MAT993D: Exercise sheet 4

Exercise 1. Prove that $\pi_{1}^{S} \cong \mathbb{Z}_{2}$ using the Pontryagin-Thom construction. Describe a generator of this group.

Exercise 2. Compute the intersection forms of $S^{2} \times S^{2}, S^{1} \times S^{1}$ and $\mathbb{C P}^{2}$ and $L\left(p, q_{1}, q_{2}\right)$.
Exercise 3. Prove that the smash product $S^{k} \wedge S^{l}$ is homeomorphic to S^{k+l} and that the join $S^{k-1} * S^{l-1}$ is homeomorphic to S^{k+l-1}.

Exercise 4. Describe the regular homotopy classes of immersions $S^{1} \rightarrow S^{2}$.
Exercise 5. Prove that the intersection form λ and the self-intersection number μ on $I_{k}(M)$ have the properties claimed in lectures.

Exercise 6. Prove that there is a homotopy equivalence $B O(k) \simeq V_{n}\left(\gamma_{k+n}\right)$, where $\gamma_{m} \rightarrow$ $B O(m)$ is the universal vector bundle, and for a vector bundle $E \rightarrow B, V_{n}(E)$ is the fibre bundle of orthonormal n-frames in E, known as the frame bundle.

Exercise 7. Prove that the two versions of quadratic form described in lectures are equivalent.
Exercise 8. Prove that for a f.g. projective module P, we have $P \cong P^{* *}$.

