients inR should be replaced with
the homology of:

R⊗Z[Z⋉H′] C (j : Z[Z ⋉ H′] ⊗Z[Z⋉H] N→ V).

To complete the proof we need to show that:

(i) The relative linking pairingsβrel are non-singular. This will follow from the argument in
the proof of [COT03, Theorem 4.4] once we show, for an algebraic (1.5)-solution V ,
that H∗(Q(Z) ⊗Z[Z⋉H′] V) ∼= 0. Note that this also implies by universal coefficients that
H∗(Q(Z)⊗Z[Z⋉H′] V) ∼= 0, and thatH∗(Q[Z] ⊗Z[Z⋉H′] V) is torsion, sinceQ(Z) is flat over
Q[Z].

(ii) The sequence

TH2(Q[Z] ⊗Z[Z⋉H′] C (j))
∂
−→ H1(Q[Z] ⊗Z[Z⋉H] N)

j∗
−→ H1(Q[Z] ⊗Z[Z⋉H′] V)

is exact.

To prove (i) we apply Proposition6.10to the chain complex

Q[Z] ⊗Z[Z⋉H′] C (j ◦ f− : Z[Z ⋉ H′] ⊗Z[Z⋉H] D− → V).

Sincej ◦ f− induces isomorphisms on rational homology, the relative homology groups vanish:

H∗(Q ⊗Q[Z] Q[Z] ⊗Z[Z⋉H′] C (j ◦ f−)) ∼= 0.

Proposition6.10then says that:

H∗(Q(Z)⊗Q[Z] Q[Z] ⊗Z[Z⋉H′] C (j ◦ f−)) ∼= 0,
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which implies the second isomorphism of:

H∗(Q(Z)⊗Z[Z⋉H′] V) ∼= H∗(Q(Z)⊗Q[Z] Q[Z] ⊗Z[Z⋉H′] V)
∼= H∗(Q(Z)⊗Q[Z] Q[Z] ⊗Z[Z⋉H] D−).

Then sinceQ(Z) ⊗Z[Z⋉H] D− is given by the contractible chain complexQ(t)
t−1
−−→ Q(t), we see

that H∗(Q(Z)⊗Z[Z⋉H′] V) ∼= 0.

The definitions of the relative linking pairings can be made purely algebraically using chain
complexes, using the corresponding sequences of isomorphisms:

TH2(Q[Z] ⊗Z[Z⋉H′] C (j))
≃
−→ TH2(Q[Z] ⊗Z[Z⋉H′] V)

≃
−→

H1(Q(Z)/Q[Z] ⊗Z[Z⋉H′] V)
≃
−→ HomQ[Z](H1(Q[Z] ⊗Z[Z⋉H′] V),Q(Z)/Q[Z]);

and

TH1(Q[Z] ⊗Z[Z⋉H′] V)
≃
−→ TH3(Q[Z] ⊗Z[Z⋉H′] V)

≃
−→

H2(Q(Z)/Q[Z] ⊗Z[Z⋉H′] V)
≃
−→ HomQ[Z](H2(Q[Z] ⊗Z[Z⋉H′] V),Q(Z)/Q[Z]).

There are also explicit chain level formulae for the pairings βrel in a similar vein to that for Bl in
Proposition6.4; for us, the important point is that the above maps are indeedisomorphisms.

To prove (ii), we show that in factH2(Q[Z] ⊗Z[Z⋉H′] C (j)) is entirely torsion. This follows from
the long exact sequence of the pair

IdQ(Z)⊗j : Q(Z)⊗Z[Z⋉H] N→ Q(Z)⊗Z[Z⋉H′] V.

We have the following excerpt:

H2(Q(Z)⊗Z[Z⋉H′] V)→ H2(Q(Z)⊗Z[Z⋉H′] C (j))→ H1(Q(Z)⊗Z[Z⋉H] N).

We have already seen in (i) thatH2(Q(Z)⊗Z[Z⋉H′] V) ∼= 0. We claim that

H1(Q(Z)⊗Z[Z⋉H] N) ∼= 0,

which then implies by exactness that the central moduleH2(Q(Z)⊗Z[Z⋉H′] C (j)) is also zero. Then
note, sinceQ(Z) is flat overQ[Z], that

H2(Q(Z)⊗Z[Z⋉H′] C (j)) ∼= Q(Z)⊗Q[Z] H2(Q[Z] ⊗Z[Z⋉H′] C (j)).

That this last module vanishes means thatH2(Q[Z]⊗Z[Z⋉H′] C (j)) is Q[Z]-torsion. To see the claim
that H1(Q(Z)⊗Z[Z⋉H] N) ∼= 0, recall that:

H1(Q[Z] ⊗Z[Z⋉H] N) ∼= H1(Q[Z] ⊗Z[Z⋉H] Y) ∼= Q⊗Z H1(Z[Z] ⊗Z[Z⋉H] Y) ∼= Q⊗Z H,

and that an Alexander moduleH is Z[Z]-torsion, so that theQ[Z]-moduleQ⊗ZH is Q[Z]-torsion.
This completes the proof of (ii); and therefore completes the proof of all the points that the chain
complex argument for Theorem6.6is not directly analogous to the geometric argument in the proof
of [COT03, Theorem 4.4], completing the present proof and therefore also the proof of Proposition
6.5.
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7 The Cochran-Orr-Teichner obstruction theory

Before explaining how to extract the Cochran-Orr-Teichnerobstructions, first we need to define
them. In this section we not only define but also repackage theCochran-Orr-Teichner metabelian
obstructions, to put them into a single pointed set, which wedenoteCOT (C/1.5). This construction
involves taking large disjoint unions over all of the possible choices which are implicit in defining the
Cochran-Orr-Teichner obstructions. By contrast, the construction ofAC2 is significantly simpler,
as well as having the advantage of being a group.

Cochran-Orr-Teichner [COT03] use their obstruction theory to detect that certain knots are not
(1.5)- and (2.5)-solvable. In [CT07] it is shown that certain knots are (n)-solvable but not (n.5)-
solvable for anyn ∈ N0. We focus on the (1.5)-level obstructions for this exposition. Following
[Let00], who worked on the metabelian case, Cochran-Orr-Teichnerdefine representations of the fun-
damental group of the zero framed surgeryρ : π1(MK)→ Γ, whereΓ = Γ1 := Z⋉Q(t)/Q[t, t−1],
their universally (1)-solvable group. To define the semi-direct product inΓ, n ∈ Z acts by left
multiplication by tn. The representation:

ρ : π1(MK)→ π1(MK)/π1(MK)(2)→ Z ⋉ H1(MK ;Q[t, t−1]) → Z ⋉Q(t)/Q[t, t−1]

is given by: g 7→ (n := φ(g),h := gt−φ(g)) 7→ (n,Bl(p,h)), where φ : π1(MK) → Z is the
abelianisation homomorphism andt is a preferred meridian inπ1(MK), the pairing Bl is the
Blanchfield form, andp is an element ofH1(MK ;Q[t, t−1]).

Now suppose that there is (1)-solutionW. As in Theorem6.7, define

P := ker(i∗ : H1(MK ;Q[Z]) → H1(W;Q[Z])).

Then for eachp ∈ P, by [COT03, Theorem 3.6], we have a representationρ̃ : π1(W) → Γ, which
enables us to define the intersection form:

λ2 : H2(W;QΓ)× H2(W;QΓ)→ QΓ.

Since W is a manifold with boundary, this will in general be a singular intersection form. To
define a non-singular form we localise coefficients: Cochran-Orr-Teichner use the non-commutative
Ore localisation to formally invert all the non-zero elements inQΓ to obtain a skew-fieldK ,
as in Definition6.9; note thatΓ is a PTFA group, so the Ore localisation exists by [COT03,
Proposition 2.5].

As is proved in [COT03, Propositions 2.9, 2.10 and 2.11 and Lemma 2.12], the homology of
MK = ∂W vanishes withK coefficients. Therefore the intersection form on the middledimensional
homology ofW becomes non-singular overK , so we have an element in the Witt group of non-
singular Hermitian forms overK . Moreover, using Proposition6.10, control over the size of the
Z-homology translates into control over the size of theK-homology ofW. To explain how this
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gives us a well–defined obstruction, which does not depend onthe choice of 4-manifold, and how
this obstruction lives in a group, we defineL-groups and the localisation exact sequence inL-theory.

Definition 7.1 ([Ran80] I.3) Two n–dimensionalε–symmetric Poincaré finitely generated projec-
tive A-module chain complexes (C, ϕ) and (C′, ϕ′) arecobordantif there is an (n+1)-dimensional
ε-symmetric Poincaré pair:

(f , f ′) : C⊕C′ → D, (δϕ, ϕ ⊕−ϕ′).

The union operation of [Ran80, Part I, pages 117–9] shows that cobordism of chain complexes is
a transitive relation. The equivalence classes of symmetric Poincaŕe chain complexes under the
cobordism relation form a groupLn(A, ε), with

(C, ϕ) + (C′, ϕ′) = (C⊕ C′, ϕ⊕ ϕ′); −(C, ϕ) = (C,−ϕ).

As usual if we omitε from the notation we assume thatε = 1. In the casen = 0, L0(A) coincides
with the Witt group of non-singular Hermitian forms overA.

Note that an element of anL-group is in particular a symmetricPoincaŕe chain complex. This
means that the intersection forms of (1)-solutions typically give elements ofL0(K) but not of
L0(QΓ).

Definition 7.2 ([Ran81] Chapter 3) TheLocalisation Exact Sequence in L-theoryis given, for
a ring A without zero divisors and a multiplicative subsetS = A− {0}, which satisfies the Ore
condition, as follows:

· · · → Ln(A)→ Ln(S−1A)→ Ln(A,S)→ Ln−1(A)→ · · · .

The relativeL-groups Ln(A,S) are defined to be the cobordism classes of (n − 1)-dimensional
symmetric Poincaré chain complexes overA which become contractible overS−1A, where the
cobordisms are also required to be contractible overS−1A. For n = 2 this is equivalent to the Witt
group ofS−1A/A-valued linking forms onH1 of the chain complex.

The first mapLn(A) → Ln(S−1A) in the localisation sequence is given by considering a chain
complex over the ringA as a chain complex overS−1A, by tensoring up using the inclusion
A→ S−1A. The salient effect of this is that some maps become invertible which previously were
not. We say that a symmetric chain complex isK-Poincaŕe if it is Poincaŕe after tensoring withK .

The second mapLn(S−1A) → Ln(A,S) is the boundary construction. Let (C∗, ϕ) represent an
element ofLn(S−1A). By clearing denominators, there is a chain complex which is chain equivalent
to (C∗, ϕ), in which all the maps are given in terms ofA. We may therefore assume that we
have a symmetric but typically not Poincaré complex (C∗, ϕ) over A, and take the mapping cone
C (ϕ0 : Cn−∗ → C∗). This gives, as in Definition2.1, an (n− 1)-dimensional symmetric Poincaré
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chain complex overA which becomes contractible overS−1A, sinceϕ0 is a chain equivalence over
S−1A, i.e. we have an element ofLn(A,S).

On the level of Witt groups, this map sends a HermitianS−1A-non-singular intersection form
overA, (L, λ : L→ L∗), to the linking form on coker(λ : L→ L∗) given by: (x, y) 7→ z(x)/s, where
x, y ∈ L∗, z∈ L, sy= λ(z) [Ran81, pages 242–3].

The third mapLn(A,S)→ Ln−1(A) is the forgetful map on the equivalence relation; it forgets the
requirement that the cobordisms be contractible overS−1A, simply asking for algebraic cobordisms
over A.

The obstruction theory of Cochran-Orr-Teichner, for suitable representationsπ1(MK) → Γ,
detects the class of (C∗(MK ;QΓ), \∆([MK ])) in L4(QΓ,S), whereS := QΓ − {0}; we have an
invariant of the 3-manifoldMK . The first question we ask, corresponding to (1)-solvability, is
whether the chain complex ofMK bounds overQΓ. Suppose thatK is a (1)-solvable knot. Then
we have a symmetric Poincaré complex

(C∗(MK ;QΓ), \∆([MK ])) ∈ ker(L4(QΓ,S)→ L3(QΓ)).

The obstruction which detects that there is noK-contractible null-cobordism ofC∗(MK ;QΓ) there-
fore lies inL4(K)/ im(L4(QΓ)).

A (1)-solution W defines an element ofL4(K) by taking the symmetricK-Poincaŕe chain
complex:

(C∗(W,MK ;K) = K⊗QΓ C∗(W,MK ;QΓ), \∆([W,MK ])).

The image ofL4(QΓ) represents the change corresponding to a different choiceof (1)-solution
W: the obstruction defined must be independent of this choice.Since 2 is invertible in the rings
K and QΓ, we can do surgery below the middle dimension [Ran80, Part I, 3.3 and 4.3] to see
that our obstruction lives inL0(K)/ im(L0(QΓ)). Taking two choices of 4-manifoldW,W′ with
boundaryMK and gluing to formV := W ∪MK −W′, we obtain a 4-manifold whose image in
L4(QΓ) ∼= L0(QΓ) gives the difference between the Witt classes of the intersection forms ofW and
W′ , showing that the invariant inL0(K)/ im(L0(QΓ)) is well-defined. If this obstruction does not
vanish thenK cannot be (1.5)-solvable and therefore in particular is not slice.

The main obstruction theorem of Cochran-Orr-Teichner, at the (1.5) level, is the following:

Theorem 7.3 [COT03, Theorem 4.2] LetK be a knot, and define, for eachp ∈ H1(MK ;Q[Z]) :

B := (C∗(MK ;QΓ), \∆([MK ])) ∈ L4(QΓ,QΓ− {0}).

Suppose thatK is (1)-solvable via a(1)-solution W. Then there exists a metaboliserP = P⊥ ⊆

H1(MK ;Q[Z]) such that for allp ∈ P,

B ∈ ker(L4(QΓ,QΓ− {0})→ L3(QΓ)).
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Suppose thatK is (1.5)-solvable via a(1.5)-solutionW. Then there exists a metaboliserP = P⊥ ⊆

H1(MK ;Q[Z]) such that for allp ∈ P, B = 0.

Proof We give a sketch proof. The fact that a meridian ofK maps non–trivially underρ is sufficient,
as in [COT03, Section 2], to see thatC∗(MK ;K) ≃ 0, so that indeedB ∈ L4(QΓ,QΓ−{0}). The (1)-
solvable condition ensures, by Theorem6.7and [COT03, Theorem 3.6], that certain representations
extend overπ1(W), for (1)-solutionsW, so thatB 7→ 0 ∈ L3(QΓ). If W is also a (1.5)-solution,
there is a metaboliser for the intersection form onH2(W;K): as mentioned above the fact that we
have control over the rank of theZ-homology translates into control on the rank of theK-homology.
We have a half-rank summand on which the intersection form vanishes: the intersection form is
therefore trivial in the Witt groupL0(K). Since L4(K) ∼= L0

S(K) by surgery below the middle
dimension, we indeed haveB = 0.

We now define a pointed set, which is algebraically defined, which we call theCochran-Orr-
Teichner obstruction set, and denote (COT (C/1.5),U). The above exposition then enables us to
define a map of pointed setsC/F(1.5) → COT (C/1.5): the Cochran-Orr-Teichner obstructions do
not necessarily add well, so we are only able to consider pointed sets, requiring that (1.5)-solvable
knots map toU , the marked point ofCOT (C/1.5). The reason for this definition is that the second
order Cochran-Orr-Teichner obstructions depend for theirdefinitions on certain choices of the way
in which the first order obstructions vanish. More precisely, for each elementp ∈ H1(MK ;Q[Z]) we
obtain a different representationπ1(MK) → Γ and therefore, if it is defined, a potentially different
obstructionB from Theorem7.3. The following definition gives an algebraic object,COT (C/1.5),
which encapsulates the choices in a single set. Our second order algebraic concordance groupAC2

gives a single stage obstruction group from which an elementof COT (C/1.5) can be extracted; for this
see Section8. I would like to thank Peter Teichner for pointing out that I ought to make Definition
7.4.

In the following definition, for intuition, (N, θ) should be thought of as corresponding to the
symmetric Poincaré chain complex of the zero surgeryMK on a knot inS3, Γ := Z⋉Q(t)/Q[t, t−1],
andH should be thought of as corresponding toH1(MK ;Q[Z]). There is no requirement that (N, θ)
actually is the chain complex associated to a knot: we are working more abstractly.

Definition 7.4 Let H be a rational Alexander module, that is aQ[Z]-module such thatH = Q⊗ZH′

for someH′ ∈ A. We denote the class of suchH by Q⊗Z A. Let

Bl : H ×H → Q(t)/Q[t, t−1]

be a non-singular, sesquilinear, Hermitian pairing, and let p ∈ H . We define the set:

L4
H,Bl,p(QΓ,QΓ− {0})
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to comprise pairs ((N, θ ∈ Q3(N)), ξ), where (N, θ) is a 3-dimensional symmetric Poincaré complex
overQΓ which is contractible when tensored with the Ore localisation K of QΓ:

K ⊗QΓ N ≃ 0,

which satisfies:
H∗(Q⊗QΓ N) ∼= H∗(S

1× S2;Q);

and whereξ is an isomorphism

ξ : H
≃
−→ H1(Q[Z] ⊗QΓ N).

Using the 3-dimensional symmetric Poincaré chain complex (Q[Z] ⊗QΓ N, Id⊗θ), we can define
the rational Blanchfield form (see Proposition6.4):

B̃l : H1(Q[Z] ⊗QΓ N)× H1(Q[Z] ⊗QΓ N)→ Q(t)/Q[t, t−1].

We require that: Bl(x, y) = B̃l(ξ(x), ξ(y)) for all x, y ∈ H . In the case thatp = 0 ∈ H , we have a
further condition that:

(2) ((N, θ), ξ)0
∼= ((Q[Z] ⊗QΓ N, Id⊗θ), ξ) ∈ L4

H,Bl,0(QΓ,QΓ− {0})

We consider the union, for a fixedH ∈ Q⊗Z A and a fixed Bl :H × H → Q(t)/Q[t, t−1]:

AF (C/1.5)(H,Bl) :=
⊔

p∈H

L4
H,Bl,p(QΓ,QΓ− {0}),

over all p ∈ H . Next, we consider the union over all possibleH and Bl of a class of certain subsets
of AF (C/1.5)(H,Bl), namely the subsets which have one element ofL4

H,Bl,p(QΓ,QΓ−{0}) for each
p ∈ H : ⋃

H∈Q⊗ZA

Bl : H
≃
−→Ext1

Q[Z](H,Q[Z])

{ ⊔

p∈H

{((N, θ), ξ)p} ⊂ AF (C/1.5)(H,Bl)
}
.

By defining a partial ordering on this class we can make it intoa set by taking an inverse limit. For
eachQ[Z]-module isomorphismα : H

≃
−→ H%, we define a map

α∗ : L4
H,Bl,p(QΓ,QΓ− {0})→ L4

H%,Bl%,α(p)(QΓ,QΓ− {0}),

where Bl%(x, y) := Bl(α−1(x), α−1(y)) by

((N, θ ∈ Q3(N)), ξ) 7→ ((N, θ ∈ Q3(N)), ξ ◦ α−1).

This defines a map:
α∗ : AF (C/1.5)(H,Bl) → AF (C/1.5)(H

%,Bl%),

which we use to map subsets to subsets. We say that a subset:
⊔

p∈H

{((N, θ), ξ)p} ⊂ AF (C/1.5)(H,Bl),
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is less than or equal to
⊔

q∈H%

{((N, θ), ξ%)q} ⊂ AF (C/1.5)(H
%,Bl%),

if the latter is the image of the former underα∗ . We then define:

AF (C/1.5) := lim←−

{ ⊔

p∈H

{((N, θ), ξ)p} ⊂ AF (C/1.5)(H,Bl) |H ∈ Q⊗Z A,

Bl: H
≃
−→ Ext1Q[Z](H,Q[Z])

}
.

Finally, we must say what it means for two elements ofAF (C/1.5) to be equivalent, in such a way
that isotopic and concordant knots map to equivalent elements ofAF (C/1.5), and we must define the
class of the zero object, so that we have a pointed set.

The distinguished point is the equivalence class of the 3-dimensional symmetric Poincaré chain
complex:

U :=
((

QΓ⊗Q[Z] C∗(S1× S2;Q[Z]), \∆([S1 × S2])
)
, ξ = Id : {0} → {0}

)

∈ AF (C/1.5)({0},Bl{0}).

We declare two elements ofAF (C/1.5) to be equivalent, denoted∼, if we can choose a representative
class for the inverse limit construction of each i.e. pick representatives:

⊔

p∈H

{((N, θ), ξ)p} ⊂ AF (C/1.5)(H,Bl) and
⊔

q∈H†

{((N†, θ†), ξ†)q} ⊂ AF (C/1.5)(H
†,Bl†)

for someH,H† ∈ Q⊗Z A, such that there is a metaboliserP⊆ H ⊕H† of

Bl⊕− Bl† : H ⊕H† × H ⊕ H† → Q(Z)/Q[Z]

for which all the elements ofL4(QΓ,QΓ− {0}) in the disjoint union:
⊔

(p,q)∈P

{((Np⊕ N†
q, θp⊕−θ

†
q), ξp⊕ ξ

†
q)} ⊂ AF (C/1.5)(H ⊕ H†,Bl⊕− Bl†)

bound a 4-dimensional symmetric Poincaré pair

(jp⊕ j†q : Np⊕ N†
q → V(p,q), (δθ(p,q), θp⊕−θ

†
q) ∈ Q4(jp⊕ j†q))

overQΓ such that

H1(Q⊗QΓ Np)
≃
−→ H1(Q ⊗QΓ V(p,q))

≃
←− H1(Q⊗QΓ N†

q),

such that the isomorphism

ξp⊕ ξ
†
q : H ⊕ H† ≃

−→ H1(Q[Z] ⊗QΓ Np)⊕ H1(Q[Z] ⊗QΓ N†
q)
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restricts to an isomorphism

P
≃
−→ ker

(
H1(Q[Z] ⊗QΓ Np)⊕ H1(Q[Z] ⊗QΓ N†

q)→ H1(Q[Z] ⊗QΓ V(p,q))
)
,

and such that the algebraic Thom complex (Definition2.1), taken over the Ore localisation, is
algebraically null-cobordant inL4

S(K) ∼= L0
S(K):

[(K ⊗QΓ C ((jp ⊕ j†q)), Id⊗δθ(p,q)/(θp⊕−θ
†
q))] = [0] ∈ L4

S(K).

The relation∼ is an equivalence relation: see Proposition7.5.

Taking the quotient ofAF (C/1.5) by this equivalence relation defines the second order Cochran-
Orr-Teichner obstruction pointed set (COT (C/1.5),U): there is a well–defined map from concordance
classes of knots modulo (1.5)-solvable knots to this set, which maps (1.5)-solvable knots to the
equivalence class ofU , as follows.

Define H := H1(MK ;Q[Z]). For each p ∈ H , we use the corresponding representation
ρ : π1(MK)→ Γ to form the complex:

((N, θ), ξ)p := ((QΓ⊗Z[π1(MK )] C∗(MK ;Z[π1(MK)]), \∆([MK ])), ξ) ∈ L4
H,Bl,p(QΓ,QΓ− {0}).

This gives a well–defined map: see Proposition7.6. This completes our description of the Cochran-
Orr-Teichner pointed set.

Proposition 7.5 The relation∼ of Definition 7.4 is indeed an equivalence relation.

Proof To see reflexivity, note that the diagonalH ⊆ H ⊕ H is a metaboliser for Bl⊕− Bl. Then
takeV(p,p) := Np andδθ(p,p) := 0. It is straight–forward to see that∼ is symmetric. For transitivity,
suppose that ⊔

p∈H

((N, θ), ξ)p ∼
⊔

q∈H†

((N†, θ†), ξ†)q

with a metaboliserP⊆ H ⊕ H† and chain complexes (V(p,q), δθ(p,q)), and that
⊔

q∈H†

((N†, θ†), ξ†)q ∼
⊔

r∈H‡

((N‡, θ‡), ξ‡)r .

with a metaboliserQ⊆ H† ⊕ H‡ and chain complexes (V(q,r), δθ(q,r)).

We define the metaboliserR⊆ H ⊕ H‡ by

R := {(p, r) ∈ H ⊕ H‡ | ∃ q ∈ H† with (p,q) ∈ P and (q, r) ∈ Q}.

The proof of Lemma6.3 shows that this is a metaboliser. For each (p, r) ∈ R we can therefore
choose a suitableq and so glue the chain complexes:

(V(p,r), δθ(p,r)) := (V(p,q) ∪N†
q

V(q,r), δθ(p,q) ∪θ†q
δθ(q,r)),
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to create an algebraic cobordism for each (p, r) ∈ R. Easy Mayer-Vietoris arguments show that the
inclusionsNp→ V(p,r) andN‡

r → V(p,r) induce isomorphisms on firstQ-homology, and that

ξp⊕ ξ
‡
r : H ⊕ H‡ ≃

−→ H1(Q[Z] ⊗QΓ Np)⊕ H1(Q[Z] ⊗QΓ N‡
r )

restricts to an isomorphism

R
≃
−→ ker

(
H1(Q[Z] ⊗QΓ Np)⊕ H1(Q[Z] ⊗QΓ N‡

r )→ H1(Q[Z] ⊗QΓ V(p,r))
)
.

SinceK ⊗QΓ N†
q ≃ 0, the elements ofL4

S(K) add and we still have the zero element ofL4
S(K) as

required.

Proposition 7.6 The mapC/F(1.5)→ COT (C/1.5) in Definition 7.4 is well–defined.

Proof To see that the map is well–defined, we show that ifK ♯ − K† is (1.5)-solvable, then the
image ofK is equivalent to the image ofK† in COT (C/1.5). Let W be a (1.5)-solution forK ♯ −K† ,
and let

P := ker(H1(MK ;Q[Z]) ⊕ H1(MK† ;Q[Z]) → H1(W;Q[Z])),

noting that

H1(MK ;Q[Z]) ⊕ H1(MK† ;Q[Z])
≃
−→ H1(MK ♯−K† ;Q[Z]).

We define, for all (p,q) ∈ P, V(p,q) := C∗(W,MK ♯−K† ;QΓ) to be the chain complex ofW relative
to MK ♯−K† .

ThenK ⊗QΓ V(p,q) represents an element ofL4
S(K) as in Definition7.2. SinceW is a (1.5)-

solution, as in Theorem7.3, we haveB = 0. That is, the intersection form ofV(p,q) is hyperbolic as
required.

Applying the algebraic Poincaré thickening (Definition2.1) yields a symmetric Poincaré pair
C∗(MK ♯−K†;QΓ)(p,q) → V4−∗

(p,q). Now note that

C∗(MK ♯−K† ;QΓ)(p,q) ≃ C∗(XK ∪ S1× S1× I ∪ XK†;QΓ)(p,q).

By gluing the chain complexC∗(S1× D2× I ;QΓ) to V4−∗
(p,q) alongC∗(S1 × S1× I ;QΓ), we obtain

a symmetric Poincaré pair

(C∗(MK ;QΓ)p⊕ C∗(MK† ;QΓ)q→ V̂(p,q), (δ̂θ(p,q), θp⊕−θ
†
q)).

This gluing does not change the element ofL4
S(K) produced, sinceC∗(S1 × D2 × I ;K) ≃ 0. We

therefore indeed have thatK andK† map to equivalent elements inCOT (C/1.5), as claimed.
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8 Extracting the Cochran-Orr-Teichner Concordance Obstructions

In this section we define a mapAC2→ COT (C/1.5) and show that it is a morphism of pointed sets.
Recall thatΓ := Z ⋉ Q(t)/Q[t, t−1]. A map C/F(1.5) → COT (C/1.5) was implicitly defined in
Section7. We will prove the following theorem:

Theorem 8.1 A triple in AC2 which is second order algebraically concordant to the triple of the
unknot has zero Cochran-Orr-Teichner metabelian obstruction; i.e. it maps toU in COT (C/1.5). See
Theorem8.5 for a more general and precise statement.

We can summarise the results of this section in the followingdiagram:

C/F(1.5)

&&M
M

M
M

M
M

// AC2

���
�

�

COT (C/1.5).

Recall that we use dotted arrows for morphisms of pointed sets.

To define the mapAC2→ COT (C/1.5), as in Section6, we begin by taking an element (H,Y, ξ) ∈
AC2, and forming the algebraic equivalent of the zero surgeryMK . We construct the symmetric
Poincaŕe complex:

(N, θ) := ((Y⊕ (Z[Z ⋉ H] ⊗Z[Z] YU)) ∪E⊕(Z[Z⋉H]⊗Z[Z]EU) E, (Φ ⊕ 0)∪φ⊕−φU 0).

By defining representationsZ ⋉ H → Γ, we will obtain elements ofL4(QΓ,QΓ − {0}). Recall
that L4(QΓ,QΓ − {0}) is the group of 3-dimensional symmetric Poincaré chain complexes over
QΓ which become contractible when we tensor over the Ore localisation (Definition6.9) K of QΓ

with respect toQΓ− {0}. The groupL4(QΓ,QΓ− {0}) fits into the localisation exact sequence:

L4(QΓ)→ L4(K)→ L4(QΓ,QΓ− {0})→ L3(QΓ).

The reducedL(2)-signature ([COT03, Section 5]) obstruct the vanishing of an element ofL0(K)/ im(L0(QΓ)).
After the proof of Theorem8.1, we will describe how to define these signatures purely in terms of
the algebraic objects inAC2. By making use of a result of Higson-Kasparov [HK97] which applies
to PTFA groups, we do not need to appeal to geometric 4-manifolds to calculate the Von Neumann
ρ-invariants.

In order to define a representationρ : Z ⋉ H → Γ, first we choose ap ∈ H , and then define:

ρ : (n,h) 7→ (n,Bl(p,h)) ∈ Γ,

where Bl is the Blanchfield pairing, which is defined onH as follows.
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Composeξ with the rationalisation map, to get:

ξ : H
≃
−→ H1(Z[Z] ⊗Z[Z⋉H] N) ֌ H1(Q[Z] ⊗Z[Z⋉H] N).

The second map is injective by Theorem3.1 (b): H is Z-torsion free. In this section we abuse
notation and also refer to this composition ofξ with the rationalisation map asξ .

We define Bl :H × H → Q(t)/Q[t, t−1] by:

Bl(p,h) := Bl(ξ(p), ξ(h)).

Proposition 8.2 The chain complex:(QΓ⊗Z[Z⋉H] N, Id⊗θ) defines an element ofL4(QΓ,QΓ−

{0}). That is,K ⊗QΓ QΓ⊗Z[Z⋉H] N is contractible.

Proof First note thatΓ is a PTFA group (Definition6.8), since [Γ,Γ] = Q(t)/Q[t, t−1]; therefore
[Γ,Γ] is abelian andΓ/[Γ,Γ] ∼= Z. The fact thatΓ is PTFA means that, by [COT03, Proposition
2.5], the Ore localisation ofQΓ with respect to non-zero elementsQΓ − {0} exists. The proof
follows that of [COT03, Proposition 2.11] closely, but in terms of chain complexes. The chain

complex of the circleC∗(S1;Q[Z]) is given byQ[Z]
t−1
−−→ Q[Z]. Tensor withQΓ overQ[Z] using

the homomorphismρ ◦ (f−)∗ , where we have to define (f−)∗ : Z → Z ⋉ H . Recall thatf− is a
chain map in our symmetric Poincaré triad Y (Definition 3.4), and so we define (f−)∗ to be the
corresponding homomorphism of groups: there is, as ever, a symbiosis between the group elements
and the 1-chains of the complex. The homomorphism (f−)∗ : Z→ Z⋉ H sendst 7→ (1,h1), where
h1 is, as in Definition3.4, the element ofH which makesf− a chain map. Thus, passing from
C∗(S1;Q[Z]) to C∗(S1;QΓ), we obtain:

QΓ⊗Q[Z] Q[Z] ∼= QΓ
(ρ◦(f−)∗(t)−1)
−−−−−−−−→ QΓ⊗Q[Z] Q[Z] ∼= QΓ.

The chain map

1⊗ f− : C∗(S
1;QΓ) = QΓ⊗Z[Z⋉H] D− → QΓ⊗Z[Z⋉H] Y→ QΓ⊗Z[Z⋉H] N,

is 1-connected on rational homology. Therefore, by the longexact sequence of a pair,

Hk(Q⊗QΓ C (1⊗ f− : C∗(S
1;QΓ)→ QΓ⊗Z[Z⋉H] N)) ∼= 0

for k = 0,1. We apply Proposition6.10, with n = 1 andC∗ = C (1⊗ f−), to show that:

Hk(K ⊗QΓ C (1⊗ f− : C∗(S
1;QΓ)→ QΓ⊗Z[Z⋉H] N)) ∼= 0

for k = 0,1. This implies, again by the long exact sequence of a pair, that there is an isomorphism
H0(S1;K) ∼= H0(K⊗Z[Z⋉H] N) and a surjectionH1(S1;K) ։ H1(K⊗Z[Z⋉H] N). As in the proof of
[COT03, Proposition 2.11],t maps to a non-trivial element

ρ ◦ (f−)∗(t) = ρ(1,h1) = (1,Bl(p,h1)) ∈ Γ.
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Thereforeρ ◦ (f−)∗(t) − 1 6= 0 ∈ QΓ is invertible inK , so H∗(S1;K) ∼= 0. This then implies that
Hk(K ⊗Z[Z⋉H] N) ∼= 0 for k = 0,1.

The proof thatQΓ⊗Z[Z⋉H] N is acyclic overK is then finished by applying Poincaré duality and
universal coefficients. The latter theorem is straight-forward sinceK is a skew-field, so we see that:

Hk(K ⊗QΓ (QΓ⊗Z[Z⋉H] N)) ∼= 0

for k = 2,3 as a consequence of the corresponding isomorphisms fork = 0,1. A projective
module chain complex is contractible if and only if its homology modules vanish [Ran02, Proposi-
tion 3.14 (iv)], which completes the proof.

Remark 8.3 We can always define, for any representation which mapsg1 to a non-trivial element
of Γ, a mapAC2→ L4(QΓ,QΓ−{0}). However, we will only show that it has the desired property:
namely that it maps 0∈ AC2 to 0 ∈ L4(QΓ,QΓ − {0}), in the case thatξ(p) ∈ P (recall thatp
was part of the definition of a representationρ : Z ⋉ H → Γ), for at least one of the submodules
P⊆ H1(Q[Z] ⊗Z[Z⋉H] N) such thatP = P⊥ .

This contingent vanishing for the Cochran-Orr-Teichner obstruction theory is encoded in the
definition of COT (C/1.5): see Definition7.4. We have a two stage definition of the metabelian
Cochran-Orr-Teichner obstruction set, since we need the Blanchfield form to define the elements
and to restrict the allowable null–bordisms; whereas an element of the groupAC2 is defined in a
single stage from the geometry, via a handle decomposition of the knot exterior, and the allowable
null–bordisms are restricted by the consistency square. Both stages of the Cochran-Orr-Teichner
obstruction can be extracted from the single stage element of AC2.

Definition 8.4 We define the mapAC2→ COT (C/1.5) by mapping a triple (H,Y, ξ) to
⊔

p∈Q⊗ZH

{(QΓ⊗Z[Z⋉H] N, Id⊗θ)p, ξp},

with each (QΓ⊗Z[Z⋉H] N)p defined using

ρ : Z⋉ H → Γ

(n,h) 7→ (n,Bl(p,h))

andξp given by the composition

ξp : Q⊗Z H
Id⊗ξ
−−−→ Q⊗Z H1(Z[Z] ⊗Z[Z⋉H] Y)

≃
−→ H1(Q[Z] ⊗Z[Z⋉H] Y)

≃
−→ H1(Q[Z] ⊗Z[Z⋉H] N)

≃
−→ H1(Q[Z] ⊗QΓ (QΓ⊗Z[Z⋉H] N)p).

The maps labelled as isomorphisms in this composition are given by the universal coefficient theorem,
a Mayer-Vietoris sequence, and a simple chain level isomorphism for the final identification.
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We prove a more general statement than that of Theorem8.1. The purpose of this generalisation
is to show that the map of pointed sets of Definition8.4is well–defined. Theorem8.1is a corollary
of Theorem8.5by taking (H†,Y†, ξ†) = ({0},YU , Id{0}).

Theorem 8.5 Let (H,Y, ξ) ∼ (H†,Y†, ξ†) ∈ AC2 be equivalent triples. Then
⊔

p∈H

{(QΓ⊗Z[Z⋉H] N)p, ξp} ∼
⊔

q∈H†

{(QΓ⊗Z[Z⋉H†] N†)q, ξ
†
q} ∈ COT (C/1.5).

That is, there exists a metaboliser

P = P⊥ ⊆ (Q⊗Z H)⊕ (Q⊗Z H†)

for the rational Blanchfield form

Bl⊕− Bl† : (Q⊗Z H)⊕ (Q⊗Z H†)× (Q⊗Z H)⊕ (Q⊗Z H†)→ Q(t)/Q[t, t−1],

such that, for any(p,q) ∈ (Q⊗Z H)⊕ (Q⊗Z H†), the corresponding element

((QΓ⊗Z[Z⋉H] N)p, θp)⊕ ((QΓ⊗Z[Z⋉H] N†)q,−θ
†
q) ∈ L4(QΓ,QΓ− {0}),

bounds a 4-dimensional symmetric Poincaré pair

(jp⊕ j†q : (QΓ⊗Z[Z⋉H] N)p⊕ (QΓ⊗Z[Z⋉H] N†)q→ V(p,q), (δθ(p,q), θp⊕−θ
†
q))

overQΓ such that

H1(Q⊗QΓ (QΓ⊗Z[Z⋉H] N)p)
≃
−→ H1(Q⊗QΓ V(p,q))

≃
←− H1(Q⊗QΓ (QΓ⊗Z[Z⋉H] N†)q),

such that the isomorphism

ξp⊕ ξ
†
q : (Q⊗Z H)⊕ (Q⊗Z H†)

≃
−→

H1(Q[Z] ⊗QΓ (QΓ⊗Z[Z⋉H] N)p)⊕ H1(Q[Z] ⊗QΓ (QΓ⊗Z[Z⋉H†] N†)q)

restricts to an isomorphism

P
≃
−→ ker

(
H1(Q[Z] ⊗Z[Z⋉H] N)⊕ H1(Q[Z] ⊗Z[Z⋉H†] N†)→ H1(Q[Z] ⊗QΓ V(p,q))

)
,

and such that the algebraic Thom complex (Definition2.1), taken over the Ore localisation, is
algebraically null-cobordant inL4

S(K) ∼= L0
S(K):

[(K ⊗QΓ C ((jp ⊕ j†q)), Id⊗δθ(p,q)/(θp⊕−θ
†
q))] = [0] ∈ L4(K).

Proof By the hypothesis we have a symmetric Poincaré triad overZ[Z ⋉ H′]:

(E, φ)⊕ (E†,−φ†)

(γ,γ† )
∼

(Id,Id⊗̟E† )
//



 η 0
0 η†





��

(E,0)

δ

��
(Y,Φ)⊕ (Y†,−Φ†)

(j,j†) // (V,Θ),
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with isomorphisms

H∗(Z⊗Z[Z⋉H] Y)
≃
−→ H∗(Z⊗Z[Z⋉H′] V)

≃
←− H∗(Z⊗Z[Z⋉H†] Y†),

and a commutative square

H ⊕ H†
(j♭,j

†

♭
)

//


 ξ 0

0 ξ†




��

H′

ξ′

��
H1(Z[Z] ⊗Z[Z⋉H] Y)⊕ H1(Z[Z] ⊗Z[Z⋉H] Y†)

IdZ[Z] ⊗(j∗,j
†
∗)
// H1(Z[Z] ⊗Z[Z⋉H′] V).

Corresponding to the manifold triad

S1× S1 ⊔ S1× S1 //

��

S1× S1× I

��
S1× D2 ⊔ S1× D2 // S1× D2× I ,

we have a symmetric Poincaré triad.

(EU,−φU)⊕ (EU, φU)
(Id,Id) //



 ηU 0
0 ηU





��

(EU,0)

δU

��
(YU,0)⊕ (YU,0)

(jU ,jU ) // (YU,0).

With this triad tensored up overZ[Z⋉H′] sendingt 7→ g1 as usual, we glue the two triads together
as follows:

(YU,0)⊕ (YU,0)
(jU ,jU ) // (YU,0)

(EU,−φU)⊕ (EU, φU)


 ηU 0

0 ηU




OO

(Id,Id) // (EU,0)

δU

OO

(E, φ)⊕ (E†,−φ†)

(γ,γ†)
∼

∼=



 ̟E 0
0 ̟E†





OO

(Id,Id⊗̟E† )
//


 η 0

0 η†




��

(E,0)

∼= ̟E

OO

δ

��
(Y,Φ)⊕ (Y†,−Φ†)

(j,j†) // (V,Θ),
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to obtain a symmetric Poincaré pair overZ[Z⋉ H′]:

((i, i†) : N⊕ N† → V̂ := V ∪E YU, (Θ̂ := Θ ∪ 0, θ ⊕−θ†)).

We can defineP, by Theorem6.6, to be

P := ker((Q⊗Z H)⊕ (Q⊗Z H†)→ H1(Q[Z] ⊗Z[Z⋉H] N)⊕ H1(Q[Z] ⊗ N†)

→ H1(Q[Z] ⊗Z[Z⋉H′] V̂)).

Now, for all (p,q) ∈ P, the representation

(Bl⊕ − Bl†)((ξ(p), ξ†(q)), •) : H1(Q[Z] ⊗Z[Z⋉H] N) ⊕ H1(Q[Z] ⊗Z[Z⋉H] N†) →
Q(t)

Q[t, t−1]
,

extends, by [COT03, Theorem 3.6], to a representationH1(Q[Z] ⊗Z[Z⋉H′] V̂) → Q(t)/Q[t, t−1].
This holds since the proof of [COT03, Theorem 3.6] is entirely homological algebra, so carries over
to the chain complex situation without the need for additional arguments. We therefore have an
extension:

H ⊕ H†
(j♭,j

†

♭
)

//

∼=



 ξ 0
0 ξ†





��

H′

∼=ξ′

��

H1(Z[Z] ⊗Z[Z⋉H] N)⊕ H1(Z[Z] ⊗Z[Z⋉H†] N†)
IdZ[Z] ⊗(i,i†)

//
��

��

H1(Z[Z] ⊗Z[Z⋉H′] V̂)
��

��

H1(Q[Z] ⊗Z[Z⋉H] N)⊕ H1(Q[Z] ⊗Z[Z⋉H†] N†)
IdQ[Z] ⊗(i,i†)

//

(Bl ⊕Bl†)((ξ(p),ξ†(q)),•)
WWW

WWW
WWW

WW

++WWWW
WWW

WWW
W

H1(Q[Z] ⊗Z[Z⋉H′] V̂)

��
Q(t)/Q[t, t−1].

Noting that, from the Mayer-Vietoris sequence forV̂ = V ∪E YU , there is an isomorphism

H1(Z[Z] ⊗Z[Z⋉H′] V)
≃
−→ H1(Z[Z] ⊗Z[Z⋉H′] V̂),

the top square commutes by the consistency condition. We therefore have an extension of represen-
tations:

Z ⋉ (H ⊕ H†)
(IdZ,(j♭,j

†

♭
))

//

ρ

))SSS
SS

SS
SS

SS
SS

SS
SS

Z ⋉ H′

ρ̃
��
Γ.
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The element

((QΓ⊗Z[Z⋉H] N)p, θp)⊕ ((QΓ⊗Z[Z⋉H†] N†)q,−θ
†
q) ∈ L4(QΓ,QΓ− {0})

therefore lies, by virtue of the existence ofQΓ⊗Z[Z⋉H′] V̂(p,q) , in ker(L4(QΓ,QΓ−{0})→ L3(QΓ)).
As in theL-theory localisation sequence (Definition7.2), we therefore have the element:

(V(p,q),Θ(p,q)) := ((K ⊗Z[Z⋉H′] C ((i, i†)))(p,q),Θ(p,q)/(θp⊕−θ
†
q)) ∈ L4

S(K),

whose boundary is

((QΓ⊗Z[Z⋉H] N)p, θp)⊕ ((QΓ⊗Z[Z⋉H†] N†)q,−θ
†
q) ∈ L4(QΓ,QΓ− {0}).

Since 2 is invertible inK , we can do algebraic surgery below the middle dimension [Ran80,
Part I, Proposition 4.4], onV(p,q) , to obtain a non-singular Hermitian form:

(λ : H2(V(p,q))× H2(V(p,q))→ K) ∈ L0
S(K) ∼= L4

S(K),

whose image inL0
S(K)/L0(QΓ) detects the class ofQΓ ⊗Z[Z⋉H] N ∈ L4(QΓ,QΓ − {0}). Once

again, we will apply Proposition6.10. Since j and j† induce isomorphisms onZ-homology, and
therefore onQ-homology, we have that the chain map

Id⊗i : Q⊗QΓ (QΓ⊗Z[Z⋉H] N)p→ Q⊗QΓ (QΓ⊗Z[Z⋉H′] V̂(p,q))

induces isomorphismsi∗ : Hk(Q⊗Z[Z⋉H] N)
≃
−→ Hk(Q⊗Z[Z⋉H′] V̂) for all k, by a straight–forward

Mayer-Vietoris argument. ThereforeHk(Q⊗Z[Z⋉H′] C (i)) ∼= 0 for all k by the long exact sequence
of a pair. Applying Proposition6.10, we therefore have thatHk((K ⊗Z[Z⋉H′] C (i))(p,q)) ∼= 0 for all
k. The long exact sequence inK-homology associated to the short exact sequence

0→ (K ⊗Z[Z⋉H′] C (i))(p,q) → (K ⊗Z[Z⋉H′] C ((i, i†)))(p,q) → S(K ⊗Z[Z⋉H†] N†
q)→ 0

implies, noting thatH∗(K ⊗Z[Z⋉H†] N†
q) ∼= 0, that

Hk(K ⊗Z[Z⋉H′] C ((i, i†))(p,q)) = Hk(V(p,q)) ∼= 0

for all k. In particular, sinceH2(V(p,q)) ∼= H2(V(p,q)) ∼= 0, we see that the image ofV(p,q) in L0
S(K),

which is the intersection formλ, is trivially hyperbolic and represents the zero class ofL0
S(K). This

completes the proof that
⊔

p∈H

{(QΓ ⊗Z[Z⋉H] N, Id⊗θ)p, ξp} ∼
⊔

q∈H†

{(QΓ ⊗Z[Z⋉H†] N†, Id⊗θ†)q, ξ
†
q} ∈ COT (C/1.5).

Finally, we have a non-triviality result, which shows that we can extract theL(2)-signatures from
AC2. In order to obstruct the equivalence of triples (H,Y, ξ) ∼ (H†,Y†, ξ†) ∈ AC2, we just need,
by Proposition4.9, to be able to obstruct an equivalence (H,Y, ξ) ∼ ({0},YU , Id{0}). To achieve
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this, as in Definition7.4, we need to obstruct the existence of a 4-dimensional symmetric Poincaŕe
pair overQΓ (j : (QΓ⊗Z[Z⋉H] N)p→ Vp, (Θp, θp)), for at least onep 6= 0, with ξ(p) ∈ P, for each
metaboliserP = P⊥ ⊆ H1(Q[Z] ⊗Z[Z⋉H] N) of the Blanchfield form, whereVp satisfies that

ξ(p) ∈ ker(j∗ : H1(Q[Z] ⊗Z[Z⋉H] Np)→ H1(Q[Z] ⊗QΓ Vp)),

that j∗ : H1(Q ⊗Z[Z⋉H] N)
≃
−→ H1(Q ⊗QΓ Vp) is an isomorphism, and that [K ⊗QΓ C (j)] = [0] ∈

L4
S(K). We do this by takingL(2)-signatures of the middle dimensional pairings on putativesuchVp,

to obstruct the Witt class inL4
S(K) ∼= L0

S(K) from vanishing. First, we have a notion of algebraic
(1)-solvability.

Definition 8.6 We say that an element (H,Y, ξ) ∈ AC2 with image 0∈ AC1 is algebraically
(1)-solvableif the following holds. There exists a metaboliserP = P⊥ ⊆ H1(Q[Z] ⊗Z[Z⋉H] N) for
the rational Blanchfield form such that for anyp ∈ H such thatξ(p) ∈ P, we obtain an element:

QΓ⊗Z[Z⋉H] Np ∈ ker(L4(QΓ,QΓ− {0})→ L3(QΓ)),

via a symmetric Poincaré pair overQΓ:

(j : QΓ⊗Z[Z⋉H] Np→ Vp, (Θp, θp)),

with
P = ker(j∗ : H1(Q[Z] ⊗Z[Z⋉H] N)→ H1(Q[Z] ⊗QΓ Vp)),

and such that:
j∗ : H1(Q⊗Z[Z⋉H] N)

≃
−→ H1(Q⊗QΓ Vp)

is an isomorphism. We call each such (j : QΓ ⊗Z[Z⋉H] Np → Vp, (Θp, θp)) an algebraic (1)-
solution.

Theorem 8.7 Suppose that(H,Y, ξ) ∈ AC2 is algebraically(1)-solvable with algebraic(1)-
solution (Vp,Θp) andξ(p) ∈ P. Then since:

ker(L4(QΓ,QΓ− {0})→ L3(QΓ)) ∼= L4(K)/L4(QΓ) ∼= L0(K)/L0(QΓ),

we can apply theL(2)-signature homomorphism (see [COT03, Section 5]):σ(2) : L0(K)→ R, to the
intersection form:

λK : H2(K ⊗QΓ Vp)× H2(K ⊗QΓ Vp)→ K.

We can also calculate the signatureσ(λQ) of the ordinary intersection form:

λQ : H2(Q ⊗QΓ Vp)× H2(Q⊗QΓ Vp)→ Q,

and so calculate the reducedL(2)-signatureσ̃(2)(Vp) = σ(2)(λK) − σ(λQ). This is independent, for
fixed p, of changes in the choice of chain complexVp.
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Remark 8.8 Provided we check that the reducedL(2)-signature does not vanish, for each metaboliser
P of the rational Blanchfield form with respect to which (H,Y, ξ) is algebraically (1)-solvable, and
for eachP, for at least onep ∈ P\ {0}, then we have achain–complex–Von–Neumannρ–invariant
obstruction. This obstructs the image of the element (H,Y, ξ) in COT (C/1.5) from beingU , and
therefore obstructs (H,Y, ξ) from being second order algebraically slice.

We do not require any references to 4-manifolds, other than for pedagogic reasons, to extract
the Cochran-Orr-TeichnerL(2)-signature metabelian concordance obstructions from the triple of a
(1)-solvable knot, or indeed for any algebraically (1)-solvable triple inAC2. This result relies
strongly on the reason for the invariance of the reducedL(2)-signatures which is least emphasised
in the paper of Cochran-Orr-Teichner [COT03]. This is the result of Higson-Kasparov [HK97] that
the analytic assembly map is onto for PTFA groups. The readeris encouraged to look at [COT03,
Proposition 5.12], where it is shown that the surjectivity of the assembly map implies that theL(2)-
signature and the ordinary signature coincide on the image of L0(QΓ). The key point is that this
result does not depend on manifolds for its statement; it is apurely algebraic result (although the
proof of [COT03, Proposition 5.12] uses Atiyah’sL(2)-Index theorem).

The Higson-Kasparov result does not hold for groups with torsion, a fact made use of in e.g.
[CO09]. Homology cobordism invariants which use representations to torsion groups appear to be
using deeper manifold structure than is captured by symmetric Poincaŕe complexes alone.

Proof of Theorem 8.7 For this proof we omit thep subscripts from the notation; it is to be
understood that tensor products withQΓ depend on a choice of representation. Given a pair
(j : QΓ ⊗Z[Z⋉H] N → V, (Θ, θ)), which exhibits (H,Y, ξ) as being algebraically (1)-solvable, we
again take the element: (K ⊗QΓ C (j),Θ/θ) ∈ L4(K), and look at its imageλK ∈ L0(K). We can
calculate an intersection formλK on H2(K ⊗QΓ C (j)), as in [Ran81, page 19], by taking

x, y ∈ (K ⊗QΓ C (j))2 ∼= HomK((K ⊗QΓ C (j))2,K),

and calculating:
y′ = (Θ/θ)0(y) ∈ (K ⊗QΓ C (j))2.

ThenλK(x, y) := y′(x) = x(y′) ∈ K. This uses, as in the definition of Bl in Proposition6.4, the
identification of (K ⊗QΓ C (j))2 with its double dual. By taking the chain complexQ⊗QΓ C (j) we
can also calculate the intersection formλQ ∈ L0(Q), with an analogous method. To see that the
intersection form onH2(Q ⊗QΓ C (j)) is non-singular, consider the following long exact sequence
of the pair; we claim that the maps labelled asj∗ andκ are isomorphisms.

H1(Q⊗QΓ V)
∼=

j∗
// H1(Q⊗Z[Z⋉H] N) 0 // H2(Q⊗QΓ C (j))

∼=
κ

// H2(Q ⊗QΓ V).
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The intersection form is given by the composition:

λQ : H2(Q⊗QΓ C (j))
κ
−→ H2(Q⊗QΓ V)

≃
−→ H2(Q ⊗QΓ C (j))

≃
−→ HomQ(H2(Q⊗QΓ C (j)),Q),

given by the mapκ from the long exact sequence of a pair, followed by a Poincaré duality isomor-
phism induced by the symmetric structure, and a universal coefficient theorem isomorphism. To
show thatλQ is non-singular we therefore need to show thatκ is an isomorphism. The assumption
that there is an isomorphismj∗ : H1(Q ⊗Z[Z⋉H] N)

≃
−→ H1(Q ⊗QΓ V) on rational first homology

implies that, as claimed, there is also an isomorphismj∗ : H1(Q ⊗QΓ V)
≃
−→ H1(Q ⊗Z[Z⋉H] N)

on rational cohomology, by the universal coefficient theorem (the relevant Ext groups vanish with
rational coefficients). Therefore, by exactness, the mapκ : H2(Q ⊗QΓ C (j)) → H2(Q ⊗QΓ V)
is injective. OverQ, for dimension reasons, it must therefore, as marked on the diagram, be an
isomorphism; the dimensions must be equal since the second and third maps in the composition
which givesλQ show thatH2(Q ⊗QΓ V) ∼= HomQ(H2(Q ⊗QΓ C (j)),Q), and the dimensions over
Q of HomQ(H2(Q⊗QΓ C (j)),Q) and ofH2(Q⊗QΓ C (j)) coincide. Therefore the intersection form
λQ is non-singular as claimed.

The reducedL(2)-signatureσ̃(2)(V) = σ(2)(λK)− σ(λQ) detects non-trivial elements in the group
L0

S(K)/L0(QΓ). This will follow from [COT03, Proposition 5.12], which uses a result of Higson-
Kasparov [HK97] on the analytic assembly map for PTFA groups such asΓ, and says that the
L(2)-signature agrees with the ordinary signature on the image of L0(QΓ). We claim that a non-zero
reducedL(2)-signature, for all possible metabolisersP = P⊥ of the rational Blanchfield form,
implies that (H,Y, ξ) is not second order algebraically slice. To see this, we need to show that, for
a fixed representationρ, the reducedL(2)-signature does not depend on the choice of chain complex
V .

We first note, by the proof of Theorem8.5, that a change in (H,Y, ξ) to an equivalent element
in AC2 produces an algebraic concordance which we can glue ontoV as in Proposition4.7, which
neither changes the second homology ofV with K nor with Q coefficients, so does not change the
corresponding signatures.

To show that the reducedL(2)-signature does not depend on the choice ofV , suppose that we
have two algebraic (1)-solutions, that is two 4-dimensional symmetric Poincaŕe pairs overQΓ:

(j : QΓ⊗Z[Z⋉H] N→ V, (Θ, θ)) and (j♦ : QΓ⊗Z[Z⋉H] N→ V♦, (Θ♦, θ)),

such thatp = p♦ ∈ H . Use the union construction to form the symmetric Poincaré complex:

(V ∪QΓ⊗N V♦,Θ ∪θ −Θ
♦) ∈ L4(QΓ).

OverK , QΓ⊗Z[Z⋉H] N is contractible, so that:

(V ∪QΓ⊗N V♦,Θ ∪θ −Θ
♦) ≃ (V ⊕ V♦,Θ ⊕−Θ♦) = (V,Θ)− (V♦,Θ♦) ∈ L4

S(K).
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Therefore (V,Θ)− (V♦,Θ♦) = 0 ∈ L4(K)/L4(QΓ), which means that the images inL0
S(K) satisfy

λK − λ
♦
K = 0 ∈ L0

S(K)/L0(QΓ). If λK − λ
♦
K ∈ L0(QΓ), then by [COT03, Proposition 5.12]:

σ(2)(λK − λ
♦
K) = σ(Q ⊗QΓ V ∪QΓ⊗N V♦, IdQ⊗(Θ ∪θ −Θ

♦)) = σ(λQ)− σ(λ♦Q),

where the last equality is by Novikov Additivity. Novikov Additivity also holds forσ(2) : see
[COT03, Lemma 5.9.3], so that:

σ(2)(λK)− σ(2)(λ♦K) = σ(λQ)− σ(λ♦Q)

and thereforẽσ(2)(V) = σ̃(2)(V♦) as claimed.

This completes the proof of Theorem1.1.

Remark 8.9 The results of Kim [Kim04], Cochran-Orr-Teichner [COT04] and Cochran–Harvey–
Leidy [CHL09a, CHL09b, CHL10], which use Cheeger-Gromov Von Neumannρ–invariants to show
the existence of infinitely many linearly independent injections ofZ and ofZ2 into F(1)/F(1.5) , can
also be applied, so that we can use the chain-complex-Von-Neumannρ-invariant of Theorem8.7
to show the existence of infinitely many injections ofZ andZ2 into ker(AC2 → AC1), which in
particular implies the claim in Corollary1.3.
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