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ABSTRACT. Given a closed, smooth 4-manifold X and self-diffeomorphism f that is topologically
pseudo-isotopic to the identity, we study the question of whether f is moreover smoothly pseudo-
isotopic to the identity. If the fundamental group of X lies in a certain class, which includes
trivial, free, and finite groups of odd order, we show the answer is always affirmative. On the
other hand, we produce the first examples of manifolds X and diffeomorphisms f where the
answer is negative. Our investigation is motivated by the question, which remains open, of
whether there exists a self-diffeomorphism of a closed 4-manifold that is topologically isotopic
to the identity, but not stably smoothly isotopic to the identity.

1. INTRODUCTION

A principle in 4-manifold theory says that topological results about smooth 4-manifolds often
become true smoothly after stabilisation, meaning after taking connected sum with some number
of copies of §% x S2. The most famous instance is the theorem of Wall [Wal64a, Wal64b] and
Freedman [Fre82] that homeomorphic closed, smooth, simply connected 4-manifolds are stably
diffeomorphic. Similarly Kreck [Kre79], Quinn [Qui86] (with a correction by [GGH™23]), and
Gabai [Gab22] showed that topologically isotopic diffeomorphisms of such 4-manifolds are stably
smoothly isotopic. Further examples of this principle are not confined to the simply connected
case e.g. Quinn’s stable s-cobordism theorem [Qui83], Gompf’s extension [Gom84] of the Wall-
Freedman result above to all oriented compact 4-manifolds, and Cappell-Shaneson’s stable surgery
sequence [CS71]. In the realm of embedded surfaces, Cha—Kim [CK23] proved that topologically
embedded surfaces are stably smoothable, and Galvin [Gal24] proved that topologically isotopic
surfaces in a simply connected 4-manifold are stably smoothly isotopic.

Lest this long list of results be misconstrued as evidence for a completely general principle,
it should be contrasted with exotic phenomena detected by Rochlin’s theorem, or equivalently
the Kirby—Siebenmann invariant. For example Kreck [Kre84], Cappell-Shaneson [CS76], and Ak-
bulut [Akb85, Akb84] each constructed an exotic pair of nonorientable 4-manifolds that fail to
be stably diffeomorphic. Similarly, Cappell-Shaneson and Galvin’s non-smoothable homeomor-
phisms [CS71, Gal24] are not stably smoothable.

In this article, we use the Kirby—Siebenmann invariant to investigate the principle in the context
of isotopy of diffeomorphisms. We are motivated by the following question.

Question 1.1. Given a pair of self-diffeomorphisms of a closed 4-manifold that are topologically
isotopic, are they moreover stably smoothly isotopic?

This remains open, but our results, concerning the intermediate notion of pseudo-isotopy, pro-
vide a positive answer in some cases, and indicate that the answer may be negative in general.

1.1. Results. Let X be a smooth, connected, compact 4-manifold, possibly with nonempty bound-
ary, and let fy, f1: X — X be diffeomorphisms that restrict to the identity on the boundary. A
homeomorphism F': X x I — X x I restricting to f; on X x {i} and to the identity on (0X) x [0, 1]
is called a topological pseudo-isotopy from fy to f1. If F' is moreover a diffeomorphism, it is called
a smooth pseudo-isotopy from fy to fi.

Given a topological pseudo-isotopy F': X x I — X x I, we can give the boundary of X x I x I a
new smooth structure as follows. Writing o for the smooth structure on X x I, endow X x I x {1}
with the smooth structure F*o, and leave the smooth structure alone on the rest of the boundary:
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write O(X x I x I)p for this smooth structure. Then (X x I x I,9(X x I x I)f) is a topological 6-
manifold with a smooth structure on its boundary, so has a relative Kirby—Siebenmann invariant

KS(F) :=ks(X x I x I,o(X x I x I)p) € H(X x I x I,0(X x I x I);Z,/2) =pp Hy(X;Z/2)

which obstructs the extension of the smooth structure (X x I x I)p to the whole of X x I x I.
Our first main result is that this invariant also characterises whether F' is smoothable.

Theorem A. Given a topological pseudo-isotopy F from fo to f1, the obstruction KS(F) €
Hy(X;Z/2) vanishes if and only if F: X x I — X x I is topologically isotopic rel. 9(X x [0,1]) to
a smooth pseudo-isotopy.

A result of Gabai [Gab22, Theorem 2.5] states that, for a diffeomorphism, the existence of a
smooth pseudo-isotopy to the identity with vanishing primary Hatcher—Wagoner invariants, implies
smoothly stably isotopic to the identity. Combining this with work of Galvin—Nonino [GN25] on
topological Hatcher-Wagoner invariants, we deduce the following.

Corollary B. If F' is a topological isotopy from fo to f1 with KS(F) =0 € Hy(X;Z/2), then fo
and f1 are smoothly stably isotopic.

Our next goal is to establish a condition under which diffeomorphisms are smoothly pseudo-
isotopic if and only if they are topologically pseudo-isotopic. By Theorem A this is equivalent
to showing, for a given pair of diffeomorphisms, that there exists a topological pseudo-isotopy F'
between them with KS(F') = 0. To formulate our result we will make use of a certain map

Ir: HQ(’IT;Z(Q)) — LG(Z[W])(Q)’

arising from the assembly map in algebraic L-theory. We will describe this map and elucidate some
of its properties in Section 5.2 (in particular in Definition 5.8). The following will be proved using
methods from surgery theory.

Theorem C. Let X be an oriented, smooth, connected, compact 4-manifold, write 7 := m(X),
and suppose that

(i) the map Io: Hy(m;Z2y) — Le(Z[n]) () is trivial, and

(i) Hy(m;Zg)) has no torsion.

Then a diffeomorphism which is topologically pseudo-isotopic to the identity is smoothly pseudo-
isotopic to the identity.

For some 71 (X) it was already known that homotopic diffeomorphisms are smoothly pseudo-
isotopic, and thus the conclusion of Theorem C was already known for these cases. This is the
case for the trivial group, due to Kreck [Kre79, Theorem 1] and more generally for free groups by
Krannich-Kupers [KK24, Theorem B]. The following gives additional examples where the hypothe-
ses of Theorem C are satisfied, and hence provides 4-manifolds X where topological pseudo-isotopy
of diffeomorphisms implies smooth pseudo-isotopy.

Example 1.2. Any group 7 with H;(m;Z)) torsion-free and Hy(m;Z9)) = 0 satisfies the hy-
potheses. For example, free groups, any finite group of odd order, or knot groups. Further ad hoc
specific examples of this sort can also be constructed. For example, 71(S! x ) or 71 (X)), where &
is a Z(z)-homology sphere of some dimension.

If 7 is a finite group whose 2-Sylow subgroup is abelian or generalised quaternion, then it follows
from [Ste77] (see also [TW79, p. 177]) that the map I5 is trivial. So such groups with H;(m;Z2)) =
0 satisfy the hypotheses. For example, the alternating group Ajs satisfies this, so I = 0 even
though Hy(As; Z9)) = Z/2 # 0.

Moreover, by functoriality of the assembly map, and hence of I5, the assumptions (i) and (ii)
are closed under free products, and hence Theorem C holds for X;# X5 if it holds for X; and X5.

Corollary D. Let X be an oriented, smooth, connected, compact 4-manifold, write m := m1(X).
Assume m satisfies the hypotheses (i) and (ii) of Theorem C and also that Wha(m) = 0. Then a
self-diffeomorphism of X that is topologically isotopic to the identity is moreover stably smoothly
1sotopic to the identity.
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Proof. Consider the topological isotopy as topological pseudo-isotopy. By Theorem C there is a
smooth pseudo-isotopy, and then by Gabai’s theorem again [Gab22, Theorem 2.5, which applies
since Why () = 0, there is a stable smooth isotopy. O

Using Corollary D, we can expand the class of groups for which Question 1.1 is known to have
a positive answer, which was previously limited to free groups, as discussed above. We note that
the conditions of Corollary D are closed under free products of groups.

Example 1.3. It is conjectured that Why(w) = 0 for all torsion-free groups [Liic25, Conjec-
ture 5.22], and this conjecture is known to hold whenever the torsion-free group satisfies the
“Farrell-Jones Conjecture for K-theory for torsion-free groups and regular rings”, which itself fol-
lows from the full Farrell-Jones conjecture [Liic25, Theorem 13.65 (i), (ii), (vii)]. For a summary
of the many classes of groups known to satisfy these conjectures, see [Liic25, Theorem 16.1]. In
particular, every 3-manifold group satisfies the full Farrell-Jones conjecture [BFL14], and so every
classical knot group satisfies the conditions of Corollary D.

Example 1.4. Dunwoody [Dun75] showed that Wha(Z/3) = 0, and so m = Z/3 also satisfies the
conditions of Corollary D.

Now we consider cases where topological pseudo-isotopy does not imply smooth pseudo-isotopy.
After perhaps stabilising the 4-manifold by taking connected sums with S? x S2, there is a plentiful
supply of non-smoothable topological pseudo-isotopies between diffeomorphisms, as the following
makes precise.

Theorem E. For each smooth, connected, compact 4-manifold X there is a g > 0 such that every
class v € Hy(X#g(S? x S?);Z/2) arises as KS(F) for some topological pseudo-isotopy F from the
identity to some diffeomorphism f: X#g(S? x S?) — X#g(S? x S?).

Combining Theorem E with further methods from surgery theory, we are able to give examples
of the following nature.

Theorem F. There exists a closed, smooth 4-manifold X and a diffeomorphism f: X — X such
that f is topologically but not smoothly pseudo-isotopic to the identity. Thus [ is not smoothly
stably isotopic to the identity.

To prove this, we have to show that KS(F') # 0 for every topological pseudo-isotopy F between f
and Id. The manifolds X in Theorem F have the form X = A#g(S? x S?), where A is an
aspherical 4-manifold and ¢ is chosen large enough for Theorem E to apply. The manifolds A
we use can be made explicit: see Example 7.3. On the other hand, the diffeomorphisms f we
construct are inexplicit. The topological pseudo-isotopies F' of f are such that KS(F) remains
nontrivial under the composition

Hy(X;2/2) — Ho(mZ/2) 2 Hy(m;Z),

where §, indicates the homology Bockstein for the coefficient sequence 0 — Z 37— Z/2 — 0.
In particular, Hy(; Z(g)) has torsion, in contrast with Theorem C.

1.2. Discussion. For a pair of diffeomorphisms of a compact smooth 4-manifold, the following
implications hold between the different notions of isotopy rel. boundary.

Smoothly stably isotopic = Smoothly pseudo-isotopic = Top. pseudo-isotopic < Top. isotopic.

The first implication is due to Gabai [Gab22], while the others are immediate from the definitions.
Corollary D yields some cases where the first two implications can be reversed and Question 1.1
has a positive answer.

There is not currently a useful theory for improving topological pseudo-isotopies of non-simply
connected 4-manifolds to topological isotopies, but if such a theory could be developed, then we
would hope it could be used to upgrade our examples from Theorem F and produce diffeomorphisms
topologically isotopic to the identity, but not smoothly stably so.

Organisation. In Section 2 we reformulate the main theorems in terms of block automorphisms,
which will aid us to structure the proofs. Section 3 contains the proofs of Theorem A and Corol-
lary B. In Section 5 we prove Theorem C, in Section 6 we prove Theorem E, and finally in Section 7
we construct the examples promised in Theorem F.
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Conventions. For pointed topological spaces A and B, the notation [A, B] will indicate the set
of pointed continuous maps A — B, up to pointed homotopy. As a consequence, [A, B] denotes
unbased homotopy classes of maps from A to B. For spectra L and K, the notation [L, K] will
indicate morphisms L — K, up to homotopy. The sense in which the notation [—,—] is being
used will always be clear from the objects in question. For maps of spectra f,g: L — K, we will
write f—g: L — K to be any representative map of spectra for the homotopy class [f]—[g] € [L, K].
A map f: X — X from a manifold to itself is rel. boundary if flox = Idsx.

2. REFORMULATION VIA BLOCK AUTOMORPHISMS

We will now reformulate Theorems A, C, E, and F in a unified framework that will make proofs
clearer, and illuminate the structure of the general problem of smoothing pseudo-isotopies.

2.1. Block automorphism groups. Let Homeo} (X) and Diffeo/) (X) denote the geometric re-
alisations of the Kan semi-simplicial groups of orientation-preserving block self-homeomorphisms
and block self-diffeomorphisms of X rel. boundary, respectively; see e.g. [BLR75, Appendix I, §3]
with corrections in the smooth case in [HLLRW21, Section 2.2]. Eliding some technical details
regarding collars in the smooth case, the p-simplices consist of homeomorphisms (or diffeomor-
phisms) ¢: X x AP — X x AP which are the identity on (0X) x AP, preserve orientation, and
send X x o to X x o for every face 0 C AP. In particular, a 0-simplex is precisely a homeomorphism
(or diffeomorphism) of X, and a 1-simplex is precisely a topological (or smooth) pseudo-isotopy.
Thus the groups of path components,

ﬂo(I‘I/()_;n_gog(X)) and Wo(]ﬁg)g()()),

are the groups of orientation-preserving self-homeomorphisms up to topological pseudo-isotopy (or
self-diffeomorphisms up to smooth pseudo-isotopy). In other words, they are the pseudo-mapping
class groups.

There is an analogous Kan semi-simplicial monoid mg (X)), whose p-simplices are as above
but relaxing the condition that ¢ be a homeomorphism, by only asking that it be a homotopy
equivalence; see e.g. [Kra22, Section 1.5] for a discussion, which in particular explains why the geo-
metric realisation of this semi-simplicial set is weakly equivalent to the topological space hAu‘cér (X)
of boundary- and orientation-preserving homotopy automorphisms of X. Eu\_/rther insisting that ¢
be a simple homotopy equivalence defines a Kan semi-simplicial monoid sAutg (X), to which the

same discussion applies: the geometric realisation of S:A\u/tg'(X ) corresponds to those path compo-
nents sAut} (X) C hAut} (X) consisting of simple homotopy automorphisms. In this model there
are forgetful maps

Diffeo}; (X) — Homeo} (X) —» sAut} (X) —» hAut} (X)
of Kan semi-simplicial monoids.

2.2. Pseudo-isotopy classes of topological pseudo-isotopies. We wish to study topological
pseudo-isotopies from the identity to a diffeomorphism, and this will be clearest if we carefully
define a certain set of such.

Definition 2.1. For a smooth 4-manifold X we consider topological pseudo-isotopies F': X X
I — X x I with F|xyqoy = Idx and such that f := F|x .} is a diffeomorphism, all rel. 0X.
We consider these up to the equivalence relation of a further pseudo-isotopy: define Fy ~ Fy if
there is a homeomorphism G of X x I x I which restricts to F; on X x I x {i}, to the identity
on (X x {0} x I) U ((8X) x I x I), and to a diffeomorphism on X x {1} x I (which is then a
smooth pseudo-isotopy from fy to f1). We write Q(X) for the set of such equivalence classes, and
note that it is a group under composition.



SMOOTHING TOPOLOGICAL PSEUDO-ISOTOPIES OF 4-MANIFOLDS 5

F A

Id G =0

Fy  fo

FI1GURE 1. Schematic for X x I x I with the X direction suppressed. Maps defining
the equivalence relation (fo, Fo) ~ (f1, F1) for Q(X) are depicted.

For [F] € Q(X), we explained in the introduction how to produce a smooth manifold 9(X x
I x I)r by pulling back the smooth structure o on X x I x {1} using the homeomorphism F.
Then X x I x I is a topological 6-manifold with a given smooth structure on its boundary so has
a Kirby—Siebenmann invariant
KS(F) :=ks(X x Ix [,O(X x I x ) € HY(X x I x I[,O(X x I x I);7Z/2) =pp

In the following section, once we describe the details of smoothing theory, we will prove the
following.

Lemma 2.2. The function [F| — KS(F): Q(X) — Ha(X;Z/2) is well-defined and is a homomor-
phism.

The proof will be given after Lemma 3.2.

2.3. The reformulation. The definition of Q(X) was obtained by spelling out the description
of mo of the homotopy fibre of the map Diffeo} (X) — Homeo} (X). Thus there is an exact sequence

m1(Diffeo; (X)) — 1 (Homeo (X)) 2 Q(X) —2 mo(Diffeo) (X)) - mo(Homeo (X)). (1)

Theorems A, C, E, and F in the introduction can be phrased in terms of the behaviour of this
exact sequence, and the map KS: Q(X) — Hy(X;Z/2), as follows.

Theorem 2.3. Let X be a smooth, connected, compact 4-manifold.
(A) The homomorphism KS: Q(X) — H2(X;Z/2) is injective.
(C) Suppose X is orientable and the fundamental group m = m1(X) is such that the map
Iy Hay(m; Zz)) — Lg(Z[n]) (2
specified in Definition 5.8 is trivial. Then the image of the composition

m1 (Homeo} (X)) -2 Q(X) 5 Hy(X;2/2)

contains the kernel ker (Ha(X;7Z/2) LN H1(X;Z))) of the Bockstein operator 6, for the

coefficient sequence 0 — Z3) N Zgy = L/2 — 0.

(E) There is a g > 0 such that for the manifold X' := X#g(S? x S?), the homomorphism
KS: Q(X') — Hy(X';Z/2) is a bijection.

(F') There exists an X for which v is not injective, i.e. there is a diffeomorphism of X which
is topologically pseudo-isotopic to the identity but not smoothly so.

Remark 2.4.

(i) Theorem 2.3 (A) sounds a little weaker than Theorem A, as the latter says that if KS(F') =
0 then F is topologically isotopic to a smooth pseudo-isotopy, whereas the former only says
that F' is topologically pseudo-isotopic to a smooth pseudo-isotopy. But in fact they are
equivalent, as we will show in Theorem 3.4.

(ii) Theorem 2.3 (A) and (C) imply Theorem C, as we explain below. Theorem 2.3 (C)
is potentially stronger than Theorem C, as it could also be used to analyse particular
diffeomorphisms of X when H;(;Z ) has 2-torsion.

In the following sections we will prove the results in the introduction, but we will usually prove
them in the form given in Theorem 2.3. For Theorem C we explain the connection next.
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Proof of Theorem C assuming Theorem 2.3 (A) and (C). The Postnikov truncation t: X — Brm
determines a commutative diagram

Hy(X;Z/2) =2 Hy(X;Z)

I ..

Hy(m;Z/2) 0 Hy(m;Z2))

where surjectivity of t, on Hy is easily seen by considering a model for Bm consisting of a cell
complex for X with additional cells of dimension 3 or greater attached. The hypothesis that
Hy(7;Z3)) has no 2-torsion is equivalent to the lower d, being the 0 map. A diagram chase shows
this is equivalent to the upper J, being the 0 map. By Theorem 2.3 (C), the composition KSo « is
then surjective, so in particular KS is surjective. Then by Theorem 2.3 (A), KS is an isomorphism,
and so « is surjective and hence < is injective by exactness of 1. The latter is equivalent to saying
that every self-diffeomorphism of X which is topologically pseudo-isotopic to the identity is in fact
smoothly pseudo-isotopic to the identity. O

3. ProoF or THEOREM A AND COROLLARY B

3.1. Smoothing theory. Let Y be a compact d-dimensional topological manifold whose bound-
ary 0Y is endowed with a fixed smooth structure. The maps classifying the topological tangent
microbundle of Y, and the once-stabilised tangent vector bundle of Y, yield the solid arrows in
the following commutative diagram, where the right-hand map is modelled by a fibration:

oy T(0Y)e’ BO(d)

-
|
Yy =T BTop(d).

The fundamental theorem of smoothing theory is then as follows [KS77, Essay V].

Theorem 3.1 (Kirby-Siebenmann). For d > 5, the space of smooth structures on'Y extending
that on QY is homotopy equivalent to the space of dashed maps making both triangles commute.

In particular, there exists a smooth structure on Y extending that on 0Y if and only if there
exists a dashed map making both triangles commute. This lifting problem may be made more
practical by considering the following diagram.

BO(d) BO E(Top/0O) ~

| | l

BTop(d) — BTop —2%— B(Top/O)

The right-hand square is formed using the fact that BO — BTop is an (infinite) loop map so
deloops to give B(Top/O). The down-right composition consists of two maps in a homotopy fibre
sequence, so the square is cartesian, i.e. is a homotopy pull-back square. The left-hand square is
formed by stabilisation, and is (d + 1)-cartesian [KS77, p. 246 (4)] as long as d > 5. (Recall we say
that a square is n-cartesian if the canonical map from the top left entry to the homotopy pullback
of the other three entries is n-connected, or equivalently if the total homotopy fibre is (n — 1)-
connected.) Pasting these squares with (2), it follows that for d > 5 there is a smooth structure
on Y extending that on Y if and only if there is dashed map in the diagram

0Y ——  E(Top/0) ~

Y /90—7'y> B(TOp/O)

making both triangles commute. That is, the solid arrows define a class

sm(Y,9Y) € [Y/9Y, B(Top/0)]
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which is trivial if, and for d > 5 only if, Y admits a smooth structure extending that on 0Y. There
is a map

ks: B(Top/O) — K(Z/2,4)
which is 8-connected. This follows from [KS77, p. 246 (5)] and the fact that the low-dimensional
groups of homotopy spheres satisfy O5 = ©g = 0. Post-composing sm(Y,9Y") with the map ks
gives a class

ks(Y,0Y) € HY(Y,0Y;7Z/2),
whose vanishing is necessary, and for 5 < d < 7 sufficient, for the existence of a smooth structure
on Y extending that on 9Y. (For all d > 5 the vanishing of this class is necessary and sufficient
for the existence of a PL-structure on Y extending that on Y induced by its smooth structure.)

Finally, we use this discussion to prove Lemma 2.2, and in fact prove something a little stronger.
As mentioned above B(Top/O) is an infinite loop space. For a based space Z, this determines a
group structure on [Z, B(Top/O)].

Lemma 3.2. The function
Sm: Q(X) — |52y B(Top/O)] 5 [F] — sm(X x I x L,O(X x I x 1))
1s well-defined and is a homomorphism.

Proof. If [Fy] = [F1] € Q(X) then by definition there is a homeomorphism G of X x I x I which
restricts to F; on X x I x {i}, to the identity on (X x {0} x I) U ((0X) x I x I), and to a
diffeomorphism on X x {1} x I. We endow

OX XxIXxI)xITCOX xIxIxI)

with a smooth structure by giving X x I x {1} x I the smooth structure (X x I x {1} x I)g given
by pulling the standard one back along G, and giving the rest of 9(X x I x I) x I the standard
smooth structure. One checks that these two rules are compatible where they overlap. This smooth
structure restricts to (X x I x I)p, x {i}, so the data

(X xIxI)xI ——BO(d+3) BO E(Top/0) =~ x

l | | l

(X x I xI)x I —— BTop(d+3) — BTop —%— B(Top/0)

defines a homotopy from sm(X x I x I,O(X x I x Ig,) to sm(X x I x I,O(X x I x I)p,).

We show the map is a homomorphism. The group structure on the set [%, B(Top/ O)]
is the group structure given by the infinite loop space B(Top/O). The domain is homeomorphic
to the suspension $2(X/0X), hence is a co-H-space, while the codomain is an H-space. It then
follows from the Eckmann—Hilton argument [Spa95, p. 43-4], that the group structure arising from
the codomain is equivalent to the group structure arising the domain, i.e. from “stacking” in the
second (say) interval direction of X x I x I.

Let [F] and [F’] be two elements of Q(X). We observe that the topological manifold with
smooth boundary (X x I x I,0(X x I x I)p/oF) can be obtained up to isomorphism by stacking
the topological manifolds with smoothed boundaries

(X xIxI,o(XxIxI)p)and (X x I xI,(F xId;)*0(X x I x 1))

in the second interval direction. Here, (F x Id;)*0(X x I x I)ps) indicates the smooth struc-
ture obtained by pulling back the smooth structure 9(X x I x I)gs, using the restriction of the
homeomorphism F' x Idy, to (X x I x I); see Figure 2.

Using this, we see that

Sm(F'oF)=sm(X x I xI,O(X XI xI)pioF)
=sm((X x I x [,O(X x I xIp)U(X xIxI,(FxId)*9(X x I x1I)p))
=sm(X X I X [,O(X x I xI)p)+sm(X x I xI,(FxId)0(X xIxI)g)

€ |:6()§(X><IIX><II) ’ B(TOp/O):| .
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(F' o F)*oc = F*((F')*0)

(F|X><{0} xIdp)'o =0 X xIxI (F|X><{1} x Id;)*oc =0
Fo
o X xIxI o
o

FIGURE 2. We denote the standard smooth structure on X x I by . Suppressing
the X direction, we indicate the stacking proposed, together with the smooth
structures on the various copies of X x I that make up the boundaries of the two
copies of X x I x I.

The additivity of sm with respect to U is due to the Eckmann-Hilton argument explained above.
There is an identification of topological manifolds with smoothed boundaries

FxIdp: (X xIxI,(FxId)*0(X xIxI)p) = (X XIxI,oXxIxI)p),
and therefore
sm(X x I x [O(X x I xI)p) +sm(X x I x I,(F x1Id;)*0(X x I xI)g)

=sm(X x I x [,O(X x I xI)p) + (F x1d;)*'sm(X x I x I[,O(X x I x I)p)

=Sm(F) + (F x Id;)*Sm(F").
The map of pairs

F: (X xLO(X xI)— (X xI,0(X xI))

is the identity on X x {0} U(X) x I and sends X x {1} into itself, so by Lemma 3.3 below it is
homotopic as a map of pairs to the identity. This implies that

Sm(F) + (F x Id;)*Sm(F") = Sm(F) + Sm(F").

We deduce that Sm(F’ o F') = Sm(F) 4+ Sm(F”) € [%, B(Top/O)}, as required. O

Lemma 3.3. Let Y be a compact manifold, possibly with boundary, and let
f: Y xLoY xI))— (Y xI,o(Y x I))

be a map of pairs that restricts to the identity on Y x {0} UO(Y) x I and sends Y x {1} into itself.
Then f is homotopic as a map of pairs to the identity.

Proof. We exhibit a homotopy. Write f(y,t) = (v(y,t),7(y,t)), where this defines the functions
and 7. There is a preliminary homotopy given by the formula

fs(yvt) = (’Y(yﬂf)a (1 - S)T(y7t) + St)7
satisfying fo = f and fi(y,t) = (v(y,t),t). This homotopy is fixed on ¥ x {0} UI(Y) x I, and

if (y,1) € Y x {1} so that f(y,1) = (v(y,1),1) then fy(y,1) = (v(y,1),1) = f(y,1) € O(Y, xI):
thus it is a homotopy which is fixed on O(Y x I).
We make a second homotopy by the formula

fl,S(ya t) = (V(ya (1 - S)t)a t)
This satisfies f1,0 = f1, and f11(y,t) = (v(y,0),t) = (y,t), so f1,1 is the identity. One verifies that
it sends O(Y x I) into itself, so gives a homotopy of maps of pairs. O

Proof of Lemma 2.2. Postcompose the function from Lemma 3.2 with

ks: %,B(Top/O)} s [%,K(Z/Z,@} >~ X x I x [,O(X x I x I);Z/2), (3)

and Poincaré duality. The composition PD oks o Sm: Q(X) — Hy(X;Z/2) is exactly the func-
tion KS in the statement of Lemma 2.2. We need to see that it is a homomorphism. By Lemma 3.2,
the function Sm is a homomorphism, and certainly Poincaré duality is. The H-space structures
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on B(Top/O) and K(Z/2,4) need not agree a priori, so it is not automatic that the map in (3)
is a homomorphism. However, the map B(Top/O) — K(Z/2,4) factors through the Postnikov
truncation: B(Top/0) — 7<4B(Top/O) =» K(Z/2,4). The Postnikov truncation inherits an H
space structure, which follows from obstruction theory (the obstructions to extending the mul-
tiplication have coefficients in m;(7<xX) for ¢ > k + 1, which vanishes). Hence the first map in
our factorisation is an H-space map. Again by obstruction theory, Eilenberg—Maclane spaces have
a unique H-space structure, so the second map is also an H-space map. (Since the domain has
two I factors, we could also have applied the Eckmann—Hilton argument [Spa95, p. 43-4] again.)
It follow that ks is also a homomorphism, which completes the proof. O

3.2. Proof of Theorem A. Recall from the introduction that given a closed, smooth, connected 4-
manifold X and a homeomorphism F': X x I — X x I restricting to diffeomorphisms f;: X x {i} —
X x{i} for i = 0,1, we can endow the boundary of X x I x I with a smooth structure (X x I x I) .
Using the discussion in the previous section we define

KS(F) :=ks(X x I x I,O(X x I x I)p) € HY(X x I x I,0(X x I x I)p; Z)2) = Hy(X;Z/2).

Theorem 3.4. The following are equivalent:
(i) KS(F) = 0;
(1)) X x I x I admits a smooth structure extending (X x I x I)p;
(i4i) F is topologically isotopic, rel. boundary, to a smooth pseudo-isotopy;
(iv) F is topologically pseudo-isotopic, rel. boundary, to a smooth pseudo-isotopy.

Proof. That (i) <= (ii) is by the discussion in the previous section, using that dim(X x I x I) = 6.

We prove that (ii) = (iii). If X x I x I is endowed with a smooth structure extend-
ing (X x I x I)p, then it is a concordance rel. boundary from the smooth structure (X x [0,1]),
to (X x [0,1])p+y. Since X x I has dimension five and the smooth structures already agree on
the 4-dimensional boundary X x {0,1}, we may apply Kirby—Siebenmann’s concordance implies
isotopy [KS77, Essay I, Theorem 4.1] for smooth structures, to obtain an isotopy of homeomor-
phisms Gy: X x [0,1] — X x [0,1], for t € [0,1], such that Gy = Idxx[o,1) and Gjo = F*o.
Then FoG;t: X x [0,1] — X x [0,1] is an isotopy from F to FoG7', and

(FoGiY)'o= (G Fro= (G Gio = (GroG Yo =1d"0 = 0.

Hence FoGy': (X x [0,1])s — (X x [0,1]), is a diffeomorphism, i.e. a smooth pseudo-isotopy
of X x [0,1], that is topologically isotopic to F. Thus (iii) holds.

Certainly (iii) = (iv). To see that (iv) = (i), suppose that F': X x I — X x I is topologically
pseudo-isotopic rel. boundary to a smooth pseudo-isotopy, via a pseudo-isotopy G: X x I x [ —
X xIxI. Let fi == F|lxyxpp: X — X be the diffeomorphisms obtained by restricting F,
for i = 0,1. Define F’ := F o (fy x Id;)~!. This is a topological pseudo-isotopy from Idx to
the diffeomorphism f1 o fo: X — X, and hence determines an element [F'] € Q(X). More-
over G' := G o (fy x Id; x Id;)~! is a pseudo-isotopy from F’ to a diffeomorphism of X x I,
i.e. to a smooth pseudo-isotopy. It follows that [F'] is equivalent in Q(X) to a smooth pseudo-
isotopy " := G'|xx1x{1}, and so KS(F') = KS(F") by Lemma 2.2. Since F" is a diffeomor-
phism, (X x I x INpr =2 9(X x I x I), where the latter denotes the standard smooth structure
on the boundary. But ks(X x I x I,0(X x I x I)) =0, so KS(F) =KS(F") =0. O

In particular, the implication (i) = (iii) is Theorem A. The implication (i) = (iv) is The-
orem 2.3 (A), which seems slightly weaker than Theorem A but as we have just seen is in fact
not.

3.3. Proof of Corollary B. For a compact smooth d-manifold X, let PP (X) denote the space
of smooth pseudo-isotopies of X, i.e. the set of diffeomorphisms F': X x I — X x I such that F
acts as the identity near (X x {0}) U (0X x I), endowed with the Whitney topology. Similarly
let PT°P( X)) denote the space of topological pseudo-isotopies of X, with the compact-open topology.
For d > 4, Hatcher—-Wagoner [HW73] defined a homomorphism

DU o PP (X)) — Why(m (X)).

For d > 5, Burgelea—Lashof-Rothenberg and Pedersen [BLR75, Appendix A] indicated how to ex-
tend the definition of P to the topological category. The details of the analogous construction
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were worked out for d = 4 by Galvin—Nonino [GN25, Theorem 1.1], giving rise to a homomor-
phism YToP: PToP(X) — Why (7 (X)) such that YPH factors through the forgetful map as

SDIT . 2 PO () s g PTOP(X) Z0 Who (m (X)), (4)

Finally, recall a theorem of Gabai.

Theorem 3.5 ([Gab22, Theorem 2.5]). Let f: X = X be an orientation-preserving diffeomor-
phism of a smooth, compact, oriented 4-manifold X. Then f is smoothly stably isotopic to Idx
if and only if f is smoothly pseudo-isotopic to Idx via a smooth pseudo-isotopy F with vanishing
Hatcher—Wagoner obstruction P ([F]) = 0 € Why (1 (X)).

We can now prove Corollary B.

Proof of Corollary B. By Theorem A if F has KS(F') = 0 then it is topologically isotopic rel. 9(X x
[0,1]) to a smooth pseudo-isotopy F’. If moreover F is a topological isotopy then [F] = [Idx] €
o PToP(X) so LTOP([F]) = 0 € Why(m1(X)). By (4), and since [F’] + [F] under the forgetful
map, we deduce that XP# ([F’]) = ¥TP([F]) = 0. By Gabai’s Theorem 3.5, this is equivalent to f
being smoothly stably isotopic to Idx. O

4. DUALITIES AND ORIENTATIONS

We establish notation and recall some fundamental concepts from stable homotopy theory.
First, we introduce our notation for the standard spectra we shall invoke. We write S for the
sphere spectrum, and S? := X9S for the sphere spectrum shifted by d. Of course, S = S, and
note m,(S?) = wf_,(pt,) = w5_,. For an abelian group A and k € Z, we write HA[k] for the
Eilenberg-Maclane spectrum with 7, (HA[k]) = A and 7;(HA[k]) = 0 for j # k. Finally let MSTop
be the oriented Thom spectrum.

Given spectra X and E, we define the E-theory homology and cohomology, respectively, as
E.(X):=[S",X AE] and E"(X):=[X,X"E].

If Y is a pointed space, we write F,(Y) := E,.(X°Y) and E"(Y) := E"(X*°Y) for the E-theory
homology and cohomology.

4.1. Spanier—Whitehead and Atiyah duality. Spectra A and B are Spanier—Whitehead dual
if there exists a duality morphism (see [Rud98, IV.2.3(a)]), which is a coevaluation map coev: S —
A N B satisfying certain properties. The existence of a coevaluation map is equivalent to the
existence of an evaluation map ev: B A A — S satisfying certain properties [Rud98, IV.2.6(a)].
Moreover, if A and B Spanier—Whitehead dual then for all spectra C and D coevaluation induces
an isomorphism

[DAA,C) = [D,CAB); ¢+ (pAldg)o (Idp Acoev)

(see [Rud98, TV.2.5(ii)]).
Given spectra A and B with respective Spanier-Whitehead duals AY and BV, the Spanier—
Whitehead dual of a map f: A — B is the map f¥: BY — AV, given by the composition

£V BY S S A BY LM gV A g p BY MR 4V A B A BY 1A, AV AS S5 4V,
We will write SW(A) = AV for the Spanier—Whitehead dual of A, when it exists, and SW(f) = fV
for the Spanier—Whitehead dual of a map between objects which have Spanier—Whitehead duals.

Remark 4.1. If coev: S — AAB exhibits A and B as Spanier—Whitehead dual, then postcomposing
it with the factor switching map sw: AA B — B A A gives a coevaluation map exhibiting B and A
as Spanier—Whitehead dual. That is, being in duality is a symmetric property of A and B.

We also note that S is self-dual, and that if A and B are Spanier-Whitehead dual, then £¢A
and ¥ ~?B are Spanier-Whitehead dual for all d.

Assume X is a d-dimensional topological manifold with possibly nonempty boundary. Recall
that the stable normal microbundle l/};OpZ X — BTop is the map classifying the virtual topological
microbundle [v1°P — V] of virtual dimension zero, where v1°P the normal microbundle of any
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locally flat embedding e: (X,0X) < (DN 9D¥*N) with N > 0, with N large enough for
normal microbundles to exist [Ste75]. There are Spanier—Whitehead dual pairs

SW(2>*~4(X/0X)) = Th(vy®)  and  SW(E®79X,) = Th(vy®)/ Th(r,¥);

see [Rud98, V.2.3.(i), V.2.14.(a)]. Recall that X/0X = X, if 0X is empty (this is consistent
with the convention that X/A refers to the push out of {#} + A — X) and in this case, the two
Spanier—Whitehead dualities above agree.

We will describe the duality morphism of the latter. Let € x VTOp X x X — BTop denote the
external direct sum of the stable trivial bundle over X and VTOp. By definition of the Whitney

sum, there is a stable bundle map VTOP ~ed V)T(OP — e X V)T( p covering diag: X — X x X. We

may consider this bundle map to cover the diagonal map (X,0X) — X x (X,0X). Passing to
Thom spaces and noting that Th(e) = ¥°° X, we obtain the Thom diagonal

A: Th(vg®)/ Th(vy) — DX, A Th(ry?)/ Th(v, ).
We then have a map
ST X5 Th(v/EP)/ Th(vae) 25 £° X, A Th(vP)/ Th(v ),

where cx denotes the Thom collapse map. Desuspending this composition d times gives the
desired duality map [Rud98, V.2.3.(i)] (cf. [Bro72, 1.1.15]). The duality map for the other claimed
Spanier—Whitehead duality is described similarly, but by considering the diagonal as the map of
pairs (X,0) — (X,0X) x X

So for each spectrum F and each r € Z there are group isomorphisms

E.(X/0X) = [Y7S,5°(X/0X) A E] =[S, 274X /0X) A2 "E]
> [Th(vy™), 2" "E] = E*"(Th(v™®)),
and
E"(X/0X) = [2%°(X/0X),5"E] = [2*°"4X/0X), 2" ?E]
=[S, Th(vy®) A X E] = Eq_,(Th(vy™)).

These are referred to as Atiyah duality [Ati61]. We will denote the map from the latter display,
from cohomology to homology, by AD.
We record the following, for later use.

Lemma 4.2. If X is a d-dimensional compact topological manifold then the Spanier—Whitehead
dual of the Thom collapse map ¥~ %cx: S — L~¢( Th(v TOp)/Th(VaTg(p)) is the map Cx : XX —
S, induced by the constant map X — pt, adding basepoints and taking suspension spectra. More-
over, under the X-Q adjunction, the map Cx corresponds to the constant map Xy — QS =
colim, Q*S* to the class of the identity map.

Proof. Write A’ := sw o A for the Thom diagonal followed by the factor switch map; this will
determine the coevaluation map needed for this proof (see Remark 4.1). By definition of the
duality, the Spanier—Whitehead dual of the map Cx: X*° X, — S is the composition

S =5 SAS 21Xy wi-d (1, ToP) ) Th(TP) ) AS 221, 54 Th(1IP) / Th(y1P)) AR® X, AS
AN, 5= (Th(TP) ) Th(VIP)) ASAS =5 574 ( Th(vi%P)/ Th(vEP)).
Applying the d-fold suspension one obtains
S? X, Th(VTP)/ Th(vIP) 25 £%° X, A Th(v2P)/ Th(vieP) 229, Th(,TP)/ Th(v[%P) A'S.

But by definition of the Thom diagonal the composition (Id A Cx) o A’ is the identity. Hence
SW(X~4cx) = Cy, as claimed.

The final assertion follows from adding basepoints to the map X — pt then smashing with S*
to get a map S¥ A X, — S* A SO, which is the identity on the first factor. Taking adjoints results
in a constant map to the identity element X, — QF(S* A S0) = QF(S*). The result follows by
taking the colimit. O
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4.2. Orientations and fundamental classes. If F is a ring spectrum, and X is a d-dimensional
compact topological manifold, then an E-orientation of, or E-theory fundamental class for, X is
a class [X]g € E4(X/0X) such that for any coordinate chart R C X with corresponding collapse
map

c: X/0X — X/(X — Int(D?)) = D?/oD? = g4
the class c. ([X]g) € F4(S?) corresponds under the suspension isomorphism to +1 € Ey(S°) [Rud98,
V.2.1]. Here +1 € Ey(S°) is the image of +1 € 7§(S%) = Z under the map 7§(S°) — Eo(SY)
induced by the unit map n: S — FE of the ring spectrum. The notion of E-orientability of a
manifold is closely connected to the definition of E-orientability of the stable normal microbun-
dle V)T(OP: X — BTop ([Rud98, V.1.12]). Indeed, under Atiyah duality, E-theory fundamental
classes [X] g € Eq4(X/0X) correspond to E-theory Thom classes U € E°(Th(vy")) for v1® (also
known as E-orientations for 1/};01)) [Rud98, Corollary V.2.6]. Given a module spectrum F over E,
and an E-theory fundamental class [X]g on the manifold X, there are induced F-theory Poincaré
duality isomorphisms

[(X]p ~ —: F'(X/0X) — Fa_r(X4),

which coincide with Atiyah duality for F' followed by the homological Thom isomorphism; see [Rud98,
V.1.3]) and the second diagram of [Swi02, Theorem 14.41]. Note that in this normalisation the
Thom class, and hence the Thom isomorphism, has degree zero.

5. PROOF OoF THEOREM C

We will prove Theorem C in the form of Theorem 2.3 (C), so will show that the image of the
composition
1 (Homeo} (X)) - Q(X) XS Hy(X;7Z/2)
contains the kernel ker(Hy(X;Z/2) o H, (X;Z3))) of the Bockstein operator for the coefficient

sequence 0 — Zg) N Zgy — Z/2 — 0. It suffices to do so after precomposing with the connecting
map

sAut} (X

T2 (i_\l_l/a()> — 1 (Homeo (X))
Homeo} (X)

in the long exact sequence of semi-simplicial homotopy groups (see e.g. [GJ09, §1.7] for a definition)

associated to the fibre sequence Homeoy (X) — sAuty (X) — Tomoot () of Kan semi-simplicial
OmCOa

sets. The domain of this connecting map has the advantage that it may be described via surgery
theory, as we now explain.

5.1. Geometric surgery. First we briefly recall the simple structure set, and describe its relation
to domain of 0, above. Then we recall the surgery exact sequence of Browder—Novikov—Sullivan—
Wall and show how it can be related to the maps «a, ks, and Sm.

5.1.1. The structure set. In the following we let CAT € {Top, Diff, PL} be a category of manifolds.
Let Y be a d-dimensional compact CAT manifold with (possibly empty) boundary Y. The basic
object of study in surgery theory is the simple CAT-structure set ST (Y"), described as follows.

Definition 5.1. Elements of S§T(Y') are equivalence classes of maps of pairs (f,df): (M,0M) —
(Y,9Y) from a CAT manifold such that df is a CAT isomorphism and f is a simple homotopy
equivalence. The equivalence relation on such maps is s-cobordism: if there is an s-cobordism W
from (Mo, 0My) to (M7, dM), trivial on the boundary, and a map (F,0_F): (W,0_-W) — (Y, 9Y)
restricting to (fo,df0): (Mo, 0My) — (Y,9Y) and (f1,0f1): (M1,0M1) — (Y,9Y) at the ends,
then (fo,dfo) ~ (f1,90f1).

Alternatively, if d > 5 (or d = 4, CAT = Top, and 71(Y) is good) then the CAT s-cobordism
theorem applies and we can rephrase the equivalence relation as (fo, dfo) ~ (f1,9f1) if and only if
there is a CAT isomorphism (¢, 9¢): (My, 0My) — (M1, 0M7) with (f1,0f1) o (¢,09) ~ (fo,fo)-

For each k > 0, we now describe a map

( sAutf ()
| ——=2——
Homeo} (Y)

) — 8;°P(Y x D),
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and show it is an injection for k = 0 and a bijection for & > 0, as long as k+d > 5. The domain is a
(semi)-simplicial homotopy group of a quotient of a semi-simplicial set by a semi-simplicial group.
Unravelling definitions shows that elements are represented by simple homotopy equivalences

f:Y x AF — v x AF

which preserve faces, which restrict to the identity on (9Y") x A, and which restrict to homeomor-
phisms on Y x OA* (and are well-defined up to a homotopy which is an isotopy on Y x dAF and
fixed on (9Y') x A¥ and precomposing by block homeomorphisms of Y x A¥ which are the identity
on (9Y) x AF). Such maps define elements of SaTOP(Y x DF), and this assignment can be shown to
be well-defined. To see that it is surjective for k > 0, we observe that an element of S,°P(Y x D¥)
is represented by a simple homotopy equivalence ¢: (M,0M) — (Y x D* 9(Y x DF)) which is
a homeomorphism on the boundary. Identifying D* = [0,1]¥ we may view M as an h-cobordism
from Y x [0,1]F71 x {0} to Y x [0,1]*=! x {1} rel. boundary, but as M is simple homotopy
equivalent to Y x [0,1]* this is in fact an s-cobordism. By the s-cobordism theorem there is a
homeomorphism M = Y x [0,1]¥, and so the map ¢ may be considered as a simple homotopy
equivalence ¢: (Y x D¥ 9(Y x D¥)) — (Y x D¥ 0(Y x D*)) which is a homeomorphism on the
boundary, but this is precisely our description of elements coming from ﬁk(mcg(l/) /Homeo} (Y)).
As usual, injectivity is proved by a relative form of this surjectivity argument.

5.1.2. The surgery exact sequence. The surgery theory of Browder—Novikov—Sullivan—Wall [Wal99,
LM24] describes the sets SgOp(Y x D¥) for d + k > 5 via the surgery exact sequence

co s Lays(Zla]) —— SFP(Y x I x 1) { DgVXXfIXXfI),G/Top} .
—— Lapa(Z[r]) —— SIP(Y x 1) |y G/ Top| ————

—— L1 (Z[r]) ———— S3P(Y) — 2% [Y/8Y, G/Top] —Z— La(Z[r)),
where 7 := 71 (Y'). Exactness is just as for the long exact sequence of homotopy groups for a fibra-
tion of pointed spaces: the last three terms are pointed sets, the next three are groups, and the rest
are abelian groups, with the maps being homomorphisms to the extent possible (most important
for us will be that the top row consists of abelian groups). The L-groups Ly(Z[r]) are Wall’s
(simple) surgery obstruction groups. The topological monoid G is the structure group for stable
spherical fibrations, and the space G/Top is defined as the homotopy fibre of the map BTop — BG
induced by the forgetful map.

The stable normal microbundle V}T,Op: Y — BTop is a preferred lift of the Spivak normal fi-
bration v3¢:Y — BG. The group [Y/9Y, G/Top| acts freely transitively on the set of lifts of the
Spivak normal fibration, relative to a fixed lift on the boundary 9Y .

Given an element [(f,0f): (M,0M) — (Y,9Y)] of the structure set é«‘g()p(Y)7 the homotopy

equivalence f determines a stable microbundle ( ffl)*ufjp: Y — BTop. As f is a homotopy
equivalence, the underlying spherical fibration of (f ’1)*1/13[01’ is canonically homotopic to the Spivak
normal fibration ¥ — BG. As f is a homotopy equivalence, the underlying spherical fibrations
of (f~1)*v;® and ;" are (canonically) identified. As 8 is a homeomorphism this identification

extends to one of stable microbundles over Y. This gives a difference class

rop ([(f, 0.)]) = d((f 1) var ™, vy®) € [Y/0Y, G/ Top].
See [Wal99, LM24] for further details on the surgery exact sequence.

5.1.3. Mapping the surgery exact sequence in. For a 4-manifold X we may form the diagram

~

SAutS & oR
mo (A ) 5 SIOP(X x I x 1) M | ALK G Top]
Homeoy (X)

! | 0

—_~—

1 (Homeof (X)) —*— Q(X) = [3£(XXIIXXII) , B(TOP/O)} k§ ﬁ4(%? 2/2)'
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The right-hand vertical map is induced by the composition G/Top — BTop — B(Top/O). The left-
hand vertical map is the connecting homomorphism from the long exact sequence of the fibration.

Lemma 5.2. The diagram (5) commutes.

Proof. Let ¢: (M,0M) — (X x I x I,d(X x I x I)) represent an element of S, (X x I x I), so it
is a simple homotopy equivalence which is a homeomorphism on the boundary. In particular, M
can be considered as an h-cobordism from X x I x {0} to X x I x {1} rel. boundary. By the
composition formula its Whitehead torsion satisfies

for (M, X x I x{0}) +7(¢) =7(X x I x I, X xIx{0})=0¢& Wh(m (X x I x1I)),

and as ¢ is a simple homotopy equivalence it follows that 7(M, X x I x {0}) = 0, and thus M is
an s-cobordism. The s-cobordism theorem then gives a homeomorphism

W M= X xIxI rel. X xIx{0tUdX xI)xI,

which restricts to a homeomorphism F: X x I x {1} S X xIx {1} rel. boundary. Spelling out
the isomorphism and definition of 0 in the diagram shows that

d([¢]) = [F) € mo(Homeo} (X x I)) = 1 (Homeo}, (X)).

Now «([F]) = [Id, F], which is just F' considered as a topological pseudo-isotopy from the identity
to the identity diffeomorphism, so ksoSmo «([F]) € {Lﬂ), K(7/2, 4)] is given by

O(X XIxXI
B(X x I x )y — 25X XDroe  peyg) BO E(Top/O) —— PK(Z/2,4) ~
XxIxI ESEEL BTop(6) BTop —— B(Top/0) —=— K(Z/2,4).

Now % induces an isomorphism of topological manifolds with smoothed boundary
Wi (M,0M) — (X x I x I,0(X x I x I)p)
so we have

ksoSmoa([F]) = ks(X x I x I, (X x I x I)p) = () *ks(M, M) € H* (%;2/2) .
The composition pop™1: (X x I x I,O(X x I xI)) — (X x I x I,0(X x I x I)) is the identity on
X xIx{0}Ud(X xI)xI and sends X x I x {1} into itself, so by Lemma 3.3 it is homotopic
as a map of pairs to the identity. It follows that 1)~! is homotopic as map of pairs to ¢!, so the
right-hand side of the previous equation may be written as (¢~1)*ks(M, M ).

On the other hand, by definition of the normal invariant map 1t the composition

To 7MTo
STOP(X x I x I) ™™ 7(,)&*;;;,),@/%1)} — {755&?1551)’3%1’

sends the simple homotopy equivalence [¢] to the map classifying the stable microbundle (¢~')*v P —

V)T(OXP 1«7 together with the trivialisation over 9(X x I x I) given by the fact that ¢ is a homeomor-

phism on (X x I x I). Post-compose with BTop % B(Top/0) 3 K(Z/2,4). Since the Kirby—
Siebenmann class is additive for Whitney sum of bundles [KS77, Annex 3 Lemma 15.5], yg()p and

the stable tangent microbundle T;‘;Op have the same Kirby—Siebenmann class. We therefore obtain

ks((0™ ) v — vrsr) = (07 ks(vyy?) — ks(vy Bryp) = (671 ks(myy®) — ks(Tx Prscs)

= (¢~ ")*ks(M,OM) —ks(X x I x I,0)

= (671" ks(M,OM) € H*(5250505:2/2),

where we have again used additivity, that 1/3;01’ and TEOP are stable inverses, the definition of

ks(Y,0Y), and that X x I x I is smooth so has trivial Kirby—Siebenmann class. This completes
the verification that both passages around the diagram yield the same result. O
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We give an outline of our strategy for the proof of Theorem 2.3 (C). Recall that our goal is
to show that the image of PD okso Smoaod contains ker (0,: Ho(X;Z/2) — H1(X;Z2))). As
the codomain of the right vertical map in diagram (5) is a vector space over Z/2, this map factors
through the 2-localisation of its domain. This allows us to augment diagram (5) as follows

(SR ) 2, STo(x x [ x 1) T2 [ XXl G Top]

Homeo} (X) J X XIXI)
STP(X 5 I x I)(g) 2% | XXX G /To 7 Le(Z[x))
9 ) (2) (X xIxI)’ P @ 6 2)

l (6)

m (Homeo (X)) —— Q(X) —"— | 555005, B(Top/O)]

%J(ks

T PD
Iz (6(;§(XXIIXXII) .7 /2) B 1y (X;7/2).

The 2-localised row in diagram (6) is meaningful because the surgery exact sequence for X x I x I
is an exact sequence of abelian groups, and can therefore be localised at 2, which furthermore
preserves exactness. Diagram (5), with the right vertical arrow factored through the 2-localisation,
is a subdiagram of diagram (6), and so this big square commutes by Lemma 5.2. The smaller
square in diagram (6) commutes, by naturality of localisation. So diagram (6) commutes overall.

We will produce, for each u € ker ((5*: Hy(X;2)2) — Hl(X;Z(Q))), a lift to an element

& € [%K}/Top}@) such that o(&,) = 0. By exactness we will then obtain an element

in SgOP(X x I x I)() mapping to u. After multiplying by an odd integer, this lifts to an el-
ement SgOP(X x I x I), also mapping to u. It follows that u is in the image of the clockwise
composition starting in the top left corner. By commutativity of the big square, we can conclude
w lies in the image of PD okso Smoaod. This will complete the proof of Theorem 2.3 (C).

5.2. Ranicki—Sullivan duality and Poincaré duality. To do what we have just described, we
will use Ranicki’s algebraic surgery exact sequence; see [Ran92]. In the topological category, this
is an exact sequence isomorphic to the geometric surgery exact sequence, and expressed in terms
of the L-spectra. In the algebraic surgery exact sequence, the surgery obstruction map o from the
geometric surgery exact sequence factors through the Ranicki—Sullivan duality map, followed by
the algebraic assembly map, as we shall describe below. The main task of this section is to relate
Ranicki—Sullivan duality back to ordinary Poincaré duality.

5.2.1. L-spectra. Given a ring R with anti-involution (often called an involution in the surgery
literature), there are defined spectra L°(R) and L4(R), respectively the symmetric and quadratic L-
spectra. The reader is referred to [Ran92] for the construction, but note we are using the naming
convention of [Lurll], whereas Ranicki writes L® (R) and L4 (R) respectively for the symmetric and
quadratic spectra. Products in L-theory (see [Ran92, Appendix B], [Ran80]) endow L*(R) with the
structure of a ring spectrum and L(R) with the structure of an L°(R)-module spectrum. We will
denote by L° = 75(LL*(Z), the O-connective cover of L*(Z), by LY = 75(L%(Z) the 0-connective cover
of L9(Z), and by L9(1) = 75>11L9(Z) the 1-connective cover of L4(Z); L* is again a ring spectrum
and L? and L%(1) are L*-module spectra. We will continue with the notation E,(—) and E"(—)
to refer to the corresponding (co)homology theories for F = L%, 1L, 1L.9(1), where Ranicki uses the
notation H,(—; F) and H"(—; F).

5.2.2. The symmetric L-theory fundamental class. There is a morphism o: MSTop — L* of ring

spectra, referred to as the Ranicki orientation; see [Ran92, §16]. For an oriented topological d-

manifold Y, write 1/5013 : Y — BSTop for the oriented stable normal microbundle of the pair (Y, 9Y).

We have an the induced map of spectra Th(V;EOP) — MSTop, and the composition Th(l/;[,bp) —

MSTop 2 L# results in a L*-theory Thom class Urs € (L%)°(Th(vy°?)); see [Ran92, §16]. Under
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Atiyah duality (ILS)O(Th(VEOP)) >~ (L*)4(Y/9Y) we therefore obtain an L°-theory fundamental
class [Y]Ls € (IL%)q(Y/0Y).

5.2.3. The surgery obstruction and assembly. In [Ran79], Ranicki constructed a homotopy equiv-
alence G/Top ~ Q*°L%(1), which we use to identify these two spaces from now on. In particular,
if Y is a topological d-manifold as above then we have an identification

[Y]Ls ~
—=

D: [Y/dY,G/Top] 2 [Y/dY, QL4 (1)] = [£(Y/Y),L1(1)] 5 84,5V, ALK, (7)

given by Poincaré duality in L9(1)-theory (this is the duality often referred to as Ranicki—Sullivan
duality). Note that the first two terms refer to maps of spaces, while the last two refer to maps of
spectra. Under this identification, the surgery obstruction map from [Wal99, §3] factors as

[Y/9Y, G/Top] . La(Z[x])

=|p Al

[s4, 2%V, ALY(1)] —— [S%, 2%V, ALY —— [S?,5*°Br; A L]

where the first lower map is induced by the canonical map L9(1) — L4 given by the connective
cover, the second is induced by the Postnikov truncation map t: Y — Bmr, and the third map A,
is the assembly map in quadratic L-theory, defined in [Ran79]. This is shown in [HMTWSS,
Appendix 2, Theorem 2|, where it is credited to Quinn [Qui70] and Ranicki [Ran79, Ran92], with
a contribution by Nicas [Nic82].

Our objective for the remainder of this subsection is prove Lemma 5.6, below, where we relate
Ranicki—Sullivan duality back to ordinary Poincaré duality.

5.2.4. Splitting L-theory spectra. The 2-localised spectra ]L‘(QQ) and IL9(1) () are generalised Eilenberg-
Maclane spectra; see [TW79, §2]. Moreover, Taylor and Williams [TW79] write down specific
equivalences of HZ-module spectra

s s . .
(r) L Ly = P HZ ) [4i] © D HZ/2[45 + 1], (8)
i>0 §>0
and
14 ~ ) .
(k) 1 L9(1) o) = @D HZo) [4i] © @D HZ/2[45 + 2]. (9)
i>1 §>0

Lemma 5.3. Under the identification G/Top ~ Q>L9(1) and with respect to the Taylor-Williams

splitting (9), the cohomology class G /Top — BTop — B(Top/O) L K(Z/2,4) is given by reds (1) +
ko — ko. That is, the following diagram commutes

G/TOp QOOILq<1>(2)

J (g)lzg X ks

K(Z/2,4) «+—— K(Zw4) x K(Z/2,2).
redo(—)+———

This is surely known in some form, but we were unable to find a proof. We give one here that
manages to avoid the specifics of the definitions of 11 or ks.

Proof. Recall that Top/PL ~ K(Z/2,3), and that the composition in the statement of the lemma
is the map wu in the fibre sequence G/PL — G/Top — B(Top/PL) ~ K (Z/2,4). With respect to
the decomposition

(G/Top)(z) = Q¥L1) () = [ [ K (Zg2),40) x [[ K(Z/2,45 +2)
i>1 7>0

induced by the maps I{, and ky;1o from (9), we have

u € H*(G/Top; Z/2) = 7Z./2{red2(13), ks — ko}.
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To see this isomorphism, first note that since G/Top — G/Top(Q) induces an isomorphism on
homology with Zq)-coefficients (by definition of localisation), the same map induces an isomor-
phism on (co)homology with any Z,)-module coefficients by universal coefficients. Since Z/2 is
a Z)-module, we have an isomorphism0 H*(G/Top; Z/2) = H4(G/Top(2); Z/2). In addition, the
map G/Top(g) — K(Z2),4) x K(Z/2,2) is 6-connected, so the latter group H4(G/T0p(2);Z/2) is
isomorphic to
HYK(Z2),4) x K(Z/2,2);Z/2) = Z/2{reds(1]), ks — k2},

as claimed.

It follows that u = A-reds(l])+ B ko — ko for some A, B € Z/2. In these terms, the 5-truncation
of the 2-localised G/PL is described as a homotopy pullback

TS5(G/PL)(2) L K(Z(Q),4)
J{kz J{A'redz (10)
K(2/2,2) 229 K (7/2,4).

Now Sullivan has shown (see e.g. [MM79, Theorem 4.8]) that 7<5(G/PL)(2) is homotopy equiva-
lent to the homotopy fibre of &, 0 Sq*: K(Z/2,2) — K(Zs),5), where 0, K(Z/2,4) — K(Zs),5)
denotes the map classifying the cohomology Bockstein. From this we first see that A = 1, oth-
erwise the pullback (10) would give the wrong 3. Given that A = 1, the diagram (10) ex-
presses 7<5(G/PL)(2) as the homotopy fibre of B -4, o Sq?, because we can extend the diagram
downwards as follows, such that the right-hand column is a fibration sequence corresponding to
the Bockstein long exact sequence.

ll]
T§5(G/PL> (2) 4)4 K(Z(g), 4)

J/k?z lredg

K(2/2,2) 25, K(z/2,4)

lB-é*oqu lé*

If B = 0 then we would have 7<5(G/PL)«) ~ K(Z/2,2) x K(Z),4). If this were true then

° 2
the fibration sequence K(Z(s),4) — 7<5(G/PL)(9) ER K(Z/2,2) RELLLEN K (Z2),5) arising from

Sullivan’s theorem would admit a splitting iy : K(Z/2,2) — 7<5(G/PL)(2) with foi; ~ Id, whence
we have homotopies of maps
% =%01dy =~ (6,08q%) o foiy =~ (d,08q%) old =4, 08q”: K(Z/2,2) = K(Z),5).

Here * denotes a constant map. This contradicts the nontriviality of the cohomology opera-
tion &, 0 Sq?. Thus we must have B = 1. O

Remark 5.4. An alternative proof that A = B = 1 could be made that proceeds by evaluating on
degree one normal maps Eg — S* and *CP? — CP2.

Recall that for a space X and a double loop space or spectrum Y, localising induces an isomor-
phism of abelian groups [X,Y(2)] = [X,Y](2). We will use this without further comment.
Via G/Top ~ Q*LL9(1), the Taylor-Williams splitting (9) of LI(1)9) gives an identification

~ [§700 ~ 4i . 4542 .
[Y/0Y, G/Top] ) =[S (Y/0Y), L' (1)3)] = D H"(Y,0Y: Za)) & D HY*(Y,0Y:2/2), (11)
i>1 7=>0
and using (ordinary) Poincaré duality, with respect to the given Z-orientation of Y, we can identify
the latter with
P Hi (Vi Z2) & P Hasj—2(Y;Z/2). (12)
i>1 7>0
On the other hand, the Taylor-Williams splitting (9) of 1.9(1) 2 also gives an identification
[Y/9Y, G/ Top],,, % ST, 5%V, AL (1) 9] = @D Ha-ai(Y3Zo)) ® €D Ha—j—2(Y32/2). (13)

T™W
i>1 >0
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The two identifications of [Y/0Y, G/Top] ) with (12) are not the same. Their difference is mea-
sured by the homology classes which correspond to [Y]rs under the Taylor—Williams splitting (8)
of ]sz)» because (13) used capping with [Y]rs, whereas passing from (11) to (12) uses capping with
the ordinary homology fundamental class [Y] = [Y]pgz. These are described in the next lemma.
For its statement, we let

(=146 4L+ € P H"(BSTop; Za)
>0

denote the Morgan—Sullivan class [MS74], with ¢; € H*(BSTop; Z(2)), and we write

V= Z Voj — Sql(V2j) € @H4j+1(BSTOP;Z/2),

j=0 i>0
where V;, € H*(BSTop;Z/2) denotes the k*® Wu class.

Lemma 5.5. Under the Taylor—Williams identification (8), the 2-local fundamental class [Y]Lf’z) €
(L{y))a(Y/0Y) is given by

(Y] ~ ()0, [Y] ~ ((V§°p)*V)) € @Hd—zxi(K Y Z2)) ® @de(z;jﬂ)(Y, Y Z/2).

Proof. By [TWT79, (1.9)] the pullbacks under the Ranicki orientation

o'l e @ H"(MSTop; Zz))  and  o*r € @) HY (MSTop; Z/2)
i>0 >0

are the images under the Thom isomorphism of the classes ¢ and V respectively. Pulling these
back along Th(ug()p) — MSTop we obtain the identities

UL, = (y°")"0) — Unz,,y € D H* (Th(y*"); Z(z))
i>0

U, = (1)"V) — Ung,, € Q?H‘*j“(Th(u?p); 7.)2).
3=>0

Applying Atiyah duality (AD), which may be written as the composition of the inverse of the
Thom isomorphism followed by Poincaré duality, we obtain the identities

AD(IU, ) = [Y] ~ (™)) € D Ha-1s(Y, 0Y : Z3))
i>0
o Top .
AD(r.Uws, ) = [Y] ~ (")) € @Hd—(4j+l)(}/a Y;Z/2).
j=0

By definition of the fundamental class [Y]%) € (L{y))a(Y/0Y) as the image of the generalised
Thom class ULy, € (L?Q))O(Th(V)T,Op)) under Atiyah duality, we have identities AD(liUL(s2)) =
liAD(UL&)) =1 [Y]Lfg) € @50 Ha—1:(Y,0Y;Z(2)). Similarly, for the other case we have identities
AD(r, U]L&)) = T*AD(U]L&)) =r, [Y]L?Q) € @50 Ha—(aj+1)(Y,0Y;Z/2). Combining these with the
previous display yields the statement of the lemma. O

The two identifications of [Y/0Y, G/Top|,, with (12) discussed above are related as follows.
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Lemma 5.6. The diagram

(LU1)(2)°(Y/0Y) ¢———— [Y/0Y, G/ Top] (5, ——z— (LI(1)(3))a(Y)

I Ve, ~ )

[Z(Y/0Y),L9(1) 2] = [S%, 2%V, AL(1) 5]
%lTW(ll)
By HY(Y,0Y; Zzy) N (
O @50 HYT2(Y,0Y;2/2) =TS
EJ,(I’
D HH(Y, Y Za)) Yl~- Dis1 Ha-1i(Y: Z(2))
EB@jZO H4J+2(K 8Y72/2) = EB@J’ZO Hd_4j_2(Y;Z/2)

commutes, where the map ® is given by
(u,0) = (™)l =, () = v+ 57 (1) (V= 0))

for 6™ the cohomology Bockstein associated to the coefficient sequence 0 — Z3) 3 Zgy = L/2 — 0.
Here TW (11) and TW (13) are the maps denoted Zryw in (11) and (13) respectively.

Proof. The top square commutes by the definition of the map D from (7).

Write m: Ly ALY(1)2) — L(1)(2) for the L{,-module structure map. According to [TW79,

(1.13)], the spectrum cohomology classes {9, k, [® and r defining the identifications (8) and (9)
behave as follows under pullback along the map m:

mA =1 NI+ 6" (r NE) and m*k=10°Nk.

By (9), the spectrum IL(1) ) is homotopy equivalent to a coproduct of Eilenberg-Maclane spectra
via the maps [? and r, so these formulae fully determine the homotopy class of the map m.
Using the formula for [Y]]L?z) under the splitting (8) given by Lemma 5.5, and this description

of the map m, we may derive a formula for the cap product map
YLy, — = [E*(Y/0Y),L1) ()] — [S%,Z¥YL ALY (1)(z)]
under the identifications (11) and (13). Namely, it is given by sending

(u,v) € @ HY(Y,0Y; Zz)) & @ HY (Y, 03 2/2)
i>1 j>0

to

([Y] ~ (™) €= u), [Y] ~ (F) "L = 0) + [Y] ~ 6" ((y™)"V) — v))

€ P Haui(Y;Z2)) © @D Hasj-2(Y3Z/2).
i>1 >0

This describes the composition TW (13)o ([Y]Lf’z) ~ —)o(TW(11))~! in the diagram, which agrees
with the composition ([Y] ~ —) o ® by the definition of ®. O
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5.3. Proof of Theorem 2.3 (C). Now we specialise the discussion of the previous sections to
the case at hand, with Y = X x I x I for an oriented 4-manifold X. We may consider the diagram

ks o
Hy(X:2/2) & |80l G/ Top] | Lo(Zlr]) 2

b |
[S6, 20X, ALI(1L)] ) — [S%, %X, ALY, 5[5, 2By ALY @)

(14)
:JTW %lTW
: Hy(m;Z/2)
H%;ﬁg’(z)éQ)Z(Q)) .80 ;HQ(T‘—;Z(Q))
©Hy(X:72,2) ©Hy(r:7,)2)

©He(m;Z(2))-

We use that X xIxI ~ X to simplify notation here. The top rectangle comes from Subsection 5.2.3.
For the bottom rectangle we applied TW to the L¢ homology of both X*° X, and ¥*°Bn, using
naturality with respect to the truncation map t and the change of homology theory L(1) — IL¢
to see that the rectangle commutes. The map W, defined so as to make the left-hand triangle
commute, can be evaluated by applying Lemma 5.3 and Lemma 5.6.

Lemma 5.7. We have ¥(a,b, c) = reds(b).

Proof. We consider the diagram of Lemma 5.6 for Y = X x I x I. This has
()"l =1+ (1) € HO(Y,0Y; Zz)) & H'(Y,0Y; Ls))

and

() (V) = (5°P)" (3 Vay = 84" (Vay)) = (5/™)" (Va — Sq' (Va)) € H' (Y, 0Y: Z/2)

7>0

for degree reasons, namely that Sq'(Vy) = 0 and HF*(Y, 0Y;Z)) = 0 for k > 6. Thus the

isomorphism

®: H*(Y,0Y;7/2) & H*(Y,0Y; Z2)) & HO(Y,0Y;Z/2)
— H*(Y,0Y;Z/2) ® H*(Y,0Y; Z(2)) & H*(Y,0Y; Z/2)

Top)

is given by (u, v, w) — (u,v,w + (v 0 — u).

Start with a class
(a,b,¢) = ([Y] ~ 2,[Y] ~ y,[Y] ~2) € Ho(Y;Z/2) ® Ho(Y; Z2)) © Ha(Y;Z/2)

in the bottom-left corner of the diagram (14), which equals the bottom-right corner of the diagram
of Lemma 5.6 (in this case we take just ¢ = 1 and j = 0,1). Here (z,y, 2z) in the codomain of ®
are uniquely determined by Poincaré duality. We wish to pass from here anticlockwise around
the diagram from Lemma 5.6 to the domain of ®, from which we can evaluate the map ks using
Lemma 5.3. By Lemma 5.6, we can instead pass clockwise around the diagram from that lemma,
i.e. apply the isomorphism ®~!o ([Y] ~ —)~!. We obtain the class

(z,y,2 — (g P)"ly — x) € HX(Y,0Y;Z/2) @ H'(Y,0Y; Z(s)) ® HS(Y,0Y;Z/2).

By Lemma 5.3 the Kirby-Siebenmann class ks is given by reds(I7) + ko — ko, so is reda(y) +x —
x € H*(Y,0Y;Z/2). But as Y/9Y = (X/0X)AS? is a reduced suspension, the cup product z —
vanishes. Thus under Poincaré duality the Kirby—-Siebenmann class is [Y] —~ reds(y) = redz([Y] —~
y) = reda(b), so ¥ has the claimed description. O

We can now describe the map I to which the statement of Theorem C and Theorem 2.3 (C)
refers, and then complete the argument.

Definition 5.8. The map Iy: Hy(m; Z2)) = L(Z[r])(2) is by definition the restriction of the right-
hand column A, o TW ™ of the diagram at the start of Section 5.3 to the summand Hy(m; Z2)).
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Proof of Theorem 2.3 (C). By the strategy described at the end of Section 5.1, after diagram (6), it

suffices to produce, for each u € ker (8, : Ho(X;Z/2) — Hi(X;Z(2))), alift &, € [%, G/Top]

along ks such that (&,) = 0. We do so as follows. Given such a class u, exactness of the Bockstein
sequence

(2)

red [
Hy(X; o)) =% Hy(X32/2) =5 Hy(X; Zy)) — Hi(X3Zz))

shows that we may choose a v’ € Hy(X;Z3)) which reduces modulo 2 to u. We then consider the
element

(0,4/,0) € Ho(X;Z/2) ® Ho(X; Z2)) ® Hy(X;Z/2)
in the bottom-left corner of the previous diagram (14). Then (0,u’,0) corresponds under the
vertical isomorphism D' o TW ™! to an element
XxIXI
& € [t G/ Top]
which satisfies that ks(&,) = u, by the description of ¥ in Lemma 5.7. Under our assumption that
the map Iy: Ha(m;Zg)) — Le(Z[7])(2) is zero, the element (0,u’,0) maps to zero in Lg(Z[r])(2) by
going anticlockwise around the diagram (14), and therefore o(&,,) = 0 as required. This completes
the proof of Theorem 2.3 (C) and hence of Theorem C. O

6. PROOF OF THEOREM E

We recall that Theorem E states the following. For each smooth, connected, compact 4-
manifold X there is a g > 0 such that every class x € Ho(X#g(S? x S?);Z/2) arises as KS(F) for
some topological pseudo-isotopy F from the identity to some diffeomorphism f: X#g(S? x S?) —
X#g(S5? x S?).

Proof of Theorem E. Without loss of generality we may suppose that X has nonempty boundary,
by removing an open disc.

Given a class x € Ho(X;Z/2), we use Poincaré duality and a suspension isomorphism to consider
it as an element of

H3(X x I1,0;Z/2) = [X2L, Top/O] ,
using the fact that the Postnikov 6-type of Top/O is a K(Z/2,3). Thus x gives a smooth structure
(X X I)s(y) on the 5-manifold X x I relative to the standard smoothing of the boundary, by the
discussion in Section 3.1. As X = X x {0} — X x I is a simple homotopy equivalence, the smooth
5-manifold (X x I)s,) is an s-cobordism. By the (52 x S?)-stable s-cobordism theorem [Qui83],
there is a g > 0 such that the stabilisation of the s-cobordism (X x I)s(,) obtained by gluing on

the trivial smooth cobordism on (X x I)#g(S? x S?) is a trivial cobordism starting at
X' 1= X Ugx ((0X x D)#g(S* x S%)) = X#9(5* x S?).
This yields maps
X' x T =20 (X % gy —2% X7 x 1.

The first is just the identity homeomorphism between two copies of X’ x I, while the second
map is the diffeomorphism arising from the (52 x S?)-stable s-cobordism theorem.

This yields a self-homeomorphism of X’ x I that is the identity on X’ x {0} and that restricts
on X’ x {1} to a diffeomorphism f. This is the same as a topological pseudo-isotopy F from the
identity to f. By construction, this data has

KS(F) = (2,0) € Hy(X;7Z/2) ® Hy(g(S? x S?);Z/2) = Hy(X';Z/2).

By choosing g large enough, since Ho(X;7Z/2) is finite we may arrange that all of Hs(X;7Z/2) C
Hy(X',7Z/2) lies in the image of KS: Q(X') — Ha(X';7Z/2).

For the summand Ha(g(S%x5?);Z/2) C Ha(X';Z/2), we use that W, 1 := g(5%x S?)\Int(D*) is
simply-connected and so the hypotheses of Theorem C are satisfied for this manifold (alternatively,
the conclusion of Theorem C for simply connected manifolds was already a consequence of [Kre79,
Theorem 1]). It follows that

1 (Homeo (Wy.1)) == Q(Wy1) = Hy(W,y1:7/2)
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is surjective. Plugging such topological pseudo-isotopies of Wy 1 into X' shows that Ho (g(5?% x
S2);7Z/2) C Ho(X';7/2) also lies in the image of KS for the manifold X’. Since KS is a homomor-
phism by Lemma 2.2, this completes the proof of Theorem E. ([l

7. PROOF OF THEOREM F

We begin the proof of Theorem F by defining the 4-manifold X appearing in the statement of
Theorem F. Then we outline the strategy of the proof, motivating the conditions the manifold X
will have been constructed to satisfy. The strategy involves choosing judicious maps into PL normal
invariant sets, and the commutativity of a diagram. The rest of this section, and the rest of the
proof of Theorem F, will comprise the proof that this diagram commutes.

7.1. The 4-manifold X. Let A be a closed smooth 4-manifold, and consider the following list of
conditions.

(i) A is aspherical,

(ii) A is stably framable,

(iii) the map m; (Diffeo™ (A)) — 71 (hAut™(A)) is surjective,

(iv) Hy(m1(A);Z) has an element of order 2.
Remark 7.1. We are interested in the higher homotopy groups of various automorphism groups
based at the identity. As homotopy automorphisms which are homotopic to the identity are simple,
we may freely interchange hAut™ and sAut™, and similarly for hAut and sAut. By the same token

homeomorphisms in the identity component preserve orientation, so we may also freely interchange
+

gt
Homeo and Homeo™, and so on.

~

Remark 7.2. For an aspherical space A, there is an isomorphism 73 (hAut(A)) = Z(m(A)), where
the latter denotes the centre [Got65, Corollary 1.13]. This can be argued by picking a point € A
and considering the map ev,: hAut(4) — A, given by evaluating the automorphism at z. The
homotopy fibre of this map is the space of based homotopy equivalences hAut,(A). As A is
aspherical, we have mo(hAut,(A)) = Aut(m (4, z)) and 7, (hAut,(A)) = 0 for all k£ > 0. The long
exact sequence of the fibration thus has a portion

0 — m(hAut(A),Id) — 71 (A, x) — mo(hAut,(A4)) = Aut(m (4, z)).

An element g € 71 (A, x) is sent to the map v — gyg~' € Aut(m (A, z)) in this sequence, and thus
m1(A) = mo(hAut,(A)) has kernel Z(m1(A)). For further details we refer to [Got65].

The next example shows that there exist many 4-manifolds A satisfying these conditions.

Example 7.3. Let X be a closed, oriented hyperbolic 3-manifold with 2-torsion in Hy(3;Z). Such
manifolds ¥ are abundant; for example, take any hyperbolic knot K C S® and perform n-surgery
on S? along K, where n is even and n/1 is not one of the finite number of exceptional slopes p/q
for $% \ vK which produce a non-hyperbolic filling. A concrete example is given by performing 6-
surgery on the figure eight knot [Thu97, Theorem 4.7].

The manifold A := ¥ x S* satisfies conditions (i), (ii), (iii), and (iv). Indeed, condition (i) holds
because ¥ is hyperbolic, and thus aspherical, so ¥ x S! is a product of aspherical spaces, thus
also aspherical. Condition (ii) holds as oriented 3-manifolds are framable, and so A is a product
of framable manifolds. For condition (iii) we will argue that 71(X) has trivial centre, so that
the centre of m(A) = 71(X) x 71(S1) is Z generated by the circle factor. But the circle action
on ¥ x St is smooth and generates this factor in 7 (hAut(A)) = Z(m(A)) (recall Remark 7.2),
showing that (iii) is satisfied. Condition (iv) holds as ¥ was chosen to have 2-torsion in H;(3;Z).

It remains to see that the centre of the group 71 (X) is trivial. For a contradiction, let g be a
nontrivial element of the centre Z (7 (X)). Since 71 (X) is torsion-free the subgroup (g) is isomorphic
to Z. By [BH99, Corollary IIL.I".3.10 (2), p. 462], (g) has finite index in its centraliser Cr, (x)(g).
Since g is central, Cr, (5)(g) = 71(X), so 71 (%) has a subgroup Z of finite index. The corresponding
finite cover ¥ is a closed, orientable, aspherical 3-manifold and so Z = Hy(%; Z) = Hs(Bry(X); Z)
Hs(BZ;Z) = 0, which is a contradiction.

Definition 7.4. Choose a closed smooth 4-manifold A satisfying conditions (i), (ii), (iii), and (iv),
above. Define a closed smooth 4-manifold

X := A#g(S? x §?)
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with ¢ is chosen large enough that ks: Q(X) — Ha(X;Z/2) is an isomorphism; such a g exists by
Theorem E. Note that X inherits properties (ii) and (iv) from A.

In this case the Postnikov truncation map
t: X —Br~A
may be modelled as the map which collapses g(S? x S?) \ Int(D*)) C X, so it has degree +1.

7.2. Outline of proof. Let X and A be instances of the closed, oriented, connected 4-manifolds
from Section 7.1. We consider the following diagram, whose terms will be defined below. After
that, we will prove the theorem assuming commutativity. Then the majority of the rest of this
section will be devoted to proving that it commutes.

1 (Homeo™ (X)) —2— Q(X) —— mo(Diffeo™ (X)) —— mo(Homeo™ (X))
Smig ~
(17)  [X5*L,B(Top/O)] = [X.4, 2(Top/O)] P
m(hAut™ (X)) — [X 1, Q(G/PL)] «— [X{,Q(Top/PL)] —— Ha(X;2/2) (15)
lt* (19) lt! l"! t
L(hAut+(A)) —2 [A4, Q(G/PL)] +— [A4,Q(Top/PL)] | —— Ha(4; Z/Q)
/ \ Hl( 7 .2
Dn‘feo ker Hy (A7) )

e The top row is the exact sequence of groups from (1).
e The diagram consists of groups and homomorphisms, and in fact all but possibly mo(Diffeo™ (X))

and 7 (Homeo™ (X)) are abelian groups. For this we consider the spaces BO, BPL, BTop, BG
as infinite loop spaces via Whitney sum [BV73]. The spaces Top/O, Top/PL and G/PL in-
herit compatible infinite loop space structures coming from taking fibres of the infinite loop
maps BO — BPL — BTop — BG.

e The upper map 7 is defined by the composition

mi(hAutt (X)) 22 mo (hAut) (X x 1)) — SEH(X x I) 25 [XxI G/PL] 2 [X,, Q(G/PL)],

where 7py, is the PL normal invariant. The lower map 7 is defined similarly, with A in place
of X. Using the PL surgery sequence for manifolds of the form Y x I justifies that these normal
invariant groups are abelian and that 7 is indeed a homomorphism.

e We use that Top/PL ~ K(Z/2,3) to obtain Q(Top/PL) ~ K(Z/2,2). Thus we identify
[Y,,Q(Top/PL)] = H*(Y;Z/2) for Y € {X, A}. With respect to this identification the maps PD
correspond to ordinary Poincaré duality.

e By our choice of g in the definition of X, and Theorem E, the maps KS and Sm are surjective.
They are injective (without need to stabilise) by Theorem A, and hence are isomorphisms.

e The right-most map t, is induced by the Postnikov truncation t: X — Br ~ A. This is easily
seen to be surjective from the fact that there exists a model for Bm arising from taking a cell
complex for X and then adding cells of dimension at least three.

e By functoriality of Postnikov truncation, every homotopy automorphism of X induces a homo-

topy automorphism of its truncation Br ~ A, yielding the map t.: m (m(X)) — T (h/m(A))
on the left.

e The map d, is the homology Bockstein for the coefficient sequence 0 — Z 37 Z/2 — 0. The
fact that d, is surjective follows from the Bockstein long exact sequence.

e The isomorphism in the second row is given by the composition

[#25%4, B(Top/O)] = [£2 X, B(Top/O)] = [X, 2*B(Top/0)] = [X., Q(Top/O)].
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e In Lemma 7.5 below, the map j in the diagram will be defined and proven to be injective, and
the lower right triangle will be proven to commute.

e We discuss the bottom left triangle. Recall from Section 2.1 that the geometric realisation of
}m"’(/l) is homotopy equivalent to hAut™(A4). Combining with property (iii) of the mani-
fold A, this implies the map m; (Diffeo™ (A4)) — Wl(er(A)) is surjective. An element in the
image of the up-right composition in the bottom left triangle is the PL normal invariant of a
diffeomorphism of A x I, and is thus trivial, showing that the bottom left triangle commutes.

e The region involving the map KS commutes by definition of the map KS.

e The maps t; are defined as umkehr maps using Poincaré duality. This exploits the fact that
stably framed manifolds are S-oriented and thus satisfy Poincaré duality in E-theory for any
spectrum E. This is discussed in detail in Section 7.3, below. Commutativity of the central
square involving the maps t;, and the right-hand square involving ¢, and t,, is discussed in
Section 7.3, the latter in Lemma 7.9.

e The L-shaped region labelled (17) will be shown to commute in Section 7.4.

e The square labelled (19) will be shown to commute in Section 7.5. This will require several pages
and takes up the majority of the rest of the proof.

Lemma 7.5. For any closed 4-manifold Y, the natural map [Y;,Q(Top/PL)] — [V, Q(G/PL)]
factors as

Ve, Q(Top/PL)] 2225 Hy(V:2/2) 5 ker (Hy(Y:Z) -3 Hy(Y:Z)) <5 [Yy, Q(G/PL)].
where as above 6, denotes the homology Bockstein for the sequence 0 — Z 37 Z/2 — 0.
Proof. The natural map [XY,, Top/PL] — [¥Y,, G/PL] factors as

Y., Top/PL) = HY(SY37/2) — HY(SY,; 2/2)/ H SV, Z) = Yy, Q(G/PL)]
by [KS77, Annex C, Theorem 15.1]. Next we use the identification H3(XY,;Z/2) = H*(Y;7Z/2),
and by the Bockstein sequence for 0 — Z 27 Z/2 — 0, we identify
HY SV, 2/2) [ HY(SY, Z) = HA(Y32,/2)/ HY (Y3 7) = Tm(57),

where 6*: H?(Y;Z/2) — H?(Y;Z) is the cohomology Bockstein. There is thus an exact sequence

5

[V, Q(Top/PL)] = H*(Y;Z/2) — Im(5*) — [Y,, Q(G/PL)].
By naturality of the Bockstein exact sequence under Poincaré duality, we have an identification
Im (6*: H*(Y;Z/2) — H3*(Y;Z)) = Im (0.: Ha(Y;Z/2) — H1(Y;Z)), and hence an exact se-
quence

5.

[Y.,Q(Top/PL)| & Ho(Y;Z/2) — Im(d,) — [V, Q(G/PL)].
Finally, Im(d,) = ker (Hl(Y; Z) 2, Hy(Y; Z)) by the homology Bockstein long exact sequence. [
Proof of Theorem F assuming that (15) commutes. Recall that we constructed X in Section 7.1.

Theorem F is the statement that the map ~ in (15) is not injective. This is equivalent to the
statement that there exists F' € Q(X) with S(F') nontrivial.

As H,(m;Z) = H(A;Z) has an element of order two, it follows that ker (H;(A;Z) 2 H (A;7Z))
is nontrivial. As indicated in the diagram, the composition

8.0t 0KS: Q(X) — ker (Hy(4A;Z) 2 Hy(A;Z))

is surjective. Choose a topological pseudo-isotopy F': X xI — X xI in Q(X) with 0, ot, o KS(F') #
0. We need to argue that its image under § is nontrivial. Supposing instead that S(F) is trivial,
we deduce that F' lies in the image of a, and hence that the clockwise composition §, ot, o KS o «
is nontrivial. Since j is injective, moreover the composition

j o8, 0t,0KS o a:m(Homeo™ (X)) — [A,, (G/PL)]

is nontrivial. By commutativity of the diagram (15), this is equal to the anti-clockwise route

1 (Homeo™ (X)) — mp (hAutt (X)) -5 w1 (hAutt(A4)) -1 [A,, Q(G/PL)).
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But commutativity of the bottom left triangle and surjectivity of m; (Diffeo™ (4)) — (m‘*‘ (4))
implies that the bottom map 7 is trivial, and hence the anti-clockwise route is trivial. We obtain
a contradiction, and so B(F) = F|xx1}: X — X is our desired diffeomorphism topologically but
not smoothly pseudo-isotopic to the identity. O

7.3. Stably framed manifolds are S-oriented. Recall that for the ring spectrum S, the corre-
sponding homology theory is stable homotopy 7f(—). We remind the reader again that in stable
homotopy theory, homology theories are reduced by default, so for example the stable stem 7$ is
given by m5(S%) = 7 (pt, ).

We will now explain that stably framed manifolds have fundamental classes with respect to the
sphere spectrum S and so satisfy Poincaré duality with respect to any generalised (co)homology
theory, by the discussion in Section 4.2.

First we prove a lemma that gives a simple way to decide if a stable homotopy class is a
fundamental class.

Lemma 7.6. Let Y be a d-dimensional compact topological manifold with (possibly nonempty)
boundary. A class o € w5(Y/0Y') is an S-theory fundamental class if and only if its Hurewicz

image h(a) € ﬁd(Y/aY; Z) is an integral homology fundamental class.

Proof. If q: Y/0Y — Y/(Y — int(D?)) = D?/oD? = S¢ is a coordinate chart collapse map
then g¢.(a) € 75(S%). The Hurewicz map h: 75(5%) — H4(5%Z) is an isomorphism, so ¢, ()
corresponds to 1 € 7§(S?) under the suspension isomorphism if and only if h(g.(a)) = g.(h(a))
corresponds to +1 € ﬁO(SO;Z) under the suspension isomorphism, i.e. if and only if h(«) is an
integral homology fundamental class. O

Let X and A be as in Definition 7.4. For some N > 0, let e: X < R4 be a smooth embedding,
and write v for the normal bundle. Apply the functor ¥~V¥> to the corresponding Thom
collapse map S**YN — Th(vP#) to obtain a Thom collapse map of spectra

c: S* — Th(vf).

The target here is of course the same as Th(v§), for v§ the Spivak fibration of X: the Thom

spectrum of a vector bundle only depends on the underlying spherical fibration, and we may freely
interchange them. Assume N is large enough that the stable framing on V)]%iﬂ is represented by a

framing of P by vDiff >~ RN » X. Passing back to the stable version, and its Thom spectrum,
we have
Th(vRF) = = Ne®° Th(pPH) = 2-Vy° Th(RY x X) ~ ¥ X . (16)

Under this sequence of equivalences of spectra, the map ¢ corresponds to a class [X]s € 75 (X ).

Lemma 7.7. The class [X|s € 75(X+) is a fundamental class in stable homotopy theory. Fur-
thermore, the image [Als := t.[X]s € 75(Ay) under the Postnikov truncation map t: X — A is
also a fundamental class in stable homotopy theory.

Proof. The group H4(S*;Z) = [S°,S* A HZ] = [S°, 281 A HZ] is isomorphic to Z, generated
by the class [S*], which is the class that maps to the fundamental class of the 4-sphere under
these isomorphisms. It is a property of the Thom collapse map that c,[S*] € Hy(Th(vR"); Z) is
a generator. So under the Thom isomorphism (with respect to the orientation given by the stable
framing) this class corresponds to an integral homology fundamental class [X]| € H4(X;Z). This
is the image of [X]s under the Hurewicz map, so [X]s is a fundamental class by Lemma 7.6.

For the second statement, we observed already that t: X — Bm ~ A has degree £1, meaning
that t.[X] € Hy(A;Z) is an integral homology fundamental class. The class t.[X] is the Hurewicz
image of [A]s := t.[X]s € 7j(A4+), so again by Lemma 7.6 it follows that [A]s is also a stable
homotopy fundamental class. O

Every spectrum is an S-module, so an S-orientation on a manifold induces an orientation in
any generalised (co)homology theory. This means that for any spectrum F' the manifolds X and
A have Poincaré duality isomorphisms (see Subsection 4.2). Using these, any map of S-oriented
manifolds f: X — A determines an umkehr map

f FROO P2 B (X0 I By (A) P22 Fra).
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Lemma 7.8. If f.([X]s) = [A]s then the umkehr map satisfies the identity fio f* =Id.

Proof. Use respectively the definition of fj, the projection formula, and the given identity f.([X]s) =
[A]s, to obtain

[Als ~ (fre f7)(=) = £u([X]s ~ f7(=)) = fu(X]s) ~ (=) = [A]s ~ ().

The lemma then follows from the fact that [A]s ~ (—) is an isomorphism. O

We use the unkehr construction to define the maps ¢, in diagram (15). Consider the Postnikov
truncation map t: X — A. Recall the spaces Top/PL and G/PL were given compatible infinite
loop space structures coming from taking fibres of the infinite loop maps BPL — BTop — BG. The
umkehr maps t; in diagram (15) are formed using the spectra corresponding to these infinite loop
space structures. Thus the central square involving t;, in diagram (15), commutes by naturality of
the umkehr construction with respect to infinite loop maps.

Lemma 7.9. The right-hand square involving t, in diagram (15), commutes.

Proof. The map t: [X;,Q(Top/PL)] — [A4, Q(Top/PL)] is the umkehr map for the cohomology
theory represented by the connective spectrum X! (top/pl) obtained from the infinite loop space
Q(Top/PL). This space is a K(Z/2,2), so the spectrum X ~*(top/pl) is the Eilenberg—MacLane
spectrum Y2H(Z/2). So this umkehr map is identified with the usual one t: H*(X;Z/2) —
H?(A;7Z/2), which is indeed Poincaré dual to t.: Ho(X;Z/2) — H2(A;Z/2). O

7.4. Mapping into the PL normal invariants. We will consider the following diagram.

m1 (Homeo(X)) % Q(X) =% [220 B(Top/0)] = [X+,2(Top/O)]

|

[X,Q(Top/PL)] (17
1 (hAut(X)) SPL(X x I) —™ [X,,Q(G/PL)]

\L/)

The first map in the bottom row involves the map that considers a loop of homotopy automor-
phisms of X as a PL-manifold structure on X x I. The second map in the bottom row is the
PL normal invariant map npr,: SH(X x I) — [SX4, G/PL] followed by the ¥-Q adjunction. The
map 7 is defined so that the semi-circle commutes.

Lemma 7.10. Diagram (17) commutes.

Proof. The commutativity is essentially tautological. Here are the details. Write ¢ for a loop

in H/O_I\n_go(X ) (based at the identity map). This is represented by a homeomorphism ¢ € Homeog (X x
I). Write

VRIT X x T — BO, vi%,: X xI — BPL and vy?,: X x I — BTop

for the stable normal bundle, then its underlying stable PL-bundle, and then stable microbun-
dle. There is a homotopy from u}ﬂfoxp ; to (¢—1)*u§°§ ;, induced by the stable normal microbundle
of the mapping cylinder of . Since we model BO — BTop by a fibration, this lifts to a ho-
motopy from v, to some lift of the tangent microbundle u};of 1, and the lift may be identified
with (v~")*vR}.

Consider the clockwise composition. We have a(p) = [¢)] € Q(X). Under the identifications on
the top row, the class Sm([¢/]) is the difference class d((v~1)*vEL ;, v8% 1), measuring the difference
of these lifts of V)T(Oxp ; from Top to PL, relative to the fixed lift on (X x I). Under the forgetful

map, which sends V;F(Oxp ; to the Spivak normal fibration of X x I, we obtain a PL normal invariant,

which is again a difference class, now measuring the difference of the lifts from G to PL

AW VRS 1 VRS ) € |55, G/PL] . (18)
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Now consider the anticlockwise composition. The first vertical map is forgetful, and the element
of the PL structure set we obtain from ¢ is again just the (class of) ¢. The PL normal invariant
obtained from an element of the structure set is just the difference of the lifts to PL of the Spivak
normal fibration. Thus it is the element displayed in (18). This shows the diagram commutes, as
claimed. |

7.5. Functoriality of PL normal invariants with respect to Postnikov truncation. We
will prove that the diagram

m (hAut(X)) —— [X 1, Q(G/PL)]
J{t* t (19)
m(hAut(A)) —— [A;,Q(G/PL)]

commutes. This will complete the proof that diagram (15) commutes and thus the proof of The-
orem F. The proof that diagram (19) commutes will crucially use that the manifolds are 4-
dimensional: one should not expect it to hold in higher dimensions.

7.5.1. Factoring through the tangential structure set. To prove that diagram (19) commutes we will
factor the map 7, using that X (and A) are stably framed. The approach is based on the “tangential
structure set” idea of Madsen—Taylor—Williams [MTWS80], in which those authors consider an
enriched structure set S} (X x I) where objects are not merely homotopy equivalences, but are also
covered by maps of their (stable) tangent bundles. The purpose of this subsection is to establish
the commutative diagram

m (hAut(X)) — SH(X x I) —— SPL(X x I)

|7 [ [ (20)

x4, st T (3, 0G] —— X, Q(G/PL)].

In this diagram, the homomorphism 7, from earlier, is the right-right-down composition. We
will see from the development that the right-hand square is defined and commutes without the
assumption that X is stably framed, but the top left horizontal arrow and the map 7 require the
stable framing of X to even be defined.

We begin by defining the bottom left horizontal map.

Definition 7.11. Let v and v be elements of a loop space 2Z. There is a homotopy equivalence
of based spaces

Tuv: (QZ,u) — (QZ,v)
given by composing the concatenating map (Q7,u) — (QZ,vu"tu); v — vu~ly with the
homotopy inverse of the concatenating map (2Z,v) — (QZ,vu=tu); & — du"'u. We call this
homotopy equivalence translating the basepoint from u to v.

Remark 7.12. The infinite loop space Q2°°SV is the colimit colim;*S* and therefore can be thought
of as a colimit of based maps from a k-sphere to itself. Prominent basepoint choices for this infinite
loop space include the identity map 1 and the constant map 0; by default, the basepoint of 2>°S°
is 0. Recall that there is an equality of spaces SG = Q$°S?, where SG C G and Q5°S? denote
the components containing the basepoint 1 (see e.g. [MMT79, Corollary 3.8]). Thus translating
the basepoint 0 € Q°S° to the basepoint 1 € SG C G determines a based homotopy equiva-
lence Tp1: (2°SY0) ~ (SG,1). Consequently, there is a based homotopy equivalence of loop
spaces QT 1: QIS0 ~ QG.

Construction 7.13. We construct a homomorphism of abelian groups
7 m (hAut(X)) — [Xy, Q18]

crucially using that X is stably framed, so that (16) is available. A loop in the Kan semi-simplicial

group m(X) is a homotopy equivalence ¢: X x I — X x I restricting to the identity on (X x I).
By gluing X x {0} to X x {1} in the domain and projecting to X in the codomain, we obtain a
map : X x S — X which restricts to the identity on X x {1}. Write pry: X x S* — X for
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the projection map. Recall that for maps of spectra f,g: U — V, we write f —g: U — V for a
representative of the homotopy class [f] — [g] € [U, V]. On suspension spectra the difference

Y —pry: (X x S — B®X,
is canonically homotopically trivial when restricted to X°°(X x {1})4, so descends to a map

1

As X is stably framed, it has an S-theory fundamental class [X]s € [S*, ¥>°X,]. We consider
the image [X*°¢ — pry].(X[X]s) € [S?,£°°X ] of the suspension ¥[X]s € [S?, ¥°Ft1X ], and
define 7)(¢) to be element of [X,Q°°F1S% corresponding to [£°9 — pry].«(X[X]s) under the
isomorphisms

[X+?QOO+1SO] = [ZOO+1X+aSO] = [SS,Th(V_%)] = [85’200X+]
AD (16)

given by adjunction, Atiyah duality and (16). Here the Atiyah duality isomorphism is given by
applying the second version of Atiyah duality in Section 4.1 with £ =S, X = 0, and r = —1,
together with the fact that Th(vy*) ~ Th(v$), to obtain

(22X, 87 =[50, 871 = (8%, Th(v§) A 7187 =2 (87, Th(v§)).

Remark 7.14. We argue that 77 is a homomorphism of abelian groups. The domain 7y (m(X ))of
is an abelian group because the geometric realisation of m(X ) is a group-like topological monoid,
so 71 (RAW(X)) 2 71 (JhAU(X)]) =2 72 (B|hAut(X)|). For the codomain, maps into an infinite loop
space always form an abelian group. Identifying my (m(X )) with ﬂo(ma(X x T)), the group
structure on the domain corresponds to stacking, and this corresponds to the group structure on the

codomain [X,, Q®°TIS] & [L X, ,Q°S| = [%, 0°°S] given by the co-H-space % ~¥X,.

Remark 7.15. Intuitively, we could describe 7(¢) as measuring how the loop of homotopy equiva-
lences ¢ acts upon the fundamental class [X]s € 75 (X ).

Next we describe the tangential structure set and tangential normal invariant. The descrip-
tion begins with a recap of the ordinary (PL) normal invariant, which is the right vertical map
of diagram (20). We use the somewhat non-standard description in [MTWS80, Section 2] (see
also [BM76, Section 4]), with the changes necessary to deal with the fact that we work relative to
the boundary whereas that paper does not.

7.5.2. PL normal invariants via f-maps. Given a compact space Y, define an f-map (v4,t,&9)
over Y to consist of two PL microbundles v? and &7 of the same dimension q over Y together with
a fibre homotopy equivalence t: S(v7) = S(£9) between their underlying spherical fibrations. The
f-maps (v],¢;,&) for i = 1,2 are stably homotopic if there exist f-maps (v;,Id,~;) for i = 1,2,
such that (v{,t1,&]) @ (v1,1d,71) and (v, ta, £3) @ (72, 1d,v2) are homotopic as f-maps. It is shown
in [BM76, Section 4] that the space G/PL classifies f-maps, considered up to stable homotopy.

An element of the structure set SgL(X x I) is represented by a simple homotopy equiva-
lence (¢, 0¢): (M,0M) = (X xI,0(X xI)) from a PL manifold, with 9¢ a PL-isomorphism. Next
we recall the details of npy,(¢). There is a canonical map, over ¢, of PL microbundles 5 bk —
(¢~ 1)*vEE. This induces a reduction

c Th($) —1ys
cg: S® 2% Th(vy)/ Th(vyyy) —— Th((6™ ) viy)/ Th(vh ik x1))
that under the connecting map 9: Th((qﬁ‘l)*y};})/Th(yg(I}(X[)) — ETh(yg(LXXI)) in the Puppe
sequence agrees with the suspension
Scaxxn: S° = ES* — L Th(vhk 1) (22)

of the reduction for 9(X x I). Further, as ¢ is a homotopy equivalence, the reduction ¢y is
compatible with the Z-coefficient fundamental class of X x I in the sense that h.[cg] ~ Uz =
[X X Igz € H5(X x I,0(X x I);Z). This compatibility means that the uniqueness theorem for
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Spivak fibrations [Bro72, Theorem I1.4.19] applies, to give a fibre homotopy equivalence t,: 1/)6"(X I =
(¢_1)*1/](\;/[ rel. boundary between the underlying spherical fibrations, unique such that

85 cm Th ( )/Th(VaM)
JchI lTh(d)) (23)

Th(ts) .
Th(v¥% )/ Th( VB(XXI)) — Th((¢~")*v PL)/Th<Va(XxI))

commutes up to homotopy over X Th(”a(Xxl)) The f-map data (Vi s, (071)*vh]) is classified

by the element

neL(¢) € [%34,G/PL] = [X,, Q(G/PL)].

7.5.3. Tangential PL normal invariants via f-maps. Now we develop the central column of dia-
gram (20) in parallel to the previous discussion, again following [MTW80, Section 2] and [BMT76,
Section 4]. The space G may be considered as classifying a restricted type of f-map, consisting of
the data (v9,t), where 19 is a single PL microbundle and ¢: S(v?) = S(v9) is a fibre homotopy
automorphism of its underlying spherical fibration, up to stable homotopy. For later use, we ex-
pand further on this classification. Given (v4,t), we may take a finite dimensional representative &
of the stable inverse to 9 and form (v9,t) @ (&,1d). The resultant bundle is ¢ @ ¢ ~ M for some
integer M, and under this identification ¢ x Id becomes a fibre homotopy equivalence of the trivial
spherical fibration Y x SM~1 — Y x SM~1_ Such a fibre homotopy equivalence is described by a
map Y — G(M). After postcomposing with the inclusion G(M) C G, it is the homotopy class of
this map which classifies (v%,t) up to stable homotopy; see [BM76, Section 4].

The PL tangential structure set Si(X x I) is the (bordism group of) simple homotopy equiv-

alences of pairs (¢, 0¢): (M,0M) — (X x I,0(X x I)) from a PL manifold, with ¢ a PL iso-

morphism, and equipped with a PL-microbundle map qb VIICIL — V}D(LX ; covering ¢ and restrict-

ing to the PL derivative of ¢ over the boundary. The map qb determines a PL bundle iden-
tification (¢~1)*vbE = vEL . Under this identification, the PL normal invariant classifies the
data (u?;,,t@wu?;j), where ts 3 vy = (o~ H*v§ = v§,; is the composition whose first
map is t4 and whose second is induced by our identification on the PL level. There is then defined
a tangential normal invariant

ne: SHX x I) — [ G] = [X4, QG

where 7,(¢, $) € [£2L G] = [X1,QG] is the element classifying the data (VXY /¢

53)"
At this point we have enough to verify that the tangential PL normal invariant is a lift of the

ordinary PL normal invariant.

Lemma 7.16. The right-hand square of diagram (20) commutes.

Proof. Given (¢, (;AS) the top horizontal arrow is the map that forgets (;AS and thus the clockwise route
sends (¢, ¢) to (W%, ts, (6~ 1)*vhE). The bottom horizontal arrow maps (v9,t) — (v9,t,v7)
and hence the anticlockwise route gives (Z/)P;»E( Dty.3 I/)P;»I; ;). Using ¢, we see these f-maps are
isomorphic. O

To prove the left-hand square of diagram (20) commutes, we will first describe another point of
view on the element 7;(¢, ¢). Given (¢, ¢) € SH(X x I), take the diagram

S 22 Th(vhF)/ Th(vhi,) M Th(v )/ Th(vys )

la

P x
o(Xx1) STh(v5l ).
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apply the functor SW o ¥ 72, to obtain

S SWox =5 (Th(d)ocar)

(X x 1),

|

Caxxr1) ZO°6(X x I)y

To verify this, recall the properties of Spanier—Whitehead duals from Section 4.1, and also ap-
ply Lemma 4.2, where the notation Cy(x x 1) was introduced for the map of spectra induced by the
constant map 9(X x I) — pt. Applying ¥-Q adjunction and discarding basepoints, we obtain a
diagram of unbased spaces.

s AdoSWoX "3 (Th(d)ocar) X x ]
I (24)

1 (X x I).

The adjoint to Cy(x 1) is the constant map to the identity basepoint 1 € Q*°S, by Lemma 4.2.
Thus the horizontal map also lands in the path component SG C QS of the identity map, and
there is an induced map Xgl — SG C G. The following is asserted in [MTWS80, Section 2],
without proof. We provide one here.

[X><I

Lemma 7.17. The tangential PL normal invariant n; (¢, (Z) €953 ,G] is equal to the element

described by (24).

Proof. There is a square

s = Th(vy)/ Th(vyyy)

J‘”‘ x1 lTh(cﬁ)

Th(t, ;)
Th(VXxI)/Th(Va(XxI)) e Th(vi%,)/ Th(V{)(XxI))

analogous to (23), which commutes up to homotopy over ZTh(Va(XX[)). The element (24) is

obtained by Spanier—Whitehead dualising the map 3~ (Th(qﬁ) oc¢pr) over ZTh(l/a( % x I)) hence

obtaining a map under °9(X x I);. By the bquare this map is homotopic under X>°9(X x I),
to the result of Spanier—Whitehead dualising ¥~ (Th( )2 cxxr). We must therefore show that

the Spanier—Whitehead dual of 2*5(Th(t¢7$) o CxxI) over ETh(Va(XXI)) is ¥-Q-adjoint to the

map nt((j),(g): XxI—=>GCO®Sunder 1: (X xI) = G C Q°°S.

By Lemma 4.2, the Spanier—Whitehead dual of ¥ 5cx; is the constant map Cxx7: (X x
I); — S, so to proceed we must understand the Spanier—Whitehead dual of 7> Th(t ¢,$)' To do
so, define the map a: ¥*°G; — S to be the adjoint of the inclusion Gy — Q°°S. For brevity,
introduce the notation

T:=3%~ 5M and TV = ZOO(X X I)+,
Th( G(Xxl))

where TV indicates that these are Spanier-Whitehead dual.
Claim. The Spanier-Whitehead dual of
ST Th(t, 5): T — T,  over XTh(vyxyp),

is homotopic to the composition

v B8 pv A pv ZTOONA gooy Ay M g ATV o7V under B%9(X x I)4. (25)

Proof of claim. We first show that the map Th(t, ;) may be decomposed as

20, (¢,$)A1d anld
_—

5T 25 TV A ST YOG, ADT 25 SA ST ~ BT, (26)

where A denotes the Thom diagonal. To justify this, write v: X x I — BG(V) for the spherical
fibration of a finite-dimensional representative of the PL-normal bundle of X x I. Write £ for the
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a finite-dimensional representative of the stable inverse to v, so that v * £ ~ S(e¢™), the trivial
spherical fibration for some M. Now consider the self-equivalence

t(b(g*ld*Id:I/*ﬁ*l/*)l/*f*I/.

We may identify the first two factors with S(e™). Under this identification, the self-equivalence of
spherical fibrations ¢ ¢ $*Id: vx& — v« is identified with the automorphism of the trivial spherical

fibration S(e™) = (X x I) x $™ = described fibre-wise by the map 7 (¢, ¢): XxI 5 G(M). Hence,

the map Th(t, 5 * Id xId) can be identified as the M-fold suspension of the composition (26). On

the other hand, we can instead identifiy the latter two factors of v * £ * v with S(¢M), so that the
map ¢, 5+ Id«Id is just the M-fold stabilisation of ¢ 5, giving Th(t, 5+ Id x1d) = M Tht, 3)-
So the desired factorisation of Th(t, $) has been shown.

With this factorisation in hand, we can prove the claim. Write the coevaluation and evaluation
maps for the pair T and TV as

coev: S — TV AT and ev: TATY — S.
Consider the diagram
TV —= 5 SATY M oV AT ATV

lld AZTPAALd
Id AS®n, (¢,)AId A Td

diag TVATYANT ANTY Tv/\EOOG+/\T/\TV
lld AId Aev lld AaAnld A 1d
™ ATV = VATV AS TVASATATY
lzxm(qs,%)ﬂd ATd lld/\ld Aev
NGy ATV AS anldAld Tv.

By definition, the Spanier—Whitehead dual of the map ¥~ Th(t é $) is the composition

TV S ATV M, v oy JOET MG DNy ey, g g
Using the factorisation (26), this shows that the Spanier—Whitehead dual of the map Th(t, 5) is
the full clockwise composition in the diagram. The full anticlockwise composition in the diagram
is the map (25). Hence the claim is proved if we can show the diagram commutes up to homotopy
under X®°9(X x I);.

To see the right rectangle commutes, simply note that the maps ev and aon,(¢, ¢) operate upon
different factors. Now we show that the left rectangle commutes. The diagonal map TV — TV ATV
is a co-ring structure on TV (true of any suspension spectrum), and the five-fold desuspension of
the Thom diagonal X=5A: T — TV AT endows T with the structure of co-module over TV. This
may be checked from the definition of the Thom diagonal (it corresponds to the well-known fact
that the cohomology of the Thom space of a bundle is a module over the cohomology of the base
space). In particular, co-associativity (Id AX"A) o L 75A = (diag A Id) o X=5A holds. Recall that
coev is given by

-~

S %cx« -5
§ = XX p XA VAT,

where the second map is the five-fold desuspension of the Thom diagonal. Hence, the co-associativity
statement, above, means composition of the first two maps in the clockwise route around the left
rectangle agrees with

(diag ATdATd) o (coev AId): SATY — TV ATV ANT ATY.

Now consider the full composition clockwise around the left rectangle as a map SATY — TVATVAS.
We may commute the latter two maps in the composition, as follows, because they operate on
different factors:

(Id ATd Aev) o (diag A Id ATd) o (coev A1d) = (diag A Id) o (Id Aev) o (coev A Id).

But then (Id Aev) o (coev A Id) is the identity equivalence SATY ~ TV A'S, so this equation is the
statement that the left hand square commutes. O
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We can now finish the proof of the lemma. By inspection, the following diagram commutes up
to homotopy under 3*°9(X x I),.

Y e Gy a / S
diag TV AS Z%n:(¢,0)AId EOOGJr AS le) SAS .
A'CX“ Tld ANCx x1 Tld ACx x1
™ ATV _ SRC, AT ——— s SATY ——— 4 TV
Z%n:(o,¢)NId anld ~

Under X-Q adjunction, the composition along the top row is nt(¢,q§) € [Xgl,G]. The anti-
clockwise composition is (25) postcomposed with the map Cxx;. So by the claim, its Spanier—
Whitehead dual is homotopic over X Th(yg(%(xl)) to Th(t, ;) © cxxr, as required. O

Remark 7.18. The structure of the proof of Lemma 7.17 can be summarised as follows. We proved
the following sequence of homotopies of maps of spectra TV — S under ¥°9(X X I)4:

Ad™"(24) ~ SW(S7°(Th(9) 0 ear)) = SW(S™*(Th(t, 5) © cxx1))
~ SW((X7°Th(t, 7)) o (5 exxr)) = SW( Pexxr) o SW(XT° Th(t, 7))
~ Cxxr0(25) ~ ao X% (¢, ) = Ad " "1(, ).
Taking adjoints and forgetting basepoints yields the statement of Lemma 7.17.
Proposition 7.19. The left-hand square of diagram (20) commutes.

Proof. Let ¢: X x I — X x I be a homotopy equivalence which is the identity on the boundary,
representing an element of 71 (hAut(X)). As in Construction 7.13, we associate to ¢ the induced
map ¥: X x S — X which is the identity on X x {1}. Using the framing of v¥* we can cover ¢

by the PL-microbundle map ¢) I/XX 7 VXX ; induced by the framing, giving an element (¢, (E) €
SH(X x I). By Lemma 7.17, n;(¢, ¢>) is described using the diagram

. Th($)
§F XXy Th(VXxI)/Th(Va(XxI)) — Thir XXI)/Th(Va(XX[))

lo
b Th(ug&xl)),
by applying the functor SW o 7% and then ¥-Q adjunction. The basepoint-translated element

(TLO)*(m(gb,(;)) € [X£,Q°S] is then described by the same recipe applied to the analogous
diagram

Yca(x x1)

$5 =5 Th(vyY )/ Th(vy, X><I)) e Th(vyY )/ Th(vy, 1))
lo
0 ZTh(Va(XXI))
Using the framing to trivialise these Thom spectra, we may write this diagram as
5 (X xTI]s E“% £ ¢—Id E"O%
I
0

YOFY(X x I)y.
There is a factorisation

fe’e] &) oo (XXS [Ewwfpr ] [ee] &S] )
m%g — 1d: B XKL~ 3 LS e Xy DX X, = BO(X x I)y L X

where first map is described in (21) and the second is the quotient. The map 0 in the diagram fits
into the cofibre sequence (X x I), % EO"% 9, ¥ FT19(X x I),, where this cofibre sequence
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is obtained from taking the sequence (X xI) - X x I — Xaxl, applying 3°°(—), and extending
to the right by one. It follows that the map described by the diagram corresponds, under lifting
along ¢, to the composition

Sp (X xI]s $00 Xg[ [Z*y—prx] DX, (27)
Under the identification $°° %X ~ $°°+1 X the fundamental class [X x I]s corresponds to X[X]s.
Using this, the composition (27) corresponds to the element [Z°°9) —pry ], (X[ X]g) € [S®, X, ] =
[S?, Th(v§%)] where the isomorphism comes from another use of the framing. Applying the functor
SW o 375 to the composition, we obtain the definition of (). O

7.5.4. Proof that (19) commutes. The equivalence QG ~ Q>+1S% induced by basepoint transla-
tion (Remark 7.12), is not an equivalence of infinite loop spaces (for example, their deloopings have
different Pontryagin rings [MMT79, §3.F]). This will account for a difficulty the following proposi-
tion. The diagram in the following proposition is obtained from (19) by applying the alternative
factorisation of n that we obtained by proving that diagram (20) commutes. Hence Proposition 7.20
completes the proof that (19) commutes.

Proposition 7.20. There is a commutative diagram of groups and homomorphisms

oy

n: m(hAW(X)) — [X,, Q*+180] T X4, Q6] —— [X4, Q(G/PL)]

: LT

n: m(BAW(A) —— [A;, Q18] =5 [41,0G] — [A4, Q(G/PL)],

S

where each ty denotes the umkehr map with respect to the indicated infinite loop space structure on
the codomain.

Proof. Apart from the left column, the group structures arise from loop space structures indicated
by (the first) 2. These are compatible, so the maps are homomorphisms. The commutativity
of the right-hand square is by naturality of the umkehr map with respect to maps of generalised
cohomology theories, i.e. maps of infinite loop spaces. The commutativity of the middle square is
therefore surprising, as we have pointed out that QG ~ Q>*+18% is not an equivalence of infinite
loop spaces. We will address this below. -

Next we prove the commutativity of the left-hand square. Let ¢ be a loop in hAut(X) based at
the identity map. As in Construction 7.13, we associate to ¢ the induced map 9: X x S* %/)\(/which
is the identity on X x {1}. By functoriality of Postnikov truncation, ¢ yields t.(¢) € m (hAut(A4)),
and the diagram

S[X]s [E=¢—pry]

S5 noe+lx neoX,

N Js

ZOO—HAJF [t (¢)—pr 4] ZOOA+

commutes up to homotopy, using that t.([X]s) = [A]s by Lemma 7.7. The clockwise composi-
tion in [S°,2®°A,] = [S°, Th(vhY)] Zsw [A4, Q°H1SY] is by definition t7)(¢); the anticlockwise
composition is 7(t(¢)).

To prove commutativity of the middle square, let us write t,S for the left-hand umkehr map
and t!G for the right-hand one. As X is 4-dimensional we may replace 2°°11S? by its 4-truncation,
which we choose to write as Qr<5Q>°S" = Q0>®°7<5S°. We then use that 75(S°) = 0 = 7$(S°) to
see that T§5SO = ngSO, and hence we have that QT§5Q‘X’SO = QngQ‘X’SO. Now we consider the
equivalence of fibre sequences of connected spaces

g S0 —— T<a S’ —— 71 QFS°

Eok L

T[2’3]SG E—— ngsG E—— T§18G
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and make the following observation: the base and fibre each admit a unique structure of an infinite
loop space. For the base this is clear as it is a K(Z/2,1); for the fibre this follows from Mathew—
Stojanoska [MS16, Theorem 5.1.2], though it can also be proven by hand. The citation applied
with n = 2 says that the functor Q°°(—): Spectray 5y — S., from the oco-category of spectra with
nontrivial homotopy groups only in degrees two and three to the oco-category of pointed spaces,
is fully faithful, i.e. homotopy equivalence on morphism spaces. If we have two a priori different
infinite loop space structures on 73 318G, they corresponds to two spectra in the domain of Q°°(—)
that are homotopy equivalent in the codomain. The fact that Q°°(—) is fully faithful leads to an
equivalence of spectra, and hence of infinite loop space structures on 73 35G.

Thus the maps on base and fibre are necessarily equivalences of infinite loop spaces. Looping
the top fibre sequence and mapping in X or A, the difference of the umkehr maps t,s and t!G fit in
to a map of short exact sequences

0 — [X4, Qg 2°SY] —— [X 4, Q73S 25 (X, O OFS"] —— 0
lt!sft!G:O lt?—t? lt%—t?:o (28)
0—— [AJ’_,QT[Q,?)]ngSO] E— [A+,QT§398080] e [AJ,_,QTSlQ(O)oSO} E— 0,

where the two outer vertical maps are zero because here the two infinite loop space structures
used to form the two umkehr maps agree, although we will only make use of the vanishing of the
left-hand vertical map.

First we show that the right hand groups are both Z/2. For this we compute the homotopy
groups of the codomain Q7<1Q5°SY. The space 7<1Q5°S? has non-vanishing homotopy groups
only in degrees 0 and 1, where they are the stable O-stem Z and the stable 1-stem Z/2. Taking
the loop space shifts the homotopy groups down, so that only a Z/2 in degree 0 remains. We
see that Q7<1Q5°S? has precisely two path components, each of which is weakly contractible. It
follows that [X;, Qr<1QFSY) 2 Z/2 = [A,, Qr<1Q5°SY], as claimed.

We show that the middle vertical map # — tZ factors through the map Qp. to the quotient,
yielding

(6 — €)1 [X o, QrasQPSY) 225 (X, Qra OS] D[4, Qres OS],
To see this, let z, 2’ € [X;, Q<30S be such that Qp.(z) = Qp.(z). Then Qp.(z — ') = 0,
so x — ' lies in the image of [X |, Q73 ) Q5°SY]. By commutativity of the left square, and the fact
that the left vertical map vanishes, we deduce that 0 = (£ —t&)(z—2') = (£ —t7)(z) — (£ —t&)(2').
Thus (£ — t&)(z) = ( — t¥)(z’) and the central tf — t& factors as T o (Qp.), as asserted.
Next we argue that the composition

(A4, Qra303SY] -5 [X 4, Qres QST — (X4, Qre1 QS0

is surjective. To see this recall that the last group here is Z/2, and note that by a similar cal-
culation Q7<3Q5°SY has precisely two path components. We can map all of A to either of these
components to obtain elements in the domain of the composition that map to each of the elements
in the codomain Z/2.

We have developed the following diagram.

(AL, Qre3QFSY] —» (X4, Qra QS0

Qp.
e 2 I

[X+,QT§3QSOSO] W [A+,QTS3QSOSO].

The identity ¢ o t* = Id from Lemma 7.8 holds for both meanings of t, so that (£ — t&) o t* = 0.
It now follows by a straightforward diagram chase that t!S — tIG = 0. Here are the details. Let
z € [ X4, Q1<305°SY]. Since the top horizontal map is surjective, there exists y € [A4, Q7<3Q5°SY]
with Qp, o t*(y) = Qp.(x). Then

(6 —t7)(@) = T o (Qps)(a) = T o () 0 t*(y) = (§ — 1) o t"(y) = 0.

This shows that the middle square of (28) commutes, completing the proof of the proposition. [
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As explained beforehand, the proposition implies that the square (19) commutes. This completes
the proof that (15) commutes, and hence completes the proof of Theorem F.
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