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Abstract. Given a closed, smooth 4-manifold X and self-diffeomorphism f that is topologically

pseudo-isotopic to the identity, we study the question of whether f is moreover smoothly pseudo-
isotopic to the identity. If the fundamental group of X lies in a certain class, which includes

trivial, free, and finite groups of odd order, we show the answer is always affirmative. On the

other hand, we produce the first examples of manifolds X and diffeomorphisms f where the
answer is negative. Our investigation is motivated by the question, which remains open, of

whether there exists a self-diffeomorphism of a closed 4-manifold that is topologically isotopic

to the identity, but not stably smoothly isotopic to the identity.

1. Introduction

A principle in 4-manifold theory says that topological results about smooth 4-manifolds often
become true smoothly after stabilisation, meaning after taking connected sum with some number
of copies of S2 × S2. The most famous instance is the theorem of Wall [Wal64aWal64a,Wal64bWal64b] and
Freedman [Fre82Fre82] that homeomorphic closed, smooth, simply connected 4-manifolds are stably
diffeomorphic. Similarly Kreck [Kre79Kre79], Quinn [Qui86Qui86] (with a correction by [GGH+23GGH+23]), and
Gabai [Gab22Gab22] showed that topologically isotopic diffeomorphisms of such 4-manifolds are stably
smoothly isotopic. Further examples of this principle are not confined to the simply connected
case e.g. Quinn’s stable s-cobordism theorem [Qui83Qui83], Gompf’s extension [Gom84Gom84] of the Wall–
Freedman result above to all oriented compact 4-manifolds, and Cappell–Shaneson’s stable surgery
sequence [CS71CS71]. In the realm of embedded surfaces, Cha–Kim [CK23CK23] proved that topologically
embedded surfaces are stably smoothable, and Galvin [Gal24Gal24] proved that topologically isotopic
surfaces in a simply connected 4-manifold are stably smoothly isotopic.

Lest this long list of results be misconstrued as evidence for a completely general principle,
it should be contrasted with exotic phenomena detected by Rochlin’s theorem, or equivalently
the Kirby–Siebenmann invariant. For example Kreck [Kre84Kre84], Cappell–Shaneson [CS76CS76], and Ak-
bulut [Akb85Akb85, Akb84Akb84] each constructed an exotic pair of nonorientable 4-manifolds that fail to
be stably diffeomorphic. Similarly, Cappell–Shaneson and Galvin’s non-smoothable homeomor-
phisms [CS71CS71,Gal24Gal24] are not stably smoothable.

In this article, we use the Kirby–Siebenmann invariant to investigate the principle in the context
of isotopy of diffeomorphisms. We are motivated by the following question.

Question 1.1. Given a pair of self-diffeomorphisms of a closed 4-manifold that are topologically
isotopic, are they moreover stably smoothly isotopic?

This remains open, but our results, concerning the intermediate notion of pseudo-isotopy, pro-
vide a positive answer in some cases, and indicate that the answer may be negative in general.

1.1. Results. LetX be a smooth, connected, compact 4-manifold, possibly with nonempty bound-
ary, and let f0, f1 : X → X be diffeomorphisms that restrict to the identity on the boundary. A
homeomorphism F : X×I → X×I restricting to fi on X×{i} and to the identity on (∂X)× [0, 1]
is called a topological pseudo-isotopy from f0 to f1. If F is moreover a diffeomorphism, it is called
a smooth pseudo-isotopy from f0 to f1.

Given a topological pseudo-isotopy F : X× I → X× I, we can give the boundary of X× I× I a
new smooth structure as follows. Writing σ for the smooth structure on X× I, endow X× I×{1}
with the smooth structure F ∗σ, and leave the smooth structure alone on the rest of the boundary:
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write ∂(X × I × I)F for this smooth structure. Then (X × I × I, ∂(X × I × I)F ) is a topological 6-
manifold with a smooth structure on its boundary, so has a relative Kirby–Siebenmann invariant

KS(F ) := ks(X × I × I, ∂(X × I × I)F ) ∈ H4(X × I × I, ∂(X × I × I);Z/2) ∼=PD H2(X;Z/2)

which obstructs the extension of the smooth structure ∂(X × I × I)F to the whole of X × I × I.
Our first main result is that this invariant also characterises whether F is smoothable.

Theorem A. Given a topological pseudo-isotopy F from f0 to f1, the obstruction KS(F ) ∈
H2(X;Z/2) vanishes if and only if F : X × I → X × I is topologically isotopic rel. ∂(X × [0, 1]) to
a smooth pseudo-isotopy.

A result of Gabai [Gab22Gab22, Theorem 2.5] states that, for a diffeomorphism, the existence of a
smooth pseudo-isotopy to the identity with vanishing primary Hatcher–Wagoner invariants, implies
smoothly stably isotopic to the identity. Combining this with work of Galvin–Nonino [GN25GN25] on
topological Hatcher–Wagoner invariants, we deduce the following.

Corollary B. If F is a topological isotopy from f0 to f1 with KS(F ) = 0 ∈ H2(X;Z/2), then f0
and f1 are smoothly stably isotopic.

Our next goal is to establish a condition under which diffeomorphisms are smoothly pseudo-
isotopic if and only if they are topologically pseudo-isotopic. By Theorem AA this is equivalent
to showing, for a given pair of diffeomorphisms, that there exists a topological pseudo-isotopy F
between them with KS(F ) = 0. To formulate our result we will make use of a certain map

I2 : H2(π;Z(2)) −→ L6(Z[π])(2),

arising from the assembly map in algebraic L-theory. We will describe this map and elucidate some
of its properties in Section 5.25.2 (in particular in Definition 5.85.8). The following will be proved using
methods from surgery theory.

Theorem C. Let X be an oriented, smooth, connected, compact 4-manifold, write π := π1(X),
and suppose that

(i) the map I2 : H2(π;Z(2))→ L6(Z[π])(2) is trivial, and
(ii) H1(π;Z(2)) has no torsion.

Then a diffeomorphism which is topologically pseudo-isotopic to the identity is smoothly pseudo-
isotopic to the identity.

For some π1(X) it was already known that homotopic diffeomorphisms are smoothly pseudo-
isotopic, and thus the conclusion of Theorem CC was already known for these cases. This is the
case for the trivial group, due to Kreck [Kre79Kre79, Theorem 1] and more generally for free groups by
Krannich-Kupers [KK24KK24, Theorem B]. The following gives additional examples where the hypothe-
ses of Theorem CC are satisfied, and hence provides 4-manifolds X where topological pseudo-isotopy
of diffeomorphisms implies smooth pseudo-isotopy.

Example 1.2. Any group π with H1(π;Z(2)) torsion-free and H2(π;Z(2)) = 0 satisfies the hy-
potheses. For example, free groups, any finite group of odd order, or knot groups. Further ad hoc
specific examples of this sort can also be constructed. For example, π1(S

1 ×Σ) or π1(Σ), where Σ
is a Z(2)-homology sphere of some dimension.

If π is a finite group whose 2-Sylow subgroup is abelian or generalised quaternion, then it follows
from [Ste77Ste77] (see also [TW79TW79, p. 177]) that the map I2 is trivial. So such groups with H1(π;Z(2)) =
0 satisfy the hypotheses. For example, the alternating group A5 satisfies this, so I2 = 0 even
though H2(A5;Z(2)) ∼= Z/2 ̸= 0.

Moreover, by functoriality of the assembly map, and hence of I2, the assumptions (i)(i) and (ii)(ii)
are closed under free products, and hence Theorem CC holds for X1#X2 if it holds for X1 and X2.

Corollary D. Let X be an oriented, smooth, connected, compact 4-manifold, write π := π1(X).
Assume π satisfies the hypotheses (i)(i) and (ii)(ii) of Theorem CC and also that Wh2(π) = 0. Then a
self-diffeomorphism of X that is topologically isotopic to the identity is moreover stably smoothly
isotopic to the identity.
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Proof. Consider the topological isotopy as topological pseudo-isotopy. By Theorem CC there is a
smooth pseudo-isotopy, and then by Gabai’s theorem again [Gab22Gab22, Theorem 2.5], which applies
since Wh2(π) = 0, there is a stable smooth isotopy. □

Using Corollary DD, we can expand the class of groups for which Question 1.11.1 is known to have
a positive answer, which was previously limited to free groups, as discussed above. We note that
the conditions of Corollary DD are closed under free products of groups.

Example 1.3. It is conjectured that Wh2(π) = 0 for all torsion-free groups [Lüc25Lüc25, Conjec-
ture 5.22], and this conjecture is known to hold whenever the torsion-free group satisfies the
“Farrell–Jones Conjecture for K-theory for torsion-free groups and regular rings”, which itself fol-
lows from the full Farrell–Jones conjecture [Lüc25Lüc25, Theorem 13.65 (i), (ii), (vii)]. For a summary
of the many classes of groups known to satisfy these conjectures, see [Lüc25Lüc25, Theorem 16.1]. In
particular, every 3-manifold group satisfies the full Farrell–Jones conjecture [BFL14BFL14], and so every
classical knot group satisfies the conditions of Corollary DD.

Example 1.4. Dunwoody [Dun75Dun75] showed that Wh2(Z/3) = 0, and so π = Z/3 also satisfies the
conditions of Corollary DD.

Now we consider cases where topological pseudo-isotopy does not imply smooth pseudo-isotopy.
After perhaps stabilising the 4-manifold by taking connected sums with S2×S2, there is a plentiful
supply of non-smoothable topological pseudo-isotopies between diffeomorphisms, as the following
makes precise.

Theorem E. For each smooth, connected, compact 4-manifold X there is a g ≥ 0 such that every
class x ∈ H2(X#g(S2×S2);Z/2) arises as KS(F ) for some topological pseudo-isotopy F from the
identity to some diffeomorphism f : X#g(S2 × S2)→ X#g(S2 × S2).

Combining Theorem EE with further methods from surgery theory, we are able to give examples
of the following nature.

Theorem F. There exists a closed, smooth 4-manifold X and a diffeomorphism f : X → X such
that f is topologically but not smoothly pseudo-isotopic to the identity. Thus f is not smoothly
stably isotopic to the identity.

To prove this, we have to show that KS(F ) ̸= 0 for every topological pseudo-isotopy F between f
and Id. The manifolds X in Theorem FF have the form X = A#g(S2 × S2), where A is an
aspherical 4-manifold and g is chosen large enough for Theorem EE to apply. The manifolds A
we use can be made explicit: see Example 7.37.3. On the other hand, the diffeomorphisms f we
construct are inexplicit. The topological pseudo-isotopies F of f are such that KS(F ) remains
nontrivial under the composition

H2(X;Z/2) −→ H2(π;Z/2)
δ∗−→ H1(π;Z),

where δ∗ indicates the homology Bockstein for the coefficient sequence 0 → Z 2→ Z → Z/2 → 0.
In particular, H1(π;Z(2)) has torsion, in contrast with Theorem CC.

1.2. Discussion. For a pair of diffeomorphisms of a compact smooth 4-manifold, the following
implications hold between the different notions of isotopy rel. boundary.

Smoothly stably isotopic ⇒ Smoothly pseudo-isotopic ⇒ Top. pseudo-isotopic ⇐ Top. isotopic.

The first implication is due to Gabai [Gab22Gab22], while the others are immediate from the definitions.
Corollary DD yields some cases where the first two implications can be reversed and Question 1.11.1
has a positive answer.

There is not currently a useful theory for improving topological pseudo-isotopies of non-simply
connected 4-manifolds to topological isotopies, but if such a theory could be developed, then we
would hope it could be used to upgrade our examples from Theorem FF and produce diffeomorphisms
topologically isotopic to the identity, but not smoothly stably so.

Organisation. In Section 22 we reformulate the main theorems in terms of block automorphisms,
which will aid us to structure the proofs. Section 33 contains the proofs of Theorem AA and Corol-
lary BB. In Section 55 we prove Theorem CC, in Section 66 we prove Theorem EE, and finally in Section 77
we construct the examples promised in Theorem FF.
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Conventions. For pointed topological spaces A and B, the notation [A,B] will indicate the set
of pointed continuous maps A → B, up to pointed homotopy. As a consequence, [A+, B] denotes
unbased homotopy classes of maps from A to B. For spectra L and K, the notation [L,K] will
indicate morphisms L → K, up to homotopy. The sense in which the notation [−,−] is being
used will always be clear from the objects in question. For maps of spectra f, g : L → K, we will
write f−g : L→ K to be any representative map of spectra for the homotopy class [f ]−[g] ∈ [L,K].
A map f : X → X from a manifold to itself is rel. boundary if f |∂X = Id∂X .

2. Reformulation via block automorphisms

We will now reformulate Theorems AA, CC, EE, and FF in a unified framework that will make proofs
clearer, and illuminate the structure of the general problem of smoothing pseudo-isotopies.

2.1. Block automorphism groups. Let H̃omeo+∂ (X) and D̃iffeo+∂ (X) denote the geometric re-
alisations of the Kan semi-simplicial groups of orientation-preserving block self-homeomorphisms
and block self-diffeomorphisms of X rel. boundary, respectively; see e.g. [BLR75BLR75, Appendix I, §3]
with corrections in the smooth case in [HLLRW21HLLRW21, Section 2.2]. Eliding some technical details
regarding collars in the smooth case, the p-simplices consist of homeomorphisms (or diffeomor-
phisms) ϕ : X × ∆p → X × ∆p which are the identity on (∂X) × ∆p, preserve orientation, and
send X×σ to X×σ for every face σ ⊆ ∆p. In particular, a 0-simplex is precisely a homeomorphism
(or diffeomorphism) of X, and a 1-simplex is precisely a topological (or smooth) pseudo-isotopy.
Thus the groups of path components,

π0(H̃omeo+∂ (X)) and π0(D̃iffeo+∂ (X)),

are the groups of orientation-preserving self-homeomorphisms up to topological pseudo-isotopy (or
self-diffeomorphisms up to smooth pseudo-isotopy). In other words, they are the pseudo-mapping
class groups.

There is an analogous Kan semi-simplicial monoid h̃Aut+∂ (X), whose p-simplices are as above
but relaxing the condition that ϕ be a homeomorphism, by only asking that it be a homotopy
equivalence; see e.g. [Kra22Kra22, Section 1.5] for a discussion, which in particular explains why the geo-
metric realisation of this semi-simplicial set is weakly equivalent to the topological space hAut+∂ (X)
of boundary- and orientation-preserving homotopy automorphisms of X. Further insisting that ϕ

be a simple homotopy equivalence defines a Kan semi-simplicial monoid s̃Aut+∂ (X), to which the

same discussion applies: the geometric realisation of s̃Aut+∂ (X) corresponds to those path compo-

nents sAut+∂ (X) ⊆ hAut+∂ (X) consisting of simple homotopy automorphisms. In this model there
are forgetful maps

D̃iffeo+∂ (X) −→ H̃omeo+∂ (X) −→ s̃Aut+∂ (X) −→ h̃Aut+∂ (X)

of Kan semi-simplicial monoids.

2.2. Pseudo-isotopy classes of topological pseudo-isotopies. We wish to study topological
pseudo-isotopies from the identity to a diffeomorphism, and this will be clearest if we carefully
define a certain set of such.

Definition 2.1. For a smooth 4-manifold X we consider topological pseudo-isotopies F : X ×
I → X × I with F |X×{0} = IdX and such that f := F |X×{1} is a diffeomorphism, all rel. ∂X.
We consider these up to the equivalence relation of a further pseudo-isotopy: define F0 ∼ F1 if
there is a homeomorphism G of X × I × I which restricts to Fi on X × I × {i}, to the identity
on

(
X × {0} × I

)
∪
(
(∂X) × I × I

)
, and to a diffeomorphism on X × {1} × I (which is then a

smooth pseudo-isotopy from f0 to f1). We write Q(X) for the set of such equivalence classes, and
note that it is a group under composition.
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GId

F0 f0

∼=C∞

F1 f1

Figure 1. Schematic forX×I×I with theX direction suppressed. Maps defining
the equivalence relation (f0, F0) ∼ (f1, F1) for Q(X) are depicted.

For [F ] ∈ Q(X), we explained in the introduction how to produce a smooth manifold ∂(X ×
I × I)F by pulling back the smooth structure σ on X × I × {1} using the homeomorphism F .
Then X × I × I is a topological 6-manifold with a given smooth structure on its boundary so has
a Kirby–Siebenmann invariant

KS(F ) := ks(X × I × I, ∂(X × I × I)F ) ∈ H4(X × I × I, ∂(X × I × I);Z/2) ∼=PD
In the following section, once we describe the details of smoothing theory, we will prove the
following.

Lemma 2.2. The function [F ] 7→ KS(F ) : Q(X)→ H2(X;Z/2) is well-defined and is a homomor-
phism.

The proof will be given after Lemma 3.23.2.

2.3. The reformulation. The definition of Q(X) was obtained by spelling out the description

of π0 of the homotopy fibre of the map D̃iffeo+∂ (X)→ H̃omeo+∂ (X). Thus there is an exact sequence

π1(D̃iffeo+∂ (X)) −→ π1(H̃omeo+∂ (X))
α−→ Q(X)

β−→ π0(D̃iffeo+∂ (X))
γ−→ π0(H̃omeo+∂ (X)). (1)

Theorems AA, CC, EE, and FF in the introduction can be phrased in terms of the behaviour of this
exact sequence, and the map KS : Q(X)→ H2(X;Z/2), as follows.

Theorem 2.3. Let X be a smooth, connected, compact 4-manifold.

(A) The homomorphism KS : Q(X)→ H2(X;Z/2) is injective.
(C) Suppose X is orientable and the fundamental group π = π1(X) is such that the map

I2 : H2(π;Z(2)) −→ Ls6(Z[π])(2)
specified in Definition 5.85.8 is trivial. Then the image of the composition

π1(H̃omeo+∂ (X))
α−→ Q(X)

KS−→ H2(X;Z/2)

contains the kernel ker
(
H2(X;Z/2) δ∗−→ H1(X;Z(2))

)
of the Bockstein operator δ∗ for the

coefficient sequence 0→ Z(2)
2→ Z(2) → Z/2→ 0.

(E) There is a g ≥ 0 such that for the manifold X ′ := X#g(S2 × S2), the homomorphism
KS : Q(X ′)→ H2(X

′;Z/2) is a bijection.
(F) There exists an X for which γ is not injective, i.e. there is a diffeomorphism of X which

is topologically pseudo-isotopic to the identity but not smoothly so.

Remark 2.4.

(i) Theorem 2.32.3 (A)(A) sounds a little weaker than Theorem AA, as the latter says that if KS(F ) =
0 then F is topologically isotopic to a smooth pseudo-isotopy, whereas the former only says
that F is topologically pseudo-isotopic to a smooth pseudo-isotopy. But in fact they are
equivalent, as we will show in Theorem 3.43.4.

(ii) Theorem 2.32.3 (A)(A) and (C)(C) imply Theorem CC, as we explain below. Theorem 2.32.3 (C)(C)
is potentially stronger than Theorem CC, as it could also be used to analyse particular
diffeomorphisms of X when H1(π;Z(2)) has 2-torsion.

In the following sections we will prove the results in the introduction, but we will usually prove
them in the form given in Theorem 2.32.3. For Theorem CC we explain the connection next.
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Proof of Theorem CC assuming Theorem 2.32.3 (A)(A) and (C)(C). The Postnikov truncation t : X → Bπ
determines a commutative diagram

H2(X;Z/2) H1(X;Z(2))

H2(π;Z/2) H1(π;Z(2))

δ∗

t∗ ∼= t∗

δ∗

where surjectivity of t∗ on H2 is easily seen by considering a model for Bπ consisting of a cell
complex for X with additional cells of dimension 3 or greater attached. The hypothesis that
H1(π;Z(2)) has no 2-torsion is equivalent to the lower δ∗ being the 0 map. A diagram chase shows
this is equivalent to the upper δ∗ being the 0 map. By Theorem 2.32.3 (C)(C), the composition KS ◦α is
then surjective, so in particular KS is surjective. Then by Theorem 2.32.3 (A)(A), KS is an isomorphism,
and so α is surjective and hence γ is injective by exactness of 11. The latter is equivalent to saying
that every self-diffeomorphism of X which is topologically pseudo-isotopic to the identity is in fact
smoothly pseudo-isotopic to the identity. □

3. Proof of Theorem AA and Corollary BB

3.1. Smoothing theory. Let Y be a compact d-dimensional topological manifold whose bound-
ary ∂Y is endowed with a fixed smooth structure. The maps classifying the topological tangent
microbundle of Y , and the once-stabilised tangent vector bundle of ∂Y , yield the solid arrows in
the following commutative diagram, where the right-hand map is modelled by a fibration:

∂Y BO(d)

Y BTop(d).

T (∂Y )⊕ε1

τY

(2)

The fundamental theorem of smoothing theory is then as follows [KS77KS77, Essay V].

Theorem 3.1 (Kirby–Siebenmann). For d ≥ 5, the space of smooth structures on Y extending
that on ∂Y is homotopy equivalent to the space of dashed maps making both triangles commute.

In particular, there exists a smooth structure on Y extending that on ∂Y if and only if there
exists a dashed map making both triangles commute. This lifting problem may be made more
practical by considering the following diagram.

BO(d) BO E(Top/O) ≃ ∗

BTop(d) BTop B(Top/O)θ

The right-hand square is formed using the fact that BO → BTop is an (infinite) loop map so
deloops to give B(Top/O). The down-right composition consists of two maps in a homotopy fibre
sequence, so the square is cartesian, i.e. is a homotopy pull-back square. The left-hand square is
formed by stabilisation, and is (d+1)-cartesian [KS77KS77, p. 246 (4)] as long as d ≥ 5. (Recall we say
that a square is n-cartesian if the canonical map from the top left entry to the homotopy pullback
of the other three entries is n-connected, or equivalently if the total homotopy fibre is (n − 1)-
connected.) Pasting these squares with (22), it follows that for d ≥ 5 there is a smooth structure
on Y extending that on ∂Y if and only if there is dashed map in the diagram

∂Y E(Top/O) ≃ ∗

Y B(Top/O)
θ ◦ τY

making both triangles commute. That is, the solid arrows define a class

sm(Y, ∂Y ) ∈ [Y/∂Y,B(Top/O)]
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which is trivial if, and for d ≥ 5 only if, Y admits a smooth structure extending that on ∂Y . There
is a map

ks: B(Top/O) −→ K(Z/2, 4)
which is 8-connected. This follows from [KS77KS77, p. 246 (5)] and the fact that the low-dimensional
groups of homotopy spheres satisfy Θ5 = Θ6 = 0. Post-composing sm(Y, ∂Y ) with the map ks
gives a class

ks(Y, ∂Y ) ∈ H4(Y, ∂Y ;Z/2),
whose vanishing is necessary, and for 5 ≤ d ≤ 7 sufficient, for the existence of a smooth structure
on Y extending that on ∂Y . (For all d ≥ 5 the vanishing of this class is necessary and sufficient
for the existence of a PL-structure on Y extending that on ∂Y induced by its smooth structure.)

Finally, we use this discussion to prove Lemma 2.22.2, and in fact prove something a little stronger.
As mentioned above B(Top/O) is an infinite loop space. For a based space Z, this determines a
group structure on [Z,B(Top/O)].

Lemma 3.2. The function

Sm : Q(X) −→
[

X×I×I
∂(X×I×I) ,B(Top/O)

]
; [F ] 7−→ sm(X × I × I, ∂(X × I × I)F )

is well-defined and is a homomorphism.

Proof. If [F0] = [F1] ∈ Q(X) then by definition there is a homeomorphism G of X × I × I which
restricts to Fi on X × I × {i}, to the identity on (X × {0} × I) ∪ ((∂X) × I × I), and to a
diffeomorphism on X × {1} × I. We endow

∂(X × I × I)× I ⊆ ∂(X × I × I × I)

with a smooth structure by giving X × I ×{1}× I the smooth structure (X × I ×{1}× I)G given
by pulling the standard one back along G, and giving the rest of ∂(X × I × I) × I the standard
smooth structure. One checks that these two rules are compatible where they overlap. This smooth
structure restricts to ∂(X × I × I)Fi

× {i}, so the data

∂(X × I × I)× I BO(d+ 3) BO E(Top/O) ≃ ∗

(X × I × I)× I BTop(d+ 3) BTop B(Top/O)θ

defines a homotopy from sm(X × I × I, ∂(X × I × I)F0) to sm(X × I × I, ∂(X × I × I)F1).
We show the map is a homomorphism. The group structure on the set

[
X×I×I

∂(X×I×I) ,B(Top/O)
]

is the group structure given by the infinite loop space B(Top/O). The domain is homeomorphic
to the suspension Σ2(X/∂X), hence is a co-H-space, while the codomain is an H-space. It then
follows from the Eckmann–Hilton argument [Spa95Spa95, p. 43–4], that the group structure arising from
the codomain is equivalent to the group structure arising the domain, i.e. from “stacking” in the
second (say) interval direction of X × I × I.

Let [F ] and [F ′] be two elements of Q(X). We observe that the topological manifold with
smooth boundary (X × I × I, ∂(X × I × I)F ′ ◦F ) can be obtained up to isomorphism by stacking
the topological manifolds with smoothed boundaries

(X × I × I, ∂(X × I × I)F ) and (X × I × I, (F × IdI)
∗∂(X × I × I)F ′)

in the second interval direction. Here, (F × IdI)
∗∂(X × I × I)F ′) indicates the smooth struc-

ture obtained by pulling back the smooth structure ∂(X × I × I)F ′ , using the restriction of the
homeomorphism F × IdI , to ∂(X × I × I); see Figure 22.

Using this, we see that

Sm(F ′ ◦F ) = sm(X × I × I, ∂(X × I × I)F ′ ◦F )

= sm
(
(X × I × I, ∂(X × I × I)F ) ∪ (X × I × I, (F × IdI)

∗∂(X × I × I)F ′)
)

= sm
(
X × I × I, ∂(X × I × I)F

)
+ sm

(
X × I × I, (F × IdI)

∗∂(X × I × I)F ′
)

∈
[

X×I×I
∂(X×I×I) ,B(Top/O)

]
.
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X × I × I

X × I × I

σ

σσ

F ∗σ

(F ′ ◦ F )∗σ = F ∗((F ′)∗σ)

(F |X×{1} × IdI)
∗σ = σ(F |X×{0} × IdI)

∗σ = σ

Figure 2. We denote the standard smooth structure on X× I by σ. Suppressing
the X direction, we indicate the stacking proposed, together with the smooth
structures on the various copies of X × I that make up the boundaries of the two
copies of X × I × I.

The additivity of sm with respect to ∪ is due to the Eckmann-Hilton argument explained above.
There is an identification of topological manifolds with smoothed boundaries

F × IdI : (X × I × I, (F × IdI)
∗∂(X × I × I)F ′)

∼=−→ (X × I × I, ∂(X × I × I)F ′),

and therefore

sm
(
X × I × I, ∂(X × I × I)F

)
+ sm

(
X × I × I, (F × IdI)

∗∂(X × I × I)F ′
)

=sm
(
X × I × I, ∂(X × I × I)F

)
+ (F × IdI)

∗sm
(
X × I × I, ∂(X × I × I)F ′

)
=Sm(F ) + (F × IdI)

∗Sm(F ′).

The map of pairs
F : (X × I, ∂(X × I)) −→ (X × I, ∂(X × I))

is the identity on X × {0} ∪ ∂(X)× I and sends X × {1} into itself, so by Lemma 3.33.3 below it is
homotopic as a map of pairs to the identity. This implies that

Sm(F ) + (F × IdI)
∗Sm(F ′) = Sm(F ) + Sm(F ′).

We deduce that Sm(F ′ ◦F ) = Sm(F ) + Sm(F ′) ∈
[

X×I×I
∂(X×I×I) ,B(Top/O)

]
, as required. □

Lemma 3.3. Let Y be a compact manifold, possibly with boundary, and let

f : (Y × I, ∂(Y × I)) −→ (Y × I, ∂(Y × I))
be a map of pairs that restricts to the identity on Y ×{0}∪∂(Y )× I and sends Y ×{1} into itself.
Then f is homotopic as a map of pairs to the identity.

Proof. We exhibit a homotopy. Write f(y, t) = (γ(y, t), τ(y, t)), where this defines the functions γ
and τ . There is a preliminary homotopy given by the formula

fs(y, t) = (γ(y, t), (1− s)τ(y, t) + st),

satisfying f0 = f and f1(y, t) = (γ(y, t), t). This homotopy is fixed on Y × {0} ∪ ∂(Y ) × I, and
if (y, 1) ∈ Y × {1} so that f(y, 1) = (γ(y, 1), 1) then fs(y, 1) = (γ(y, 1), 1) = f(y, 1) ∈ ∂(Y,×I):
thus it is a homotopy which is fixed on ∂(Y × I).

We make a second homotopy by the formula

f1,s(y, t) = (γ(y, (1− s)t), t).
This satisfies f1,0 = f1, and f1,1(y, t) = (γ(y, 0), t) = (y, t), so f1,1 is the identity. One verifies that
it sends ∂(Y × I) into itself, so gives a homotopy of maps of pairs. □

Proof of Lemma 2.22.2. Postcompose the function from Lemma 3.23.2 with

ks :
[

X×I×I
∂(X×I×I) ,B(Top/O)

]
−→

[
X×I×I

∂(X×I×I) ,K(Z/2, 4)
]
∼= H̃4(X × I × I, ∂(X × I × I);Z/2), (3)

and Poincaré duality. The composition PD ◦ ks ◦ Sm : Q(X) → H2(X;Z/2) is exactly the func-
tion KS in the statement of Lemma 2.22.2. We need to see that it is a homomorphism. By Lemma 3.23.2,
the function Sm is a homomorphism, and certainly Poincaré duality is. The H-space structures
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on B(Top/O) and K(Z/2, 4) need not agree a priori, so it is not automatic that the map in (33)
is a homomorphism. However, the map B(Top/O) → K(Z/2, 4) factors through the Postnikov

truncation: B(Top/O) → τ≤4B(Top/O)
≃−→ K(Z/2, 4). The Postnikov truncation inherits an H

space structure, which follows from obstruction theory (the obstructions to extending the mul-
tiplication have coefficients in πi(τ≤kX) for i ≥ k + 1, which vanishes). Hence the first map in
our factorisation is an H-space map. Again by obstruction theory, Eilenberg–Maclane spaces have
a unique H-space structure, so the second map is also an H-space map. (Since the domain has
two I factors, we could also have applied the Eckmann–Hilton argument [Spa95Spa95, p. 43–4] again.)
It follow that ks is also a homomorphism, which completes the proof. □

3.2. Proof of Theorem AA. Recall from the introduction that given a closed, smooth, connected 4-
manifold X and a homeomorphism F : X×I → X×I restricting to diffeomorphisms fi : X×{i} →
X×{i} for i = 0, 1, we can endow the boundary of X×I×I with a smooth structure ∂(X×I×I)F .
Using the discussion in the previous section we define

KS(F ) := ks(X × I × I, ∂(X × I × I)F ) ∈ H4(X × I × I, ∂(X × I × I)F ;Z/2) ∼= H2(X;Z/2).

Theorem 3.4. The following are equivalent:

(i) KS(F ) = 0;
(ii) X × I × I admits a smooth structure extending ∂(X × I × I)F ;
(iii) F is topologically isotopic, rel. boundary, to a smooth pseudo-isotopy;
(iv) F is topologically pseudo-isotopic, rel. boundary, to a smooth pseudo-isotopy.

Proof. That (i)(i)⇐⇒ (ii)(ii) is by the discussion in the previous section, using that dim(X×I×I) = 6.
We prove that (ii)(ii) =⇒ (iii)(iii). If X × I × I is endowed with a smooth structure extend-

ing ∂(X × I × I)F , then it is a concordance rel. boundary from the smooth structure (X × [0, 1])σ
to (X × [0, 1])F∗σ. Since X × I has dimension five and the smooth structures already agree on
the 4-dimensional boundary X × {0, 1}, we may apply Kirby–Siebenmann’s concordance implies
isotopy [KS77KS77, Essay I, Theorem 4.1] for smooth structures, to obtain an isotopy of homeomor-
phisms Gt : X × [0, 1] → X × [0, 1], for t ∈ [0, 1], such that G0 = IdX×[0,1] and G∗

1σ = F ∗σ.

Then F ◦G−1
t : X × [0, 1]→ X × [0, 1] is an isotopy from F to F ◦G−1

1 , and

(F ◦G−1
1 )∗σ = (G−1

1 )∗F ∗σ = (G−1
1 )∗G∗

1σ = (G1 ◦G−1
1 )∗σ = Id∗ σ = σ.

Hence F ◦G−1
1 : (X × [0, 1])σ → (X × [0, 1])σ is a diffeomorphism, i.e. a smooth pseudo-isotopy

of X × [0, 1], that is topologically isotopic to F . Thus (iii)(iii) holds.
Certainly (iii)(iii) =⇒ (iv)(iv). To see that (iv)(iv) =⇒ (i)(i), suppose that F : X×I → X×I is topologically

pseudo-isotopic rel. boundary to a smooth pseudo-isotopy, via a pseudo-isotopy G : X × I × I →
X × I × I. Let fi := F |X×{i} : X → X be the diffeomorphisms obtained by restricting F ,

for i = 0, 1. Define F ′ := F ◦ (f0 × IdI)
−1. This is a topological pseudo-isotopy from IdX to

the diffeomorphism f1 ◦ f0 : X → X, and hence determines an element [F ′] ∈ Q(X). More-
over G′ := G ◦ (f0 × IdI × IdI)

−1 is a pseudo-isotopy from F ′ to a diffeomorphism of X × I,
i.e. to a smooth pseudo-isotopy. It follows that [F ′] is equivalent in Q(X) to a smooth pseudo-
isotopy F ′′ := G′|X×I×{1}, and so KS(F ′) = KS(F ′′) by Lemma 2.22.2. Since F ′′ is a diffeomor-
phism, ∂(X × I × I)F ′′ ∼= ∂(X × I × I), where the latter denotes the standard smooth structure
on the boundary. But ks(X × I × I, ∂(X × I × I)) = 0, so KS(F ) = KS(F ′′) = 0. □

In particular, the implication (i)(i) =⇒ (iii)(iii) is Theorem AA. The implication (i)(i) =⇒ (iv)(iv) is The-
orem 2.32.3 (A)(A), which seems slightly weaker than Theorem AA but as we have just seen is in fact
not.

3.3. Proof of Corollary BB. For a compact smooth d-manifold X, let PDiff(X) denote the space
of smooth pseudo-isotopies of X, i.e. the set of diffeomorphisms F : X × I → X × I such that F
acts as the identity near (X × {0}) ∪ (∂X × I), endowed with the Whitney topology. Similarly
let PTop(X) denote the space of topological pseudo-isotopies ofX, with the compact-open topology.
For d ≥ 4, Hatcher–Wagoner [HW73HW73] defined a homomorphism

ΣDiff : π0PDiff(X) −→Wh2(π1(X)).

For d ≥ 5, Burgelea–Lashof–Rothenberg and Pedersen [BLR75BLR75, Appendix A] indicated how to ex-
tend the definition of ΣDiff to the topological category. The details of the analogous construction
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were worked out for d = 4 by Galvin–Nonino [GN25GN25, Theorem 1.1], giving rise to a homomor-
phism ΣTop : PTop(X)→Wh2(π1(X)) such that ΣDiff factors through the forgetful map as

ΣDiff : π0PDiff(X)→ π0PTop(X)
ΣTop

−−−→Wh2(π1(X)). (4)

Finally, recall a theorem of Gabai.

Theorem 3.5 ([Gab22Gab22, Theorem 2.5]). Let f : X
∼=−→ X be an orientation-preserving diffeomor-

phism of a smooth, compact, oriented 4-manifold X. Then f is smoothly stably isotopic to IdX
if and only if f is smoothly pseudo-isotopic to IdX via a smooth pseudo-isotopy F with vanishing
Hatcher–Wagoner obstruction ΣDiff([F ]) = 0 ∈Wh2(π1(X)).

We can now prove Corollary BB.

Proof of Corollary BB. By Theorem AA if F has KS(F ) = 0 then it is topologically isotopic rel. ∂(X×
[0, 1]) to a smooth pseudo-isotopy F ′. If moreover F is a topological isotopy then [F ] = [IdX ] ∈
π0PTop(X) so ΣTop([F ]) = 0 ∈ Wh2(π1(X)). By (44), and since [F ′] 7→ [F ] under the forgetful
map, we deduce that ΣDiff([F ′]) = ΣTop([F ]) = 0. By Gabai’s Theorem 3.53.5, this is equivalent to f
being smoothly stably isotopic to IdX . □

4. Dualities and orientations

We establish notation and recall some fundamental concepts from stable homotopy theory.
First, we introduce our notation for the standard spectra we shall invoke. We write S for the
sphere spectrum, and Sd := ΣdS for the sphere spectrum shifted by d. Of course, S0 = S, and
note πn(Sd) ∼= πsn−d(pt+) = πsn−d. For an abelian group A and k ∈ Z, we write HA[k] for the
Eilenberg–Maclane spectrum with πk(HA[k]) ∼= A and πj(HA[k]) = 0 for j ̸= k. Finally let MSTop
be the oriented Thom spectrum.

Given spectra X and E, we define the E-theory homology and cohomology, respectively, as

Er(X) := [Sr, X ∧ E] and Er(X) := [X,ΣrE].

If Y is a pointed space, we write Er(Y ) := Er(Σ
∞Y ) and Er(Y ) := Er(Σ∞Y ) for the E-theory

homology and cohomology.

4.1. Spanier–Whitehead and Atiyah duality. Spectra A and B are Spanier–Whitehead dual
if there exists a duality morphism (see [Rud98Rud98, IV.2.3(a)]), which is a coevaluation map coev: S→
A ∧ B satisfying certain properties. The existence of a coevaluation map is equivalent to the
existence of an evaluation map ev: B ∧ A → S satisfying certain properties [Rud98Rud98, IV.2.6(a)].
Moreover, if A and B Spanier–Whitehead dual then for all spectra C and D coevaluation induces
an isomorphism

[D ∧A,C]
∼=−→ [D,C ∧B]; φ 7→ (φ ∧ IdB) ◦ (IdD ∧ coev)

(see [Rud98Rud98, IV.2.5(ii)]).
Given spectra A and B with respective Spanier–Whitehead duals A∨ and B∨, the Spanier–

Whitehead dual of a map f : A→ B is the map f∨ : B∨ → A∨, given by the composition

f∨ : B∨ ≃−→ S ∧B∨ coev∧Id−−−−−→ A∨ ∧A ∧B∨ Id∧f∧Id−−−−−−→ A∨ ∧B ∧B∨ Id∧ev−−−−→ A∨ ∧ S ≃−→ A∨.

We will write SW(A) = A∨ for the Spanier–Whitehead dual of A, when it exists, and SW(f) = f∨

for the Spanier–Whitehead dual of a map between objects which have Spanier–Whitehead duals.

Remark 4.1. If coev: S→ A∧B exhibits A and B as Spanier–Whitehead dual, then postcomposing
it with the factor switching map sw: A∧B → B ∧A gives a coevaluation map exhibiting B and A
as Spanier–Whitehead dual. That is, being in duality is a symmetric property of A and B.

We also note that S is self-dual, and that if A and B are Spanier–Whitehead dual, then ΣdA
and Σ−dB are Spanier–Whitehead dual for all d.

Assume X is a d-dimensional topological manifold with possibly nonempty boundary. Recall

that the stable normal microbundle νTopX : X → BTop is the map classifying the virtual topological
microbundle [νTope − εN ] of virtual dimension zero, where νTope the normal microbundle of any
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locally flat embedding e : (X, ∂X) ↪→ (Dd+N , ∂Dd+N ) with N ≫ 0, with N large enough for
normal microbundles to exist [Ste75Ste75]. There are Spanier–Whitehead dual pairs

SW(Σ∞−d(X/∂X)) = Th(νTopX ) and SW(Σ∞−dX+) = Th(νTopX )/Th(νTop∂X );

see [Rud98Rud98, V.2.3.(i), V.2.14.(a)]. Recall that X/∂X = X+ if ∂X is empty (this is consistent
with the convention that X/A refers to the push out of {∗} ← A → X) and in this case, the two
Spanier–Whitehead dualities above agree.

We will describe the duality morphism of the latter. Let ε× νTopX : X ×X → BTop denote the

external direct sum of the stable trivial bundle over X and νTopX . By definition of the Whitney

sum, there is a stable bundle map νTopX ≃ ε ⊕ νTopX → ε × νTopX covering diag: X → X ×X. We
may consider this bundle map to cover the diagonal map (X, ∂X) → X × (X, ∂X). Passing to
Thom spaces and noting that Th(ε) = Σ∞X+, we obtain the Thom diagonal

∆: Th(νTopX )/Th(νTop∂X ) −→ Σ∞X+ ∧ Th(νTopX )/Th(νTop∂X ).

We then have a map

Sd cX−−→ Th(νTopX )/Th(νTop∂X )
∆−→ Σ∞X+ ∧ Th(νTopX )/Th(νTop∂X ),

where cX denotes the Thom collapse map. Desuspending this composition d times gives the
desired duality map [Rud98Rud98, V.2.3.(i)] (cf. [Bro72Bro72, I.1.15]). The duality map for the other claimed
Spanier–Whitehead duality is described similarly, but by considering the diagonal as the map of
pairs (X, ∅)→ (X, ∂X)×X.

So for each spectrum E and each r ∈ Z there are group isomorphisms

Er(X/∂X) = [ΣrS,Σ∞(X/∂X) ∧ E] = [S,Σ∞−d(X/∂X) ∧ Σd−rE]

∼= [Th(νTopX ),Σd−rE] = Ed−r(Th(νTopX )),

and

Er(X/∂X) = [Σ∞(X/∂X),ΣrE] = [Σ∞−d(X/∂X),Σr−dE]

∼= [S,Th(νTopX ) ∧ Σr−dE] = Ed−r(Th(ν
Top
X )).

These are referred to as Atiyah duality [Ati61Ati61]. We will denote the map from the latter display,
from cohomology to homology, by AD.

We record the following, for later use.

Lemma 4.2. If X is a d-dimensional compact topological manifold then the Spanier–Whitehead

dual of the Thom collapse map Σ−dcX : S→ Σ−d(Th(νTopX )/Th(νTop∂X )
)
is the map CX : Σ∞X+ →

S, induced by the constant map X → pt, adding basepoints and taking suspension spectra. More-
over, under the Σ-Ω adjunction, the map CX corresponds to the constant map X+ → Ω∞S =
colimkΩ

kSk to the class of the identity map.

Proof. Write ∆′ := sw ◦ ∆ for the Thom diagonal followed by the factor switch map; this will
determine the coevaluation map needed for this proof (see Remark 4.14.1). By definition of the
duality, the Spanier–Whitehead dual of the map CX : Σ∞X+ → S is the composition

S ≃−→ S∧S Σ−dcX∧Id−−−−−−−→ Σ−d(Th(νTopX )/Th(νTop∂X )
)
∧S ∆′∧Id−−−−→ Σ−d(Th(νTopX )/Th(νTop∂X )

)
∧Σ∞X+∧S

Id∧CX∧Id−−−−−−−→ Σ−d(Th(νTopX )/Th(νTop∂X )
)
∧ S ∧ S ≃−→ Σ−d(Th(νTopX )/Th(νTop∂X )

)
.

Applying the d-fold suspension one obtains

Sd cX−→ Th(νTopX )/Th(νTop∂X )
∆′

−−→ Σ∞X+ ∧ Th(νTopX )/Th(νTop∂X )
Id∧CX−−−−→ Th(νTopX )/Th(νTop∂X ) ∧ S.

But by definition of the Thom diagonal the composition (Id ∧ CX) ◦ ∆′ is the identity. Hence
SW(Σ−dcX) = CX , as claimed.

The final assertion follows from adding basepoints to the map X → pt then smashing with Sk

to get a map Sk ∧X+ → Sk ∧ S0, which is the identity on the first factor. Taking adjoints results
in a constant map to the identity element X+ → Ωk(Sk ∧ S0) = Ωk(Sk). The result follows by
taking the colimit. □
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4.2. Orientations and fundamental classes. If E is a ring spectrum, and X is a d-dimensional
compact topological manifold, then an E-orientation of, or E-theory fundamental class for, X is
a class [X]E ∈ Ed(X/∂X) such that for any coordinate chart Rd ⊆ X with corresponding collapse
map

c : X/∂X → X/(X − Int(Dd)) ∼= Dd/∂Dd ∼= Sd

the class c∗([X]E) ∈ Ed(Sd) corresponds under the suspension isomorphism to±1 ∈ E0(S
0) [Rud98Rud98,

V.2.1]. Here ±1 ∈ E0(S
0) is the image of ±1 ∈ πs0(S

0) ∼= Z under the map πs0(S
0) → E0(S

0)
induced by the unit map η : S → E of the ring spectrum. The notion of E-orientability of a
manifold is closely connected to the definition of E-orientability of the stable normal microbun-

dle νTopX : X → BTop ([Rud98Rud98, V.1.12]). Indeed, under Atiyah duality, E-theory fundamental

classes [X]E ∈ Ed(X/∂X) correspond to E-theory Thom classes UE ∈ E0(Th(νTopX )) for νTopX (also

known as E-orientations for νTopX ) [Rud98Rud98, Corollary V.2.6]. Given a module spectrum F over E,
and an E-theory fundamental class [X]E on the manifold X, there are induced F -theory Poincaré
duality isomorphisms

[X]E ⌢ − : F r(X/∂X)
∼=−→ Fd−r(X+),

which coincide with Atiyah duality for F followed by the homological Thom isomorphism; see [Rud98Rud98,
V.1.3]) and the second diagram of [Swi02Swi02, Theorem 14.41]. Note that in this normalisation the
Thom class, and hence the Thom isomorphism, has degree zero.

5. Proof of Theorem CC

We will prove Theorem CC in the form of Theorem 2.32.3 (C)(C), so will show that the image of the
composition

π1(H̃omeo+∂ (X))
α−→ Q(X)

KS−→ H2(X;Z/2)

contains the kernel ker(H2(X;Z/2) δ∗−→ H1(X;Z(2))) of the Bockstein operator for the coefficient

sequence 0→ Z(2)
2→ Z(2) → Z/2→ 0. It suffices to do so after precomposing with the connecting

map

∂ : π2

(
s̃Aut+∂ (X)

H̃omeo+∂ (X)

)
−→ π1

(
H̃omeo+∂ (X)

)
in the long exact sequence of semi-simplicial homotopy groups (see e.g. [GJ09GJ09, §1.7] for a definition)

associated to the fibre sequence H̃omeo+∂ (X) → s̃Aut+∂ (X) → s̃Aut+∂ (X)

H̃omeo+∂ (X)
of Kan semi-simplicial

sets. The domain of this connecting map has the advantage that it may be described via surgery
theory, as we now explain.

5.1. Geometric surgery. First we briefly recall the simple structure set, and describe its relation
to domain of ∂, above. Then we recall the surgery exact sequence of Browder–Novikov–Sullivan–
Wall and show how it can be related to the maps α, ks, and Sm.

5.1.1. The structure set. In the following we let CAT ∈ {Top,Diff,PL} be a category of manifolds.
Let Y be a d-dimensional compact CAT manifold with (possibly empty) boundary ∂Y . The basic
object of study in surgery theory is the simple CAT-structure set SCAT

∂ (Y ), described as follows.

Definition 5.1. Elements of SCAT
∂ (Y ) are equivalence classes of maps of pairs (f, ∂f) : (M,∂M)→

(Y, ∂Y ) from a CAT manifold such that ∂f is a CAT isomorphism and f is a simple homotopy
equivalence. The equivalence relation on such maps is s-cobordism: if there is an s-cobordism W
from (M0, ∂M0) to (M1, ∂M1), trivial on the boundary, and a map (F, ∂−F ) : (W,∂−W )→ (Y, ∂Y )
restricting to (f0, ∂f0) : (M0, ∂M0) → (Y, ∂Y ) and (f1, ∂f1) : (M1, ∂M1) → (Y, ∂Y ) at the ends,
then (f0, ∂f0) ∼ (f1, ∂f1).

Alternatively, if d ≥ 5 (or d = 4, CAT = Top, and π1(Y ) is good) then the CAT s-cobordism
theorem applies and we can rephrase the equivalence relation as (f0, ∂f0) ∼ (f1, ∂f1) if and only if
there is a CAT isomorphism (ϕ, ∂ϕ) : (M0, ∂M0)→ (M1, ∂M1) with (f1, ∂f1) ◦ (ϕ, ∂ϕ) ≃ (f0, ∂f0).

For each k ≥ 0, we now describe a map

πk

(
s̃Aut+∂ (Y )

H̃omeo+∂ (Y )

)
−→ STop∂ (Y ×Dk),
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and show it is an injection for k = 0 and a bijection for k > 0, as long as k+d ≥ 5. The domain is a
(semi)-simplicial homotopy group of a quotient of a semi-simplicial set by a semi-simplicial group.
Unravelling definitions shows that elements are represented by simple homotopy equivalences

f : Y ×∆k −→ Y ×∆k

which preserve faces, which restrict to the identity on (∂Y )×∆k, and which restrict to homeomor-
phisms on Y × ∂∆k (and are well-defined up to a homotopy which is an isotopy on Y × ∂∆k and
fixed on (∂Y )×∆k, and precomposing by block homeomorphisms of Y ×∆k which are the identity

on (∂Y )×∆k). Such maps define elements of STop∂ (Y ×Dk), and this assignment can be shown to

be well-defined. To see that it is surjective for k > 0, we observe that an element of STop∂ (Y ×Dk)

is represented by a simple homotopy equivalence ϕ : (M,∂M) → (Y × Dk, ∂(Y × Dk)) which is
a homeomorphism on the boundary. Identifying Dk = [0, 1]k we may view M as an h-cobordism
from Y × [0, 1]k−1 × {0} to Y × [0, 1]k−1 × {1} rel. boundary, but as M is simple homotopy
equivalent to Y × [0, 1]k this is in fact an s-cobordism. By the s-cobordism theorem there is a
homeomorphism M ∼= Y × [0, 1]k, and so the map ϕ may be considered as a simple homotopy
equivalence ϕ : (Y ×Dk, ∂(Y ×Dk)) → (Y ×Dk, ∂(Y ×Dk)) which is a homeomorphism on the

boundary, but this is precisely our description of elements coming from πk(s̃Aut+∂ (Y )/H̃omeo+∂ (Y )).
As usual, injectivity is proved by a relative form of this surjectivity argument.

5.1.2. The surgery exact sequence. The surgery theory of Browder–Novikov–Sullivan–Wall [Wal99Wal99,

LM24LM24] describes the sets STop∂ (Y ×Dk) for d+ k ≥ 5 via the surgery exact sequence

· · · Ld+3(Z[π]) STop∂ (Y × I × I)
[

Y×I×I
∂(Y×I×I) ,G/Top

]
Ld+2(Z[π]) STop∂ (Y × I)

[
Y×I

∂(Y×I) ,G/Top
]

Ld+1(Z[π]) STop∂ (Y ) [Y/∂Y,G/Top] Ld(Z[π]),
ηTop σ

where π := π1(Y ). Exactness is just as for the long exact sequence of homotopy groups for a fibra-
tion of pointed spaces: the last three terms are pointed sets, the next three are groups, and the rest
are abelian groups, with the maps being homomorphisms to the extent possible (most important
for us will be that the top row consists of abelian groups). The L-groups Lk(Z[π]) are Wall’s
(simple) surgery obstruction groups. The topological monoid G is the structure group for stable
spherical fibrations, and the space G/Top is defined as the homotopy fibre of the map BTop→ BG
induced by the forgetful map.

The stable normal microbundle νTopY : Y → BTop is a preferred lift of the Spivak normal fi-
bration νGY : Y → BG. The group [Y/∂Y,G/Top] acts freely transitively on the set of lifts of the
Spivak normal fibration, relative to a fixed lift on the boundary ∂Y .

Given an element [(f, ∂f) : (M,∂M) → (Y, ∂Y )] of the structure set STop∂ (Y ), the homotopy

equivalence f determines a stable microbundle (f−1)∗νTopM : Y → BTop. As f is a homotopy

equivalence, the underlying spherical fibration of (f−1)∗νTopM is canonically homotopic to the Spivak
normal fibration Y → BG. As f is a homotopy equivalence, the underlying spherical fibrations

of (f−1)∗νTopM and νTopY are (canonically) identified. As ∂f is a homeomorphism this identification
extends to one of stable microbundles over ∂Y . This gives a difference class

ηTop([(f, ∂f)]) := d((f−1)∗νTopM , νTopY ) ∈ [Y/∂Y,G/Top] .

See [Wal99Wal99,LM24LM24] for further details on the surgery exact sequence.

5.1.3. Mapping the surgery exact sequence in. For a 4-manifold X we may form the diagram

π2

(
s̃Aut+∂ (X)

H̃omeo+∂ (X)

)
STop∂ (X × I × I)

[
X×I×I

∂(X×I×I) ,G/Top
]

π1(H̃omeo+∂ (X)) Q(X)
[

X×I×I
∂(X×I×I) ,B(Top/O)

]
H̃4

(
X×I×I

∂(X×I×I) ;Z/2
)
.

∼=

∂

ηTop

α Sm ks
∼=

(5)
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The right-hand vertical map is induced by the composition G/Top→ BTop→ B(Top/O). The left-
hand vertical map is the connecting homomorphism from the long exact sequence of the fibration.

Lemma 5.2. The diagram (55) commutes.

Proof. Let ϕ : (M,∂M)→ (X × I × I, ∂(X × I × I)) represent an element of STop∂ (X × I × I), so it
is a simple homotopy equivalence which is a homeomorphism on the boundary. In particular, M
can be considered as an h-cobordism from X × I × {0} to X × I × {1} rel. boundary. By the
composition formula its Whitehead torsion satisfies

f∗τ(M,X × I × {0}) + τ(ϕ) = τ(X × I × I,X × I × {0}) = 0 ∈Wh(π1(X × I × I)),

and as ϕ is a simple homotopy equivalence it follows that τ(M,X × I × {0}) = 0, and thus M is
an s-cobordism. The s-cobordism theorem then gives a homeomorphism

ψ : M
∼=−→ X × I × I rel. X × I × {0} ∪ ∂(X × I)× I,

which restricts to a homeomorphism F : X × I × {1}
∼=→ X × I × {1} rel. boundary. Spelling out

the isomorphism and definition of ∂ in the diagram shows that

∂([ϕ]) = [F ] ∈ π0(H̃omeo+∂ (X × I)) = π1(H̃omeo+∂ (X)).

Now α([F ]) = [Id, F ], which is just F considered as a topological pseudo-isotopy from the identity

to the identity diffeomorphism, so ks ◦ Sm ◦α([F ]) ∈
[

X×I×I
∂(X×I×I) ,K(Z/2, 4)

]
is given by

∂(X × I × I)F BO(6) BO E(Top/O) PK(Z/2, 4) ≃ ∗

X × I × I BTop(6) BTop B(Top/O) K(Z/2, 4).

T∂(X×I×I)F⊕ε1

τX×I×I θ ks

Now ψ induces an isomorphism of topological manifolds with smoothed boundary

ψ : (M,∂M)
∼=−→ (X × I × I, ∂(X × I × I)F )

so we have

ks ◦ Sm ◦α([F ]) = ks(X × I × I, ∂(X × I × I)F ) = (ψ−1)∗ks(M,∂M) ∈ H̃4
(

X×I×I
∂(X×I×I) ;Z/2

)
.

The composition ϕ ◦ψ−1 : (X × I × I, ∂(X × I × I))→ (X × I × I, ∂(X × I × I)) is the identity on
X × I × {0} ∪ ∂(X × I) × I and sends X × I × {1} into itself, so by Lemma 3.33.3 it is homotopic
as a map of pairs to the identity. It follows that ψ−1 is homotopic as map of pairs to ϕ−1, so the
right-hand side of the previous equation may be written as (ϕ−1)∗ks(M,∂M).

On the other hand, by definition of the normal invariant map ηTop the composition

STop∂ (X × I × I) ηTop−→
[

X×I×I
∂(X×I×I) ,G/Top

]
−→

[
X×I×I

∂(X×I×I) ,BTop
]

sends the simple homotopy equivalence [ϕ] to the map classifying the stable microbundle (ϕ−1)∗νTopM −
νTopX×I×I together with the trivialisation over ∂(X × I × I) given by the fact that ϕ is a homeomor-

phism on ∂(X × I × I). Post-compose with BTop
θ→ B(Top/O)

ks→ K(Z/2, 4). Since the Kirby–

Siebenmann class is additive for Whitney sum of bundles [KS77KS77, Annex 3 Lemma 15.5], νTopY and

the stable tangent microbundle τTopY have the same Kirby–Siebenmann class. We therefore obtain

ks((ϕ−1)∗νTopM − νTopX×I×I) = (ϕ−1)∗ks(νTopM )− ks(νTopX×I×I) = (ϕ−1)∗ks(τTopM )− ks(τTopX×I×I)

= (ϕ−1)∗ks(M,∂M)− ks(X × I × I, ∂)

= (ϕ−1)∗ks(M,∂M) ∈ H̃4
(

X×I×I
∂(X×I×I) ;Z/2

)
,

where we have again used additivity, that νTopY and τTopY are stable inverses, the definition of
ks(Y, ∂Y ), and that X × I × I is smooth so has trivial Kirby–Siebenmann class. This completes
the verification that both passages around the diagram yield the same result. □
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We give an outline of our strategy for the proof of Theorem 2.32.3 (C)(C). Recall that our goal is
to show that the image of PD ◦ ks ◦ Sm ◦α ◦ ∂ contains ker

(
δ∗ : H2(X;Z/2) → H1(X;Z(2))

)
. As

the codomain of the right vertical map in diagram (55) is a vector space over Z/2, this map factors
through the 2-localisation of its domain. This allows us to augment diagram (55) as follows

π2

(
s̃Aut+∂ (X)

H̃omeo+∂ (X)

)
STop∂ (X × I × I)

[
X×I×I

∂(X×I×I) ,G/Top
]

STop∂ (X × I × I)(2)
[

X×I×I
∂(X×I×I) ,G/Top

]
(2)

L6(Z[π])(2)

π1(H̃omeo+∂ (X)) Q(X)
[

X×I×I
∂(X×I×I) ,B(Top/O)

]

H̃4
(

X×I×I
∂(X×I×I) ;Z/2

)
H2(X;Z/2).

∼=

∂

ηTop

ηTop σ

α Sm

ks∼=

∼=
PD

(6)

The 2-localised row in diagram (66) is meaningful because the surgery exact sequence for X × I × I
is an exact sequence of abelian groups, and can therefore be localised at 2, which furthermore
preserves exactness. Diagram (55), with the right vertical arrow factored through the 2-localisation,
is a subdiagram of diagram (66), and so this big square commutes by Lemma 5.25.2. The smaller
square in diagram (66) commutes, by naturality of localisation. So diagram (66) commutes overall.

We will produce, for each u ∈ ker
(
δ∗ : H2(X;Z/2) → H1(X;Z(2))

)
, a lift to an element

ξu ∈
[

X×I×I
∂(X×I×I) ,G/Top

]
(2)

such that σ(ξu) = 0. By exactness we will then obtain an element

in STop∂ (X × I × I)(2) mapping to u. After multiplying by an odd integer, this lifts to an el-

ement STop∂ (X × I × I), also mapping to u. It follows that u is in the image of the clockwise
composition starting in the top left corner. By commutativity of the big square, we can conclude
u lies in the image of PD ◦ ks ◦ Sm ◦α ◦ ∂. This will complete the proof of Theorem 2.32.3 (C)(C).

5.2. Ranicki–Sullivan duality and Poincaré duality. To do what we have just described, we
will use Ranicki’s algebraic surgery exact sequence; see [Ran92Ran92]. In the topological category, this
is an exact sequence isomorphic to the geometric surgery exact sequence, and expressed in terms
of the L-spectra. In the algebraic surgery exact sequence, the surgery obstruction map σ from the
geometric surgery exact sequence factors through the Ranicki–Sullivan duality map, followed by
the algebraic assembly map, as we shall describe below. The main task of this section is to relate
Ranicki–Sullivan duality back to ordinary Poincaré duality.

5.2.1. L-spectra. Given a ring R with anti-involution (often called an involution in the surgery
literature), there are defined spectra Ls(R) and Lq(R), respectively the symmetric and quadratic L-
spectra. The reader is referred to [Ran92Ran92] for the construction, but note we are using the naming
convention of [Lur11Lur11], whereas Ranicki writes L•(R) and L•(R) respectively for the symmetric and
quadratic spectra. Products in L-theory (see [Ran92Ran92, Appendix B], [Ran80Ran80]) endow Ls(R) with the
structure of a ring spectrum and Lq(R) with the structure of an Ls(R)-module spectrum. We will
denote by Ls = τ≥0Ls(Z), the 0-connective cover of Ls(Z), by Lq = τ≥0Lq(Z) the 0-connective cover
of Lq(Z), and by Lq⟨1⟩ = τ≥1Lq(Z) the 1-connective cover of Lq(Z); Ls is again a ring spectrum
and Lq and Lq⟨1⟩ are Ls-module spectra. We will continue with the notation Er(−) and Er(−)
to refer to the corresponding (co)homology theories for E = Ls,Lq,Lq⟨1⟩, where Ranicki uses the
notation Hr(−;E) and Hr(−;E).

5.2.2. The symmetric L-theory fundamental class. There is a morphism σ : MSTop → Ls of ring
spectra, referred to as the Ranicki orientation; see [Ran92Ran92, §16]. For an oriented topological d-

manifold Y , write νTopY : Y → BSTop for the oriented stable normal microbundle of the pair (Y, ∂Y ).

We have an the induced map of spectra Th(νTopY ) → MSTop, and the composition Th(νTopY ) →
MSTop

σ−→ Ls results in a Ls-theory Thom class ULs ∈ (Ls)0(Th(νTopY )); see [Ran92Ran92, §16]. Under
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Atiyah duality (Ls)0(Th(νTopY )) ∼= (Ls)d(Y/∂Y ) we therefore obtain an Ls-theory fundamental
class [Y ]Ls ∈ (Ls)d(Y/∂Y ).

5.2.3. The surgery obstruction and assembly. In [Ran79Ran79], Ranicki constructed a homotopy equiv-
alence G/Top ≃ Ω∞Lq⟨1⟩, which we use to identify these two spaces from now on. In particular,
if Y is a topological d-manifold as above then we have an identification

D: [Y/∂Y,G/Top] ∼= [Y/∂Y,Ω∞Lq⟨1⟩] ∼= [Σ∞(Y/∂Y ),Lq⟨1⟩]
[
Sd,Σ∞Y+ ∧ Lq⟨1⟩

]
,

[Y ]Ls⌢−
∼= (7)

given by Poincaré duality in Lq⟨1⟩-theory (this is the duality often referred to as Ranicki–Sullivan
duality). Note that the first two terms refer to maps of spaces, while the last two refer to maps of
spectra. Under this identification, the surgery obstruction map from [Wal99Wal99, §3] factors as

[Y/∂Y,G/Top] Ld(Z[π])

[
Sd,Σ∞Y+ ∧ Lq⟨1⟩

] [
Sd,Σ∞Y+ ∧ Lq

] [
Sd,Σ∞Bπ+ ∧ Lq

]
σ

D∼=

t∗

Aπ

where the first lower map is induced by the canonical map Lq⟨1⟩ → Lq given by the connective
cover, the second is induced by the Postnikov truncation map t : Y → Bπ, and the third map Aπ
is the assembly map in quadratic L-theory, defined in [Ran79Ran79]. This is shown in [HMTW88HMTW88,
Appendix 2, Theorem 2], where it is credited to Quinn [Qui70Qui70] and Ranicki [Ran79Ran79,Ran92Ran92], with
a contribution by Nicas [Nic82Nic82].

Our objective for the remainder of this subsection is prove Lemma 5.65.6, below, where we relate
Ranicki–Sullivan duality back to ordinary Poincaré duality.

5.2.4. Splitting L-theory spectra. The 2-localised spectra Ls(2) and Lq⟨1⟩(2) are generalised Eilenberg–

Maclane spectra; see [TW79TW79, §2]. Moreover, Taylor and Williams [TW79TW79] write down specific
equivalences of HZ-module spectra(

ls

r

)
: Ls(2)

≃−→
⊕
i≥0

HZ(2)[4i] ⊕
⊕
j≥0

HZ/2[4j + 1], (8)

and (
lq

k

)
: Lq⟨1⟩(2)

≃−→
⊕
i≥1

HZ(2)[4i] ⊕
⊕
j≥0

HZ/2[4j + 2]. (9)

Lemma 5.3. Under the identification G/Top ≃ Ω∞Lq⟨1⟩ and with respect to the Taylor–Williams

splitting (99), the cohomology class G/Top→ BTop→ B(Top/O)
ks→ K(Z/2, 4) is given by red2(l

q
4)+

k2 ⌣ k2. That is, the following diagram commutes

G/Top Ω∞Lq⟨1⟩(2)

K(Z/2, 4) K(Z(2), 4)×K(Z/2, 2).

lq4×k2(99)

red2(−)+−⌣−

This is surely known in some form, but we were unable to find a proof. We give one here that
manages to avoid the specifics of the definitions of lq4 or k2.

Proof. Recall that Top/PL ≃ K(Z/2, 3), and that the composition in the statement of the lemma

is the map u in the fibre sequence G/PL → G/Top
u→ B(Top/PL) ≃ K(Z/2, 4). With respect to

the decomposition

(G/Top)(2) ≃ Ω∞Lq⟨1⟩(2) ≃
∏
i≥1

K(Z(2), 4i)×
∏
j≥0

K(Z/2, 4j + 2)

induced by the maps lq4i and k4j+2 from (99), we have

u ∈ H4(G/Top;Z/2) ∼= Z/2{red2(lq4), k2 ⌣ k2}.
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To see this isomorphism, first note that since G/Top → G/Top(2) induces an isomorphism on

homology with Z(2)-coefficients (by definition of localisation), the same map induces an isomor-
phism on (co)homology with any Z(2)-module coefficients by universal coefficients. Since Z/2 is

a Z(2)-module, we have an isomorphism0 H4(G/Top;Z/2) ∼= H4(G/Top(2);Z/2). In addition, the

map G/Top(2) → K(Z(2), 4)×K(Z/2, 2) is 6-connected, so the latter group H4(G/Top(2);Z/2) is
isomorphic to

H4(K(Z(2), 4)×K(Z/2, 2);Z/2) ∼= Z/2{red2(lq4), k2 ⌣ k2},
as claimed.

It follows that u = A·red2(lq4)+B ·k2 ⌣ k2 for some A,B ∈ Z/2. In these terms, the 5-truncation
of the 2-localised G/PL is described as a homotopy pullback

τ≤5(G/PL)(2) K(Z(2), 4)

K(Z/2, 2) K(Z/2, 4).

k2

lq4

A·red2

B·Sq2

(10)

Now Sullivan has shown (see e.g. [MM79MM79, Theorem 4.8]) that τ≤5(G/PL)(2) is homotopy equiva-

lent to the homotopy fibre of δ∗ ◦Sq2 : K(Z/2, 2)→ K(Z(2), 5), where δ∗ : K(Z/2, 4)→ K(Z(2), 5)
denotes the map classifying the cohomology Bockstein. From this we first see that A = 1, oth-
erwise the pullback (1010) would give the wrong π3. Given that A = 1, the diagram (1010) ex-
presses τ≤5(G/PL)(2) as the homotopy fibre of B · δ∗ ◦Sq2, because we can extend the diagram
downwards as follows, such that the right-hand column is a fibration sequence corresponding to
the Bockstein long exact sequence.

τ≤5(G/PL)(2) K(Z(2), 4)

K(Z/2, 2) K(Z/2, 4)

K(Z(2), 5) K(Z(2), 5)

k2

lq4

red2

B·δ∗◦Sq2

B·Sq2

δ∗

=

If B = 0 then we would have τ≤5(G/PL)(2) ≃ K(Z/2, 2) × K(Z(2), 4). If this were true then

the fibration sequence K(Z(2), 4) → τ≤5(G/PL)(2)
f−→ K(Z/2, 2) δ∗ ◦ Sq2

−−−−−→ K(Z(2), 5) arising from
Sullivan’s theorem would admit a splitting i1 : K(Z/2, 2)→ τ≤5(G/PL)(2) with f ◦ i1 ≃ Id, whence
we have homotopies of maps

∗ = ∗ ◦ i1 ≃ (δ∗ ◦ Sq2) ◦ f ◦ i1 ≃ (δ∗ ◦Sq2) ◦ Id = δ∗ ◦ Sq2 : K(Z/2, 2)→ K(Z(2), 5).

Here ∗ denotes a constant map. This contradicts the nontriviality of the cohomology opera-
tion δ∗ ◦ Sq2. Thus we must have B = 1. □

Remark 5.4. An alternative proof that A = B = 1 could be made that proceeds by evaluating on
degree one normal maps E8 → S4 and ∗CP 2 → CP 2.

Recall that for a space X and a double loop space or spectrum Y , localising induces an isomor-
phism of abelian groups [X,Y(2)] = [X,Y ](2). We will use this without further comment.

Via G/Top ≃ Ω∞Lq⟨1⟩, the Taylor–Williams splitting (99) of Lq⟨1⟩(2) gives an identification

[Y/∂Y,G/Top](2)
∼=
[
Σ∞(Y/∂Y ),Lq⟨1⟩(2)

] ∼=
TW

⊕
i≥1

H4i(Y, ∂Y ;Z(2))⊕
⊕
j≥0

H4j+2(Y, ∂Y ;Z/2), (11)

and using (ordinary) Poincaré duality, with respect to the given Z-orientation of Y , we can identify
the latter with ⊕

i≥1

Hd−4i(Y ;Z(2)) ⊕
⊕
j≥0

Hd−4j−2(Y ;Z/2). (12)

On the other hand, the Taylor–Williams splitting (99) of Lq⟨1⟩(2) also gives an identification

[Y/∂Y,G/Top](2)
D−→∼=

[
Sd,Σ∞Y+ ∧ Lq⟨1⟩(2)

] ∼=
TW

⊕
i≥1

Hd−4i(Y ;Z(2))⊕
⊕
j≥0

Hd−4j−2(Y ;Z/2). (13)
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The two identifications of [Y/∂Y,G/Top](2) with (1212) are not the same. Their difference is mea-

sured by the homology classes which correspond to [Y ]Ls under the Taylor–Williams splitting (88)
of Ls(2), because (1313) used capping with [Y ]Ls , whereas passing from (1111) to (1212) uses capping with

the ordinary homology fundamental class [Y ] = [Y ]HZ. These are described in the next lemma.
For its statement, we let

ℓ = 1 + ℓ1 + ℓ2 + · · · ∈
⊕
i≥0

H4i(BSTop;Z(2))

denote the Morgan–Sullivan class [MS74MS74], with ℓi ∈ H4i(BSTop;Z(2)), and we write

V :=
∑
j≥0

V2j ⌣ Sq1(V2j) ∈
⊕
j≥0

H4j+1(BSTop;Z/2),

where Vk ∈ Hk(BSTop;Z/2) denotes the kth Wu class.

Lemma 5.5. Under the Taylor–Williams identification (88), the 2-local fundamental class [Y ]Ls
(2)
∈

(Ls(2))d(Y/∂Y ) is given by

(
[Y ]⌢ ((νTopY )∗ℓ), [Y ]⌢ ((νTopY )∗V)

)
∈
⊕
i≥0

Hd−4i(Y, ∂Y ;Z(2))⊕
⊕
j≥0

Hd−(4j+1)(Y, ∂Y ;Z/2).

Proof. By [TW79TW79, (1.9)] the pullbacks under the Ranicki orientation

σ∗ls ∈
⊕
i≥0

H4i(MSTop;Z(2)) and σ∗r ∈
⊕
j≥0

H4j+1(MSTop;Z/2)

are the images under the Thom isomorphism of the classes ℓ and V respectively. Pulling these

back along Th(νTopY )→ MSTop we obtain the identities

ls∗ULs
(2)

= ((νTopY )∗ℓ)⌣ UHZ(2)
∈
⊕
i≥0

H4i(Th(νTopY );Z(2))

r∗ULs
(2)

= ((νTopY )∗V)⌣ UHZ(2)
∈
⊕
j≥0

H4j+1(Th(νTopY );Z/2).

Applying Atiyah duality (AD), which may be written as the composition of the inverse of the
Thom isomorphism followed by Poincaré duality, we obtain the identities

AD(ls∗ULs
(2)
) = [Y ]⌢ ((νTopY )∗ℓ) ∈

⊕
i≥0

Hd−4i(Y, ∂Y ;Z(2))

AD(r∗ULs
(2)
) = [Y ]⌢ ((νTopY )∗V) ∈

⊕
j≥0

Hd−(4j+1)(Y, ∂Y ;Z/2).

By definition of the fundamental class [Y ]Ls
(2)
∈ (Ls(2))d(Y/∂Y ) as the image of the generalised

Thom class ULs
(2)
∈ (Ls(2))

0(Th(νTopY )) under Atiyah duality, we have identities AD(ls∗ULs
(2)
) =

ls∗AD(ULs
(2)
) = ls∗[Y ]Ls

(2)
∈
⊕

i≥0Hd−4i(Y, ∂Y ;Z(2)). Similarly, for the other case we have identities

AD(r∗ULs
(2)
) = r∗AD(ULs

(2)
) = r∗[Y ]Ls

(2)
∈
⊕

j≥0Hd−(4j+1)(Y, ∂Y ;Z/2). Combining these with the

previous display yields the statement of the lemma. □

The two identifications of [Y/∂Y,G/Top](2) with (1212) discussed above are related as follows.
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Lemma 5.6. The diagram

(Lq⟨1⟩(2))0(Y/∂Y ) [Y/∂Y,G/Top](2) (Lq⟨1⟩(2))d(Y )

[
Σ∞(Y/∂Y ),Lq⟨1⟩(2)

] [
Sd,Σ∞Y+ ∧ Lq⟨1⟩(2)

]
⊕

i≥1H
4i(Y, ∂Y ;Z(2))

⊕
⊕

j≥0H
4j+2(Y, ∂Y ;Z/2)

⊕
i≥1H

4i(Y, ∂Y ;Z(2))

⊕
⊕

j≥0H
4j+2(Y, ∂Y ;Z/2)

⊕
i≥1Hd−4i(Y ;Z(2))

⊕
⊕

j≥0Hd−4j−2(Y ;Z/2)

=

∼= D
∼=

=

TW (1111)∼=

[Y ]Ls
(2)
⌢−

∼=

TW (1313)∼=

Φ∼=

[Y ]⌢−
∼=

commutes, where the map Φ is given by

(u, v) 7→ ((νTopY )∗ℓ ⌣ u, (νTopY )∗ℓ ⌣ v + δ∗((νTopY )∗(V⌣ v))

for δ∗ the cohomology Bockstein associated to the coefficient sequence 0→ Z(2)
·2→ Z(2) → Z/2→ 0.

Here TW (1111) and TW (1313) are the maps denoted ∼=TW in (1111) and (1313) respectively.

Proof. The top square commutes by the definition of the map D from (77).
Write m : Ls(2) ∧ Lq⟨1⟩(2) → Lq⟨1⟩(2) for the Ls(2)-module structure map. According to [TW79TW79,

(1.13)], the spectrum cohomology classes lq, k, ls and r defining the identifications (88) and (99)
behave as follows under pullback along the map m:

m∗lq = ls ∧ lq + δ∗(r ∧ k) and m∗k = ls ∧ k.

By (99), the spectrum Lq⟨1⟩(2) is homotopy equivalent to a coproduct of Eilenberg–Maclane spectra
via the maps lq and r, so these formulae fully determine the homotopy class of the map m.

Using the formula for [Y ]Ls
(2)

under the splitting (88) given by Lemma 5.55.5, and this description

of the map m, we may derive a formula for the cap product map

[Y ]Ls
(2)
⌢ − :

[
Σ∞(Y/∂Y ),Lq⟨1⟩(2)

] ∼=−→
[
Sd,Σ∞Y+ ∧ Lq⟨1⟩(2)

]
under the identifications (1111) and (1313). Namely, it is given by sending

(u, v) ∈
⊕
i≥1

H4i(Y, ∂Y ;Z(2))⊕
⊕
j≥0

H4j+2(Y, ∂Y ;Z/2)

to

([Y ]⌢ ((νTopY )∗ℓ ⌣ u), [Y ]⌢ ((νTopY )∗ℓ ⌣ v) + [Y ]⌢ δ∗((νTopY )∗V)⌣ v))

∈
⊕
i≥1

Hd−4i(Y ;Z(2))⊕
⊕
j≥0

Hd−4j−2(Y ;Z/2).

This describes the composition TW (1313)◦([Y ]Ls
(2)
⌢ −)◦(TW (1111))−1 in the diagram, which agrees

with the composition ([Y ]⌢ −) ◦ Φ by the definition of Φ. □
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5.3. Proof of Theorem 2.32.3 (C)(C). Now we specialise the discussion of the previous sections to
the case at hand, with Y = X× I× I for an oriented 4-manifold X. We may consider the diagram

H2(X;Z/2)
[

X×I×I
∂(X×I×I) ,G/Top

]
(2)

L6(Z[π])(2)

[
S6,Σ∞X+ ∧ Lq⟨1⟩

]
(2)

[
S6,Σ∞X+ ∧ Lq

]
(2)

[
S6,Σ∞Bπ+ ∧ Lq

]
(2)

H0(X;Z/2)
⊕H2(X;Z(2))
⊕H4(X;Z/2)

H0(π;Z/2)
⊕H2(π;Z(2))
⊕H4(π;Z/2)
⊕H6(π;Z(2)).

D∼=

ks σ

TW∼=

t∗

Aπ

TW∼=

t∗⊕0

Ψ
(14)

We use thatX×I×I ≃ X to simplify notation here. The top rectangle comes from Subsection 5.2.35.2.3.
For the bottom rectangle we applied TW to the Lq homology of both Σ∞X+, and Σ∞Bπ+, using
naturality with respect to the truncation map t and the change of homology theory Lq⟨1⟩ → Lq
to see that the rectangle commutes. The map Ψ, defined so as to make the left-hand triangle
commute, can be evaluated by applying Lemma 5.35.3 and Lemma 5.65.6.

Lemma 5.7. We have Ψ(a, b, c) = red2(b).

Proof. We consider the diagram of Lemma 5.65.6 for Y = X × I × I. This has

(νTopY )∗ℓ = 1 + (νTopY )∗ℓ1 ∈ H0(Y, ∂Y ;Z(2))⊕H4(Y, ∂Y ;Z(2))

and

(νTopY )∗(V) = (νTopY )∗(
∑
j≥0

V2j ⌣ Sq1(V2j)) = (νTopY )∗(V2 ⌣ Sq1(V2)) ∈ H5(Y, ∂Y ;Z/2)

for degree reasons, namely that Sq1(V0) = 0 and Hk(Y, ∂Y ;Z(2)) = 0 for k > 6. Thus the
isomorphism

Φ: H2(Y, ∂Y ;Z/2)⊕H4(Y, ∂Y ;Z(2))⊕H6(Y, ∂Y ;Z/2)
−→ H2(Y, ∂Y ;Z/2)⊕H4(Y, ∂Y ;Z(2))⊕H6(Y, ∂Y ;Z/2)

is given by (u, v, w) 7→ (u, v, w + (νTopY )∗ℓ1 ⌣ u).
Start with a class

(a, b, c) = ([Y ]⌢ z, [Y ]⌢ y, [Y ]⌢ x) ∈ H0(Y ;Z/2)⊕H2(Y ;Z(2))⊕H4(Y ;Z/2)

in the bottom-left corner of the diagram (1414), which equals the bottom-right corner of the diagram
of Lemma 5.65.6 (in this case we take just i = 1 and j = 0, 1). Here (x, y, z) in the codomain of Φ
are uniquely determined by Poincaré duality. We wish to pass from here anticlockwise around
the diagram from Lemma 5.65.6 to the domain of Φ, from which we can evaluate the map ks using
Lemma 5.35.3. By Lemma 5.65.6, we can instead pass clockwise around the diagram from that lemma,
i.e. apply the isomorphism Φ−1 ◦ ([Y ]⌢ −)−1. We obtain the class

(x, y, z − (νTopY )∗ℓ1 ⌣ x) ∈ H2(Y, ∂Y ;Z/2)⊕H4(Y, ∂Y ;Z(2))⊕H6(Y, ∂Y ;Z/2).

By Lemma 5.35.3 the Kirby–Siebenmann class ks is given by red2(l
q
4) + k2 ⌣ k2, so is red2(y) + x ⌣

x ∈ H4(Y, ∂Y ;Z/2). But as Y/∂Y ∼= (X/∂X)∧S2 is a reduced suspension, the cup product x ⌣ x
vanishes. Thus under Poincaré duality the Kirby–Siebenmann class is [Y ]⌢ red2(y) = red2([Y ]⌢
y) = red2(b), so Ψ has the claimed description. □

We can now describe the map I2 to which the statement of Theorem CC and Theorem 2.32.3 (C)(C)
refers, and then complete the argument.

Definition 5.8. The map I2 : H2(π;Z(2))→ Lq6(Z[π])(2) is by definition the restriction of the right-

hand column Aπ ◦ TW−1 of the diagram at the start of Section 5.35.3 to the summand H2(π;Z(2)).
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Proof of Theorem 2.32.3 (C)(C). By the strategy described at the end of Section 5.15.1, after diagram (66), it
suffices to produce, for each u ∈ ker

(
δ∗ : H2(X;Z/2)→ H1(X;Z(2))

)
, a lift ξu ∈

[
X×I×I

∂(X×I×I) ,G/Top
]
(2)

along ks such that σ(ξu) = 0. We do so as follows. Given such a class u, exactness of the Bockstein
sequence

H2(X;Z(2))
red2−→ H2(X;Z/2) δ∗−→ H1(X;Z(2))

2−→ H1(X;Z(2))

shows that we may choose a u′ ∈ H2(X;Z(2)) which reduces modulo 2 to u. We then consider the
element

(0, u′, 0) ∈ H0(X;Z/2)⊕H2(X;Z(2))⊕H4(X;Z/2)
in the bottom-left corner of the previous diagram (1414). Then (0, u′, 0) corresponds under the
vertical isomorphism D−1 ◦ TW−1 to an element

ξu ∈
[

X×I×I
∂(X×I×I) ,G/Top

]
(2)

which satisfies that ks(ξu) = u, by the description of Ψ in Lemma 5.75.7. Under our assumption that
the map I2 : H2(π;Z(2))→ L6(Z[π])(2) is zero, the element (0, u′, 0) maps to zero in L6(Z[π])(2) by
going anticlockwise around the diagram (1414), and therefore σ(ξu) = 0 as required. This completes
the proof of Theorem 2.32.3 (C)(C) and hence of Theorem CC. □

6. Proof of Theorem EE

We recall that Theorem EE states the following. For each smooth, connected, compact 4-
manifold X there is a g ≥ 0 such that every class x ∈ H2(X#g(S2 × S2);Z/2) arises as KS(F ) for
some topological pseudo-isotopy F from the identity to some diffeomorphism f : X#g(S2×S2)→
X#g(S2 × S2).

Proof of Theorem EE. Without loss of generality we may suppose that X has nonempty boundary,
by removing an open disc.

Given a class x ∈ H2(X;Z/2), we use Poincaré duality and a suspension isomorphism to consider
it as an element of

H3(X × I, ∂;Z/2) =
[
X×I
∂ ,Top/O

]
,

using the fact that the Postnikov 6-type of Top/O is a K(Z/2, 3). Thus x gives a smooth structure
(X × I)Σ(x) on the 5-manifold X × I relative to the standard smoothing of the boundary, by the
discussion in Section 3.13.1. As X = X×{0} ↪→ X× I is a simple homotopy equivalence, the smooth
5-manifold (X × I)Σ(x) is an s-cobordism. By the (S2 × S2)-stable s-cobordism theorem [Qui83Qui83],
there is a g ≥ 0 such that the stabilisation of the s-cobordism (X × I)Σ(x) obtained by gluing on

the trivial smooth cobordism on (∂X × I)#g(S2 × S2) is a trivial cobordism starting at

X ′ := X ∪∂X
(
(∂X × I)#g(S2 × S2)

) ∼= X#g(S2 × S2).

This yields maps

X ′ × I (X ′ × I)Σ(x) X ′ × I.
∼=Top ∼=Diff

The first is just the identity homeomorphism between two copies of X ′ × I, while the second
map is the diffeomorphism arising from the (S2 × S2)-stable s-cobordism theorem.

This yields a self-homeomorphism of X ′ × I that is the identity on X ′ × {0} and that restricts
on X ′ × {1} to a diffeomorphism f . This is the same as a topological pseudo-isotopy F from the
identity to f . By construction, this data has

KS(F ) = (x, 0) ∈ H2(X;Z/2)⊕H2(g(S
2 × S2);Z/2) = H2(X

′;Z/2).

By choosing g large enough, since H2(X;Z/2) is finite we may arrange that all of H2(X;Z/2) ⊆
H2(X

′,Z/2) lies in the image of KS : Q(X ′)→ H2(X
′;Z/2).

For the summandH2(g(S
2×S2);Z/2) ⊆ H2(X

′;Z/2), we use thatWg,1 := g(S2×S2)\Int(D4) is
simply-connected and so the hypotheses of Theorem CC are satisfied for this manifold (alternatively,
the conclusion of Theorem CC for simply connected manifolds was already a consequence of [Kre79Kre79,
Theorem 1]). It follows that

π1(H̃omeo+∂ (Wg,1))
α−→ Q(Wg,1)

ks−→ H2(Wg,1;Z/2)
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is surjective. Plugging such topological pseudo-isotopies of Wg,1 into X ′ shows that H2(g(S
2 ×

S2);Z/2) ⊆ H2(X
′;Z/2) also lies in the image of KS for the manifold X ′. Since KS is a homomor-

phism by Lemma 2.22.2, this completes the proof of Theorem EE. □

7. Proof of Theorem FF

We begin the proof of Theorem FF by defining the 4-manifold X appearing in the statement of
Theorem FF. Then we outline the strategy of the proof, motivating the conditions the manifold X
will have been constructed to satisfy. The strategy involves choosing judicious maps into PL normal
invariant sets, and the commutativity of a diagram. The rest of this section, and the rest of the
proof of Theorem FF, will comprise the proof that this diagram commutes.

7.1. The 4-manifold X. Let A be a closed smooth 4-manifold, and consider the following list of
conditions.

(i) A is aspherical,
(ii) A is stably framable,
(iii) the map π1(Diffeo+(A))→ π1(hAut+(A)) is surjective,
(iv) H1(π1(A);Z) has an element of order 2.

Remark 7.1. We are interested in the higher homotopy groups of various automorphism groups
based at the identity. As homotopy automorphisms which are homotopic to the identity are simple,

we may freely interchange hAut+ and sAut+, and similarly for h̃Aut and s̃Aut. By the same token
homeomorphisms in the identity component preserve orientation, so we may also freely interchange

H̃omeo and H̃omeo+, and so on.

Remark 7.2. For an aspherical space A, there is an isomorphism π1(hAut(A)) ∼= Z(π1(A)), where
the latter denotes the centre [Got65Got65, Corollary I.13]. This can be argued by picking a point x ∈ A
and considering the map evx : hAut(A) → A, given by evaluating the automorphism at x. The
homotopy fibre of this map is the space of based homotopy equivalences hAutx(A). As A is
aspherical, we have π0(hAutx(A)) ∼= Aut(π1(A, x)) and πk(hAutx(A)) = 0 for all k ≥ 0. The long
exact sequence of the fibration thus has a portion

0 −→ π1(hAut(A), Id) −→ π1(A, x) −→ π0(hAutx(A)) ∼= Aut(π1(A, x)).

An element g ∈ π1(A, x) is sent to the map γ 7→ gγg−1 ∈ Aut(π1(A, x)) in this sequence, and thus
π1(A)→ π0(hAutx(A)) has kernel Z(π1(A)). For further details we refer to [Got65Got65].

The next example shows that there exist many 4-manifolds A satisfying these conditions.

Example 7.3. Let Σ be a closed, oriented hyperbolic 3-manifold with 2-torsion in H1(Σ;Z). Such
manifolds Σ are abundant; for example, take any hyperbolic knot K ⊆ S3 and perform n-surgery
on S3 along K, where n is even and n/1 is not one of the finite number of exceptional slopes p/q
for S3 \ νK which produce a non-hyperbolic filling. A concrete example is given by performing 6-
surgery on the figure eight knot [Thu97Thu97, Theorem 4.7].

The manifold A := Σ×S1 satisfies conditions (i)(i), (ii)(ii), (iii)(iii), and (iv)(iv). Indeed, condition (i)(i) holds
because Σ is hyperbolic, and thus aspherical, so Σ × S1 is a product of aspherical spaces, thus
also aspherical. Condition (ii)(ii) holds as oriented 3-manifolds are framable, and so A is a product
of framable manifolds. For condition (iii)(iii) we will argue that π1(Σ) has trivial centre, so that
the centre of π1(A) ∼= π1(Σ) × π1(S1) is Z generated by the circle factor. But the circle action
on Σ × S1 is smooth and generates this factor in π1(hAut(A)) ∼= Z(π1(A)) (recall Remark 7.27.2),
showing that (iii)(iii) is satisfied. Condition (iv)(iv) holds as Σ was chosen to have 2-torsion in H1(Σ;Z).

It remains to see that the centre of the group π1(Σ) is trivial. For a contradiction, let g be a
nontrivial element of the centre Z(π1(Σ)). Since π1(Σ) is torsion-free the subgroup ⟨g⟩ is isomorphic
to Z. By [BH99BH99, Corollary III.Γ.3.10 (2), p. 462], ⟨g⟩ has finite index in its centraliser Cπ1(Σ)(g).
Since g is central, Cπ1(Σ)(g) = π1(Σ), so π1(Σ) has a subgroup Z of finite index. The corresponding

finite cover Σ̃ is a closed, orientable, aspherical 3-manifold and so Z ∼= H3(Σ̃;Z) ∼= H3(Bπ1(Σ̃);Z) ∼=
H3(BZ;Z) = 0, which is a contradiction.

Definition 7.4. Choose a closed smooth 4-manifold A satisfying conditions (i)(i), (ii)(ii), (iii)(iii), and (iv)(iv),
above. Define a closed smooth 4-manifold

X := A#g(S2 × S2)
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with g is chosen large enough that ks : Q(X)→ H2(X;Z/2) is an isomorphism; such a g exists by
Theorem EE. Note that X inherits properties (ii)(ii) and (iv)(iv) from A.

In this case the Postnikov truncation map

t : X −→ Bπ ≃ A

may be modelled as the map which collapses g(S2 × S2) \ Int(D4)) ⊆ X, so it has degree ±1.

7.2. Outline of proof. Let X and A be instances of the closed, oriented, connected 4-manifolds
from Section 7.17.1. We consider the following diagram, whose terms will be defined below. After
that, we will prove the theorem assuming commutativity. Then the majority of the rest of this
section will be devoted to proving that it commutes.

π1(H̃omeo+(X)) Q(X) π0(D̃iffeo+(X)) π0(H̃omeo+(X))

[X×I×I
∂ ,B(Top/O)] [X+,Ω(Top/O)]

π1(h̃Aut
+(X)) [X+,Ω(G/PL)] [X+,Ω(Top/PL)] H2(X;Z/2)

π1(h̃Aut
+(A)) [A+,Ω(G/PL)] [A+,Ω(Top/PL)] H2(A;Z/2)

π1(Diffeo+(A)) ker
(
H1(A;Z)

·2−→
H1(A;Z)

)

α β

∼=Sm

KS∼=

γ

(1717)
∼=

∼=

(1919)

η

t∗ t! t!

∼=
PD

t∗

η

j

∼=
PD

δ∗
0

(15)

• The top row is the exact sequence of groups from (11).

• The diagram consists of groups and homomorphisms, and in fact all but possibly π0(D̃iffeo+(X))

and π0(H̃omeo+(X)) are abelian groups. For this we consider the spaces BO, BPL, BTop, BG
as infinite loop spaces via Whitney sum [BV73BV73]. The spaces Top/O, Top/PL and G/PL in-
herit compatible infinite loop space structures coming from taking fibres of the infinite loop
maps BO→ BPL→ BTop→ BG.

• The upper map η is defined by the composition

π1(h̃Aut
+(X)) ∼= π0(h̃Aut+∂ (X × I)) −→ S

PL
∂ (X × I) ηPL−−→ [X×I

∂ ,G/PL] ∼= [X+,Ω(G/PL)],

where ηPL is the PL normal invariant. The lower map η is defined similarly, with A in place
of X. Using the PL surgery sequence for manifolds of the form Y × I justifies that these normal
invariant groups are abelian and that η is indeed a homomorphism.

• We use that Top/PL ≃ K(Z/2, 3) to obtain Ω(Top/PL) ≃ K(Z/2, 2). Thus we identify
[Y+,Ω(Top/PL)] ∼= H2(Y ;Z/2) for Y ∈ {X,A}. With respect to this identification the maps PD
correspond to ordinary Poincaré duality.

• By our choice of g in the definition of X, and Theorem EE, the maps KS and Sm are surjective.
They are injective (without need to stabilise) by Theorem AA, and hence are isomorphisms.

• The right-most map t∗ is induced by the Postnikov truncation t : X → Bπ ≃ A. This is easily
seen to be surjective from the fact that there exists a model for Bπ arising from taking a cell
complex for X and then adding cells of dimension at least three.

• By functoriality of Postnikov truncation, every homotopy automorphism of X induces a homo-

topy automorphism of its truncation Bπ ≃ A, yielding the map t∗ : π1(h̃Aut(X))→ π1(h̃Aut(A))
on the left.

• The map δ∗ is the homology Bockstein for the coefficient sequence 0→ Z ·2→ Z→ Z/2→ 0. The
fact that δ∗ is surjective follows from the Bockstein long exact sequence.

• The isomorphism in the second row is given by the composition[
X×I×I

∂ ,B(Top/O)
] ∼= [Σ2X+,B(Top/O)] ∼= [X+,Ω

2B(Top/O)] ∼= [X+,Ω(Top/O)].
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• In Lemma 7.57.5 below, the map j in the diagram will be defined and proven to be injective, and
the lower right triangle will be proven to commute.

• We discuss the bottom left triangle. Recall from Section 2.12.1 that the geometric realisation of

h̃Aut+(A) is homotopy equivalent to hAut+(A). Combining with property (iii)(iii) of the mani-

fold A, this implies the map π1(Diffeo+(A)) ↠ π1(h̃Aut+(A)) is surjective. An element in the
image of the up-right composition in the bottom left triangle is the PL normal invariant of a
diffeomorphism of A× I, and is thus trivial, showing that the bottom left triangle commutes.

• The region involving the map KS commutes by definition of the map KS.
• The maps t! are defined as umkehr maps using Poincaré duality. This exploits the fact that
stably framed manifolds are S-oriented and thus satisfy Poincaré duality in E-theory for any
spectrum E. This is discussed in detail in Section 7.37.3, below. Commutativity of the central
square involving the maps t!, and the right-hand square involving t! and t∗, is discussed in
Section 7.37.3, the latter in Lemma 7.97.9.

• The L-shaped region labelled (1717) will be shown to commute in Section 7.47.4.
• The square labelled (1919) will be shown to commute in Section 7.57.5. This will require several pages

and takes up the majority of the rest of the proof.

Lemma 7.5. For any closed 4-manifold Y , the natural map [Y+,Ω(Top/PL)] → [Y+,Ω(G/PL)]
factors as

[Y+,Ω(Top/PL)]
PD,∼=−−−−→ H2(Y ;Z/2)

δ∗
↠ ker

(
H1(Y ;Z) ·2−→ H1(Y ;Z)

) j
↪→ [Y+,Ω(G/PL)].

where as above δ∗ denotes the homology Bockstein for the sequence 0→ Z ·2→ Z→ Z/2→ 0.

Proof. The natural map [ΣY+,Top/PL]→ [ΣY+,G/PL] factors as

[ΣY+,Top/PL] ∼= H3(ΣY+;Z/2) ↠ H3(ΣY+;Z/2)/H3(ΣY+;Z) ↪→ [Y+,Ω(G/PL)],

by [KS77KS77, Annex C, Theorem 15.1]. Next we use the identification H3(ΣY+;Z/2) ∼= H2(Y ;Z/2),
and by the Bockstein sequence for 0→ Z ·2→ Z→ Z/2→ 0, we identify

H3(ΣY+;Z/2)/H3(ΣY+;Z) ∼= H2(Y ;Z/2)/H3(Y ;Z) ∼= Im(δ∗),

where δ∗ : H2(Y ;Z/2)→ H3(Y ;Z) is the cohomology Bockstein. There is thus an exact sequence

[Y+,Ω(Top/PL)] ∼= H2(Y ;Z/2)
δ∗

↠ Im(δ∗) ↪→ [Y+,Ω(G/PL)].

By naturality of the Bockstein exact sequence under Poincaré duality, we have an identification
Im

(
δ∗ : H2(Y ;Z/2) → H3(Y ;Z)

) ∼= Im
(
δ∗ : H2(Y ;Z/2) → H1(Y ;Z)

)
, and hence an exact se-

quence

[Y+,Ω(Top/PL)] ∼= H2(Y ;Z/2)
δ∗
↠ Im(δ∗) ↪→ [Y+,Ω(G/PL)].

Finally, Im(δ∗) = ker
(
H1(Y ;Z) ·2−→ H1(Y ;Z)

)
by the homology Bockstein long exact sequence. □

Proof of Theorem FF assuming that (1515) commutes. Recall that we constructed X in Section 7.17.1.
Theorem FF is the statement that the map γ in (1515) is not injective. This is equivalent to the
statement that there exists F ∈ Q(X) with β(F ) nontrivial.

As H1(π;Z) ∼= H1(A;Z) has an element of order two, it follows that ker
(
H1(A;Z)

·2−→ H1(A;Z)
)

is nontrivial. As indicated in the diagram, the composition

δ∗ ◦ t∗ ◦KS : Q(X) −→ ker
(
H1(A;Z)

·2−→ H1(A;Z)
)

is surjective. Choose a topological pseudo-isotopy F : X×I → X×I in Q(X) with δ∗ ◦ t∗ ◦KS(F ) ̸=
0. We need to argue that its image under β is nontrivial. Supposing instead that β(F ) is trivial,
we deduce that F lies in the image of α, and hence that the clockwise composition δ∗ ◦ t∗ ◦KS ◦ α
is nontrivial. Since j is injective, moreover the composition

j ◦ δ∗ ◦ t∗ ◦KS ◦ α : π1(H̃omeo+(X)) −→ [A+,Ω(G/PL)]

is nontrivial. By commutativity of the diagram (1515), this is equal to the anti-clockwise route

π1(H̃omeo+(X)) −→ π1(h̃Aut+(X))
t∗−→ π1(h̃Aut+(A))

η−→ [A+,Ω(G/PL)].
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But commutativity of the bottom left triangle and surjectivity of π1(Diffeo+(A)) ↠ π1(h̃Aut+(A))
implies that the bottom map η is trivial, and hence the anti-clockwise route is trivial. We obtain
a contradiction, and so β(F ) = F |X×{1} : X → X is our desired diffeomorphism topologically but
not smoothly pseudo-isotopic to the identity. □

7.3. Stably framed manifolds are S-oriented. Recall that for the ring spectrum S, the corre-
sponding homology theory is stable homotopy πs∗(−). We remind the reader again that in stable
homotopy theory, homology theories are reduced by default, so for example the stable stem πs∗ is
given by πs∗(S

0) = πs∗(pt+).
We will now explain that stably framed manifolds have fundamental classes with respect to the

sphere spectrum S and so satisfy Poincaré duality with respect to any generalised (co)homology
theory, by the discussion in Section 4.24.2.

First we prove a lemma that gives a simple way to decide if a stable homotopy class is a
fundamental class.

Lemma 7.6. Let Y be a d-dimensional compact topological manifold with (possibly nonempty)
boundary. A class α ∈ πsd(Y/∂Y ) is an S-theory fundamental class if and only if its Hurewicz

image h(α) ∈ H̃d(Y/∂Y ;Z) is an integral homology fundamental class.

Proof. If q : Y/∂Y → Y/(Y − int(Dd)) ∼= Dd/∂Dd ∼= Sd is a coordinate chart collapse map

then q∗(α) ∈ πsd(S
d). The Hurewicz map h : πsd(S

d) → H̃d(S
d;Z) is an isomorphism, so q∗(α)

corresponds to ±1 ∈ πs0(S0) under the suspension isomorphism if and only if h(q∗(α)) = q∗(h(α))

corresponds to ±1 ∈ H̃0(S
0;Z) under the suspension isomorphism, i.e. if and only if h(α) is an

integral homology fundamental class. □

LetX and A be as in Definition 7.47.4. For someN ≫ 0, let e : X ↪→ R4+N be a smooth embedding,
and write νDiff

e for the normal bundle. Apply the functor Σ−NΣ∞ to the corresponding Thom
collapse map S4+N → Th(νDiff

e ) to obtain a Thom collapse map of spectra

c : S4 −→ Th(νDiff
X ).

The target here is of course the same as Th(νGX), for νGX the Spivak fibration of X: the Thom
spectrum of a vector bundle only depends on the underlying spherical fibration, and we may freely
interchange them. Assume N is large enough that the stable framing on νDiff

X is represented by a
framing of νDiff

e by νDiff
e
∼= RN ×X. Passing back to the stable version, and its Thom spectrum,

we have

Th(νDiff
X ) = Σ−NΣ∞ Th(νDiff

e ) ∼= Σ−NΣ∞ Th(RN ×X) ≃ Σ∞X+. (16)

Under this sequence of equivalences of spectra, the map c corresponds to a class [X]S ∈ πs4(X+).

Lemma 7.7. The class [X]S ∈ πs4(X+) is a fundamental class in stable homotopy theory. Fur-
thermore, the image [A]S := t∗[X]S ∈ πs4(A+) under the Postnikov truncation map t : X → A is
also a fundamental class in stable homotopy theory.

Proof. The group H4(S4;Z) ∼= [S0,S4 ∧ HZ] ∼= [S0,Σ∞S4
+ ∧ HZ] is isomorphic to Z, generated

by the class [S4], which is the class that maps to the fundamental class of the 4-sphere under
these isomorphisms. It is a property of the Thom collapse map that c∗[S4] ∈ H4(Th(ν

Diff
X );Z) is

a generator. So under the Thom isomorphism (with respect to the orientation given by the stable
framing) this class corresponds to an integral homology fundamental class [X] ∈ H4(X;Z). This
is the image of [X]S under the Hurewicz map, so [X]S is a fundamental class by Lemma 7.67.6.

For the second statement, we observed already that t : X → Bπ ≃ A has degree ±1, meaning
that t∗[X] ∈ H4(A;Z) is an integral homology fundamental class. The class t∗[X] is the Hurewicz
image of [A]S := t∗[X]S ∈ πs4(A+), so again by Lemma 7.67.6 it follows that [A]S is also a stable
homotopy fundamental class. □

Every spectrum is an S-module, so an S-orientation on a manifold induces an orientation in
any generalised (co)homology theory. This means that for any spectrum F the manifolds X and
A have Poincaré duality isomorphisms (see Subsection 4.24.2). Using these, any map of S-oriented
manifolds f : X → A determines an umkehr map

f! : F
r(X)

PD−−→ F4−r(X)
f∗−→ F4−r(A)

PD−1

−−−−→ F r(A).
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Lemma 7.8. If f∗([X]S) = [A]S then the umkehr map satisfies the identity f! ◦ f∗ = Id.

Proof. Use respectively the definition of f!, the projection formula, and the given identity f∗([X]S) =
[A]S, to obtain

[A]S ⌢ (f! ◦ f∗)(−) = f∗([X]S ⌢ f∗(−)) = f∗([X]S)⌢ (−) = [A]S ⌢ (−).

The lemma then follows from the fact that [A]S ⌢ (−) is an isomorphism. □

We use the unkehr construction to define the maps t! in diagram (1515). Consider the Postnikov
truncation map t : X → A. Recall the spaces Top/PL and G/PL were given compatible infinite
loop space structures coming from taking fibres of the infinite loop maps BPL→ BTop→ BG. The
umkehr maps t! in diagram (1515) are formed using the spectra corresponding to these infinite loop
space structures. Thus the central square involving t!, in diagram (1515), commutes by naturality of
the umkehr construction with respect to infinite loop maps.

Lemma 7.9. The right-hand square involving t!, in diagram (1515), commutes.

Proof. The map t! : [X+,Ω(Top/PL)] → [A+,Ω(Top/PL)] is the umkehr map for the cohomology
theory represented by the connective spectrum Σ−1(top/pl) obtained from the infinite loop space
Ω(Top/PL). This space is a K(Z/2, 2), so the spectrum Σ−1(top/pl) is the Eilenberg–MacLane
spectrum Σ2H(Z/2). So this umkehr map is identified with the usual one t! : H

2(X;Z/2) →
H2(A;Z/2), which is indeed Poincaré dual to t∗ : H2(X;Z/2)→ H2(A;Z/2). □

7.4. Mapping into the PL normal invariants. We will consider the following diagram.

π1(H̃omeo(X)) Q(X) [X×I×I
∂ ,B(Top/O)] [X+,Ω(Top/O)]

[X+,Ω(Top/PL)]

π1(h̃Aut(X)) SPL
∂ (X × I) [X+,Ω(G/PL)]

α Sm ∼=

η

ηPL

(17)

The first map in the bottom row involves the map that considers a loop of homotopy automor-
phisms of X as a PL-manifold structure on X × I. The second map in the bottom row is the
PL normal invariant map ηPL : SPL

∂ (X × I)→ [ΣX+,G/PL] followed by the Σ-Ω adjunction. The
map η is defined so that the semi-circle commutes.

Lemma 7.10. Diagram (1717) commutes.

Proof. The commutativity is essentially tautological. Here are the details. Write φ for a loop

in H̃omeo(X) (based at the identity map). This is represented by a homeomorphism ψ ∈ Homeo∂(X×
I). Write

νDiff
X×I : X × I −→ BO, νPL

X×I : X × I −→ BPL and νTopX×I : X × I −→ BTop

for the stable normal bundle, then its underlying stable PL-bundle, and then stable microbun-

dle. There is a homotopy from νTopX×I to (ψ−1)∗νTopX×I , induced by the stable normal microbundle
of the mapping cylinder of ψ. Since we model BO → BTop by a fibration, this lifts to a ho-

motopy from νDiff
X×I to some lift of the tangent microbundle νTopX×I , and the lift may be identified

with (ψ−1)∗νDiff
X×I .

Consider the clockwise composition. We have α(φ) = [ψ] ∈ Q(X). Under the identifications on
the top row, the class Sm([ψ]) is the difference class d((ψ−1)∗νPL

X×I , ν
PL
X×I), measuring the difference

of these lifts of νTopX×I from Top to PL, relative to the fixed lift on ∂(X × I). Under the forgetful

map, which sends νTopX×I to the Spivak normal fibration of X × I, we obtain a PL normal invariant,
which is again a difference class, now measuring the difference of the lifts from G to PL

d((ψ−1)∗νPL
X×I , ν

PL
X×I) ∈

[
X×I

∂(X×I) ,G/PL
]
. (18)
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Now consider the anticlockwise composition. The first vertical map is forgetful, and the element
of the PL structure set we obtain from φ is again just the (class of) ψ. The PL normal invariant
obtained from an element of the structure set is just the difference of the lifts to PL of the Spivak
normal fibration. Thus it is the element displayed in (1818). This shows the diagram commutes, as
claimed. □

7.5. Functoriality of PL normal invariants with respect to Postnikov truncation. We
will prove that the diagram

π1(h̃Aut(X)) [X+,Ω(G/PL)]

π1(h̃Aut(A)) [A+,Ω(G/PL)]

η

t∗ t!

η

(19)

commutes. This will complete the proof that diagram (1515) commutes and thus the proof of The-
orem FF. The proof that diagram (1919) commutes will crucially use that the manifolds are 4-
dimensional: one should not expect it to hold in higher dimensions.

7.5.1. Factoring through the tangential structure set. To prove that diagram (1919) commutes we will
factor the map η, using thatX (and A) are stably framed. The approach is based on the “tangential
structure set” idea of Madsen–Taylor–Williams [MTW80MTW80], in which those authors consider an
enriched structure set St∂(X×I) where objects are not merely homotopy equivalences, but are also
covered by maps of their (stable) tangent bundles. The purpose of this subsection is to establish
the commutative diagram

π1(h̃Aut(X)) St∂(X × I) SPL
∂ (X × I)

[X+,Ω
∞+1S0] [X+,ΩG] [X+,Ω(G/PL)].

η̂ ηt ηPL

∼=
(T0,1)∗

(20)

In this diagram, the homomorphism η, from earlier, is the right-right-down composition. We
will see from the development that the right-hand square is defined and commutes without the
assumption that X is stably framed, but the top left horizontal arrow and the map η̂ require the
stable framing of X to even be defined.

We begin by defining the bottom left horizontal map.

Definition 7.11. Let u and v be elements of a loop space ΩZ. There is a homotopy equivalence
of based spaces

Tu,v : (ΩZ, u) −→ (ΩZ, v)

given by composing the concatenating map (ΩZ, u) −→ (ΩZ, vu−1u); γ 7→ vu−1γ with the
homotopy inverse of the concatenating map (ΩZ, v) → (ΩZ, vu−1u); δ 7→ δu−1u. We call this
homotopy equivalence translating the basepoint from u to v.

Remark 7.12. The infinite loop space Ω∞S0 is the colimit colimkΩ
kSk and therefore can be thought

of as a colimit of based maps from a k-sphere to itself. Prominent basepoint choices for this infinite
loop space include the identity map 1 and the constant map 0; by default, the basepoint of Ω∞S0
is 0. Recall that there is an equality of spaces SG = Ω∞

1 S0, where SG ⊆ G and Ω∞
1 S0 denote

the components containing the basepoint 1 (see e.g. [MM79MM79, Corollary 3.8]). Thus translating
the basepoint 0 ∈ Ω∞S0 to the basepoint 1 ∈ SG ⊆ G determines a based homotopy equiva-
lence T0,1 : (Ω

∞S0, 0) ≃ (SG, 1). Consequently, there is a based homotopy equivalence of loop
spaces ΩT0,1 : Ω

∞+1S0 ≃ ΩG.

Construction 7.13. We construct a homomorphism of abelian groups

η̂ : π1(h̃Aut(X)) −→
[
X+,Ω

∞+1S0
]

crucially using that X is stably framed, so that (1616) is available. A loop in the Kan semi-simplicial

group h̃Aut(X) is a homotopy equivalence ϕ : X×I → X×I restricting to the identity on ∂(X×I).
By gluing X × {0} to X × {1} in the domain and projecting to X in the codomain, we obtain a
map ψ : X × S1 → X which restricts to the identity on X × {1}. Write prX : X × S1 → X for
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the projection map. Recall that for maps of spectra f, g : U → V , we write f − g : U → V for a
representative of the homotopy class [f ]− [g] ∈ [U, V ]. On suspension spectra the difference

Σ∞ψ − prX : Σ∞(X × S1)+ −→ Σ∞X+

is canonically homotopically trivial when restricted to Σ∞(X × {1})+, so descends to a map

[Σ∞ψ − prX ] : Σ∞+1X+ = Σ∞ (X×S1)+
(X×{1})+ −→ Σ∞X+. (21)

As X is stably framed, it has an S-theory fundamental class [X]S ∈ [S4,Σ∞X+]. We consider
the image [Σ∞ψ − prX ]∗(Σ[X]S) ∈ [S5,Σ∞X+] of the suspension Σ[X]S ∈ [S5,Σ∞+1X+], and
define η̂(ϕ) to be element of [X+,Ω

∞+1S0] corresponding to [Σ∞ψ − prX ]∗(Σ[X]S) under the
isomorphisms

[X+,Ω
∞+1S0] ∼= [Σ∞+1X+,S0] ∼=

AD
[S5,Th(νGX)] ∼=

(1616)
[S5,Σ∞X+]

given by adjunction, Atiyah duality and (1616). Here the Atiyah duality isomorphism is given by
applying the second version of Atiyah duality in Section 4.14.1 with E = S, ∂X = ∅, and r = −1,
together with the fact that Th(νTopX ) ≃ Th(νGX), to obtain

[Σ∞+1X+,S0] ∼= [Σ∞X+,S−1] ∼=
AD

[S0,Th(νGX) ∧ Σ−1−4S0] ∼= [S5,Th(νGX)].

Remark 7.14. We argue that η̂ is a homomorphism of abelian groups. The domain π1(h̃Aut(X)) of η̂

is an abelian group because the geometric realisation of h̃Aut(X) is a group-like topological monoid,

so π1(h̃Aut(X)) ∼= π1(|h̃Aut(X)|) ∼= π2(B|h̃Aut(X)|). For the codomain, maps into an infinite loop

space always form an abelian group. Identifying π1(h̃Aut(X)) with π0(h̃Aut∂(X × I)), the group
structure on the domain corresponds to stacking, and this corresponds to the group structure on the
codomain [X+,Ω

∞+1S] ∼= [ΣX+,Ω
∞S] = [ X×I

∂(X×I) ,Ω
∞S] given by the co-H-space X×I

∂(X×I) ≃ ΣX+.

Remark 7.15. Intuitively, we could describe η̂(ϕ) as measuring how the loop of homotopy equiva-
lences ϕ acts upon the fundamental class [X]S ∈ πs4(X+).

Next we describe the tangential structure set and tangential normal invariant. The descrip-
tion begins with a recap of the ordinary (PL) normal invariant, which is the right vertical map
of diagram (2020). We use the somewhat non-standard description in [MTW80MTW80, Section 2] (see
also [BM76BM76, Section 4]), with the changes necessary to deal with the fact that we work relative to
the boundary whereas that paper does not.

7.5.2. PL normal invariants via f -maps. Given a compact space Y , define an f -map (νq, t, ξq)
over Y to consist of two PL microbundles νq and ξq of the same dimension q over Y together with

a fibre homotopy equivalence t : S(νq)
≃−→ S(ξq) between their underlying spherical fibrations. The

f -maps (νqi , ti, ξ
q
i ) for i = 1, 2 are stably homotopic if there exist f -maps (γi, Id, γi) for i = 1, 2,

such that (νq1 , t1, ξ
q
1)⊕(γ1, Id, γ1) and (νq2 , t2, ξ

q
2)⊕(γ2, Id, γ2) are homotopic as f -maps. It is shown

in [BM76BM76, Section 4] that the space G/PL classifies f -maps, considered up to stable homotopy.
An element of the structure set SPL

∂ (X × I) is represented by a simple homotopy equiva-

lence (ϕ, ∂ϕ) : (M,∂M)
≃−→ (X×I, ∂(X×I)) from a PL manifold, with ∂ϕ a PL-isomorphism. Next

we recall the details of ηPL(ϕ). There is a canonical map, over ϕ, of PL microbundles ϕ̃ : νPL
M →

(ϕ−1)∗νPL
M . This induces a reduction

cϕ : S5
cM−→ Th(νPL

M )/Th(νPL
∂M )

Th(ϕ̃)−−−−→ Th((ϕ−1)∗νPL
M )/Th(νPL

∂(X×I))

that under the connecting map ∂ : Th((ϕ−1)∗νPL
M )/Th(νPL

∂(X×I)) → ΣTh(νPL
∂(X×I)) in the Puppe

sequence agrees with the suspension

Σc∂(X×I) : S5 = ΣS4 −→ ΣTh(νPL
∂(X×I)) (22)

of the reduction for ∂(X × I). Further, as ϕ is a homotopy equivalence, the reduction cϕ is
compatible with the Z-coefficient fundamental class of X × I in the sense that h∗[cϕ] ⌢ UHZ =
[X × I]HZ ∈ H5(X × I, ∂(X × I);Z). This compatibility means that the uniqueness theorem for
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Spivak fibrations [Bro72Bro72, Theorem I.4.19] applies, to give a fibre homotopy equivalence tϕ : ν
G
X×I

≃−→
(ϕ−1)∗νGM rel. boundary between the underlying spherical fibrations, unique such that

S5 Th(νPL
M )/Th(νPL

∂M )

Th(νPL
X×I)/Th(ν

PL
∂(X×I)) Th((ϕ−1)∗νPL

M )/Th(νPL
∂(X×I))

cM

cX×I Th(ϕ̃)

Th(tϕ)

(23)

commutes up to homotopy over ΣTh(νPL
∂(X×I)). The f -map data (νPL

X×I , tϕ, (ϕ
−1)∗νPL

M ) is classified

by the element

ηPL(ϕ) ∈
[
X×I
∂ ,G/PL

] ∼= [X+,Ω(G/PL)] .

7.5.3. Tangential PL normal invariants via f -maps. Now we develop the central column of dia-
gram (2020) in parallel to the previous discussion, again following [MTW80MTW80, Section 2] and [BM76BM76,
Section 4]. The space G may be considered as classifying a restricted type of f -map, consisting of

the data (νq, t), where νq is a single PL microbundle and t : S(νq)
≃−→ S(νq) is a fibre homotopy

automorphism of its underlying spherical fibration, up to stable homotopy. For later use, we ex-
pand further on this classification. Given (νq, t), we may take a finite dimensional representative ξ
of the stable inverse to νq and form (νq, t)⊕ (ξ, Id). The resultant bundle is νq ⊕ ξ ≃ εM for some
integer M , and under this identification t ∗ Id becomes a fibre homotopy equivalence of the trivial
spherical fibration Y × SM−1 → Y × SM−1. Such a fibre homotopy equivalence is described by a
map Y → G(M). After postcomposing with the inclusion G(M) ⊆ G, it is the homotopy class of
this map which classifies (νq, t) up to stable homotopy; see [BM76BM76, Section 4].

The PL tangential structure set St∂(X × I) is the (bordism group of) simple homotopy equiv-
alences of pairs (ϕ, ∂ϕ) : (M,∂M) → (X × I, ∂(X × I)) from a PL manifold, with ∂ϕ a PL iso-

morphism, and equipped with a PL-microbundle map ϕ̂ : νPL
M → νPL

X×I covering ϕ and restrict-

ing to the PL derivative of ∂ϕ over the boundary. The map ϕ̂ determines a PL bundle iden-
tification (ϕ−1)∗νPL

M
∼= νPL

X×I . Under this identification, the PL normal invariant classifies the

data (νPL
X×I , tϕ,ϕ̂, ν

PL
X×I), where tϕ,ϕ̂ : ν

G
X×I

≃−→ (ϕ−1)∗νGM
∼= νGX×I is the composition whose first

map is tϕ and whose second is induced by our identification on the PL level. There is then defined
a tangential normal invariant

ηt : St∂(X × I) −→
[
X×I
∂ ,G

] ∼= [X+,ΩG],

where ηt(ϕ, ϕ̂) ∈
[
X×I
∂ ,G

] ∼= [X+,ΩG] is the element classifying the data (νPL
X×I , tϕ,ϕ̂).

At this point we have enough to verify that the tangential PL normal invariant is a lift of the
ordinary PL normal invariant.

Lemma 7.16. The right-hand square of diagram (2020) commutes.

Proof. Given (ϕ, ϕ̂), the top horizontal arrow is the map that forgets ϕ̂ and thus the clockwise route

sends (ϕ, ϕ̂) to (νPL
X×I , tϕ, (ϕ

−1)∗νPL
M ). The bottom horizontal arrow maps (νq, t) 7→ (νq, t, νq)

and hence the anticlockwise route gives (νPL
X×I , tϕ,ϕ̂, ν

PL
X×I). Using ϕ̂, we see these f -maps are

isomorphic. □

To prove the left-hand square of diagram (2020) commutes, we will first describe another point of

view on the element ηt(ϕ, ϕ̂). Given (ϕ, ϕ̂) ∈ St∂(X × I), take the diagram

S5 Th(νPL
M )/Th(νPL

∂M ) Th(νPL
X×I)/Th(ν

PL
∂(X×I))

ΣTh(νPL
∂(X×I)),

cM

Σc∂(X×I)

Th(ϕ̂)

∂
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apply the functor SW ◦ Σ−5, to obtain

S Σ∞(X × I)+

Σ∞∂(X × I)+.

SW◦Σ−5(Th(ϕ̂)◦cM )

C∂(X×I)

To verify this, recall the properties of Spanier–Whitehead duals from Section 4.14.1, and also ap-
ply Lemma 4.24.2, where the notation C∂(X×I) was introduced for the map of spectra induced by the
constant map ∂(X × I) → pt. Applying Σ-Ω adjunction and discarding basepoints, we obtain a
diagram of unbased spaces.

Ω∞S X × I

∂(X × I).

Ad◦SW◦Σ−5(Th(ϕ̂)◦cM )

1

(24)

The adjoint to C∂(X×I) is the constant map to the identity basepoint 1 ∈ Ω∞S, by Lemma 4.24.2.
Thus the horizontal map also lands in the path component SG ⊆ Ω∞S of the identity map, and
there is an induced map X×I

∂ → SG ⊆ G. The following is asserted in [MTW80MTW80, Section 2],
without proof. We provide one here.

Lemma 7.17. The tangential PL normal invariant ηt(ϕ, ϕ̂) ∈
[
X×I
∂ ,G

]
is equal to the element

described by (2424).

Proof. There is a square

S5 Th(νPL
M )/Th(νPL

∂M )

Th(νPL
X×I)/Th(ν

PL
∂(X×I)) Th(νPL

X×I)/Th(ν
PL
∂(X×I))

cM

cX×I Th(ϕ̂)

Th(t
ϕ,ϕ̂

)

analogous to (2323), which commutes up to homotopy over ΣTh(νPL
∂(X×I)). The element (2424) is

obtained by Spanier–Whitehead dualising the map Σ−5(Th(ϕ̂) ◦ cM ) over ΣTh(νPL
∂(X×I)), hence

obtaining a map under Σ∞∂(X × I)+. By the square this map is homotopic under Σ∞∂(X × I)+
to the result of Spanier–Whitehead dualising Σ−5(Th(tϕ,ϕ̂) ◦ cX×I). We must therefore show that

the Spanier–Whitehead dual of Σ−5(Th(tϕ,ϕ̂) ◦ cX×I) over ΣTh(νPL
∂(X×I)) is Σ-Ω-adjoint to the

map ηt(ϕ, ϕ̂) : X × I → G ⊂ Ω∞S under 1: ∂(X × I)→ G ⊆ Ω∞S.
By Lemma 4.24.2, the Spanier–Whitehead dual of Σ−5cX×I is the constant map CX×I : Σ

∞(X ×
I)+ → S, so to proceed we must understand the Spanier–Whitehead dual of Σ−5 Th(tϕ,ϕ̂). To do

so, define the map a : Σ∞G+ → S to be the adjoint of the inclusion G+ → Ω∞S. For brevity,
introduce the notation

T := Σ−5 Th(νPL
X×I)

Th(νPL
∂(X×I)

)
and T∨ := Σ∞(X × I)+,

where T∨ indicates that these are Spanier–Whitehead dual.

Claim. The Spanier–Whitehead dual of

Σ−5 Th(tϕ,ϕ̂) : T −→ T, over ΣTh(νPL
∂(X×I)),

is homotopic to the composition

T∨ diag−−→ T∨ ∧ T∨ Σ∞ηt(ϕ,ϕ̂)∧Id−−−−−−−−−→ Σ∞G+ ∧ T∨ a∧Id−−−→ S∧ T∨ ≃ T∨, under Σ∞∂(X × I)+. (25)

Proof of claim. We first show that the map Th(tϕ,ϕ̂) may be decomposed as

Σ5T
∆−→ T∨ ∧ Σ5T

Σ∞ηt(ϕ,ϕ̂)∧Id−−−−−−−−−→ Σ∞G+ ∧ Σ5T
a∧Id−−−→ S ∧ Σ5T ≃ Σ5T, (26)

where ∆ denotes the Thom diagonal. To justify this, write ν : X × I → BG(N) for the spherical
fibration of a finite-dimensional representative of the PL-normal bundle of X × I. Write ξ for the
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a finite-dimensional representative of the stable inverse to ν, so that ν ∗ ξ ≃ S(εM ), the trivial
spherical fibration for some M . Now consider the self-equivalence

tϕ,ϕ̂ ∗ Id ∗ Id : ν ∗ ξ ∗ ν → ν ∗ ξ ∗ ν.

We may identify the first two factors with S(εM ). Under this identification, the self-equivalence of
spherical fibrations tϕ,ϕ̂∗Id : ν∗ξ → ν∗ξ is identified with the automorphism of the trivial spherical

fibration S(εM ) = (X×I)×SM−1 described fibre-wise by the map ηt(ϕ, ϕ̂) :
X×I
∂ → G(M). Hence,

the map Th(tϕ,ϕ̂ ∗ Id ∗ Id) can be identified as the M -fold suspension of the composition (2626). On

the other hand, we can instead identifiy the latter two factors of ν ∗ ξ ∗ ν with S(εM ), so that the
map tϕ,ϕ̂ ∗ Id ∗ Id is just the M -fold stabilisation of tϕ,ϕ̂, giving Th(tϕ,ϕ̂ ∗ Id ∗ Id) = ΣM Th(tϕ,ϕ̂).

So the desired factorisation of Th(tϕ,ϕ̂) has been shown.

With this factorisation in hand, we can prove the claim. Write the coevaluation and evaluation
maps for the pair T and T∨ as

coev: S −→ T∨ ∧ T and ev: T ∧ T∨ −→ S.

Consider the diagram

T∨ S ∧ T∨ T∨ ∧ T ∧ T∨

T∨ ∧ T∨ ∧ T ∧ T∨ T∨ ∧ Σ∞G+ ∧ T ∧ T∨

T∨ ∧ T∨ T∨ ∧ T∨ ∧ S T∨ ∧ S ∧ T ∧ T∨

Σ∞G+ ∧ T∨ ∧ S T∨.

≃

diag

coev∧Id

Id∧Σ−5∆∧Id

Id∧Σ∞ηt(ϕ,ϕ̂)∧Id∧ Id

Id∧ Id∧ev Id∧a∧Id∧ Id

≃

Σ∞ηt(ϕ,ϕ̂)∧Id∧ Id Id∧ Id∧ev

a∧Id∧ Id

By definition, the Spanier–Whitehead dual of the map Σ−5 Th(tϕ,ϕ̂) is the composition

T∨ ≃ S ∧ T∨ coev∧Id−−−−−→ T∨ ∧ T ∧ T∨ Id∧Σ−5 Th(t
ϕ,ϕ̂

)∧Id
−−−−−−−−−−−−−→ T∨ ∧ T ∧ T∨ Id∧ev−−−−→ T∨ ∧ S ≃ T∨.

Using the factorisation (2626), this shows that the Spanier–Whitehead dual of the map Th(tϕ,ϕ̂) is

the full clockwise composition in the diagram. The full anticlockwise composition in the diagram
is the map (2525). Hence the claim is proved if we can show the diagram commutes up to homotopy
under Σ∞∂(X × I)+.

To see the right rectangle commutes, simply note that the maps ev and a◦ηt(ϕ, ϕ̂) operate upon
different factors. Now we show that the left rectangle commutes. The diagonal map T∨ → T∨∧T∨

is a co-ring structure on T∨ (true of any suspension spectrum), and the five-fold desuspension of
the Thom diagonal Σ−5∆: T → T∨ ∧ T endows T with the structure of co-module over T∨. This
may be checked from the definition of the Thom diagonal (it corresponds to the well-known fact
that the cohomology of the Thom space of a bundle is a module over the cohomology of the base
space). In particular, co-associativity (Id∧Σ−5∆) ◦Σ−5∆ = (diag∧ Id) ◦Σ−5∆ holds. Recall that
coev is given by

S Σ−5cX×I−−−−−−→ T
Σ−5∆−−−−→ T∨ ∧ T,

where the second map is the five-fold desuspension of the Thom diagonal. Hence, the co-associativity
statement, above, means composition of the first two maps in the clockwise route around the left
rectangle agrees with

(diag ∧ Id∧ Id) ◦ (coev ∧ Id) : S ∧ T∨ −→ T∨ ∧ T∨ ∧ T ∧ T∨.

Now consider the full composition clockwise around the left rectangle as a map S∧T∨ → T∨∧T∨∧S.
We may commute the latter two maps in the composition, as follows, because they operate on
different factors:

(Id∧ Id∧ev) ◦ (diag ∧ Id∧ Id) ◦ (coev ∧ Id) = (diag ∧ Id) ◦ (Id∧ev) ◦ (coev ∧ Id).

But then (Id∧ev) ◦ (coev∧ Id) is the identity equivalence S∧ T∨ ≃ T∨ ∧ S, so this equation is the
statement that the left hand square commutes. □
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We can now finish the proof of the lemma. By inspection, the following diagram commutes up
to homotopy under Σ∞∂(X × I)+.

T∨ Σ∞G+ S

T∨ ∧ S Σ∞G+ ∧ S S ∧ S

T∨ ∧ T∨ Σ∞G+ ∧ T∨ S ∧ T∨ T∨

Σ∞ηt(ϕ,ϕ̂)

≃

diag

a

≃
Σ∞ηt(ϕ,ϕ̂)∧Id a∧Id

≃

Σ∞ηt(ϕ,ϕ̂)∧Id

Id∧CX×I

a∧Id

Id∧CX×I

≃

Id∧CX×I

CX×I

Under Σ-Ω adjunction, the composition along the top row is ηt(ϕ, ϕ̂) ∈
[
X×I
∂ ,G

]
. The anti-

clockwise composition is (2525) postcomposed with the map CX×I . So by the claim, its Spanier–
Whitehead dual is homotopic over ΣTh(νPL

∂(X×I)) to Th(tϕ,ϕ̂) ◦ cX×I , as required. □

Remark 7.18. The structure of the proof of Lemma 7.177.17 can be summarised as follows. We proved
the following sequence of homotopies of maps of spectra T∨ → S under Σ∞∂(X × I)+:

Ad−1(2424) ≃ SW(Σ−5(Th(ϕ̂) ◦ cM )) ≃ SW(Σ−5(Th(tϕ,ϕ̂) ◦ cX×I))

≃ SW
(
(Σ−5 Th(tϕ,ϕ̂)) ◦ (Σ

−5cX×I)
)
≃ SW(Σ−5cX×I) ◦ SW(Σ−5 Th(tϕ,ϕ̂))

≃ CX×I ◦ (2525) ≃ a ◦ Σ∞ηt(ϕ, ϕ̂) ≃ Ad−1ηt(ϕ, ϕ̂).

Taking adjoints and forgetting basepoints yields the statement of Lemma 7.177.17.

Proposition 7.19. The left-hand square of diagram (2020) commutes.

Proof. Let ϕ : X × I → X × I be a homotopy equivalence which is the identity on the boundary,

representing an element of π1(h̃Aut(X)). As in Construction 7.137.13, we associate to ϕ the induced
map ψ : X × S1 → X which is the identity on X × {1}. Using the framing of νPL

X we can cover ϕ

by the PL-microbundle map ϕ̂ : νPL
X×I → νPL

X×I induced by the framing, giving an element (ϕ, ϕ̂) ∈
St∂(X × I). By Lemma 7.177.17, ηt(ϕ, ϕ̂) is described using the diagram

S5 Th(νPL
X×I)/Th(ν

PL
∂(X×I)) Th(νPL

X×I)/Th(ν
PL
∂(X×I))

ΣTh(νPL
∂(X×I)),

cX×I

Σc∂(X×I)

Th(ϕ̂)

∂

by applying the functor SW ◦ Σ−5 and then Σ-Ω adjunction. The basepoint-translated element

(T1,0)∗(ηt(ϕ, ϕ̂)) ∈ [X×I
∂ ,Ω∞S] is then described by the same recipe applied to the analogous

diagram

S5 Th(νPL
X×I)/Th(ν

PL
∂(X×I)) Th(νPL

X×I)/Th(ν
PL
∂(X×I))

ΣTh(νPL
∂(X×I)),

cX×I

0

Th(ϕ̂)−Id

∂

Using the framing to trivialise these Thom spectra, we may write this diagram as

S5 Σ∞X×I
∂ Σ∞X×I

∂

Σ∞+1∂(X × I)+.

[X×I]S

0

Σ∞ϕ−Id

∂

There is a factorisation

Σ∞ϕ− Id : Σ∞X×I
∂ ≃ Σ∞ (X×S1)+

(X×{1})+
[Σ∞ψ−prX ]−−−−−−−−→ Σ∞X+ ≃ Σ∞(X × I)+

q−→ Σ∞X×I
∂ ,

where first map is described in (2121) and the second is the quotient. The map ∂ in the diagram fits

into the cofibre sequence Σ∞(X× I)+
q−→ Σ∞X×I

∂

∂−→ Σ∞+1∂(X× I)+, where this cofibre sequence
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is obtained from taking the sequence ∂(X × I)→ X × I → X×I
∂ , applying Σ∞(−)+ and extending

to the right by one. It follows that the map described by the diagram corresponds, under lifting
along q, to the composition

S5 Σ∞X×I
∂ Σ∞X+.

[X×I]S [Σ∞ψ−prX ]
(27)

Under the identification Σ∞X×I
∂ ≃ Σ∞+1X+, the fundamental class [X×I]S corresponds to Σ[X]S.

Using this, the composition (2727) corresponds to the element [Σ∞ψ−prX ]∗(Σ[X]S) ∈ [S5,Σ∞X+] ∼=
[S5,Th(νPL

X )] where the isomorphism comes from another use of the framing. Applying the functor
SW ◦ Σ−5 to the composition, we obtain the definition of η̂(ϕ). □

7.5.4. Proof that (1919) commutes. The equivalence ΩG ≃ Ω∞+1S0, induced by basepoint transla-
tion (Remark 7.127.12), is not an equivalence of infinite loop spaces (for example, their deloopings have
different Pontryagin rings [MM79MM79, §3.F]). This will account for a difficulty the following proposi-
tion. The diagram in the following proposition is obtained from (1919) by applying the alternative
factorisation of η that we obtained by proving that diagram (2020) commutes. Hence Proposition 7.207.20
completes the proof that (1919) commutes.

Proposition 7.20. There is a commutative diagram of groups and homomorphisms

η : π1(h̃Aut(X))
[
X+,Ω

∞+1S0
]

[X+,ΩG] [X+,Ω(G/PL)]

η : π1(h̃Aut(A))
[
A+,Ω

∞+1S0
]

[A+,ΩG] [A+,Ω(G/PL)],

η̂

t∗

∼=
(T0,1)∗

t! t! t!

η̂ ∼=
(T0,1)∗

where each t! denotes the umkehr map with respect to the indicated infinite loop space structure on
the codomain.

Proof. Apart from the left column, the group structures arise from loop space structures indicated
by (the first) Ω. These are compatible, so the maps are homomorphisms. The commutativity
of the right-hand square is by naturality of the umkehr map with respect to maps of generalised
cohomology theories, i.e. maps of infinite loop spaces. The commutativity of the middle square is
therefore surprising, as we have pointed out that ΩG ≃ Ω∞+1S0 is not an equivalence of infinite
loop spaces. We will address this below.

Next we prove the commutativity of the left-hand square. Let ϕ be a loop in h̃Aut(X) based at
the identity map. As in Construction 7.137.13, we associate to ϕ the induced map ψ : X×S1 → X which

is the identity on X×{1}. By functoriality of Postnikov truncation, ψ yields t∗(ψ) ∈ π1(h̃Aut(A)),
and the diagram

S5 Σ∞+1X+ Σ∞X+

Σ∞+1A+ Σ∞A+

Σ[X]S

Σ[A]S
Σt+

[Σ∞ψ−prX ]

t+

[Σ∞t∗(ψ)−prA]

commutes up to homotopy, using that t∗([X]S) = [A]S by Lemma 7.77.7. The clockwise composi-
tion in [S5,Σ∞A+] = [S5,Th(νPL

A )] ∼=SW [A+,Ω
∞+1S0] is by definition t!η̂(ϕ); the anticlockwise

composition is η̂(t(ϕ)).
To prove commutativity of the middle square, let us write tS! for the left-hand umkehr map

and tG! for the right-hand one. As X is 4-dimensional we may replace Ω∞+1S0 by its 4-truncation,
which we choose to write as Ωτ≤5Ω

∞S0 = ΩΩ∞τ≤5S0. We then use that πs4(S0) = 0 = πs5(S0) to
see that τ≤5S0 = τ≤3S0, and hence we have that Ωτ≤5Ω

∞S0 = Ωτ≤3Ω
∞S0. Now we consider the

equivalence of fibre sequences of connected spaces

τ[2,3]Ω
∞
0 S0 τ≤3Ω

∞
0 S0 τ≤1Ω

∞
0 S0

τ[2,3]SG τ≤3SG τ≤1SG

≃

ρ

≃ ≃
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and make the following observation: the base and fibre each admit a unique structure of an infinite
loop space. For the base this is clear as it is a K(Z/2, 1); for the fibre this follows from Mathew–
Stojanoska [MS16MS16, Theorem 5.1.2], though it can also be proven by hand. The citation applied
with n = 2 says that the functor Ω∞(−) : Spectra[2,3] → S∗, from the ∞-category of spectra with
nontrivial homotopy groups only in degrees two and three to the ∞-category of pointed spaces,
is fully faithful, i.e. homotopy equivalence on morphism spaces. If we have two a priori different
infinite loop space structures on τ[2,3]SG, they corresponds to two spectra in the domain of Ω∞(−)
that are homotopy equivalent in the codomain. The fact that Ω∞(−) is fully faithful leads to an
equivalence of spectra, and hence of infinite loop space structures on τ[2,3]SG.

Thus the maps on base and fibre are necessarily equivalences of infinite loop spaces. Looping
the top fibre sequence and mapping in X or A, the difference of the umkehr maps tS! and tG! fit in
to a map of short exact sequences

0 [X+,Ωτ[2,3]Ω
∞
0 S0] [X+,Ωτ≤3Ω

∞
0 S0] [X+,Ωτ≤1Ω

∞
0 S0] 0

0 [A+,Ωτ[2,3]Ω
∞
0 S0] [A+,Ωτ≤3Ω

∞
0 S0] [A+,Ωτ≤1Ω

∞
0 S0] 0,

tS!−tG! =0

Ωρ∗

tS!−tG! tS!−tG! =0 (28)

where the two outer vertical maps are zero because here the two infinite loop space structures
used to form the two umkehr maps agree, although we will only make use of the vanishing of the
left-hand vertical map.

First we show that the right hand groups are both Z/2. For this we compute the homotopy
groups of the codomain Ωτ≤1Ω

∞
0 S0. The space τ≤1Ω

∞
0 S0 has non-vanishing homotopy groups

only in degrees 0 and 1, where they are the stable 0-stem Z and the stable 1-stem Z/2. Taking
the loop space shifts the homotopy groups down, so that only a Z/2 in degree 0 remains. We
see that Ωτ≤1Ω

∞
0 S0 has precisely two path components, each of which is weakly contractible. It

follows that [X+,Ωτ≤1Ω
∞
0 S0] ∼= Z/2 ∼= [A+,Ωτ≤1Ω

∞
0 S0], as claimed.

We show that the middle vertical map tS! − tG! factors through the map Ωρ∗ to the quotient,
yielding

(tS! − tG! ) : [X+,Ωτ≤3Ω
∞
0 S0] Ωρ∗−−→ [X+,Ωτ≤1Ω

∞
0 S0] T−→ [A+,Ωτ≤3Ω

∞
0 S0].

To see this, let x, x′ ∈ [X+,Ωτ≤3Ω
∞
0 S0] be such that Ωρ∗(x) = Ωρ∗(x

′). Then Ωρ∗(x − x′) = 0,
so x− x′ lies in the image of [X+,Ωτ[2,3]Ω

∞
0 S0]. By commutativity of the left square, and the fact

that the left vertical map vanishes, we deduce that 0 = (tS! −tG! )(x−x′) = (tS! −tG! )(x)−(tS! −tG! )(x′).
Thus (tS! − tG! )(x) = (tS! − tG! )(x

′) and the central tS! − tG! factors as T ◦ (Ωρ∗), as asserted.
Next we argue that the composition

[A+,Ωτ≤3Ω
∞
0 S0] t∗−→ [X+,Ωτ≤3Ω

∞
0 S0] −→ [X+,Ωτ≤1Ω

∞
0 S0]

is surjective. To see this recall that the last group here is Z/2, and note that by a similar cal-
culation Ωτ≤3Ω

∞
0 S0 has precisely two path components. We can map all of A to either of these

components to obtain elements in the domain of the composition that map to each of the elements
in the codomain Z/2.

We have developed the following diagram.

[A+,Ωτ≤3Ω
∞
0 S0] [X+,Ωτ≤1Ω

∞
0 S0]

[X+,Ωτ≤3Ω
∞
0 S0] [A+,Ωτ≤3Ω

∞
0 S0].

t∗ T

tS!−tG!

Ωρ∗

The identity t! ◦ t∗ = Id from Lemma 7.87.8 holds for both meanings of t!, so that (tS! − tG! ) ◦ t∗ = 0.
It now follows by a straightforward diagram chase that tS! − tG! = 0. Here are the details. Let
x ∈ [X+,Ωτ≤3Ω

∞
0 S0]. Since the top horizontal map is surjective, there exists y ∈ [A+,Ωτ≤3Ω

∞
0 S0]

with Ωρ∗ ◦ t∗(y) = Ωρ∗(x). Then

(tS! − tG! )(x) = T ◦ (Ωρ∗)(x) = T ◦ (Ωρ∗) ◦ t∗(y) = (tS! − tG! ) ◦ t∗(y) = 0.

This shows that the middle square of (2828) commutes, completing the proof of the proposition. □
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As explained beforehand, the proposition implies that the square (1919) commutes. This completes
the proof that (1515) commutes, and hence completes the proof of Theorem FF.
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