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MARK POWELL

1. Introduction and overview

The course will roughly follow the books of Ranicki [Ran] and Crowley-Lück-
Macko [CLM], although some material also comes from all of the books in the
bibliography.

1.1. Classification of manifolds.

Definition 1.1 (Topological manifold). An n-dimensional manifold M is a Haus-
dorff topological space with a countable basis of open sets, such that for all m ∈M ,
there is an open set U ⊆M containing m an open set V ⊂ Rn or V ∈ R≥0 ×Rn−1

and a homeomorphism h|U : U → V .

Remark 1.2. Any such space is metrizable and paracompact.

Definition 1.3. A differentiable structure on an n-manifold M is a collection
{(Uα, hα)} of charts i.e. open sets Uα ⊂ M with a homeomorphism hα : Uα → Vα
where Vα is an open set in Rn or R≥0×Rn−1, that satisfy the following conditions.

(1) {Uα} cover M , that is
∪

α Uα =M .

(2) hα ◦ h−1
β | : hβ(Uα ∩ Uβ) → hα(Uα ∩ Uβ) is a smooth map.

(3) The collection {(Uα, hα)} is maximal with respect to (2). That is, adding
another coordinate neighbourhood causes (2) to fail.

The collection of charts is called a differentiable atlas. A manifold together with a
differentiable structure is called a differentiable or a smooth manifold.

Some famous manifolds include the n-sphere Sn, the n-torus Tn, CPn/2, the
complex projective space, for n even.

Can we classify manifolds? In particular compact, connected manifolds with empty
boundary, up to either homeomorphism or diffeomorphism.

To start, we can observe that homeomorphic manifolds have the same dimension,
and they are homotopy equivalent so the basic invariants of algebraic topology must
coincide. If M ∼= N , then H∗(M) ∼= H∗(N) and π1(M) ∼= π1(N). What else? We
will see more in due course.

First, what does classification actually mean? Ideally, we would say that we have
classified n-dimensional manifolds if we can give a set of algebraic objects which
are in 1-1 correspondence with diffeomorphism classes of n-manifolds. Given an
n-manifold M , we then wish for a procedure that decides to which algebraic object
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M corresponds. Perhaps more modestly, one could ask for a procedure that, given
two n-manifolds, decides whether they are diffeomorphic.

Note that you have already seen this in dimensions 0, 1 and 2. For n = 0, 1 there
is a unique homeomorphism class of connected, compact manifolds with empty
boundary.

For n = 2:

{2−manifolds}/ ∼↔ {2− 2g | g ∈ N ∪ {0}} ∪ {2− k | k ∈ N}.
Here the procedure is well known: decide whether a surface Σ is orientable, then
choose a triangulation and compute the Euler characteristics. The Euler charac-
teristic is of course the number in the sets above.

We will largely skip dimensions 3 and 4 for now, which are very interesting, but
which are not the main aim of this course. Instead we will focus on manifolds of
dimension at least 5. We immediately run into a major problem with the question
to determine where in a classification a manifold sits: given two finite group presen-
tations, the question of whether they present isomorphic groups is unanswerable in
general. Thus the question of whether the fundamental groups π1(M) and π1(N) of
two n-manifolds M and N are isomorphic is intractable. Instead we try to answer
the easier question, where we assume that we already have two manifolds of the
right homotopy type:
Given a homotopy equivalence f : M → N of n-dimensional smooth manifolds, is
f homotopic to a diffeomorphism? Next we will describe the surgery programme
for answering this question for n ≥ 5.

Definition 1.4. An (n + 1)-dimensional cobordism (W ;M,N) is an (n + 1)-
dimensional manifold with boundary M ⊔N . If W,M and N are oriented then we
require that the oriented boundary of W is ∂W =M ⊔−N , where −N denotes N
with the opposite orientation.

Note that ∂(M × I) = M ⊔ −M . This can be seen by adopting the outward-
normal-first convention when inducing an orientation on a boundary; the outward
normal atM×{0} transports to the inward pointing normal atM×{1}. Cobordism
is an equivalence relation, and with ⊔ the addition, we obtain a group:

Ωn := {diffeomorphism classes of smooth, closed, oriented n-dim manifolds}/cobordism.
For example, Ω1 = Ω2 = Ω3 = 0 but Ω0

∼= Ω4
∼= Z.

Maps are always assumed to be (at least) continuous. A closed manifold is a
compact manifold with empty boundary.

Definition 1.5. Given a space X, a bordism over X of maps f1 : M1 → X,
f2 : M2 → X, with M1, M2 manifolds, is a cobordism (W ;M1,M2) with a function
F : W → X× [0, 1] such that f1 = F | : M1 → X×{0} and f2 = F | : M2 → X×{1}.
The equivalence classes of pairs (M,f), with M an oriented, compact, smooth
n-dimensional manifold form the bordism group Ωn(X), with addition again by
disjoint union.

Note that Ωn(pt) ∼= Ωn. As an example, note that whereas Ω1 = 0, because a
circle bounds a disc, we have that Ω1(S

1) ∼= Z. Can you prove this?



MAT993D: TOPOLOGY OF MANIFOLDS: SURGERY THEORY 3

Homotopic maps are bordant: let f ∼ g via a homotopy ht : M → X with h0 = f
and h1 = g. Then define:

M × I → X × I
(m, t) 7→ (ht(m), t).

So if a map is homotopic to a diffeomorphism it is also bordant to a diffeomorphism.

Definition 1.6 (Structure set). Let X be a space. An n-dimensional manifold
structure on X is a homotopy equivalence f : M → X from an n-manifold M to
X. The structure set Sn(X) is the set of manifold structures up to equivalence,
where (M,f) ∼ (N, g) if there is an (n + 1)-dimensional bordism (W,F ) between
(M,f) and (N, g) with F : W → X × I a homotopy equivalence.

Given X and n ≥ 5, surgery theory asks: is Sn(X) nonempty? If so, how
many elements does it have? We will give an overview of surgery in the case that
π1(X) = {e}.

The assumptions on F , f and g imply that W is an h-cobordism.

Definition 1.7. A cobordism (W ;M,N) is called an h-cobordism if the inclusion
maps M →W and N →W are homotopy equivalences.

The basis of surgery theory is the following theorem, which won Smale the Fields
medal. Our first main goal of the course will be to prove this theorem.

Theorem 1.8 (h-cobordism theorem, Smale). An (n + 1)-dimensional simply-
connected h-cobordism (W ;M,N) with n ≥ 5 is trivial i.e. is diffeomorphic to the
product cobordism

(M × I;M × {0},M × {1}).

In particular M and N are diffeomorphic. We close the section by showing how
this theorem implies the topological generalised Poincaré conjecture.

Corollary 1.9. LetM be an n-dimensional closed manifold with H∗(M) ∼= H∗(S
n)

and π1(M) = 1. Then M is homeomorphic to Sn.

Proof. Let cl(W := Mr(Dn
0 ⊔ Dn

1 )) be obtained by removing two disjoint open
balls from M . By a homology calculation, the relative Hurewicz theorem and
the Whitehead theorem, W is a simply connected h-cobordism (W ;Sn−1, Sn−1).
Therefore there is a diffeomorphism to F : Sn−1× [0, 1] →W . This can be arranged
to be the identity on the first Sn−1. Now define a homomorphism

f : Dn
0 ∪ Sn−1 × I ∪Dn

1 →M = Dn
0 ∪W ∪Dn

1

as follows. On Dn
0 use the identity map, and on Sn−1 × I use F . Let f1 : S

n−1 ≃−→
Sn−1 be the restriction of F to the second Sn−1 boundary component.

Claim. f1 extends to a homeomorphism f1 : D
n
1

≃−→ Dn
1 .

The disc Dn
1 is homeomorphic to the quotient pace Sn−1 × [0, 1]/Sn−1 × {0}.

Then the map f1 × Id : Sn−1 × [0, 1] determines a homeomorphism of the quotient

space that extends f1 : S
n−1 ×{0} ≃−→ Sn−1 ×{0}. This is known as the Alexander

trick. The map is also often written t · x 7→ t · f(x), with t ∈ [0, 1] and x ∈ Sn−1.
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This completes the proof of the claim. The map f1 : D
n
1 → Dn

1 completes the

definition of the homeomorphism f : Sn ≃−→M . �

Note that M is not diffeomorphic to Sn in general. Dn ∪f D
n is always homeo-

morphic to Sn but may not be diffeomorphic. For example, there are famously 28
diffeomorphism classes of smooth manifolds homeomorphic to S7.

1.2. The surgery sequence. In this section we will give a quick survey of the
surgery sequence, in the simply connected case. One of the main goals of the course
is to present this sequence. Do not worry if everything in this section does not make
sense to you yet, we are going to slow down a lot after this section.

Definition 1.10 (Poincaré complex, simply connected oriented case). A finite CW
complex X is called an n-dimensional Poincaré complex if there exists a homology
class [X] ∈ Hn(X;Z) such that cap product with [X] induces isomorphisms [X] ∩
− : Hn−r(X;Z) ≃−→ Hr(X;Z) for all r = 0, 1, . . . , n.

These are Poincaré duality-like isomorphisms between cohomology and homol-
ogy. Note that every n-dimensional manifold is an n-dimensional Poincaré com-
plex. We will study cohomology and Poincaré duality in a lot more detail soon,
with definitions.

For X to have any chance of Sn(X) ̸= ∅, we need X to be and n-dimensional
Poincaré complex. We have:

Nn(X) = Normal bordism classes of degree one normal maps.

We will not define this fully here. It is similar to Ωn(X), but with extra bundle
data and the maps are required to be degree 1.

Definition 1.11 (Degree 1). A map f : M → N of n-dimensional Poincaré com-
plexes is degree one if

f∗ : Hn(M ;Z) → Hn(N ;Z)
sends f∗([M ]) = [N ].

The abelian groups

Ln(Z) = Ln(Z[{1}]) =


Z n ≡ 0 mod 4

0 n ≡ 1 mod 4

Z/2Z n ≡ 2 mod 4

0 n ≡ 3 mod 4

(the simply connected L-groups, or simply connected surgery obstruction groups;
in general Ln(Z[π1(X)])), complete the surgery sequence of sets:

· · · → Nn+1(X) → Ln+1(Z)
W−→ Sn(X) → Nn(X)

σ−→ Ln(Z) → · · ·
which is exact for n ≥ 5. One of our main aims, as mentioned above, is to un-
derstand what this sequence says. For the existence question, given X, try to find
a degree one normal map f : M → X from some manifold M , i.e. an element of
Nn(X).
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Theorem 1.12 (Browder, Wall surgery obstruction theorem). σ(f) = 0 if, and
for n ≥ 5 only if, f is bordant to a homotopy equivalence.

Thus the surgery obstruction map σ measures whether Sn(X) is nonempty. Once
we have found one manifold homotopy equivalent to X, the size of the kernel of σn
and the cokernel of σn+1 determine the size of the structure set. Beware the maps
in the sequence are only maps of sets, making them into group homomorphisms is
a major task, and strange group structures are often required. The map labelled
W is really an action of Ln+1(Z) on the structure set, called Wall realisation. Note
that the sequence classifies homotopy equivalences from manifolds to X. To obtain
the true classification, one also has to mod out by the homotopy self-equivalences
of X.

To show that two manifolds are diffeomorphic, one typically uses a relative ver-
sion of the above sequence: find a cobordism between the two manifolds and eval-
uate the surgery obstruction to change the cobordism into an h-cobordism. If the
obstruction vanishes, we have an h-cobordism and so the manifolds are diffeomor-
phic.

In principle, if one can compute the groups Ln(Z[π1(X)]), Nn(X), and the maps,
as well as the homotopy self-equivalences of X, then one can classify manifolds in
the homotopy type of X! Admittedly, these computations can be rather daunting.

1.3. What is surgery? Let M be an n-dimensional manifold and let f : Sr ×
Dn−r ↩→ M be a framed embedding of a sphere Sr. This is the data for an r-
surgery. Then the n-manifold

M ′ := cl(Mrf(Sr ×Dn−r)) ∪Sr×Sn−r−1 Dr+1 × Sn−r−1

is the output of the surgery operation.
We say that M ′ is obtained from M by surgery on f(Sr) or f(Sr × Dn−r).

Surgery changes M rather drastically. For example, it kills the homotopy class
[f(Sr)] ∈ πr(M) determined by choosing a basing of f(Sr). We always round the
corners of an attachment without comment.
Example 1.13.

(1) M = S1, n = 1. r = 0. Choose an embedding of S0 × D1 ↩→ S1. There
are two essentially different choices, depending on how the two D1s are
oriented. The outcome is either one S1 or S1 ⊔ S1.

(2) Any M , any n. If r = −1, then since S−1 = ∅ by convention, the output of
surgery is

Mr(∅ ×Dn+1) ∪D0 × Sn =M ⊔ Sn.

A −1-surgery takes a disjoint union with an n-sphere.
(3) M = T 2. A 1-surgery on an essential embedded S1 produces S2. On the

other hand, withM = S2, and r = 0, we obtain S2r(S0 ×D2)∪D1×S1 ∼=
T 2.

(4) Start with M ⊔ N , and r = 0. The outcome of surgery where one Dn is
embedded in M and one in N , is the connected sum M#N .

(5) Let M = S3 and let S1 × D2 ↩→ S3 as the unknot. Then the framing
determines the outcome: this is how many times t the D2 component twists
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in one complete revolution of S1, with respect to the zero twisting, which
is the twisting that extends over a disc. For t = 0 we obtain S1 × S2. For
t = ±1 we obtain S3 again. For t = p /∈ {0, 1,−1}, we obtain the lens space
L(p, 1).

(6) This last example can be extended to produce all 3-manifolds: the Lickorish-
Wallace theorem says that every 3-manifold arises as surgery on some link
in S3.

1.4. Handles. A surgery corresponds to a cobordism, in fact a rather simple type
of cobordism called an elementary cobordism, that arises as the trace of the surgery.

Definition 1.14 (Trace of a surgery). Given the data f : Sr ×Dn−r ↩→Mn for a
surgery, form the (n+ 1)-dimensional cobordism

W :=M × [0, 1] ∪f(Sr×Dn−r)×{1} D
r+1 ×Dn−r.

Note that ∂W = M ⊔ −M ′, where M ′ is the output of the surgery, so W is a
cobordism from M to the output M ′. The cobordism W is called the trace of the
surgery. A cobordism that arises in this way is called an elementary cobordism of
index r.

Thus there is a relation between surgery and cobordism. To understand this re-
lation better, we will soon learn some Morse theory. First, here is some terminology
on handles.

Definition 1.15. The manifold Dr × Dn−r is called an n-dimensional r-handle.
The integer r, which satisfies 0 ≤ r ≤ n, is called the index of the handle.

Note that all n-dimensional r-handles are just n-balls. Especially, r-handles and
(n− r)-handles look very similar, the only difference being the order in which the
coordinates appear. Nevertheless, the particular decomposition ofDn asDr×Dn−r

has some significance due to the way in which handles are glued together to create
a manifold.

Definition 1.16. The following subsets of an r-handle hr = Dr ×Dn−r will be of
interest.

• The core Dr × {0}.
• The cocore {0}timesDn−r.
• The attaching sphere ∂Dr × {0} ∼= Sr−1.
• The belt sphere {0} × ∂Dn−r ∼= Sn−r−1.

Example 1.17. Let n = 3.

(i) For r = 0, the core is a point, the cocore is the entire 0-handle, the attaching
sphere is the empty set, and the belt sphere is an S2.

(ii) For r = 1, the core is a D1, the cocore is a disc D2, the attaching sphere is
two points S0, and the belt sphere is an S1. The name belt sphere probably
arises from this example, although you probably have to imagine a snake who
is worried about his trousers falling down in order for it to really make sense.

(iii) For r = 2, the core is a disc, the cocore is a D1, the attaching sphere is a
circle and the belt sphere is two points.
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(iv) For r = 3, the core is the whole handle, the cocore is a point, the attaching
sphere is S2 and the belt sphere is empty.

Given a cobordism W with ∂W = ∂0W ⊔ ∂1W , and an embedding f : Sr−1 ×
Dn−r+1 ↩→ ∂1W of a framed sphere, we say that

W ′ =W ∪f h
r =W ∪Sr×Dn−r+1 Dr ×Dn−r+1

is obtained from W by attaching an r-handle along f . Note that ∂0W
′ = ∂0W and

∂1W
′ is diffeomorphic to the result of an (r − 1)-surgery on ∂1W with data f .

Theorem 1.18 (Thom-Milnor). Every differentiable compact n-dimensional man-
ifold M can be expressed as a union of handles

M ∼=
m0∪
h0 ∪

m1∪
h1 ∪ · · · ∪

mn∪
hn,

with mr r-handles, with the attaching sphere of the r-handles in the boundary
∂M (r−1) of the (r − 1)-skeleton, where

M (r−1) :=

m0∪
h0 ∪

m1∪
h1 ∪ · · · ∪

mr−1∪
hr−1

is the union of the handles of index 0, . . . , r−1. Thus M (r) is obtained from M (r−1)

by attaching handles of index r.

Such a decomposition of M is called a handle decomposition. More generally, we
have a corresponding result for cobordisms.

Theorem 1.19 (Thom-Milnor). Every (n + 1)-dimensional cobordism can be ex-
pressed as a union of elementary cobordisms:

(W1;M0,M1) ∪M1 (W2;M1,M2) ∪M2 · · · ∪Mk−1
(Wk;Mk−1,Mk)

with the index of Wj equal to ij and i1 ≤ i2 ≤ · · · ≤ ik.

The closed manifolds case above follows when M0 =Mk = ∅.

Corollary 1.20. Closed manifolds M,N are cobordant if and only if they can be
obtained from one another by a finite sequence of surgeries.

The proof of Theorem 1.19 is quite long and uses Morse theory.

2. Morse theory

The main sources for Morse theory are [M1] and [M2]. For differential topology
basics, see also [M3], which everybody should absolutely read (it is very short so
no excuse not to), and [Hir]. We will cover a little differential topology but we will
also assume some of it without proof. I will recall statements.

Let M be a smooth n-manifold. Consider a smooth function f : M → R, i.e.
f ◦ h−1

α : Vα → R is a smooth function, where Vα ⊆ Rn is an open set.
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Definition 2.1 (Critical point). A point p ∈ M is a critical point of f if dfp =
0: TpM → Tf(p)R. That is, if there exist coordinates x1, . . . , xn around p such that

∂f

∂x1
=

∂f

∂x2
= · · · = ∂f

∂xn
= 0.

Definition 2.2 (Nondegenerate critical point). A critical point is nondegenerate
if, in some (and whence any) coordinate system, the Hessian matrix

H(p) :=

(
∂2f

∂xi∂xj

)
ij

is nonsingular, i.e. detH(p) ̸= 0.
The matrix H(p) determines a bilinear form H(p) : Rn × Rn → R, where the

coordinate system determines an identification TpM = Rn. The index of f at p is
the maximal dimension of a subspace V of Rn on which H(p) is negative definite,
that is Hp(v, v) < 0 for all nonzero v ∈ V .

2.1. The Morse lemma. The basis of Morse theory is the famous Morse lemma.

Lemma 2.3 (The Morse lemma). Let p be a nondegenerate critical point for a
smooth function f : M → R. There is a local coordinate system (x1, . . . , xn) in
some open set U ∋ p, with xi(p) = 0 for all i, such that

f(x1, . . . , xn) = f(p)− x21 − · · · − x2λ + x2λ+1 + · · ·+ x2n

for all of U , where λ is the index of f at p.

For example, when n = 2, nondegenerate critical points are maxima, minima
and saddle points. Consider a torus with a height function to R determined by an
embedding into R3. For one standard embedding, the height function has 4 critical
points, one of index 0, one of index 2, and two of index 1.

To prove the Morse lemma, first we need a preliminary lemma.

Lemma 2.4. Let f : V → R where V ⊆ Rn is a convex open subset with 0 ∈ V , f
is a C∞ function and f(0) = 0. Then

f(x1, . . . , xn) =

n∑
i=1

xigi(x1, . . . , xn)

for some C∞ functions gi on V with gi(0) =
∂f
∂x1

(0).

Proof. We have:

f(x1, . . . , xn) = [f(tx1, . . . , txn)]
1
t=0 =

∫ 1

0

df(tx1, . . . , txn)

dt
dt

=

∫ 1

0

n∑
i=1

∂f

∂xi
(tx1, . . . , txn) · xi dt

Thus we can take

gi(x1, . . . , xn) :=

∫ 1

0

∂f

∂xi
(tx1, . . . , txn) dt.
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We should check that

gi(0) =

∫ 1

0

∂f

∂xi
(0, . . . , 0) dt =

∂f

∂xi
(0),

as required. �

Now let us prove the Morse lemma.

Proof of Morse lemma. First we note that if we can obtain the right form of the
function, λ will indeed be the index of f at p, since the Hessian matrix of the given
form is: 

−2
. . .

−2
2

. . .

2


with λ diagonal −2s and n− λ diagonal 2s. The rest of the entries, which are not
shown, are zero. The maximal negative definite subspace of Rn with respect to the
form induced on Rn by this matrix is Rλ × {0} ⊂ Rλ × Rn−λ = Rn.

Now we need to show that coordinates can be found around a nondegenerate
critical point, with respect to which the function has the desired form. We can
assume that f(p) = f(0) = 0, that is that we have a chart in which p is sent to
0 ∈ Rn, and that f(0) = 0 with respect to these coordinates. Since any translation
of a coordinate system must also be in a maximal atlas, this assumption is valid.

Take a possible smaller open set around 0 which is convex, so that we may apply
Lemma 2.4 to write

f(x1, . . . , xn) =
n∑

j=1

xjgj(x1, . . . , xn)

in a neighbourhood of 0 for some smooth functions gj . Now, gj(0) = ∂f
∂xj

(0) so

Lemma 2.4 applied to gj yields

gj(x1, . . . , xn) =

n∑
i=1

xihij(x1, . . . , xn)

in a neighbourhood of 0 for some smooth functions hij with hij(0) =
∂gj
∂xi

(0). There-
fore

f(x1, . . . , xn) =

n∑
j=1

n∑
i=1

xixjhij(x1, . . . , xn)

in a neighbourhood V of 0. Differentiating twice and evaluating at 0 (this is a
calculation), we find that

∂2f

∂xk∂xℓ
(0) = hℓk(0) + hkℓ(0).
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Define

hℓk =
1

2
(hℓk + hkℓ)

in V . Then hℓk(0) = 1
2(hℓk(0) + hkℓ)(0) defines a symmetric nonsingular matrix.

The fact that the matrix is nonsingular is the hypothesis that p is a nondegenerate
critical point. Note that

f(x1, . . . , xn) =

n∑
j=1

n∑
i=1

xixjhij(x1, . . . , xn).

Since a symmetric matrix over R is diagonalisable, if we only needed to alter f at
a point we would be done. As we need the form of f in a neighbourhood, we will
need to work a little harder. Our aim is to change coordinates so that hij is sent
to a matrix of the following form:

−1
. . .

−1
1

. . .

1


.

Proceed by induction: suppose that there exists a neighbourhood U1 ∋ 0 with
coordinates (u1, . . . , un) such that

f(u1, . . . , un) = ±u21 ± · · · ± u2r−1 +
∑
i,j≥r

uiujHij(u1, . . . , un)

on U1 with Hij(u1, . . . , un) symmetric.
We may assume that Hrr(0) ̸= 0 by a linear change of variables. Define:

G(u1, . . . , un) :=
√

|Hrr(u1, . . . , un)|.
There is a smaller neighbourhood 0 ∈ U2 ⊆ U1 such that G > 0 and smooth on U2.
Define new coordinates (v1, . . . , vn) as follows:

vi = ui for i ̸= r

and

vr(u1, . . . , un) = G(u1, . . . , un)
(
ur +

n∑
i=r+1

ui
Hir

Hrr

)
.

Claim.

(i) This change of coordinates has invertible derivative at 0.
(ii) With respect to these new coordinates,

f =
∑
i≤r

±v2i +
∑
i,j>r

vivjH
′
ij(v1, . . . , vn).

The first part of the claim shows that this is a permissable coordinate change,
since by the inverse function theorem there is a smaller neighbourhood U3 contain-
ing 0 in which the proposed coordinate change is a diffeomorphism.
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Theorem 2.5 (Inverse function theorem). Let g : U → V , be a smooth function
with U, V open neighbourhoods of 0 in Rn, and suppose that g(0) = 0. Suppose that
Dg(0) is invertible. Then there exist neighbourhoods U1 ⊆ U , V1 ⊆ V of 0 such
that g| : U1 → V1 is a diffeomorphism.

The second claim gives the inductive step. Thus it remains to prove the claim.
First, if g is the coordinate change function, we can compute

Dg(0) =



1 ∗
. . . ∗

1 ∗
G(0)
∗ 1

∗ . . .

∗ 1


.

Here the stars are unknown terms that do not concern us, and all other entries are
zero. We then have

det(Dg(0)) = G(0) =
√

|Hrr(0)| ≠ 0.

This completes the proof of part (i) of the claim. The second part follows from
substitution, and collecting terms in which vr occurs.

�

Corollary 2.6. Nondegenerate critical points are isolated.

Definition 2.7. A smooth function f : M → R is called a Morse function if all its
critical points are nondegenerate.

2.2. Morse functions exist. The aim of this subsection is to explain why the
following theorem holds, without giving the full proof.

Theorem 2.8.

(i) Every differentiable manifold admits a Morse function.
(ii) For every cobordism (W ;M,N) there is a Morse function f : W → [0, 1] with

f(M) = 0 and f(N) = 1 that has no critical points in a neighbourhood of the
boundary.

Part (ii) is proven in [M1, Theorem 2.5]. We will just explain (i) here.

Definition 2.9. LetMm, Nn be smooth manifolds with m = dimM ≤ dimN = n
and let f : M → N be a smooth map. If rkDfp = m for all p ∈ M , then f is said
to be an immersion. If, in addition, f : M → f(M) is a homeomorphism, f is said
to be an embedding.

The proof of Theorem 2.8 needs for an embedding of a manifold into euclidean
space.

Theorem 2.10 (Weak Whitney embedding theorem). For every compact differ-
entiable manifold M , there exists K ∈ N and a smooth embedding M ↩→ RK .
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The Whitney embedding theory can be improved to K = 2dimM +1 with a bit
more work, and in fact to K = 2dimM by using the Whitney trick. We will learn
about the Whitney trick soon.

Proof of the weak Whitney embedding theorem. This proof is from the differential
topology book of Munkres. We will assume that ∂M = ∅ for simplicity. Let C(r)
be the r-cube

{x ∈ Rn | max{|xi| i = 1, . . . n} < r}.
For each p ∈ M choose coordinates (U, h) such that h(U) ⊇ C1 and h(p) = 0.
Define

Vp := h−1(IntC(1))

and
Wp := h−1(IntC(1/2)).

The sets Wp cover M . Let W1, . . .Wk be a finite subcover. We have corresponding
sets U1, . . . , Uk and V1, . . . , Vk, as well as charts hi : Ui → Rn.

There exists a smooth function φ : Rm → R such that

φ(x)


= 1 x ∈ C(1/2)

> 0 x ∈ IntC(1)

= 0 /∈C(1).
Now, for i = 1, . . . , k, define functions φi : M → R as follows:

φi(x) =

{
φ(hi(x)) x ∈ Ui

0 x ∈MrVi.

The functions φi are smooth, and well-defined since both options are zero on
MrVi ∩ Ui. Now let

Φ: M → Rk

x 7→ (φ1(x), . . . , φk(x))

and then define

f : M → Rk × Rn × · · · × Rn = Rk × Rkn

x 7→ (Φ(x), φ1(x) · h1(x), φ2(x) · h2(x), · · · , φk(x) · hk(x))
Here φi(x) · hi(x) is extended to be 0 outside Ui ⊂M . We note that f is smooth.
Next we check that f is injective. Suppose that f(x) = f(y). Then in the first
Rk, we have that φi(x) = φi(y). So if x ∈ Vi then y ∈ Vi too. For such x, y,
φi(x) · hi(x) = φi(y) · hi(y). Since φi(x) = φi(y) ̸= 0 we have hi(x) = hi(y). Thus
x = y since hi is injective.

Next, M is compact, f is a one-one continuous map to a Hausdorff space, so is
a homeomorphism onto its image. It remains to check that df has rank m. That
is, f ◦ h−1

i : hi(Ui) → Rnk+k has rank n as a map from a subset of Rn to Rnk+k.
But every point is inside some Wi, and inside Wi we have φi(x) = 1. Thus in
h(Wi), f ◦ h−1

i followed by projection to the ith Rn component in the definition
of f , is given by the identity map of Rn. The identity map has rank n. Since the
Wi cover M , df has rank n everywhere. This completes the proof that M is an
embedding. �
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Now we know that embeddings into Euclidean space always exist, we can use
this to find a Morse function.

Theorem 2.11 (Theorem 6.6 of [M2]). LetM ⊂ RK be a smooth compact manifold
embedded in RK . For almost all p ∈ RN , the function

F : M → R
x 7→ ∥x− p∥2

has only nondegenerate critical points.

Thus every compact smooth manifold admits a Morse function.

2.3. Relating critical points to handles. Now, let f : M → R be a Morse
function on a smooth compact n-manifold M . Define

La := f−1(a) and Ma := f−1((−∞, a]).

When a is a regular value, La is a smooth (n − 1)-dimensional submanifold of M
and Ma is a manifold with boundary. This last sentence will be explained below.

Definition 2.12. Let f : Mm → Nn be a smooth map. A point p ∈ M is called
a critical point if dfp : TpM → Tf(p)N has rank less than m. Let C be the critical
points of f . The points f(C) ⊂ N are called the critical values of f . The points
Nrf(C) are called the regular values of f .

Theorem 2.13 (Sard, Brown). The set of regular values of a smooth map is ev-
erywhere dense in N .

This can be very useful due to the next lemma.

Lemma 2.14. Let f : M → N be smooth, and let m ≥ n. Suppose that y ∈ N is
a regular value. Then f−1(y) ⊂M is a smooth submanifold of dimension m− n.

A nice proof of the previous two statements can be found in [M3].
Example 2.15.

(1) Consider

f : Rn → R
x 7→ x21 + · · ·+ x2n

Then f−1(1) = Sn−1 is a smooth manifold.

(2) Identify Rn2
with n × n matrices over R, and identify Rn(n+1)/2 with real

symmetric n× n matrices. Consider the map

f : Rn2 → Rn(n+1)/2

P 7→ PP T

Then f−1(Id) = O(n) is a smooth manifold.

Next, we want to relate critical points of a Morse function f : M → R to handles.
In summary, as a increases, if f−1(a) does not contain any critical points, then the
diffeomorphism type of Ma does not change. On the other hand passing a critical
point of index r corresponds to attaching a handle of index r.
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Theorem 2.16. Let M be a compact smooth manifold and let f : M → R be a
Morse function.

(i) Let a < b ∈ R be such that f−1([a, b]) does not contain any critical points.
Then Ma ∼=M b.

(ii) Now suppose that a < b and f−1([a, b]) contains exactly one critical point p
with a < f(p) < b, of index k. Then M b ∼= Ma ∪ hk, the result of attaching
an index k handle to Ma.

The next definition is a metric-independent modification of usual the gradient
vector field.

Definition 2.17 (Gradient-like vector field). A vector field ξ onM is gradient-like
with respect to a Morse function f if

(i) ξ(f) > 0. i.e. dfp(ξp) > 0 ∈ Tf(p)R = R;
(ii) there exist coordinates (x1, . . . , xk, xk+1, . . . , xn) around each critical point p,

with
f = f(p)− x21 − · · · − x2k + x2k+1 + · · ·+ x2n

and
ξ = (−x1, . . . ,−xk, xk+1, . . . , xn).

Definition 2.18 (Ascending and descending manifolds). For a critical point p of
a Morse function f with a gradient-like vector field ξ, define the stable manifold,
or the descending manifold of p, W s

p , to be all the points that flow to p along the
integral curves of ξ. That is, the union of all trajectories that limit to p as t→ +∞.

Similarly, define the unstable manifold, or the ascending manifold of p, W u
p , to

be all the points that flow away from p along the integral curves of ξ. That is, the
union of all trajectories that limit to p as t→ −∞.

In part (ii) of Theorem 2.16, W s
p ∩ (M brMa) is the core of hk, W u

p ∩ (M brMa)

is the cocore, W s
p ∩ La is the attaching sphere Sk−1 × {0} and W u

p ∩ Lb is the belt
sphere.
Idea behind proof of Theorem 2.16.

(1) Define Xp := ξp/∥ξp∥2, and let ηx(t) be an integral curve to Xp that passes
through x ∈ f−1(a), so that ηx(0) = x. Then define

F : f−1(a)× [a, b] → f−1([a, b]) ⊂M
(x, t) 7→ ηx(t− a).

Then F is the diffeomorphism that we seek.
(2) In a small coordinate neighbourhood of the critical point p, in which the

origin of the coordinates corresponds to p, let ek = B(0,
√
ε) × {0} ⊂

Rk × Rn−k, that is

{x |x21 + · · ·+ x2k < ε, xk+1 = · · · = xn = 0}.
Outside this neighbourhood, f−1([a, b]) is a product as in (i). The neigh-
bourhood of p is diffeomorphic to Dn, and the Morse function in the neigh-
bourhood determines a decomposition into Dk×Dn−k, with the core given
by ek. There is a diffeomorphism retract of M b onto Ma ∪ ek.
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Full details can be found in [Hir], [M2]. �

Now let (W,M0,M1) be a cobordism and let f : W → [c, d] be a Morse function
with f−1(c) = M0 and f−1(d) = M1. We can make a small perturbation of the
Morse function if necessary so that each critical point appears at a different critical
value. Let p1, . . . , pk be the critical points, enumerated so that f(p1) < f(p2) <
· · · < f(pk).

Choose ai ∈ [c, d] for i = 1, . . . , k − 1 so that f(pi) < ai < f(pi+1. Then define

W1 := f−1([c, a1])

Wi := f−1([ai−1, ai]), i = 2, . . . , k − 1

Wk := f−1([ak−1, d]).

Then with Mi := f−1(ai) we have

W =W1 ∪M1 W2 ∪M2 · · · ∪Mk−1
Wk.

This proves the Thom-Milnor theorem, apart from the statement that handles/elementary
cobordisms can be arranged to be in non-decreasing order.

3. Handle moves

3.1. Transversality, immersions and embeddings. We need to recall a little
more machinery from differential topology in order to perform the handle moves
that will be necessary to prove the h-cobordism theorem.

Definition 3.1. Let f : P →M and g : Q→M be two smooth maps of manifolds.
Let x = f(p) = g(q) ∈ f(P )∩g(Q). We say that P and Q intersection transversely
at x if the rank of

dfp ⊕ dgq : TpP ⊕ TqQ→ TxM

is equal to dimM . We write P t Q to mean that for all x ∈ P ∩ Q, P and Q
intersection transversely at x. In this case, we also sometimes use P t Q to denote
the intersection P ∩Q.

If dimP + dimQ < dimM then P t Q implies that P ∩ Q = ∅. On the other
hand, if dimP + dimQ = dimM , then the transverse intersection is a union of
points. The next theorem essentially says that transverse maps are dense.
Theorem 3.2.

(i) Let f : Mm → Nn be a smooth map of manifolds with m ≤ n, and let A ⊂ N
be a submanifold. The map f is arbitrarily close to a map f ′ with f ′(M) t A.

(ii) The transverse intersection P t Q between a k-dimensional submanifold P
and an ℓ-dimensional submanifold Q is a (k+ℓ−m)-dimensional submanifold.
(Here a manifold of negative dimension is empty)

In the case that k+ℓ = m, we will need to be able to assign a sign signx(P,Q) to
each transverse intersection point, when P , Q and M are oriented. Let x ∈ P ∩Q
and let {v1, . . . , vk} be a basis for TxP corresponding to the orientation of P .
Let {vk+1, . . . vm} be a basis for TxQ corresponding to the orientation, and let
{z1, . . . , zm} be a basis for TxM corresponding to the orientation. Let B ∈ GLm(R)
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be the matrix with columns representing the vectors v1, . . . , vm in the basis {zi}.
Then define

signx(P,Q) = det(B)/| det(B)|.
This sign measures whether the combination of the orientations of P and Q agrees
with the orientation of M at the transverse intersection point x.

The next two theorems are foundational.

Theorem 3.3 (Whitney immersion theorem). For 2n ≤ m every map f : Nn →
Mm is homotopic to an immersion.

We proved a weak version of the Whitney embedding theorem before, but we
will need the strongest version eventually.
Theorem 3.4 (Strong Whitney embedding theorem).

(1) For 2n + 1 ≤ m every map f : Nn → Mm is homotopic to an embedding
N ↩→M , and for 2n+ 2 ≤ m any two homotopic embeddings are isotopic.

(2) For n ≥ 3 and π1(M) = {1}, every map f : Nn →M2n is homotopic to an
embedding.

Part (ii) needs the Whitney trick, which we will cover in detail soon. We will
have to content ourselves here with the sketch proof of the Whitney immersion
theorem from [Ran].

Proposition 3.5. Let k ≤ n ≤ m and let Rk be the subset of the m× n matrices
over R comprising the matrices of rank exactly k. Then Rk is a submanifold of
dimension k(m+ n− k).

Proof. Define the m× n matrix

Jk :=

(
Ik 0
0 0

)
where the Ik in the top left corner is the k×k identity matrix. Observe thatX ∈ Rk

if and only if there exist A ∈ GLm(R) and B ∈ GLn(R) such that X = AJkB
−1.

Moreover
AJkB = A′Jk(B

′)−1

if and only if (A′)−1AJkB
−1B′ = Jk. Thus Rk = G/H where G := GLm(R) ×

GLn(R) and
H := {(A,B) ∈ G |AJkB−1 = Jk}.

We have that (A,B) ∈ H if and only if the matrices are of the form((
L M
0 N

)
,

(
L 0
P Q

))
for L ∈ GLk(R), N ∈ GLm−k(R), Q ∈ GLn−k(R), P ∈ Mn−k,k(R) and M ∈
Mk,m−k(R). Then

dimG = m2 + n2

and
dimH = k2 + k(m− k) + (m− k)2 + k(n− k) + (n− k)2.

Thus dimRk = dimG− dimH = k(m+ n− k) as claimed. �
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Sketch of proof of Whitney immersion theorem. First approximate f : N → M by
a C∞ map. First we work in one chart. In the chart, the derivative of f determines
a map

df : Rn →Mm,n(R) = R0 ∪R1 ∪ · · · ∪Rn.

Make this transverse to each Rk by a small perturbation. Here we want to perturb
the derivative, so we alter f in such a way that this gives the desired change on df .
Now for 0 ≤ k ≤ n− 1, we compute:

(df)−1(Rk) = n− (mn− dimRk) = n−mn+ dimRk

≤ n−mn+ dimRn−1 = n− nm+ (n− 1)(m+ n− (n− 1))

= 2n−m− 1 < 0

since 2n ≤ m. Thus generically df missed R0 ∪ · · · ∪ Rn−1, and so has rank n.
Now paste together these homotopies in each of the charts to get a map which is
globally of rank n. �

3.2. Rearranging handles. Now let us return to handle decompositions of man-
ifolds and cobordisms. From now on, when we write W ∪f h

r, we mean the
cobordism W with an (n + 1)-dimensional, index r handle hr attached along
f : Sr−1 ×Dn−r+1 → ∂1W .

Lemma 3.6 (Isotopy lemma). Suppose that f, g : Sr−1 × Dn−r+1 → ∂1W are
isotopic embeddings. Then

W ∪f h
r ∼=W ∪g h

r

relative to ∂0W .

Proof. Let k : Sr−1 ×Dn−r+1 × [0, 1] → ∂1W be an isotopy between f and g. This
extends to an ambient isotopy K : ∂1W ×I → ∂1W , so that Kt : ∂1W ×{t} → ∂1W
is a diffeomorphism for all t, and K0 = Id so K0 ◦ f = f , while K1 ◦ f = g. Then
we can define

K̃ : ∂1W × I → ∂1W × I
(x, t) 7→ (K(x, t), t).

This is the identity on ∂1W×{0} and so extends by the identity on the complement
of a collar of ∂1W to a diffeomorphism of F : W →W with F ◦f = K1 ◦f = g. �

Lemma 3.7 (Handle rearrangement). Suppose that r ≤ s, let f : Ss−1×Dn−s+1 →
∂1W be an attaching map for an s-handle hs, and let g : Sr−1×Dn−r+1 → ∂1(W ∪f

hs) be an attaching map for an r-handle hr. There exists another attaching map
g : Sr−1 ×Dn−r+1 → ∂1W such that

(W ∪f h
s) ∪g h

r ∼= (W ∪g h
r) ∪f h

s.

Proof. Recall that the attaching sphere of hr is a copy of Sr−1 × {0}, and the belt
sphere of hs is {0}×Sn−s. We have that r− 1+n− s ≤ s− 1+n− s = n− 1 < n.
Thus by transversality, g is isotopic to a map that misses the belt sphere of hs,
and therefore can be isotoped until it misses Ds×Sn−s ⊂ ∂hs altogether. Call the
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resulting map g. We can make the thickening of our attaching maps arbitrarily
close to their cores. Thus by the isotopy lemma

(W ∪f h
s) ∪g h

r ∼= (W ∪f h
s) ∪g h

r.

But now since g(Sr−1 × Dn−r+1) ∩ hs = ∅, we can attach the handles in either
order. �

At last, this completes the proof of the Thom-Milnor theorem, since we can now
arrange for handles to appear in order of increasing index.

3.3. Handle cancellation and sliding.

Lemma 3.8 (Handle cancellation lemma). Consider W ∪f h
r∪g h

r+1 such that the
belt sphere {0} × Sn−r of hr and the attaching sphere g(Sr × {0}) ⊂ g(Sr ×Dn−r)
of hr+1 intersect transversely in exactly one point of ∂1(W ∪f h

r). Then

W ∪f h
r ∪g h

r+1 ∼=W,

relative to ∂0W .

The proof involves checking that an index r and an index (r + 1) handle cancel
in a standard situation: the effect of adding both is just glueing an (n + 1)-disc
to W along an embedded n-disc in ∂1W . Alternatively there is a Morse theory
proof that shows that when there is a unique trajectory between two critical points
of a gradient-like vector field, the vector field can be modified in such a way that
the two critical points are removed. A new vector field gives rise to a new Morse
function by integration.

Lemma 3.9 (Handle sliding). Let hr1 and hr2 be two r-handles attached to ∂1W
of a cobordism (W ; ∂0W,∂1W ) via fi : S

r−1 × Dn−r+1 ↩→ ∂1W , i = 1, 2. Then
W ∪f1 h

r
1 ∪f2 h

r
2 is diffeomorphic to W ∪f1 h

r
1 ∪f2

hr2 where f2 is obtained as f2#f
′
1,

where f ′1 is a push off of f1. (Some care with framings is required to do the push-off
correctly.)

The handle slide is just an isotopy of the attaching map f2, thus the outcome is
diffeomorphic to the starting manifold by the isotopy lemma.

4. The handle chain complex

In this section we show how to make our first transition from geometry to algebra.
Once we have the handle chain complex, the goal of the proof of the h-cobordism
theorem is to simplify the handle chain complex. The excitement is to show that
the algebraic manipulations can all be realised geometrically.

For the h-cobordism theorem, we will be working with simply connected man-
ifolds. However in the sequel we will want to work in more generality. For this
reason we will develop the theory in this section for any fundamental group. So let
π := π1(W ).

We define the handle chain groups

Cr(W,∂0W ;Zπ) = Cr(W̃ , ∂̃0W ) := Hr(W̃
(r), W̃ (r−1)),
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where the latter is singular homology, and W̃ is the universal cover of W . Recall
that for any manifold M with a handle decomposition M (r) is the r-skeleton; the

union of all the handles of index up to and including r. The r-handles of W̃
are in one to one correspondence with the product of π and the r-handles of W .

The quotient space W̃ (r)/W̃ (r−1) is homotopy equivalent to a wedge of r-spheres,

and thus Cr(W,∂0W ;Zπ) = Hr(W̃
(r), W̃ (r−1)) is a free Zπ-module with generator

corresponding to the r-handles of W .
The boundary map in the handle chain complex is defined by the following

diagram.

Hr(W̃
(r), W̃ (r−1)) // Hr−1(W̃

(r−1)) // Hr−1(W̃
(r−1), W̃ (r−2))

=

��
Cr(W,∂0W ;Zπ)

∂r
//

=

OO

Cr−1(W,∂0W ;Zπ).

Next we explain how to compute the boundary map. Choose a basepoint p for
W and for each r and for each r-handle hri , choose a path αr

i from p to the centre
point qri of hri . For the (j, i) entry of ∂r+1 : Cr+1(W,∂0W ;Zπ) → Cr(W,∂0W ;Zπ),
we count the transverse intersections of the attaching sphere A(hr+1

i with the belt
sphere B(hrj), with a sign and an element of π, which we will describe now.

A choice of basis for the handle chain group is equivalent to choosing an orienta-
tion of the core of each handle. This induces an orientation on all attaching spheres.
Also choose an orientation of the entire r-handle. This induces an orientation on
the boundary of the handle, the ambient space in which intersection signs are com-
puted. Together with the orientation of the core, the orientation of the r-handle
induces an orientation of the cocore, which in turn induces an orientation of the
belt sphere. Thus intersection points can be counted with sign. A change in choice
of orientations of the core corresponds to a change in the choice of basis of the
chain complex, replacing that basis element by its negative. Reversing the choice
of orientation of the entire r-handle changes the orientation of its boundary, and
changes the orientation of the belt sphere. Thus this latter choice was immaterial.

Now let x ∈ A(hr+1
i ) ∩ B(hrj) be an intersection point. Choose paths γr+1

x in

hr+1
i from qr+1

i to x and γrx in hrj from qrj to x. Let g be the loop

αr+1
i · γr+1

x · γrx · αr
j .

This is the same as measuring which lift of the handle hrj to W̃ has an intersection

of its belt sphere with the attaching sphere of a chosen lift of hr+1
i . The choice of

basing path αr
j is equivalent to a choice of lift of hr to W̃ .

Example 4.1. A handle chain complex for the torus S1 × S1, with

π = π1(S
1 × S1) ∼= Z2 = ⟨µ, λ | [µ, λ]⟩
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is given by

Zπ

(
λ− 1
1− µ

)
//
⊕2 Zπ

(
µ− 1 λ− 1

)
// Zπ.

5. The h-cobordism theorem

For a definitive proof of the h-cobordism theorem, that only uses Morse functions
and no handles, see Milnor’s book [M1]. We will present a less technical treatment
using handles following [CLM].

5.1. Handle trading. Start with an r-handle hrj . We aim to trade it for an (r+2)-

handle. Recall that the attaching sphere A(hrj) = Sr−1. Take a push off er+ of the

core Dr × {0} to Dr × {1} ⊂ Dr × Sn−r. Suppose that

(1) Sr−1 × {1} = ∂er+ is the boundary of a disc Dr, called er−, embedded in

∂1W
(r−1).

(2) The sphere er− ∪ er+ = Sr = ∂Dr+1 is the boundary of a disc er+1 = Dr+1

embedded into ∂1W
(r+1).

For 2(r + 1) < n + 1 all of er± and er+1 are embedded by a small homotopy by
transversality. Next, create a cancelling pair hr+1, hr+2 with attaching data as
follows. The attaching sphere of hr+1 is er+ ∪ er− ∼= Sr. We have subsets ∂hr+1 ⊇
Dr+1×Sn−r−1 ⊇ Dr+1×{pt}. The attaching map of hr+2 = er+1∪er+∪er− (D

r+1×pt)
Then

W (r+1) ∪ hr+1 ∪ hr+2 ∼=W (r+1)

by the cancellation lemma. On the other hand,

W (r+1) ∪ hr+1 ∪ hr+2 ∼=W (r−1) ∪
∪
j ̸=i

hrj ∪ hrj ∪
∪
j

hr+1
j ∪ hr+1 ∪ hr+2

∼=W (r−1) ∪
∪
j ̸=i

hrj ∪
∪
j

hr+1
j ∪ hr+2,

since hrj and hr+1 are also in cancelling position. Thus given (1) and (2), for

2r < n− 1 we can exchange an r-handle for an (r + 2)-handle.

5.2. 0-handles. For a warm up we remove all the 0-handles ofW . Since ∂0W →W
is a homotopy equivalence, the inclusion induces a bijection on π0(∂0W ) → π0(W ).
Thus every 0-handle of W is subsequently connected to ∂0W × I by a 1-handle h1.
Cancel them.

5.3. 1-handles. Assume that all 0-handles have been removed, so the connected
components ofW (0) are in one-one correspondence with the connected components
of ∂0W . The attaching sphere of a 1-handle h1 is two points, which lie in the same
connected component. So the two points are connected by a path e1− in ∂1W

(0).
Now e1+, which is the core of h1 pushed to its boundary, has endpoints that are

joined by a path e1− ⊂ ∂1W
(0). We have that π1(∂0W ) → π1(W ) is surjective.

Thus there exists a map of a disc D2 → W (2) with boundary e1+ ∪ e1−, for some
path e1− with the same endpoints as e1−. This disc can be pushed to the boundary
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of W (2), and it can be embedded, since n ≥ 5. Thus we have the data required to
trade h1 for a 3-handle.

5.4. Trading higher handles. For r ≥ 2, in order to trade up r-handles, we will
use the handle chain complex. Suppose that all handles of index less that r have
been cancelled already. Start with:

. . . // Cr+2
// Cr+1C

′
r ⊕ Zπ //// 0

where the r-th chain group Cr
∼= Zπ ⊕ C ′

r for some C ′
r. The Zπ that we have

separated out corresponds to hr. Next, add a cancelling pair in a standard way in
a small neighbourhood.

· · · // Cr+2 ⊕ Zπ

(
∂r+1 0
0 1

)
// Cr+1 ⊕ Zπ

(
∂r+1 0
∂r+1 0

)
// C ′

r ⊕ Zπ // 0

The hypothesis that the inclusion map is a homotopy equivalence implies that
Hr(W,∂0W ;Zπ) = 0. Thus the last map

Cr+1 ⊕ Zπ

(
∂r+1 0
∂r+1 0

)
// C ′

r ⊕ Zπ

is surjective. Thus the generator of Zπ is hit by the image of ∂r+1. Take the
new hr+1 and slide it over the other hr+1s, according to the linear combination of
handles that hit the generator of the extra Zπ corresponding to hr. We obtain:

· · · // Cr+2 ⊕ Zπ

(
∂r+1 ∗
0 1

)
// Cr+1 ⊕ Zπ

(
∂r+1 ∗
∂r+1 1

)
// C ′

r ⊕ Zπ // 0

Now we are in a position to algebraically cancel a summand of Cr+1 and Cr, to
obtain:

· · · // Cr+2 ⊕ Zπ // Cr+1
// C ′

r
// 0.

To replicate this geometrically, we need to know that we can realise a 1 in the
boundary map by one geometric intersection in between the relevant belt and
attaching spheres of the handles. This will require the Whitney trick. Assume that
we can arrange for the belt sphere of the r-handle and the attaching sphere of the
(r+1)-handle to intersect geometrically once. Then we can apply the cancellation
lemma, and trade an r-handle for an (r + 1)-handle as required.

5.5. Proof excluding Whitney trick. Let us engage in some wishful thinking:
assume that we can always realise algebraic intersections by geometric intersections;
in particular, that we can always cancel intersections geometrically if they cancel
algebraically. We saw in the previous sections that we can trade handles until all
handles with 2r < n− 1 are gone. Then, we turn the handle decomposition upside
down.

An elementary cobordism (M × I ∪ hr;M,N) is also an elementary cobordism
(N × I ∪ hn+1−r;N,M), obtained from turning the first cobordism upside down.
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This is equivalent to replacing a Morse function F by −F . Handles/critical points
of index r become index n + 1 − r. The core and the cocore of Dr × Dn+1−r

are swapped, as are the attaching and belt spheres. Perform handle trading again
and turn the cobordism back the roight way up. There are now no handles with
2(n+1− r) < n− 1, that is r > n/2+ 1. After this we only have handles left with
indices ⌈n−1

2 ⌉ and ⌊n/2+ 1⌋. These are two consecutive integers r, r+1. Thus the
handle chain complex C∗(W,∂0W ;Zπ) looks like

0 → Cr+1
∂r+1−−−→ Cr → 0,

with ∂r+1 ∈ GL(m,Zπ). Now, we want to prove the h-cobordism theorem, so
we work with π the trivial group. Thus ∂r+1 is represented by a matrix over the
integers with determinant ±1. We can stabilise the matrix:

∂r+1 7→
(
∂r+1 0
0 1

)
,

corresponding to the introduction of a cancelling pair of an r+1 and an r-handle.
We can also change the basis of Cr and Cr+1, by handle slides. This corresponds to
multiplication of ∂r+1 by elementary matrices of the form Id+mEij , where m ∈ Z
and Eij is the square matrix with a 1 in the (i, j) entry and zeroes elsewhere.

Lemma 5.1. Let A ∈ GL(m,Z). There exists a sequence of row and column
operations, followed by replacing basis elements hr with −hr, that transform A into
the identity matrix.

Proof. Using the Euclidean algorithm, arrange that the gcd of the first row and
the first column appears somewhere in the first row and the first column (there
must be a nonzero entry or else A would not be invertible). Then move it to the
top left, and use it to clear the rest of the first row and column. Now iterate this
procedure on the submatrix of the last m− k rows and the last m− k columns, in
the k − 1th step of the iteration. We obtain a diagonal matrix. But all the entries
must be ±1 since the matrix has determinant 1. One more basis change, replacing
certain hr with −hr, fixes the signs and yields the identity matrix. �

Assuming again that the algebraic intersections can be realised geometrically, we
can cancel all the handles, and arrive at a product cobordism. This completes the
proof of the h-cobordism theorem, once we have stated and proved the Whitney
trick, and justified that it can be applied.

An embedding P ↩→M is said to be π1-null if the induced map on fundamental
groups π1(P ) → π1(M) is the trivial map.

Theorem 5.2 (The Whitney trick). Let P p, Qq ↩→Mm be two π1-null embeddings,
p+ q = m, of oriented transversely intersecting submanifolds P,Q of M . Suppose
in addition that either both p and q are at least 3, or that p = 1, 2 and π1(MrQ) �
π1(M) is injective. Let x, y ∈ P t Q be intersection points with opposite signs, and
suppose that there are paths γ1 ⊂ P from x to y and γ2 ⊂ Q from y to x such that
γ1 · γ2 = {1} ∈ π1(M). There there is an isotopy of P to an embedding P ′ such
that P ′ t Q = P t Qr{x, y}.
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Here are some remarks on the statement and its use in the proof of the h-
cobordism theorem. If p, q ≤ 3 then m ≥ 6. In the case that dimM = 5, we
will always need π1-injectivity. An embedding Q ⊂ M is called π1-negligible if
π1(M) ∼= π1(MrQ).

We will apply the Whitney trick with M = ∂1W
(r), whose dimension is n for an

(n+1)-dimensional cobordismW , and with P and Q the intersecting attaching and
belt spheres of an r + 1 and an r-handle respectively, with a pair of algebraically
cancelling intersections. The existence of the paths γ1 and γ2 with their composite
homotopically trivial, is equivalent to the π1 elements associated to the intersection
points being equal.

Note that a codimension 3 submanifold is always π1-negligible by general posi-
tion. By assumption we have that the concatenation γ1 · γ2 bounds an immersed
disc in M . We need the π1 condition to guarantee that this disc can be homotoped
to a disc that lies in Mr(P ∪ Q). An issue is in the case that Q is codimension
one or two; then the extra assumption on π1 injectivity is required.

For us, there is one potentially problematic case: when we want to cancel inter-
sections between the belt sphere Sn−2 of a 2-handle and the attaching sphere S2

of a 3-handle. The belt sphere Sn−2 is codimension 2. However it will not cause
any problems, as we argue now. Let M1 be the level set just before a 2-handle
attachment, and let M2

∼= ∂1W
(2) be the the level set just after it. M2 is obtained

from M1 by a surgery on S1 ×Dn−2.
Note that

M2r{0} × S2 ∼=M1rS1 × {0}.
But π1(M1rS1) ∼= π1(M1) since S1 is codimension greater than 2. Since there
are no 1-handles (they have been traded for 3-handles by this point), π1(M1) ∼=
π1(∂0W ). Since the fundamental group of ∂0W injects into π1(W ), we see that the
inclusion induced map π1(M2rSn−2) → π1(M2) must be injective.

5.6. Vector bundles. The description and proof of the Whitney trick uses the
language of vector bundles, so we introduce it here.

Definition 5.3. A k-dimensional vector bundle with structure group GLk(R) over
a space (manifold) X is a space E with a map π : E → X such that:

(1) For each x ∈ X, there is a neighbourhood Uα ∋ x in X and a homeomor-
phism (diffeomorphism)

hα : π
−1(Uα)

≃−→ Uα × Rk

such that

π−1(Uα)
hα //

π
&&LL

LLL
LLL

LLL
Uα × Rk

pr2
��
Uα

commutes. The pairs (Uα, hα) are called charts.
(2) For any α, β, the composition

hβ ◦ h−1
α : (Uα ∩ Uβ)× Rk → (Uα ∩ Uβ)× Rk
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is given by (x,v) 7→ (x,Φαβ(x) · v) where Φαβ : Uα ∩ Uβ → GLk(R) is a
continuous (smooth) function. The codomain of Φαβ , GLk(R), is called the
structure group. (For smooth transition functions, we need that GLk(R) is
a smooth manifold.)

(3) If (Uα, hα) is a chart and V ⊂ U , then (V, hα|V ) is also a chart.
(4) The collection of charts is maximal with respect to the conditions above.

Example 5.4.

(i) For a space X, π : X × Rk → X is the trivial k-plane vector bundle over X.
(ii) For a smooth manifold M , the tangent bundle π : TM → M is a vector

bundle, with transition functions determined by the derivatives of the charts
of the manifold.

(iii) Let P p ⊂Mm be an embedding of a submanifold P inM . The normal bundle
of the embedding

Rm−p → νP⊂M → P

is subbundle of TM |P such that

νP⊂M ⊕ TP = TM |P .

In the last example, we used the Whitney sum of vector bundles. Given π : E →
X and π′ : E′ → X, the Whitney sum π ⊕ π′ : E ⊕ E′ → X is defined by

E ⊕ E′ = {(e, e′) ∈ E × E′ |π(e) = π′(e′)}
If the fibres are π−1(x) ∼= Rk and (π′)−1(x) = Rℓ then (π ⊕ π′)−1(x) ∼= Rk+ℓ.

Definition 5.5. A framing of a trivial vector bundle is a choice of isomorphism

E
≃−→ X × Rk. Equivalently, a framing is a choice of k linearly independent vector

fields
v1, . . . , vk : X → E

with π ◦ vi = IdX .

For example up to homotopy, the framings of the trivial vector bundle S1 × R2

are affine correspondence with Z.
Since O(n) ↩→ GLn(R) is a deformation retract, given a metric on a smooth

manifold M i.e. an inner product on TpM for all p ∈ M , we can reduce the
structure group to O(n) i.e. we can deform the transition functions so that they
factor as:

Φαβ : Uα ∩ Uβ → O(n) ↩→ GLk(R).
Using this we can define the following.

(i) The disc bundle of E:

D(E) := {e ∈ E | ∥ pr2 ◦hα(e)∥ ≤ 1}.
(ii) The sphere bundle of E:

S(E) := {e ∈ E | ∥ pr2 ◦hα(e)∥ = 1}.
(iii) The Thom space of E:

Th(E) := D(E)/S(E).

We do not need the Thom space right now but we give the definition here anyway.
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5.7. Whitney trick proof. To prove the Whitney trick, first note that the di-
mension hypotheses and the fundamental group hypotheses imply that there is an
embedded disc D2 ↩→ MrP ∪Q with boundary γ1 · γ2. The use of transversality
to embed the disc is the only place that we used the dimension restrictions.

Along γ1, we have

TM = TP ⊕ νP⊂M = Tγ1 ⊕ νγ1⊂P ⊕ νP⊂M ,

while along γ2 we have

TM = TQ⊕ νQ⊂M = TQ⊕ νγ2⊂D ⊕ (νD2⊂M ∩ νQ⊂M ),

The subbundles νγ1⊂P and (νD2⊂M ∩ νQ⊂M ) are (p− 1)-dimensional.
Suppose that we have a framing v1, . . . , vm−2 for νD2⊂M , such that

(1) v1, . . . , vp−1 restricts to a framing for νγ1⊂P along γ1.
(2) v1, . . . , vp−1 lie in νQ⊂M , giving a framing for (νD2⊂M ∩ νQ⊂M ).

Since γ1 and γ2 are contractible, there is a unique choice of framing of the
(sub)bundles over them, up to homotopy. Another way to phrase the condition
above is that the framings are essentially given on the boundary of D2. They glue
together to give subbundle E of νS1⊂M , where S1 = γ1 ·γ2. The question is whether
these (p− 1) linearly independent vectors extend to a (p− 1)-frame in the normal
bundle of D2. It turns out that this is the case precisely when E is orientable: a
(p−1) frame bundle over a circle is trivial if and only if it extend over a disc D2, if
and only if it is orientable. In turn, careful consideration of orientations shows that
this is the case if and only if the signs of the intersection points x and y (that we
are trying to cancel) are opposite i.e. one is + and one is −. This should be quite
easy to see in the toy case that p = 2 and q = 1. The 1-plane bundle is an annulus
if the intersection signs are opposite and is a Möbius band if the intersection signs
of x and y agree. A detailed description can be found on [Sco, Pages 55–7].

Now think of the Whitney disc like the Russian military, and extend D2 very
slightly beyond its borders. More precisely, extend γ1 slightly beyond x and y and
push γ2 out along the radial direction of TD2|γ2 , that is the direction orthogonal
to Tγ2. Now consider the disc bundle DE ∼= D2 ×Dp−1 ∼= Dp+1. The boundary

∂(P × I ∪DE) ∼= P ∪ P ′

where P is the original and P ′ is the outcome of the push of P across the Whitney
disc. Note that DE ∩ P = Dνγ1⊂P

∼= Dp by construction of E. So there is an
isotopy of this Dp ⊂ ∂Dp+1 across Dp+1 to the other hemisphere, producing P ′.
This completes the proof of the Whitney trick.

6. Algebraic K theory – K0 and K1

We do not really need to talk about K0 for the course, but since we are going
to talk about K1 we really should talk about K0 first briefly, to give some context,
and since it is good general culture to be aware of.
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6.1. Projective modules.

Definition 6.1. An R-module P is projective if one of the following are true:

(i) There exists a free R-module F and an R-module Q such that P ⊕Q ∼= F .
(ii) For any surjective homomorphism f : M → N and for every g : P → N there

is a homomorphism h : P →M such that f ◦ h = g.

N

f
��

P
g //

h
>>}

}
}

}
M

(iii) Every short exact sequence

0 → A→ B
j−→ P → 0

splits, that is there is a homomorphism f : P → B such that j ◦ f = Id.

You should check that these conditions are equivalent.

6.2. The zeroth K-group of a ring. Let R be a ring (with unit). The group
K0(R) is the abelian group arising from the following construction. Consider the
isomorphism classes of finitely generated projective modules, and make them into
a group by taking the abelian group generated by the isomorphism classes, with
the relations given by short exact sequences as follows. If 0 → A→ B → C → 0 is
a short exact sequence of R-modules, then we have the relation [A]− [B]+ [C] = 0.
In particular, note that this means that [A] + [B] = [A⊕B].

A morphism of rings R → S induces a morphism of K0 groups K0(R)toK0(S)
by A 7→ S ⊗R A. We define the reduced K0 group to be

K̃0(R) := coker(K0(Z) → K0(R)).

6.3. Colimits. Let {Xi}i∈N∪{0} be a collection of objects in a category together
with maps fi : Xi → Xi+1 for each i; this is called a directed system. For example,
the category could be of groups, R-modules, or topological spaces. The colimit
colimXi is the unique object which has morphisms ϕi : Xi → : Xi for all i such
that ϕi+1 ◦ fi = ϕi, which satisfies the following universal property. For any object
Y with maps gi : Xi → Y such that gi=1 ◦ fi = gi for all i, there is a unique map
ΦY : colimXi → Y such that ΦY ◦ϕi = gi. One can take colimXi to be the quotient
of the disjoint union

⊔
Xi/ ∼ where xi ∈ Xi is declared equivalent to fi(xi) for all

xi ∈ Xi and for all i. This is sometimes known as a direct limit.
This is a special case of the colimit of a functor F : C → D between two cate-

gories. The colimit is an object of D, which is the unique object that has maps
ϕ(c) : F (c) → colimC F for each object c of C, such that ϕ(g(c)) ◦ F (g) = ϕ(c) for
any morphism g of C, satisfying the following universal property. For any other
object Y of D with the same property, with the maps denoted ϕY (c) : F (c) → Y ,
there exists a unique map ΦY : colimC F → Y with ΦY ◦ ϕ(c) = ϕY (c).

One can define the notion of a limit, also inverse limit in the case of the direct
limit, by reversing all the arrows above.
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6.4. Simple homotopy equivalence. The notion of simple homotopy equiva-
lence is stronger than having a homotopy equivalence between spaces. An s-
cobordism is an h-cobordism where the inclusion maps of the boundary components
are simple homotopy equivalences. The obstruction to being a simple homotopy
equivalence, which is called the Whitehead torsion, obstructs an h-cobordism from
being a product, when the manifolds in question are not simply connected.

Let us now define simple homotopy equivalence.

Definition 6.2. Let (K,L) be a CW pair, i.e. a pair of cell complexes. We say
that K collapses to L by an elementary collapse K ↘ L if

(i) K = L ∪ en−1 ∪ en;
(ii) Let ∂Dn = Sn−1Dn−1

+ ∪Dn−1
− . We require that there exists a characteristic

map φ : Dn → K for en such that φ| : Dn−1
+ is a characteristic map for en−1

and φ(Dn−1
− ) ⊆ L.

Under these circumstances there is a elementary collapse map K → L realising the
fact that the inclusion L→ K is a deformation retract. The inclusion is called an
elementary expansion.

In general a map f : K → L of CW complexes is a simple homotopy equivalence
if f is homotopic to a composition

K = K0 → K1 → K2 → · · · → Kn = L

where each map in the sequence is either an elementary expansion, an elementary
collapse, or a cellular homeomorphism.

To decide on whether a map is a simple homotopy equivalence we will look at the
chain complex C∗(K,L;Z[π]) where π is the fundamental group of K and L (the
map f induces an identification of their fundamental groups.) This will lead to the
notion of the Whitehead torsion of a homotopy equivalence. As an easy example,

suppose that C∗(K,L;Z[π]) is only supported in two degrees 0 → Cr+1
∂r+1−−−→ Cr →

0. This was the situation we found ourselves in after the handle trading in the
proof of the h-cobordism theorem. In this case the equivalence class of the matrix
representing ∂r+1 in the group K1(R) determines the Whitehead torsion. So we
need to understand K1 of a ring.

6.5. The first algebraic K-group of a ring. See chapter 11 of [DK] for more
detail on the material of this section. The abelian group K1(R) measures to what
extent an invertible matrix can be simplified using row and column operations, and
stabilisation, to become an identity matrix.

Let R be a ring with the property that Rn ∼= Rm implies n = m. All group
rings satisfy this since Z does and one can apply the augmentation homomorphism
Zπ → Z. Let Eij(r) be a matrix with entry r in the (i, j) position and zeroes
elsewhere. There is a homomorphism GLn(R) → GLn+1(R) defined by sending a
matrix

A 7→
(
A 0
0 1

)
.



MAT993D: TOPOLOGY OF MANIFOLDS: SURGERY THEORY 28

This makes {GLn(R) |n ∈ N} into a directed system. Define GL(R) to be the
colimit. One can think of infinite matrices that eventually become the identity.
Next let E(R) be the normal subgroup of GL(R) generated by matrices of the
form Id+Eij(r). These are called the elementary matrices. Define:

K1(R) := GL(R)/E(R).

The next lemma shows that this is an abelian group.

Lemma 6.3 (Whitehead lemma). We have that

E(R) = [GL(R),GL(R)],

the commutator subgroup. Thus K1(R) = GL(R)ab.

Proof. Let I := Id and Eij = Eij(1), so Eij(r) = rEij . First observe that

(I + rEij)
−1 = I − rEij

and that

I + rEik = (I + rEij)(I + rEjk)(I + rEij)
−1(I + rEjk)

−1.

Thus for n ≥ 3, any elementary matrix is a commutator, so E(R) ⊆ [GL(R),GL(R)].
Next we have the following three identities:

(i) (
ABA−1B−1 0

0 I

)
=

(
A 0
0 A−1

)(
B 0
0 B−1

)(
(BA)−1 0

0 BA

)
.

(ii) (
A 0
0 A−1

)
=

(
I A
0 I

)(
I 0

I −A−1 I

)(
I −I
0 I

)(
I 0

I −A I

)
.

(iii) (
I X
0 I

)
=

m∏
i=1

n∏
j=1

I + xijEi,j+m.

The left hand side of (i) represents any commutator. The right hand side of (i)
contains three terms of the form of the left hand side of (ii). The right hand side
of (ii) contains four terms of the form of the left hand side of (iii). The right
hand side of (iii) is contained in E(R). Combining these observations we have that
[GL(R),GL(R)] ⊆ E(R). This completes the proof of the Whitehead lemma. �

For any commutative ring R there is a homomorphism det : K1(R) → R× defined
by the determinant, where R× is the group of units of R. In K1(R), we have that(

AB 0
0 Id

)(
B−1 0
0 B

)
=

(
A 0
0 B

)
,

and we saw above that

(
B−1 0
0 B

)
is elementary, so we have(

A 0
0 B

)
∼
(
AB
)
.

Thus the multiplication in GL(R) translated to direct sum in the abelianisation.
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Definition 6.4. Let π be a group. The Whitehead group of π is

Wh(π) := K1(Zπ)/{(±g)|g ∈ π}.

The quotient is generated by all 1 × 1 matrices (±g) where g is an element of
the group π. There is a short exact sequence

0 → {±1} × πab → K1(Zπ) → Wh(π) → 0.

Here are some examples.

(i) The Whitehead group of the trivial group vanishes Wh({e}) = 0. This is
essentially the Euclidean algorithm.

(ii) So does the Whitehead group of the infinite cyclic group Wh(Z) = 0. This is
a nontrivial fact.

(iii) The Whitehead group Wh(Z/n) of a finite cyclic group of order n is free
abelian Wh(Z/n) ∼= Zk where k = ⌊n/2⌋+1− d(n) where d(n) is the number
of divisors of n.

(iv) Here is an example of two equivalent elements for which stabilisation is nec-
essary to see the equivalence. Let

π = ⟨x, y|y2 = 1⟩ = Z ∗ Z2.

Define elements of Zπ, a := 1− y and b = x(1+ y). Observe that (1−ab)(1+
ab) = 1, so (1 − ab) is a nontrivial unit of the group ring. We will see that
this is equivalent to the zero group, but only after stabilisation:(

1 0
b 1

)(
1 a
0 1

)(
1 0
b 1

)−1(
1 a
0 1

)−1

=

(
1− ab 0

0 1

)
.

So
(
1− ab

)
= 0 ∈ Wh(π) but only after stabilisation.

In general the Whitehead group is difficult to compute.

6.6. The s-cobordism theorem and some applications. We will associate an

element τ(W̃ , ∂̃0W ) ∈ Wh(π) to an h-cobordism W with π1(W ) = π. This τ is
called the Whitehead torsion of the h-cobordism.

Theorem 6.5 (s-cobordism theorem). Let n ≥ 5, and let (W ;M,N) be an h-

cobordism. ThenW is diffeomorphic toM×I if and only if τ(W̃ , M̃) = 0 ∈ Wh(π).

An h-cobordism with vanishing Whitehead torsion is called an s-cobordism.
The proof of the s-cobordism theorem is basically the same as the proof of the
h-cobordism theorem. The key difference is that diagonalising the matrix of

∂r+1 : Cr+1(W̃ , ∂̃0W ) → Cr(W̃ , ∂̃0W )

to be of the form ±g1
. . .

±gn


is not always possible. We also have to check that the choices we made in the
handle trading process to arrive at this simple form of the chain complex, whereby
the chain complex is only supported in two adjacent degrees, do not affect whether
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the resulting matrix can be diagonalised i.e. whether the matrix vanishes or not in
Wh(π). To arrange this we will define the Whitehead torsion on the whole chain
complex. For now we just say that in the special case of the simple chain complexes

Cr+1
∂r+1−−−→ Cr, the Whitehead torsion is just [∂r+1] ∈ Wh(π). Before embarking

on another algebraic investigation, we give an outline of a cool application of the
h and s-cobordism theorems to high dimensional knot theory.

Theorem 6.6 (Unknotting theorem). Let n, k ∈ N be such that n+ k ≥ 6 and let
K : Sn ↩→ Sn+k be a locally flat embedding i.e. each point of the image is locally
homeomorphic to a pair (Dn+k, Dn). Suppose that either k ≥ 3 or k = 2 and
Sn+2rK(Sn) ≃ S1. Then K is topologically unknotted, that is there is an orien-
tation preserving homeomorphism Sn+k → Sn+k sending K(Sn) to the standard
unknot U(Sn).

We remark that the theorem is true in all dimensions, but we do not prove it. In
dimension 3 one needs the loop theorem of Papakriakopolous, while in dimension
4 one needs topological surgery and s-cobordism, due to Freedman and Quinn.

Proof. Remove a pair (Dn+k, Dn) from (Sn+k, Sn). We are left with a proper
embedding Dn ↩→ Dn+k. Here is some notation.

(1) Let N be a regular neighbourhood of K(Dk) ∼= Dn ×Dk.
(2) Let W = Dn+krN .
(3) Let M0 =W ∩N ∼= Dn × Sk−1.
(4) Let M1 = ∂WrM0.

We claim that (W ;M0,M1) is an h-cobordism. First,H∗(W,M0) ∼= H∗(D
n+k, N) ∼=

H∗(D
n+k, Dn) = 0 by excision, then homotopy invariance, then computation.

Now we split into two cases. In the case that k ≥ 3, we have π1(W ) = 1
by transversality, and pi1(M0) = π1(D

n × Sk−1) = 1. So W is (rel. boundary)
h-cobordism, and is therefore a product.

In the case that k = 2 and W ≃ S1, we also have that M0,M1
∼= Dn × S1, and

the inclusion map induced an isomorphism on fundamental groups. The Hurewicz
and Whitehead theorems therefore imply that the inclusion maps of M0 and M1

are homotopy equivalences. Now π1(W ) ∼= Z, and Wh(Z) = 0 (we will just take
this as a black box). Thus (W,M0,M1) is not just an h-cobordism, but rather
an s-cobordism, and is therefore a product. In both cases we have trivial knot
exteriors. Glue back in the removed disc pair (Dn+k, Dn), to obtain a topological
unknot (the new ambient space may only be topologically Sn+k, since one needs
the Poincaré hypothesis for this. �
6.7. Whitehead torsion and some homological algebra. In this section we
will define the Whitehead torsion of a chain complex, then of a chain equivalence,
then of a homotopy equivalence, and finally of an h-cobordism.

Let (C∗, ∂) be a finite, free, based, non-negative R-module chain complex. Here
finite means that

⊕
r Cr is finitely generated, based means that there is a fixed

isomorphism Cr
∼= Rnr , nr <∞, and non-negative means that Cr = 0 for r < 0.

A chain complex is called chain contractible if there exists a sequence of homo-
morphisms s : Cr → Cr+1 for all r such that ∂s+s∂ = Id. That is, the identity map
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is chain homotopic to the zero map. Note that a contractible space does not have
a contractible chain complex, since a space has H0, whereas for any cycle x ∈ Cr,
x = Id(x) = ∂s(x) + s∂(x) = ∂(s(x)), and is thus a boundary. so H∗(C∗) = 0 for
C∗ contractible. For projective module chain complexes, we have a converse to this
statement.

Lemma 6.7. If H∗(C∗) = 0 then C∗ is chain contractible.

The details of this proof are an archetype for a common inductive argument in
homological algebra.

Proof. We want to construct a chain homotopy s fitting into a diagram of maps as
follows, with s∂ + ∂s = Id.

· · · // C2
∂2 //

Id
��

s2

~~||
||
||
||

C1
∂1 //

Id
��

s1

~~||
||
||
||

C0
//

Id
��

s0

~~||
||
||
||

0

· · · // C2
∂2 // C1

∂1 // C0
// 0

First ∂1 is onto since H0(C∗) = 0, so there is a map s0 : C0 → C1 such that
∂1 ◦ s0 = Id. To construct this map, define it on free generators of C0 using a
choice of preimages of these generators, then extend by linearity. This uses the
fact that C0 is free, and would also work if C0 were projective.

Next, we have a small computation:

∂1(Id−s0∂1) = ∂1 − ∂1s0∂1 = ∂1 − Id ◦∂1 = 0.

Thus (Id−s0∂1)(c) ∈ ker ∂1 = im ∂2. since H1(C∗) = 0. Now we have a lifting
problem:

C1

?∃

||x
x
x
x

Id−s0∂1
��

C2
∂2 // ker ∂1 // 0

We just calculated that the image of the vertical map indeed lies in ker ∂1, and
the horizontal map is surjective by exactness. Then C1 is projective, so the lifting
problem can be solved, and the resulting dotted map becomes s1, that satisfies
∂2s1+s0∂1−Id. Now repeat this argument, inducting to the left on the assumption
that si has been defined for i < k. �

The same idea for the proof, working backwards from the map on C0, enables
one to prove the fundamental lemma of homological algebra. This is an aside in the
theory of Whitehead torsion, but is an important fact to know.

Lemma 6.8. Let P∗ be a projective R-module chain complex, i.e. Pi is a projective
module for all i, and let C∗ be an acyclic R-module complex, that is Hi(C∗) = 0
for all i > 0. Both are assumed to be nonnegative. Let φ : H0(P∗) → H0(C∗) be a
homomorphism. Then:

(1) there is a chain map fi : Pi → Ci (∂Cfi+1 = fi∂P ) such that f0 induces φ
on H0;
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(2) any two such chain maps f and g are chain homotopic f ∼ g, that is there
exists a chain homotopy hi : Pi → Ci+1 such that ∂Chi + hi−1∂P = fi − gi.

Proof. We give an outline of the proof. Let M := H0(P∗) and M
′ := H0(C∗). First

construct, using the idea of the previous lemma, the vertical maps (apart from the
far right vertical map, which is given), in the following diagram, using the fact
that Pi is projective for all i and that the bottom row is exact, now it has been
augmented with M ′.

· · · // P2
∂P //

���
�
� P1

∂P //

���
�
� P0

//

���
�
� M //

φ

��

0

· · · // C2
∂C // C1

∂C // C0
// M ′ // 0

This shows (i). Now let f and g be two such chain maps as in (ii). Construct a
chain homotopy h, again using the idea of the proof of the lemma above, fitting
into the diagram:

· · · // P2
∂P //

f2−g2

��

h2

{{w
w
w
w
w
w
w

P1
∂P //

f1−g1

��

h1

{{w
w
w
w
w
w
w

P0
//

f0−g0

��

h0

{{w
w
w
w
w
w
w

M //

φ−φ=0

��

0

· · · // C2
∂C // C1

∂C // C0
// M ′ // 0

To do this one needs the following computation:

∂C((fn − gn)− hn−1∂P ) = (fn−1 − gn−1)∂P − ∂Chn−1∂P

=fn−1∂P − gn−1∂P − hn−2∂
2
P − fn−1∂P + gn−1∂P = 0.

We leave the details to the reader. They can be found, for example, in chapter 2
of [DK]. �

Now we define the Whitehead torsion of a contractible, finite, based free R–
module chain complex, with a chain contraction s. Consider:

∂ + s :
⊕
r odd

Cr = C1 ⊕ C3 ⊕ C5 ⊕ · · · →
⊕
r even

Cr = C0 ⊕ C2 ⊕ C4 ⊕ · · ·

Lemma 6.9.

∂ + s =


∂ 0 0 . . .
s ∂ 0
0 s ∂ 0

0 0 s ∂
. . .
. . .

 : Codd] → Ceven

is an isomorphism of chain complexes.
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Proof. The inverse (∂ + s)−1 is given by (1 + s2)−1(s + ∂) Concretely, we have
matrices:

1 0 0
−s2 1 0
s4 −s2 1 0
−s6 s4 −s2 1 0
s8 −s6 s4 −s2 1 0
...

...
. . .

. . .





s ∂ 0
0 s ∂ 0

0 s ∂ 0

0 s ∂
. . .

. . .
. . .
. . .


: Ceven → Codd

It can be checked that the given matrix on the left really is the inverse of Id+s2

and that the two maps together are indeed an inverse to ∂ + s. �

Since C∗ is based, ∂ + s determines an element of GL(R). We want to define

τ(C∗) = [∂ + s] ∈ K̃1(R) = K1(R)/[−1] = coker(K1(Z) → K1(R)).

The next lemma shows that this is independent on the choice of chain contraction.
In general the torsion τ does depend on the choice of basis of C∗; for this we will
cite a theorem that says this is not the case for CW complexes.

Lemma 6.10. Let s and s′ be two chain contractions for C∗. Then τ(∂ + s) =
τ(∂ + s′).

Proof. From [CLM]. Consider the two maps

(∂ + s)odd : Codd → Ceven

and

(∂ + s′)even : Ceven → Codd.

Also define

∆ := (s′ − s)s; ∆′ := (s− s′)s′

where

∆i,∆
′
i : Ci → Ci+2.

Now all the following compositions are represented by upper triangular matrices,

with respect to the given basis, thus all represent the zero element of K̃1(R).

1 + ∆′
odd : Codd → Codd

1 + ∆even : Ceven → Ceven

(∂ + s)odd ◦ (1 + ∆′
odd) ◦ (∂ + s′)even : Ceven → Codd

(∂ + s′)even ◦ (Id+∆even) ◦ (∂ + s)odd : Codd → Codd

Let A = τ((∂ + s)odd) and let B = (∂ + s′)even. Then A + B = 0 ∈ K̃1(R) so
A = −B. But A is independent of S and B is independent of s′. Thus both A and
B are independent of both s and s′. So τ(C∗) = A = τ((∂ + s)odd) is independent
of the choice of chain contraction s. �
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Let ϕ : X → Y be a map of topological spaces. The mapping cylinder is the
identification space

Mϕ : X × I ∪ Y/{(x, 1) ∼ ϕ(x) |x ∈ X}.
It is homotopy equivalent to Y , and is often used to replace Y by a homotopy
equivalent space with X → M(ϕ) an inclusion. The mapping cone is

cone(ϕ) = Mϕ/X × {0}.
These topological constructions have algebraic analogues. The algebraic mapping

cylinder M(f) of a chain map f : C → D has boundary map

∂
M(f)
r+1 : M(f)r+1 = Cr+1 ⊕ Cr ⊕Dr+1 →M(f)r = Cr ⊕ Cr−1 ⊕Dr

given by ∂Cr+1 (−1)r Id 0
0 ∂Cr 0
0 (−1)rf ∂Dr+1

 .

The algebraic mapping cone C of a chain map f : C → D has boundary map given
by

∂
C (f)
r+1 : C (f)r+1Dr+1 ⊕ Cr → C (f)r := Dr ⊕ Cr−1

given by (
∂Dr+1 (−1)rf
0 ∂Cr

)
.

Example 6.11. Let C0 = Z and Cr = 0 for r ̸= 0, and let Dr = Cr for all r. Let

f = Id: C0 → D0. Then C (f) = (Z Id−→ Z).

Let f : X → Y be a map of spaces, and let f : C∗(X) → C∗(Y ) also denote the
induced map on chain complexes. Then

C∗(cone(f), pt) ≃ Ċ∗(cone(f)) ≃
where Ċ is the reduced chain complex of C, i.e. C augmented with a Z in degree
−1. So the chain complexes of the mapping cone and the algebraic mapping cone
differ in degree 0, but are elsewhere identical.

Definition 6.12. Let f : C → D be a chain homotopy equivalence of based free
finite non-negative chain complexes. Then

τ(f) := τ(C (f)) ∈ K̃1(R).

In order for this to make sense we need the following lemma.

Lemma 6.13. If a chain map f : C → D is a chain homotopy equivalence then
C (f) is chain contractible.

First proof. There exist maps g, h, k, with g the homotopy inverse to f and h, k
homotopies, such that:

fg − Id = ∂h+ h∂

and
gf − Id = ∂k + k∂
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where g : DrtoCr, h : Dr → Dr+1 and k : Cr → Cr+1. Then(
1 (−1)r+1(fk − hf)
0 1

)(
h 0

(−1)rg k

)
: Dr ⊕ Cr−1 → Dr+1 ⊕ Cr

is a chain contraction. There is a certain amount of matrix multiplication required
of the reader to verify this. �

We give another proof that some will find more satisfying and others might find
less so.

Second proof. Define the suspension (ΣC)i = Ci−1, with the boundary maps (Σ∂)i =
∂i−1. The short exact sequence of chain complexes

0 → D → C (f) → ΣC → 0

induced a long exact sequence in homology (any short exact sequence of chain
complexes does, by the snake lemma, that was used in Algebraic Topology I to
construct the long exact sequence in homology of a pair, or the Mayer-Vietoris se-
quence.) Then the fact that f is a homotopy equivalence implies that the connected
homomorphism of this sequence Hr+1(Σ(C)) → Hr(D) is an isomorphism for all
r ≥ 0, which implies by exactness (and H0(ΣC) = H−1(C) = 0) that Hr(C (f)) = 0
for all r.

�

Now we have defined the Whitehead torsion of an acyclic chain complex, and of
a chain equivalence between such chain complexes, we switch to geometry.

Definition 6.14. Let f : XtoY be a homotopy equivalence of finite CW complexes.
Let

f̃ : C∗(X;Z[π1(X)]) → C∗(Y ;Z[π1(Y )])

be the induced chain map. We have π1(X) ∼= π1(Y ) =: π with an identification

given by f , so both are Z[π]-modules. Choose lifts of each cell to X̃, or Ỹ as
appropriate. This is equivalent to choosing a basing path for each cell. Then these
chosen lifts give rise to a basis for C∗(X;Z[π]), C∗(Y ;Z[π]), which are f.g. free
based, nonnegative chain complexes over Z[π]. We therefore obtain a basis for

C (f̃).

The Whitehead torsion of the homotopy equivalence f is τ(f̃) ∈ Wh(π).

We showed that the torsion does not depend on the choice of chain contraction.
However right now it can depend on the basis for the chain complex. It does not
depend on the choice of lifts since this change is quotiented out in the definition
of the Whitehead group. However the next theorem, which we will not prove, says
that for CW complexes the torsion is topological invariant i.e. is independent of
the choice of cell subdivision.

Theorem 6.15 (Chapman). The Whitehead torsion of a homotopy equivalence

of CW complexes τ(f̃) is well-defined and τ(f̃) = 0 if and only if f is a simple
homotopy equivalence.
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The torsion of an h-cobordism (W ; ∂0W,∂1W ) is now easy to define. The torsion
of the h-cobordism is the torsion of the homotopy equivalence ∂0W → W , or
∂1W → W , denoted τ(W,∂0W ) ∈ Wh(π1(W )). This amounts to the class of

the single matrix ∂r+1 : Cr+1(W̃ ) → Cr(W̃ ) obtained after handle trading above
and below the middle dimension to get a chain complex supported in only two
degrees. But no prior trading is required to define the obstruction, and we see
that the obstruction is independent of any choices made in the handle trading
process. Eventually, for cobordisms of dimension at least 6, all handles can be
cancelled if and only if the torsion of the h-cobordism vanishes, in which case it is
an s-cobordism and therefore is a product.

7. Universal coefficient homology and cohomology

In the past you have probably mostly studied homology with ordinary Z co-
efficients, or perhaps you have seen deRham cohomology with R coefficients. We
will be particularly concerned with Z[π1(X)]-coefficient homology and cohomology.
It is obstructions defined with reference to these groups that precisely determine
the answers to the problems of surgery theory; is the manifold structure set of a
Poincaré complex X nonempty, and is a given homotopy equivalence of manifolds
homotopic to a diffeomorphism?

7.1. Cohomology.

Definition 7.1. An involution on a ring R with unity is a functor · : R→ R such
that r + s = r + s, 1 = 1, rs = s · r and r = r for all r, s ∈ R.

Let (C∗, ∂) be a chain complex of left R-modules. We have that

Cr := (Cr)
∗ = HomR(Cr, R)

is naturally a right R-module, by

f · r = (c 7→ f(c)r).

There is a coboundary map

∂∗r+1 : C
r → Cr+1

∂∗(f) = (c 7→ f ◦ ∂(c)).

This defines a cochain complex; the co- prefix indicates that the degree of the
boundary maps is +1. The cohomology is then defined to be

Hr(C∗) :=
ker(∂∗r+1 : C

r → Cr+1)

im(∂∗r : C
r−1 → Cr)

The ordinary/Z-coefficient cohomology of a spaceX isHr(X) := Hr(C∗(X)) where
C∗(X) is the singular/cellular/handle chain complex with Z-coefficients of X. One
of the main motivations for introducing cohomology and cochain complexes is to
be able to state the Poincaré duality theorem, which is one of the fundamental
properties of a manifold, and a key advantage these spaces have over arbitrary CW
complexes.
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Given a chain complex C∗, let C
n−∗ be the chain complex given by

δn−r+1 := (−1)n−r+1∂∗n−r+1 : (C
n−∗)r := Cn−r → (Cn−∗)r−1 := Cn−r+1

Since Z is abelian, any right module can automatically also be considered as a left
module. We do this with Cn−∗(M), which thus becomes a left Z-module chain
complex, instead of a right Z-module cochain complex.

Theorem 7.2 (Z-coefficient Poincaré duality). Let M be an n-dimensional ori-
ented, compact manifold with empty boundary. Then C∗(M) ≃ Cn−∗(M)

Proof. Let C∗(M) be the handle chain complex. It is quite straightforward to see
that this is chain equivalent to a cellular chain complex of a space homotopy equiv-
alent to M , obtained by contracting the Dn−rs of each handle. It is a much more
non-trivial fact that the cellular chain complex of a manifold is chain equivalent
to the singular complex. So we work with the handle chain complex, which arises
from a Morse function f on M . Now replace f by −f , and note that the handle
chain complex associated to −f is Cn−∗(M). Then we use another non-trivial
fact that the chain homotopy type of a cellular chain complex of a space is in-
dependent of the choice of CW decomposition, thus the chain complex for both
handle decompositions, the original and the upside-down decomposition, are chain
equivalent. �

Here are some examples of cohomology of spaces.

(1) Let Tn be the n-torus. Then the cohomology is much the same as the
homology:

Hr(Tn;Z) ∼=
⊕
(nr)

Z

This uses the Künneth theorem, which I advise you to read about, for
example in [Hat], if you have not done so already. There is a homology and
a cohomology version.

(2) A chain complex of a lens space is

Z 0−→ Z p−→ Z 0−→ Z,

and the homology groups are Z,Zp, 0,Z in dimensions 0, 1, 2, 3 respectively.
The corresponding cochain complex is isomorphic to

Z 0−→ Z p−→ Z 0−→ Z,

and the cohomology groups are Z, 0,Zp,Z in dimensions 0, 1, 2, 3. Note
that the torsion shifts from degree one to degree two. On the one hand
this is consistent with Poincaré duality. On the other hand, we can also
understand this shift in the torsion in terms of the universal coefficient
theorem, which will be the subject of the next subsection, after we have
discussed more general coefficient systems.

Cohomology satisfies the following properties.
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(LES of pair) Let A ⊂ X be a pair of spaces. Then the following is a long exact sequence
in cohomology groups, arising from the short exact sequence in cochain
complexes 0 → C∗(X,A) → C∗(X) → C∗(A) → 0.

· · · → Hr(X,A) → Hr(X) → Hr(A) → Hr+1(X,A) → Hr+1(X) → · · ·
(Homotopy invariance) Let f, g : (X,A) → (Y,B) be homotopic maps. Then

f∗ = g∗ : Hr(Y,B) → Hr(X,A).

(Excision) Let A ⊆ X and let U ⊆ A be such that U ⊂ IntA. Then there is an
isomorphism

Hr(X,A)
≃−→ Hr(XrU,ArU).

(Mayer-Vietoris) Let U, V ⊆ X be open subsets of X with U ∪ V = X. Then the following
is a long exact sequence in cohomology:

· · · → Hr−1(U ∩ V ) → Hr(X) → Hr(U)⊕Hr(V ) → Hr(U ∩ V ) → Hr+1(X).

Next we will upgrade this to the Z[π1(M)]-coefficient version, known as universal
Poincaré duality. A better version of Poincaré duality states that this chain equiva-
lence is induced by a very specific map, cap product with a fundamental class, that
is a generator [M ] of Hn(M ;Z). (This last statement is true in all coefficients.) We
will introduce the cap product, and in particular the Poincaré duality cap product

− ∩ [M ] : Cn−r(M̃) → Cr(M̃),

but we will skip the proof that it is this that gives rise to the Poincaré duality chain
equivalence. See e.g. [Br],[Hat] for a detailed proof.

Definition 7.3. For a ring with involution R we can consider a left R module C
as a right R module, denoted C, via c · r := rc.

For a space X with π := π1(X), define the Zπ-module cochain complex to

be Cr(X;Zπ) := HomZπ(Cr(X;Zπ),Zπ). Here we mean homomorphisms of right
modules, and then the left Zπ-module structure of Zπ allows us to consider Cr(X;Zπ)
as a left Zπ-module.

The Zπ-module cohomology is then Hr(X;Zπ) := Hr(C
∗(X;Zπ).

Note that the Zπ-coefficient cohomology is not the same as the ordinary coho-

mology of the universal cover X̃ ofX. The Zπ-coefficient cohomology is isomorphic,

forgetting the module structure, to the cohomology with compact supports of X̃.
For example, any aspherical space has contractible universal cover, so the ordinary
cohomology is the same as that of a point. But there is no chance of such coho-
mology exhibiting Poincaré duality, so we will always work with the Zπ-module
cohomology.

Definition 7.4 (General coefficients). Let N be an (R,Zπ)-bimodule, with X a
space and π = π1(X) as above. The N -coefficient chain complex of X is

C∗(X;N) := N ⊗Zπ C∗(X;Zπ).
This is a left R-module, as is the N -coefficient homology

Hr(X;N) := Hr(C∗(X;N))



MAT993D: TOPOLOGY OF MANIFOLDS: SURGERY THEORY 39

The N -coefficient cochain complex is

C∗(X;N) := Homright−Zπ(C∗(X;Zπ), N)

and the N -coefficient cohomology is

Hr(X;N) := Hr

(
Homright−Zπ(C∗(X;Zπ), N)

)
.

This is again a left R-module.

Important examples of N include:

(1) R = N a commutative ring, with a representation Zπ → Aut(R) factoring
as Zπ → Z → Aut(R) via the augmentation map Zπ → Z.

(2) R = Zπ with N = Zπ a Zπ-bimodule. This is the universal case already
discussed above.

(3) Let R = F be a field, and consider a representation ρ : π → GL(d,F). Then
we obtain homology Hρ

∗ (X;Fd); adding the representation into the notation
here is not mandatory, but it might be useful to distinguish in case multiple
representations could be used.

Theorem 7.5 (Universal Poincaré duality). Let M be an n-dimensional oriented,
compact manifold with empty boundary, let π = π1(M), let R be a ring with in-
volution and let N be an (R,Zπ)-bimodule. Then Cn−∗(M ;N) ≃ C∗(M ;N) is a
chain equivalence of left Zπ-module chain complexes.

We will return to this later in the context of cap products, but first we want to
describe the universal coefficient theorems.

7.2. Universal coefficient theorems. This section did not appear in the lec-
tures, but it is very useful to know, and I prepared something to say about it
which I did not get time to say in class, so here it is.
Definition 7.6 (Left and right exact).

(1) A covariant functor F : R−mod → R−mod is called left exact if for any
short exact sequence

0 → A→ B → C → 0

we have that

0 → F (A) → F (B) → F (C)

is exact.
(2) A contravariant functor F : R−mod → R−mod is called left exact if for

any short exact sequence

0 → A→ B → C → 0

we have that

0 → F (C) → F (B) → F (A)

is exact.
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(3) A covariant functor F : R−mod → R−mod is called right exact if for any
short exact sequence

0 → A→ B → C → 0

we have that

F (A) → F (B) → F (C) → 0

is exact.
(4) A contravariant functor F : R−mod → R−mod is called left exact if for

any short exact sequence

0 → A→ B → C → 0

we have that

F (C) → F (B) → F (A) → 0

is exact.

A functor that is both left and right exact is called exact.

For example, let N be an R-bimodule. Then:

(1) The functor M 7→ HomR(M,N) is left exact contravariant.
(2) The functor M 7→ HomR(N,M) is left exact covariant.
(3) The functor M 7→ N ⊗R M is right exact covariant.

As an explicit example, consider the chain complex:

0 → Z 2−→ Z → Z/2 → 0.

Tensor this with Z/2, to obtain

Z/2 0−→ Z/2
∼=−→ Z/2 → 0.

Tensoring is right exact. On the other hand applying Hom(−,Z) yields

0 → Hom(Z/2,Z) = 0 → Hom(Z,Z) f 7→2f−−−−→ Hom(Z,Z).

This is a left exact functor. We will focus on the case of Hom, since this will be
more relevant for the study of intersection forms which play a big role in surgery
theory.

Definition 7.7. An R module I is said to be injective if the diagram

0 // M //

��

N
∃

~~|
|
|
|

I

for any R modules M and N .

Theorem 7.8. Any divisible module over a PID is injective.

A good exercise is to prove this for divisible abelian groups, since Z is a PID.
Here a module M is divisible if for any m ∈ M and for every n ∈ Zr{0} there
exists an m′ ∈M such that nm′ = m.
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Proposition 7.9. Let P be a projective module, let I be an injective module, and
let 0 → A→ B → C → 0 be a short exact sequence. Then

0 → Hom(C, I) → Hom(B, I) → Hom(A, I) → 0

and
0 → Hom(P,A) → Hom(P,B) → Hom(P,C) → 0

are exact.

The proposition follows immediately from the definitions. Often in applications
the modules in question will not be projective or injective as required, and we want
a way to understand the failure of the previous proposition to hold in these cases.
For this we use Ext groups, which we will now work towards defining.

Definition 7.10. Given an R-module M , a projective resolution is an exact se-
quence

· · · → P2 → P1 → P0 →M → 0,

where Pi is a projective R-module for all i ∈ N ∪ {0}.
An injective resolution of M is an exact sequence

0 →M → I0 → I1 → I2 → · · ·
where Ii is an injective R-module for all i ≥ 0.

The deleted resolutions are

P∗ = · · · → P2 → P1 → P0

and
I∗ = I0 → I1 → I2 → · · ·

which are exact apart from at P0 and I0.

We will focus to begin with on projective resolutions and the functor between
R-modules M 7→ HomR(M,N). This has what is called a “derived functor” called
Ext. We will obtain R-modules ExtiR(M,N), with i ≥ 0.

Proposition 7.11. Let f : M → N be an R-module homomorphism. Then there
is a unique chain homotopy class of chain maps PM

∗ → PN
∗ induces the given map

f : M → N .

This follows immediately from the fundamental lemma of homological algebra.

Definition 7.12 (ExtnR). Let M and N be R-modules and let P∗ → M →
0 be an R-module projective resolution, with P∗ the deleted resolution. Form
HomR(P∗, N). Then

ExtnR(M,N) := Hn(HomR(P∗, N)).

Equivalently, let 0 → N → I∗ be an injective resolution of N , with I∗ the deleted
resolution. Then

ExtnR(M,N) := Hn(HomR(M, I∗))

It turns out that the definitions are equivalent with a projective resolution of the
first argument or an injective resolution of the second argument. Here are some
straightforward remarks.
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(i) Ext0R(M,N) = ker(HomR(P0, N) → HomR(P1, N) = HomR(M,N).
(ii) If M is projective then ExtiR(M,N) = 0 for all i > 0.
(iii) If N is injective then ExtiR(M,N) = 0 for all i > 0.

Now let 0 → A → B → C → 0 be a short exact sequence of chain complexes.
Each of these modules has a projective resolution, and the short exact sequence
lifts to a short exact sequence of chain complexes

0 // PA
∗ //

��

PB
∗ //

��

PC
∗ //

��

0

0 // A // B // C // 0

by the fundamental lemma of homological algebra. Dualising the top row gives rise
to

0 → HomR(P
C
∗ , N) → HomR(P

B
∗ , N) → HomR(P

A
∗ , N) → 0.

This is a short exact sequence of cochain complexes, which induces a long exact
sequence in cohomology:

0 → HomR(C,N) → HomR(B,N) → HomR(A,N) →
→ Ext1R(C,N) → Ext1R(B,N) → Ext1R(A,N) →
→ Ext2R(C,N) → Ext2R(B,N) → Ext2R(A,N) → · · ·

Here are some examples of the Ext groups. The Ext0 groups are equal to the
corresponding Hom groups, so we omit the discussion of them.

(1) ExtnZ(Z,Z/p) = 0 for n > 0.
(2) Ext1Z(Z/n,Z) = Z/n, and they Exti groups vanish for i > 1. In general,

Ext1Z(A,Z) ∼= HomZ(A,Q/Z), which picks up the torsion subgroup of A.
(3) If R is a field, ExtiR(M,N) = 0 for i > 0.
(4) If R is a PID, then ExtiR(M,N) = 0 for i > 1.
(5) ExtnR(⊕αAα, B) =

∏
α Ext

n
R(Aα, B).

(6) ExtnR(A,⊕αBα) =
∏

α Ext
n
R(A,Bα).

Now we state and prove the universal coefficient theorem for cohomology, in the
case that R is a PID. In more generality for rings of homological dimension greater
than one, there is a universal coefficient spectral sequence. But we won’t cover
that here.

Theorem 7.13 (The universal coefficient theorem). Let R be a PID, let M be an
R-module and let (C∗, ∂) be a f.g. free R-module chain complex. Then

0 → Ext1R(Hr−1(C∗),M)
α−→ Hr(C∗;M)

β−→ HomR(Hr(C∗),M) → 0

is an exact sequence of abelian groups, which is natural in chain maps of C∗ → C ′
∗,

and which splits, but the splitting is not natural. The map β sends [f ] 7→ ([c] 7→
f(c)). If M is an (R,S)-bimodule, then this is an exact sequence of S-modules.

Proof. This proof is essentially from [Br]. Note that the map β is well-defined since
f is a cocycle and c is a cycle.
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Recall that for R a PID, any submodule of a free module is free. Also recall that
for any chain complex C∗ we let

Zp := ker(∂p : Cp → Cp−1)

the p-cycles, and

Bp = im(∂p+1 : Cp+1 → Cp),

the p-boundaries. Of course Hp(C∗) = Zp/Bp. There are two exact sequences of
R-modules, for each p.

(1) 0 → Zp
χ−→ Cp

θ−→ Bp−1 → 0. The submodule Bp−1 is free, whence projec-
tive, so the sequence splits. Let ϕ : Cp → Zp be a splitting.

(2) 0 → Bp
γ−→ Zp

q−→ Hp(C∗) → 0.

The proof will follow from the next diagram, and some fun diagram chasing.

0

0 // Hom(Bp,M)
θ∗ // Hom(Cp+1,M) Ext1(Hp−1(C∗),M)

OO

0 Hom(Zp,M)

γ∗

OO

oo
ϕ∗

// Hom(Cp,M)

δ

OO

χ∗
oo Hom(Bp−1,M)

θ∗oo

OO

0oo

Hom(Hp(C∗),M)

q∗

OO

Hom(Cp−1,M)
χ∗

//

δ

OO

Hom(Zp−1,M)

γ∗

OO

// 0

0

OO

Here is some explanation of the diagram. The left 3 terms of the top row come
from the dual of (1), and Hom(−,M) is left exact so the part shown is exact. The
middle row is also the dual of (1). Here Zp is a submodule of a free module and
hence is free, since R is a PID. Thus Ext1R(Zp,M) = 0, so the middle row is exact.
The left column is the dual of (2), and is left exact. The right three terms of the
bottom row also come from the dual of (1), which is exact as described above. The
middle column is the dual of the chain complex C∗. This is not exact, but δ

2 = 0.
The right hand column is part of the long exact sequence associated to the dual of
(2). The two squares commute.

Now the proof is a diagram chase. Let f ∈ Hom(Cp,M), with f ∈ ker δ. Go left
and up to get an element of Hom(Bp,M). By commutativity of the top left square,
and injectivity of θ∗, this is the zero element. Let g = χ∗(f) ∈ Hom(Zp,M). Then
there is an h ∈ Hom(Hp,M) with g = q∗h. We define β(f) := h. To see that this
is well defined note that if we replace f with f + δk, then by commutativity of the
bottom right square δk ∈ im(θ∗), so maps to zero in Hom(Zp,M), and therefore
does not change the element of Hom(Hp,M) by injectivity of q∗.

The composition ϕ∗ ◦ q∗ induces the splitting. This also shows surjectivity.
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The map Ext1(Hp−1,M) → Hom(Cp,M) is defined by lifting x ∈ Ext1(Hp−1,M)
to an element y ∈ Hom(Bp−1,M), then taking θ∗(y). More diagram chases show
that this is well defined and injective.

It remains to show exactness at Hp(C∗). This is also a straightforward diagram
chase that is left to the reader. �

There is an analogous derived functor Tor for the tensor product. We give a less
detailed treatment, but give the main statements here. Given R-modules M and
N let PM

∗ and PN
∗ be projective resolutions. Then

TorRn (M,N) := Hn(P
M
∗ ⊗R N)

or

TorRn (M,N) := Hn(M ⊗R P
N
∗ ).

Note that TorR0 (M,N) =M⊗RN . Given an exact sequence 0 → A→ B → C → 0,
we have a long exact sequence

· · · → TorR2 (A,N) → TorR2 (B,N) → TorR2 (C,N) →
→ TorR1 (A,N) → TorR1 (B,N) → TorR1 (C,N) →
→ A⊗R N → B ⊗R N → C ⊗R N → 0

Theorem 7.14 (Universal coefficient theorem for homology). Let R be a PID, let
C∗ be a f.g. free R-module chain complex, and let M be an R-module. Then there
is a split natural short exact sequence of abelian groups

0 → Hr(C∗)⊗R M → Hr(C∗ ⊗R M) → TorR1 (Hr−1(C∗),M) → 0.

The splitting is not natural. If M is an (R,S)-bimodule, this is a split exact se-
quence of S-modules.

Remark 7.15. Both of the universal coefficient theorems are special cases of cor-
responding universal coefficient spectral sequences. In fact, there are more general
Künneth spectral sequences that imply the universal coefficient spectral sequences
and imply the ordinary Künneth theorem.

Here is an application. Let W be a simply connected closed 4-manifold. Then
H3(M ;Z) = 0 = H1(M ;Z) and H2(M ;Z) is torsion-free. (We use Poincaré duality
here too. To see this we have H3(M) ∼= H1(M) ∼= Hom(H1(M),Z) = 0. The first
isomorphism is by Poincaré duality and the second is from the universal coefficient
theorem, since Ext1(H0(M),Z) = 0 as H0(M) is torsion-free. Then H1(M) = 0
since π1(M) = 0. Next, H3(M) = 0 implies that Ext1Z(H2(M),Z) ∼= H3(M), but
H3(M) ∼= H1(M) = 0, so Ext1(H2(M),Z) = 0, and H2(M) is torsion free as
claimed.

8. Cap and cup products

Let X be a finite CW complex. Let D : X → X×X be the diagonal map. On the
chain level (singular chains) this corresponds to a map D : C∗(X) → C∗(X ×X).
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Definition 8.1. The tensor product of two chain complexes C,D is another chain
complex C ⊗D with

(C ⊗D)n :=
⊕

p+q=n

Cp ⊗Dq

and
∂⊗(cp ⊗ dq) = ∂c× d+ (−1)deg c=pc⊗ ∂d.

As an exercise, show that (∂⊗)2.

Theorem 8.2 (Eilenberg-Zilber theorem). For any two spaces X and Y there is
a chain equivalence

A : C∗(X × Y ) ≃ C∗(X)⊗ C∗(Y )

and the chain equivalence is unique up to chain homotopy. The chain equivalence
is natural, in the sense that maps on chain complexes induced by continuous maps
of spaces commute with the Eilenberg-Zilber maps.

Define
∆ = A ◦D : C∗(X) → C∗(X)⊗ C∗(X).

The cup product is a homomorphism

∪ : Hp(X)⊗Hq(X) → Hp+q(X)

induced by a map Cp(X)× Cq(X) → Cp+q(X)

(a, b) 7→ ∆∗(a⊗ b).

The cup product has the following properties:

(i) Let 1 ∈ H0(X) be a generator of the zeroth cohomology. Then 1∪a = a∪1 = a
for all a.

(ii) (a ∪ b) ∪ c = a ∪ (b ∪ c).
(iii) a ∪ b = (−1)deg a deg bb ∪ a.
Thus the direct sum of all the cohomology groups of a space form a ring, with cup
product the multiplication.

The cap product is a map

∩ : Cp(X)× Cp+q(X) → Cp(X)
(f, x) 7→ E(f ⊗∆(x)) = f ∩ x

where E(f ⊗ x⊗ y) = f(y) · x evaluated the first coordinate on the last. This has
the important property that

∂(f ∩ x) = (−1)pδf ∩ x+ f ∩ ∂x.
Thus cap product descends to a well-defined map on homology/cohomology

∩ : Hq(X)⊗Hp+q(X) → Hq(X).

The Alexander-Whitney diagonal approximation is defined as follows, on singular
chains. A singular simplex σ has a front p-face

p⌊σ(t1, . . . , tp) = σ(t0, . . . , tp, 0 . . . , 0)

and a back q-face
σ(t1, . . . , tq)⌋q = σ(0, . . . , 0, t0, . . . , tq).
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A diagonal approximation is then given by

∆: C∗(X) → C∗(X)⊗ C∗(X)
σ 7→

∑
p+q=n p⌊σ ⊗ σ⌋q.

Using this we can define the cap product, for f ∈ Cp(X) and g ∈ Cq(X) by

(f ∪ g)(σ) = ∆∗(f ⊗ g)(σ) = (f ⊗ g)∆(σ)

= (f ⊗ g)

( ∑
p+q=n

p⌊σ ⊗ σ⌋q

)
= f(p⌊σ) · g(σ⌋q).

We can also define the cap product, for α ∈ Cq(X) and σ ∈ Cp+q(X) by

α ∩ σ = α(σ⌋q) · p⌊σ.

9. Universal coefficient Poincaré duality

Let M be an n-dimensional manifold, and let π = π1(M). We have a diagonal

map of the universal cover M̃ → M̃ × M̃ and we have a corresponding diagonal
approximation map, again by the Eilenberg-Zilber theorem,

∆̃ : C∗(M̃) → C∗(M̃) →Z C∗(M̃).

Tensor both the domain and the codomain with Z to obtain

Id⊗∆̃ : Z⊗Zπ C∗(M̃) → Z⊗Zπ (C∗(M̃)⊗Z C∗(M̃)).

where on the right the action of Zπ on the tensor product C∗(M̃)⊗Z C∗(M̃) is via
the diagonal action. We obtain

∆ = Id⊗∆̃ : C(M̃)⊗Zπ C∗(M̃).

The image

∆([M ]) ∈ (C∗(M̃)⊗Zπ C∗(M̃))n

determines a chain map

− ∩ [M ] : Cn−∗(M̃) → C∗(M̃),

using the slant chain map, which holds for any f.g. free R-module chain complexes:

\ : C ⊗R D → HomR(C
−∗, D)

x⊗ y 7→
(
f 7→ f(x) · y

)
.

Here note that C−∗ is a chain complex with (C−∗)r := HomR(C−r, R), and not a
cochain complex. By definition, given two chain complexs A∗ and B∗, we have a
chain complex HomR(A∗, B∗) with

HomR(A∗, B∗)n =
⊕
r

HomR(Ar, Br+n)

and
∂Homf = (−1)r∂ ◦ f + f ◦ ∂.

The chain map \(∆([M ])) = −∩ [M ] is a chain equivalence by Poincaré duality (we
are omitting the proof that this is the chain equivalence, (although we saw from
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Morse theory that one exists) – to be covered in a student talk). This chain map
induces isomorphisms

− ∩ [M ] = PD : Hn−r(M̃)
≃−→ Hr(M̃).

Recall the following definition.

Definition 9.1. An n-dimensional Poincaré complex is a connected finite CW

complex with an element [X] ∈ Hn(X;Z) such that − ∩ [X] : Hn−r(X̃)
≃−→ Hr(X̃)

is an isomorphism for all r.

A Poincaré complex is called simple if − ∩ [X] : Cn−r(X̃)
≃−→ Cr(X̃) is a simple

chain homotopy equivalence.

Any closed manifold is a simple Poincaré complex. A Poincaré complex has an
intersection pairing

λ : Hr(X̃)×Hn−r(X̃) → Zπ
([x], [y]) 7→ PD−1(x)(y)

where PD−1 : C∗(X̃) → Cn−∗(X̃) is a chain homotopy inverse to PD = − ∩ [X].
This has the following geometric interpretation for manifolds. Let A,B be smooth,
compact, oriented, closed manifolds and let Aa, Bb ⊂ Mm be submanifolds, with
a+ b = m, A t B and basing paths γA and γB in M from A,B respectively to the
basepoint of M . Suppose that A and B are π1-null, that is the inclusion induced
map π1(A) → π1(M) is the trivial map, and similarly for B. (This discussion
can be done without the π1-null assumption, if we just work over Z-coefficients/
without passing to a covering space.)

The geometric intersection pairing of A,B is defined to be

λgeom(A,B) = A ·B =
∑

p∈AtB
ϵpg(p),

where ϵ(p) is the sign associated to a transverse intersection point and g(p) is the
concatenation of paths from the basepoint of M , along γA, in A to the intersection
point, in B to the end of γB, then back along B to the basepoint of M , considered
as an element of π1(M).

Theorem 9.2. λgeom(A,B) = λ([A], [B]), where [A] ∈ Ha(M̃), [B] ∈ Hb(M̃) are
the associated homology classes.

We will not prove this unfortunately, but we will prove the Thom isomorphism
theorem, which is the main ingredient in the proof. See Section 10.7 of [DK] for a
proof.

10. Pontryagin-Thom construction

Recall that for a vector bundle η : E → X with an inner product on each fibre
we have:

(i) The disc bundle of E:

D(E) := {(x,v) ∈ E | ∥v∥ ≤ 1}.
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(ii) The sphere bundle of E:

S(E) := {(x,v) ∈ E | ∥v∥ = 1}.

(iii) The Thom space of E:

Th(E) := D(E)/S(E).

Note that Th(η⊕ ϵk) = Σk Th(η), where ϵk is the trivial k-plane bundle over X.
Here ΣkX is the k-fold reduced suspension of X, ΣkX := Sk ∧X, where ∧ is the
smash product of two based spaces X and Y

X ∧ Y = X × Y/(X × {y} ∪ {x} × Y )

The space that we quotient out by is homeomorphic to a wedge X ∨ Y ⊂ X × Y .
Note as an example, note that Sk ∧ Sl ∼= Sk+l.

Given a manifold Mn ⊂ Sn+k we have a normal bundle of the embedding
ν(M) → M . The total space of the normal bundle can be embedded in Sn+k,
and we always do this from now on.

There is a collapse map

c : Sn+k → Th(ν(M))

which by definition is the identity on the interior of D(ν(M)) and which maps
everything in Sn+k that is outside the interior of the normal disc bundle to the
basepoint of Th(ν(M)).

Now let X be a CW complex and fix a k-dimensional vector bundle ξ : E → X.
Define the bordism group

Ωn(ξ) = {(M, i, f, f)}/ ∼

where the data is a manifold that maps to X embedded in Sn+k with a bundle
map of the normal bundle to ξ:

νM
f //

��

E

ξ
��

M
f //� _

i
��

X

Sn+k

The equivalence relation is bordism of this data over X × I.

Theorem 10.1 (Pontryagin-Thom isomorphism theorem). The following map is
an isomorphism

Ωn(ξ)
≃−→ πn+k(Th(ξ))

(M, i, f, f) 7→ [Sn+k c−→ Th(ν(M)) → Th(ξ)]

For the second map, note that a morphism of vector bundles induces a map of
Thom spaces.
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To see that this is a bijection, construct an inverse as follows. Make f : Sn+k →
Th(ξ) transverse to the zero section X ⊂ Th(ξ) and take the inverse image M :=
f−1(X). This comes with a map to X, an embedding i, and a map of its normal
bundle to ξ. One has to check that homotopic maps induce bordant manifolds, that
bordant manifolds induce homotopic maps, and that this really is an isomorphism.

Here is an important special case. Let X be a point. Then the k dimensional
vector bundle over X is of course trivial. A square

νM
f //

��

Rk

ξ

��
M

f // pt

is the same as a framing of the normal bundle of M . Then Ωn(ξk) = Ω
fr(k)
n , so

colimΩn(ξk) = Ωfr
n , the framed bordism group. The Thom space of ξ is just Sk

in this case, so the Pontryagin -Thom construction together with the colimit (by
definition colimπn+k(S

k) = πSn , the stable n-stem), yields an isomorphism

Ωfr
n

∼= πSn .

In particular, by investigating framed bordism of oriented 1- and 2-manifolds, one
can show that πS1 and πS2 are isomorphic to Z/2. Note that stable framings on a
circle are in one to one correspondence with π1(SO) = Z/2. To see the framed
bordism of surfaces requires more work, in particular the Arf invariant that we will
return to later.

10.1. Pontryagin Thom for Ωn(X). In this section we give a construction that
converts the bordism groups Ωn(X) into a colimit of homotopy groups of certain
Thom spaces. Let ξk : Ek → BSO(k) be the universal k-plane vector bundle. That
is,

BSO(k) = G̃rk(R∞),

the Grassmannian of oriented k-dimensional subspaces of R∞. Then

Ek = {(V, x)|V ∈ G̃rk(R∞), x ∈ V }.
which maps to BSO(k) via (V, x) 7→ V .

Theorem 10.2. Every oriented k-plane vector bundle over X is the pull back f∗ξk,
for some function f : X → BSO(k) of the universal vector bundle. There is a one
to one correspondence between isomorphism classes of vector bundles and homotopy
classes of maps X → BSO(k).

The trivial bundle X × Rk corresponds to a null homotopic map.
Consider the map of bundles

Ek ⊕ ϵ
jk //

ξk⊕ϵ
��

Ek+1

ξk+1

��
BSO(k)

jk // BSO(k + 1)
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Here jk shifts all coordinates one to the right and adds the basis vector (1, 0, 0, . . . )
to each plane. This is covered by a unique map jk. This yields

X ⊗ (Ek ⊕ ϵ)
ik:=Id×jk //

γk⊕ϵ=(Id×ξk)⊕ϵ

��

X × Ek+1

γk+1=Id×ξk+1

��
X ×BSO(k)

ik:=Id⊗jk// X ×BSO(k + 1)

This square defines a map of bordism groups

Ωn(ik) : Ωn(γk) → Ωn(γk+1).

Let νk : Ωn(γk) → Ωn(X) be given by (M, i, ff) 7→ (M,π ◦ f) where π : X ×
BSO(k) → X is the projection. Note that νk = νk+1 ◦ Ωn(ik). One can show that
colimΩn(γk) = Ωn(X). On the other hand, the suspension homomorphism gives
rise to a map

πn+k(Th(γk)) → πn+k+1(ΣTh(γk)) = πn+k+1(Th(γk ⊕ ϵ))
ik−→ πn+k+1(Th(γk+1)).

We can therefore consider

colimπn+k(Th(γk)).

Each of the individual terms Ωn(γk) ∼= πn+k(Th(γk)) are isomorphic by the Pon-
tryagin Thom construction, and the maps are induced by the same map, therefore
the colimits are equal, and we have

Ωn(X) ∼= colimπn+k(Th(γk)).

This translates bordism groups into homotopy theory, and is the beginning of the
subject of spectra. We will need the Pontryagin Thom construction again soon.

Our aim is to understand degree one normal maps with target X. The first
question of surgery theory will be, does a degree one normal map to X exist, and
if so how many are there up to normal bordism. The existence of such a map is a
necessary condition for there to be a manifold homotopy equivalent to X. (If there
is such a manifoldM , then pull back its normal bundle using the homotopy inverse
g : X →M of f , to get a bundle on X as required).

Definition 10.3. Let X be a Poincaré complex. An n-dimensional normal map
over X consists of a stable vector bundle ξ : E → X, an n-dimensional manifold M
embedded in Sn+k for k large, and a bundle map

ν(M)
b //

��

E

ξ
��

M
f // X

where ν(M) is the stable normal bundle. The set Nn(X) is the set of normal
bordism classes of degree one normal maps over X. Note that here the bundle ξ is
not fixed, and we must have that f is of degree one.
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As a warm up, suppose that we fix a k-dimensional vector bundle ξ : E → X and
forget about the degree one condition for now. Then the normal bordism classes of
normal maps (f, b) : (M,ν(M)) → (X, ξ) are in one to one correspondence with the
stable homotopy group πSn (Th(ξ)), again by the Pontryagin-Thom construction.

However, this is not enough, since we will want to understand the normal bordism
classes where the vector bundle ξ is not fixed.

11. Fibrations

We need the notion of a fibration, so we briefly introduce this notion here.

Definition 11.1. A fibration is a map f : X → Y with the homotopy lifting prop-
erty. This is the property that for any space A with homotopy between two maps
of A to Y , and such that one of these maps lifts to X, we can also lift the homotopy
to X. That is, for any A and any maps, a dotted map exists as shown in the next
diagram:

A× {0} //

��

X

f

��
A× [0, 1] //

∃
;;v

v
v

v
v

Y.

For example, any fibre bundle is a fibration (but not vice versa). The fibres of a
fibration are in general not homeomorphic to each other, but they are all homotopy
equivalent, if Y is bath connected.

To see this, let f : E → B be a fibration and consider a path α : I → B with
α(i) = bi for i = 0, 1. Let Ebi := f−1(bi). Let H : Eb0 × I → B be given by
(e, t) 7→ α(t). We have a diagram:

Eb0 × {0} //

��

E

��
Eb0 × I

H //

H̃

∃

;;x
x

x
x

x
x

x
B

Then we obtain a map H̃1 : Eb0 → Eb1 . One has to show that for any choice of

path α′ with the same endpoints, and for any choice of lift H̃ ′ that fits into the
diagram associated to α′ (or the same α), we have that

H̃1 ∼ H̃ ′
1 : Eb0 → Eb1 .

Also note that α−1 gives rise to a map Eb1 → Eb0 . α ◦ α−1 is homotopic to the
constant path, the associated map of fibres is homotopic to the identity. Therefore

H̃1(α) and H̃1(α
−1) are homotopy inverses.
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Definition 11.2. A map of fibrations is a commuting square

E
f //

p

��

E′

p′

��
B

f // B′

A fibre homotopy between two maps of fibrations from p to p′ is a commuting
square

E × I
H //

p×Id
��

E′

p′

��
B × I

H // B′

A fibre homotopy equivalence between fibrations p : E → B and p′ : E′ → B is a
pair of fibration maps (Id, f) and (Id, g) with f : E → E′ and g : E′ → E, both
covering the identity on B, such that

(Id, f ◦ g) : (B,E′) → (B,E′)

and
(Id, g ◦ f) : (B,E) → (B,E)

are both fibre homotopic to the identity, via a fibre homotopy that is the identity
on B throughout.

We will be interested mainly in fibrations whose fibres are homotopy spheres.

Definition 11.3. A (k−1)-spherical fibration over X is a fibration with homotopy
fibre Sk−1, that is all fibres are homotopy equivalent to Sk−1.

Sk−1 → E → X.

The sphere bundle of a vector bundle is such a spherical fibration. For any
spherical fibration there is an associated disc fibration

Dk → D(E) → X

where
D(E) = M(E → X)

is the mapping cylinder. A spherical fibration also has a Thom space

Th(E) = D(E)/E = cone(E → X).

The Thom space of a vector bundle is the same as the Thom space of the sphere
bundle of the vector bundle, so they deserve the same name.

Let G(k) be the monoid of self homotopy equivalences of Sk−1. There is a
classifying space BG(k) for fibrations with (k − 1)-sphere fibre and a universal
(k − 1)-spherical fibration over this classifying space.

Theorem 11.4. The fibre homotopy equivalence classes of (k − 1)-spherical fi-
brations over X are in one to one correspondence with homotopy classes of maps
X → BG(k).
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We will tend to think of a vector bundle as a map X → BO(k) and a spherical
fibration as a map X → BG(k).

12. Thom isomorphism theorem

In this section we present the Thom isomorphism theorem. We will only prove
it in the case that the base space X is a Poincaré complex, but it is true in more
generality. See Chapter 10 of Milnor and Stasheff [MS] for the proof when X is
any CW complex.

Let η : E → X be an oriented k-dimensional vector bundle over an n-dimensional
Poincaré complex X. (We could also replace η by a (k− 1)-spherical fibration and
SE by E in what follows, and get a Thom isomorphism theorem for spherical
fibrations.) Let i : X → DE be the 0-section. We can consider the Poincaré pair
(DE,SE).

The definition of cup and cap products descend to relative cup and cap products,
as follows. Let A ⊆ X. The relative cup product is:

∪ : Hp(X)×Hq(X,A) → Hp+q(X,A).

or

∪ : Hp(X,A)×Hq(X) → Hp+q(X,A).

The relative cap product is

∩ : Hp(X,A)×Hp+q(X,Y ) → Hq(X)

or

∩ : Hp(X)×Hp+q(X,Y ) → Hq(X,A).

We will need two properties of cup and cap products in the upcoming proof, so we
record them here.

(i) For any x, y, z in the appropriate groups, x ∩ (y ∩ z) = (x ∪ y) ∩ z.
(ii) For a map f : X → Y and any x, y, we have that y ∩ f∗(x) = f∗(f

∗(y) ∩ x).
Given a map f : Xn → Y m of Poincaré complexes, or more generally f : (X, ∂X) →

(Y, ∂Y ) of Poincaré pairs, there are Umkehr or shriek maps:

f! := (− ∩ [X]) ◦ f∗ ◦ (− ∩ [Y ])−1 : Hm−p(Y ) → Hn−p(X)

f! := (− ∩ [X]) ◦ f∗ ◦ (− ∩ [Y ])−1 : Hm−p(Y, ∂Y ) → Hn−p(X, ∂X)

for the homology; note they go in the opposite direction to the usual functoriality,
because we have used duality. Then for cohomology we have:

f ! := (− ∩ [Y ])−1 ◦ f∗ ◦ (− ∩ [X]) : Hn−p(X) → Hm−p(Y )

f ! := (− ∩ [Y ])−1 ◦ f∗ ◦ (− ∩ [X]) : Hn−p(X, ∂X) → Hm−p(Y, ∂Y ).

The next theorem is an important one, the Thom isomorphism theorem. It
posits the existence of a cohomology class of the Thom space of a vector bundle,
called the Thom class, which can be combines with cup and cap products to link
the homology and cohomology of the Thom space with the homology and homology
of the base space, with a shift in degree by k. (Note that Hr+k(DE,SE) is the
reduced (r + k)th cohomology of the Thom space Th(η).)
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Below, we only give the Z-coefficient version for vector bundles. As remarked
above, it can be easily translated to hold for spherical fibrations. Also, there is a
Zπ-equivariant version.

Theorem 12.1 (Thom isomorphism theorem). There is a cohomology class τE ∈
Hk(DE,SE), called the Thom class, such that

Hr(X)
η∗−→ Hr(DE)

∪τE−−→ Hr+k(DE,SE)

and

Hr+k(DE,SE)
τE∩−−−−→ Hr(DE)

η∗−→ Hr(X).

are isomorphisms, that coincide with i! and i! respectively.

Proof. We will prove the cohomology version only. The homology version is similar
and is an exercise. Recall that i : X → DE is the zero section. This is a homotopy
equivalence. Thus i∗ : Hr(X) → Hr(DE) and η∗ : Hr(DE) → Hr(X) are inverse
isomorphisms. Let

τE := (− ∩ [DE])−1(i∗([X])) ∈ Hk(DE,SE)

be the Thom class. We know that i! is an isomorphism, since i∗ is an isomorphism.
Therefore we need to show that i! := (− ∩ [DE])−1 ◦ i∗ ◦ (− ∩ [X]) coincides with
(− ∪ τE) ◦ η∗. Let β ∈ Hr(X), and let α ∈ Hr(DE) be such that i∗(α) = β. So
η∗(β) = α. Then we have:

i!(β) = (− ∩ [DE])−1 ◦ i∗(β ∩ [X])

= (− ∩ [DE])−1 ◦ i∗(i∗(α) ∩ [X]))

= (− ∩ [DE])−1(α ∩ i∗[X])

= (− ∩ [DE])−1(α ∩ (τE ∩ [DE]))

= (− ∩ [DE])−1((α ∪ τE) ∩ [DE])

= α ∪ τE
= η∗(β) ∪ τE

as required. As remarked above the homology version is similar, but left to the
reader. �

13. The Spivak normal fibration and normal invariants

Let X be an n-dimensional connected finite Poincaré complex.

Definition 13.1 (Spivak normal structure). A Spivak normal structure on X is a
(k − 1)-spherical fibration ρX : E → X with a pointed map cX : Sn+k → Th(ρX)
such that there is a choice of Thom class τE ∈ Hk(DE,E) and a fundamental class
Hn(X) such that

[X] = (ρX)∗(τE ∩ h(cX)).

Here h : πn+k(Th(ρX)) → Hn+p(Th(ρX)) is the Hurewicz homomorphism, τE ∩
h(cX) ∈ Hn(DE), and then (ρX)∗ : Hn(DE) → Hn(X) sends it to Hn(X), where
it is required to coincide with the fundamental class [X] of X.
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For example, an n-dimensional manifold M embedded in Snk has Spivak normal
structure with ρM the sphere bundle of the normal bundle of the embedding, and
cM : Sn+k → Th(ρM ) the Pontryagin-Thom collapse map.

We need to know how to stabilise spherical fibrations.

Definition 13.2 (Join of spaces). The join of two spaces X and Y is

X ∗ Y = X × Y × [0, 1]/ ∼
where the equivalence relation identifies the following sets to points. For each
y ∈ Y , the set {(x, y, 0) |x ∈ X} becomes a point. For each x ∈ X, the set
{(x, y, 1) | y ∈ Y } becomes a point. For example, Sk−1 ∗ Sl−1 = Sk+l−1.

The sphere bundle of the sum ξ0⊕ ξ1 of two vector bundles ξi : Ei → X, i = 0, 1,
is the fibrewise join:

{(e0, e1) ∈ E0 × E1 × [0, 1] | ξ0(e0) = ξ1(e1)}/ ∼
with the identifications for each fixed e0 ∈ E0, of (e0, e1, 0) ∼ (e0, e

′
1, 0) for all

e1, e
′
1 ∈ E1, and for each fixed e1 ∈ E1, of (e0, e1, 1) ∼ (e′0, e1, 0) for all e0, e

′
0 ∈ E0.

Fibrewise join with the trivial spherical fibration Sl−1 ×X → X induced stabil-
isation, that corresponds to a composition

X
η−→ BG(k) → BG(k + l).

We write the new spherical fibration as η⊕ ϵl to mirror the vector bundle notation.
A stable spherical fibration over X is an equivalence class of spherical fibrations

with ξ ∼ η if there are natural numbers k, l with ξ ⊕ ϵk and η ⊕ ϵl fibre homotopy
equivalent.

Stable spherical fibrations over X are in one to one correspondence with ho-
motopy classes of maps X → BG := colimk→∞BG(k). The next theorem is
fundamental, but we will not have time to prove it. The rest of this section will un-
fortunately just be an outline of the theory of Spivak normal fibrations and normal
invariants: the theory to decide whether there is a degree one normal map over X.
Theorem 13.3 (Existence and uniqueness of stable Spivak normal structure).

(i) A finite CW complex X is an m-dimensional Poincaré complex if and only
if there is an embedding X ↩→ Sm+k with a thickening (Y, ∂Y ) such that
ρ : ∂Y → Y ≃ X is a spherical fibration with fibre Sk−1.

(ii) The map c : Sm+k → Y/∂Y = Th(ρ) makes (X, ρ, c) a Spivak normal struc-
ture.

(iii) For an m-dimensional Poincaré complex X, all Spivak normal structures on
X are stably fibre homotopy equivalent. Any Spivak normal structure induced
from (ii) via an embedding X ↩→ Sm+k, determines a unique fibre homotopy
equivalence class.

The proof of this theorem uses more homotopy theory than we have access to at
present.

Definition 13.4. The Spivak normal fibration of a Poincaré complex X is the
unique stable spherical fibration over X arising from a stable Spivak normal struc-
ture on X.
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Let J : BO(k) → BG(k) be the forgetful map sending a vector bundle to its
underlying sphere bundle. The stable version of J fits into a fibration sequence

G/O → BO
J−→ BG→ B(G/O).

Note that the extension of this sequence to the right to B(G/O) is nontrivial. The
fibration sequence induces a long exact sequence in homotopy groups

πn(G/O) → πn(BO) → πn(BG) → πn−1(G/O).

The homotopy groups of G/O are quite well understood, and are given by

πn(G/O) ∼= 0,Z/2, 0,Z, 0,Z/2, 0,Z⊕ Z/2, (Z/2)2,Z/2⊕ Z/3

for n from 1 to 10. The space G/Oz, as the fibre, up to homotopy equivalence, of
a point z ∈ BG, can be described as

{(y, w) ∈ BO × [[0, 1], BG] | J(y) = w(0), w(1) = z}

We will soon be interested in the homotopy classes of maps [X,G/O], so it is good
to know that the space G/O can be understood. We will not go into any details of
this during this course.

Proposition 13.5. A spherical fibration η : X → BG admits a vector bundle re-
duction if and only if there exists a lift

BO

J
��

X
η //

=={
{

{
{

BG

which holds if and only if the composition X → BG→ B(G/O) is null homotopic.

If such a lift exists, the homotopy classes of maps X → G/O correspond to the
different choices of lift. A map X → G/O is the same as a map η : X → BO, that
is a stable vector bundle, and a homotopy h of Jη to the constant map to z ∈ BG.

We want to work from the existence of a vector bundle reduction of the Spivak
normal fibration to the existence of a degree one normal map over X, and an un-
derstanding of the number of different choices of such normal maps. This existence
question is the primary surgery obstruction, homotopy theoretic in nature. Degree
one normal maps will then be the starting point for the definition of the secondary
surgery obstruction for there to be a manifold homotopy equivalent to a Poincaré
complex X. The secondary obstruction is the obstruction to finding a homotopy
equivalence in a given normal bordism class of degree one normal maps, that is an
element of Nn(X). With this small description of our goal in mind, let us continue
with the promised passage from vector bundle lift to a normal map.

Definition 13.6. A normal k-invariant for an n-dimensional connected finite
Poincaré complex X is a k-dimensional vector bundle ξ : X → BO(k) and a map
ρ : Sn+k → Th(ξ) such that there is a Thom class Uξ and a fundamental class [X]
for which ξ(h∗(ρ) ∩ Uξ) = [X].



MAT993D: TOPOLOGY OF MANIFOLDS: SURGERY THEORY 57

Normal k-invariants (ξ, ρ), (ξ′, ρ′) are equivalent if there exists a bundle map

(Id, f) : ξ
≃−→ ξ′ covering the identity with

ρ′ = f∗ ◦ ρ : Sn+k → Th(ξ) → Th(ξ′).

Let Tn(X, k) be the equivalence classes of normal k-invariants on X, and define

Tn(X) := colimk→∞ Tn(X, k).

By the same proof as the Pontryagin-Thom construction, we have that

Tn(X) ∼= Nn(X).

That is, by transversality we pass from a normal invariant to a normal map, and
the inverse uses the embedding in Sn+k and the collapse map followed by the map

on Thom spaces induced by the normal map: Sn+k → Th(νM )
b−→ Th(ξ). The cool

thing is that the Thom isomorphism theorem, together with the Spivak condition
ξ(h∗(ρ)∩Uξ) = [X] guarantees that the transversality condition yields a degree one
map.

In summary, we have the following theorem.

Theorem 13.7 (Browder-Novikov normal invariant theorem). Let X be a con-
nected finite n-dimensional Poincaré complex. The following are equivalent.

(i) Tn(X) ̸= ∅.
(ii) There exists a degree one normal map (f, b) : M → X.
(iii) The Spivak normal fibration νX : X → BG admits a vector bundle reduction

η : X → BO (J ◦ η = νX).
(iv) The composition X → BG→ B(G/O) is null homotopic.

We have the following consequence.

Proposition 13.8. An n-dimensional simple Poincaré complex X is homotopy
equivalent to an n-dimensional manifold if and only if there exists a lift of the
Spivak normal fibration to a map X → BO, such that the resulting normal bordism
class of degree one normal maps contains a homotopy equivalence.

Thus we need a procedure for deciding if a degree one normal map is normal bor-
dant to a homotopy equivalence. This will be the subject of most of the remainder
of the course.

First let us look at the different available choices of a degree one normal map,
once we know that one exists. In order to find a homotopy equivalence in the
normal bordism class, we are at liberty to pick any choice of normal map over the
given X.

Theorem 13.9. There is a bijection of the normal invariant set Tn(X) with
[X,G/O]. The bijection is unnatural, that is it depends on a choice.

Proof. We know that the different choices of lift of the Spivak normal fibration are
in one to one correspondence with [X,G/O], by the fibration sequence G/O →
BO → BG discussed above. Here we will describe a free transitive action of
[X,G/O] on the normal invariants explicitly.
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Recall that a map X → G/O is the same as a map α : X → BO, that is a stable
vector bundle, and a homotopy β of Jη to the constant map to z ∈ BG. Represent
this by a map α : X → BO(j), for suitably large j.

Fix ξ : BO(k), for large k, and a map ρ : Sn+k → Th(ξ). Define a new normal
invariant (η, σ), as follows. Let

η = ξ : α : X → BO(k + j)

be the Whitney sum. Then let σ be the composition

σ : Sn+k+j Σjρ−−→ Σj Th(ξ) = Th(ξ ⊕ ϵj)
Id⊕Th(β)−1

−−−−−−−−→ Th(ξ ⊕ α) = Th(η).

This is a free and transitive action of [X,G/O] on the normal invariant set, and it
defines a bijection as required. �

Here is a summary of where we are so far. Given a finite connected CW complex
X, we want to know whether there is an n-dimensional manifoldM and a homotopy
equivalence M → X. First, we need a fundamental class [X] ∈ Hn(X;Z) such
that cap product with this class determines a simple chain homotopy equivalence

Cn−∗(X̃) → C∗(X̃). Next we need a null homotopy of the composition X →
BG → B(G/O) determined by the Spivak normal fibration. Finally, we need
for the resulting normal bordism class of degree one normal maps to contain a
homotopy equivalence.

It is this last step that will occupy us in the ensuing sections.

14. Surgery below the middle dimension

Recall that a degree one normal map, or DONM, to a finite, connected, n-
dimensional Poincaré complex X consists of a manifold M with a degree one map
f : M → X, a stable vector bundle ξ : E → X, and a bundle map from the stable
normal bundle

ν(M)
b //

��

E

ξ
��

M
f // X

covering f . Recall that Nn(X) denotes the normal bordism classes of degree one
normal maps.

Our aim is to define, for a group π and an integer n, a group Ln(Zπ) and a
function

σ : Nn(X) → Ln(Zπ)
such that

Sn(X) → Nn(X)
σ−→ Ln(Zπ)

is an exact sequence of pointed sets. (Even though both of the second two sets can
be given a group structure, the map σ is not a homomorphism.) The exactness
corresponds to the statement that for n ≥ 5 a degree one normal map f : M → X
is normal bordant to a homotopy equivalence if and only if the surgery obstruction

σ(M
f−→ X) vanishes.
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We will make use of the Whitehead and Hurewicz theorems, so we give their
statements here.

Theorem 14.1 (J.H.C. Whitehead). Let f : X → Y be a map between CW com-

plexes with f∗ : πi(X)
≃−→ πi(Y ) for all i. Then f is a homotopy equivalence.

Given a pair of spaces (X,A), recall that πn(X,A) is homotopy classes of squares

Sn−2 //

��

A

��
Dn // X.

The Hurewicz map is

ρ : πn(X,A) → Hn(X,A)
(f, g) 7→ (f, g)∗([D

n, Sn−1]).

Let πn(X,A)
† = πn(X,A)/x ∼ α(x) for all α ∈ π1(A); recall that π1(A) acts on

πn(X,A).

Theorem 14.2 (Relative Hurewicz theorem). Suppose that X and A are path
connected, n > 1 and that πk(X,A) = 0 for all k < n. Then Hk(X,A) = 0 for all
k < n and ρ : πn(X,A)

† → Hn(X,A) is an isomorphism.

Here is a corollary that spells out the version that we will use. We will be
applying the Hurewicz theorem to universal covers, so we can assume that X and
A are simply connected.

Theorem 14.3 (Relative Hurewicz theorem II). Let (X,A) be a pair of spaces
with π1(A) = π0(A) = {1}. Suppose that n ≥ 2 and π0(X,A) = π1(X,A) = {1}.
Then:

(1) If in addition πk(X,A) = 0 for all k < n then Hk(X,A) = 0 for all k < n

and the Hurewicz map ρ : πn(X,A)
≃−→ Hn(X,A) is an isomorphism.

(2) If in addition Hk(X,A) = 0 for all k < n then πk(X,A) = 0 for all k < n

and the Hurewicz map ρ : πn(X,A)
≃−→ Hn(X,A) is an isomorphism.

For a map of spaces f : X → Y , define πn(f) := πn(Mf , X), with Mf the
mapping cylinder. There is a long exact sequence in homotopy groups

πn(X) → πn(Y ) → πn(f) → πn−1(f) → πn−1(X) → πn−1(Y )

The next corollary follows from the combination of the Hurewicz and Whitehead
theorems.

Corollary 14.4. Suppose that π1(X) ∼= π1(Y ) and there exists a map f : X →
Y that induces this isomorphism. Denote the induced map on the homology of

universal covers by f̃ : H∗(X̃) → H∗(Ỹ ). Suppose that Hk(f̃) = 0 for all k. Then
f is a homotopy equivalence.

Our plan for improving a degree one normal map is to inductively kill πk(f) by
changing M , until πk(f) = 0 for all k.
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Proposition 14.5. Suppose that Y and X are finite CW complexes, and that
f : Y → X is a (k − 1)-connected map, with k ≥ 2. Then πk(f) is a finitely
generated Z[π1(Y )]-module.

Proof. Denote π = π1(X) = π1(Y ), let f̃ : Ỹ → X̃ be the induced map on universal

covers. Then πi(f) = Hi(f̃) = Hi(C (f̃)) for i ≤ k, where here we abuse notation

and write f̃ : C∗(Ỹ ) → C∗(X̃) for the induced map on cellular chain complexes.

Define D∗ := C (f̃). The fact that f is (k − 1)-connected implies that

0 → ker ∂k → Dk
∂k−→ Dk−1

∂k−1−−−→ · · · → D0 → 0

is exact. Each Di is finitely generated and free since the CW complexes are finite.

Claim. ker ∂k is stably free and finitely generated.

Note that the claim implies the proposition, since the homology is a quotient of
ker ∂k and is therefore also finitely generated. To prove the claim, begin by noting
that we have an exact sequence

0 → ker ∂1 → D1 → im ∂1 = D0 → 0.

Then D0 is projective so this sequence splits, and we have D1 = ker ∂1 ⊕ D0. So
ker ∂1 is stably free and finitely generated. Next, we have a short exact sequence

0 → ker ∂2 → D2 → ker ∂1 → 0

which gives rise to a short exact sequence

0 → ker ∂2 → D2 ⊕D0 → ker ∂1 ⊕D0 = D1 → 0

Thus ker ∂2 ⊕ D1
∼= D2 ⊕ D0 and so ker ∂2 is stable free and finitely generated.

Proceed by induction to see that ker ∂k ⊕ Dodd
∼= Deven, or the same with even

and odd switched. This completes the proof of the claim and therefore of the
proposition. �

Now that we know πk(f) is finitely generated, we could do a finite number of
cell attachments to M to kill πk(f). But of course we want to do a sequence of
surgeries instead, so that we always have a manifold. Recall that πk+1(f) consists
of squares of the form:

Sk g //

��

M

f

��
Dk+1 h // X.

Suppose that f is degree one, and that we can represent g by a framed embedding

g : Sk ×Dn−k ↩→M.

Then
M ′ =Mrg(Sk ×Dn−k) ∪Dk+1 × Sn−k−1

maps to X, with h being used to extend f |Mr(Sk×Dn−k). If 2k < n, we have that
g is homotopic to an embedding by the Whitney embedding theorem. If 2k = n,
then we can only arrange an immersion in general. The middle dimensional surgery
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obstruction will be based around this problem. For now, assume that n > 2k. Then
we can arrange to have an embedding, but why should it be framed? For this, we
need to use the bundle data. More details on this will be coming soon, but first let
us investigate the effect of a surgery on the relative homotopy groups.

Theorem 14.6 (Homotopy effect of surgery). Let f : M → X be an n-dimensional
degree one map. Let k be a nonnegative integer such that 2(k + 1) ≤ n. Let
g : Sk×Dn−k ↩→M be an embedding with an extension to a map h : Dk+1×Dn−k →
X, such that x := (g|Sk×{0}, h|Dk+1×{0}) represents an element of πk+1(f). Let

f ′ : M ′ → X be the result of surgery on g. Then

πk+1(f
′) ∼= πk+1(f)/⟨x⟩

and

πj+1(f
′) = πj+1(f)

for j < k.

Proof. We look at the effect of the two steps of surgery on the relative homotopy
groups independently. First, the map

πj+1(MrSk → X) → πj+1(M → X)

is surjective for j + k < n and if injective for j + k + 1 < n. This follows from
general position: a sphere can be made disjoint from Sk by general position in a
certain range, while a homotopy can be made to miss Sk in a slightly smaller range.
Next,

πj+1(MrSk → X) → πj+1(f
′)

is injective for j < k and surjective for j ≤ k. For an isomorphism πj+1(f) ∼=
πj+1(f

′) we therefore need j < k and j < n− k− 1. By assumption, 2(k+ 1) ≤ n,
which implies the first and last inequalities of n − k − 1 ≥ n/2 > n/2 − 1 ≥ k.
Thus when j < k we have j < n − k − 1 automatically, and therefore we have an
isomorphism of relative homotopy groups as required for j < k. For surjectivity, we
again need for j < n−k−1, since we need for πj+1(MrSk → X) → πj+1(M → X)
to be an isomorphism, and we need thatj ≤ k. But j = k indeed satisfies both.
The kernel of the map πj+1(MrSk → X) → πj+1(f

′) is the submodule generated
by x. �

Now we return to bundle data. We need to argue why we can do surgery to kill
a given element of πr+1(f).

Here is Wall’s [Wal] version of a normal map. We have an n-dimensional degree
one map f : M → X, the tangent bundle TM → M of the manifold M , and an
m-dimensional vector bundle ξ → X. The normal data is a stable trivialisation of
TM ⊕ f∗ξ, that is an isomorphism of bundles:

b : TM ⊕ f∗ξ ⊕ ϵa ∼= ϵn+m+a.

This is equivalent to requiring that f∗ξ be the stable normal bundle of some embed-
ding ofM , and one can show that the resulting normal bordism group is isomorphic
to Nn(X).
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Bordism of normal maps requires a cobordism F : (W ;M,M ′) → (X,×I;X ×
{0}, X × {1}) with the vector bundle ξ → X × I extended trivially, and a stable
trivialisation of TW ⊕ F ∗ξ extending

b on TM ⊕ f∗ξ ⊕ inward normal

and

b′ on TM ′ ⊕ (f ′)∗ξ ⊕ outward normal.

To perform surgery, choose a representation

Sr q //

i
��

M

f
��

Dr+1 Q // X.

for an element in πr+1(f). The trivialisation b induces a stable trivialisation of

q∗TM ⊕ q∗f∗ξ ∼= q∗TM ⊕ i∗Q∗ξ

on Sr. But Dr+1 is contractible so i∗Q∗ξ is canonically framed. Thus we obtain a
framing of q∗TM ⊕ ϵm ⊕ ϵa.

On the other hand q∗TM ∼= νSr⊂M ⊕ TSr, and TSr ⊕ ϵ ∼= ϵr+1. Thus νSr⊂M ⊕
ϵr+m+a−1 is a trivial vector bundle. For r < n/2, the next lemma then guarantees
that the normal bundle is trivial.

Lemma 14.7. If k > m then any two k-plane bundles on an m-dimensional CW
complex X are isomorphic if and only if they are stably isomorphic.

Proof. We begin the proof by claiming that there is a fibration

Sk → BO(k) → BO(k + 1).

To see this, let Vn(Rm) denote the Stiefel manifold of orthonormal n frames in
Rm. In particular, V1(Rk+1) is the space of length one vectors in Rk+1, so is
diffeomorphic to Sk. Recall that there is a universal k + 1-plane vector bundle
γk+1 → BO(k + 1), where BO(k + 1) is the Grassmannian of k + 1-planes in R∞

and γk+1 is the set of pairs (W, v) with W ∈ BO(k+1) and v ∈W . The projection
map of the universal bundle sends (W, v) 7→W . By considering the 1-frame bundle
of this vector bundle, we obtain a fibre bundle

Sk → V1(γk+1) → BO(k + 1).

Next, there is a homotopy equivalence V1(γk+1) → BO(k), which sends

(W, b) 7→ (span b)⊥

The reader should find a homotopy inverse. We therefore replace V (γk+1) by BO(k)
to get the fibration claimed.

The long exact sequence of the fibration implies, since πj(S
k = 0 for j < k, that

(BO(k + 1), BO(k)) is a k-connected pair. It follows that there is a bijection

[X,BO(k)] ↔ [X,BO(k + 1)]
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for any CW complex X of dimension less than k. Thus for such X, [X,BO(k)] =
[X,BO], and two k-plane bundles are isomorphic if and only they are stably iso-
morphic. �

Now we know that νSr⊂M is trivial for r < k (recall n = 2k). Thus we can
thicken our embedding of Sr to an embedding of Sr ×Dn−r, and perform surgery.

Next, although we now know that we can perform surgery on one element, we
need to be able to repeat the process. Surgery on one element required bundle data.
Thus in order to have an iterative procedure, we need to be able to extend bundle
data across the trace of a surgery to the outcome M ′ of a surgery. It turns out
that this can always be done. Achieving it requires an investigation of immersions.
The ability to repeat surgeries for 2k < n, and the fact that each successive πj(f)
is finitely generated as a Z[π1(X)]-module, will enable us to prove the following
theorem, which is the main result of this section.

Theorem 14.8 (Surgery below the middle dimension). Let X be a connected,
finite, n-dimensional Poincaré complex, and let (f, b) : M → X be a degree one
normal map. There exists a finite sequence of surgeries to a normal bordant degree
one normal map (f ′, b′) : M ′ → X with f ′ a k-connected map.

As mentioned above, we need a further investigation of the bundle data to ensure
that it extends across the trace of a surgery. This needs some important facts about
immersions, as mentioned above.
Definition 14.9.

(i) Recall that an immersion ofM into N is a smooth map f : M # N such that
dfp : TpM → Tf(p)N is an injection for all p ∈M .

(ii) The normal bundle of an immersion f : M # N is

ν(q) = f∗(TN)/TM.

(iii) A regular homotopy between immersions f0 and f1 is a homotopy h : M ×
[0, 1] → N with h(−, i) = fi for i = 0, 1, such that ht : M # N is an immersion
for all t ∈ [0, 1], with

dh : TM × [0, 1] → TN
((p, x), t) 7→ (ht(p), dht(x))

a smooth bundle map that restricts to a bundle monomorphism for each t.

The next theorem gives a classification of immersions, and will be crucial for do-
ing surgery. The idea is that we will use our bundle data to fix a regular homtopy
class of immersions, and then we will look for an embedding in that regular homo-
topy class of immersions only. This will guarantee that the bundle data extends
across the trace of a surgery.

In the next theorem let π0(Imm(M,N)) be the regular homotopy classes of im-
mersions, and let π0(Mono(TM, TN)) be the isotopy classes of bundle monomor-
phisms from TM to TN .

Theorem 14.10 (Smale-Hirsch classification of immersions). Let Mm and Nn be
smooth manifolds.
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(i) Suppose that 1 ≤ m < n. Then the differential induces a bijection

π0(Imm(M,N))
≃−→ π0(Mono(TM, TN)).

(ii) Suppose that 1 ≤ m ≤ n and that M has a handle decomposition comprising
r-handles for r ≤ n− 2 only. Then the differential induces an isomorphism

π0(Imm(M,N))
≃−→ colima→∞ π0(Mono(TM ⊕ ϵa, TN ⊕ ϵa)).

One striking consequence of this theorem is that all immersions of S2 into R3 are
regularly homotopic to each other, and can therefore the 2-sphere can be turned
inside out by regular homotopies. This is called the eversion of the sphere.

Here is an application of the theorem to the special case of immersions of spheres
Sk in the disc Dn. Let f : Sk # Dn, for 2 ≤ k ≤ n − 2. There is a stable bundle
monomorphism uniquely associated to this immersion ST (f) : Sk ×Rk+1 → Rn+1,
defined as the composition

TSk ⊕ ϵ
df⊕Id−−−→ TDn ⊕ ϵ

≃−→ Dn × Rn+1 → Rn+1

where the last map is the projection. For each x ∈ Sk, we get a (k + 1)-frame
{vi(x) := ST (f)(x, vi) | i = 1, . . . , k+1} in Rn+1. Since (k+1)-frames in Rn+1 cor-
respond to elements of GLn+1(R)/GLn−k(R), and regularly homotopic immersions
correspond to homotopic maps Sk → GLn+1(R)/GLn−k(R), we see that there is a
bijection

π0(Imm(Sk, Dn)) ∼= [Sk,GLn+1(R)/GLn−k(R)].
For framed immersions there is a bijection to [Sk,GLn+1(R)]. Next, O(j) is homo-
topy equivalent to GLj(R) by the Gramm-Schmidt process, and we know that

[Sk, O(j)] = [Sk, O]

for j ≥ k + 2. Thus we can replace GL with O and we can stabilise. Thus

π0(Immfr(Sk, Dn)) ∼= [Sk, O]

and

π0(Imm(Sk, Dn)) ∼= [Sk, O/O(n− k)].

The fundamental group π1(O/O(n−k)) = {e}, so [Sk, O/O(n−k)] ∼= πk(O/O(n−
k)). When n = 2k and k ≥ 3 is equal to 2j, 2j + 1, these homotopy groups are
known to be equal to:

π2j(O/O(2j)) ∼= Z
and

π2j+1(O/O(2j + 1)) ∼= Z/2.

Proof of surgery below the middle dimension. Recall from our discussion above that
a class in πr+1(f) can be represented by an immersion with trivial normal bundle,
so an immersion q : Sr ×Dn−r → M with a stable trivialisation of q∗TM , that is
a framing of q∗TM ⊕ ϵa

′
, for some integer a′. Since q∗TM ∼= T (Sr ×Dn−r), this is

equivalent to a stable bundle monomorphism T (Sr×Dn−r) → TM , and thus there
is determined a regular homotopy class of immersions Sr ×Dn−r →M . Note that
Sr × Dn−r has a handle decomposition with handles of dimension 0 and r only,
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and r ≤ n − 2, so (ii) of the Smale-Hirsch theorem applies. Since r < n/2, this
immersion can be represented by an embedding in the regular homotopy class.

Note that the stable trivialisation was determined by the canonical trivialisation
of i∗Q∗ξ on Dr+1 × Dn−r. Thus the trivialisation extends across W = M × I ∪
Dr+1 × Dn−r, the trace of the surgery. Thus we can perform a surgery to kill a
homotopy class in πr+1(f). As long as we proceed inductively on r, we saw above
that πr+1(f) is finitely generated over Z[π1(X)] and that surgery to kill a generator
of πr+1(f) does not change the lower relative homotopy groups. Once they are killed
they stay dead. The argument above works until just below the middle dimension.
Thus we can find a normal bordant k-connected map, as claimed. �

Now we can arrange up to normal bordism that any degree one normal map in
dimension n = 2k is k-connected. We still need to try to kill πk+1(f). We will show
that by Poincaé duality, it is enough to do this, and then we will have πj(f) = 0
for all j. Then f will be a homotopy equivalence, by the Whitehead theorem. In
general., this last step cannot be done. We will define the surgery obstruction group
L2k(Z[π1(X)]) and the surgery obstruction map

σ : Nn(X) → L2k(Z[π1(X)]),

for which σ(f, b) = 0 if and only if (f, b) is normal bordant to a homtopy equiv-
alence. The main idea, as mentioned before, is that in the middle dimension the
intersection form ofM gives an obstruction to embedding spheres, and thus it may
not be possible to find enough embedded spheres on which to perform surgery in
order to simplify M .

15. Surgery in the middle dimension

Let (f, b) : M → X be a degree one k-connected normal map (with vector bundle
ξ → X) where M is a 2k = n dimensional manifold and X is an n-dimensional
connected finite Poincaré complex. We want to decide whether it is possible to do
further surgeries on M to convert f into a homotopy equivalence.

Let p ∈ M and s ∈ Sk be basepoints. Let Ik(M) be set of immersions q : Sk #
M together with a path w in M from p to q(s), up to regular homotopy of q
and homotopy of w. We call this pointed regular homotopy. With the basing
information Ik(M) is a Z[π1(M)]-module: just precompose w with a loop in pi1 to
define the action. The addition is defined by connected sum along the given paths.

Lemma 15.1. There is a natural homomorphism πk+1(f) → Ik(M).

To define the homomorphism, represent the map by a regular homotopy class
of framed immersions as determined by the stable framing b of TM ⊕ f∗ξ. This
proceeds exactly as in the previous section. There is a little extra work to see that
the normal bundle is always framed in this setting. The bundle data gives rise
to a stable trivialisation of q∗TM , which induces a stable trivialisation of TSk.
This can be destablised by Lemma 14.7 to give a trivialisation of TSk ⊕ ϵn−k,
and an identification of this stabilisation with q∗TM , which determines a stable
bundle monomorphism T (Sk ×Dn−k) → TM , and thus a regular homotopy class
of immersions Sk ×Dn−k is determined.
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15.1. Intersection and self intersection forms. We will often write π for
π1(M) = π1(X).

There is an intersection form

λ : Ik(M)× Ik(M) → Zπ
((q1, w1), (q2, w2)) 7→

∑
p∈q1(Sk)tq2(Sk) ϵpgp.

Here ϵp arises from transversality (we have to choose transverse representatives for

q1 and q2) and orientations. Let γpi be a path in qi(S
k) from q(s) to p. Then gp is

defined by

w1 · γp1 · γ
p
2 · w2.

This defines the ordinary intersection of two immersions. This is a homotopy
invariant.

The self-intersection number is a group homomorphism

µ : Ik(M) → Q(−1)k(Zπ)
where

Q(−1)k(Zπ) :=
Zπ

x ∼ (−1)kx
.

This is defined by

(q, w) 7→
∑

p∈q(Sk) with |q−1(p)|=2

ϵpgp.

Here ϵp is defined by the orientations as usual. To define gp choose two paths γp1
and γp2 from q(s) to p, which arrive at p on opposite sheets. Then

gp := w · γp1 · γ
p
2 · w.

The fact that we have no preferred order for the sheets at each intersection point
gives rise to the indeterminacy i.e. this is only well defined in Q(−1)k(Zπ). µ((q, w))
is invariant under pointed regular homotopy.
λ and µ have the following properties. For all q, q1, q2 ∈ Ik(M) and for all

a, b ∈ Zπ:
(i) λ(aq1, bq2) = aλ(q1, q2)b.
(ii) µ(aq) = aµ(q)a for a ∈ π.

(iii) (−1)kλ(q2, q1) = λ(q1, q2).

(iv) λ(q, q) = µ(q)+(−1)kµ(q)+χ(νq) where χ(νq) ∈ Z ⊂ Zπ is the Euler number
of the normal bundle of q.

(v) µ(q1 + q2) − µ(q1) − µ(q2) = pr(λ(q1, q2)). Here pr : Zπ → Q(−1)k(Zπ) is the
projection.

We invite the reader to check these properties.

Theorem 15.2 (Wall embedding theorem). Let M be a compact oriented mani-
fold of dimension n = 2k ≥ 6. An immersion (q, w) ∈ Ik(M) is pointed regular
homotopic to an embedding if and only if µ(q) = 0.

Proof. One direction is trivial. The other direction uses the Whitney trick. �
Now we give a formal algebraic setting, of which the intersection form we just

described is a special case.
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Definition 15.3 (Symmetric form). A (−1)k-symmetric form consists of a f.g.

projective Zπ-module P and a Zπ-module morphism λ : P → P ∗ = HomZπ(P,Zπ)
with λ = Tλ := (−1)kλ∗. (These properties correspond to (i) and (iii) above) The
form is nonsingular if λ is an isomorphism.

The form is nondegenerate if λ is an injection.

Definition 15.4 (Quadratic form). A (−1)k-quadratic form is a (−1)k symmetric
form together with a quadratic enhancement µ : P → Q(−1)k(Zπ) such that for all
q, q1, q2 ∈ P and for all a ∈ Zπ we have:

(i) µ(aq) = aµ(q)a.

(ii) λ(q, q) = µ(q) + (−1)kµ(q).
(iii) µ(q1 + q2) − µ(q1) − µ(q2) = pr(λ(q1, q2)). Here pr : Zπ → Q(−1)k(Zπ) is the

projection.

Note that in the surgery step we will always consider spheres with trivial normal
bundle, so we do not need to consider the χ term.

A quadratic form is equivalent to a Zπ-module homomorphism ψ ∈ HomZπ(P, P
∗)/(1−

T ). Note that (1 + T )ψ is symmetric and does not depend on the choice of rep-
resentative, since (1 + T )(1 − T ) = 0, as T 2 = 1. To see the equivalence, define
λ(p, q) = ((1 + T )ψ)(p)(q) and µ(p) = ψ(p)(p).

Next we want to answer the following question: why is λ of a k-connected
degree one normal map a nonsingular form? This will be the subject of the next
two lemmas.

Definition 15.5 (Surgery homology and cohomology kernels). Let f : M → X be

2-connected map between Poincaré complexes and let f̃ : M̃ → X̃ be the induced
map on universal covers. Define the homology kernel

Kr(M) := Hr+1(f̃ : M̃ → X̃)

and the cohomology kernel

Kr(M) := Hr+1(f̃ : M̃ → X̃).

Lemma 15.6. For a degree one 2-connected map f : M → X, for all r we have
splittings of kernels, and of duality maps:

Hr(M̃)
∼= //

−∩[M ]
��

Kr(M)⊕Hr(X̃)

(−∩[M ])|⊕(−∩[X])
��

Hn−r(M̃)
∼= // Kn−r(M)⊕Hn−r(X̃).

Proof. Consider the following square of chain complexes.

C∗(X̃)
(−∩[X])−1

// Cn−∗(X̃)

f̃∗
��

C∗(M̃)

f̃∗

OO

Cn−∗(M̃)
(−∩[M ])−1
oo
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Define f! : C∗(X̃) → C∗(M̃) to be the right-down-left composition, and it defines

a splitting of f̃∗ up to homotopy, that is f̃∗ ◦ f! ∼ Id. To see this note that since
f∗([M ]) = [X], we have:

f̃∗(f̃
∗(x) ∩ [M ]) = x ∩ f∗([M ]) = x ∩ [X]

for any x ∈ Cn−∗(X̃). Let y = x ∩ [X]. Then (− ∩ [X])−1(y) = x up to chain
homotopy so

f̃∗ ◦ f!(y) = f̃∗(f̃
∗((− ∩ [X])−1(y)) ∩ [M ]) = y,

the diagram above commutes up to homotopy, and f! is a homotopy splitting as
claimed.

On the level of homology, the long exact sequence therefore breaks up into short
exact sequences:

0−→ Hk+1(f̃) → Hk(M̃) → Hk(X̃)
0−→ Hk(f̃).

Since Hk+1(f̃) = Kk(M), and f! gives a splitting of this short exact sequence, we

have a direct sum decomposition Hk(M̃) ∼= Kk(M)⊕Hk(X̃) as desired.
Next we want to see that the duality maps also split as claimed. Consider the

diagram:

0 Kn−k(M)oo --

��

Hn−k(M̃)
f !

--

∼= −∩[M ]
��

mm Hn−k(X̃)
f∗

mm

∼= −∩[X]
��

0oo

0 // Kk(M) 11 Hk(M̃)
qq

f∗

11 Hk(X̃)
f!qq // 0

The splitting f! of the bottom row induces a splitting s : Hk(M̃) → Km(M). Iden-
tify

Kk(M) ∼= ker(f∗ : Hk(M̃) → Hk(X̃)

and

Kn−k(M) ∼= coker(f∗ : Hn− k(X̃) → Hn−k(M̃).

For [x] ∈ Kn−k(M) = Hn−k(M̃)/Hn−k(X̃), we have that s(x∩ [M ]) is well defined
by commutativity of the diagram. This produces the dotted arrow in the diagram.
The right-up-left composition of the quotient, (− ∩ [M ])−1 and the inclusion give
an inverse to the dotted arrow. We also denote the dotted arrow by − ∩ [M ], and
use it to define the intersection pairing next. �
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The surgery pairing λ : Kk(M)×Kk(M) → Zπ of a k-connected map f : M → X
is given by (x, y) 7→ ⟨(− ∩ [M ])−1x, y⟩. It fits into the diagram

Kk(M)×Kk(M)
λ //

∼=
��

Zπ

πk+1(f̃)× πk+1(f̃)

∼=
��

Ik(f̃)× Ik(f̃)
λ // Zπ

Here Ik(f̃) denotes the pointed immersions of Sk into M that are null homotopic
in X. Both the geometric and algebraic pairings are denoted by λ, since they are
equal (we mentioned this fact above, but we will not prove it unfortunately.). The
algebraic pairing is necessary to prove nonsingularity.

Lemma 15.7. The Kronecker map Kn−k(M) → Kn−k(M)∗ is an isomorphism.

It follows from the lemma that λ is nonsingular, since the adjoint of λ is the
composition of the inverse of Poincaré duality and the kronecker evaluation map
in the lemma.

Proof. Define D∗ := C (f̃). This is a projective R = Zπ-module chain complex
with Hi(D∗) = 0 for i ≤ k, since Hi(D∗) = Ki−1(M). Define a chain complex E∗
as follows:

· · · → Ek+3 = Dk+3
dk+3−−−→ Ek+2 = Dk+2

dk+2−−−→ Ek+1 = ker(dk+1)
dk+1−−−→ 0

Now, we have that

0 → im dk+1 → Dk → Dk−1 → Dk−2 → · · · → D0 → 0

is exact. It follows by an argument given in a previous lemma that im dk+1 is
projective. Then the short exact sequence

0 → ker dk+1 → Dk+1 → im dk+1 → 0

splits and so ker dk+1 is projective. This together with the fact that the inclusion
E → D induces isomorphisms on homology implies, by the fundamental lemma of
homological algebra, that this inclusion is a homtopy equivalence.

Next we have an exact sequence

· · · → Ek+2 → Ek+1 → Hk+1(E∗) → 0.

Applying the functor Hom(−,Zπ) to this yields an exact sequence

0 → Hk+1(E∗)
∗ → E∗

k+1 → E∗
k+2 → · · ·

Thus

Kk(M) = Hk+1(D∗) = Hk+1(E∗) = ker(E∗
k+1 → E∗

k+2)

= Hk+1(E)∗ = Hk+1(D)∗ = Kk(M)∗.

�
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Corollary 15.8. Suppose that Kr(M) = 0 for r < k. Then Kn−r(M) ∼= Kr(M) ∼=
Kr(M)∗ = 0 for r < k.

Therefore it suffices to kill the kernel homology groups up to and including the
middle dimension. Then they will all vanish, and thus the relative homotopy groups
πr(f) will all vanish, and so f will be a homotopy equivalence. Above the middle
dimension comes for free by duality. We have also now shown that λ is nonsingular.

15.2. The surgery obstruction L-groups. In this section let R be a ring with
involution, such as Zπ, and we will consider f.g. projective R modules, usually
denoted by P .

Two (−1)k
{

symmetric
quadratic

}
forms,

{
(P1, λ1) and (P2, λ2)
(P1, ψ1) and (P2, ψ2)

}
can be added, to

form (
P1 ⊕ P2,

{
λ1 ⊕ λ2
ψ1 ⊕ ψ2

})
where for example λ1 ⊕ λ2((p1, p2), (q1, q2)) = λ1(p1, q1) + λ2(p2, q2).

For ϵ ∈ {±1} and for a f.g. R-module P , the hyperbolic

{
symmetric
quadratic

}
form{

Hϵ(P )
Hϵ(P )

}
is given by {

(P ⊕ P ∗, λH)
(P ⊕ P ∗, ψH)

}
where

λH : P ⊕ P ∗

(
0 1
ϵ 0

)
−−−−−→ P ∗ ⊕ P

Id⊕Canon−−−−−−→ P ∗ ⊕ P ∗∗ ∼= (P ⊕ P ∗)∗

and

ψH : P ⊕ P ∗

(
0 1
0 0

)
−−−−−→ P ∗ ⊕ P

Id⊕Canon−−−−−−→ P ∗ ⊕ P ∗∗ ∼= (P ⊕ P ∗)∗.

Note that ψH +TψH = λH . Given a 2k-dimensional

{
manifold M

DONM f : M → X

}
, the{

symmetric
quadratic

}
intersection form associated toM#Sk×Sk is

{
λM ⊕H(−1)k(P )
ψf ⊕H(−1)k(P )

}
.

Definition 15.9 (L-groups). Given a ring with involution R, the

{
symmetric
quadratic

}
L-group

{
L2k(R)
L2k(R)

}
is the group of nonsingular (−1)k-

{
symmetric
quadratic

}
forms{

(P, λ)
(P,ψ)

}
with P a finitely generated projective R-module and{

λ ∈ ker(1− T : HomR(P, P
∗) → HomR(P, P

∗))
ψ ∈ coker(1− T : HomR(P, P

∗) → HomR(P, P
∗))

}



MAT993D: TOPOLOGY OF MANIFOLDS: SURGERY THEORY 71

with addition ⊕, zero element the trivial form on the zero module, modulo the

equivalence relation

{
(P1, λ1) ∼ (P2, λ2)
(P1, ψ1) ∼ (P2, ψ2)

}
if there exist m,n ∈ N ∪ {0} such

that {
(P1, λ1)⊕

⊕mHϵ(R) ∼= (P2, λ2)⊕
⊕nHϵ(R)

(P1, ψ1)⊕
⊕mHϵ(R) ∼= (P2, ψ2)⊕

⊕nHϵ(R)

}
.

An isomorphism of

{
symmetric
quadratic

}
forms

{
(P, λ) ∼= (P ′, λ′)
(P, ψ) ∼= (P ′, ψ′)

}
is an isomor-

phism of R-modules ϕ : P
≃−→ P ′ such that

{
λ = ϕ∗λ′ϕ
ψ = ϕ∗ψ′ϕ

}
.

The equivalence relation in the definition of L-groups is sometimes called Witt
equivalence.

Note that when R = Zπ, you may see L2k(Zπ) written as L2k(π) in the literature.
When π = {e}, the trivial group, we have

L2k(Z) ∼=

{
Z k even

Z/2 k odd.

In the case of k even, the isomorphism is given by the signature divided by 8: note
that the existence of a quadratic refinement means that the intersection form λ
is even, and it turns out that the signature of nonsingular even forms is always
divisible by 8. The quadratic refinement is determined to be half the diagonal
values λ(x, x), it is just its existence that guarantees divisibility by 8.

In the case of k odd, the isomorphism to Z/2 is given by the Arf invariant.
This depends on just on the existence of a quadratic refinement, but also on the
particular quadratic refinement. The signature and the Arf invariant were treated
in student talks.

15.3. The surgery obstruction theorem. Let n = 2k > 5, and let f : M → X
be an n-dimensional DONM. Define a map

σ : Nn(X) → Ln(Z[π1(X)])

as follows. Given (f, b) : M → X, perform surgery to make f be k-connected.
So π1(M) ∼= π1(X) = π. Then (Kk(M), λ, µ) determines an element σ(f, b) of
Ln(Z[π1(X)]). (Recall that the pair (λ, µ) are equivalent to a single map ψ ∈
coker(1− T ).)

Proposition 15.10. The surgery obstruction map σ is well-defined.

Theorem 15.11 (Surgery obstruction theorem). The surgery obstruction σ(f, b) =
0 if and only if (f, b) is normally bordant to a homotopy equivalence (n ≥ 5).

This corresponds to “exactness at the normal invariants” of the surgery sequence.
The majority of the rest of the course is devoted to proving this theorem. To

begin, we need some more homological algebra, to show that Kk(M) is a stably
f.g. free module. Actually this is needed to see that the surgery obstruction map σ
is well-defined, since the modules in L-theory are supposed to be projective. But
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beyond this, the surgery kernel being stably free will be useful later in the proof of
the surgery obstruction theorem.

Some more remarks on being well-defined: we already saw that the form on
the middle dimensional surgery kernel of a highly-connected degree one map is
nonsingular. One could worry whether the choices in the way in which we made
the map highly-connected affect the Witt equivalence class of the resulting element
of the L-group. However all different choices are normal bordant to one another,
and we will show that normal bordant highly connected maps have Witt equivalent
intersection forms on their surgery kernels.

Lemma 15.12. Suppose that a finite chain complex D∗ has chain groups Di that
are stably f.g. free for i ≥ 0, and suppose the following:

(a) Hi(D∗) = 0 for i ̸= k.
(b) Hk+1(HomR(D∗, V )) = 0 for all R-modules V .

Then Hk(D∗) is stably f.g. free.

We will show why this lemma gives us the conclusion we need, in the next
corollary, then we will prove the lemma.

Corollary 15.13. Let f : M → X be a k-connected degree one map. Then the
surgery kernel Kk(M) is stably f.g. free.

Proof. Let D∗ := C (f̃!) (recall that f̃! : C∗(X̃) → C∗(M̃) is the Umkehr map). Note
that Hi(D∗) = Ki(M). Then we have shown that Ki(M) = 0 for i ̸= k, so (a) of
Lemma 15.12 holds for D∗. We therefore just have to show that (b) holds.

Similarly to in the proof of Lemma 15.7, define a chain complex E:

· · · → Ek+2 = Dk+2
dk+2−−−→ Ek+1 = Dk+1

dk+1−−−→ Ek = ker(dk)
dk−→ 0

Note that there is a degree shift here relative to the previous incarnation of E,

because in this lemma we are using D∗ = C (f̃!) whereas in the previous lemma we

had C (f̃). Nevertheless the same proof as used in that lemma shows that E ≃ D.
Thus En−∗ ≃ Dn−∗. Now Hi(D∗) = 0 for i ̸= k. Thus Hi(D

n−∗) = 0 for i ̸= k by
Poincaré duality D∗ ≃ Dn−∗ for the surgery kernel.

Let V be any R-module. Then

Hj(HomR(D∗, V )) ∼= Hj(HomR(D
n−∗, V )) ∼= Hj(HomR(E

n−∗, V )).

But En−i = 0 for i > k so Hj(HomR(D∗, V )) = 0 for j > k. In particular
Hk+1(HomR(D∗, V )) = 0.

We can now apply Lemma 15.12 to see that Hk(D∗) ∼= Kk(M) is stably f.g.
free. �

Proof of Lemma 15.12. We begin the proof of this purely algebraic lemma with a
claim.

Claim. im dk+1 is a direct summand of Dk and Hk(D∗) is f.g. projective.

Here is the proof of the claim. We will just say projective, but each time we
really mean finitely generated projective. We apply Hk+1(Hom(D∗, V )) = 0 with
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V = im dk+1. This implies that

HomR(Dk, im dk+1) → HomR(Dk+1, im dk+1) → HomR(Dk+2, im dk+1)

is exact. Now the map dk+1 ∈ HomR(Dk+1, im dk+1) maps to zero in HomR(Dk+2, im dk+1),
so lies in the image of HomR(Dk, im dk+1). That is, there exists a map α : Dk →
im dk+1 with α ◦ dk+1 = dk+1. This gives rise to a splitting map of the short exact
sequence

0 → im dk+1 → Dk → Dk/ im dk+1 → 0.

Thus im dk+1 is a direct summand of Dk as claimed, and in particular we note that
im dk+1 is projective. We can replace Dk by ker dk to obtain a split exact sequence

0 → im dk+1 → ker dk → Hk(D∗) → 0.

Thus im dk+1 ⊕Hk(D∗) ∼= ker dk. So we need to see that ker dk is projective. But
we saw the argument before for this: since the homology of D∗ vanishes in degrees
less than k, we have an exact sequence

0 → im dk → Dk−1 → Dk−2 → · · · → D0 → 0

which implies that im dk is projective. Then

0 → ker dk → Dk → im dk → 0

splits so that ker dk is projective. Then the fact from above that im dk+1⊕Hk(D∗) ∼=
ker dk, together with the facts that im dk+1 and ker dk are projective, implies that
Hk(D∗) is projective. This completes the proof of the claim.

Now let us proof the lemma. The fact that Hi(D∗) = 0 for i > k implies that

· · · → Dk+3 → Dk+2 → Dk+1 → im dk+1 → 0

is exact. By the claim, im dk+1 is projective. Thus

im dk+1 ⊕
⊕

j>0 even

Dk+j
∼=

⊕
j>0 odd

Dk+j

SinceD∗ is a finite complex, im dk+1 is stably f.g. free. Similarly, the exact sequence

0 → ker dk → Dk → Dk−1 → · · · → D0 → 0

implies that ker dk is stably f.g. free. Then the sequence

0 → im dk → ker dk → Hk(D∗) → 0

splits since Hk(D∗) is projective by the claim. But then Hk(D∗)⊕ im dk ∼= ker dk.
Both im dk and ker dk are stably free, so Hk(D∗) must be too. This completes the
proof of the lemma. �

Theorem 15.14. Let f : M → X be a k-connected 2k-dimensional degree one
normal map with σ(f, b) = 0 ∈ L2k(Zπ), where π = π1(X). Then (f, b) is normal
bordant to a homotopy equivalence.

Proof. First, note that surgery on trivial elements of πk+1(f), that is on null ho-
motopic embeddings Sk ⊂ M , results in converting M to M#Sk × Sk. Thus the
surgery kernel form becomes (Kk(M), λ, µ) ⊕H(−1)k(Zπ). Since Kk(M) is stably
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free, and by assumption the intersection form is stably hyperbolic, after enough
surgeries on trivial elements we can arrange that

(Kk(M), λ, µ) ∼=
v⊕
H(−1)k(Zπ) ∼= H(−1)k(Zπv)

for some v ∈ N ∪ {0}. If we had v = 0, then we would have Ki(M) = 0 for all i
and f would be a homotopy equivalence. Thus we need a mechanism for reducing
v by one. Then we will obtain a proof of the theorem by induction.

Let {b1, . . . , bv, c1, . . . , cv} be a Zπ-basis for Kk(M), with respect to which

λ =

v⊕(
0 1

(−1)k 0

)
and µ(bi) = 0, for i = 1, . . . , v. Perform surgery on bv. That is, µ(bv) = 0, so using
the Whitney trick we can represent the homotopy class by a framed embedding.
Surgery gives rise to a normal bordism

F : (W ;M,M ′) → (X × I;X × {0}, X × {1})

where

W :=M × I ∪Dk+1 ×Dn−k =M × I ∪Dk+1 ×Dk.

A degree one bordism has surgery kernel Zπ-modules

Kk(W ) := Hk+1(C∗(W̃ ) → C∗(X̃ × I))

Kk(W,M) := Hk+1(C∗(W̃ , M̃) → C∗(X̃ × I, X̃ × {0}))

Kk(W,M
′) := Hk+1(C∗(W̃ , M̃ ′) → C∗(X̃ × I, X̃ × {1}))

and

Kk(W,∂W ) := Hk+1(C∗(W̃ , ∂̃W ) → C∗(X̃ × I, X̃ × {0, 1})).
These fit into a commutative braid of exact sequences, that we will use to determine
Kk(M

′).

0
��

��6
66

66
66

66
Kk+1(W,M)

&&

θ
$$I

II
II

II
II

II
I

Kk(M)

χ
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��;
;;

;;
;;

;;
Kk(W,M
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��

��6
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66
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0

0

BB���������
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99
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α
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β
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DD
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DD
Kk(W )

??~~~~~~~~~~

��@
@@

@@
@@

@@
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0

CC���������

0
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Kk(M

′)

AA���������

== 0

CC���������



MAT993D: TOPOLOGY OF MANIFOLDS: SURGERY THEORY 75

Each of the four interlocking exact sequences arises from the long exact sequence
of a pair. We have that

Kk+1(W,M) ∼= Zπ,
generated by the core of Dk+1 ×Dk, while

Kk(W,M
′) ∼= Zπ,

generated by the cocore of Dk+1 ×Dk.

Claim. There is a basis (b′1, . . . , b
′
v, c

′
1, . . . , c

′
v−1) of Kk+1(W,∂W ) such that α(b′i) =

bi and α(c
′
j) = α(cj).

The map χ is given by

Kk(M) → Kk(W,M
′)

x 7→ λ(x, bv).

Thus χ(cv) = 1, χ(ci) = 0 for i ̸= v, and χ(bi) = 0 for all i. The kernel of this is a
free module isomorphic to Zπ2v−1 generated by b1, . . . , bv, c1, . . . , cv−1. Since α is
an injection, the claim follows.

The map θ : Kk+1(W,M) → Kk+1(W,∂W ) is determined by 1 7→ bv. Therefore
we see that Kk(M

′) ∼= Zπ2v−2 generated by elements (b′′1, . . . , b
′′
v−1, c

′′
1, . . . , c

′′
v−1),

where b′′i = β(b′i) and c
′′
i = β(ci) for i = 1, . . . , v− 1. With respect to this basis, we

have

(Kk(M
′), λ, µ) =

v−1⊕
H(−1)k(Zπ),

since the remaining summands can be assumed, by the Whitney trick, to be disjoint
from the sphere bv on which surgery was performed, and therefore their intersection
numbers are unaltered. This completes proof of the inductive step, and therefore
completes the proof of the theorem. �

This gives one direction in the proof of the surgery obstruction theorem. Now
for the converse.

Theorem 15.15. Suppose that 2k-dimensional degree one normal maps (f, b) : M →
X and (f ′, b′) : M ′ → X are normally bordant via a degree one normal bordism

((F,B); (f, b), (f ′, b′) : (W ;M,M ′) → (X × I;X × {0}, X × {1}).
Then σ(f, b) = σ(f ′, b′) ∈ L2k(Z[π1(X)]).

Note that we do not need to assume that f and f ′ are k-connected; we will fix
this at the beginning of the proof. It is important for the proof that the surgery
obstruction is well-defined that we do not need to assume this in the statement
of the theorem, as remarked above. In particular, we see that the choice of how
to make a map highly connected does not affect the Witt class of the resulting
element in L2k(Zπ).

Proof. First, by surgery below the middle dimension on M and M ′, we can assume
that both f and f ′ are k-connected. By surgery on trivial elements we can assume
that Kk(∂W ) is a free Zπ-module. By surgery below the middle dimension on W
we can assume that F is also k-connected.
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Next, we can also arrange that Kk(W,∂W ) = 0 by the following argument.
Since Kk−1(∂W ) = 0 the map Kk(W ) → Kk(W,∂W ) is onto. Thus each generator
of Kk(W,∂W ) can be represented by an embedding Sk → IntW , which can be
thickened to an embedding of Sk × Dk+1 by the bundle data argument used in
previous sections. Consider an embedded path fromM ′ to a point on the boundary
of Sk ×Dk+1, and delete the interior of Sk ×Dk+1 together with a neighbourhood
of the path. The effect is to quotient Kk(W,∂W ) by this generator, and to connect
sum M ′ with Sk × Sk. But this adds a hyperbolic summand to σ(f ′, b′), which
does not change the Witt class of the intersection form.

We now have the following commutative diagram.

Kk+1(W,∂W ) //

∼= (−∩[W,∂W ])−1

��

Kk(M)⊕Kk(M
′)

i∗ //

∼= (−∩[M ])−1⊕(−∩−[M ′])−1

��

Kk(W )

∼= (−∩[W,∂W ])−1

��

// 0

Kk(W ) // Kk(M)⊕Kk(M ′) // Kk+1(W,∂W ) // 0

As in our talk on signatures, this diagram can be used to show that ker i∗ is a
lagrangian for the intersection form; that is, λ(ker i∗, ker i∗) = 0 and ker i∗ is a
submodule of half rank. Also µ(ker i∗) = 0. To see this represent an element of
the kernel by an immersion from a disjoint union of spheres

⨿
Sk into M ⊔M ′,

bounding an immersion of a punctured Sk+1 #W . The double points of this latter
immersion are a collection of arcs and circles. The arcs pair up double points of
the original immersions

⨿
Sk #M .

A nonsingular quadratic form on a free Zπ-module, that admits a lagrangian,
is isomorphic to the hyperbolic form (exercise to check this, or see Lemma 4.80 of
[CLM]). Thus σ(f, b)− σ(f ′, b′) = 0 ∈ L2k(Zπ) (there is a minus sign coming from
orientations of fundamental classes) and so σ(f, b) = σ(f ′, b′) as claimed. �

16. Solution to the manifold existence question in the simply
connected case

Our results now allow us to give a fairly satisfactory description of a solution to
the question of whether a manifold exists that is homotopy equivalent to a given
CW complex.

Let ξ : E → X be a stable vector bundle. There are special cohomology classes
pj(ξ) ∈ H4j(X,Z) called the Pontryagin classes. These can be defined as the gen-
erators of H∗(BO;Q), lifted to the integers, and pulled back along the classifying
map of ξ. The Lj-polynomial of the vector bundle ξ is a homogeneous polynomial
of degree j in the pi of ξ,

Lk(ξ) = Lj(p1, . . . , pj) ∈ H4j(X;Q).

The coefficients of these polynomials are defined in terms of the Bernoulli numbers.
We will just give the first two:

L1(ξ) =
1

3
p1(ξ);

L2(ξ) =
1

45
(7p2 − p21).
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These polynomials are crucial for the statement of the Hirzebruch signature theo-
rem.

Theorem 16.1 (Hirzebruch signature theorem). LetM be a closed smooth oriented
4k-dimensional manifold, let ξ := TM and define pj(M) := pj(ξ). Then

sign(M) = ⟨ Lk(p1(M), . . . , pk(M)), [M ] ⟩

For example, for a closed 4-manifold, the Hirzebruch signature theorem gives rise
to the neat formula that the signature and the first Pontryagin class are related by
sign(M) = p1/3. For example, when M = CP2, sign(M) = 1 and p1(M) = 3[M ]∗.

Theorem 16.2 (Simply connected surgery theorem). Let n ≤ 5 and let X be an
n-dimensional simply connected finite, connected Poincaré complex. Then X is
homotopy equivalent to a closed manifold if and only if the Spivak normal fibration
has a vector bundle reduction, i.e. X → BG → B(G/O) is null homotopic, and if
there is an associated normal invariant with:

(i) if n = 4k, ⟨L(ξ)−1, [X]⟩ = signX;
(ii) if n = 4k + 2, then the Arf invariant of the associated quadratic form in

L4k+2(Z) vanishes;
(iii) if n is odd, there is no further obstruction.
Remark 16.3.

(1) For the first two conditions, if the condition is not satisfied for an initial
particular choice of normal invariant, perhaps the action of [X,G/O] on
the normal invariants can remedy this.

(2) We have not had time to define the surgery obstruction for n odd, however
there are surgery obstruction L-groups and it is true that L2k+1(Z) = 0 for
all k, so the homotopy theoretic construction is the only obstruction in odd
dimensions.

Proof. Only item (i) needs a proof, and we will just sketch it. Recall that the

signature gives an isomorphism sign: L4k(Z)
≃−→ 8 · Z. For a choice of degree one

normal map, we need for

0 = sign(Kk(M)⊗ R, λ⊗ Id) = sign(M)− sign(X).

But:
sign(M) = ⟨L(TM), [M ]⟩ = ⟨L(ν(M))−1, [M ]⟩ = ⟨L(ξ)−1, [X]⟩

The first equality follows from the Hirzebruch signature theorem. The second
equality uses that TM and ν(M) are stable inverses. The third equality uses that
we have a degree one normal map of ν(M) →M to ξ → X. �

17. The surgery exact sequence

We have seen the exactness of Sn(X) → Nn(X) → Ln(Z[π1(X)]). We want to
see how this sequence can be extended to the left. Recall that Sn(X) is the set of
manifolds homotopy equivalent to X up to h-cobordism over X.

There is an action of Ln+1(Zπ) on Sn(X). When n + 1 = 2k is even, this is
defined roughly for a manifold M with a homotopy equivalence to X, by taking
M×I and attaching handles Dk×Dk, then plumbing these handles together. That
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is, identify to each other small neighbourhoods Dk ×Dk of a point on each of the
handles, but switch the coordinates (x, y) ∼ (y′, x′). So a piece of the core of one
handle becomes a parallel of the cocore of the other, and vice versa. This induces
an intersection point between the corresponding elements of Kk(W ), where W is
the n + 1-dimension bordism we are building. Repeatedly perform this plumbing
to create a desired intersection form (one has to be more careful when π ̸= {e},
but we will not go into detail on this here). This produces a cobordism W from M
to another manifold M ′, which it turns out is also homotopy equivalent to X.

There is a resulting short exact sequence of sets, for n ̸= 5:

Ln+1(Z[π1(X)]) → Sn(X) → Nn(X) → Ln(Z[π1(X)]).

The first map is the action just described. There is an analogous construction when
n+1 is odd. The second map uses the homotopy inverse X →M to pull back the
normal bundle of M to get a vector bundle ξ on X as required for an element of
Nn(X).

Why is the surgery sequence exact at the structure set? The action just described
produces a bordism, which can be made into a normal bordism. Thus the images of
M andM ′ in Nn(X) coincide. On the other hand, given any two normally bordant
homotopy equivalences f : M → X and f ′ : M ′ → X ′, the surgery obstruction of
the bordism gives the lift to an element x ∈ Ln+1(Z[π1(X)]). The intersection form
of the surgery kernel of the bordism is non-singular because the degree one map to
X × I is a homotopy equivalence on the boundary. We can also use x to construct
a bordism from M to M ′′, using the plumbing construction above. Then glue the
two bordisms together to get a bordism from M ′ to M ′′ with vanishing surgery
obstruction. Then surgery on this relative to the boundary produces a bordism
homotopy equivalent to X × I, hence by the h-cobordism theorem M ′ ∼=M ′′, and
so we see that normally bordant elements of the structure set are indeed related
by the action of Ln+1(Z[π1(X)]).

There is also a simple version of the surgery sequence, obtained by replacing
Sn(X) with Ss

n(X); here h-cobordisms are required to be simple in the equivalence
relation. One also replaces Lm(Z[π1(X)]), for m = n, n + 1, with Ls

m(Z[π1(X)]),
the simple L-group. Here the intersection form λ is required to vanish in the
Whitehead group Wh(π1(X)). Isomorphisms of forms in the equivalence relation
are also required to be simple.

18. The uniqueness question

We have been mostly focusing on the existence question so as not to over com-
plicate matters. Here are some brief remarks on one common strategy for the
application of surgery theory to the uniqueness question.

There exists a version for everything we have done for manifolds with boundary,
where the surgeries happen away from the boundary. There is a corresponding
sequence

Ln+1(Z[π1(X)]) → Sn(X × I, ∂) → Nn(X × I, ∂) → Ln(Z[π1(X)]).

To decide if there is a unique manifold in a given homotopy type, let M be an n-
dimensional manifold and apply the above sequence with X = M . Suppose there
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is another manifold N with a homotopy equivalence N →M . There is a two-step
process. First, does there exist a normal bordism W over M × I between N and
M . Suppose the answer is yes. Next, is there a choice of W that is normal bordant
relative to the boundary to a homotopy equivalence? If the answer to this question
is also yes (as decided by surgery), then we have an h-cobordism! Thus for n ≥ 5
the h cobordism is diffeomorphic to a product, N and M are diffeomorphic, and
the original homotopy equivalence N →M is homotopic to a diffeomorphism.
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E-mail address: mark@cirget.ca


