MAT993D: Exercise sheet 1

Exercise 1. Show that $\Omega_1(S^1) \neq 0$. In fact $\Omega_1(S^1) \xrightarrow{\simeq} \mathbb{Z}$. Use transversality and orientations to describe the map. Can you show that the map is an isomorphism?

Exercise 2. Show that every closed *n*-manifold *M* admits a degree one map $F: M \to S^n$.

Exercise 3. Show that U(n) is a (compact) manifold. What is its dimension?

Exercise 4. Prove that bordism of maps over X is an equivalence relation.

Exercise 5. Let X be a 2-complex. Describe a function $f: X \to \mathbb{R}$ such that the barycentre of each cell is a critical point, and these are the only critical points. Sketch the gradient vector field. What is the index of each critical point? What is its ascending and descending submanifold?

Exercise 6. Let M be a compact manifold of dimension n with $H_*(M) \cong H_*(S^n)$ and $\pi_1(M) = 1$. Show that

$$(M \setminus (D_1^n \sqcup D_2^n); S^{n-1}, S^{n-1})$$

is a simply connected h-cobordism. You will probably need the Whitehead and Hurewicz theorems.

Exercise 7. Prove that every compact manifold admits a Morse function. At least, read and convince yourself of one of Milnor's proofs; there is one Morse theory and one in the h-cobordism book.