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Abstract. I prove that any two smooth collections of spanning 3-discs for the trivial 2-link in

S4 become isotopic rel. boundary after pushing them into D5.

1. Introduction

Let Um ⊆ S4 be the trivial m-component 2-link, that is a smooth submanifold of S4 home-
omorphic to a disjoint union ⊔mS2. A collection of smoothly embedded 3-discs Dm ⊆ S4 with
Dm

∼= ⊔mD3 and ∂Dm = UM is called a spanning 3-disc collection for Um.

Theorem 1.1. Let D0
m and D1

m be spanning 3-disc collections for the trivial 2-link Um in S4.
Then including S4 ⊆ D5, D0

m and D1
m become smoothly isotopic in D5, relative to Um.

Remark 1.2. In the case that m = 1, i.e. spanning 3-discs for the trivial 2-knot, this was proven
by Daniel Hartman in [HH]. An alternative argument was given in the introduction to Hughes-Kim-
Miller [HKMHKM]. The case of multiple connected components is new. The proof here is analogous to
the proof that slice discs for Alexander polynomial one knots are unique up to topological isotopy
from my work with Conway [CPCP]. But since this is one dimension up, the result holds in the
smooth category. In addition, we can work with free groups of arbitrary rank, whereas in the
4-dimensional case we needed to work in a setting where the fundamental group is good.

Remark 1.3. Let me mention how this question arose in the modern context. Budney-Gabai [BGBG]
showed that there are spanning 3-discs for U1 that are not isotopic rel. boundary in S4, but which
become isotopic in D5. Hughes-Kim-Miller [HKMHKM] showed that there are genus ≥ 2 handlebodies
in S4 with the same boundary that are not isotopic rel. boundary, and remain not isotopic rel.
boundary after they are pushed into D5. Hartman’s result shows that the Budney-Gabai examples
are optimal in this sense. The genus one case is open. It might be worthwhile to try to understand
the [HKMHKM] examples using the surgery programme.

2. Proof of Theorem 1.11.1

All manifolds and embeddings are assumed to be smooth. Fix m ≥ 1. Push D0
m and D1

m into
D5, and by an abuse of notation denote these pushed in copies also by D0

m and D1
m respectively.

Write Wi := D5 \ νDi
m for i = 0, 1.

Lemma 2.1. For i = 0, 1, there is a degree one normal map of pairs (fi, bi) : (Wi, ∂Wi) →
(♮mS1 ×D4,#mS1 ×S3) such that fi is a homotopy equivalence that restricts to a diffeomorphism
on ∂Wi.

Proof. There is a diffeomorphism ∂Wi → #mS1 × S3, that restricts to diffeomorphisms between
the two copies of S4 \ νUm and between the two copies of

⊔mD3 × S1 ∼= ∂Wi \ (S4 \ νUm).

Extend this to a diffeomorphism of a collar neighbourhood ∂Wi × [0, 1] to (#mS1 ×S3)× [0, 1].
Compose with the projection (#mS1×S3)×[0, 1] → #mS1×S3 followed by a standard Pontryagin-
Thom type map #mS1 × S3 → ∨mS1 to obtain a map ∂Wi × [0, 1] → ∨mS1. Using obstruction
theory, extend this to a map g : Wi → ∨mS1. Here note that πi(∨mS1) = 0 for i > 1, so as long
as we define the map to ∨mS1 correctly on the 1-cells, the rest of the obstruction theory proceeds
without hindrance. By taking some care, we can do this in such a way that the trace of the push
of the kth component of Di

m into D5, intersected with Wi, coincides with the inverse image of a
point in the kth wedge summand of ∨mS1.
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Next, the open collar neighbourhood ∂Wi × [0, 1) maps to (♮mS1 ×D4) \ (∨mS1) via a diffeo-
morphism. Send the rest of Wi to the core ∨mS1 using g. I shall argue that this is a homotopy
equivalence. Note that π1(Wi) ∼= Fm, the free group of rank m. The map we have defined induces

an isomorphism π1(Wi)
∼=−→ π1(♮

mS1 ×D4).
We can push Di

m into D5 such that the radial function restricted to Di
m is a Morse function

with m critical points, each of which has index zero. It follows that the exterior has a handle
decomposition with a single 0-handle and m 1-handles, and is therefore diffeomorphic (without
any control on the diffeomorphism on the boundary) to ♮mS1 ×D4. In particular Wi is homotopy
equivalent to ∨mS1, and so any map Wi → ∨mS1 inducing an isomorphism on π1 is a homotopy
equivalence by Whitehead’s theorem.

Since ♮mS1 ×D4 and Wi have trivial tangent bundles, our homotopy equivalence can be aug-
mented with the necessary bundle data to obtain a normal map. □

Lemma 2.2. The degree one normal maps (fi, bi), for i = 0, 1, are degree one normally bordant
over (♮mS1 ×D4)× [0, 1], via a cobordism that restricts to a product cobordism between ∂W0 and
∂W1.

Proof. We claim that the surgery obstruction mapN (♮mS1×D4,#mS1×S3) → L5(Z[Fm]) ∼= ⊕mZ
is injective. To see the claim, recall that the set of normal bordism classes are in one to one
correspondence with [(♮mS1 ×D4,#mS1 × S3), (G/O, ∗)]. The potential obstructions to a normal
bordism lie in

H2(♮mS1 ×D4,#mS1 × S3;Z/2) ∼= H3(♮
mS1 ×D4;Z/2) = 0

and

H4(♮mS1 ×D4,#mS1 × S3;Z) ∼= H1(♮
mS1 ×D4;Z) ∼= Zm.

The latter obstruction is given as follows. For each i, consider the map Wi → ∨mS1 constructed
in the previous proof. Take the inverse image of a regular point in the kth S1 wedge summand
in ∨mS1. This gives a 4-manifold with boundary S3, Xk

i , say. The boundary is S3 because of
the construction of the map ∂Wi → ∨mS1 above. Then consider the difference in signatures
σ(Xk

1 )−σ(Xk
0 ) ∈ Z. The degree one normal maps (f1, b1) and (f0, b0) are normally bordant if and

only if σ(Xk
1 )− σ(Xk

0 ) = 0 for k = 1, . . . ,m. On the other hand the surgery obstruction group is
L5(Z[Fm]) ∼= ⊕mL4(Z[Fm]) ∼= ⊕mZ, and the image of a degree one normal map in ⊕mZ is detected
by (σ(Xk

1 )−σ(Xk
0 ))

m
k=1. Thus the surgery obstruction mapN (♮mS1×D4,#mS1×S3) → L5(Z[Fm])

is injective as claimed.
Since the fi are homotopy equivalences, i.e. (fi, bi) lies in the image of the structure set in the

surgery sequence, the surgery obstructions in L5(Z[Fm]) of (fi, bi) both vanish. By the claim,
(f0, b0) and (f1, b1) are normally bordant. In other words, a normal bordism

(F,B) :
(
Z,W0 ∪ (∂W0 × [0, 1]) ∪W1

)
→(

(♮mS1 ×D4)× [0, 1], (♮mS1 ×D4) ∪ (#mS1 × S3 × [0, 1]) ∪ (♮mS1 ×D4)
)

exists as desired. □

Lemma 2.3. The exteriors W0 and W1 are s-cobordant rel. boundary.

Proof. Since the Whitehead group of Fm is trivial, we can ignore decorations on L theory, and
every h-cobordism is an s-cobordism. Since F |∂Z is a homotopy equivalence, there is an obstruction
in L6(Z[Fm]) ∼= L6(Z) ⊕

⊕m
L5(Z) ∼= Z/2 to surgering (F,B) relative to the boundary to an h-

cobordism. However the nontrivial element of L6(Z) is realised by a degree one normal map
S3 × S3 → S6, so we can take connected sum of (F,B) with this to kill the obstruction, if
necessary. Once we have arranged for the surgery obstruction in L6(Z[Fm]) to vanish, one can
surger (F,B) until the domain becomes an h-cobordism, which as noted above is necessarily an
s-cobordism. □

Remark 2.4. Note that the combination of the proofs of the last two lemmas show that the structure
set S(♮mS1 ×D4,#mS1 × S3) is trivial.
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We can now complete the proof of Theorem 1.11.1. By the s-cobordism theorem, there is a
diffeomorphism W0

∼= W1 that restricts to the composite ∂W0
∼= #mS1 × S3 ∼= ∂W1, using the

original diffeomorphisms from Lemma 2.12.1. The boundary of Wi ⊆ D5 splits as

∂Wi = S4 \ νUm ∪
m⊔

D3 × S1.

Glue in ⊔mD3 ×D2 along ⊔mD3 × S1 ⊆ ∂Wi. This recovers D
5, with ⊔mD3 × {0} sent to Di

m.
Extend the diffeomorphism W0

∼= W1 across ⊔mD3×D2, to obtain a diffeomorphism Ψ from D5

to itself, restricting to IdS4 on the boundary, and mapping D0
m to D1

m. Now use that every such
diffeomorphism of the 5-disc is isotopic rel. boundary to the identity (this is equivalent to there
being no exotic 6-spheres), to isotope the diffeomorphism to the identity. The resulting isotopy
Φt : D

5 → D5 satisfies that Φ0 = Ψ, Φt|S4 = IdS4 , and Φ1 = IdD5 . Therefore Φ0(D
0
m) = Φ(D0

m) =
D1

m, while Φ1(D
0
m) = Id(D0

m) = D0
m. It follows that Dt

m := Φt(D
0
m) is a 1-parameter smooth

family of collections of smoothly embedded 3-discs interpolating between D1
m and D0

m. Thus D0
m

and D1
m are isotopic.

Remark 2.5. It was not really necessary for the rel. boundary smooth mapping class group of D5

to be trivial. We could have avoided applying this theorem by instead composing the given diffeo-
morphism with a map isotopic to its inverse, with the inverse shrunk down to be supported in a
small D5 away from the Di

m. This composite would then be isotopic to the identity.
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