MAT993D: Exercise sheet 2

Exercise 1. Let M be a closed odd dimensional manifold. Show that for any handle decomposition the number of handles of odd index is equal to the number of handles of even index.

Exercise 2. Let M be a closed connected manifold with a handle decomposition without any handles of index 1 . Show that M is simply connected.

Exercise 3. Let \mathbb{K} be the Klein bottle. Let $\pi=\pi_{1}(\mathbb{K})$. Write down a $\mathbb{Z} \pi$-module chain complex for \mathbb{K}.

Exercise 4. Let

$$
\pi=\left\langle g_{1}, \ldots, g_{n} \mid w_{1}, \ldots, w_{m}\right\rangle
$$

Construct a 2 -complex with a single 0 -cell, one 1 -cell per generator, and one 2 -cell per relator. Write down the $\mathbb{Z} \pi$-module cellular chain complex for this 2-complex. The Fox free differential calculus might help. Let F be the free group on letters g_{1}, \ldots, g_{n}. Define

$$
\frac{\partial}{\partial g_{i}}: F \rightarrow \mathbb{Z} F
$$

by

$$
\frac{\partial g_{j}}{\partial g_{i}}=\delta_{i j}, \frac{\partial 1}{\partial g_{i}}=0, \frac{\partial g_{j}^{-1}}{\partial g_{i}}=-g_{j}^{-1} \delta_{i j}
$$

and a Leibniz-type (but not exactly the Leibniz rule)

$$
\frac{\partial(u v)}{\partial g_{j}}=? ?
$$

Find the Leibniz-type rule that allows the inductive free derivation of any word in F, so that the derivative of a word corresponds to the sum of cells in the Cayley graph of F used in the path determined by w. After this, writing down the chain complex of the 2-complex associated to a group presentation should be straightforward. Try out your formula on the fundamental group of the complement in S^{3} of a trefoil knot:

$$
\pi=\left\langle g_{1}, g_{2},, g_{3} \mid g_{3} g_{2} g_{3}^{-1} g_{1}^{-1}, g_{2} g_{1} g_{2}^{-1} g_{3}^{-1}\right\rangle
$$

Exercise 5. Show that $1-t-t^{-1} \in \mathbb{Z}[\mathbb{Z} / 5]$, for $t \in \mathbb{Z} / 5$ the generator, is a unit (i.e. find a multiplicative inverse) and hence show that $1-t-t^{-1}$ defines an element η in $\mathrm{Wh}(\mathbb{Z} / 5)$. Prove that we obtain a well-defined map

$$
\mathrm{Wh}(\mathbb{Z} / 5) \rightarrow \mathbb{R}
$$

by sending the class represented by the $\mathbb{Z}[\mathbb{Z} / 5]$-automorphism $f: \mathbb{Z}[\mathbb{Z} / 5]^{n} \rightarrow \mathbb{Z}[\mathbb{Z} / 5]^{n}$ to $\ln (|\operatorname{det}(\bar{f})|)$, where $\bar{f}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is the \mathbb{C}-linear map

$$
f \otimes_{\mathbb{Z}[\mathbb{Z} / 5]} \operatorname{Id}_{\mathbb{C}}: \mathbb{Z}[\mathbb{Z} / 5]^{n} \otimes_{\mathbb{Z}[\mathbb{Z} / 5]} \mathbb{C} \rightarrow \mathbb{Z}[\mathbb{Z} / 5]^{n} \otimes_{\mathbb{Z}[\mathbb{Z} / 5]} \mathbb{C}
$$

with respect to the $\mathbb{Z} / 5$-action on \mathbb{C} given by multiplication with $\exp (2 \pi i / 5)$. Finally show that η generates an infinite cyclic subgroup in $\mathrm{Wh}(\mathbb{Z} / 5)$.

Exercise 6. Consider a 3 -component oriented link $L_{1} \sqcup L_{2} \sqcup L_{3}$ in S^{3} such that for each component L_{i} bounds an embedded disc D_{i} in D^{4} (here $S^{3}=\partial D^{4}$). Suppose that the D_{i} intersect each other transversely in algebraically cancelling pairs. Find a collection of Whitney discs for the pairs of intersection points. Let $W_{i j}$ be the union of the Whitney discs pairing up intersections between D_{i} and $D_{j}, i \neq j$. For i, j, k distinct, let $\tau(i j k) \in \mathbb{Z}$ be the algebraic count of intersection points in $W_{i j} \cap D_{k}$. Can you compute τ for the 3-component unlink and for the Borromean rings? (In fact this number is invariant under ambient isotopy of a link, and does not depend on the choice of discs D_{i} nor on the choice of Whitney discs $W_{i j}$.) Hint: surfaces in 4 -space are best understood in terms of motion pictures i.e. consider the radial direction of D^{4} as time, and at each point in time t one sees the intersection of the surfaces with the S^{3} of radius $1-t$. Then crossing changes on link diagrams correspond to intersections between surfaces. This will enable you to explicitly construct the discs you need.

