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A Second Order Algebraic Knot Concordance Group

MARK POWELL

Let C be the topological knot concordance group of knStsc S* under connected sum
modulo slice knots. Cochran, Orr and Teichner defined atfina

COFoDFos)DFyDFas)DF2D ...

The quotientC/F.5) is isomorphic to Levine’s algebraic concordance grovfy sy is the
algebraically slice knots. The quotiehtF(1 sy contains all metabelian concordance obstructions.

Using chain complexes with a Poinéaduality structure, we define an abelian gradg.,
our second order algebraic knot concordance groifye define a group homomorphisth—
AC, which factors througtC /F 5, and we can extract the two stage Cochran-Orr-Teichner
obstruction theory from our single stage obstruction grgdpp. Moreover there is a surjective
homomorphismAC, — C/F(0.5), and we show that the kernel of this homomorphism is non-
trivial.

1 Introduction

A knotis an oriented, locally flat embedding &t in the 3—sphere. We say that two kndtsand
K’ areconcordantif there exists an oriented, locally flat embedding of an &mC = S' x | in

S x 1 with CNS* x {0} =K andCn S x {1} = —K’. The monoid of knots under connected
sum becomes a group when we factor out by the equivalenceéorelaf concordance, called the
knot concordance groy@and denoted by .

This paper unifies previously known obstructions to the ood@nce of knots by using chain
complexes with a Poincaduality structure. In particular, we attempt to find an higé formulation
that computes portions of the knot concordance group aeefiltey the work of T. Cochran, K. Orr
and P. Teichner.

We view this as an initial framework for extending the algebrtheory of surgery of A. Ran-
icki [Ran8Q to classification problems involving 3— and 4— dimensiomenifolds. In order to
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apply Ranicki's machinery to low dimensional problems, weorporate extra information which
keeps track of the effect of duality on the fundamental gsoagolved.

The paper€OTO0J introduced a filtration of the classical knot concordanaaig C by subgroups:
COFoDFos2F2FusDF@D ...

Knots in the subgroupr, are called i)-solvable knots, fon ¢ %N U {0}. The subgroupsFp,
are geometrically defined. A knot is)¢solvable if there issome choicef four manifold whose
boundary is zero-framed surgery on the knot, and which ig®arder approximation to the exterior
of a slice disk (See DefinitioB.2).

In this paper, we focus on the.f), (1) and (15) levels of this filtration, corresponding to abelian
and metabelian quotients of knot groups and of the fundaahgriups of appropriate 4—manifolds.
Our methods extend to the higher terms of the filtration, Whidl appear in a future paper. (For an
outline, see the appendix dpw1].) Asin [COTO03 Theorem 1.1 and Remark 1.3.2], the quotient
C/Fos) is isomorphic to Levine's algebraic concordance grougvpd, which we denoteAC;
(see Definition6.2). We produce a purelglgebraically definedyroup of concordance invariants,
AC,, and prove the following theorem.

Theorem 1.1 There exists a second order algebraic knot concordance g6y, with a non-trivial
homomorphisnC — AC» which factors througlt’ / 1 5). There is a commutative diagram

C——= ACy

N

ACq

with both of the maps tQAC; surjections. A knot whose image IAC, is trivial has vanishing
Cochran-Orr-Teichnetl.5)-level obstructions. Moreover, the Cochran-Orr-Teicholestructions
can be extracted algebraically from an elementddf,. In particular the Cheeger-Gromov Von
Neumannp-invariants used inG@OTO0J can be defined purely algebraically and used to detect
non-triviality of elements ofAC>.

We will define (Definition7.4) a pointed set which encapsulates the Cochran-Orr-Teiabine
struction theory in a single object, which we den6t87 ¢ /1.5). We summarise Theorefinlin the
following commutative diagram, where dotted arrows areluselenote morphisms of pointed sets.
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AC»

TN

C —>C/]:(15)— - >COT(C/15)

A

C/]:(O.S)

Our aim is to compute the group/F(15 and we view Theorem.1as a first step toward this
goal.

Question 1.2 How close is our homomorphis@y F(15y — AC> to a (rational) isomorphism? Can
we identify elements in the kernel and cokernel?

The following corollary of Theorem.1is a consequence oK[m04] and [COT04.
Corollary 1.3 The kernel ofAC, — AC1 is of infinite rank.

The first examples of knots which lie in the kernel of the nfap> AC, were given by A. Casson
and C. Gordon in€CG8¢. Their seminal work was the basis for the work of Cochran;, &rd
Teichner. We expect it to be the case that a knot whose imagjnis trivial also has vanishing
Casson-Gordon slice obstructions, but we do not directtiress this in the present work.

Cochran-Orr-Teichner concordance obstructions are andacp obstruction theory in a similar
manner to obstructions to lifting a map up a tower of fibragjaor extending a map over the skeleta
of a CW-complex. One uses the vanishing at each level of wtigtns to define new obstructions,
which if they in turn vanish, can be used to define furthermigsions, and so on. A knot being)¢
solvable implies that there is some path of vanishing Caoel@a-Teichner obstructions of length
[n]. By contrast,AC, contains well-defined knot concordance invariants, whicimot need to be
indexed by choices of lower level vanishing.

The approach is partially inspired by work of Gilmési[83]. He defined an analogue otC,
which attempted to capture invariants fradC; together with Casson-Gordon invariants. That
influential, and still important paper, has errors relatioghe universal coefficient theorem. We
avoid such problems by defining our group using chain congglexth symmetric structure instead
of forms defined on homology. A chain complex with symmettiticture is a purely algebraic
analogue of a Poincarduality space. Consequently, our work has an altogetifferett character
from Gilmer's.



4 Mark Powell

By avoiding homology pairings and the associated universefficient theorem issues in the
definition of our invariant, we avoid Ore localisation, thé-lgoc introduction of principal ideal
domains, and we obtaingroupwith ahomomorphisn® — AC>: the chain complexes behave well
under connected sum. Traditionally, cobordism groups iseidt union to define their addition
operation. Our operation of addition mirrors much more elpghe geometric operation of addition
of knots. The most important advantage derived from defimmgobstruction in terms of chain
complexes is that we havesmgle stagebstruction which captures the first two main stages of the
Cochran-Orr-Teichner obstruction theory. Finally, simeekeep the whole chain complex as part of
our data, we potentially have more information than can bargd from the Cochran-Orr-Teichner
obstructions, although computable invariants are elusiy@esent.

1.1 Organisation of the paper

The paper is devoted to the proof of Theorér. Section2 contains some definitions and con-
structions which will be central to the rest of the paper]uding the definition of a symmetric
Poincae triad and the structure and behaviour of metabelian qustigf knot groups. We define a
monoid of chain complexe® in Section3, corresponding to the monoid of knots under connected
sum. In Sectiord, we impose an extra equivalence relationrcorresponding to concordance of
knots, and so define the growC,. Section5 contains the proof that (8)-solvable knots map to
the trivial element ofAC,. Section6 describes the homomorphism to the algebraic concordance
groups and proves the facts about Blanchfield forms whichb&irequired in subsequent sections.
Section7 defines the Cochran-Orr-Teichner obstruction set, beferi@ 8 shows how to extract

the Cochran-Orr-Teichner obstructions from an elemend@$, showing thatAC, is non-trivial.
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2 Preliminaries

2.1 Symmetric structures on chain complexes representing amifolds with boundary

All of the chain complexes in this paper will come equippedhwan algebraic Poincarduality
structure: the symmetric structure of Mischenko and Ranibrkthis section we collect the basic
constructions which we will need in order to define algebrabordisms. For more details on the
material presented here, sd@ah8Q Part I], from which the definitions in this section are taken
and [Powl], where | gave an extended explanation of the derivatioryofrsetric structures, and
in particular of how to produce one explicitly for a knot exbe.

In the following we letA be a ring with involution. A symmetric chain complex ovAris a
chain complexC together with an elemenp € Q"(C): we refer to Ran8Q Part |, Page 101]
for the definition of the symmetri©Q-groupsQ"(C). A symmetric pair overA is a chain map
f: C — D with an elementdyp, p) € Q™(f). Likewise, we refer toRan8Q Part |, Pages 133-4]
for the definition of the relativé&)-groups. Such complexes are said to be Pomddhe symmetric
structure induces, respectively, the Poiigcand Poinca-Lefschetz duality isomorphisms between
cohomology and homology.

We can represent a manifold with boundary in two ways: on tiegand, as a symmetric Poinear
pair, and on the other hand as a symmetric complex whinbtiBoincaé. The algebraic Thom and
algebraic Poinca@r thickening constructions of the following definition make correspondence
between these two representations of a manifold with bayratacise.

Definition 2.1 ([Ran8Q) An n-dimensional symmetric complexC(p € Q"(C, ¢)) is connected
if Ho(po: C"* — C,) = 0. The algebraic Thom complerf an n-dimensionals-symmetric
Poincae pair overA

(f: C— D, (d¢p,¢) € Q'(f,2))
is the connected-dimensionale -symmetric complex oveA
(€(f), 00/ € QUE(F). )
where% (f) is the algebraic mapping cone bfand

-_ 5905 0 . n—r-+s
(6p/p)s = ( (_1)n—r—1<psf* (_1)n—r+sTE¢57l ) 1 e(f)

= D"Sg Sl L @(f), =D, @ Gy (5> 0).
The boundaryof a connectech-dimensionale -symmetric complex@, ¢ € Q"(C,¢)) over A,
for n > 1, is the i — 1)-dimensionak-symmetricPoincare complex overA
(9C, 0p € Q"HIC, )
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given by:

_1Y
dBC = ( d(;: 8£ :1)dz:pno > cOC" = Cr+1 aCh oC, =C @ Cnfr+1;

_1\n—r—1 _1y(h—r-1)
dpo = (( b 1 Tepr (1) 0 © > coCc Tl =C"" 2 C

— 8Cr == CrJr]_ @ Cn_r;

and, fors > 1,

_1\h—r+4s—-1
Dps = < =1 0 Tepert 8 ) L OCMTTTSTL = CVTTS G G gyg

— 6Cr - Cr+1 @ Cn_r.
See Ran8(Q Part |, Proposition 3.4 and pages 141-2] for the full detailthe boundary construction.

The algebraic Poincaé thickeningof a connecteds-symmetric complex oveA, (C,¢ €
Q"(C,¢)), is thes-symmetric Poincar pair overA:

(ic: 9C — C",(0,9¢) € Q'(ic, 9)),

whereic = (0,1): 90C = C,41 & C"™" — C"'. The algebraic Thom complex and algebraic
Poincae thickening are inverse operatioi®&gn8Q Part |, Proposition 3.4]. O

Next, we give the definition of a symmetric Poingdriad. This is the algebraic version of a
manifold with boundary where the boundary is split into tWwong a submanifold; in other words
a cobordism of cobordisms which restricts to a product odisor on the boundary. Note that our
notion is not quite as general as the notionRaf81 Sections 1.3 and 2.1], since we limit ourselves
to the case that the cobordism restricted to the boundarprisduct. We also circumvent the more
involved definitions of Ran81, and define the triads by means &4gn81 Proposition 2.1.1], with
a sign change in the requirementiof to be a symmetric Poincaupair.

Definition 2.2 ([Ran81) An (n+ 2)-dimensional (Poinca) symmetric triads a triad of finitely
generated projectivA-module chain complexes:
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with chain maps.., f., a chain homotopy: f_oi_ ~ f, oi, and structure maps(dp_, dp, P)
such that: C, ) is ann-dimensional symmetric (Poinggrcomplex,

(iy:C— Dy, (0p4,p) and (—: C— D, (6p—, —¢))
are f+ 1)-dimensional symmetric (Poin@&rpairs, and
(e:D_Uc Dy = Y, (®,0p— Uy, dp))
is a (0 + 2)-dimensional symmetric (Poin&rpair, where:
e=(f, (-1 'g, —fL ): (D) ®C1®(Dy) — Y.

See Ran8(Q Part |, pages 117-9] for the formulae which enable us to @igether two chain com-
plexes along a common part of their boundaries with oppasiemntations: theinion construction
We write O” = D Uc D', 0¢" = dp U, d¢') for the union of D, d¢) and O', §¢’) along C, ¢').

A chain homotopy equivalence of symmetric triads is a sehafrtequivalences:

ve: C — C vp D — D
vp,:Dy — Di;and vg:Y — Y,

which commute with the chain maps of the triads up to chaindtopy, and such that the induced
maps onQ-groups map the structure maps §—, dp,, ) to the equivalence class of the structure
maps (', 04", ¢, ®’). See Ran8Q Part |, page 140] for the definition of the maps induced on
relative Q-groups by an equivalence of symmetric pairs. O

Definition 2.3 ([Ran8Q Part |, pages 134-6]) Ar-symmetric cobordisnbetween symmetric
complexes C, p) and ', ') is a (1 + 1)-dimensionak-symmetric Poincd pair with boundary
(C S C,’ 2 2] _80/):

((fe, fo): Ca C' = D, (6p, ¢ & —¢) € Qq((fe, fe), €)).
O
The next lemma contains a fact which is key for constructigglaraic cobordisms corresponding

to productsM x |. We place it here so as not to interrupt the main text; we vaMehrepeated cause
to appeal to it. Although this is well-known to the experthalve not found a proof in the literature.

Lemma 2.4 Given a homotopy equivalende (C,yp) — (C',¢’) of n-dimensional symmetric
Poincaé chain complexes such tHat(y) = ¢, there is a symmetric cobordis(tf,1): C® C' —
C, (0,0 ® —¢')). This symmetric pair is also Poin@ar
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Proof We need to check that the symmetric structure maps @ —¢’) € Q"1((f, 1)) induce
isomorphisms:H"((f, 1)) = Hpy1-(C'). We use the long exact sequence in cohomology of a pair,

associated to the short exact sequences @C’ L €((f,1)) - S(Ca® C) — 0 to calculate the
homologyH'((f,1)). The sequence is:

* 1%\T S * 1%\T
HYc) B vico o) S Hi(r, 1) 5 Hie) B2 Hica o).

We have that ker{(,1*)": H'(C') - H'(C@® C')) =2 0, soj* is the zero map, and therefoéeis
surjective. The image imi{,1*)": H'~%C") — H"~}C) @ H'~%(C")) is the diagonal, so that the
images of elements of the form, (@) € H'~1(C) @ H'~1(C’) generateH"((f, 1)).

The mapH"((f,1)) — Hn_r+1(C") generated by (@ @& —¢'), on the chain level, is

(07( t1) ( o _?06 )) L (C) @ (CaC) = Cy

which sendsy’ € H'"Y(C’) to —¢(y'). We therefore have an isomorphism on homology since
(C', ') is a symmetric Poincarcomplex, so we have a symmetric Poirgcpair
((fa l) C 2] C/ — C,a (0’ 2 2] _90,))’

as claimed. O

2.2 Second derived covers and connected sum

Our obstructions, since they aim to capture second ordeimrdtion, work at the level of the second
derived covers of the manifolds involved. We therefore neednderstand the behaviour of the
second derived quotients of knot groups. We denote theiextdra knotK ¢ S° by

X =S\ vK.

Proposition 2.5 Let ¢ be the quotient map
1 m(X)/m ()@ = 1 (X) /T ()Y = Z.

Then for each choice of splitting homomorphisim 7 — m1(X)/71(X)® such thaip o 1) = 1d, let
t := ¢(1). There is an isomorphism:
0: m(X)/m(X)? = ZxH;
g — (49,0t °9),
whereH = H1(X; Z[Z]) is the Alexander module.

Proof This is well-known, so we omit the proof. See e.get00, page 307]. O
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Although the following proposition is well-known, the carktreatment of inner automorphisms,
used to take care of any ostensible dependence on the clicipktiing in Propositior2.5, will be
invaluable in Sectio.

Proposition 2.6 Let K, Kt andK?! := K #K' be oriented knots, with associated exteridrsX
andX*, and denoteH' := Hy(X": Z[Z]) andH* := Hy(X*; Z[Z]). The behaviour of the second
derived quotients under connected sum is given by:

1 (XH) /1 (XHP = Z x HF 2 Z & (H & HT).

That is, we can take the direct sum of the Alexander modules.

Proof First we observe that

m(XF) 2 m1(X) #z ma(XT),
by the Seifert-Van-Kampen theorem: the knot exterior of aneeted sum is given by gluing the
exteriors of the summands together along neighbourhoodsedtliansSt x D! ¢ 9X,9XT. Note
thatH, H' and H* are modules over the group ririgt, t~1] for the samet, which comes from
the preferred meridian of each &f X™ and X* respectively; when the spaces are identified these
meridians all coincide.

7w B 2 (X ()@ 22 1 (X) 5 ma (X7 /(m1(X) 2 (X))

(1) ~ [ m(X) . m1(Xh) 7 x H) %z (Z x HT)

~ \m@ " m(xH@ [r100@, 2 (XT)D]
We now need to be sure that the two group elements which wéfiemhich we callg; € 71(X)
andg! € m1(X"), map to (10) € Z x H and (1 0') € Z x HT respectively under the compositions

m1(X) = 11(X)/m1(X)? = Z x H andry(XT) = 71(X) /71 (X1)@ — Z x H.
If we had chosen(1) = g € m1(X)/m1(X)@ andyf(1) = gl € my(XT)/m1(X1)@ then this would
be the case and we would have:
(ZIXH)*Z(ZIXHT)QZIX(H*HT)Q t
OO0, mexn@] e e
and the proof would be complete. The point is that we can aveaisange that the image gf is
(1,0) by applying an inner automorphism @fix H, and similarly forgi andZ x Hf. Suppose that
0(g1) = (1, h1). Recall Lev77, Proposition 1.2] that 1t acts as an automorphism Bf. We can
therefore choos& € H such that (1- t)h] = hy. Then we have that:
(0,h) (L, h)(0,hy) = (0, —hy)(L, hy)(0, ) = (L, —hy + h)(0, hy)
=1, —hy +h+thy) = (1,h—(1-1hy) = (L —hy) = (1,0).

> /[ﬂl(X)(l)jwl(XT)(l)] ~ (
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So, as claimed, in the last isomorphism @j,(we can compos® and #" with suitable inner

automorphisms and so achieve the desired conditions onehidians which we identify. Therefore

the second derived quotients of the fundamental group&thddd under connected sum as claimed.
O

This concludes the preliminaries that we wish to colleabiptd making our main definitions.

3 A Monoid of Chain Complexes

We shall define a set of purely algebraic objects which ceptiue necessary information to pro-
duce concordance obstructions at the metabelian level. ileeda set comprising 3-dimensional
symmetric Poincdr triads over the group ring[Z x H] for certain Z[Z]-modulesH. In some
sense, we are to forget that these chain complexes origiasdse from geometry, and to perform
operations on them purely with reference to the algebraia daich we store with each element.
The primary operation which we introduce in this section g to add these chain complexes, so
that we obtain an abelian monoid. On the other hand, we watldmwell pedagogically to forget
the geometry. The great merit of the addition operation wdgrward here is that it closely mirrors
geometric addition of knots by connected sum.

A manifold triad is a manifold with boundaryX(9X) such that the boundary splits along a
submanifold into two manifolds with bounda§X = 0Xq Ugx,, 0X1. In our case of interest where
X is a knot exterior we have a manifold triad:

SxP_— g «xp?

l l

Stx D! — =X,

where the longitude is divided into two copies Bf. Such a manifold triad gives rise to a
corresponding triad of chain complexes: noting that thet lemterior has the homology of a circle
and the inclusion of each of the boundary componeitsc D! induces an isomorphism of-
homology, we obtain a chain compl&homology cobordism fronC,.(S' x D) to itself, which is

a product along the boundary.

The chain complexes are taken over the group rifigs x H] of the semi—direct products which
arise, as in Propositio®.5, as the quotients of knot groups by their second derivedrsuipg, with
H an Alexander module (Theoref1). The crucial extra condition is a consistency condition,
which relatesH to the actual homology of the chain complex. Since the Aldeamodule changes
under addition of knots and in a concordance, this extrarobig vital in order to formulate a
concordance obstruction theory.
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We quote the following theorem of Levine, specialised herthé case of knots in dimension 3,
and use it to define the notion of an abstract Alexander modRéeall that we denote the exterior
of aknotK by X := S*\ vK.

Theorem 3.1 ([Lev77]) LetK beaknot, andletl := H1(X; Z[Z]) = H1(X; Z) be its Alexander
module. TakeZ[Z] = Z[t,t~1]. ThenH satisfies the following properties:

(@) The Alexander moduldd is of type K: that is, H is finitely generated ove¥|[Z], and
multiplication by1 — t is a module automorphism &f. These two properties imply that
is Z[Z) -torsion.

(b) The Alexander modul#l is Z-torsion free. Equivalently, foZ.[Z] -modules of typeK, the
homological dimensidnof H is 1.

(c) The Alexander modulél satisfies Blanchfield Duality:
H = Extjyz(H, ZIZ]) = Extiz)(H, Q(Z)/ZIZ]) = Homyzy(H, Q(Z)/ZIZ])
whereH is the conjugate module defined using the involution definetis t=1.

Conversely, given &[7Z]-moduleH which satisfies properties (a), (b) and (c), there existsoa iKn
such thaH1(X; Z[Z]) = H.

Definition 3.2 We say that aZ[Z]-module which satisfies (a),(b) and (c) of Theor8 is an
Alexander module, and denote the class of Alexander modbyle$. D

Before we give the definition of our set of symmetric Poiigctiiads, we exhibit some basic
symmetric chain complexes which correspond to the sp&tesS!' and St x DI.

Definition 3.3 Let H be an Alexander module. L&y € H and defineg; := (1, 1) € Z[Z x H].
Moreover letly € Z[Z x H], denoteg := 119114 and letly, := 171, The symmetric Poincéarchain
complex C', pcr = p @ —), of the form:

01

C/O C/l
oD —o Gr—pn PoD—po
01
/ /
1 C07

is given by:

This is defined as the minimal possible length of a projeatag®lution.
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g -1 0
—1
gq -1
D, Z[Z x H] D, Z[Z x H]
1 0 g O
0 -1 0 —0q
gq—1
D, Z[Z x H] D, Z[Z x H].
Theannular chain complexes’Dfit into symmetric Poincéar pairs:
(il.: C" = DL, (0px = 0,00));
(they are Poinca@rpairs by Lemma.4), defined as follows:
-1
D. Z[ZxH] (&-1) 717 % H]
y 1 1
17t 17t
C @, Z[ZxH] @, Z[Z x H]
I—l ( O1 — 1 0 ) I—l
Q1)) Vo) ()
D/, Z[7Z x H] Z[7Z % H],
(g-1)

The chain complexe®’, arise by taking the tensor product$Z x H] ®zz5 C.(S*; Z[Z]), with
homomorphism&[Z] — Z[Z x H] given byt — g, for D’ andt — gq for D’_. There is therefore
a canonical chain isomorphism: D’ — D', given by

(01-1)

ZIZ x H] ZIZ x H]
laa laa
207 x H] — 92 717w H].

O

Definition 3.4 We define the seP to be the set of equivalence classes of triplds ), £) where:
H € A is an Alexander modul€y is a 3-dimensional symmetric Poinéariad of finitely generated
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projectiveZ[Z x H]-module chain complexes of the form:

(C. o) ——~ (D_,dp_)

f
(D+7 5@4—) - (Y7 (I))v
with the symmetric Poincér pairs (..: C — D, (dp+,c)) chain homotopy equivalent to

(’L: C" — D/, (0,0 @ —¢)) from Definition 3.3 where the chain mapis. induce Z-homology
equivalences, and with a chain homotapyf_oi_ ~f  oi,: C, — Y,41;and

& H = Hi(ZIZ] ©zpzem Y)
is a Z[Z]-module isomorphism.

Moreover we require that the maps .+ have the property thatbdp_w* = —dp, and that
there is a chain homotopy: f; o w ~ f_. This implies that objects of our set are independent of
the choice off_ andf, .

The mapd mustinduceZ-homology isomorphisms; note thiat.(Z ®z[zxH) D+) = H.(S%: Z):
(f2)s: Ho(Z @z1z00H) D) = Ha(Z Q7171 Y).

We call the condition that the isomorphisgn H = H1(Z[Z] ®z[zxH] Y) €xists, theconsistency
condition and we call¢ the consistency isomorphism

We say that two triplesH, ), €) and H”, )%, £%) are equivalent if there existsZ{Z]-module
isomorphismw: H = H%, which induces a ring isomorphis@[Z x H] = Z[Z x H%], and if
there exists a chain equivalence of trigd[Z x H*] ®zz«n YV — Y, such that the following
diagram commutes:

)

H1(ZIZ] @zizxH Y)

H
3
T

~

w
H T H1(ZIZ] @z17,0m0 Y*°)-

The induced map. onZ[Z]-homology makes sense, as there is anisomorpiEf} = Z[Z] @7,y
Z[7Z x H%], so that

H1(ZIZ] @zzxn) Y) = HU(ZIZ] @ gm0 ZIZ x H?] @iz V).

It is easy to see that we have indeed described an equivalelati®n: symmetry is seen using the
inverses of the vertical arrows and transitivity is seendigally composing two such squaresa
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Givenaknotk with exteriorX, we define atripleHl, V), ¢) asfollows. LetH := 71 (X)) /71 (X)@
considered as &[Z]-module via the action given by conjugation with a merididret ) be the
triad of handle chain complexes associated torth@&)@—cover of the manifold triad

Sl><50—>51><D}r

i l

st x DL X,

with symmetric structures fo€..(S' x S°) andC..(S x D1) as given in Definitior8.3, and with the
symmetric structure fo€,(X) given by the image under a chain level approximation to thgahal
map

A C(X;Z) — C(X; Z[Z % H]) ®z1zxH) COX; Z[Z x H])

of a relative fundamental clas¥ [0X] € C3(X;Z). Lastly, leté be the Hurewicz isomorphism
£ H = Hi(X; Z[Z]) = Hi(Z[Z] @zizxH) Y)-

Then we have:

Proposition 3.5 Let Knots be the set of isotopy classes of locally flat oriented knotse @bove
association ofH, ), £) to a knotK defines a function:

Knots— P.

Proof We take
Y = C(X; Z[Z x H]) := Z[Z x H] ®z[xy001 COX; Z[71(X)]),

using the handle chain complex ¥fwith coefficients twisted by the group ring of the fundaménta
group. We use a handle decomposition which contains a haedlemposition of a regular neigh-
bourhood of the boundar§X x | as a subcomplex. We split the boundary into two annular piece
S' x 8 = 8 x D! Ug,9 S x DI, with the longitude split in two. We pick a meridian &f
and call itg; € m(X), and we letl, and |y be the images inry(X)/71(X)® of the two halves

of the longitude, suitably based. Tak€,(oc), (D4, dp+) andiL to be the complexes defined in
Definition 3.3 Define the map$. andg to be the maps induced by the inclusion of the boundary.
The symmetric structur@® on Y, = C.(X;Z[Z x H]) is given, as described, by the image of a
relative fundamental class under a diagonal approximatian map. Note that for the model chain
complexesw = (l3): (D_); — (Dy); sof, ow =f_ and we can tak@ = 0.

It is important that our objects do not depend on choicedatoetquivalent knots define equivalent
triads. Different choices of; and |, affect these elements only up to a conjugation, or in other
words an application of an inner automorphism, which meamsan varyC, D, andf,. by a chain
isomorphism and obtain chain equivalent triads. A diffecdice of element; = (1,h;) € Z x H



A Second Order Algebraic Knot Concordance Group 15

is related by a conjugation, or in other words an applicatban inner automorphism, as in the
proof of Proposition2.6, so that we can changg, D andY by chain isomorphisms and obtain
chain equivalent triads. The point is that we need to mak&ebmfg; and ofl, in order to write
down a representative of an equivalence class of symmaeaimc&é triads, but still different choices
yield equivalent triads. We investigate the effect of suchrges on the consistency isomorphism
&. A change inl; does not affect the isomorphisgn A change ing; affects¢ as follows. When we
wish to change the boundary maps and chain maps in a triadgdyirag an inner automorphism,
conjugating by an elemeiite Z x H say, we define the chain equivalence of triads+ »* which
maps basis elements of all chain groups as follogys= hg: J* has the same chain groups¥is
but with the relevant boundary maps and chain maps conjddpgth. This induces an isomorphism
which by a slight abuse of notation we denbie Hi(Z[Z] ®z[zxH; Y) = Ha(Z[ 7] Rz ZxH%] Y%).
We takew: H — H” = H as the identity. In order to obtain an equivalent triple, eréefore take
% =h,o¢.

An isotopy of knots induces a homeomorphism of the exteriors> X%, fixing the boundary,
which itself induces an isomorphism

wi m)D/mX) = H = () /m (X = 1.

Likewise the isotopy induces an equivalence of tridgf& x H*] @7z« Y — Y. The geomet-
rically defined mapg and¢™ fit into the commutative square as required in Definitios

Finally, we should check that the conditions on homologyaioelement ofP are satisfied. First,
7 @71zxH) D+ is given by Z A Z, which has the homology of a circle. Alexander duality or an
easy Mayer-Vietoris argument using the decompositio&0as X Uyx~gs St x D? shows that
H..(C.(X; Z)) = H,(S%; Z), with the generator ofl1(X; Z) being any of the meridians. So the chain
maps ldvzzxHif+ : Z ® D+ — C,(X; Z) induce isomorphisms on homology.

The consistency condition is satisfied, since we have thenteal Hurewicz isomorphisril =»
H1(X; Z[Z]) as claimed. Therefore, we have indeed defined an elemént of O

Remark 3.6 In [Pow1], | gave an algorithm to construct a symmetric Poigctarad explicitly,
given a diagram of a knot, using a handle decomposition oktiog exterior. The novel part of this
was to construct the symmetric structure maps explicitljha level of the universal cover.

We now define the notion of addition of two triplesl,(,£¢) and HT, VT, in P. In the
following, the notation should be transparent: everythisgpciated td’! will be similarly decorated
with a dagger.

Definition 3.7 We define the sum of two triples

(H* V5,6 = (H, 9,98 (HT, VT, €D,
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as follows. The first step is to make sure that the two triadsozer the same group ring. Pick
a representative in the equivalence class of each of tHedrgn the right hand side which satisfy
01 =(1,0) andg{ = (1,0") respectively. It was explained how to achieve this, wita application
of inner automorphisms d& x H andZ x HT, in the proofs of Propositior®.6and3.5. Now define
HY:=H @ H'. We use the homomorphisms

ZxH — Zx(HaHY;
(n,h) — (n,(h,0")

and
ZxH = Zx(HaH;

(n.hf) — (n, (0, h"))

to form the tensor product&[Z x H*] @zzup Y and Z[Z x H¥] @y, 41 VT, so that both
symmetric Poincdr triads are over the same group ring. This will be assumethéorest of the
present definition without further comment.

The next step is to exhibit a chain equivalenceCt = C. We show this for the models for each
chain complex from Definitio.3, since anyC, C' which can occur is itself chain equivalent to these
models. In fact, for the operation of connected sum which @fend here, we describe how to add
our two symmetric Poincértriads)’ and )t using the models given far. : (C, oc) — (D, 6p+)
andil . (CT, pct) — (Dl, 5gpl) in Definition 3.3, since there is always an equivalence of symmetric
triads mapping to one in whic, C' and Dl have this form, by definition. Note that, to achieve
this with g; = (1,0) = g}, we may have to change the isomorphisgnand ¢ as in the proof of
Proposition3.5.

The chain isomorphisry: cl - c.is given by:

D, Z[Z x HY] D, Z[Z x HY]

(50" 4s)

( 1 0 ) 0 gh-1 ( 1 0 )
0 (Ha w-1 O 0 ()a

0 gqg—1

@D, Z[Z x HY] @D, Z[Z x HY].

In order to see that these are chain maps we need the reﬁti@ngl € Z x H* which, since by
definition gq = I;1g1la and gl = (1) ~*gllL implies thatgy = I3 15gl(15)1a. We can also use
this to calculate that (! & —¢)v* = ¢ @ —p. Recall that we also have a chain isomorphism
@: Dl =D_ > D,.

We now glue the two symmetric triads together. The idea iswiesare following the geometric
addition of knots, where the neighbourhoods of a chosendmeriof each knot get identified. We
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have the following diagram:

i I3 if
(D_,0=0p_) < (C,p & —p = pc) = (CT, T & —pf = i) = (DL, 0= d¢1)

9 | ey
fo i it ff
f z f

(Y, ) =<———(D4,0=dp;) <—— (D' ,0=10p") (i, o)

where the central square commutes. We then use the uniamwditn from Ran8Q Part |, pages 117—
9] to define)*:

it
[
(C!, pet) —— (D, 5t )

it i i
'+l < lf

(D%, 6t) —— (v, &F);
+

(CF pet) = (Chper); i =il it =i o

(D, 6¢1) = (D, dp- = 0); (O}, 6 := (DL, 3¢, = 0);
Y5, @4 = (((-f; o, f)T: D = Yo Y), Ust @1,
so that
Yi=Y o )10V

dy (— l)rerow 0
dy; == 0 |:visv,;
(- 1)f 1fT dy:

ff=(f 0 0):O)=0O)=>Y=Ya@®) 10V

fi:(o 0 f+> @) =0 = Y=Y e@® )10V

ds 0 O
@g::(@uwtqﬂ)sz 0 0 0 |:
0 0 &f

(Yh3rts — y3 s g D)2 s g (YT L v — v, e (D) 1@ Y (0<s<3);

o= (gov (0 g ) iCi=Cl 5 Y, =Yme ) e Y,
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The mapping cone is of the chain mapf( o w, fi)T, with a minus sign to reflect the geometric
fact that when one adds together oriented knots; one mustifiléhe boundaries with opposite
orientations coinciding, so that the resulting knot is algented.

We therefore have the chain ma'ﬁ:ts given by:

—1
D! =D Z[Z x H1] (e:-1) 217 x Hi]
L 1 1
IR (e (Vi
Ci=Cl @, Z[Z x H¥] D, Z[Z x HY]
(%5 4%)
- ( (|E)71 > 0 ga -1 ( (|E)fl )
+ + 1 l
D! =D Z[Z w H¥ Z[Z = HY],
¥ ¥ [Z x H*] ( ga ] ) [Z x H*]

which means we can takg = g} = g1 € Z x H! = Z x (H @ HY), I} := I} € Z x Hf and
I} == Il € Zx H?, sothatg := g} € ZxH!. We have a chain isomorphism’: D_ =D — DI .
To construct a chain homotopyt : (0,0, ! o)™ ~ (f_,0,0)T we first useu': (0,0,f! o )T ~
(0,0, fi)T. We then have a chain homotopy given by:

(0,1d,0)": (D" )o = Y = Y18 (D" )o@ Y and

0,-1d,0": D)1 = Y =Y, s O )1 & Y],
which shows that

(0,0,f1)T = (f; 0,0,0)": D! — ¥((~f; 0w, )T,
We finally havey: (f,. o @, 0,0)" ~ (f_,0,0)". Combining these three homotopies yields
(0,0, 0w =~ (f,0,0)".
This completes our description of the symmetric Poiadead
Y=yl

Finally, easy Mayer-Vietoris arguments show t@t H*(Di;Z) = H.(Y¥; Z) are isomorphisms
and that there is a consistency isomorphism

& HY S Hi(ZIZ] @700 YD),
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which shows that the consistency condition is satisfied afithes the third element of the triple
(H, V46 = (H, 2,9 8HT YT, e P.
This completes the definition of the addition of two elemenit® . O

Proposition 3.8 The sum operatioty on P is abelian, associative and has an identity, namely the
triple containing the fundamental symmetric Poirgctitad of the unknot. Therefor€P, ) is an
abelian monoid.

Let “Knots” denote the abelian monoid of isotopy classes of locallydif@nted knots ir5° under
the operation of connected sum. Then the funckarots — P from Proposition3.5 becomes a
monoid homomorphism.

Proof The reader is referred t®pw11 Proposition 6.8] for the proof of this proposition, which i
too long for the present paper, and is relatively straigitrvérd. Itis hopefully intuitively plausible,
given that our algebraic connected sum so closely mirraggdtometric connected sum, that our
addition is associative, commutative, and that algebmmmected sum with the symmetric Poirear
triad ({0}, VY, Id) associated to the unknot produces an equivalent triad. O

4 Algebraic Concordance

In this section we introduce an algebraic concordanceioelan the elements gP which closely
captures the notion of (8)-solvability, in the sense that the Cochran-Orr-Teicholestructions
vanish if a knot is algebraically (8)-solvable (Definitiord.3) which in turn holds if a knot is
geometrically (15)-solvable.

We proceed as follows. Given two triplesl (), €), (HT, VT, ) € P, we formulate an algebraic
concordance equivalence relation, modelled on the coaocel of knots and corresponding to
Z-homology cobordism of manifolds, with the extra control the fundamental group which is
evidently required, given the prominence of the Blanchfielon in [COT03 when controlling
representations. We take the quotient of our mon@idby this relation, and obtain a group
AC, := P/ ~. Our goal for this section is to complete the set up of theofwilhg commuting
diagram, which has geometry in the left column and algebtherright column:

Knots P
C ACo,

whereKnotsis the monoid of geometric knots under connected sunmCaisdhe concordance group
of knots. We shall first define our concordance relation, d&msvshat it is an equivalence relation.
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We willthen define aninverse (H, ), &) ofatriple H, Y, £), and showthatH, ), ) —(H, ), &) ~
({0}, VY, Id¢qy), where {0}, W, Id;qy) is the triple of the unknot, so that we obtain a grodg;.

Proposition 4.1 Two knotsK andK' are topologically concordant if and only if the 3-manifold
Z:= XUpx_gixg S x S' x| Ugyggxt —X!
is the boundary of a topological 4-manifolld such that
(i) theinclusioni: Z — W restricts toZ -homology equivalences
H.(X; Z) = H,(W;Z) < H.(XT; Z); and
(i) the fundamental group1(W) is normally generated by a meridian of (either of) the knots.
We omit the proof of this proposition, which is well-knownttee experts, and refer the interested
reader to Pow11 Proposition 8.1]

We need to construct the algebraic versiorZarom two symmetric Poincértriads) and )t
so that we can impose conditions on the algebraic 4-dimeak@ommplexes which have it as their
boundary. As part of the definition of a symmetric Poigctiad ) over Z[Z x H] (Definition 2.2),

(C,pc) ——= (D, dp-)
i+l 9 lf
f
(D+7 5@-{-) - (Y7 (I))v
we can construct a symmetric Poinggmair
(n:E:=D_UcDy = Y, (®,6p_ Uy dp))

where o1
n=(f, (-1)'g, —f4 ) E=0D-)®C_18 D) =Y.

In our case of interesg, for the standard models &, D, is given by:
22 @, ZIZ x Hl & E1 = @, Z[Z x H] & By = @, ZIZ x H],

where:

-1 0
O = ;andoy = _ )
! 151 1 2 ;10 gg-1 -1
0 gq—1
with ¢g: E>™" — E;: 5 5
E° ~———E! =~ E?2
lqﬁo l% lqﬁo
B % Ei & Eo
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given by:
@, ZIZ x H] o @, ZIZ x H] o2 @, ZIZ x H]
0 g0 —lagg O
0 0 00 0 -1 0 —gq
00 0 O
@, Z[Z x H] 02 D, ZIZ x H] o @, ZIZ x H].

We have replacetg1 with |5 here. Note that the boundary and symmetric structure milgegtend
on the group element. The next lemma shows that, over the group g x (H @ H)] =
Z[7Zx HY], the chain complexeg, Ef of the boundaries of two different triags ) are isomorphic.
It is used to construct the top row of the triad in Definitibs3.

Lemma 4.2 There is a chain isomorphism of symmetric Poigcaomplexes:
we: Z[Z x H @z1z0m) E = ZIZ x HY ®pp7,041) ET,

82 6’1

E> E1 Eo

| | |
ol of

E 2 El ! E}

omitting Z[Z x H¥]®zz.H) andZ[Z x HY&y,41 from the notation of the diagram, given by:

-1 O
1 la
( -1 g-1 o0 —|a> 171 1
-1zt 0 gg—-1 -1 gq— 1
®, TH——" - D, Tt L@, 1
10 0 O
1 0 01 0 O 1 0
0 17U 00 I, o 0 17k
00 0 74}
@, 1 n — D, T — @, 1
-1 g -1 0 -3 gg—-1 O
—Ht o0 gi-1 1 1 15
Mt 1

0 gh-1
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whereYt = Z[Z x HY].

Proof To see thatog is a chain map, as usual one needs the identities:

lagola® = 01 = o} = ligh(h) .

The maps ofwe are isomorphisms, and the reader can calculatecthateo;: = ¢'. Note that this
proof relies on the fact thdtlp, = 1 and would require extra control over the longitude if weaver
not working modulo the second derived subgroup, but instezxé only factoring out further up the
derived series. O

Definition 4.3 We say that two triplesH, V, €), (HT, VT, ¢1) € P aresecond order algebraically
concordantor algebraically (1.5)-equivalent written ~, if there is aZ[Z] module H’ of type K,
that isH’ satisfies the properties of (a) of Theor8mi, with a homomorphism

Gil): HEHT — H’
which induces homomorphisms
Z[Z x H] — Z[Z x H'] and Z[Z x H] — Z[Z x H'],

along with a finitely generated projectiZdZ x H’]-module chain comple¥ with structure maps
O, the requisite chain magsj’, §, and chain homotopies, ', such that there is a 4-dimensional
symmetric Poinca triad:

(1d,ld ®wt)
(Z[Z x H @ (E, ¢)) & (Z[Z x H] @ (ET, —¢1))

ld ®n 0
0 Idonf

(ZIZ x H @ (Y, ®)) ® (Z[Z x H] @ (Y, —@T))

Z|Z x H']l @ (E, 0)

(“/;Q/T) 4

("

(v,0),
which satisfies two homological conditions. The first is that

it Hi(Z @zpz00m ZIZ x H] @726 Y))  —  Ho(Z ®z1z4n1 V) and
i HaZ @zizmn (22 x H @200 YD) = Ho(Z @221 V)

are isomorphisms, so thek,.(Z ®@z[zxn V) = H. (S Z). The second homological condition is the
consistency condition, that there is a consistency isohisn:

¢ H S HiZIZ] @z1z0n7 V),

such that the diagram below commutes:

2The top row is a symmetric Poindapair by Lemma2.4)
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-
H@HT (Jbv]},) H/

¢ 0 /
(6 ¢ Bl

1dzz1 @G i)
H1(ZIZ] @z1z5r Y) © Hi(ZIZ] @ppz0nty YT) — > Hi(ZIZ] @z1z5c11 V)-

We say that two knots are second order algebraically coaoord their triples are, and we say
that a knot issecond order algebraically slicer algebraically (1.5)-solvableif it is second order
algebraically concordant to the unknot. O

Remark 4.4 In what follows we frequently omit the tensor products wheproducing versions of

the diagram of the triad in Definitiof.3, taking as understood that all chain complexes are tensored
so as to be oveEZ[Z x H'] and all homomorphisms act with an identity on thgZ x H’] component

of the tensor products.

Definition 4.5 The quotient ofP by the relation~ of Definition4.3is thesecond order algebraic
concordance groupdC,. See Propositiod.7 for the proof that~ is an equivalence relation and
Proposition4.9for the proof thatAC, is a group. O

Proposition 4.6 Two concordant knot& andK' are second order algebraically concordant.

We postpone the proof of this result: Propositdaiis a corollary of Theoremd.1l See Pow1],
Proposition 8.6] for a proof of this special case.

Proposition 4.7 The relation~ of Definition 4.3is an equivalence relation.

Proof We begin by showing that is well-defined and reflexive: thaH( Y, &) ~ (H?, Y%, %),
where {H,),€) and H”, V%, (%) are equivalent in the sense of Definiti®4. This is the
algebraic equivalent of the geometric fact that isotopiot&rare concordant. Suppose that we have
an isomorphismu: H — H%, and a chain equivalence of triafisZ[Z x H*] ®zzx Y — V%,
such that the relevant square commutes, as in Defingidrisee below). To show reflexivity, we
take H := H”, and take j(,j,) = (w,!d): H ® H® — H” and {, ©) := (Y*%,0). We tensor all
chain complexes witlZ[Z x H*], which do not already consist &[Z x H%]-modules. We have,
induced byj, an equivalence of symmetric Poinégrairs:

(e, iv; K: (d@n: Z[Z x H*] @z1zx1) E — ZIZ x H*] @z1z0m Y) — (7 E® — Y%),
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wherek: n”je ~ jyn is a chain homotopy (se®pn8Q Part |, page 140]). We therefore have the
symmetric triad:

0 o 0 (je,ld) o
ZIZ x H*] @771 (E, ¢) @ (E%, —¢%) —— (E*,0)

( |dg§77 n%) )\/ (k) %

(Ya @) @ (Y%’ —(I)%) (Y%’ O)

The proof of Lemma2.4 shows that this is a symmetric Poineatriad. Applying the chain
isomorphismeogs: E* = Z[Z x H% ®zzxH] E to the top right corner produces the triad:

(wE% OjvaE%
_—

0, 0, 0, ) 0,
ZIZ % H* Q) (E, 6) @ (E, —6%) (ZIZ % H*] @z, E, 0)

Id ®n (0) o)
0 n” ~

0, 0, j 7d
(Y. ®) @ (Y%, — %) e

U%O(WE%)_l

(Y*,0),

as required. The homological conditions are satisfied sineenapsj,j’ from Definition 4.3 are
chain equivalences and the chain complex Y*. The consistency condition is satisfied since the
commutativity of the square

H1(Z[Z] ®@zizxH Y)

3

w = J*l%

H% —— —— Hi(Z[Z] @z Y*)
% 1 Z[ZxHY] )

which shows thatH, ), €) and H”%, )”, £%) are equivalent in the sense of Definiti®d, extends
to show that the square

H @ H% ld HY

§ 0 o
0 ¢*
9 (j+,1dx) 9
H1(ZIZ] ®zizxn) Y) ® H1(Z[Z] @z1z:1) YY) H1(Z[Z] ®z1zn1 Y?)

is also commutative. Therefore Definitidn3is satisfied, sov is indeed a reflexive relation. Itis
easy to see that is symmetric; we leave the straight-forward check to theleea

To show transitivity, suppose thaH (), &) ~ (HT, VT, 1) using {b,jg): HoHf - H/, and
also that B, T, ¢f) ~ (HY, V%, ¢), using ([,j}): Hf @ HY — H’, so that there is a diagram of
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Z[7Z x H’]-module chain complexes:

(Id,%1)
(Ef, 1) @ (EF, — %) e . (Ef,0)
t
( % 1;)1 ) afah 3
it it o
(v ahye vt —oh — 8 (v @)

In this proof the bar is a notational device and has nothindatavith involutions. To show that
(H, Y, €) ~ (HF, Vi, &), first we must define &[7]-module H’ so that we can tensor everything
with Z[Z x H’]. We will glue the symmetric Poincartriads together to show transitivity; first we
must glue together thg[Z]-modules. Define:

(p,5): H @ HT = H 1= coker(ff, —jf): HT - H @ ),
Now, use the inclusions followed by the quotient maps:
H -H ol > Handi - H oH — H

to take the tensor product of both the 4-dimensional symmeEwincaé triads which show that
(H,D,8) ~ (HT, YT £T), and that [, VT, £7) ~ (H*, V', &4), with Z[Z x H’], so that both contain
chain complexes of modules over the same i@ x H’]. Then algebraically gluing the triads
together, as inRan81 pages 117-9], we obtain the 4-dimensional symmetric Rdrtciad:

Id 0
0 0
%Ei —
(E, ¢) ® (EF, —¢t) (E,—0Uy: 0)
0 v 0 § (-1t o
D T ) I
g 0 ~F 0 (1 3
(Y, ®) @ (Y, —of) — (V,0).
j
00
0 ji

where: —
E := €((wer,1d)": El - E® ET);

V=% ,iNT: Y = Vo V) and® = 6 Uy O.
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We need to show that this is equivalent to a triad where theighp term is €, 0). First, to see that
E ~ E, the chain complex oE is given by:

T — —
wet, Ogt, Id o8 oF
E ( ) E;¢El¢E —>E oE eE —>EaE),
where:
E O ~ R 0 E Og  wgt 0
=1 0 0 0 |;anddE= ( 0 |5 5 ) .
0 —Id O Bl

It is easy to see that the chain map:
Vi=(1d, 0, —wg ):EOE ,0FE - E,
is a chain equivalence, with chain homotopy inverse:

V/1i=(1d, 0, 0) :E—E®E 0.

We therefore have the diagram:

(Id,~wgt oty

(E, 0)

(E, ¢) & (Et, —o%) (E, —0U,: 0)

2=l
>l

Y, ®) @ (Y, —h) (V,0).

The top triangle commutes, while the bottom triangle conasuip to a chain homotogy: k' gets
composed withy to make the new triad. Furthermong(—0 Ugt O™ = O, so that we indeed have
an equivalent triad with the top right ag,(0).

To complete the proof, we need to see that the consistencglitton holds. The follow-
ing commutative diagram has exact columns, the right hatdnoo being part of the Mayer-
Vietoris sequence. The horizontal maps are given by camgigtisomorphisms. Recall that
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H = coker(ﬂ,—j_g): HY - H & ﬁ'). All homology groups in this diagram are taken with
Z|Z]-coefficients.

+
H < Hi (Y1)

H1(V) @ H1(V)

e (58 _—

The diagonal dotted arrows are induced by the diagram, somsike it commute. The horizontal

dotted arrowH’ — H1(Z[Z] ®Z[2xﬁ] V) isinduced by a diagram chase: the quotient iHapH’ —
H is surjective. We obtain a well-defined isomorphism

G H Sz @, = V).
The commutativity of the diagram above implies the comninitgitof the induced diagram:

H o H?

=
¢ 0 _

(59) [

H1(ZIZ] ®z1z5ch) Y) & HU(ZIZ] @120y YF) ———— H1(ZIZ] @121 V).

This completes the proof that is transitive and therefore completes the proof thatis an
equivalence relation. O

Definition 4.8 Given an elementH, Y, ) € P, choose a representative with the boundary given
by the model chain complexes.

(Co®—v) (D-,0)

iy g f

~

(D,,0)— - (v, d).
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The following is also a symmetric Poinéatriad:

(C7 - S5 SO) (D—7 O)

”l . lf_

(D40 — (v, ~a),

which define as the element)’. This is the algebraic equivalent of changing the orieotatf the
ambient space and of the knot simultaneously. The chairvaienice:

0 |
gz(lal 8>:Ci—>Ci

fori =0,1 sendsp® —¢ to —p @ ¢ and satisfie$, o ¢ = i. We can therefore define the inverse
—(H, ), &) € P to be the triple K, —), &), where—) is the symmetric Poincartriad:

(Co®—v) (D-,0)

|+l gﬁf lf_

(Dy,0)— "~ (Y,—®).

Summarising, to form an inverse we replageavith g o ¢, and change the sign on the symmetric
structures everywhere but @in the top left of the triad. O

Proposition 4.9 Recall that({0}, VY, Idsoy) is the triple of the unknot, and IgH,Y, &) and
(HT, V1, £%) be two triples inP. Then

(H, Y.t — (HL Y, ¢h) ~ ({0}, 27, 1d;0y)
ifand only if (H, ), €) ~ (HT, VT M.

Proof We omit the proof of this result, and instead refer the re&mlfPow11, Proposition 8.10]. It
is hopefully intuitively plausible, given that two knois Kt are concordant if and only K # —K'is
slice. See Figuresand?2. O

Proposition4.9 completes the proof that we have defined an abelian group.

5 (1.5)-Solvable Knots are Algebraically(1.5)-Solvable

This section contains the proof of the following theorem.
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(D_,0) (Y, ?) (D, 0)

(D*) O) (V, 9) (DJra 0)
(Ch, " ® —¢l)

(D', 0) (Yf, —oh (D1.,0)

Figure 1: The cobordism which shows tiat~ ).

Theorem 5.1 A (1.5)-solvable knot is algebraicallfi.5)-solvable.

We begin by recalling the definition oh)-solubility. We denote the zero framed surgery on a
knot K by M.

Definition 5.2 [COTO03 Definition 1.2] ALagrangianof a symmetric form\: P x P —- Ron a
free R-moduleP is a submoduld. C P of half-rank on which\ vanishes.

Forn € No := NU{O0}, let \, be the equivariant intersection pairing, amgthe self-intersection
form, on the middle dimensional homologis(W; Z[r1(W) /71 (W)™]) of the covering spackV(®™
corresponding to the subgroug (W)™ < 71(W):

Ant Ho(W; Z[m(W) /7 (W)D]) - % Ho(W; Z[ma (W) /m(W)D]) = Z[ma (W) /7 (W) D).

An (n)-Lagrangianis a submodule oHx(W; Z[m1(W)/71(W)™]), on which \, and y, vanish,
which maps via the covering map onto a Lagrangiangf

We say that a knoK is (n)-solvableif the zero framed surgeri¥lx bounds a topological spin
4-manifold W such that the inclusion induces an isomorphism on first hogyolnd such thatVv
admits two dual if)-Lagrangians In this setting, dual means that, pairs the two Lagrangians
together non-singularly and their images freely genersi@V; 7).
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f (Y, ) Df. (Y1, o) /\
\D

- D, DY \DT/
ct
D_ (V,0) Df

Figure 2: The cobordism which shows tiat — YT ~ VY.

We say thatK is (n.5)-solvableif in addition one of the if)-Lagrangians is the image of an
(n+ 1)-Lagrangian. O

An (n)-solution W is an approximation to a slice disc complementKifis slice then it is if)-
solvable for alln, so if we can obstruct a knot from being){ or (n.5)-solvable then in particular
we show that it is not slice.

It is an interesting question (Questiar?) to wonder whether the converse of Theorgrholds.
At present, AC» does not capture the subtle quadratic refinement informagiocoded in:», which
is part of Definition5.2 Until the construction ofAC; is improved so as to take the self intersection
form into account it is unlikely that the converse to Theorgrhshould hold. Perhaps rationally
there is more hope.

The idea of the proof of Theoref.1 is as follows. The Cappell-Shaneson technigG&T4
looks for obstructions to being able to perform surgery onraahifold W whose boundary is
the zero framed surgerilk, in order to excise the secoril-homology and create a homotopy
slice disc exterior. The main obstruction to being able tdhie surgery is the middle-dimensional
intersection form ofW, as in the Cochran-Orr-Teichner definition af){solubility. However,
even if the Witt class of the intersection form vanishes hvdbefficients inZ[r1(W) /1 (W)@)]
for testing (15)-solubility, this does not imply that we have a half badishe second homology
Ha(W; Z[m1(W) /71(W)@)]) representable by disjointly embedded spheres, as oarfdasurgery:
typically the homology classes will be represented as endbdurfaces of non-zero genus, whose
fundamental group maps inte (W)@, We cannot do surgery on such surfaces.
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However, the conditions on a.@)-solution are, as we shall see, precisely the conditiegsired
for being able to perfornalgebraic surgery on the chain complekthe (15)-solution. The (5)-
level algebra cannot see the differences between (2)emgfand spheres, so that we can obtain an
algebraic (1.5)-solution V.

In particular, the existence of the dual (1)-Lagrangiaovedl us to perform algebraic surgery
without changing the first homologat the Z[Z] level, therefore maintaining the consistency con-
dition. When performing geometric surgery on a 4-manifgilalong a 2-sphere, we remove
& x D? and glue inD2 x St. Removing the thickenindgd? potentially creates new elements of
H1(W; Z[Z]). However, the existence of a dual surface to $evhich we remove guarantees that
the boundaryS' of the thickeningD? bounds a surface on the other side, so that we do not create
extra 1-homology. This phenomenon will also be seen wheforing algebraic surgery; as ever,
the degree of verisimilitude provided by the chain levelrapph is somewhat remarkable.

Definition 5.3 An n-dimensional symmetric comple(p € Q"(C, ¢)) isconnectedf Ho(po: C™* —
C.) = 0. An n-dimensional symmetric pairf (C — D, (0p,p) € Q"(f,¢)) is connectedif
Ho((60, pof )T : D" * — %(f).) = 0. O

Definition 5.4 [Ran8Q Part I, page 145] Given a connecteelimensional symmetric chain com-
plex over a ringA, (C,¢ € Q"(C,¢)), analgebraic surgeryon (C, p) takes as data a connected
(n+ 1)-dimensional symmetric pair:
(f: C— D, (0p,») € Q(f,2)).

The output, or effect, of the algebraic surgery is the cotatko-dimensional symmetric chain
complex overA, (C', ¢ € Q(C,¢)), given by:

de 0 (=1)"pof*

do = (1 do  (—=1)dwo
0 0 ~1)ép
Cl=CoDpoD"" 5C ,=C_1®D @D "2

with the symmetric structure given by:

Yo 0 0
o = | D" ()" Tder (100
0 1 0
cCh ' =C""¢D"" gD, - C =C @D 1D and
Ps 0 0
s = | D" fTepsir (WD) Tedpsia O
0 0 0

C/nfr+s — Cnfr+s D anr+s+1 D Dr—s+1 N C; — Cr D Dr+1 D anr+1
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fors> 1. D

The reader can check thdf, = 0 and that{¢}} € Q"(C',<). Algebraic surgery on a chain
complex which is symmetric but not Poinéapreserves the homotopy type of the boundary: see
[Ran8Q Part I, Proposition 4.1 (i)] for the proof.

Definition 5.5 The suspension morphism 8n chain complexes raises the degre&Qf =
Cr_1; dsc = dc. O

Proof of Theorem5.1 We need to show that the tripléif, VK, €K) of a (15)-solvable knotK,
with a (15)-solution W, is equivalent to the identity element gfC,, which is represented by the
triple ({0}, VY, Idsoy) corresponding to the unknot.

The chain complexNk = EX Ugkgeu YK @ YY is chain equivalent to the chain complex
C.(Mk; Z[Z x H1(Mk; Z[Z])]) of the second derived cover of the zero framed surger)KorOur
first attempt for a chain complex which fits into a 4-dimensi@ymmetric Poinc&rtriad as required
in Definition 4.3 is the chain complex of the second derived cover of thB)(4olutionW

(V',0") i= (C.(W; Z[Z = Hi(W; Z[Z])]), \A(W, Mk])),

so that H — 7T1(V\/)(1)/7T1(\N)(2) = H1(W; Z[ 7)),

and we have the triad:

Id,ld ®w
(EX, %) @ (EY, —gV) 20978 ek g
K
( 770 nCL)J > (’YK/V“/U) k)

K gk u u (hF9) Iy
(Y 7(1) )EB(Y 7—@ )4>(V7®)7

with a geometrically defined consistency isomorphism
H = Hy(W; Z[Z]) = Hi(Z[Z] ®z1zn1 V).

The problem is that»(W; Z) is typically non-zero: if it were zero, we would have ouradggical
concordance exterior and in particullérwould be second order algebraically slice. We therefore
need, as indicated above, to perform algebraic surgery’oto transform it into aZ-homology
circle. We form the algebraic Thom complex (Definitiari):

C*(Wv MK: Z[Z X H/]) ~V = %((57 (_1)!’—1,.)/K’ (_1)I’—l U7 _jK7 _jU):
(N =EfoE  oE ;e Y oY - V),

with symmetric structured = ©’/(0 Ugks,_gu @€ & —®Y). In this section the bar is again a
notational device and has nothing to do with involutions.
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This gives us the input for surgery, since the input for atgebsurgery must be a symmetric
chain complex. Next, we need the data for surgery.

Asinthe proof of COTO03 Proposition 4.3], any compact topological 4-manifoldtheshomotopy
type of a finite simplicial complex: se&E77, Annex B Ill, page 301]. In particular this means that
Ho(W; Z) is finitely generated. We therefore have homology clages. , I}, € Hao(W; Z[Z x H'])
which generate the (2)-Lagrangian whose existence is gtesd by definition of a (5)-solution
W. There are therefore dual cohomology classes. ., Ik € H*(W, Mx; Z[Z x H']), by Poincaé-
Lefschetz duality. Taking cochain representatives foséheve have mags: Vo, — Z[Z x H']. We
then take as our data for algebraic surgery the symmetrnic pai

(F: V= B:=S(EP ZIZ x H)), (0,8)),
k

where

f=(1...,00": Vo= By =P Z[Z x H.
k

The fact that thel; are cohomology classes means thaf; = 0, so thatf is a chain map.
The requirement that thE generate a submodule éfo(W;Z[Z x H']) = Hx(V’) on which the
intersection form vanishes means that the dijajgnerate a submodule B?(V) on which the cup
product vanishes. The cup product of any tixd; is given by:

Al @ AW, Mk]) = (Ii @ ) (Ao([W, Mk])) = (Ii ©1;)Oo,
which under the slant isomorphismli®ol*, and so we see that each of these composites vanishes.

The only possibility for non-zero symmetric structure ie tthata for surgery would arise when
s=n—-2r—1=4-2-2—1= —1, so no such non-zero structure maps exist. Therefore the
condition for our data for surgery to be a symmetric pair & H0of = 0; which is the condition
that thek x k matrix with (,j)th entry |;0ql*, is zero. This is satisfied as we saw above, since
Ii@olj*: Z[Z x H'] — Z[Z = H’] is a module homomorphism given by multiplication by the sam
group ring element as the evaluation on the relative fundaahelass Y, Mk] of the cup product
of two cohomology classes dual to the (2)-Lagrangian, andggmls the value of,(l, Ij’). This
means that we can proceed with the operation of algebragesuto form the symmetric chain
complex ¥/, ©), which is the effect of algebraic surgery, shown below. \Wg/mssume, since/ is
a 4-manifold with boundary, that we have a chain compléxvhose non-zero terms ax§, Vi, V5
andVj. The non-zero terms il will therefore be of degree less than or equal to four.
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The output of algebraic surgery, which we denote\ass) is then given, from Definitios.4, by:

A%

ax
x V.
(d\*_/f ) V2<_f®0>_3 (dik_/o) 4

VO IViem? Via B, Y
6y O _
(%) ()
5}
(o) B 5 o
(o) 1O, -1
V4 v?,@BZ VZ V1@52—>VO.
d_

(1) =

The higher symmetric structuré3s are just given by the map8s for s = 1,2, 3, 4 except for the

map: o T 4 —

©1= ( O1, —fTO, ) 'V —= Vi@ B,

Next, we take the algebraic Poinéahickening (Definitior2.1) of V to get:
iv: OV — VA,

where, as in Sectio®, we define the comple)(“—* by:

(V5 ) = Homyzunn (Va_r, ZIZ x H')),

with boundary maps)*: (V¥ )41 — (VA¥*), given by 0* = (—1)*idy, where &, is the
coboundary map. ByRan8Q Part |, Proposition 4.1 (i)], the operation of algebraicgsuy does
not change the homotopy type of the boundary. There is theref chain equivalence:

(Nk, 0 Uy gu @@ —@Y) 5 (9V,00),

so that using the composition of the relevant maps in:
Nk = EX Ugkgeo YR @ YV 55 0V — vA—~

we again have a 4-dimensional symmetric Poiadarnd:
(EX. o) @ (EY, —¢V) ——— (EX,0)

L

(YK, &%) g (YY, —@VY) (V4*,0).
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To complete the proof we need to check the homology conditmDefinition 4.3, namely that
V4= has theZ-homology of a circle and the consistency condition thatetis an isomorphism
¢ H = Hy(ZIZ) @zpz0nn V). We have:

Ha(Z @zz517 V) 2 HUZ @770 V) = HOW, Mk Z) 22 Ha(W; Z) = 0, and
Ho(Z @71z V™) 2 HYZ @711 V) 2 HYW, Mk; Z) = Ho(W; Z) = Z,

as required. For each basis element (0,0,1,0,...,0) € B?, where the 1 is in théth entry, we
have, forv € V5,

f©0,...,0,1,0,...,0)(v) = (0,...,0,1,0,...,0)f(v)
= (0,...,0,1,0,...,0)(1,...,1)T(V) = li(v).

This means, since riplies in the image ot} : V! = V2 thatthe kernel ker€’, : Vies? - VZ)
is isomorphic to ke V! - V%), so that:
H3(Z ®z1zxnn V) = HYZ @701 V) =2 HY(W, Mk; Z) = 0.

Also, since the; are in the image of *, they are no longer cohomology classesvf * as they
were of V.

At this point we need the dual classes; recall that we hawe Definition5.2, classesl), ..., d, €
Ha(W; Z[Z]), whose images itl2(W; Z) we also denote by, . . ., di, which satisfyAs (If, d)) = dj.
We therefore have, by Poin@&lefschetz duality, classes:

di, ..., d € H3W, Mk; Z[Z]),

with representative cochains which we also dertte. ., dy € V2.

Since, as above, the intersection form is defined in termseo€tip product, we have, ovéfZ]
andZ, that: ——
i©od" = dj.
We can usd®, = TO, instead 0fd, to calculate the cup products due to the existence of theshigh
symmetric structure chain homotogy,. Then

—FOu(d) = —FOud'(1) = —(1100(1).. .., kO (1))
= —(0,...,0,1,0,...,0)" = —g,

where the 1 is in thgth position, and foj = 1,... k we denote the standard basis vectors by
g :=(0,...,0,1, 0,...,0)" € B,. This means that the; are not in the kernel of—@g. Then,
since d(dj) = O as thed; are cocycles inv, we know that thed, are no longer cohomology
classes iNHx(Z ®zjzxH1 V4). The groupH*(Z ®zrzxn V) was generated by the classes
l1,..., Ik di1,...,dk, which means that we now ha¥(Z ®zzn V4*) = 0.
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Moreover, over bothZ[Z] and Z, taking the elemenD := Z!‘:l gd;, for any elements
a,...,a € Z[Z], we have that:

k k
~fOy(-D) =>_ afOpd’ (1)) =D ag € By.

i—1 i—1
This means that-f ©; is onto B,. Therefore:
H1U(Z @zizxn V) = HA(Z @z1z017 V) = HY(W, Mk; Z) = Hy(W; Z) = Z,

so the firsthomology remains unchanged atZHevel as required. Similarly, witi[Z] coefficients,
we have the isomorphisms:

H' = Hi(W; Z[Z]D) = H3(W, M Z[Z])
= HZIZ] @225 V) = Ha(ZIZ] @1z V),
which define the map L~ 4
§H — Hi(Z[Z] ®z1zxnn V77,
so that the consistency condition is satisfied. Sikteis isomorphic to theZ[Z]-homology
of a finitely generated projective module chain complex Wwhi a Z-homology circle, we can
apply Levine’s arguments_pv77, Propositions 1.1 and 1.2], to see th4dt is of type K. This

completes the proof that @)-solvable knots are second order algebraically slicalgebraically
(1.5)-solvable. O

Theoremb.1shows that the homomorphism frafnto AC» factors through7, 5, as claimed.

6 Extracting first order obstructions

In this section we obtain a surjective homomorphism frdit}, to Levine’s algebraic concordance
group AC;. In itself this is an important property which a respectati¢ion of a second order
concordance group ought to have; moreover, this is thefiggiis defining the Cochran-Orr-Teichner
obstructions algebraically.

We give the definition ofAC; in terms of Blanchfield forms. For proofs of its equivalencéhe
standard definition in terms of Seifert forms, s&e&73 and [Ran03.

Definition 6.1 TheBlanchfield forniBla57] of a knotK is the non-singular Hermitian sesquilinear
pairing
BI: Hi(Mk; Z[Z]) x Hi(Mk; ZIZ]) — Q(Z)/Z[Z] = Q) /Z[t,t™*]
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adjoint to the sequence of isomorphisms

Hi(Mk; Z[Z]) = H?(M; Z[Z]) = HY(Mk; Q(Z)/Z[Z))

=, Homyzy(Hi(Mc; ZIZJ), %),

given by Poinca duality, the inverse of a Bockstein homomorphism and theewsal coefficient
spectral sequence (sdeel77).

We say that a Blanchfield form isetabolicif it has a metaboliser. Ametaboliserfor the
Blanchfield form is a submodule C H;(Mg; Z[Z]) such that:

P =Pt := {ve Hi(M; Z[Z]) | BI(v,w) = O for allw € P}.
O
Definition 6.2 The algebraic concordance group, first definedLievp9 and which we denote

AC1, is defined as follows. A Blanchfield fornB[a57] is an AlexandelZ[Z]-moduleH (Theorem
3.1) with a Z[Z]-module isomorphism:

Bl: H = H" := Homyz(H, Q(2)/Z[Z]),

which satisfies Bl= BI"*. We define the Witt group of equivalence classes of Blanahfi@ims,
with addition by direct sum and the inverse ¢i,8l) given by H, —BIl). We call an element
(H, Bl) metabolic if there exists a metaboliserC H such thatP = P with respect to Bl. We say
that H, BI) is equivalent to i, Bl’) if (H @& H’, Bl & — Bl’) is metabolic. Lemm#.3 states the
rational version of the fact that this is transitive and ertffore an equivalence relation. The integral
version is harder, but follows from the proof (see el8af03 Theorems 3.10 and 4.2]) of the fact
that the Witt group of Seifert forms and the Witt group of Bihfield forms are isomorphic. 0O

We only prove the rational version of the following lemmanc& this is what we will need
in Proposition7.5 to see that the equivalence relation used to defi6& /1 5) is transitive. In
particular, in the proof of Proposition5, we will need an explicit description of the new metaboliser
as provided by Lemmé@.3.

The proof given is, in the author’s opinion, the correct wayptove such a statement, since it
shows most clearly the correspondence of the algebra tanifherlying geometry.

Lemma6.3 Let(H,BIl) and(H’, Bl") be rational Blanchfield forms. Suppose tliatbH’, Bl ¢ Bl’)
is metabolic with metabolisd?P = P~ C H @ H’, and that(H’, Bl") is metabolic with metaboliser
Q= Q' C H’. Then(H,BI) is also metabolic, and a metaboliser is given by

R:={heH|3qge Qwith(h,q) € P} C H.
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Proof A Blanchfield form is the same as a 0-dimensional symmetrinda@ complex in the
category of finitely generate@[t, t—!]-modules with 1t acting as an automorphism. BR&n81
Propositions 3.2.2 and 3.4.5 (ii)], a metaboligefor a Blanchfield form i, Bl) is the same as a
1-dimensional symmetric Poin@pair

(f: C— D, (0,BI")),
whereC = ’H” andD = SP", in the category of finitely generaté@[t, t—1]-modules with 1t
acting as an automorphism. This is an algebraic null-casaoraf (H", BI"). Let

(%):PaH@H’andh:Q%H’
g

be the inclusions of the metabolisers. We therefore haverstnic Poincag pairs:
((g" g"):H o H" = P" =Dy, (0,BI" ©BI")

and
(W H” — Q" = Dg, (0, — BI'Y)).

We have introduced a minus sign in front of/Blso that we can glue the two algebraic cobordisms
together alondH’” to yield another algebraic cobordism:

H'A = DY
gl/\
o) (%)
0
H" = Co P& Q" = Dy,

From this we deduce that:
R:=im (HO(D”) - HO(C)>
is a metaboliser for Bi: HO(C) = H x HM — Q(t)/Q[t,t~1], where the over-line indicates the
use of the involution. Since the identificatiéi’™ = H involves an involution, we have that
R=R=im((g 0):ker((g h):P&Q=H)—H),
is a metaboliser for Bl. Finally, this is indeed equal to
{heH|3ge Qwith (h,g) € P},

as required. O

To define the mapdC, — AC;, we begin by taking an elementi (), &) € AC,, and forming
the algebraic equivalent of the zero surgéfy . Recall that we denote the triple associated to the
unknot by (0}, VY, Id¢gy). We construct the symmetric Poinéazomplex:

(N, 6) := ((Y & (Z[Z x H] @271 YV)) Uga@izxH@opmeY) E: (2 & 0) Uge_gu 0).
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In the case thay) = VK is the fundamental symmetric Poinéatriad of a knotkK, we have that
N = Nk ~ C.(Mk;Z[Z x H]). The key observation is that the Blanchfield form can be defined
purely in terms of the symmetric Poinéacomplex ¥[Z] ®@zzxH N, 1d ©0).

In the following, recall the standard notation

(ZIZ] @71z N)' = Homyz) (ZIZ] @71z Ni, ZIZ)).

Proposition 6.4 Given[X],[y] € H1(Z[Z] ®z1zxH) N), the rational Blanchfield pairing k] and
[V] is given by:

BI(X. IY) = 70

where:
X,y € (ZIZ] @zpzwm N)1, Z € (ZIZ] @71z N)Y;

0*(2) = p(y) for somes € Z[Z] — {0},

and
0y (ZIZ) @z N)1 = (ZIZ] @z N)?

is part of a chain homotopy inverse
00: (ZIZ] @71z N)r — (ZIZ] @ziz5cm) N)*,

so that
oo 0~ Id, 606~ Id.

The Blanchfield pairing is non-singular, sesquilinear amariitian.

We omit the proof, since it is long but essentially comprisgaight-forward computations. See
[Pow1l] Proposition 10.2].

Proposition 6.5 There is a surjective homomorphisaC, — AC1, which makes following dia-
gram commute:

C/Fos —— AC.

The bottom map is an isomorphism: s€&T03 Remark 1.3.2].
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Proof Given an elementH, ), £) € AC», we can find the Blanchfield form on ttfdZ]-module:
Bl: Hi(Z[Z] ®@z1zxH) N) x H1(Z[Z] @z[zxH) N) — Q(Z)/Z[Z],

as in Propositior6.4. To see that addition commutes with the mdg, — AC1, note that the
Alexander modules add as in Propositidr. The symmetric structures also have no mixing
between the chain complexes ¥fand YT in the formulae in Definitior8.7, so that, noting that
there is a Mayer—Vietoris sequence isomorphisi{Z[Z] @zjzxH] Y) = H(Z[Z] ®zzxH] N),
the Blanchfield form of a connected sum #C- is the direct sum of the two Blanchfield forms
in the Witt group. Surjectivity follows from the fact (sekgv77]) that every Blanchfield form is
realised as the Blanchfield form of a knot, and therefore @8thnchfield form of the fundamental
symmetric Poincdr triad of a knot.

We will show the following, which we state as a separate teamld prove after the rest of the
proof of Propositiort.5:

Theorem 6.6 For triple (H,Y, &) € AC, which is second order algebraically concordant to the
unknot, via a 4-dimensional symmetric Poireaair:

(: Z[Z x H'] @71z N =V, (©,0)),
if we define:
P := ker(.: Hi(Q[Z] ®zzxn ZIZ x H'] @z1zxn) N) = H1(QIZ] @771 V)),
thenP is a metaboliser for the rational Blanchfield formdm(Q[Z] ®z[zxH] N).

Before proving Theorers.6, we will first show how it implies Propositiofi.5. The Witt group
of rational Blanchfield forms is defined as in Definitiofid and6.2 and Propositior6.4, but with
the coefficient ringZ replaced byQ. Now recall that the Witt group of integral Blanchfield forms
injects into the Witt group of rational Blanchfield forms. 3ee this, first note that:

H1(Z[Z] ®zzxn) N) — H1(Q[Z] ®@zizxH) N) = Q ®7 H1(Z[Z] @771 N).

The first map is an injection sindéy(Z[Z] ®z;zxn) N) is Z-torsion free (Theorer.1), while the
second map is an isomorphism@sds flat as aZ-module. Then suppose that we have a metaboliser
Pg for the rational Blanchfield form. This restricts to a meta®y

Pz := P N (Z @z HU(ZIZ] @21z N))

for the integral Blanchfield form, since the calculatiorstrieted to the image dfl1(Z[Z] ®z[zxHN),
is the same for the two forms. The symmetric structure maharrational case is just the integral
map tensored up with the rational#()y = Idg ®z(65)z.

Therefore, the only place that the two calculations coulfédis if one tooks € Q[Z] \ Z[Z] or
z € (Q[Z] @7z« N)'\(Z[Z] ® 71z N)*. Note that we can consideZ[Z] ®zz«H) N)* as a subset
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of (QIZ] ®zzxHN)* sinceQ[Z]®@zzxmN = QRzZIZ] @zizxuN, andQ[Z] = Q®zZ[Z]. Inthe
cases that such @or such az are chosen, we can clear denominators in the equati(m = st (y)
to get0*(n2 = ng(y), for somen € Z, so that nowns € Z[Z] and nz € (Z[Z] ®@z[zxH] N)L.
Then:

90 = 70 = 170,

which is the same outcome. By Theor&6, second order algebraically slice triples map to
metabolic rational Blanchfield forms, which we have now sestrict to metabolic integral Blanch-
field forms. By applying Propositiod.9, we see that we have a well-defined homomorphism as
claimed. This completes the proof of Proposit&s, modulo Theoren®.6. O

Next, we will prove Theoren6.6. This theorem is an algebraic reworking @QT03 Theo-
rem 4.4], which we state here (for= 1).

Theorem 6.7 (J[COTO03 Theorem 4.4) SupposeMy is (1)-solvable viaW. Then the rational
Blanchfield form oM is metabolic, and in fact if we define:

P :=ker(, : Hi(Mk; Q[Z]) — Hi(W; Q[Z])),

thenP = P with respect tcBl.

In Section8, Theorem6.6 will be crucial for the control which the Blanchfield form pides
on which 1-cycles ofQ[Z] ®z[zxH) N bound in some 4-dimensional pair, which in turn controls
which representations extend over putative algebraie slisc exteriors. The proof will require
the following proposition .10 of [COT03. Since we will also require the use of Proposition
6.10 when extracting the Cochran-Orr-Teichner obstructions, give the statement here in the
non—commutative setting, even though this is not requioedhie proof of Theorens.6. Before we
can do this, we need two definitions.

Definition 6.8 A Poly—Torsion—Free—Abeliaror PTFA, groupI’ is a group which admits a finite
sequence of normal subgroups} = I'p < T’y < ... < T'x = " such that the successive quotients
Ii+1/T are torsion-free abelian for each> 0. O

Definition 6.9 TheOre conditiordetermines whether a multiplicative subSatf a non-commutative
ring without zero-divisors can be formally inverted. A rigsatisfies the Ore condition if, given
se Sanda € A, there existd € Sandb € A such thatat = sb. Then the Ore localisatios 1A
exists. IfS= A — {0} thenS~*A is a skew-field which we denote lig(A), or sometimes jusk if
A is understood. i



42 Mark Powell

Note that if A = Z[Z], then K(A) = Q(Z). The rational group ring of a PTFA group satisfies
the Ore condition COTO3 Proposition 2.5]. SeeSte75 Chapter 2] for more details on the Ore
condition, such as for the fact that the Ore localisaticid) is flat as a module oveh.

Proposition 6.10 [COTO03 Proposition 2.10] LeF be a PTFA group. IC, is a nonnegative chain
complex overQI' which is finitely generated projective in dimensiobs< i < n and such that
Hi(Q ®qr C.) =2 0 for 0 <i < n, thenH;(K ®qr C,) = 0.

The statement offOTO03 Proposition 2.10] is made with the hypothesis that therchamplex
is finitely generated free. We note that the statement carlbrad toC being a finitely generated
projective module chain complex, since this still allows tifting of the partial chain homotopies.

Proof of Theorem 6.6 A large part of this proof can be carried over verbatim from gnoof of
[COTO3 Theorem 4.4], subject to a manifold—chain complex diaignas follows. The homology
of Mk with coefficients in a ringR should be replaced with the homology oR ®zz.H] N;
the (co)homology ofW with coefficients inR should be replaced with the (co)homology of:
R®z[zxH, V; and the homology of the paik\(, M) with coefficients inR should be replaced with
the homology of:

R®zizwn €00 ZIZ x H'] @z1z1) N = V).

To complete the proof we need to show that:

() The relative linking pairingsGre; are non-singular. This will follow from the argument in
the proof of COTO3 Theorem 4.4] once we show, for an algebraic5)4solution V,
that H.(Q(Z) ®zizxnq V) = 0. Note that this also implies by universal coefficients that
H*(Q(Z) ®z1zxH V) = 0, and thatH,.(Q[Z] ®z[zxH7 V) is torsion, sinceQ(Z) is flat over
Q[z].

(i) The sequence

Ny O j«
THAQIZ] @21z €(0)) = H1(QIZ] @zgz.cmy N) 2 H1(QIZ] @zgz.c111 V)
is exact.
To prove (i) we apply Propositiof.10to the chain complex
QIZ] ®@zizxnn € o f-: Z[Z x H'] @zizxH) D— — V).
Sincej o f_ induces isomorphisms on rational homology, the relativadlogy groups vanish:
H.(Q ®qiz) QIZ] ®ziznxHn €( o)) = 0.
Proposition6.10then says that:

H.(Q(Z) ®qiz) QIZ] ®z1zxHn €( o)) =0,
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which implies the second isomorphism of:
H.(Q(Z) @zizxn V) = H(Q(Z) ®qiz1 QlZ] ®@zizxH7 V)
= H.(QZ) ®qz1 QlZ] ®z1zxH) D-).

Then sinceQ(Z) ®z[zxH) D— is given by the contractible chain compléXt) L Q(t), we see
thatH.(Q(Z) RZ[ZxH] V) 0.

The definitions of the relative linking pairings can be madeefy algebraically using chain
complexes, using the corresponding sequences of isonsonphi

TH2(Q[Z] ®@zzxH7 €()) TH3(QIZ] ®zizxnn V) —
HY(Q(Z)/QIZ] @zizxnn V) Homgz;(H1(QIZ] ®zizxn1 V), Q(Z)/QIZ]);

=
=

and

THQIZ] ®@zizxrn V) = THYQIZ] @771 V) —
HX(Q(2)/QIZ] ®zzxn1 V) = Homgzy(H2(QIZ] @7z V), QZ)/QIZ).
There are also explicit chain level formulae for the paisirity in a similar vein to that for Bl in
Proposition6.4; for us, the important point is that the above maps are intemdorphisms.

To prove (i), we show that in fadt(Q[Z] ®zz«H1 €(j)) is entirely torsion. This follows from

the long exact sequence of the pair
Idg(z) ®j: QZ) @zizxH) N = Q(Z) @771 V.
We have the following excerpt:
H2(Q(Z) ®@zizxnn V) — H2(Q(Z) @zizxhn € () — Hi(Q(Z) @z[zxH) N).
We have already seen in (i) thelb(Q(Z) ®z(zxHq V) = 0. We claim that
H1(Q(Z) ®zizxH) N) 22 0,
which then implies by exactness that the central motiE)(Z) ®zz.11 € (j)) is also zero. Then
note, sinceQ(Z) is flat overQ[Z], that
H2(Q(Z) @z1zxn1 € (1)) = Q(Z) @qpz) H2(Q[Z] @zizxn) € ()
That this last module vanishes means HatQ[Z] ®zjz«H € ())) is Q[Z]-torsion. To see the claim
that H1(Q(Z) ®z1zxn) N) = 0, recall that:
H1(Q[Z] ®zizxn) N) = H1(Q[Z] ®z1zxH) Y) = Q @z H1(ZIZ] @zizxH1 Y) = Q @7 H,

and that an Alexander modul¢ is Z[Z]-torsion, so that thé€)[Z]-moduleQ ®7 H is Q[Z]-torsion.
This completes the proof of (ii); and therefore completesioof of all the points that the chain
complex argument for Theoref6is not directly analogous to the geometric argument in tioefpr
of [COTO03 Theorem 4.4], completing the present proof and therefla@the proof of Proposition
6.5 m|
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7 The Cochran-Orr-Teichner obstruction theory

Before explaining how to extract the Cochran-Orr-Teichakstructions, first we need to define
them. In this section we not only define but also repackageCtiwhran-Orr-Teichner metabelian
obstructions, to put them into a single pointed set, whictdeoteCOT ¢ /15). This construction
involves taking large disjoint unions over all of the po$sithoices which are implicit in defining the
Cochran-Orr-Teichner obstructions. By contrast, the taogon of AC, is significantly simpler,
as well as having the advantage of being a group.

Cochran-Orr-TeichnerOTO03 use their obstruction theory to detect that certain knogsret
(1.5)- and (25)-solvable. In €T07] it is shown that certain knots ar@)¢solvable but not{.5)-
solvable for anyn € Np. We focus on the (5)-level obstructions for this exposition. Following
[Let0q, who worked on the metabelian case, Cochran-Orr-Teidthefme representations of the fun-
damental group of the zero framed surgeryr1(Mx) — I', wherel' = T'; := 7Z x Q(t)/QI[t, t™1],
their universally (1)-solvable group To define the semi-direct product In, n € Z acts by left
multiplication byt". The representation:

p: m(Mk) = m(Mk)/m1(Mk)® = Z x Hi(M; Q[t, t7Y]) — Z x Q(t)/Q[t, t 1]

is given by: g — (n = ¢(g),h = gt=?©@) — (n,BI(p,h)), where ¢: m1(Mx) — Z is the
abelianisation homomorphism andis a preferred meridian inr(Mg), the pairing Bl is the
Blanchfield form, and is an element of1(Mk; Q[t,t~1]).

Now suppose that there is (1)-solutiovi. As in Theorenb.7, define
P := ker(..: Hi(Mk; Q[Z]) — H1(W; Q[Z])).

Then for eachp € P, by [COT03 Theorem 3.6], we have a representatjgnmi (W) — I", which
enables us to define the intersection form:

A2: Ho(W; QT) x Ho(W; QI') — QT

Since W is a manifold with boundary, this will in general be a singuilatersection form. To
define a non-singular form we localise coefficients: Coct@anTeichner use the non-commutative
Ore localisationto formally invert all the non-zero elements QI to obtain a skew-fieldC,
as in Definition6.9; note thatI' is a PTFA group, so the Ore localisation exists IBO[T03
Proposition 2.5].

As is proved in COTO03 Propositions 2.9, 2.10 and 2.11 and Lemma 2.12], the haygobd
Mk = OW vanishes withC coefficients. Therefore the intersection form on the midiiteensional
homology of W becomes non-singular ovét, so we have an element in the Witt group of non-
singular Hermitian forms ovek’. Moreover, using Propositiof.10, control over the size of the
Z-homology translates into control over the size of #iehomology of W. To explain how this
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gives us a well-defined obstruction, which does not depertti@choice of 4-manifold, and how
this obstruction lives in a group, we defihegroups and the localisation exact sequende-theory.

Definition 7.1 ([Ran8Q1.3) Two n—dimensionak—symmetric Poinc&finitely generated projec-
tive A-module chain complexe<£( ) and C', ') arecobordantif there is an §+ 1)-dimensional
g-symmetric Poincdr pair:

(faf/): C@ C, — Da (5@590 D _80/)

The union operation offan8Q Part |, pages 117-9] shows that cobordism of chain compliexe
a transitive relation. The equivalence classes of symmewincaé chain complexes under the
cobordism relation form a group’(A, ), with

C.p)+(C,¢)=(CaC pa¢) —(C,p)=(C,—p).

As usual if we omits from the notation we assume that= 1. In the casen = 0, L°(A) coincides
with the Witt group of non-singular Hermitian forms ov&r O

Note that an element of aln-group is in particular a symmetrioinca chain complex. This
means that the intersection forms of (1)-solutions typycgive elements ofL°(C) but not of

LO@Qr).

Definition 7.2 ([Ran8] Chapter 3) The_ocalisation Exact Sequence in L-theasygiven, for
a ring A without zero divisors and a multiplicative subset= A — {0}, which satisfies the Ore
condition, as follows:

co= L"A) — LYSTA) -5 LA = LA — -

The relativeL-groupsL"(A,S) are defined to be the cobordism classesrof-(1)-dimensional
symmetric Poincdr chain complexes oveh which become contractible ove3 1A, where the
cobordisms are also required to be contractible &e. Forn = 2 this is equivalent to the Witt
group of S~*A/A-valued linking forms orH?* of the chain complex.

The first mapL"(A) — L"(S~1A) in the localisation sequence is given by considering archai
complex over the ringA as a chain complex ove® *A, by tensoring up using the inclusion
A — S IA. The salient effect of this is that some maps become intertithich previously were
not. We say that a symmetric chain complexisPoincag if it is Poincaé after tensoring withiC.

The second map"(S~*A) — L"(A, S is the boundary construction. Le€(, ) represent an
element ofL"(S1A). By clearing denominators, there is a chain complex wtsathain equivalent
to (C,, ), in which all the maps are given in terms 8f We may therefore assume that we
have a symmetric but typically not Poinéacomplex C., ¢) over A, and take the mapping cone
% (po: C"* — C,). This gives, as in Definitio2.1, an (1 — 1)-dimensional symmetric Poin@&r
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chain complex oveA which becomes contractible ov8rtA, sinceyy is a chain equivalence over
S A, i.e. we have an element af(A, S).

On the level of Witt groups, this map sends a HermitBirtA-non-singular intersection form
overA, (L, \: L — L*), to the linking form on coker: L — L*) given by: &,y) — z(X)/s, where
X,y € L*,z€ L,sy= A\(2) [Ran81 pages 242-3].

The third mapL"(A, S) — L"1(A) is the forgetful map on the equivalence relation; it fosgie
requirement that the cobordisms be contractible &&w, simply asking for algebraic cobordisms
overA. O

The obstruction theory of Cochran-Orr-Teichner, for du#arepresentationsri(Mx) — T,
detects the class ofC((Mk; QT), \A([Mk])) in L*QT,S), whereS := QI — {0}; we have an
invariant of the 3-manifoldMy. The first question we ask, corresponding to (1)-solvahbili
whether the chain complex dflx bounds overQI'. Suppose thaK is a (1)-solvable knot. Then
we have a symmetric Poin@acomplex

(C(Mk; Q). \A([Mk])) € kerL*(QL, §) — L3(QD)).

The obstruction which detects that there iskiecontractible null-cobordism df..(Mk; QI') there-
fore lies inL*(K)/im(L*(QI)).

A (1)-solution W defines an element of*(C) by taking the symmetridC-Poincaé chain

complex:
(C.(W, Mk; K) = K @gr C«(W, Mg; QL'), \A([W, Mk])).

The image ofL*QT") represents the change corresponding to a different cludi¢é)-solution
W: the obstruction defined must be independent of this chaBiace 2 is invertible in the rings
K and QI', we can do surgery below the middle dimensi&tap8Q Part I, 3.3 and 4.3] to see
that our obstruction lives in.%(XC)/im(L°(QT’)). Taking two choices of 4-manifoldV, W' with
boundaryMg and gluing to formV := W Uy, —W', we obtain a 4-manifold whose image in
L4(QI") = LO(Qr") gives the difference between the Witt classes of the iattisn forms ofw and
W, showing that the invariant ih®(kC)/ im(L°(QT")) is well-defined. If this obstruction does not
vanish therK cannot be (B)-solvable and therefore in particular is not slice.

The main obstruction theorem of Cochran-Orr-Teichnehat(iL5) level, is the following:

Theorem 7.3 [COTO03 Theorem 4.2] LeK be a knot, and define, for eaphc H1(Mg; Q[Z]) :

B := (C.(Mk; QI), \A(IM])) € LY@, QT — {0}).

Suppose thaK is (1)-solvable via a1)-solutionW. Then there exists a metaboliser= P+ C
H1(Mk; Q[Z]) such that for alp € P,

B € ker(L*@Qr, QI' — {0}) — L3(QT)).
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Suppose thak is (1.5)-solvable via 41.5)-solutionW. Then there exists a metaboliger= P+ C
H1(Mk; Q[Z]) such that for alp € P, B = 0.

Proof We give a sketch proof. The fact that a meridiatKafaps non—trivially undep is sufficient,
asin [COTO3 Section 2], to see that, (Mk; K) ~ 0, sothatindee® < L*(QI', QI'—{0}). The (1)-
solvable condition ensures, by Theorériiand [COT03 Theorem 3.6], that certain representations
extend overri(W), for (1)-solutionsW, so thatB — 0 € L3(QI). If W is also a (15)-solution,
there is a metaboliser for the intersection formks(W; K): as mentioned above the fact that we
have control over the rank of tl#&-homology translates into control on the rank of tiehomology.
We have a half-rank summand on which the intersection fornist@s: the intersection form is
therefore trivial in the Witt groud-°(K). Since L4(K) = LY(K) by surgery below the middle
dimension, we indeed hag&= 0. D

We now define a pointed set, which is algebraically definedchvive call theCochran-Orr-
Teichner obstruction setand denote (QO7T /15, U). The above exposition then enables us to
define a map of pointed sety/ F(15) —+ COT ¢/15): the Cochran-Orr-Teichner obstructions do
not necessarily add well, so we are only able to considerntg@aisets, requiring that @&)-solvable
knots map taJ, the marked point o€ OT ¢,15). The reason for this definition is that the second
order Cochran-Orr-Teichner obstructions depend for tthefinitions on certain choices of the way
in which the first order obstructions vanish. More precisflyeach elemenp € Hi(Mg; Q[Z]) we
obtain a different representation(Myx) — I' and therefore, if it is defined, a potentially different
obstructionB from Theorem?7.3. The following definition gives an algebraic objeCtOT ¢ /1 5),
which encapsulates the choices in a single set. Our secded algebraic concordance grou{t’,
gives a single stage obstruction group from which an elewfef©7 1 5) can be extracted; for this
see Sectio®. | would like to thank Peter Teichner for pointing out thatugit to make Definition
7.4

In the following definition, for intuition, K, #) should be thought of as corresponding to the
symmetric Poincdr chain complex of the zero surgevli on aknotinS®, T' := Z x Q(t)/Q[t, t 1],
andH should be thought of as correspondingHg(M ; Q[Z]). There is no requirement thatl(6)
actually is the chain complex associated to a knot: we ar&ingmore abstractly.

Definition 7.4 LetH be arational Alexander module, that i§Z]-module such thatd = Q®zH’
for someH’ € A. We denote the class of suthby Q ®7 A. Let
Bl: H x H — Q(t)/Q[t,t ]

be a non-singular, sesquilinear, Hermitian pairing, angle H. We define the set:

L\ g1 ,p(QL, QL — {0})
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to comprise pairs {{, 0 € Q3(N)), ¢), where (N, #) is a 3-dimensional symmetric Poinéazomplex
over QI' which is contractible when tensored with the Ore localwafC of QI':

K ®@gor N ~ 0,
which satisfies:
H.(Q @gr N) = H.(S' x §; Q);
and wheret is an isomorphism
¢ H = H1(Q[Z] ®gr N).

Using the 3-dimensional symmetric Poingathain complex@[Z] ®qr N, Id ®0), we can define
the rational Blanchfield form (see Propositiém):

BI: Hi(Q[Z] @gr N) x H1(QIZ] @qr N) — Q()/Q[t,t].
We require that: BK,y) = §I(§(x),§(y)) for all x,y € H. In the case thap = 0 € H, we have a
further condition that:
(2) (N, 60), £)o = ((QIZ] ®qr N, 1d ©0),€) € L, g o(QI', Q' - {0})
We consider the union, for a fixed € Q ®7 A and a fixed BI:H x H — Q(t)/QJ[t,t™1]:
AFc/1s(H, B = | | Li{ g p(QL, QL — {0}),

peH
over allp € H. Next, we consider the union over all possibleand Bl of a class of certain subsets
of AF¢/1.5(H, Bl), namely the subsets which have one elemerhlﬁgglvp((@l“, QI —{0}) for each
peH:

U { LJN,0),9p) © AFcsH.BI}.
HEQ®y A peH
Bl: H—=Exty; (H,Q[Z])

By defining a partial ordering on this class we can make it &nget by taking an inverse limit. For
eachQ[Z]-module isomorphismx: H = H%, we define a map

et L g1,p(QL, QL — {0}) = L g oy (Q, QL — {0}),
where BY°(x,y) := Bl(a—1(x), a—1(y)) by
(N6 € Q*(N)),&) — (N,0 € Q*(N)),£ oY)

This defines a map:
ayt AFc/15(H, Bl) = AFc/15(H”,BI%),

which we use to map subsets to subsets. We say that a subset:
| ] {((N,6),8)p} € AFc/15(H,BI),

peH
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is less than or equal to

| | {(N,0),6%)q} € AF(c/15(H™,BI"),
qeH”

if the latter is the image of the former under. We then define:

AF s =1 L] ((N.0.) € AFe/a(H.BY M € Qo A

peH

Bl: H= ExﬁQ[Z](H,@[Z])}.

Finally, we must say what it means for two elementsiof ¢ /1 5y to be equivalent, in such a way
that isotopic and concordant knots map to equivalent el&sT®Em 7 ¢ /1 5y, and we must define the
class of the zero object, so that we have a pointed set.

The distinguished point is the equivalence class of then®dsional symmetric Poindachain
complex:
U= ((Qr @gz C(S' < Q2D \A(S' x ), = Id: {0} — {0})

€ AF/15({0}, Blig)).

We declare two elements ofF ¢ /1 5) to be equivalent, denoted, if we can choose a representative
class for the inverse limit construction of each i.e. pigiresentatives:

| ] {(IN,6),)p} € AFc/15(H, B and | | {((N,67),¢N)q} € AFc/15(HT,BIT)
peH qeHt

for someH, H' € Q ®7 A, such that there is a metaboliserC H @ H' of
Ble —BI": Ho H x Ha HT — Q(Z)/Q[Z]
for which all the elements df*(QI", QT — {0}) in the disjoint union:

|| {(MNp & NE, 6 —00), & @ £} € AF(cj15(H @ HT,Bl® — BIT)
(p.9)eP
bound a 4-dimensional symmetric Poineaair

(p @38 Np® N&§ = Vip,0), (00(p,00: 0p © —08) € Q*(ip @ j{))
over QI" such that
H1(Q ®qr Np) = H1(Q ®qr V(p.g) < H1(Q ®qr N),
such that the isomorphism

& @€l HeHT 5 Hi(QIZ] @gr Np) & Hi(QZ] ©gr NY)
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restricts to an isomorphism
P = ker (Hy(Q[Z] ®gr Np) ® Hi(QIZ] @gr N§) — H1(QIZ] @qr Vi),
and such that the algebraic Thom complex (Definitibf), taken over the Ore localisation, is
algebraically null-cobordant ih(KC) = LY(K):
[(KC @qr € ((p @ i§). 1d ©30(p.q) /(0 & —0))] = [0] € LK)
The relation~ is an equivalence relation: see Propositioh

Taking the quotient ofAF ¢ /1 5) by this equivalence relation defines the second order Coehra
Orr-Teichner obstruction pointed s€&t®@7 ¢ /1.5), U): there is awell-defined map from concordance
classes of knots modulo .8)-solvable knots to this set, which maps5)tsolvable knots to the
equivalence class df, as follows.

Define H := H;(Mg;Q[Z]). For eachp € H, we use the corresponding representation
p: m1(Mk) — T to form the complex:

(N, 0), ) := ((QT @z, CeMic; ZIm1(Mi)D), \A(IMK])), €) € L g1 5(QI, QT — {0}).

This gives a well-defined map: see Proposifio® This completes our description of the Cochran-
Orr-Teichner pointed set. O

Proposition 7.5 The relation~ of Definition 7.4is indeed an equivalence relation.

Proof To see reflexivity, note that the diagortdlC H & H is a metaboliser for Bb — Bl. Then
takeV(p,p) = Np andéf, p) := 0. Itis straight—forward to see that is symmetric. For transitivity,
suppose that

| ] (N,6),9p~ | | (NT,6%),¢N)q

peH geHt
with a metaboliseP C H @ HT and chain complexes/(; ), 80(p.q)), and that
LI 07, €Na ~ || (NF,67), €.
qeHT reH#
with a metaboliseQ C H' @ H* and chain complexed/(qr), 50(q,r))-
We define the metabolis& C H @ H* by
R:= {(p,r) e H@® H*|3q e HT with (p,q) € Pand @,r) € Q}.

The proof of Lemmab.3 shows that this is a metaboliser. For eaphr] € R we can therefore
choose a suitablg and so glue the chain complexes:

Vo) 00n) = (Vip.a Ung Vian: 30p.a Yg; 90(an),
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to create an algebraic cobordism for eaplr] € R. Easy Mayer-Vietoris arguments show that the
inclusionsN, — V(py andNf — V) induce isomorphisms on firgp-homology, and that

& @& HaeHY S Hi(QIZ] @or Np) & Hi(QIZ] ®qgr Nf)
restricts to an isomorphism
R = ker (H1(Q[Z] @qr Np) & Hi(QIZ] @gr Nf) = H1(QIZ] @qr V)

Since K ®qr N{ ~ 0, the elements ob4(K) add and we still have the zero elementld{K) as
required. O

Proposition 7.6 The mapC/F.s) — COT /15y in Definition 7.4is well-defined.

Proof To see that the map is well-defined, we show that if — KT is (1.5)-solvable, then the
image ofK is equivalent to the image &' in COT ¢/15)- LetW be a (15)-solution forK § — KT,
and let

P = ker(H1(Mk; Q[Z]) ® H1(Mk+; Q[Z]) — H1(W; Q[Z])),

noting that
H1(Mk; QIZ]) & Hi(Mg:; QIZ]) = Hi(My; _k+; QIZ]).

We define, for all §,g) € P, V(p g = Cu(W, My _ki; QL) to be the chain complex aV relative
tO MKﬁ—KJf .

Then K ®qr V(p,g represents an element bf(K) as in Definition7.2 SinceW is a (15)-
solution, as in Theorem.3, we haveB = 0. That is, the intersection form &f, ) is hyperbolic as
required.

Applying the algebraic Poincarthickening (Definition2.1) yields a symmetric Poincarpair
C.(M 4 —kt: QT)p.g) — Vipgy- Now note that

C.(Mk 4 k1 QD). = C(Xk U St x St x 1 U X¢i; QD) p.g)-

By gluing the chain complex, (St x D? x |; Q) to V(‘:;q’; along C,(St x St x I;QI"), we obtain
a symmetric Poincérpair

(Co(M; QD)p @ C.(M1; QD)g — Vipg). (80p.cp, Op @ —08).

This gluing does not change the elementLéfkC) produced, sinceC, (St x D? x |;K) ~ 0. We
therefore indeed have thit and KT map to equivalent elements #O0T ¢/15), asclaimed. D



52 Mark Powell
8 Extracting the Cochran-Orr-Teichner Concordance Obstructions

In this section we define a mapiC; — COT /1.5 and show that it is a morphism of pointed sets.
Recall thatl' := Z x Q(t)/Q[t,t™Y]. A map C/Fus — COT /15 was implicitly defined in
Section7. We will prove the following theorem:

Theorem 8.1 A triple in AC, which is second order algebraically concordant to thedrifithe
unknot has zero Cochran-Orr-Teichner metabelian obginjate. it maps tdJ in COT /15 See
Theorem8.5for a more general and precise statement.

We can summarise the results of this section in the follovdiagram:

C/Fs) AC,
~ |

~
~ |
~

RN
COT ¢/15)
Recall that we use dotted arrows for morphisms of pointesl set

To define the mapAC,; — COT ¢/1.5), as in Sectiorb, we begin by taking an elemert (V, §) €
AC,, and forming the algebraic equivalent of the zero surgddry. We construct the symmetric
Poincare complex:

(N, 6) = ((Y ® (Z[Z x H] @271 YV)) Uea@izxHzopmeY) E: (2 & 0) Uge_gu 0).

By defining representation x H — I", we will obtain elements of *(QI', Q" — {0}). Recall
that L*(QI, QI" — {0}) is the group of 3-dimensional symmetric Poire@hain complexes over
QT which become contractible when we tensor over the Ore kai#din (Definition6.9) IC of QI
with respect toQI" — {0}. The groupL*(QT', QT" — {0}) fits into the localisation exact sequence:

L*@QI) — L*(K) — LYQI', QI — {0}) — L3(@QI).

The reduced.®-signature (COTO03 Section 5]) obstruct the vanishing of an elemenitC) / im(L°(QL)).
After the proof of Theoren8.1, we will describe how to define these signatures purely imseof

the algebraic objects illC,. By making use of a result of Higson-Kaspard#{97] which applies

to PTFA groups, we do not need to appeal to geometric 4-nldsito calculate the Von Neumann
p-invariants.

In order to define a representatipn Z x H — T', first we choose @ € H, and then define:
p: (n,h) = (n,Bl(p,h)) € T,

where Bl is the Blanchfield pairing, which is defined dnas follows.



A Second Order Algebraic Knot Concordance Group 53

Composet with the rationalisation map, to get:
¢ H = HU(ZIZ] @zzh) N) — H1(QIZ] ®zizwr) N).
The second map is injective by Theoré&m (b): H is Z-torsion free. In this section we abuse
notation and also refer to this compositionéoWith the rationalisation map as

We define BI:H x H — Q(t)/Q[t, t~] by:
Bl(p, h) := BI(&(p), £(M)).

Proposition 8.2 The chain complex(QT" ®zzxn) N, Id ®6) defines an element & (Qr, QI —
{0}). That is,K @gr QI ®zzxH N is contractible.

Proof First note thaf is a PTFA group (Definitior6.8), since [',I'] = Q(t)/QI[t, t~1]; therefore
[[,T7 is abelian and'/[T", '] = Z. The fact thatl" is PTFA means that, byJOTO3 Proposition
2.5], the Ore localisation of)I" with respect to non-zero elemenfd” — {0} exists. The proof
follows that of [COTO03 Proposition 2.11] closely, but in terms of chain complexd$e chain
complex of the circleC,(S'; Q[Z]) is given by Q[Z] L Q[Z]. Tensor withQI" over Q[Z] using
the homomorphisnp o (f_)., where we have to defind_(),: Z — Z x H. Recall thatf_ is a
chain map in our symmetric Poinéatriad ) (Definition 3.4), and so we definef (), to be the
corresponding homomaorphism of groups: there is, as evgmaissis between the group elements
and the 1-chains of the complex. The homomorphign).( Z — Z x H sendst — (1, h1), where
h; is, as in Definition3.4, the element oH which makesf_ a chain map. Thus, passing from
C.(S: Q[Z]) to C.(S'; QI), we obtain:

QI ®gpy Q[Z] = Qr L0,

QI ®qiz; Q[Z] = Q.
The chain map
1®f_: Ci(S,Qr) = QI ®zzxH D— — QT @zpzx1; Y — QT @7z N,
is 1-connected on rational homology. Therefore, by the kexart sequence of a pair,
Hk(Q ®gr €(1® f_: C.(Sh QT) — QT @zzxm; N)) =0
for k= 0,1. We apply Propositios.10 with n =1 andC, = ¥(1 ® f_), to show that:
Hk(K ®qr (1 ® f_: C.(S5QI") — QI @z1zxH) N)) =0

for k = 0,1. This implies, again by the long exact sequence of a pait,ttiere is an isomorphism
Ho(Sh; K) = Ho(C ®z1zxH] N) and a surjectioH,(S'; K) — H1(K ®z1zxH] N). As in the proof of
[COTO03 Proposition 2.11]f maps to a non-trivial element

po(fo)«(t) = p(L,h) = (1, BI(p, hy)) € I.
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Thereforep o (f_).(t) — 1 # 0 € QT is invertible in K, so H.(S; KC) =2 0. This then implies that
H(K ®zizwH) N) = 0 fork=0,1.

The proof thatQI" ®z;z«H) N is acyclic overk is then finished by applying Poin@duality and
universal coefficients. The latter theorem is straightvmd sinceC is a skew-field, so we see that:

H(K @qgr (QT ®z(zxH) N)) =0

for k = 2,3 as a consequence of the corresponding isomorphismk fer0,1. A projective
module chain complex is contractible if and only if its howm} modules vanislHan02 Proposi-
tion 3.14 (iv)], which completes the proof. O

Remark 8.3 We can always define, for any representation which ntae a non-trivial element
of I', amapAC, — L*QI, QI — {0}). However, we will only show that it has the desired property:
namely that it maps @& .AC, to 0 € L*QI',QI" — {0}), in the case thag(p) € P (recall thatp
was part of the definition of a representatipnZ x H — T"), for at least one of the submodules
P C H1(Q[Z] ®zzxn; N) such thatP = P+,

This contingent vanishing for the Cochran-Orr-Teichnestnixtion theory is encoded in the
definition of COT /15 see Definition7.4. We have a two stage definition of the metabelian
Cochran-Orr-Teichner obstruction set, since we need thaedbifield form to define the elements
and to restrict the allowable null-bordisms; whereas amef# of the groupAC, is defined in a
single stage from the geometry, via a handle decomposifidimecknot exterior, and the allowable
null-bordisms are restricted by the consistency squaregh Bages of the Cochran-Orr-Teichner
obstruction can be extracted from the single stage elenieAtCe.

Definition 8.4 We define the mapiC,; — COT (¢/1.5) by mapping a triplei, ), ) to
| | @ @zzi N, 1d @0)p, &}
peQ®zH
with each QI" ®z[zxH) N)p defined using
p:ZxH — T
(n.h) — (n,BI(p, h))
and&p given by the composition

& QazH 25 Qo HZIZ] @z Y) = Hi(QIZ] @zz0m) Y)

= Hi(QIZ] ®zpzxm N) = H1(QIZ] ®gr (QF ®z(zxH) N)p)-

The maps labelled as isomorphisms in this composition &emndiy the universal coefficient theorem,
a Mayer-Vietoris sequence, and a simple chain level isohismnp for the final identification. 0
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We prove a more general statement than that of The@&a@&mThe purpose of this generalisation
is to show that the map of pointed sets of DefinitRdis well-defined. Theorer8.1is a corollary
of TheoremB.5by taking HT, V', ¢) = ({0}, VY, 1dy).

Theorem 8.5 Let(H,),¢) ~ (HT, V1, £1) € AC, be equivalent triples. Then

| [ {@T @zgzecry N)p, &} ~ | | {@QT @041y NN, €1} € COT ¢ 15,
peH qeHT

That is, there exists a metaboliser
P=P C(Q&zH)a (QezH)
for the rational Blanchfield form
Bl& —BI": (Q@z H)® (Q@z H') x (Q®z H) @ (Q @z HN) — Q)/Qt,t ],
such that, for anyp, q) € (Q ®z H) @ (Q ®z HY), the corresponding element
((QT @zgzt) N)p, 0p) & ((QT @zqz:) N¥)g, —08) € LYQT, QT — {0}),
bounds a 4-dimensional symmetric Poiricpair
(p @ i (QF @zizwr) N)p @ (QT @ziz5) NDg = Vip.a), (0p.a)- Op © —04))
overQI" such that
H1(Q ®gr (QT ®@zzxH N)p) = H1(Q ®qr Vip,g) < H1(Q ®qgr (QT ®@zzxH NT)g),
such that the isomorphism

L@ (QezH) e (QezHN) =
H1(Q[Z] ®@qr (QT' ®@zizxH) N)p) © H1(Q[Z] @qr (QT ®zzxh1) NT)q)
restricts to an isomorphism
P = ker (H1(Q[Z] @zzx) N) @ H1(Q[Z] @zz,11) NT) = H1(QIZ] ®qr Vip.)),

and such that the algebraic Thom complex (Definitiba), taken over the Ore localisation, is
algebraically null-cobordant ib(KC) = LY(K):

[(K @qr €((p @ 5), 1d @560,/ (0p & —60)] = [0] € LY(K).

Proof By the hypothesis we have a symmetric Poigdaiad overZ[Z x H']:

E ¢ & (E, o) 2L & )

n 0 t
(v,ah) é
(0 n*)L )

.
v, ®) @ (v, —oh) —2L (v o),
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with isomorphisms
Ho(Z @z Y) = Ho(Z @zpzecn) V) < Ho(Z @gz,00n Y1),
and a commutative square

()

H e HT H’

¢ 0 :
( 0 ¢ 5
.'. IdZ[Z] ®(J*7JI)
H1(Z[Z] ®zizxH) Y) ® HU(ZIZ] @z1z0H) YT) ———— H1(Z[Z] @z1zx17 V).
Corresponding to the manifold triad

Stxsustxs— st xshx|
SxD?uUStxD?Z— =St x D% x|,
we have a symmetric Poin@triad.

(1d,1d)

(EU, _¢U) @ (EU, ¢U) (EU’O)
u o
( o n" )t I(SU
Y. 0)@ (YU, 0)— )y )

With this triad tensored up ovéf[Z x H’] sendingt — g; as usual, we glue the two triads together
as follows:

U U
(Y, 0@ (Y, 00— (v g)

U
n 0
(0 n“) "

(Y, —gY) & (BY, o¥) — 2. (g 0)

wg O N -
0 WEYt - -

E ) & (E, o) ——7) (g o)

0
( g 77T ) (’Y;;‘/T) 4

y
v, ) @ (v, —oh) — (v o),
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to obtain a symmetric Poincapair overZ[Z x H']:
(,iN: NeN = V:=VUe Y, (© :=0U0,0 & —06h).
We can defind?, by Theoren®.6, to be

P = ker(Q @z H) & (Q @z H') = Hy(QIZ] ®zzxn N) & H1(Q[Z] © NT)
— H1(QIZ] @zzxn1 V).
Now, for all (p,q) € P, the representation
Q(t)
Qlt, t=1”

extends, by COTO3 Theorem 3.6], to a representatibty (Q[Z] @z[zxH1 V) = Q(t)/Q[t, t—4.
This holds since the proof o€6JOT03 Theorem 3.6] is entirely homological algebra, so carries o
to the chain complex situation without the need for addaloarguments. We therefore have an
extension:

(Bla — BINEM. £'@),*): H(QIZ] @zzxn) N) ® H1(Q[Z] ®zjzxn) NT) —

Go-i1) H

HoHT

(o)

H1(ZIZ] ®@zz0r) N) @ Hi(ZIZ] 77,11 NT)

IR

¢ |

Id iit ~
LD Wy@z1z) Q717 V)

Idorzg ®(,iT)
>

H1(QIZ] ®zizxr) N) & H1(QIZ] @zz,417 NT) H1(Q[Z] ®z(zxnn V)

(B & BIN)((¢(P).£1(@).*)

Q)/Qrt, t1.
Noting that, from the Mayer-Vietoris sequence %=V Ug YY, there is an isomorphism
H1(ZIZ] @z1zx11 V) = HU(ZIZ] @777 V),

the top square commutes by the consistency condition. Weftite have an extension of represen-
tations: (4.6,
Zx (Ho R =222 7w

Lk
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The element
((QT @zizxr) N)p, 0p) ® (QT @517,011) N'g, =08) € LYQT, QT — {0})
therefore lies, by virtue of the existence®F @711 Vp.g), IN kerL*(@QT, QT —{0}) — L¥(QL)).
As in theL-theory localisation sequence (Definiti@r2), we therefore have the element:
V0 Opa) = (K @zzuny (1)) p.a, Opa/(0p © —08) € LK),
whose boundary is
((QT @zizwr) Np, 0p) ® (QT @zqz,01) N'g, —03) € LYQT, QT — {0}).

Since 2 is invertible inkC, we can do algebraic surgery below the middle dimensikRanBQ
Part |, Proposition 4.4], oW q), to obtain a non-singular Hermitian form:

(A H3(Vpg) x HA(V(pg) — K) € L§(K) = LK),

whose image ilLY(K)/L°(QI") detects the class @I' ®@zz«H N € L*QT, QI — {0}). Once
again, we will apply Propositios.1Q Sincej andj! induce isomorphisms ofi-homology, and
therefore onQ-homology, we have that the chain map

Id®i: Q @gr (QF @z1zxH) N)p — Q ®@gr (QT @zizxH1 Vip.g)

induces isomorphismis : Hy(Q ®z(zxH) N) = H(Q ®7Z[ZxH V) for all k, by a straight—forward
Mayer-Vietoris argument. Therefokey(Q ®zz.H1 (1)) = 0 for all k by the long exact sequence
of a pair. Applying Propositios.10, we therefore have thady((KC ®@z[zxH € (1))p,g) = O for all

k. The long exact sequence fi-homology associated to the short exact sequence

0 = (K ®z1zxr1 €[0))pa) = (K @z1z5n1 €1, 1))y = SK ®@gzem1) N&) — 0
implies, noting thaH..(K ®zz,n1) NZ,) =0, that
Hk(K ®@z1zxnn € ({1, iT))(p,q)) = H(Vp,g) =0

for all k. In particular, sinceHz(Vp,q)) = H*(V(p,q) = 0, we see that the image &, ) in LY(K),
which is the intersection form, is trivially hyperbolic and represents the zero clast3fC). This
completes the proof that

| ]{@T ®zz N, 1d @0)p, &} ~ | | {@QF @ppznny NT 1d@67)g, 60} € COT )15
peH geHt

]

Finally, we have a non-triviality result, which shows that wan extract thé®@-signatures from
AC>. In order to obstruct the equivalence of triplés, V', ¢) ~ (HT, VT, ¢7) € AC», we just need,
by Propositior4.9, to be able to obstruct an equivalend¢, ¥, &) ~ ({0}, VY, Idsy). To achieve
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this, as in Definitiorn7.4, we need to obstruct the existence of a 4-dimensional syrnoi@incaé
pair overQI' (j: (QI ®z[zxH) N)p — Vp, (Op, b)), for at least ongp # 0, with £(p) € P, for each
metabolisetP = P+ C Hy(Q[Z] ®z1zxH] N) of the Blanchfield form, wher®), satisfies that

£(p) € ker(j.: Hi(Q[Z] ®zzxH) Np) — H1(Q[Z] ®@qr Vp)),

thatj,: H1(Q ®zzxH] N) = Hy(Q ®qr Vp) is an isomorphism, and thatl[®qr €(j)] = [0] €
L&(KC). We do this by takind_(?)-signatures of the middle dimensional pairings on putaivehV,,

to obstruct the Witt class ihd(K) = LY(K) from vanishing. First, we have a notion of algebraic
(1)-solvability.

Definition 8.6 We say that an element(), &) € AC, with image 0€ AC; is algebraically
(1)-solvableif the following holds. There exists a metaboliger= P+ C H;(Q[Z] ®z1zxH] N) for
the rational Blanchfield form such that for apye H such that¢(p) € P, we obtain an element:

QI ®z1zH) Np € kerL*(QT, QT - {0}) — L3(@QI)),
via a symmetric Poincérpair overQr:
(: QI ®@zzxH) Np — Vp, (Op, b)),
with
P = ker(.: Hi(Q[Z] ®zizxH N) — H1(Q[Z] ®qr Vp)),

and such that;
j» ' H1(Q @721 N) — H1(Q ®qr Vp)

is an isomorphism. We call each such QI' ®zz.H] Np — Vp, (Op, 0p)) an algebraic (1)-
solution O

Theorem 8.7 Suppose thatH,),£) € AC» is algebraically(1)-solvable with algebraicl)-
solution (Vyp, ©p) and{(p) € P. Then since:

ker(L*(QT', QT — {0}) — L3(QI) = LY(K)/L%(Qr) = L°(K)/L°(QT),

we can apply thé& @ -signature homomorphism (se@QT03 Section 5]):0®: L°(K) — R, to the
intersection form:
A Hz(IC KqQr Vp) X HQ(IC Kqr Vp) — IC.

We can also calculate the signature\q) of the ordinary intersection form:
A H2(Q ®qr Vp) x H2(Q ®@qr Vp) — Q,

and so calculate the reducet? -signatures®(Vp) = 0@ (\c) — o(\g). This is independent, for
fixed p, of changes in the choice of chain compléx
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Remark 8.8 Provided we check thatthe reduced-signature does not vanish, for each metaboliser
P of the rational Blanchfield form with respect to whidH,(), €) is algebraically (1)-solvable, and
for eachP, for at least ong € P\ {0}, then we have ahain—complex—Von-Neumaprinvariant
obstruction. This obstructs the image of the elemeéht)(, ) in COT ¢ /15 from beingU, and
therefore obstructsH, )V, £) from being second order algebraically slice.

We do not require any references to 4-manifolds, other tbapédagogic reasons, to extract
the Cochran-Orr-Teichner(®-signature metabelian concordance obstructions fromriple of a
(1)-solvable knot, or indeed for any algebraically (1)vedlle triple in AC». This result relies
strongly on the reason for the invariance of the reduc@tsignatures which is least emphasised
in the paper of Cochran-Orr-Teichn&2(QT03J. This is the result of Higson-KasparokK97] that
the analytic assembly map is onto for PTFA groups. The reademcouraged to look aCjOT03
Proposition 5.12], where it is shown that the surjectivitghe assembly map implies that thé?-
signature and the ordinary signature coincide on the imade€’@T). The key point is that this
result does not depend on manifolds for its statement; itgaraly algebraic result (although the
proof of [COT03 Proposition 5.12] uses Atiyahls®-Index theorem).

The Higson-Kasparov result does not hold for groups witkitor, a fact made use of in e.g.
[CO09. Homology cobordism invariants which use representatimntorsion groups appear to be
using deeper manifold structure than is captured by synicrfetincaé complexes alone.

Proof of Theorem 8.7 For this proof we omit thep subscripts from the notation; it is to be
understood that tensor products wifpl" depend on a choice of representation. Given a pair
(: QI ®zizxH) N = V, (0, 0)), which exhibits H, Y, ¢) as being algebraically (1)-solvable, we
again take the elementX(2qr €(j), ©/60) € L*(K), and look at its image\x € L(K). We can
calculate an intersection forte on H2(K ®gr ¢(j)), as in Ran81 page 19], by taking

X,y € (K ®@gr €())* = Home (K @qr 4())2, K),

and calculating:
Y =(9/0)o(y) € (K ®qr €()))e.

Then A\c(x,y) == Y(X) = X(Y) € K. This uses, as in the definition of Bl in Propositiérd, the
identification of (C ®@qr €(j))2 with its double dual. By taking the chain compl&®gqr €'(j) we
can also calculate the intersection form < L9(Q), with an analogous method. To see that the
intersection form orH2(Q ®qr €(j)) is non-singular, consider the following long exact sewpee

of the pair; we claim that the maps labelledjasnd x are isomorphisms.

HY(Q @or V) — HYQ @zpzh N) 2> HA(Q @or €(0)) <~ HA(Q ®0r V).
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The intersection form is given by the composition:

Ag: HAQ @or €() = HAQ &or V) = HaA(Q @gr ()
= Homp(H?(Q ®qr £()), Q),

given by the map: from the long exact sequence of a pair, followed by a Podamality isomor-
phism induced by the symmetric structure, and a universafficaent theorem isomorphism. To
show that)\g is non-singular we therefore need to show thas an isomorphism. The assumption
that there is an isomorphisf : H1(Q ®zzwH] N) = H1(Q ®qr V) on rational first homology
implies that, as claimed, there is also an isomorphj$mH(Q ®qgr V) = HYQ ®z1zxH] N)
on rational cohomology, by the universal coefficient theoighe relevant Ext groups vanish with
rational coefficients). Therefore, by exactness, the mapi?(Q ®qr €(j)) — H3Q ®qr V)

is injective. OverQ, for dimension reasons, it must therefore, as marked onitgrain, be an
isomorphism; the dimensions must be equal since the sequhdéhad maps in the composition
which gives\g show thatH(Q ®gr V) = Homg(H3(Q ®¢r %(j)), Q), and the dimensions over
Q of Homg(H*(Q ®gr %(j)), Q) and of H*(Q ®qr %(j)) coincide. Therefore the intersection form
Ag Is non-singular as claimed.

The reduced @-signature@(V) = ¢@(\c) — o(\g) detects non-trivial elements in the group
Lg(lC)/LO(QF). This will follow from [COTO03 Proposition 5.12], which uses a result of Higson-
Kasparov HK97] on the analytic assembly map for PTFA groups suclH'asnd says that the
L@ -signature agrees with the ordinary signature on the imag8(@I"). We claim that a non-zero
reducedL®-signature, for all possible metabolisePs= PL of the rational Blanchfield form,
implies that H, ), £) is not second order algebraically slice. To see this, we h@show that, for
afixed representatiop, the reduced.®-signature does not depend on the choice of chain complex
V.

We first note, by the proof of Theored5, that a change inH, ), £) to an equivalent element
in AC» produces an algebraic concordance which we can glue\drets in Propositior.7, which
neither changes the second homologyoivith I nor with Q coefficients, so does not change the
corresponding signatures.

To show that the reduced®-signature does not depend on the choic&/ofsuppose that we
have two algebraic (1)-solutions, that is two 4-dimensi@yanmetric Poincar pairs overQI':

(: QU @zziry N = V,(©,6)) and (7 QL @zqzi N = V¥, (0,6)),
such thatp = p® € H. Use the union construction to form the symmetric Poia@amplex:
(V Ugren V9,0 Uy —69) € LAQI).
Over K, QI' ®z1zxH) N is contractible, so that:
(V Ugren V9,0 Uy —09) ~ (V@ VC,0 @ —0%) = (V,0) — (V¥,09) € LYK).
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Therefore ¥, 0) — (V©,0¢) = 0 € L4(K)/L*@QT), which means that the imagesli(K) satisfy
A — AL = 0 € LYK)/LO@). If A — AZ € LOQT), then by £OT03 Proposition 5.12]:

A\ = M) = o(Q ®qr V Ugren V¢, 1dg &(0 Uy —09)) = a(Ag) — o(A),

where the last equality is by Novikov Additivity. Novikov Alitivity also holds foro@: see
[COTO3 Lemma 5.9.3], so that:

e@0) — dP02) = o Ag) — o (AY)

and therefor&s@ (V) = @(V®) as claimed. o

This completes the proof of Theoretril

Remark 8.9 The results of Kim Kim04], Cochran-Orr-TeichnerGOT04 and Cochran—Harvey—
Leidy [CHL09g CHL0O9h CHL10], which use Cheeger-Gromov Von Neumamrnvariants to show
the existence of infinitely many linearly independent itits of Z and ofZ; into F 1)/ F(1.5), can
also be applied, so that we can use the chain-complex-Vamddan p-invariant of Theoren8.7
to show the existence of infinitely many injections ®fand Z, into ker(AC, — AC;), which in
particular implies the claim in Corollary.3.

References

[Bla57] R. C. Blanchfield. Intersection theory of manifoldith operators with applications to knot theory.
Ann. of Math. (2)65:340-356, 1957.

[CG86] A. Casson and C. McA. Gordon. Cobordism of classicaltk. InA la Recherche de la Topologie
Perdue volume 62 ofProgr. Math, pages 181-199. Birkhauser Boston, 1986.

[CHLO9a] T.D. Cochran, S. Harvey, and C. Leidy. Knot con@arce and higher-order Blanchfield duality.
Geometry and Topology3:1419-1482, 2009.

[CHLO9b] T.D. Cochran, S. Harvey, and C. Leidy. Primary daposition and the fractal nature of knot
concordancehttp://arxiv.org/abs/0906.1372009.

[CHL10] T. D. Cochran, S. Harvey, and C. Leidy. Derivativelskmots and second-order signatures.
Algebraic and Geometric Topolog¥0:739—-787, 2010.

[CO09] J.C.ChaandK. E. Ort.®-signatures, homology localization and amenable grotipsppear in
Communications on Pure and Applied Math., Preprint: ar®8103.37002009.

[COTO03] T.D. Cochran, K. E. Orr, and P. Teichner. Knot comizorce, Whitney towers arid® signatures.
Ann. of Math. (2)157, no. 2:433-519, 2003.

[COT04] T. D. Cochran, K. E. Orr, and P. Teichner. Structurdhe classical knot concordance group.
Commentarii Math. Hely.79:105-123, 2004.



A Second Order Algebraic Knot Concordance Group 63

[CS74] S. E. Cappell and Julius L. Shaneson. The codimerigiorplacement problem and homology
equivalent manifoldsAnn. of Math, 99:277-348, 1974.

[CTO7] T.D. Cochran and P. Teichner. Knot concordance anal Neumanrp-invariants.Duke Math. J.
137:337-379, 2007.

[Gil83] P. Gilmer. Slice knots ir8®. Quart. J. Math, 34:305-322, 1983.

[HK97] N.Higson and G. Kasparov. Operatdrtheory for groups which act properly and isometrically on
a Hilbert spaceE.R.A. Amer. Math. Sq3:131-142, 1997.

[Kea75] C.Kearton. Cobordism of knots and Blanchfield dyall. London Math. Soc. (210(4):406-408,
1975.

[Kim04] T. Kim. Filtration of the classical knot concordamgroup and Casson—Gordon invariaritath.
Proc. Cambridge Philos. Sqc37(2):293-306, 2004.

[KS77] R. Kirby and L. C. Siebenmanroundational Essays on Topological manifolds, Smoothiagd
Triangulations Princeton University Press, Princeton, N.J., 1977. Wites by John Milnor and
Michael Atiyah, Annals of Mathematics Studies, No. 88.

[LetOO] C.F. Letsche. An obstruction to slicing knots usthg eta invariantMath. Proc. Cambridge Phil.
Soc, 128(2):301-319, 2000.

[Lev69] J. Levine. Knot cobordism groups in codimension.i@@mment. Math. Helv44:229-244, 1969.
[Lev77] J. Levine. Knot moduleslrans. Amer. Math. So229:1-50, 1977.

[Powl1l] M. Powell. A Second Order Algebraic Knot Concordance Groupdinburgh University PhD
Thesis, available at arXiv:1109.0761v1 [math.GT], 2011.

[Ran80] A. A. Ranicki. The algebraic theory of surgery | ahdRroc. London Math. Sog(3) 40:87—-283,
1980.

[Ran81] A. A. Ranicki.Exact Sequences in the Algebraic Theory of Surgelgthematical Notes 26, PUP,
1981.

[Ran02] A. A. Ranicki.Algebraic and Geometric SurgerpUP, 2002.

[Ran03] A. A. Ranicki. Blanchfield and Seifert algebras ighitdimensional knot theorjYloscow Mathe-
matical Journa) (3):1333-1367, 2003.

[Ste75] B. StenstromRings of QuotientsSpringer Verlag, New York, 1975.

Department of Mathematics, Rawles Hall, 831 East Thirdest@loomington, IN 47405, USA

macp@indiana.edu


mailto:macp@indiana.edu

	1 Introduction
	1.1 Organisation of the paper

	2 Preliminaries
	2.1 Symmetric structures on chain complexes representing manifolds with boundary
	2.2 Second derived covers and connected sum

	3 A Monoid of Chain Complexes
	4 Algebraic Concordance
	5 (1.5)-Solvable Knots are Algebraically (1.5)-Solvable
	6 Extracting first order obstructions
	7 The Cochran-Orr-Teichner obstruction theory
	8 Extracting the Cochran-Orr-Teichner obstructions
	Bibliography

