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Abstract. We illustrate the rich landscape of 4-manifold topology through the lens of coun-

terexamples. We consider several of the most commonly studied equivalence relations on 4-
manifolds and how they are related to one another. We explain implications e.g. that h-cobordant

manifolds are stably homeomorphic, and we provide examples illustrating the failure of other

potential implications. The information is conveniently organised in a flowchart and a table.

1. Introduction

The goal of this paper is to organise various equivalence relations in 4-manifold topology, and
to understand the connections between them. We consider closed, connected 4-manifolds, unless
otherwise specified, and we work in both the smooth and topological settings. Much work on
4-manifolds focusses on exotic behaviour, e.g. 4-manifolds that are homeomorphic but not diffeo-
morphic. We aim to illustrate, more broadly, the wealth of 4-manifold topology that has been
discovered. The flowchart in Figure 11 shows the relationships between the equivalence relations
we study. We will recall their definitions in Section 22, and prove the nontrivial implications in
Section 33.
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Topologically s-cobordant
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homotopy equivalent
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Figure 1. Equivalence relations on 4-manifolds. The implications shown in green
are immediate. The black and blue implications are proven in Section 33. The
blue implications hold when the corresponding condition is true, e.g. homotopy
equivalent 4-manifolds are CP2-stably homeomorphic if their Kirby-Siebenmann
invariants coincide. Where necessary for an implication to make sense, we assume
that the manifolds are smooth. For example, the bottom arrow means that closed,
smooth CP2-stably homeomorphic 4-manifolds are CP2-stably diffeomorphic, since
the latter notion is only defined for smooth 4-manifolds.
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We collect counterexamples to the converses of the majority of the implications shown. Most of
the results we discuss are known in the literature, although there are some original observations
and results.

The behaviour and study of 4-manifolds is qualitatively different from that in other dimensions.
In lower dimensions, much can be said using tools from geometry, perhaps best exemplified by the
geometrisation theorem [Thu82Thu82,Per02Per02,Per03aPer03a,Per03bPer03b]. Higher-dimensional manifolds are studied
via homotopy theoretic and algebraic methods, thanks to the Whitney trick and the powerful tools
of surgery theory [Bro72Bro72,Nov64Nov64,Sul96Sul96,Wal99Wal99,KS77KS77] and the s-cobordism theorem [Sma62Sma62,Bar63Bar63,
Maz63Maz63, Sta67Sta67, KS77KS77]. In dimension four, the Whitney trick does not directly apply, and surgery
and the s-cobordism theorem are only available under special circumstances.

The first major progress on the classification of 4-manifolds was due to Whitehead and Mil-
nor [Whi49Whi49,Mil58Mil58], who classified simply connected 4-manifolds up to homotopy equivalence. The
homotopy classification has since been completed for more fundamental groups, and remains a
topic of active research [HK88aHK88a, KKR92KKR92, Tei92aTei92a, BB08BB08, KNR20KNR20, KPR20KPR20]. A diffeomorphism clas-
sification was, and still remains, out of reach. Prior to the 1980s, progress on purely topological
4-manifolds was impossible, in the absence of fundamental tools like topological transversality.
Instead, Wall [Wal64aWal64a, Wal64bWal64b] and Cappell-Shaneson [CS76aCS76a, CS76bCS76b, CS71CS71] studied 4-manifolds
up to stable diffeomorphism, namely up to connected sum with copies of S2 × S2. In particular,
Wall gave the stable classification of simply connected 4-manifolds. As with the homotopy classifi-
cation, using Kreck’s ideas from [Kre99Kre99] the stable classification has since been completed for more
fundamental groups, and remains a topic of active research [Tei92aTei92a,HK93bHK93b,CHR95CHR95,Spa03Spa03,HKT09HKT09,
KLPT17KLPT17,KPT21aKPT21a,KPT21bKPT21b,Deb21Deb21]. The following examples compare the equivalence relations of
homotopy equivalence and stable diffeomorphism.

Example 1.1. The pairs of manifolds presented in Sections 5.55.5, 5.65.6, and 5.125.12, due to Kreck [Kre84Kre84],
Cappell-Shaneson [CS76aCS76a, CS76bCS76b], and Akbulut [Akb85Akb85, Akb88Akb88, Akb84Akb84] respectively, are smooth,
nonorientable 4-manifolds that are simple homotopy equivalent (in fact they are now known to be
homeomorphic [Fre82Fre82,HKT94HKT94,Wan95Wan95]) but not stably diffeomorphic. By a result of Gompf [Gom84Gom84]
(see Theorem 3.83.8) smooth, orientable 4-manifolds that are (stably) homeomorphic are stably dif-
feomorphic, so it is inevitable that these examples are nonorientable.

Example 1.2. The examples of Teichner [Tei97Tei97] from Section 5.115.11 provide smooth, orientable
4-manifolds that are simple homotopy equivalent but not stably homeomorphic. These can be
used to construct arbitrarily large collections which have these properties pairwise. We show in
Proposition 5.65.6 that every such collection is finite.

Example 1.3. In Section 5.95.9 we discuss two closed, orientable, simply connected topological
4-manifolds that are stably homeomorphic but not homotopy equivalent, because they have in-
equivalent intersection pairings. Proposition 5.55.5 explains that such a phenomenon cannot occur
for smooth, simply connected, closed 4-manifolds.

Example 1.4. The examples of Kreck-Schafer [KS84KS84] discussed in Section 5.105.10 are smooth, ori-
entable 4-manifolds (with nontrivial fundamental groups) that are stably diffeomorphic, but not
homotopy equivalent. They also have isometric intersection pairings.

The constructions of the manifolds mentioned in Examples 1.21.2 and 1.31.3 use Freedman’s work,
which we discuss presently. First we highlight the following open question comparing stable dif-
feomorphism and homotopy equivalence.

Question 1.5. Are there arbitrarily large families of smooth 4-manifolds that are all stably diffeo-
morphic but pairwise homotopically inequivalent? Or even better, infinite sets with this property?

The early 1980s saw Freedman’s work [Fre82Fre82] showing that the Whitney trick can be applied
in ambient dimension four under certain conditions, establishing the exactness of the surgery se-
quence and the s-cobordism theorem with some restrictions on the fundamental group [FQ90FQ90]. See
Sections 33 and 44 for further details. Combined with subsequent work of Quinn [Qui82Qui82], Freedman’s
theorem made it possible to upgrade the homotopy classification, the stable classification, or both,
to homeomorphism classifications; see for example [Fre82Fre82, FQ90FQ90, HK88bHK88b, HK93bHK93b, HKT94HKT94, Wan95Wan95,
HKT09HKT09].
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It is straightforward to see that homeomorphism implies homotopy equivalence, for general
spaces. We now explain a sequence of counterexamples to the converse for 4-manifolds, i.e. pairs
of 4-manifolds that are homotopy equivalent but not homeomorphic. Along the way we illustrate
our approach to investigating counterexamples. Namely, while investigating the failure of the
converses of the implications in the flowchart, we will progressively impose restrictions on the
counterexamples, e.g. that they be smooth, or orientable.

Example 1.6. The well-known pair CP2 and ∗CP2 [Fre82Fre82] (see Section 5.35.3) are homotopy equiv-
alent but not homeomorphic. The latter manifold, sometimes called the Chern manifold, was con-
structed by Freedman and is homotopy equivalent to CP2, but not homeomorphic to it. Indeed,
CP2 and ∗CP2 have unequal Kirby-Siebenmann invariants, implying that ∗CP2 is not smoothable.

The natural question then arises whether there exists a pair of smooth, closed 4-manifolds that
are homotopy equivalent but not homeomorphic. Freedman’s classification result [Fre82Fre82, FQ90FQ90]
implies that there is no such pair of simply connected 4-manifolds.

Example 1.7. A pair that satisfies our new demand consists of RP4#CP2 and R# ∗CP2 [Rub84Rub84,
HKT94HKT94, RS97RS97] (see Section 5.45.4), where R is a 4-manifold homotopy equivalent to RP4 but with
nontrivial Kirby-Siebenmann invariant. However, RP4#CP2 and R# ∗CP2 are nonorientable.

We can then escalate further to ask for a pair of smooth, closed, orientable 4-manifolds that are
homotopy equivalent but not homeomorphic.

Example 1.8. The simplest such example we know of comes from Turaev [Tur88Tur88] (see Section 5.75.7),
who showed that for lens spaces L and L′ that are homotopy equivalent but not homeomorphic,
the same holds for the 4-manifolds L× S1 and L′ × S1.

Finally, one may ask for an infinite collection of closed, smooth, orientable 4-manifolds that are
homotopy equivalent but not homeomorphic. To our knowledge, this is an open question. However,
the following example answers the question for topological 4-manifolds.

Example 1.9. Let M := L×S1, where L is a lens space Lp,q with p ≥ 2, 1 ≤ q < p, and (p, q) = 1.
Then Kwasik-Schultz [KS04KS04, Theorem 1.2] constructed an infinite collection of closed, orientable,
topological 4-manifolds {Mi}∞i=1, that are all simple homotopy equivalent to M but pairwise not
homeomorphic. The proof of Kwasik and Schultz relies on higher ρ-invariants. In Section 5.135.13
we provide a different argument via the surgery exact sequence that enables us to establish other
properties of these manifolds. For example one can assume that they are all stably homeomorphic
and are pairwise not h-cobordant.

We will also show (or give citations showing) that all of the pairs of 4-manifolds discussed in
Examples 1.61.6 to 1.81.8 are simple homotopy equivalent, and that the pairs from Examples 1.71.7 and 1.81.8
are stably homeomorphic.

As part of surgery programmes to classify 4-manifolds, the relations of simply homotopy equiv-
alence, h-cobordism, and s-cobordism are prominent. All are necessary conditions for homeomor-
phism. The following theorem compares these three relations. It is the main original result of the
article.

Theorem 1.10. For every n ≥ 1, there is a collection {Ni}ni=1 of closed, orientable, topological
4-manifolds, that are all simple homotopy equivalent and h-cobordant to one another, but which
are pairwise not s-cobordant.

Our proof makes use of a braid of exact sequences due to Hambleton-Kreck [HK04HK04] which enables
one to estimate the size of the group of homotopy automorphisms of the 4-manifold Lp,q × S1,
where Lp,q is a lens space. We combine this with the surgery exact sequence for 4-manifolds with
fundamental group Z/p× Z to construct our families of examples.

Question 1.11. Is there a pair of smooth 4-manifolds that are simple homotopy equivalent and
h-cobordant, but not s-cobordant? If so, what is the largest possible cardinality of such a collection
of 4-manifolds?

One should try to answer this question with the strongest possible assumptions on categories
for the h- and s-cobordisms.
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Finally, at opposite ends of the flowchart in Figure 11, one can compare with diffeomorphism and
with CP2-stable homeomorphism/diffeomorphism. The CP2-stable classification is one of the most
tractable [KPT22KPT22, KT21KT21]. It is easy to see that it differs markedly from the previously discussed
classifications, as follows.

Example 1.12. The 4-manifolds S2 × S2 and S2 ×̃ S2 are smooth, simply connected, have equal
Euler characteristic, and are CP2-stably diffeomorphic but are not stably homeomorphic and not
homotopy equivalent. See Section 5.25.2.

The diffeomorphism classification, by contrast, is extremely difficult, and in all known cases
varies drastically from the corresponding homeomorphism classifications.

Example 1.13. There are infinitely many smooth, orientable, simply connected 4-manifolds
that are all smoothly s-cobordant and homeomorphic to one another, but not diffeomorphic (see
e.g. [GS99GS99, Akb16Akb16]). Since exotic behaviour of this sort is not our primary focus, we only present
the first pair of such manifolds discovered, due to Donaldson [Don87Don87], in Section 5.85.8. It follows
that there is no smooth s-cobordism theorem in dimension 4.

There are three implications in Figure 11 for which we do not yet know whether the converses
hold.

Question 1.14. Does there exist a pair of closed 4-manifolds that are homotopy equivalent but
not simple homotopy equivalent?

It would be interesting if such examples could be found which are (i) smoothable, (ii) orientable,
(iii) topologically h-cobordant, or (iv) smoothly h-cobordant. The most well-known examples in
odd dimensions of homotopy equivalent, but not simple homotopy equivalent, manifolds are lens
spaces. The näıve construction of taking the products of homotopy equivalent lens spaces with S1

does not work by the formula for Whitehead torsion (5.35.3).

Question 1.15. Is there a pair of 4-manifolds that are (topologically) s-cobordant but not home-
omorphic?

Note that a positive answer to this question would contradict the conjecture that all groups
are good. For more details on this conjecture, see e.g. [KOPR21bKOPR21b]. For more on the s-cobordism
theorem in dimension four, see Section 33.

Question 1.16. Is there a pair of smooth 4-manifolds that are smoothly h-cobordant but not
smoothly s-cobordant?

Theorem 1.101.10 provides topological examples of this phenomenon; since the construction uses
the surgery sequence the examples are not obviously smoothable.

Example 1.11.1 gives nonorientable examples for the following question, but in the orientable case
this is open. Note that smooth, simply connected 4-manifolds that are homotopy equivalent are
smoothly h-cobordant by Wall’s theorem [Wal64bWal64b].

Question 1.17. Is there a pair of smooth, orientable 4-manifolds that are topologically but not
smoothly h-cobordant?

As mentioned before, we have restricted ourselves throughout this paper to closed 4-manifolds.
However, interesting phenomena also arise for 4-manifolds with nonempty boundary and for
noncompact 4-manifolds, e.g. the existence of corks [Akb91bAkb91b] and exotic smooth structures on
R4 [Gom83Gom83] respectively. Other work in these directions include [Akb91aAkb91a, Tau87Tau87, Boy86Boy86, Boy93Boy93,
Vog82Vog82,Sto93Sto93,AR16AR16,Gom18Gom18,CP20CP20,CPP22CPP22,PO22aPO22a,PO22bPO22b].

We hope that readers will be motivated by this article to answer the questions we could not, or
to follow the paradigm of progressively imposing restrictions to discover new unanswered questions
of their own.

Outline. In Section 22 we define the equivalence relations we consider. In Section 33 we justify the
implications shown in Figure 11. Section 44 provides a brief review of the surgery exact sequence.
In Section 55 we describe various constructions of 4-manifolds and present a table summarising the
properties of our examples.
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Conventions. We write Z/2 = {0, 1} for the integers modulo 2, a group under addition, and
C2 = {±1} for the cyclic group of order 2, with multiplication as the group operation. The symbol
' denotes homotopy equivalence, while 's denotes simple homotopy equivalence. Depending on
the context the symbol ∼= denotes either homeomorphism or diffeomorphism.
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2. Equivalence relations on 4-manifolds

Recall that we implicitly assume throughout that 4-manifolds are closed and connected. We
assume that the reader is familiar with homotopy equivalence, homeomorphism, and diffeomor-
phism of manifolds, and so we shall not define them. The classification of manifolds with respect to
these three notions, and their comparison, is a central area of research. For example, the Poincaré
conjecture, which has occupied topologists for over a century, asks for each n whether every ho-
motopy equivalence from an n-manifold to the n-sphere is homotopic to a homeomorphism, or
even to a diffeomorphism.11 In dimensions at least five, surgery theory provides a concrete, effec-
tive framework within which one can try to improve a classification of manifolds up to homotopy
equivalence to a classification up to homeomorphism or diffeomorphism. The programme can be
applied to topological 4-manifolds under a restriction on the fundamental group; see Section 44 for
an overview.

1The Poincaré conjecture is true in the topological category for all n, due to Perelman [Per02Per02, Per03bPer03b, Per03aPer03a],
Freedman [Fre82Fre82], and Newman [New66New66]. It is true in the PL category for all n 6= 4 due to Perelman [loc. cit.],

Smale [Sma60Sma60, Sma61Sma61], Stallings [Sta60Sta60], and Zeeman [Zee62Zee62]. In the smooth category it is known to hold in

dimensions 1, 2, 3, 5, 6, 12, 56, 61, due to Perelman [loc. cit.], Kervaire-Milnor [KM63KM63], Isaksen [Isa19Isa19], and Wang-
Xu [WX17WX17]; is false in all odd dimensions other than 1, 3, 5, 61; and is false in all even dimensions 8 ≤ n ≤ 200 other
than 12, 56, 142, 166, 176, 188. At the time of writing the smooth version is open in dimensions 4, 142, 166, 176,

188, and for infinitely many even dimensions n > 200; see [BHHM20BHHM20, IWX20IWX20] for the published state of the art.



6 DANIEL KASPROWSKI, MARK POWELL, AND ARUNIMA RAY

Next we discuss the various notions of stable equivalence.

Definition 2.1. The 4-manifolds M and N are said to be stably homeomorphic if there are

integers s, t such that M# #s
(S2 × S2) and N# #t

(S2 × S2) are homeomorphic. They are said

to be CP2-stably homeomorphic if there are integers s, t such that M# #sCP2 and N# #tCP2

are homeomorphic, for some choices of connected sum.

Definition 2.2. The smooth 4-manifolds M and N are said to be stably diffeomorphic if there are

integers s, t such that M# #s
(S2×S2) and N# #t

(S2×S2) are diffeomorphic. They are said to

be CP2-stably diffeomorphic if there are integers s, t such that M# #sCP2 and N# #tCP2 are
diffeomorphic, for some choices of connected sum.

Note that S2 × S2 admits an orientation reversing self-diffeomorphism, so there is essentially
only one choice of connected sum. On the other hand CP2 does not admit any such diffeomor-
phism (nor homeomorphism), so for oriented manifolds there are two possible connected sums up

to diffeomorphism/homeomorphism, usually denoted M#CP2 and M#CP2. Therefore, the defi-
nitions above say that M and N are CP2-stably diffeomorphic (resp. homeomorphic) if there are

integers s1, s2, t1, t2 such that M# #s1CP2# #s2CP2 and N# #t1CP2# #t2CP2 are diffeomor-
phic (resp. homeomorphic). Note that for nonorientable manifolds, there is a unique connected
sum N#CP2. We remark that some authors require s = t in the definition of stable homeomor-
phism and diffeomorphism. Manifolds M and N which are stably homeomorphic or diffeomorphic
have s = t in our definition exactly when χ(M) = χ(N).

We emphasise that “stably” refers by default to connected sum with copies of S2×S2, and only
“CP2-stably” refers to connected sum with copies of CP2.

To motivate Definitions 2.12.1 and 2.22.2, consider an alternative strategy to classify manifolds, based
on Kreck’s modified surgery [Kre99Kre99] and realised by Hambleton-Kreck for e.g. 4-manifolds with
finite cyclic fundamental group in [HK88aHK88a, HK88bHK88b, HK93aHK93a, HK93bHK93b]: first classify manifolds up to
stable homeomorphism, and then investigate the homeomorphism types within each stable class.
In the latter step one attempts to prove that S2 × S2 summands can be cancelled, and this
is what Hambleton and Kreck achieved for finite cyclic fundamental groups and also for more
general finite groups under some additional hypotheses. This strategy in principle also applies
to diffeomorphism classifications, but the cancellation step is much harder. Similarly, another
approach to classification is to first classify manifolds up to CP2-stable equivalence, and then
attempt to blow down extraneous CP2 summands.

Next we discuss h-cobordisms, simple homotopy equivalences, and s-cobordisms.

Definition 2.3. The 4-manifolds M and N are topologically h-cobordant if there is a 5-dimensional
compact topological cobordism (W ;M,N) where the inclusion maps M ↪→ W and N ↪→ W are
homotopy equivalences. The manifold W is called an h-cobordism. If M and N are smooth, they
are smoothly h-cobordant if they cobound a smooth h-cobordism.

Associated with a homotopy equivalence f : X → Y between CW complexes X and Y is an
algebraic invariant called the Whitehead torsion τ(f) ∈Wh(π1(X)), with values in the Whitehead
group of π1(X), which we define next. Let GL(Z[π1(X)]) be the stable general linear group, and
let E(Z[π1(X)]) be the subgroup of elementary matrices, i.e. consisting of products of the matrices
that produce row and column operations. By definition

K1(Z[π1(X)]) := GL(Z[π1(X)])/E(Z[π1(X)])

and Wh(π1(X)) := K1(Z[π1(X)])/{±(g) | g ∈ π1(X)}. For example Wh({e}) = 0, essentially
because of the Euclidean algorithm. See [Coh73Coh73] for an accessible introduction to simple homotopy
theory, including more examples of Whitehead groups and the definition of Whitehead torsion.

Definition 2.4. A homotopy equivalence f : X → Y between CW complexes X and Y is a simple
homotopy equivalence if its Whitehead torsion τ(f) vanishes.

By Chapman’s theorem [Cha74Cha74] the Whitehead torsion τ(f) only depends on the homeomor-
phism type of X and Y . Hence Whitehead torsion is well-defined for homotopy equivalences
between manifolds which are homeomorphic to CW complexes, e.g. smooth manifolds or closed
manifolds of dimension 6= 4. It is an open question whether every topological 4-manifold is home-
omorphic to a 4-dimensional CW complex. However, we can define the notion of simple homotopy
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equivalence of topological manifolds as follows. Embed M in high-dimensional Euclidean space.
By [KS77KS77, Essay III, Section 4], there is a normal disc bundle D(M) admitting a triangulation.
The inclusion map zM : M → D(M) of the 0-section is a homotopy equivalence. Let z−1

M denote
the homotopy inverse of zM .

Definition 2.5. We say that a homotopy equivalence f : M → N between topological manifolds
(not necessarily of the same dimension) is a simple homotopy equivalence if the composition zN ◦
f ◦ z−1

M : D(M)→ D(N) is a simple homotopy equivalence.

The Whitehead torsion τ(W ;M) of an h-cobordism (W ;M,N) is by definition the Whitehead
torsion of the inclusion map M ↪→ W . This also coincides with the Whitehead torsion of the

relative chain complex C∗(W̃ , M̃), where W̃ and M̃ are the universal covers.

Definition 2.6. The 4-manifolds M and N are topologically s-cobordant if they cobound a topo-
logical h-cobordism W with trivial Whitehead torsion. The manifold W is called an s-cobordism.
If in addition M , N , and W are smooth, then M and N are smoothly s-cobordant and W is called
a smooth s-cobordism.

An h- or s-cobordism approximates a product, in the eyes of homotopy equivalence and simple
homotopy equivalence respectively. One of the most spectacular results of the 20th century was
Smale’s h-cobordism theorem [Sma60Sma60, Sma61Sma61], which states that smooth, simply connected h-
cobordisms between n-manifolds with n ≥ 5 are indeed homeomorphic to products. This was later
extended to other categories and to the case of s-cobordisms [Sma62Sma62, Bar63Bar63, Maz63Maz63, Sta67Sta67, KS77KS77].
Consequences include the high-dimensional Poincaré conjecture in the piecewise-linear category in
dimension at least five.

In dimension four, the celebrated work of Freedman and Quinn [Fre82Fre82, FQ90FQ90] includes an s-
cobordism theorem, with a restriction on fundamental groups. This is the principal method for
establishing the existence of a homeomorphism between 4-manifolds. We state the result in the
next section as Theorem 3.53.5 and we outline the proof.

3. Justification of implications

The implications given in green in Figure 11 are immediate from the definitions. Now we justify
the other implications.

Proposition 3.1. Stably homeomorphic 4-manifolds are CP2-stably homeomorphic. Stably diffeo-
morphic 4-manifolds are CP2-stably diffeomorphic.

Proof. Both statements follow from the diffeomorphism

(S2 × S2)#CP2 ∼= CP2#CP2#CP2. �

To establish the relationship between homotopy equivalence and CP2-stable homeomorphism,
we will use the following theorem of Kreck. Recall that an identification of the fundamental group
π1(M) of a 4-manifold M with a group π determines a map cM : M → Bπ, up to homotopy,
classifying the universal cover, where Bπ ' K(π, 1) is the classifying space.

Theorem 3.2 (Kreck [Kre99Kre99], see also [KPT21aKPT21a, Theorem 1.2]).

(i) Two closed, smooth 4-manifolds M and N with fundamental group isomorphic to π and
orientation character w : π → C2 are CP2-stably diffeomorphic if and only if cM∗[M ] =
cN∗[N ] ∈ H4(π;Zw)/±Aut(π,w).

(ii) Two closed, topological 4-manifolds M and N with fundamental group isomorphic to π and
orientation character w : π → C2 are CP2-stably homeomorphic if and only if their Kirby-
Siebenmann invariants in Z/2 agree and cM∗[M ] = cN∗[N ] ∈ H4(π;Zw)/±Aut(π,w).

Here Aut(π,w) denotes the set of automorphisms of π compatible with the map w. We have
to factor out by the action of ±Aut(π,w) in order to account for the choice of identifications
π1(M) ∼= π and π1(N) ∼= π, and for the choice of (twisted) fundamental classes in H4(−;Zw).

The Kirby-Siebenmann invariant ks(M) ∈ Z/2 of a 4-manifold M is by definition the unique
obstruction for the stable tangent microbundle of M to admit a lift to a piecewise linear bundle.
See [KS77KS77, p. 318; FQ90FQ90, Section 10.2B; FNOP19FNOP19, Section 8.2] for further details on the defini-
tion. In general it will suffice for us to know that the Kirby-Siebenmann invariant satisfies strong
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additivity properties, in particular under gluing and connected sum, and that it vanishes for a

4-manifold M if and only if M × R admits a smooth structure, if and only if M# #k
(S2 × S2)

admits a smooth structure for some k.

Theorem 3.3.

(1) Homotopy equivalent 4-manifolds with equal Kirby-Siebenmann invariants are CP2-stably
homeomorphic.

(2) Smooth 4-manifolds that are CP2-stably homeomorphic are also CP2-stably diffeomorphic.

Proof. For the first implication, let M and N be homotopy equivalent 4-manifolds with equal
Kirby-Siebenmann invariants. Fix a map cN : N → Bπ as mentioned above the statement of
Theorem 3.23.2 and let f : M → N be the claimed homotopy equivalence. Then define cM := cN ◦ f .
This ensures that cM∗[M ] = cN∗[N ] ∈ H4(π;Zw)/±Aut(π,w), and so by Theorem 3.23.2 (iiii), we see
that M and N are CP2-stably homeomorphic.

For the second implication, let M and N be CP2-stably homeomorphic and smooth. By Theo-
rem 3.23.2 (iiii) we see that cM∗[M ] = cN∗[N ] ∈ H4(π;Zw)/± Aut(π,w). Then apply Theorem 3.23.2 (ii)
to see that M and N are CP2-stably diffeomorphic. �

Next we show the relationship between h-cobordism and stable diffeomorphism. The case of
simply connected 4-manifolds was addressed by Wall in [Wal64bWal64b, Theorem 3]. A similar argument
also applies in the general setting as explained by Lawson [Law78Law78, Proposition]. We sketch the
proof.

Theorem 3.4 ([Wal64bWal64b, Theorem 3; Law78Law78, Proposition]). Smoothly h-cobordant 4-manifolds are
stably diffeomorphic. Similarly, topologically h-cobordant 4-manifolds are stably homeomorphic.

Proof. The proof is the same in both cases, by using the fact that 5-dimensional topological cobor-
disms (W ;M,N) admit handle decompositions, i.e. W can be built by attaching 5-dimensional
handles to M × [0, 1] along topological embeddings of the attaching regions [Qui82Qui82, Theorem 2.3.1;
FQ90FQ90, Theorem 9.1]. In the case of a smooth h-cobordism, we get a smooth handle decomposition
relative to M by Morse theory.

In either case, we can perform handle trading to ensure that the handle decomposition has only
2- and 3-handles since the boundary inclusions M ↪→ W and N ↪→ W are 1-connected. Consider
the middle level M1/2 of the cobordism, obtained after attaching 2-handles to M . Since W is an
h-cobordism, the 2-handles are attached along trivial circles, and so

M1/2
∼= M#

(
#t1S2 × S2

)
#
(
#t2S2 ×̃ S2

)
,

where t1 + t2 is the number of 2-handles. Here S2 ×̃ S2 is the twisted S2-bundle over S2.
If t2 = 0 we are done. In case t2 6= 0, then there is an embedded 2-sphere in M1/2 with odd

framing of its normal bundle. Via the homotopy equivalence W → M , we see there is a map of a
sphere to M with odd framing of its normal bundle, implying that the universal cover of M is non-
spin. In this case we have that M#(S2 ×̃S2) ∼= M#(S2×S2) (see e.g. [GS99GS99, Exercise 5.2.6(b)]),
and so we may assume t2 = 0 again.

We have now argued that M1/2 is a stabilisation of M . Applying the same argument to the
upside down handlebody, we see further that M1/2 is a stabilisation of N . Thus M and N are stably
homeomorphic or diffeomorphic, depending on whether the handle decomposition was smooth or
merely topological to begin with. �

Next we discuss the s-cobordism theorem in dimension four. Below, we say a group is good if it
satisfies the π1-null disc property [FT95FT95] (see also [KOPR21aKOPR21a]). We do not repeat the definition
here. In practice, it generally suffices to know that virtually solvable groups, and more generally
groups of subexponential growth are good, and the class of good groups is closed under taking
subgroups, quotients, extensions, and colimits [FT95FT95,KQ00KQ00].

Theorem 3.5 (s-cobordism theorem). Let M be a topological 4-manifold with π := π1(M) a good
group.

(1) Let (W ;M,M ′) be an h-cobordism over M . Then W is trivial over M , i.e. W ∼= M× [0, 1],
via a homeomorphism restricting to the identity on M , if and only if its Whitehead torsion
τ(W ;M) ∈Wh(π) vanishes.
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(2) For any ς ∈Wh(π) there exists an h-cobordism (W ;M,M ′) with τ(W ;M) = ς.
(3) The function assigning to an h-cobordism (W ;M,M ′) its Whitehead torsion τ(W ;M)

yields a bijection from the homeomorphism classes relative to M of h-cobordisms over
M to the Whitehead group Wh(π).

Remark 3.6. It was asserted in [RS72RS72, p. 90] that Theorem 3.53.5 (22) holds in dimension 4 in the
piecewise-linear category, and without the assumption on π1(M). But the proof there does not
take into account the need for geometrically dual spheres to control the fundamental group of M ′.

Proof of Theorem 3.53.5. The statement (11) is [FQ90FQ90, Theorem 7.1A], and relies on Freedman’s disc
embedding theorem [Fre82Fre82] (see also [FQ90FQ90, BKK+21BKK+21]). We prove (22), which follows the high
dimensional argument from [Mil66Mil66, Theorem 11.1].

Let A ∈ GLk(Zπ) represent ς. Attach k trivial 2-handles to M × {1} ⊆ M × [0, 1]. This

yields a bordism W ′ from M to M# #k
(S2 × S2), where we assume that the ascending spheres

of the 2-handles are S2 × {s0} in each copy of S2 × S2. For every 1 ≤ i ≤ k, we can realize

the element (0, (0, Aij)
k
j=1) ∈ π2(M) ⊕

⊕k
j=1(Zπ)2 ∼= π2(M# #k

(S2 × S2)) by an embedded

framed sphere by tubing together parallel copies of the embedded framed spheres {s0} × S2 in
S2 × S2. Let {fi}ki=1 be the resulting collection of spheres. These spheres admit pairwise disjoint
algebraically dual spheres {gi}ki=1, obtained by tubing together parallel copies of the embedded

framed spheres S2 × {s0} in order to realise the rows of the matrix (A
T

)−1. By the sphere
embedding theorem [FQ90FQ90, Theorem 5.1B; PRT20PRT20, Theorem B] there is a collection {f i}ki=1 of

topologically flat embedded spheres with f i homotopic to fi and such that the collection {f i}ki=1

admits a geometrically dual collection of (immersed) spheres {gi}ki=1.

Attach 3-handles toW ′ along neighbourhoods of the spheres {f i}ki=1 to obtain a bordismW from
M to M ′. Since we attached the handles of index 2 along trivial circles, π1(M) ∼= π1(W ). Since
the {f i} have geometrically dual spheres, surgery along them does not change the fundamental

group and so we have π1(M ′) ∼= π1(W ). The handle chain complex C∗(W̃ , Ñ) is

0→ C3(W̃ , M̃) ∼= ⊕kZπ A−→ C2(W̃ , M̃) ∼= ⊕kZπ → 0.

Since A is invertible, H∗(W̃ , M̃) = 0, and then by duality H∗(W̃ , M̃ ′) = 0 too. Therefore W is an
h-cobordism. The torsion can be read off from the handle chain complex as τ(W ;M) = [A] = ς.

Finally, (33) is a consequence of (11) and (22). Surjectivity is immediate from (22). The proof of
injectivity follows [Mil66Mil66, Theorem 11.3] and uses (11) and (22). Let (W ;M,M ′) and (W ′;M,M ′′)
be h-cobordisms over M with torsion ς. By (22), there is a 4-manifold N and an h-cobordism
(W ′′;M ′, N) with torsion −ς. By the additivity of Whitehead torsion [Lüc02Lüc02], (W ∪M ′W ′′,M,N)
is an s-cobordism. Since π is good, W ∪M ′W ′′ is homeomorphic to M × [0, 1] relative to M by (11).
In particular N is homeomorphic to M . We can thus form (W ′′ ∪M W ′;M ′,M ′′), which again
is an s-cobordism and is thus homeomorphic to M ′ × [0, 1], relative to M ′ by (11). We obtain a
homeomorphism

W ∼= W ∪M ′ (M ′ × [0, 1]) ∼= W ∪M ′ W ′′ ∪M W ′ ∼= (M × [0, 1]) ∪M ′ W ′ ∼= W ′,

relative to M , as claimed. �

Remark 3.7. Every 5-dimensional s-cobordism (W ;M,N), with no restriction on fundamental
groups, becomes homeomorphic to a product, relative to M , after sufficiently many connected
sums with S2 × S2 × [0, 1] along arcs joining M and N [Qui83Qui83, Theorem 1.1]. This gives another
proof of Theorem 3.43.4 that s-cobordant 4-manifolds are stably diffeomorphic/homeomorphic.

The last remaining implication in Figure 11 is given by the following result of Gompf.

Theorem 3.8 ([Gom84Gom84]). Smooth, orientable 4-manifolds that are stably homeomorphic are also
stably diffeomorphic.

In the same paper Gompf also showed that smoothings of a nonorientable 4-manifold become
diffeomorphic after connected sum with sufficiently many copies of S2 ×̃ S2.
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4. Review of surgery exact sequences

In the next section we will appeal on several occasions to surgery exact sequences. We refer
to [OPR21OPR21] for an account of the 4-dimensional case, and e.g. [Wal99Wal99] and [CLM19CLM19] for detailed
treatments of general surgery theory in dimensions at least 5.

The surgery exact sequences are centred on the structure sets. For the remainder of this section,
let M be a closed, connected, topological 4-manifold.

Definition 4.1. The homotopy structure set of M , denoted Sh(M), is by definition the set of pairs

(N, f : N
'−→ M), where N is a closed topological 4-manifold and f is a homotopy equivalence,

considered up to h-cobordism over M . That is, [(N, f)] = [(N, f ′)] ∈ Sh(M) if and only if there
is an h-cobordism (W ;N,N ′), with inclusion maps i : N → W and i′ : N ′ → W , together with a
map F : W →M such that F ◦ i = f and F ◦ i′ = f ′.

Note that F is necessarily also a homotopy equivalence in the definition above.

Definition 4.2. The simple structure set of M , denoted Ss(M), is by definition the set of pairs

(N, f : N
's−−→ M), where N is a closed topological 4-manifold and f is a simple homotopy equiv-

alence, considered up to s-cobordism over M . That is, [(N, f)] = [(N ′, f ′)] ∈ Ss(M) if and only
if there is an s-cobordism (W ;N,N ′), with inclusion maps i : N → W and i′ : N ′ → W , together
with a map F : W →M such that F ◦ i = f and F ◦ i′ = f ′.

Note that F is necessarily a simple homotopy equivalence. Suppose that π1(M) is a good group.
Then every s-cobordism is a product, and we can alternatively describe the equivalence relation in
the definition of the simple structure set without reference to s-cobordisms, by instead requiring a
homeomorphism G : N → N ′ such that there is a homotopy f ′ ◦G ∼ f : N →M .

Continuing with the assumption that π1(M) is good, it follows that one approach to the classi-
fication of manifolds simple homotopy equivalent to M , up to homeomorphism, is to first compute
the simple structure set of M , and then to compute the set of orbits of the post-composition action
on it by the group hAuts(M) of homotopy classes of simple self-homotopy equivalences of M .
The set of orbits is then the set of homeomorphism classes M(M) of manifolds simple homotopy
equivalent to M .

Similarly, the set Mh(M) of h-cobordism classes of closed 4-manifolds homotopy equivalent to
M is in bijective correspondence with the orbits of Sh(M) under the action of the group hAut(M)
of homotopy classes of self-homotopy equivalences of M .

When π1(M) is good, the surgery sequences are exact sequences of abelian groups, whose
underlying sets are given as follows; the group structures arise via the theory of spectra and are
hard to define geometrically [Nic82Nic82, Chapter 5]. The identity element of the structure sets is given
by the identity map M →M . We will explain the terms other than the structure sets after stating
the sequences. Let π := π1(M) and let w : π → C2 be the orientation character of M . Assume
that π is a good group. For the homotopy structure set, we have an exact sequence:

N (M × [0, 1],M × {0, 1}) Lh5 (Zπ,w) Sh(M) N (M) Lh4 (Zπ,w),σ W η σ

while for the simple structure set we have an exact sequence:

N (M × [0, 1],M × {0, 1}) Ls5(Zπ,w) Ss(M) N (M) Ls4(Zπ,w),σ W η σ

The degree one normal maps, the terms involving N , are independent of the h and s decorations.
For (X, ∂X) equal to either (M, ∅) or (M × [0, 1],M × {0, 1}), the set N (X, ∂X) consists of the
set of manifolds (N, ∂N) with a degree one map N → X that restricts to a homeomorphism on
∂N → ∂X, together with some normal bundle data that we will not define here, up to an analogous
notion of degree one normal bordism. Details can be found in the references provided at the start of
this section. It will suffice for us to know thatN (M) ∼= [M,G/TOP] andN (M×[0, 1],M×{0, 1}) ∼=
[(M × [0, 1],M × {0, 1}), (G/TOP, ∗)]. For us the only relevant property of the space G/TOP will
be the existence of a 5-connected map G/TOP→ K(Z, 4)×K(Z/2, 2) [MM79MM79; KT01KT01, p. 397], so
in particular

N (M) ∼= H4(M ;Z)⊕H2(M ;Z/2). (4.1)

Similarly, for Y a closed 3-manifold, we have [Y,G/TOP] ∼= H2(Y ;Z/2). As before the identity
element in the set of normal maps is given by the identity map.
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The L-groups Lh5 (Zπ,w), Ls5(Zπ,w), Lh4 (Zπ,w), and Ls4(Zπ,w) have purely algebraic definitions,
in terms of π, w, and the decoration h or s. We will also not go into the details of the definitions
here, but will give a brief overview.

Roughly speaking, Lh4 (Zπ,w) is defined in terms of nonsingular, sesquilinear, hermitian forms on
free Zπ-modules. For Ls4(Zπ,w) the Zπ-modules must be based, and certain isomorphisms between
based modules are required to be simple, meaning that they represent the trivial element of the
Whitehead group Wh(π). The identity element in the L4 groups corresponds to the hyperbolic

form, i.e.
⊕k

( 0 1
1 0 ) on ⊕2kZπ for some k. There is also a version Lp4(Zπ,w), where the underlying

Zπ-modules are only required to be projective.
Elements of the L5 groups consist of a hyperbolic form on a free Zπ-module equipped with a

choice of a half rank summand of the base module, called a lagrangian, on which the form vanishes.
For the s decorations, we need the module to be based and a certain short exact sequence related
to the lagrangian to have trivial Whitehead torsion. The identity element of the L5-groups consists
of a hyperbolic form where the lagrangian is standard. When the orientation character w is trivial,
we often suppress w from the notation of L-groups.

The homomorphisms σ in the surgery sequences from degree one normal maps to the L-groups
are called the surgery obstruction maps. Given a degree one normal map f : N → M , performing
surgery on circles produces a map f ′, still with target M , that induces an isomorphism on fun-
damental groups. The element σ(f) is given by the kernel of the map induced by f ′ on second
homotopy groups, called the surgery kernel. Exactness at N (M) requires that π1(M) is good and
relies on [Fre82Fre82,FQ90FQ90].

Note that L4(Z) ∼= Z, given by the signature of the form divided by 8. Hence σ : N (S4)→ L4(Z)
sends [N, f ] to sign(N)/8. Using the naturality of the surgery exact sequence and that L4(Zπ)
contains L4(Z) as a direct summand, we see that the summand H4(M ;Z) ∼= Z in N (M) is
detected by the signature difference [N, f ] 7→ (σ(N) − σ(M))/8 and maps injectively to L4(Zπ).
The preceding argument applies to L4(Zπ) with both h and s decorations.

The maps marked W in the surgery sequences are given by the Wall realisation actions of the
L5 groups on the structure sets, which we sketch next. Let h : N → M be a (simple) homotopy

equivalence and let α be an element of the relevant L5 group. Stabilising gives a map N# #k
S2×

S2 → M , for some k, whose surgery kernel gives a hyperbolic form. We then represent the

generators of the lagrangian in α by framed, disjointly embedded 2-spheres in N# #k
S2×S2, on

which we perform surgery. The resulting 4-manifold N ′ comes equipped with a (simple) homotopy
equivalence h′ : N ′ → M and (N ′, h′) is by definition the element α · h of the structure set. By
construction N and N ′ are stably homeomorphic. It is highly nontrivial to represent the lagrangian
by disjointly embedded spheres, and requires the work of [Fre82Fre82,FQ90FQ90] and the restriction to good
fundamental groups.

5. Counterexamples

Figure 22 shows what we know about the converses of the implications in Figure 11. In this section
we collect the counterexamples indicated in Figure 22, explaining their construction and properties.
The properties are also collected in Table 11 at the end of the paper.

5.1. S2 × S2 and S4.

• Both manifolds are smooth, orientable, and simply connected.
• As S2 × S2 ∼= S4#(S2 × S2), they are stably diffeomorphic, and therefore stably homeo-

morphic and CP2-stably diffeomorphic.
• χ(S2 × S2) = 4 6= 2 = χ(S4). Therefore, they are neither (simple) homotopy equivalent,
s- nor h-cobordant (in either category), homeomorphic, nor diffeomorphic.

This straightforward example shows that to meaningfully ask for homotopically inequivalent
4-manifolds that are stably diffeomorphic, one should also require that the Euler characteristics
coincide. Equivalently, one should require that the number of copies of S2 × S2 added is the same
for both manifolds, that is s = t in Definition 2.22.2.

5.2. S2 × S2 and S2 ×̃ S2. As before S2 ×̃ S2 denotes the nontrivial S2-bundle over S2. It can
be constructed by gluing two copies of D2 × S2 together using the Gluck twist on their common
boundary S1 × S2. Alternatively, recall that oriented 3-plane bundles over S2 are classified up
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Diffeomorphism Homeomorphism

Topological s-cobordism
Simple

homotopy equivalence

Topological h-cobordism Homotopy equivalence

Smooth s-cobordism

Smooth h-cobordism

Stable diffeomorphism Stable homeomorphism

CP2-stable homeomorphismCP2-stable diffeomorphism

§5.(5,6,8,12)

?§5.8

§5.14?

§5.(5,6,12)

§5.(5,6,12)

§5.(3,4,7,11,13,14)

?

§5.(3,4,7,11,13)

§5.(1,2,9,10)

§5.(5,6,12)

§5.(2,11)§5.(2,5,6,12)

§5.(4,7,9,10,13)§5.(4,7,10)

Figure 2. What is known about the converses of the implications in Figure 11.
The symbol ; denotes the cases where we know an implication does not hold, indi-

cating which subsections contain corresponding counterexamples. The
?
=⇒ symbol

denotes the three cases where it is unknown whether an implication holds.

to isomorphism by homotopy classes of maps [S2, BSO(3)] ∼= [S1, SO(3)], and there are two such
homotopy classes. The nontrivial map gives a 3-plane bundle whose sphere bundle is S2×̃S2.

• Both S2 × S2 and S2 ×̃ S2 are smooth, orientable, and simply connected.
• χ(S2 × S2) = 4 = χ(S2 ×̃ S2).

• By the diffeomorphisms (S2 × S2)#CP2 ∼= CP2#CP2
#CP2 ∼= (S2 ×̃ S2)#CP2, the mani-

folds are CP2-stably diffeomorphic and CP2-stably homeomorphic.
• The second Stiefel-Whitney classes are distinct, since S2×S2 is spin but S2 ×̃S2 is not. So

they are neither (stably) diffeomorphic, nor (stably) homeomorphic, nor (simple) homotopy
equivalent, s- nor h-cobordant (in either category).

This example shows that it is easy to find manifolds that are CP2-stably homeomorphic or
CP2-stably diffeomorphic but do not satisfy any of the other equivalence relations.

5.3. CP2 and Freedman’s ∗CP2. Freedman [Fre82Fre82, p. 370] constructed the manifold ∗CP2, which
he called the Chern manifold, as follows. Attach a 2-handle to D4 along a +1-framed trefoil K, to
obtain the 1-trace of the trefoil. The boundary is a homology sphere Σ, which bounds a compact,
contractible manifold C [Fre82Fre82, Theorem 1.4’; FQ90FQ90, Corollary 9.3C]. Cap off the 1-trace with C.
The resulting closed 4-manifold is ∗CP2. The same construction with any knot K with Arf(K) = 1
gives rise to a homeomorphic manifold.

• The manifolds CP2 and ∗CP2 are orientable and simply connected.
• CP2 is smooth. The Kirby-Siebenmann invariant ks(∗CP2) = ks(C) = µ(Σ) = Arf(K) = 1,

where µ(Σ) is the Rochlin invariant of Σ, by [FQ90FQ90, page 165; GA70GA70]. Therefore, ∗CP2 is
not smoothable, even stably.
• Since the manifolds have isometric intersection forms, they are homotopy equivalent [Whi49Whi49,

Mil58Mil58] and have equal Euler characteristic χ(CP2) = 3 = χ(∗CP2). Since the Whitehead
group of the trivial group is trivial, the manifolds are also simple homotopy equivalent.
• Since the Kirby-Siebenmann invariants are different, they are not CP2-stably homeomor-

phic and therefore not homeomorphic, not s- or h-cobordant, and not stably homeomor-
phic.
• The smooth questions are not applicable to this pair.

This example shows that one must restrict to manifolds with the same Kirby-Siebenmann in-
variant, and moreover ideally smooth manifolds, to find really interesting examples of homotopy
equivalent but not homeomorphic manifolds.
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5.4. RP4#CP2 and R# ∗CP2. Here ∗CP2 is the Chern manifold from Section 5.35.3. The mani-
fold R was first constructed by Ruberman [Rub84Rub84], as follows. By [Fre82Fre82, Theorem 1.4’; FQ90FQ90,
Corollary 9.3C], the Brieskorn sphere Σ(5, 9, 13) bounds a compact, contractible, topological 4-
manifold U . As a Seifert fibered manifold, Σ(5, 9, 13) admits an orientation preserving order two
self-diffeomorphism t given by the antipodal map on the generic fibres. Since the parameters 5, 9,
and 13 are all odd, t is also the antipodal map on the exceptional fibres and t has no fixed points.
The manifold R is then defined as

R := U/x ∼ t(x) for x ∈ ∂U .

A similar construction was previously used by Fintushel-Stern [FS84FS84] to construct a manifold
homeomorphic, but not diffeomorphic to RP4, as we describe in Section 5.65.6. Ruberman’s proof
that R is not homeomorphic to RP4 utilises Rochlin’s theorem [Roh52Roh52] (see also [FK78FK78; Kir89Kir89,
Chapter XI] and the fact that the Rochlin invariant µ(Σ(5, 9, 13)) = 1. That R is a homotopy RP4

follows from the same principle as in [FS84FS84]. Namely, write S4 as U ∪tU , and observe that R is the
quotient under a free involution. The same construction can be applied to any integer homology
sphere Σ admitting a free orientation preserving involution and with µ(Σ) = 1. While it is a priori
not clear that the outcome is unique up to homeomorphism, this follows from the classification of
closed, non-orientable 4-manifolds with order two fundamental group [HKT94HKT94, Theorem 3].

In the literature R is sometimes denoted ∗RP4. We prefer not to use this notation to avoid
confusion with the star construction, defined in Section 5.115.11. The manifold R also arises via a
surgery construction, which we outline after the following list.

• The manifolds RP4#CP2 and R# ∗CP2 are nonorientable with nontrivial fundamental
group isomorphic to Z/2.
• RP4#CP2 is smooth by construction. Ruberman-Stern [RS97RS97] showed that R# ∗CP2 is

also smoothable, as follows. First they showed that there exists a knot K with S3
1(K) =

∂X1(K) = Σ(5, 9, 13) a Brieskorn sphere, via an explicit Kirby calculus argument. Let t
be a free orientation preserving involution of Σ(5, 9, 13) as described at the beginning of
this section. Construct the smooth 4-manifold

X := X1(K)/x ∼ t(x) for x ∈ ∂X1(K).

To see that X is homeomorphic to R# ∗CP2, let UK be the compact, contractible, topolog-
ical 4-manifold with boundary Σ(5, 9, 13) provided by [Fre82Fre82, Theorem 1.4’; FQ90FQ90, Corol-
lary 9.3C]. By Freedman [Fre82Fre82] and Boyer [Boy86Boy86], there is a homeomorphism

∗CP2#UK ∼= (X1(K) ∪Σ(5,9,13) UK)#UK ∼= X1(K),

since they are both compact, simply connected 4-manifolds with the same intersection
form and the same integer homology sphere boundary. This homeomorphism descends
to a homeomorphism ∗CP2#R ∼= X when quotienting the boundaries by the involution.
Alternatively, one can apply the classification theorem of [HKT94HKT94] to show that X is
homeomorphic to R# ∗CP2. Different choices of K, and thereby the Brieskorn sphere,
might give rise to different smooth structures on R# ∗CP2, but this is currently an open
question.
• The manifolds RP4#CP2 and R# ∗CP2 are homotopy equivalent, and therefore have equal

Euler characteristic χ(RP4#CP2) = 2 = χ(R# ∗CP2). Since the Whitehead group of Z/2
is trivial, they are also simple homotopy equivalent.
• Since they are homotopy equivalent and smoothable, they are CP2-stably homeomorphic

and CP2-stably diffeomorphic.
• Hambleton-Kreck-Teichner [HKT94HKT94] showed that they are stably homeomorphic, but not

homeomorphic.
• The manifolds are stably diffeomorphic by [FNOP19FNOP19, Theorem 12.3], which states that

smooth, nonorientable, compact 4-manifolds with universal cover non-spin, that are stably
homeomorphic, are stably diffeomorphic.
• They are not s-cobordant, in either category, since if they were they would be homeomor-

phic by the topological s-cobordism theorem (Theorem 3.53.5). Since the Whitehead group
of Z/2 is trivial, they are also not h-cobordant in either category.
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We end this section by giving an alternative construction of the manifoldR following Hambleton-
Kreck-Teichner [HKT94HKT94, pp. 650-1]. There is a degree one normal map, namely the collapse map
E8 → S4, with domain the E8 manifold constructed by Freedman [Fre82Fre82, Theorem 1.7]. Connect
sum with RP4 in both domain and codomain to obtain a degree one normal map

F : RP4#E8 → RP4.

The surgery kernel is the image of the E8 form under the map L4(Z) → L4(Z[Z/2], w), where
w : Z/2 → C2 is the nontrivial character. But this is the zero map [Wal99Wal99, Chapter 13A, bottom
of page 173]. By the definition of L4(Z[Z/2], w), this means that, perhaps after stabilising with
copies of S2×S2, the surgery kernel is a hyperbolic form. Applying [PRT20PRT20, Corollary 1.4] to the
surgery kernel, there is a homeomorphism

RP4#E8# #k
(S2 × S2) ∼= X# #4+k

(S2 × S2) (5.1)

for some integer k and for some 4-manifold X. By additivity of the Kirby-Siebenmann invariant
(see e.g. [FNOP19FNOP19, Theorem 8.2])

ks(X) = ks(X# #4+k
(S2 × S2)) = ks(RP4#E8# #k

(S2 × S2)) = ks(E8) = 1,

whereas RP4 is smooth and so ks(RP4) = 0. We can then define

R := X.

By [HKT94HKT94, Theorem 3] the manifold X is determined up to homeomorphism by the existence
of the homeomorphism (5.15.1), and in particular coincides with Ruberman’s construction. Since we
built R by killing the surgery kernel of a degree one normal map, we have constructed an element
of the structure set, [R → RP4] ∈ S(RP4), and in particular R ' RP4.

5.5. Kreck’s examples K3#RP4 and #11(S2 × S2)#RP4. These are a pair of relatively easy
to understand exotic 4-manifolds discovered by Kreck [Kre84Kre84]. Indeed this was the first known
exotic pair of closed 4-manifolds; the examples of Cappell-Shaneson discussed in Section 5.65.6 were
constructed earlier, but they were not shown to be homeomorphic until much later [HKT94HKT94]. The
K3 surface is a well-known smooth, simply connected 4-manifold. One way to construct it is to

first consider E(1) := CP2#9CP2, which comes with an elliptic fibration F : E(1)→ S2 (be warned
that this is not a Serre or Hurewicz fibration). Generically the point inverse images are tori with
trivial normal bundles T 2 ×D2. The fibre sum of two copies of E(1) is the K3 surface:

K3 := E(2) := E(1)#T 2E(1) = (E(1) \ T 2 × D̊2) ∪T 2×S1 (E(1) \ T 2 × D̊2).

We can then construct the manifolds K3#RP4 and #11(S2 × S2)#RP4.

• The manifolds K3#RP4 and #11(S2 × S2)#RP4 are smooth, nonorientable, and have
nontrivial fundamental group isomorphic to Z/2. They have equal Euler characteristics
χ(K3#RP4) = 23 = χ(#11(S2 × S2)#RP4).
• As we will explain below, Kreck showed that K3#RP4 and #11(S2 × S2)#RP4 are home-

omorphic but not stably diffeomorphic.
• Since they are homeomorphic, they are stably homeomorphic, CP2-stably homeomorphic,

homotopy equivalent, simple homotopy equivalent, and topologically h- and s-cobordant.
• Since they are not stably diffeomorphic, the two 4-manifolds are not diffeomorphic, and

neither smoothly h-cobordant nor smoothly s-cobordant.

Remark 5.1. More generally, Kreck [Kre84Kre84, Theorem 1] showed that there is at least one such
example of a pair of homeomorphic but not stably diffeomorphic smooth 4-manifolds for each
1-type (π,w : π → C2) with π a finitely presented group and w nontrivial. By Gompf’s result
(Theorem 3.83.8), orientable (stably) homeomorphic 4-manifolds are stably diffeomorphic, so this
phenomenon only arises for nonorientable manifolds.

Now we argue why K3#RP4 and #11(S2×S2)#RP4 are homeomorphic. The intersection form
of K3 is isometric to the orthogonal sum of two E8 forms and a rank 6 hyperbolic form. By
the classification of closed, simply connected 4-manifolds up to homeomorphism [Fre82Fre82, FQ90FQ90],
it follows that K3 is homeomorphic to E8#E8#3(S2 × S2), where E8 as before denotes the E8

manifold constructed by Freedman [Fre82Fre82, Theorem 1.7]. Next, observe that there is a unique
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connected sum of an orientable manifold with a nonorientable manifold such as RP4, because any
two embeddings of D4 in RP4 are isotopic. Using this we have homeomorphisms

RP4#K3 ∼= RP4#E8#E8#3(S2 × S2)

∼= RP4#E8#E8#3(S2 × S2)

∼= RP4#11(S2 × S2).

The last homeomorphism uses the classification of closed, simply connected 4-manifolds again.
Here the 4-manifolds E8#E8#3(S2 × S2) and #11(S2 × S2) have isometric intersection forms,
since they are indefinite and have the same rank, parity, and signature [MH73MH73, Theorem 5.3].

Next we explain the obstruction to stable diffeomorphism. Heuristically, the construction of a
homeomorphism above does not work smoothly, because one cannot split the K3 surface smoothly,
because of Rochlin’s theorem that smooth, spin, closed, 4-manifolds have signature divisible by
16 [Roh52Roh52] (see also [FK78FK78; Kir89Kir89, Chapter XI]. When necessary we use RP∞ ' BZ/2 = K(Z/2, 1)
as a model for the Eilenberg-Maclane space. Define

B := BZ/2× BSpin

and let ξ : B → BO be the composition

B = BZ/2× BSpin
γ⊥×p−−−−→ BO ×BO ⊕−→ BO,

where γ⊥ is the orthogonal complement to the tautological line bundle γ over BZ/2 ' RP∞,
p : BSpin→ BO is the standard projection, and ⊕ is the map corresponding to the Whitney sum
of stable bundles. Replace ξ by a fibration, and by an abuse of notation denote the resulting
homotopy equivalent domain by the same letter B and the new map to BO again by ξ.

Let Ω4(B, ξ) denote the group of bordism classes of closed, smooth 4-manifolds, equipped with
a lift to B of the classifying map νM : M → BO of the stable normal bundle. In other words,
Ω4(B, ξ) has elements represented by pairs (M, ν̃M ), where M is a closed, smooth 4-manifold and
νM classifies its stable normal bundle, such that the following diagram commutes.

B

M BO.

ξ
ν̃M

νM

A (B, ξ)-bordism between (M, ν̃M ) and (N, ν̃N ) is a compact, smooth 5-manifold (W, ν̃W ) with
a corresponding lift of the stable normal bundle νW : W → BO to B, and a diffeomorphism

iM t iN : M tN
∼=−→ ∂W such that ν̃W ◦ iM = ν̃M and ν̃W ◦ iN = ν̃N .

For M ∈ {K3#RP4,#11(S2 × S2)#RP4}, Kreck showed that M admits a 2-connected lift
ν̃M : M → B. Roughly speaking, this is because (B, ξ) was chosen to be compatible with the
Stiefel-Whitney classes w1(νM ) and w2(νM ), and also with the fundamental group π1(M). The
following theorem is a special case of [Kre99Kre99, Theorem C].

Theorem 5.2 (Kreck [Kre84Kre84]). Let (M, ν̃M ), (N, ν̃N ) ∈ Ω4(B, ξ) with ν̃M and ν̃N 2-connected.
Then M and N are stably diffeomorphic if and only if

[(M, ν̃M )] = [(N, ν̃N )] ∈ Ω4(B, ξ)/hAut(B, ξ),

where hAut(B, ξ) denotes the group of fibre homotopy classes of fibre homotopy equivalences of the
fibration ξ : B → BO.

Kreck showed [Kre84Kre84, Proposition 2] that there is an isomorphism

α : Ω4(B, ξ)
∼=−→ Z/16, (5.2)

with α(#11(S2 × S2), s) = 0 and α(K3, s) = 8. Here these are simply connected 4-manifolds,
and the maps s factor through {∗} × BSpin, and correspond to the unique spin structures on the
respective 4-manifolds. The automorphism group hAut(B, ξ) acts by isomorphisms of Ω4(B, ξ) ∼=
Z/16 and so preserves these two elements. Since α is a homomorphism and the connected sum is
(B, ξ)-bordant to the disjoint union, it follows that K3#RP4 and #11(S2 × S2)#RP4 are distinct
in Ω4(B, ξ)/ hAut(B, ξ) and are therefore not stably diffeomorphic. Next we proceed to explain
the computation of Ω4(B, ξ) and the isomorphism α in a little more detail.
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Represent an element of Ω4(B, ξ) by a map f : M → RP4×BSpin, using the cellular approxima-
tion theorem and the fact that BZ/2 ∼= RP∞. Let pr1 : RP4×BSpin→ RP4 be the projection, and
make pr1 ◦f transverse to RP3 ⊆ RP4. Let F ⊆M be the inverse image f−1(RP3×BSpin), which
is a closed 3-manifold. The restriction of f to F determines, with a little work, an induced spin

structure on F and a map F → RP3 ⊆ RP∞ ∼= BZ/2. So F determines an element of ΩSpin
3 (BZ/2).

Every element (F, f) of ΩSpin
3 (BZ/2) bounds some spin 4-manifold W which admits a branched

double covering Ŵ →W restricting to the double cover F̂ → F corresponding to f with branching
set a 2-dimensional submanifold Σ of W . We will show the existence of such a null-bordism in
the next paragraph. Note that ∂(νF ) ∼= F̂ , where νF is the normal bundle of F in M and that

MF := M \ νF is spin. Thus we can form the closed oriented spin 4-manifold MW := MF ∪F̂ −Ŵ ,
where the orientation on MF is induced from the (B, ξ)-structure on M . Then we define a precursor
of the invariant from (5.25.2), as

α(M,f) := sign(MW )− Σ · Σ ∈ Z/32,

where Σ · Σ denotes the homological self-intersection number of Σ ⊆ Ŵ . Kreck showed that
α is a well-defined invariant of Ω4(B, ξ), namely it is unaffected by cobordism over B and is
independent of the choice of W and the branching set. This uses the Atiyah-Singer G-signature
theorem [AS68AS68, Section 6] (see also [Gor86Gor86]) and Rochlin’s theorem [Roh52Roh52] (see also [FK78FK78;
Kir89Kir89, Chapter XI]. Thus as alluded to above the exotic behaviour can be ultimately be traced
back to Rochlin’s theorem.

Now we show the existence of a null-bordism W , as promised. Kreck showed in [Kre84Kre84, Propo-

sition 3] that ΩSpin
3 (BZ/2) ∼= Z/8, generated by the pair consisting of (RP3, inc×s : RP3 →

RP∞×BSpin), where inc is the inclusion and s is some choice of spin structure. The 3-manifold RP3

bounds the 4-manifold V obtained by adding a 2-handle to D4 along an unknot with framing coef-
ficient 2. A generator of π2(V ) is represented by an embedded 2-sphere. Taking the 2-fold cover of

V branched along such an embedding yields a branched covering V̂ → V restricting to the standard

nontrivial double cover S3 ∼= ∂V̂ → RP3 ∼= ∂V on the boundary. By taking boundary connected
sums of V , we see that #kRP3 bounds a 4-manifold Wk = \kV with a branched double cover as

claimed. For any element (F, f) of ΩSpin
3 (BZ/2) we can now construct W := Wk ∪#kRP3 W ′, where

W ′ is a spin bordism from (F, f) to #kRP3 over BZ/2. The null-bordism W admits a branched
double cover as required in the definition of α. This completes the description of α.

Kreck showed [Kre84Kre84, p. 256] that Imα = 2Z/32 ∼= Z/16, generated by α(RP4, ν̃RP4) for some
normal smoothing ν̃RP4 : RP4 → B. In this case F = RP3, W = V from above, sign(MF ) =

sign(D4) = 0 and Ŵ = V̂ so sign(Ŵ ) = 1 and Σ · Σ = 1. Therefore sign(MW ) = −1 and
so α(RP4, f) = −2. Kreck also showed by analysing the Atiyah-Hirzebruch spectral sequence
for Ω4(B, ξ) that |Ω4(B, ξ)| ≤ 16. It follows that α is an isomorphism onto 2Z/32 ⊆ Z/32.
Finally, α(K3, s) = 16 since F = ∅ and so MF = K3. Since Imα = 2Z/32 we may define
α := α/2: Ω4(B, ξ) −→ Z/16, which gives the isomorphism α that we have been trying to explain.

5.6. RP4 and the Cappell-Shaneson exotic RP4. Cappell and Shaneson [CS76aCS76a, CS76bCS76b] con-
structed a smooth manifold R which they showed is homotopy equivalent, but not stably diffeo-
morphic, to RP4; later work [HKT94HKT94] showed that R is homeomorphic to RP4. Fintushel and
Stern [FS81FS81] constructed a smooth manifold RFS with the same properties as a quotient of S4 by
an exotic free action of Z/2 on S4. See [AR84AR84, Theorem 5.1] for the relationship between the two
constructions.

The Fintushel-Stern construction is easier to describe, so we start with that. Start with two
copies of a compact, contractible, smooth 4-manifold U with boundary the Brieskorn homology
sphere ∂U ∼= Σ(3, 5, 19). This homology sphere is a Seifert-fibred 3-manifold. The antipodal
map on the S1 fibres induces a fixed-point free, order-two self-diffeomorphism t : ∂U → ∂U , as
in Section 5.45.4. Fintushel-Stern showed that there is a diffeomorphism S4 ∼= U ∪t U . Switching the
two U factors of the union gives rise to a smooth free involution t̃ : S4 → S4. Define

RFS := S4/t̃ ≡ U/x ∼ t(x) for x ∈ ∂U.

This inspired the construction of R in [Rub84Rub84] given in Section 5.45.4.
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Next we recall the construction of the Cappell-Shaneson R. Let

A :=

 0 1 0
0 0 1
−1 1 0

 .

The matrix A induces a diffeomorphism φA : T 3 → T 3. Consider the punctured 3-torus T 3
0 and

the corresponding mapping torus for A, denoted MA,0. Take RP4 and remove a neighbourhood

S1 ×̃D3 of an embedded circle representing the generator of π1(RP4) ∼= Z/2. Then

R := (RP4 \ S1 ×̃D3) ∪∂ MA,0.

• The manifoldsR and RP4 are smooth and nonorientable. They have nontrivial fundamental
group isomorphic to Z/2.
• They have equal Euler characteristics χ(R) = 1 = χ(RP4).
• Cappell-Shaneson [CS76bCS76b] showed that R and RP4 are homotopy equivalent, and therefore

simple homotopy equivalent.
• After Freedman’s work it was later shown [HKT94HKT94] that these manifolds are furthermore

homeomorphic.
• By combining with their earlier work on 4-dimensional surgery [CS71CS71, Theorem 2.4],

Cappell-Shaneson [CS76bCS76b, p. 61] showed that, in addition to not being diffeomorphic, R
and RP4 are not stably diffeomorphic. Alternatively, this can be seen using the α invariant,
defined below, which turns out to be a stable diffeomorphism invariant, via the reduction
of stable diffeomorphism to bordism over the normal 1-type. We refer to Section 5.125.12,
page 2626, where we explain this in more detail in the case of Akbulut’s examples.
• Since they are homeomorphic they are stably homeomorphic, simple homotopy equivalent,

topologically h- and s-cobordant, CP2-stably homeomorphic and CP2-stably diffeomorphic.
• Since they are not stably diffeomorphic they are not diffeomorphic. They are not smoothly
h- or s-cobordant because they are not stably diffeomorphic.
• As mentioned above, the Fintushel-Stern 4-manifold RFS has exactly the same properties.

We now describe the diffeomorphism obstruction from [CS76bCS76b] used to show that R is not
diffeomorphic to RP4. Consider the nonorientable linear S3-bundle over S1, which we denote by
S1 ×̃ S3. Cappell-Shaneson defined an invariant

α : N (S1 ×̃ S3)→ Z/32

from the set of smooth degree one normal maps with target S1 ×̃S3. Let f : R→ S1 ×̃S3 represent
an element of N (S1 ×̃ S3). Define ΣR to be a framed 3-manifold f−1(S3) obtained by making f
transverse to a fibre S3 in S1 ×̃ S3, taking the inverse image, and pulling back the framing. Let
µ(ΣR) ∈ Z/16 be the Rochlin invariant of ΣR, by definition the signature mod 16 of a framed 4-
manifold with boundary ΣR. In addition, write W := R \ νΣR, and let σ(W ) ∈ Z be its signature.
Then Cappell-Shaneson defined

α(R, f) := 2µ(ΣR)− σ(W ) mod 32.

In [CS76bCS76b, Proposition 2.1] they showed that α is a well-defined map α : N (S1 ×̃ S3) → Z/32 as
claimed. This invariant will be used again in Section 5.125.12; see also Kreck’s invariant in Section 5.55.5,
which was inspired by the Cappell-Shaneson invariant.

Let MA be the mapping torus for the diffeomorphism φA : T 3 → T 3 used in the construction
of R. In [CS76bCS76b, Propositions 2.1 and 2.2] it was shown that there is a degree one normal map
f : MA → S1 ×̃ S3 and that α(MA, f) is nonzero. As such, just as in Section 5.55.5, the exotic
behaviour is due to Rochlin’s theorem. In [CS76bCS76b, Theorem 3.1], Cappell and Shaneson use the
nontriviality of α(MA, f) to show that R is not diffeomorphic to RP4. This theorem shows that
there is a homotopy equivalence h : R → RP4 that is not homotopic to a diffeomorphism. Then
since every homotopy equivalence of RP4 is homotopic to the identity (cf. Proposition 5.35.3), it
follows that there is no diffeomorphism between R and RP4. It was shown in [Gom91Gom91] that the
double cover of R is diffeomorphic to S4.

The Cappell-Shaneson construction can be varied by making different choices for the matrix
A, giving rise to an exotic RP4 denoted RA. The precise conditions are that A ∈ GL(3,Z) with
det(A) = −1 and det(I − A2) = ±1; call such a matrix a Cappell-Shaneson matrix. It can be
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seen from the construction that if A and A′ are similar Cappell-Shaneson matrices then RA and
RA′ are diffeomorphic. The universal cover of RA is a smooth homotopy 4-sphere. Many of
these have been shown to be diffeomorphic to S4 – we refer to the introduction of [KY17KY17] for a
detailed survey. The most general result in this vein is that the universal cover of RA arising from
a Cappell-Shaneson matrix A with trace n where −64 ≤ n ≤ 69 is diffeomorphic to S4 [ibid.].
However, this corresponds to only finitely many similarity classes, and so there are infinitely many
Cappell-Shaneson homotopy 4-spheres which remain as potential counter-examples to the smooth
4-dimensional Poincaré conjecture.

5.7. L× S1 and L′ × S1. Let L and L′ be 3-dimensional lens spaces with the same fundamental
group that are homotopy equivalent but not homeomorphic. These are of the form Lp,q1 and
Lp,q2 with gcd(p, qi) = 1, and 1 ≤ qi < p for i = 1, 2, such that for some n, q1q2 ≡ ±n2

mod p (for homotopy equivalent), and qi 6≡ ±q±1
j mod p (for non-homeomorphic) [Rei35Rei35]. See

also [Bro60Bro60,DK01DK01,Coh73Coh73].

• The manifolds L × S1 and L′ × S1 are smooth and orientable. They have fundamental
group isomorphic to Z/p× Z, for some p.
• They are homotopy equivalent because L and L′ are, and since they are smooth they are

therefore CP2-stably homeomorphic and CP2-stably diffeomorphic.
• The formula for the Whitehead torsion of a product of homotopy equivalences [KS65KS65,

Corollary 1.3; Lüc02Lüc02] implies that L × S1 and L′ × S1 are simple homotopy equivalent.
Indeed, let f : L → L′ be a homotopy equivalence. Let i : Z → Z/p× Z and let j : Z/p →
Z/p× Z be the standard inclusions. Then

τ(f × Id) = j∗(τ(f)) · χ(S1) + χ(L) · i∗(τ(Id)) = 0, (5.3)

since χ(S1) = 0 = χ(L), where i∗ and j∗ are the induced maps on Whitehead groups.
• In the late 1960s it was proven that L×S1 and L′×S1 are not diffeomorphic. If they were,

then L and L′ would be smoothly h-cobordant, which can be seen by embedding L in the
infinite cyclic cover L′ × R. Atiyah-Bott [AB68AB68, Theorem 7.27] and Milnor [Mil66Mil66, Corol-
lary 12.12] showed that smoothly h-cobordant lens spaces are homeomorphic. There-
fore L× S1 and L′ × S1 are not diffeomorphic.
• In the late 1980s, Turaev [Tur88Tur88] showed that moreover L × S1 and L′ × S1 are not

homeomorphic. He showed that for any 3-manifolds M and M ′ that do not fibre over S1

with periodic monodromy, the product M ×S1 and M ′×S1 are homeomorphic if and only
if M and M ′ are homeomorphic [Tur88Tur88, Theorem 1.5]. To show this he proved that such
M and M ′ are topologically h-cobordant if and only if M and M ′ are homeomorphic. It
follows that L× S1 and L′ × S1 are not homeomorphic. Of course this also reproves that
they are not diffeomorphic.
• The manifolds L × S1 and L′ × S1 are stably diffeomorphic, and therefore stably home-

omorphic. We prove this in Proposition 5.35.3 below, by adapting a proof of Cappell-
Shaneson [CS81CS81]. That this is possible was stated in [Wei99Wei99].
• By the topological s-cobordism theorem (Theorem 3.53.5), L×S1 and L′×S1 are not topolog-

ically s-cobordant and are therefore not smoothly s-cobordant. Here we use that Z/p× Z
is a good group.
• They are not topologically h-cobordant, as we explain in Proposition 5.45.4 using [KS04KS04]. It

follows that they are not smoothly h-cobordant.
• By choosing a large enough value of p, one may use the classification of lens spaces to find

arbitrarily large, finite sets {Li × S1}i, such that the elements pairwise satisfy the above
properties.

Proposition 5.3. Let L and L′ be 3-dimensional lens spaces that are homotopy equivalent but not
homeomorphic. Then the 4-manifolds L× S1 and L′ × S1 are stably diffeomorphic.

Proof. The strategy is as follows. Let π1(L) ∼= π1(L′) ∼= Z/p and let h : L → L′ be a homotopy
equivalence. Let Sh(L′) be the homotopy structure set of L′ and consider the map in the surgery
sequence η : Sh(L′) → N (L′) ∼= [L′,G/TOP] with target the normal invariants of L′. This map
is defined for 3-manifolds, even though there is no analogue of the entire surgery sequence for
3-manifolds (but see [KT01KT01, Theorem 4] for a version with a homology structure set). We will
show that the homotopy equivalences h : L → L′ and Id: L′ → L′ determine equal elements
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η(h) = η(Id) ∈ N (L′) i.e. normally bordant degree one normal maps. Crossing with S1 we see
that η(h× Id) = η(Id× Id) ∈ N (L′ × S1). Since Z/p× Z is a good group, the surgery sequence is
exact. Therefore [h× Id : L×S1 → L′×S1] and [Id× Id : L′×S1 → L′×S1] are in the same orbit
of the action of Lh5 (Z[Z/p×Z]) on Sh(L′×S1). Then, by the definition of the Wall realisation Lh5
action, it follows that L×S1 and L′×S1 are stably homeomorphic. Then since these 4-manifolds
are smooth and orientable, they are in fact stably diffeomorphic by Theorem 3.83.8.

We therefore have to show that η(h) = η(Id) ∈ N (L′). For this we adapt the proof of
[CS81CS81, Proposition 2.1], where the corresponding fact for lens spaces with even order fundamental
group was proven in all dimensions, under an additional hypothesis that the double covers are
homeomorphic. We will show that in dimension 3 the extra hypotheses are not needed.

First recall that there is a 4-connected map k : G/TOP → K(Z/2, 2), corresponding to a uni-
versal cohomology class k ∈ H2(G/TOP;Z/2) [MM79MM79,KT01KT01]. This induces a homomorphism

k∗ : [L′,G/TOP]→ [L′,K(Z/2, 2)] ∼= H2(L′;Z/2).

Consider η(h) and η(Id) as elements of [L′,G/TOP]. Since η(Id) = 0, also k∗(η(Id)) = 0 ∈
H2(L′;Z/2). So we have to show that k∗(η(h)) = 0, and then we will have shown that both maps
L′ → G/TOP are null-homotopic, and hence that the two lens spaces are normally bordant. If p
is odd, then H2(L′;Z/2) ∼= H1(L′;Z/2) = 0, so we are done. We therefore assume that p is even,
in which case H2(L′;Z/2) = Z/2, and we have something to check. So let p = 2r, for some r ≥ 1.

Now we diverge from the proof of [CS81CS81]. Let f : L̃→ L and f ′ : L̃′ → L′ be the r-fold covers so

that π1(L̃) ∼= Z/2 ∼= π1(L̃′). Note that L̃ and L̃′ are again lens spaces, so L̃ ∼= L̃′ ∼= RP3 = L2,1. We

claim that (f ′)∗ : H2(L′;Z/2) → H2(RP3;Z/2) is an isomorphism. Note that f ′∗ : H1(RP3;Z) →
H1(L′;Z) is given by multiplication with r. Hence on the cellular Z-chain complexes, f ′1 is given
by multiplication with r and thus f ′2 is the identity as can be seen by considering the following
commutative diagram of the cellular chain complexes over Z.

Z Z Z Z

Z Z Z Z.

0

f ′3

·2

·1f ′2

0

·rf ′1 ·1f ′0

0 ·2r 0

The claim that (f ′)∗ : H2(L′;Z/2) → H2(RP3;Z/2) is an isomorphism immediately follows from
this. By the commutative square

[L′,G/TOP] [RP3,G/TOP]

H2(L′;Z/2) H2(RP3;Z/2)

(f ′)∗

k∗ k∗

(f ′)∗

∼=

in order to prove k∗(η(h)) = 0, it suffices to show that (f ′)∗(η(h)) = 0. Since (f ′)∗ : N (L′) →
N (RP3) is given by pulling back along f ′, we have (f ′)∗(η(h)) = η(h̃), where h̃ : RP3 → RP3 is
obtained from lifting h ◦ f : RP3 → L′ to RP3 along f ′ as in the diagram

RP3 RP3

L L′.

h̃

f f ′

h

We assert that every orientation-preserving homotopy self-equivalence of RP3, and so in particular

h̃, is homotopic to the identity. It then follows that h̃ is trivial in the structure set of RP3, and so

η(h̃) = η(IdRP3) = 0 as desired.
It remains to prove the assertion that every orientation-preserving homotopy self-equivalence

of RP3 is homotopic to the identity. This can be proven via obstruction theory, by iteratively
extending a map defined on RP3×{0, 1} to RP3× [0, 1]. Since the target RP3 is path connnected,
there is no obstruction to extending over the relative 1-cells of RP3 × [0, 1], i.e. to defining the
homotopy on the 0-cells of RP3. For k ≥ 2, the obstruction to extending over the relative k-cells
of RP3 × [0, 1] lies in

Hk(RP3 × [0, 1],RP3 × {0, 1};πk−1(RP3)).
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For k = 2, the obstruction vanishes because both maps induce the identity on π1(RP3) ∼= Z/2.
Since π2(RP3) = π2(S3) = 0, the remaining obstruction lies in

H4(RP3 × [0, 1],RP3 × {0, 1};π3(RP3)) ∼= H0(RP3 × [0, 1];Z) ∼= Z.
The obstruction measures the difference in the degrees of the two maps. Since both are degree 1,
the obstruction vanishes and the assertion is proved. �

Proposition 5.4. Let L and L′ be homotopy equivalent lens spaces that are not homeomorphic.
The manifolds L× S1 and L′ × S1 are not topologically h-cobordant.

Proof. Assume that there is a topological h-cobordism W from L × S1 to L′ × S1. As in (5.35.3)
above, taking a product with S1 kills the Whitehead torsion, i.e. W × S1 is an s-cobordism from
L×S1×S1 to L′×S1×S1. The high-dimensional s-cobordism theorem then implies that L×S1×S1

and L′ × S1 × S1 are homeomorphic. But this implies that L and L′ are homeomorphic by the
toral stability property for lens spaces [KS04KS04] which can be seen using higher ρ-invariants [Wei99Wei99].
This is a contradiction to our assumption on L and L′. �

Indeed if L and L′ are not homeomorphic, then even L×R2 and L′×R2 are not homeomorphic
[KS04KS04, Theorem 1.4].

5.8. Donaldson’s examples E(1) and the Dolgachev surface E(1)2,3. As mentioned before,
Kreck (Section 5.55.5) and Cappell-Shaneson (Section 5.65.6) constructed the first examples of exotic
4-manifolds. These were nonorientable, and the obstructions used arose from Rochlin’s theorem.

New examples of exotic pairs, including simply connected examples, were provided by Don-
aldson [Don87Don87], and many others after him (see e.g. [GS99GS99, Akb16Akb16]). Donaldson’s first examples

consisted of E(1) = CP2# #9CP2
and the Dolgachev surface E(1)2,3, which is obtained from E(1)

via two log transforms. Let us recall the construction. The 4-manifold E(1) admits the structure
of an elliptic fibration f : E(1) → S2. Let T 2 ⊆ E(1) be a generic fibre. Its normal bundle is a
copy of T 2 ×D2 embedded in E(1).

In general, a log transform is a surgery operation on a 4-manifold X with a smoothly embedded
torus T 2 ⊆ X with trivial normal bundle which cuts out a neighbourhood T 2 × D2 of T 2, and
glues it back via a diffeomorphism of ∂(T 2 ×D2) = T 3. Let {α, β, [∂D2]} be a basis for H1(T 3).
Then by definition we reglue to form

X ′ := X \ (T 2 ×D2) ∪ϕ (T 2 ×D2)

using a diffeomorphism ϕp : T 3 → T 3, for some p ∈ Z, corresponding to an element1 0 0
0 0 1
0 −1 p


of GL(3,Z). Perform two of these log transform operations on E(1), on disjoint generic fibres of
the elliptic fibration, one with p = 2 and one with p = 3. The resulting 4-manifold is the Dolgachev
surface E(1)2,3. One can also construct E(1)2,3 by a single knot surgery operation [FS98aFS98a; FS98bFS98b;
GS99GS99, Section 10.3; Akb16Akb16, Section 6.5] on a generic fibre of E(1), using a trefoil knot [Par04Par04, p. 7;
FS09FS09, Lecture 6, Section 2]. Akbulut used this in [Akb12Akb12] to obtain a description of the Dolgachev
surface without 1- or 3-handles.

• E(1) and E(1)2,3 are smooth, closed, orientable, and simply connected.
• They have isometric intersection forms 〈+1〉 ⊕ 9〈−1〉 and so are homeomorphic [Fre82Fre82,

FQ90FQ90], and therefore (simple) homotopy equivalent, stably homeomorphic, topologically
h- and s-cobordant, and CP2-stably homeomorphic.
• They are homeomorphic and orientable and therefore stably diffeomorphic and CP2-stably

diffeomorphic (Theorem 3.83.8).
• They are smoothly h-cobordant by [Wal64bWal64b, Theorem 2], and are therefore smoothly s-

cobordant since the Whitehead group of the trivial group is trivial.
• They are not diffeomorphic [Don87Don87], via tools of Yang-Mills gauge theory.

While Rochlin’s theorem suffices to construct exotic pairs of nonorientable 4-manifolds (see
Sections 5.55.5 and 5.65.6) it seems that one requires the full force of gauge theory to detect orientable
exotic pairs. After Donaldson’s work, Seiberg-Witten theory provided an easier, but nonetheless
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still highly nontrivial, way to distinguish manifolds such as E(1) and E(1)2,3 which are related
by log transforms or knot surgery. There is a large literature on generalisations of Donaldson’s
example, as described in [GS99GS99, Akb16Akb16]. As stated before, since this is not our focus we restrict
ourselves to recalling the first known example.

5.9. #3
E8 and the Leech manifold. Next we present 4-manifolds that are stably homeomor-

phic but not homotopy equivalent. Freedman [Fre82Fre82] showed that every nonsingular, symmetric,
integral bilinear form can be realised as the intersection pairing of a closed, simply connected,
topological 4-manifold. The forms 3E8 and the Leech lattice are even, symmetric, positive definite
bilinear forms of rank and signature 24, so they are realised by closed 4-manifolds that we denote

by #3
E8 and Le respectively.

• The manifolds #3
E8 and Le are simply connected and orientable with χ( #3

E8) = 26 =
χ(Le).
• Since they are spin with signature 24, Rochlin’s theorem implies that the manifolds both

have nontrivial Kirby-Siebenmann invariant, and are therefore not smoothable.
• The manifolds have inequivalent intersection pairings and are therefore not homotopy

equivalent. As a result they are neither simple homotopy equivalent, homeomorphic, topo-
logically h-cobordant, nor topologically s-cobordant.

• Since they are spin and the Euler characteristics and the signatures coincide, #3
E8 and

Le are stably homeomorphic and therefore also CP2-stably homeomorphic, as follows. The
stable classification of closed, simply connected, spin topological 4-manifolds is essentially
due to Wall [Wal64bWal64b, Theorems 2 and 3]: two such 4-manifolds are stably homeomorphic
if and only if there are choices of orientations with respect to which the manifolds are

equivalent in the topological spin bordism group ΩTOPSpin
4

∼= Z, with the isomorphism given
by [M ] 7→ σ(M)/8. Wall worked in the smooth category, but the analogous topological
category result is straightforward to deduce [KPT21aKPT21a, Section 2.2].
• The smooth questions are not applicable to this pair.

The downside of this example is that the manifolds are not smoothable. It turns out that this
is inevitable when considering simply connected 4-manifolds, as shown by the next proposition.

Proposition 5.5. Closed, smooth, simply connected 4-manifolds M and N with equal Euler char-
acteristics are stably diffeomorphic if and only if they are homotopy equivalent.

Proof. Let M and N be closed, smooth, and simply connected 4-manifolds. Assume that M and
N are homotopy equivalent. Then they have isometric intersection forms, for some choice of ori-
entation, so by [Wal64bWal64b, Theorem 2] they are smoothly h-cobordant, and by [Wal64bWal64b, Theorem 3]
(see also Proposition 5.35.3) they are stably diffeomorphic.

For the other direction, assume M and N are stably diffeomorphic and χ(M) = χ(N). Then
modulo changing orientations, σ(M) = σ(N). Since χ(M) = χ(N) and σ(M) = σ(N), the
intersection forms of M and N are either both definite or both indefinite. In the definite case,
the intersection forms must be diagonal by Donaldson’s theorem [Don83Don83], and so the intersection
forms are isometric, and therefore the manifolds are homotopy equivalent [Whi49Whi49,Mil58Mil58]. For the
indefinite case, note that since the hyperbolic form is even, and the intersection forms of M and
N become isometric after stabilising, they are either both odd or both even. Indefinite forms are
determined up to isometry by the rank, parity, and signature [MH73MH73, Theorem 5.3] and so again M
and N are homotopy equivalent. �

Finally, we note that any pair of even, inequivalent, nonsingular, symmetric, integral, bilinear
forms with equal rank and signature could have been used in this section to produce a pair of
stably homeomorphic but not homotopy equivalent manifolds.

5.10. Kreck-Schafer manifolds. Kreck and Schafer [KS84KS84] constructed smooth 4-manifolds that
are stably diffeomorphic but not homotopy equivalent. As observed in Proposition 5.55.5, their
examples are necessarily not simply connected.

They used the following general construction. Start with a finite presentation of a group. Form
the corresponding presentation 2-complex X. Thicken it to a 5-dimensional manifold N(X), e.g.
by embedding X in R5 and letting N(X) denote a smooth regular neighbourhood [Wal66Wal66]. Then
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consider the 4-manifold ∂N(X). One can use this to find a 4-manifold with any given finitely
presented fundamental group.

For any two finite 2-complexes X and X ′ with the same fundamental group, there are integers
m,n such that X ∨m S2 ' X ′ ∨n S2 [HAM93HAM93, (40)]. It follows that the boundaries of the 5-
dimensional thickenings ∂N(X) and ∂N(X ′) are stably diffeomorphic.

Kreck and Schafer used finite 2-complexes X and X ′ with the same fundamental group, as above,
that have the same Euler characteristic but are not homotopy equivalent. Finding examples of
2-complexes with this property is rather difficult, but examples are known [Met76Met76, Sie77Sie77, Lus93Lus93].
Kreck and Schafer’s obstruction applies for many nontrivial fundamental groups, the smallest of
which is Z/5 × Z/5 × Z/5. Kreck and Schafer then showed that for their particular choices of
X and X ′, the 4-manifolds ∂N(X) and ∂N(X ′) are not homotopy equivalent. These manifolds
have the additional interesting property that their intersection forms, and indeed their equivariant
intersection forms, are hyperbolic.

• The manifolds ∂N(X) and ∂N(X ′) are smooth, non-simply-connected, oriented manifolds
with the same Euler characteristic that are stably diffeomorphic but not homotopy equiv-
alent.
• Since they are not homotopy equivalent, they are also not simple homotopy equivalent,

nor homeomorphic, nor diffeomorphic, nor h- or s-cobordant in either category.
• Since they are stably diffeomorphic they are stably homeomorphic, CP2-stably diffeomor-

phic, and CP2-stably homeomorphic.

Kreck and Schafer found pairs of 4-manifolds with the properties listed. Are there stable diffeo-
morphism classes of smooth, oriented 4-manifolds containing infinitely many homotopy equivalence
classes, all with the same Euler characteristic? Or even arbitrarily many?

5.11. Teichner’s E#E and ∗E# ∗E. A star partner of a 4-manifold M is a manifold ∗M such
that there exists a homeomorphism M# ∗CP2 ∼= ∗M#CP2 preserving the decomposition on π2,
where ∗CP2 is the Chern manifold whose construction we recalled in Section 5.35.3. Let E denote the
unique fibre bundle over RP2 with fibre S2, that has orientable but not spin total space. We give a
Kirby diagram in Figure 33. This is a smooth, closed, orientable 4-manifold with fundamental group
Z/2. Teichner [Tei97Tei97] showed that E has a star partner ∗E which is simple homotopy equivalent
to E but has opposite Kirby-Siebenmann invariant. This will also follow from the more general
Proposition 5.105.10 and Lemma 5.75.7 below. By the surgery exact sequence, if π1(M) ∼= Z/2, then ∗M
is unique up to homeomorphism if it exists (see also [Tei97Tei97, Theorem 1]). In particular, this means
that ∗E is the unique star partner for E.

0

1

Figure 3. A Kirby diagram for the manifold E, the unique fibre bundle over RP2

with fibre S2, that has orientable but not spin total space.

• The manifolds E#E and ∗E# ∗E are orientable, with nontrivial fundamental group iso-
morphic to Z/2 ∗ Z/2.
• The manifold E is smooth by construction, and therefore so is E#E. The manifold ∗E is

not smoothable, but it is currently open whether ∗E# ∗E is smoothable. Indeed ∗E# ∗E
has vanishing Kirby-Siebenmann invariant and so is stably smoothable, i.e. there exists a

k such that ∗E# ∗E# #k
(S2 × S2) is a smooth manifold.

• Teichner [Tei97Tei97, Proposition 3] showed that E#E and ∗E# ∗E are not stably homeomor-
phic, and therefore they are not homeomorphic and not s- or h- cobordant.
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• They are simple homotopy equivalent, since E and ∗E are simple homotopy equivalent.
This will also follow from Lemma 5.75.7 later, since we will show that they are both star
partners of E# ∗E. Recall also that the Whitehead group of the infinite dihedral group is
trivial [Sta65Sta65], and so it also suffices to know that they are homotopy equivalent.
• Since they are homotopy equivalent and have trivial Kirby-Siebenmann invariant they are
CP2-stably homeomorphic. The homeomorphism from (5.45.4) below gives an alternative
argument, where we see that only one CP2-factor is required.

• For smooth examples with the same properties, consider the pair E#E# #k
(S2 × S2)

and ∗E# ∗E# #k
(S2 × S2). As mentioned above, there exists k for which these are

smooth since ks(E#E) = ks(∗E# ∗E) = 0. These two manifolds are still simple homotopy
equivalent, CP2-stably homeomorphic and therefore CP2-stably diffeomorphic, but not
stably homeomorphic, and therefore not stably diffeomorphic, neither smoothly s- nor
h-cobordant, and not diffeomorphic.

Taking connected sums of E#E and ∗E# ∗E, as well as sufficiently many copies of S2×S2, one
can construct homotopy equivalence classes containing arbitrarily many stable homeomorphism
classes of smooth, orientable 4-manifolds using the techniques of [Tei97Tei97]. We omit the details. In
[Tei92bTei92b, Example 5.2.4], Teichner also constructed similar examples for finite fundamental groups
with quaternionic 2-Sylow subgroup.

Next we show that it is impossible to find infinite families of 4-manifolds that are all homotopy
equivalent but pairwise not stably homeomorphic. For this proof, we will need the following
terminology.

The normal 1-type of a smooth 4-manifold M is a fibration ξ : B → BO, inducing an injection
π2(B) → π2(BO) and an isomorphism on πi(B) → πi(BO) for i > 2, which further admits a
lift ν̃M : M → B of the stable normal bundle νM : M → BO, inducing an isomorphism π1(B) →
π1(BO) and a surjection π2(B) → π2(BO). A choice of a lift ν̃M is called a normal 1-smoothing
of M . For a normal 1-type (B, ξ), let Ω4(B, ξ) denote the group of bordism classes of normal
1-smoothings. For topological 4-manifolds, we have parallel notions of a topological normal 1-type
B → BTOP and topological normal 1-smoothings lifting the stable topological normal bundle. For
a topological normal 1-type (B, ξ), let ΩTOP

4 (B, ξ) denote the group of topological bordism classes
of topological normal 1-smoothings.

Proposition 5.6. The set of stable homeomorphism types of closed 4-manifolds in a fixed homotopy
type is finite. Moreover the set of stable diffeomorphism types of closed, smooth 4-manifolds in a
fixed homotopy type is finite.

Proof. Let M be a closed 4-manifold with π := π1(M) and orientation character w. We will use

that the composition Sh(M)
η−→ N (M)

σ−→ Lh4 (Zπ,w) in the surgery sequence is trivial, in both the
smooth and topological categories, and with no restriction on fundamental groups.

First we give the proof in the topological category. We claim that the map η : Sh(M)→ N (M)
has finite image. Recall from Section 44 that N (M) ∼= H4(M ;Z)⊕H2(M ;Z/2). Here we see that
H2(M ;Z/2) is finite and by Poincaré duality H4(M ;Z) ∼= H0(M ;Zw). So when M is orientable,
we have that H0(M ;Zw) ∼= H0(M ;Z) ∼= Z, which maps injectively into Ls4(Zπ,w) under the
surgery obstruction map σ. Consider the degree one normal map f : M#kE8 → M given by
the collapse map. Then under the augmentation map Lh4 (Zπ) → Lh4 (Z), σ([M#kE8, f ]) maps to
k ∈ Z ∼= L4(Z). It follows that the image of σ is infinite and therefore since σ is a homomorphism,
the kernel of σ is finite. When M is nonorientable, H0(M ;Zw) ∼= Z/2, and so N (M) is already
finite. This completes the proof of the claim.

To complete the proof in the topological category we show that two elements (N, f), (N ′, f ′) ∈
Sh(M) with equal image in N (M) are stably homeomorphic. Let (B, ξ) denote the topological
normal 1-type of M and let ν̃M be a topological normal 1-smoothing. Then ν̃M ◦f and ν̃M ◦f ′ are
normal 1-smoothings for N and N ′ respectively, and moreover (N, ν̃M ◦ f) and (N ′, ν̃M ◦ f ′) are
equal in ΩTOP

4 (B, ξ) by hypothesis. By [Kre99Kre99, Theorem C], the manifolds N and N ′ are stably
homeomorphic. This completes the proof of the first statement.

Now assume that M is a smooth, closed 4-manifold. If M is orientable, then by [Gom84Gom84] (see
also [FNOP19FNOP19, Theorems 12.13]) every pair of stably homeomorphic smooth 4-manifolds is stably
diffeomorphic, and so we are done. Suppose that M is nonorientable. As in the topological case,
it suffices to show that the set NDiff(M) of smooth normal invariants is finite. Since PL/O is
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6-connected, NDiff(M) ∼= [M,G/O] ∼= [M,G/PL] ∼= NPL(M), and so it suffices to show that
NPL(M) is finite. The fibre sequence TOP/PL→ G/PL→ G/TOP induces an exact sequence of
sets

[M,TOP/PL]→ [M,G/PL]→ [M,G/TOP],

which translates to

H3(M ;Z/2)→ NPL(M)→ N (M).

The first and last terms are finite sets, and therefore so is NPL(M) ∼= NDiff(M), as desired. �

We finish this section by proving some general facts about the star construction.

Lemma 5.7. Let M be a 4-manifold with a star partner ∗M . Then M and ∗M are simple
homotopy equivalent.

Proof. We use an argument due to Stong [Sto94bSto94b, Section 2]. For a 4-manifold M and β ∈ π2(M),
let cap(M,β) be the result M ∪β D3 of adding a 3-cell to M along β. Let h : ∗M#CP2 →
M# ∗CP2 be a homeomorphism preserving the decomposition of π2. Let α ∈ π2(CP2) ∼= Z be a
generator. Then h∗(α) generates π2(∗CP2). Further cap(CP2, α) 's S4 and cap(∗CP2, h∗(α)) 's
S4. Therefore

M ∼= M#S4 's M# cap(∗CP2, h∗(α)) ∼= cap(M# ∗CP2, h∗(α)) ∼= cap(∗M#CP2, h−1
∗ ◦ h∗(α))

∼= cap(∗M#CP2, α) ∼= ∗M# cap(CP2, α) 's ∗M#S4 ∼= ∗M

as desired. �

Note that ∗M and M have opposite Kirby–Siebenmann invariants, by additivity of the Kirby-
Siebenmann invariant under connected sum [FNOP19FNOP19, Theorem 8.2].

Proposition 5.8. Let M be a 4-manifold with a star partner ∗M . The relation of being a star
partner is symmetric, i.e. M is a star partner of ∗M , whenever π1(M) is good.

Proof. We must show that there is a homeomorphism M#CP2 ∼= ∗M# ∗CP2, preserving the
decomposition on π2. We will use the uniqueness of star partners for manifolds with non-spin uni-
versal covers and good fundamental group mentioned above, to show that both M#CP2 and
∗M# ∗CP2 are star partners for M# ∗CP2. This will imply that there is a homeomorphism

M#CP2 ∼=−→ ∗M# ∗CP2, and we will see it preserves the decomposition on π2 from the con-
struction.

By the classification of closed, simply connected 4-manifolds [Fre82Fre82, FQ90FQ90], there is a homeo-
morphism

∗CP2# ∗CP2 ∼= CP2#CP2

preserving the decomposition on π2. Therefore, (M#CP2)#CP2 ∼= (M# ∗CP2)# ∗CP2, preserving
the decomposition on π2, as needed. This shows that M#CP2 is a star partner for M# ∗CP2.

Since ∗M is a star partner of M , we know that ∗M#CP2 ∼= M# ∗CP2, preserving the decom-
position on π2. By taking a connected sum on both sides with ∗CP2, we see that ∗M# ∗CP2 is a
star partner of M# ∗CP2. �

Next we give a general criterion for when star partners exist. The proof will use the following
notion.

Definition 5.9. Let M be a 4-manifold. An immersion of a 2-sphere α : S2 # M is said to
be RP2-characteristic if for every immersion R : RP2 # M such that R∗w1(M) = 0, we have
α ·R ≡ R ·R ∈ Z/2.

The following consequence of work of Strong [Sto94aSto94a] is probably well-known to the experts,
but has not appeared in print before.

Proposition 5.10. Let M be a 4-manifold with good fundamental group and containing an im-
mersion R : RP2 # M such that R · R ≡ 1 mod 2 and R∗w1(M) = 0. Then a star partner ∗M
exists.
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Proof. The manifold ∗M can be constructed as follows. Start with M# ∗CP2 and let α be an
immersed sphere in ∗CP2 with trivial self-intersection number, µ(α) = 0, representing a generator
of π2(∗CP2). Note that α is self-dual. In the construction of ∗CP2 from Section 5.35.3, one can find
such an α by gluing together the track of a null-homotopy for the trefoil in D4 with the core of the
attached 2-handle, and then adjusting the self-intersection number by adding small cusps. Since the
mod 2 intersection numbers are such that α·R = 0 6= R·R ∈ Z/2, α is not RP2-characteristic. Stong
[Sto94aSto94a, p. 1310] proved that in this setting, where π1(M) is good, and α admits an algebraically
dual immersed sphere but is not RP2-characteristic, then α is homotopic to an embedding α′. Since
λ(α′, α′) = 1, it follows that α′ has a regular neighbourhood with boundary S3. Consequently,
M# ∗CP2 ∼= N#CP2, where N is obtained from M# ∗CP2 by replacing a regular neighbourhood
of α′ by D4. By construction, N is a star partner for M , which we denote by ∗M . �

If the universal cover M̃ is non spin and the fundamental group of M is good, then ∗M is unique
up to homeomorphism [Sto94bSto94b, Corollary 1.2]. However, Teichner observed that uniqueness of star
partners does not hold for non-spin manifolds with spin universal covers. In particular, we have
the homeomorphisms

E#(E#CP2) ∼= E#(∗E# ∗CP2) = ∗E#(E# ∗CP2) ∼= ∗E#(∗E#CP2) (5.4)

where we have used that E#CP2 ∼= ∗E# ∗CP2 by Proposition 5.85.8, and that E# ∗CP2 ∼= ∗E#CP2,
by the definition of ∗E. This shows that both E#E and ∗E# ∗E are star partners of E# ∗E.

5.12. Akbulut’s exotic (S1 ×̃ S3)#(S2 × S2). In [Akb85Akb85, §3; Akb88Akb88] (see also [Akb16Akb16, Sec-
tion 9.5]), Akbulut constructed a smooth, closed 4-manifold P that is homotopy equivalent to
Q := (S1 ×̃ S3)#(S2 × S2), but not diffeomorphic to Q. We give the construction presently. A
manifold with similar properties was first constructed by Akbulut in [Akb84Akb84]. We say more about
that and other alternative constructions at the end of the section.

(a) (b)

−1 −1

0

0

Figure 4. (a) A Kirby diagram for the product Σ × [0, 1], where Σ denotes the
(2, 3, 7)-Brieskorn sphere. The handle decomposition has a 3-handle that is not
pictured. The dotted circle indicates the complement in D3× [0, 1] of the product
concordance from the figure eight knot to itself. A −1-framed 2-handle is then
attached along this concordance. The resulting handlebody has boundary Σ#−Σ.
The 3-handle is attached along the connected sum sphere to finish the construc-
tion. Here we have used that Σ is the result of −1-framed Dehn surgery on the
figure eight knot. (b) A nonorientable 1-handle is attached, along with two 2-
handles. The attaching sphere of the new 1-handle is shown using the notation
of [Akb84Akb84; Akb16Akb16, Section 1.5]: they are identified via the orientation preserving
diffeomorphism (x, y, z) 7→ (x,−y,−z), with respect to coordinates based at the
centre. One of the new 2-handles is shown in grey to help the reader distinguish
between the two 2-handles. It is required, but can be checked, that the 2-handles
are attached along curves disjoint from the attaching 2-sphere of the 3-handle from
(a). The manifold P is formed by gluing on D4.

Let Σ denote the (2, 3, 7)-Brieskorn sphere. Recall that the Rochlin invariant of Σ, denoted
by µ(Σ), is by definition the signature mod 16 of a smooth, spin 4-manifold with boundary Σ.
In this case µ(Σ) ≡ 8 mod 16. Attach a nonorientable 1-handle to Σ × [0, 1], joining the two
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boundary components, followed by a pair of 2-handles, as shown in Figure 44. One then checks that
the boundary of this new handlebody is S3, so it can be capped off with D4, yielding the desired
manifold P .

• The manifolds P and Q are smooth, closed, and nonorientable. They have nontrivial
fundamental group Z.
• The Euler characteristics are equal: χ(P ) = 2 = χ(Q).
• The equivariant intersection form of P can be computed from its handle description.

Wang’s classification [Wan95Wan95] of nonorientable 4-manifolds with fundamental group Z up
to homeomorphism then shows that P and Q are homeomorphic, since they have isomor-
phic equivariant intersection forms and equal Kirby-Siebenmann invariant. Here P and Q
both have trivial Kirby-Siebenmann invariant since they are smooth.
• Since they are homeomorphic, P and Q are topologically h-cobordant, and consequently
s-cobordant since the Whitehead group of Z is trivial.
• They are not stably diffeomorphic, which implies that they are not smoothly h-cobordant;

the latter fact was shown by Akbulut [Akb85Akb85, Theorem 3]. His proof can be adapted to
show the stronger fact that P and Q are not stably diffeomorphic, as we explain next.

Let c : Q#kS2 × S2 → S1 ×̃ S3 be the map collapsing all S2 × S2 factors. Akbulut
constructed a homotopy equivalence f : P#kS2 × S2 → Q#kS2 × S2, for all k, such that
the Brieskorn sphere Σ is the inverse image under g := c ◦ f : P#kS2 × S2 → S1 ×̃ S3 of a
copy of S3 in S1 ×̃ S3 and such that

σ((P#kS2 × S2) \ νΣ) = σ(S3 × [0, 1]#k+1S2 × S2) = 0.

We can consider (P#kS2×S2, g) as a degree one normal map in N (S1×̃S3), as usual mod-
ulo smooth normal bordism. We compute the Cappell-Shaneson α-invariant α : N (S1 ×̃
S3)→ Z/32, described in Section 5.65.6:

α(P#kS2 × S2, g) = 2µ(Σ)− σ((P#kS2 × S2) \ νΣ) ≡ 2 · 8− 0 ≡ 16 mod 32.

If P and Q were stably diffeomorphic, then we can use a diffeomorphism h : Q#kS2×S2 →
P#kS2 × S2 to obtain an degree one normal map (Q#kS2 × S2, g ◦ h). Since h is a
diffeomorphism we would have α(Q#kS2 × S2, g ◦ h) = α(P#kS2 × S2, g) = 16. However
Akbulut also computed that α(Q#kS2 × S2, `) = 0 for every degree one normal map
` : Q#kS2 × S2 → S1 ×̃ S3. It follows that P and Q are not stably diffeomorphic.
• Since P and Q are not smoothly h-cobordant, they not smoothly s-cobordant, nor diffeo-

morphic.
• They are CP2-stably diffeomorphic and CP2-stably homeomorphic, because they are ho-

motopy equivalent and both have vanishing Kirby-Siebenmann invariant. Moreover, via
explicit handle manipulation [Akb85Akb85, Theorem 1; Akb88Akb88; Akb16Akb16, Exercise 9.3], one sees
that P is the result of a Gluck twist on an embedded 2-sphere in Q. This shows that not
only are P and Q CP2-stably diffeomorphic, but in fact P#CP2 ∼= Q#CP2 [Akb85Akb85, Corol-
lary 2].

Notably the pair P and Q comprise the first example where the Gluck twist operation on a
2-sphere changes the smooth structure of a 4-manifold. Whether this is possible in the orientable
setting remains open. Other examples of the operation changing the smooth structure on nonori-
entable 4-manifolds are given in [Tor17Tor17; KPR22KPR22, Proposition 1.6]. See also [AY13AY13] for a condition
that implies the Gluck twist operation does not change the diffeomorphism type.

As mentioned above, another manifold with similar properties as P was constructed by Akbulut
in [Akb84Akb84]. That manifold, which we call P ′, also has an explicit handle decomposition [Akb84Akb84,
Figure 4.6] consisting of one 0-handle, one 1-handle, two 2-handles, one 3-handle, and one 4-handle.
Since P ′ is nonorientable, the 1-handle is necessarily nonorientable. In other words, P ′ is obtained
by attaching two 2-handles to S1 ×̃D3 and then capping off with another copy of S1 ×̃D3. Akbulut
showed using explicit moves on the handle decompositions that

P ′0 ∪∂ (RP2×̃D2) ∼= R#(S2 × S2),

where P ′0 := P ′ \ IntS1×̃D3 and R is the Cappell-Shaneson exotic RP4 from Section 5.65.6. The

double cover of P ′ is the standard (S1 × S3)# #2
(S2 × S2), as shown in [Tor17Tor17, Proposition 9],

using the fact that the double cover of R is diffeomorphic to S4 [Gom91Gom91]. Akbulut’s construction
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from [Akb84Akb84] can be modified to use other Cappell-Shaneson RP4s, some of which are not known
to have standard double covers. Akbulut showed that P ′ is homotopy equivalent to Q. As with P ,
the classification result of Wang [Wan95Wan95] shows that P ′ is homeomorphic to Q. Akbulut used
explicit moves on the handle decompositions to show that P ′ is not diffeomorphic to Q, reducing
the problem to the fact that the Cappell-Shaneson exotic RP4 from Section 5.65.6 is not diffeomorphic
to RP4. In has been claimed [Akb85Akb85, Theorem 1; Akb88Akb88] that P and P ′ are diffeomorphic, but a
proof has so far not appeared.

Another construction of a manifold homeomorphic but not diffeomorphic to Q was given by
Fintushel-Stern in [FS84FS84], using the technology of [FS81FS81]. By surgering an exceptional fibre of
the (3, 5, 19)-Brieskorn sphere, they constructed K, a homology S2 × S1. They then formed X,
the mapping cylinder of the quotient map K → K/t where t is the free involution contained in
the S1-action on K, as in Sections 5.45.4 and 5.65.6. To finish the construction Fintushel and Stern
showed that K is the boundary of a homotopy (S1 ×D3)#(S2 × S2), whose union with X is the
desired manifold M . Using the invariant defined in [FS81FS81], they showed that M is not smoothly s-
cobordant to Q. They also showed using the handle decomposition, and the fact that t is isotopic to

the identity, that the double cover of M is diffeomorphic to the standard (S1×S3)# #2
(S2×S2).

It is not known whether Akbulut’s P is diffeomorphic to M .

5.13. Kwasik-Schultz manifolds homotopy equivalent to L × S1. The existence of these
manifolds is the content of Example 1.91.9 from the introduction, which was first proven in [KS04KS04,
Theorem 1.2]. We restate the theorem and give an original proof below.

Theorem 5.11. Let M := L×S1, where L is a lens space Lp,q with p ≥ 2, 1 ≤ q < p, and (p, q) =
1. Then there is an infinite collection of closed, orientable, topological 4-manifolds {Mi}∞i=1, that
are all simple homotopy equivalent to M but pairwise not homeomorphic.

Proof. The proof will use the simple surgery exact sequence. The simple L-group satisfies

Ls5(Z[Z/p× Z]) ∼= Zr ⊕ (torsion),

where

r =

{
(p+ 1)/2 p odd

(p+ 2)/2 p even.

In both cases r > 1 since p ≥ 2. To compute these L-groups, first use Shaneson splitting [Sha69Sha69]
to obtain

Ls5(Z[Z/p× Z]) ∼= Ls5(Z[Z/p])⊕ Lh4 (Z[Z/p]).
Then Lh4 (Z[Z/p]) ∼= Zr ⊕ T , where T is a torsion group and the free part is detected by a multi-
signature invariant: see [Bak78Bak78, Bak74Bak74] for p odd, [Bak76Bak76, Theorem 2] for p = 2k, and [HT00HT00,
p. 227 and Proposition 12.1] for the deduction of the general case. On the other hand Ls5(Z[Z/p]) =
0, as shown in [Bak75Bak75,Bak74Bak74] and [HT00HT00, Theorem 10.1] for p odd, [Bak76Bak76, Theorem 7] for p = 2k,
and again [HT00HT00, p. 227 and Proposition 12.1] for general p.

Since Z/p×Z is a good group, the simple surgery sequence is exact. The normal maps N (M ×
[0, 1],M × {0, 1}) are given by the direct sum of H2(M × [0, 1],M × {0, 1};Z/2) and

H4(M × [0, 1],M × {0, 1};Z) ∼= H1(M × [0, 1];Z) ∼= Z⊕ Z/p,

as in (4.14.1). In particular, the normal maps have rank 1. Hence the quotient

Ls5(Z[Z/p× Z])/σ(N (M × [0, 1],M × {0, 1}))

is infinite. By exactness this quotient acts freely on the structure set Ss(M), and so the structure
set of M is also infinite. In order to complete the proof, we need to consider the manifold set:

M(M) := {N a closed 4-manifold | N 's M}/homeomorphism.

This set is isomorphic to the simple structure set Ss(M) modulo the action of the simple homotopy
self-equivalences of M . We will show that the group hAut(M) of homotopy classes of homotopy
self-equivalences of M is finite in Lemma 5.125.12 below. It follows that the group of simple homotopy
self-equivalences hAuts(M) is also finite. Then M(M) is the quotient of an infinite set Ss(M) by
a finite group, so is again infinite. The elements of M(M) comprise the manifolds {Mi}∞i=1 in the
theorem statement. �
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• The elements of M(M) are orientable and have nontrivial fundamental group isomorphic
to Z/p× Z.
• They are in general not known to be smoothable, but their Kirby-Siebenmann invariants

vanish because they are all bordant to the smooth manifold M . For L′ homotopy equiv-
alent, but not homeomorphic, to L, the smooth 4-manifold L′ × S1 lies in M(M). In
particular, we know that L′ × S1 is simple homotopy equivalent to M by (5.35.3). However,
such examples account for at most finitely many of the elements of M(M). Therefore the
smooth equivalence relations are not applicable in general.
• As they lie in the same simple structure set, they are all homotopy equivalent and simple

homotopy equivalent to one another, and therefore in particular all have equal (vanishing)
Euler characteristics.
• Since they are obtained from the action of Ls5(Z[Z/p × Z]), the elements of M(M) are

stably homeomorphic and CP2-stably homeomorphic.
• The elements of M(M) are by definition pairwise non-homeomorphic. The cardinality of
M(M) was first shown to be infinite in [KS04KS04, Theorem 1.2]. As a result, since Z/p × Z
is a good group, they are also not topologically s-cobordant, by the s-cobordism theorem
(Theorem 3.53.5).
• An infinite subset of the manifolds inM(M) are in addition not topologically h-cobordant

to one another. To see this we argue as follows. Infinitely many of the elements of Ls5
that we used, namely those in the Zr summand detected by multisignatures, are nontrivial
under the forgetful map Ls5(Z[Z/p × Z]) → Lh5 (Z[Z/p × Z]) ∼= ⊕rZ. This can be seen
directly from the definition of multisignatures or by observing that the Rothenberg exact
sequence [Sha69Sha69, Proposition 4.1] implies that the kernel of the map Lsn(R) → Lhn(R) is
2-torsion for every ring with involution R and every n ∈ Z. It follows that the quotient of
these elements by the image of the Z factor in the normal invariants,

Lh5 (Z[Z/p× Z])/σ(N (M × [0, 1],M × {0, 1})) ∼= ⊕r−1Z,

also act nontrivially on the homotopy structure set Sh(M). As above r ≥ 2 so this is
infinite. Recall that the equivalence relation defining this set is topological h-cobordism
over M . The quotient of Sh(M) by the group of homotopy self-equivalences of M is the
manifold h-cobordism set:

Mh(M) := {N a closed 4-manifold | N 'M}/h-cobordism.

As before, the homotopy self-equivalences form a finite group, so can only identify finitely
many of the manifolds. It follows that there is an infinite subset of M(M) represented
by manifolds that determine distinct elements of Mh(M), and are therefore pairwise not
topologically h-cobordant.

These examples contrast with Teichner’s examples in Section 5.45.4 in that we have infinitely many,
and the stable homeomorphism statuses are different. A similar phenomenon to the manifolds
in M(M) arises for manifolds homotopy equivalent to RP4#RP4 [BDK07BDK07], except that these
manifolds are of course nonorientable.

Lemma 5.12. The group of homotopy self-equivalences hAut(M) of M is a finite group.

Sketch of proof. For this we will use the braid of exact sequences from Hambleton-Kreck [HK04HK04,
p. 148], which applies since M is spin. This braid in particular fits the group of homotopy self-
equivalences hAut(M) into an exact sequence [HK04HK04, Corollary 2.13],

Ω̂Spin
5 (B,M) hAut(M) hAut(B) (5.5)

sandwiched between the homotopy automorphisms hAut(B) of the Postnikov 2-type B, and a spin

bordism group Ω̂Spin
5 (B,M) that we shall define below.

Since π2(M) = 0, the Postnikov 2-type of M is B := B(Z/p × Z). The homotopy classes of
homotopy equivalences of B are therefore isomorphic to the automorphisms of the group Z/p×Z.
This group of automorphisms is a finite group.

Let Ω̂Spin
4 (M) ⊆ ΩSpin

4 (M) denote the subset of bordism classes (X, f) where the reference map

f : X → M has degree 0, let ∂ : ΩSpin
5 (B,M) → ΩSpin

4 (M) be the boundary map in the long
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exact sequence of the pair, and let Ω̂Spin
5 (B,M) ⊆ ΩSpin

5 (B,M) be ∂−1(Ω̂Spin
4 (M)). By [HK04HK04,

Lemma 2.2], there is a long exact sequence

ΩSpin
5 (M) ΩSpin

5 (B) Ω̂Spin
5 (B,M) Ω̂Spin

4 (M) ΩSpin
4 (B).

The four non-relative spin bordism groups, and the first and last maps in the sequence, can be
computed using the (natural) Atiyah-Hirzebruch spectral sequence for the generalised homology
theory of spin bordism. We omit the details, because very similar details will appear below in the
proof of Lemma 5.135.13. There we will restrict to p a power of 2, but the computation that both

the cokernel of the map ΩSpin
5 (M) → ΩSpin

5 (B) and the kernel of the map Ω̂Spin
4 (M) → ΩSpin

4 (B)
are finite groups is similar for all p ≥ 2. To avoid essentially repeating ourselves, we only give
the details in the proof in Section 5.145.14 below, since in that case the result is new, and more

precise upper bounds are required. It follows that Ω̂Spin
5 (B,M) is finite. Therefore (5.55.5) shows

that hAut(M) is finite, as desired. �

5.14. Simple homotopy equivalent, h-cobordant 4-manifolds that are not s-cobordant.
We construct arbitrarily large collections of closed, orientable, topological 4-manifolds that are
simple homotopy equivalent and h-cobordant but not topologically s-cobordant. This will prove
Theorem 1.101.10, which we restate below. We will employ the same scheme as in the previous
subsection. The manifolds in each collection will be simple homotopy equivalent and h-cobordant
to a fixed 4-manifold L2r,1 × S1, for some r. We will show that by making r large enough we can
obtain a collection of 4-manifolds of any given size, with the following properties.

• They are orientable and have nontrivial fundamental group isomorphic to Z/2r × Z for
some r ≥ 8.
• They are all simple homotopy equivalent and topologically h-cobordant to one another. As

a result, they are homotopy equivalent, stably homeomorphic, and CP2-stably homeomor-
phic. They are are pairwise not topologically s-cobordant and therefore not homeomorphic.
• Since they are homotopy equivalent they all have vanishing Euler characteristic, the same

as L2r,1 × S1.

• They are all stably homeomorphic and CP2-stably homeomorphic.
• We do not know whether they are smoothable, and therefore the smooth questions are not

applicable.

Theorem 1.101.10. For every n ≥ 1, there is a collection {Ni}ni=1 of closed, orientable, topological
4-manifolds, that are all simple homotopy equivalent and h-cobordant to one another, but which
are pairwise not s-cobordant.

Proof. Let Mr := L2r,1 × S1, for r ≥ 1. Let πr := Z/2r × Z, and let Gr := Z/2r. The proof will
again use the surgery sequence, both with the h and s decorations. We begin by investigating the
individual terms. Shaneson splitting [Sha69Sha69] shows that

Ls5(Zπr) ∼= Ls5(ZGr)⊕ Lh4 (ZGr) and Lh5 (Zπr) ∼= Lh5 (ZGr)⊕ Lp4(ZGr).
Then by [Bak76Bak76, Theorem 7], we know

Ls5(ZGr) = 0 = Lh5 (ZGr).
Here we use that s = 0, in the notation of that theorem (this is a different s to the s-decoration of
the L-groups). By [Bak76Bak76, Theorem 1] we have that

Lp4(ZGr) = Zm(r).

where m(r) := 2r−1 + 1. By [Bak76Bak76, Theorem 2] and [CS85CS85, Theorem B]:

Lh4 (ZGr) = Zm(r) ⊕ (Z/2)n(r)

where
n(r) := b2(2r−2 + 2)/3c − br/2c − 1.

Putting this all together we have:

Ls5(Zπr) ∼= Zm(r) ⊕ (Z/2)n(r) and Lh5 (Zπr) ∼= Zm(r).

The kernel of the forgetful map Ls5(Zπr)→ Lh5 (Zπr) is the torsion summand

K := ker(Ls5(Zπr)→ Lh5 (Zπr)) ∼= (Z/2)n(r),
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since Lh5 (Zπr) is torsion free and the kernel of the map Lsn(R)→ Lhn(R) is 2-torsion, for every ring
with involution R and every n ∈ Z by the Rothenberg exact sequence [Sha69Sha69, Proposition 4.1].
The elements in K act on the simple structure set of Mr, producing topological manifolds that are
stably homeomorphic and simple homotopy equivalent to Mr. We can compute the normal maps
as

N (Mr × [0, 1],Mr × {0, 1}) ∼= H4(Mr × [0, 1],Mr × {0, 1};Z)⊕H2(Mr × [0, 1],Mr × {0, 1};Z/2)

∼= Z⊕ Z/2r ⊕ Z/2.

We have a direct sum because there is a 5-connected map G/TOP→ K(Z, 4)×K(Z/2, 2) [KT01KT01].
The Z summand is detected by the ordinary signature, and in particular it maps to one of the
multisignature summands in Zm(r) ⊆ Ls5(Zπr), under the surgery obstruction map. The torsion
summand Z/2r ⊕ Z/2 could map to the torsion elements in Ls5(Zπr). But at least a summand of
Ls5(Zπr), one isomorphic to (Z/2)n(r)−2, acts nontrivially on the simple structure set. Note that
|(Z/2)n(r)−2| = 2n(r)−2.

Still, it might be the case that some of the elements of the simple structure set Ss(Mr) obtained
by this action of Ls5 are identified by the action of the simple homotopy self-equivalences hAuts(Mr).
Note that |hAuts(Mr)| ≤ |hAut(Mr)|. We will show the following lemma.

Lemma 5.13. Let r ≥ 8. Then

2n(r)−2/|hAut(Mr)| > 1.

Moreover, for any k there exists an r with 2n(r)−2/|hAut(Mr)| > k.

Every element Mr(κ) := κ · [Id : Mr → Mr] ∈ Ss(Mr) arising from the action of an element
κ ∈ K maps trivially to the homotopy structure set Sh(Mr), by the diagram

Ls5(Zπr) Ss(Mr)

Lh5 (Zπr) Sh(Mr).

W

W

The Mr(κ) are all therefore h-cobordant to Mr. Since they arise from the action of the simple L-
group Ls5(Zπr), they are all simple homotopy equivalent and stably homeomorphic to one another.
By Lemma 5.135.13 there is more than one orbit of {Mr(κ)}κ∈K/ hAuts(Mr), and these are not s-
cobordant and therefore not homeomorphic manifolds. Moreover, for a given k we can choose r so
that there are at least k orbits, and therefore we find arbitrarily large collections. �

Now we prove Lemma 5.135.13.

Proof of Lemma 5.135.13. As in Section 5.135.13, we use the braid from [HK04HK04]. There we claimed that
hAut(Lp,q × S1) is finite for any lens space Lp,q with p odd. Now we claim the same when p = 2r,
and moreover in this case we compute an explicit upper bound, in terms of r, for the order of
hAut(Lp,q × S1). The braid includes the exact sequence [HK04HK04, Corollary 2.13]

Ω̂Spin
5 (Br,Mr)→ hAut(Mr)→ hAut(Br), (5.6)

so we need upper bounds for the cardinalities of Ω̂Spin
5 (Br,Mr) and hAut(Br), where hAut(Br)

denotes the set of homotopy self-equivalences of the Postnikov 2-type Br up to homotopy. The

spin bordism group Ω̂Spin
5 (Br,Mr) also appeared in the proof of Lemma 5.125.12, and we refer the

reader there for the definition.
First we compute hAut(Br). Since π2(Mr) = 0, the Postnikov 2-type Br is given by Bπr.

Therefore, hAut(Br) ∼= Aut(Z/2r × Z). We will now show that |hAut(Br)| = 22r. An arbitrary
endomorphism of Z/2r×Z maps (1, 0) to (a, 0) and (0, 1) to (b, z), for some a, b ∈ Z/2r and z ∈ Z.
For an automorphism, we must have that z = ±1 and a must be a generator of Z/2r. Hence there
are 22r = 2 · 2r−1 · 2r allowed choices for z, a and b.

To find an upper bound for |Ω̂Spin
5 (Br,Mr)| we use the exact sequence [HK04HK04, Lemma 2.2]

ΩSpin
5 (Mr)→ ΩSpin

5 (Br)→ Ω̂Spin
5 (Br,Mr)→ Ω̂Spin

4 (Mr)→ ΩSpin
4 (Br). (5.7)



COUNTEREXAMPLES IN 4-MANIFOLD TOPOLOGY 31

We investigate the bordism groups using the Atiyah-Hirzebruch spectral sequence. The sequence
we need, for X ∈ {Mr, Br}, is

E2
p,q = Hp(X; ΩSpin

q )⇒ ΩSpin
p+q (X).

In the range of interest 0 ≤ q ≤ 5, we have:

ΩSpin
q
∼=

 Z, for q = 0, 4,
Z/2, for q = 1, 2,
0, for q = 3, 5.

We also need the homology of Mr, which by the Künneth theorem with Z/2-coefficients is as
follows:

Hk(Mr;Z/2) ∼=


Z/2, for k = 0, 4,

(Z/2)2, for k = 1, 2, 3,

0, otherwise.

Additionally H1(Mr;Z) ∼= Z/2r ⊕Z. Since Br = Bπr can be constructed from Mr by adding cells
of dimension four and higher, for A ∈ {Z/2,Z} the induced map

Hk(Mr;A)→ Hk(Br;A)

is an isomorphism for k = 0, 1, 2 and a surjection for k = 3. Finally we will need that H5(Br;Z) ∼=
Z/2r.

Now we use this homology information together with the spectral sequences to obtain an upper

bound for the cardinality of the cokernel of the map ΩSpin
5 (Mr)→ ΩSpin

5 (Br) from (5.75.7). The map

Mr → Br induces maps between each page of the spectral sequences computing ΩSpin
5 (Mr) and

ΩSpin
5 (Br). The nonzero terms E2

p,q on the E2 page with p+ q = 5 are as follows:

H1(−;Z), H3(−;Z/2), H4(−;Z/2), and H5(−;Z).

The maps H1(Mr;Z)→ H1(Br;Z) and H3(Mr;Z/2)→ H3(Mr;Z/2) are onto as explained above,
so by naturality of the spectral sequence these terms do not contribute to the cokernel. The mod 2
fundamental class in H4(Mr;Z/2) ∼= Z/2 maps nontrivially to H4(Br;Z/2) ∼= (Z/2)2, so possibly
one Z/2 could contribute to the cokernel (whether or not it does so depends on differentials which
we shall not take into account). The only other contribution to the cokernel comes from the term

H5(Br;Z) ∼= Z/2r. As a result the cokernel of ΩSpin
5 (Mr)→ ΩSpin

5 (Br) has at most 2r+1 elements.

Next we find an upper bound on the size of ker
(
Ω̂Spin

4 (Mr) → ΩSpin
4 (Br)

)
. We do this by

considering the composition

Ω̂Spin
4 (Mr)→ ΩSpin

4 (Mr)→ ΩSpin
4 (Br).

Consider the Atiyah-Hirzebruch spectral sequence computing ΩSpin
4 (Mr). The nonzero terms E2

p,q

on the E2 page with p+ q = 4 are

H0(Mr;Z), H2(Mr;Z/2), H3(Mr;Z/2), and H4(Mr;Z).

The map H0(Mr; ΩSpin
4 ) ∼= Z → H0(Br; ΩSpin

4 ) ∼= Z is an isomorphism, as explained above. The

image of the inclusion Ω̂Spin
4 (Mr) → ΩSpin

4 (Mr) consists of elements with trivial image under the

edge homomorphism ΩSpin
4 (Mr)→ H4(Mr;Z) ∼= E2

p,0 term on the E2 page, since the latter map is
given by the mapping degree times the fundamental class [Mr].

It follows that the kernel of Ω̂Spin
4 (Mr) → ΩSpin

4 (Br) is generated by elements coming from
the terms H2(Mr;Z/2) ∼= (Z/2)2 and H3(Mr;Z/2) ∼= (Z/2)2, and so the kernel has at most 24

elements. Thus by (5.75.7), we see that

|Ω̂Spin
5 (Br,Mr)| ≤ 2r+1 · 24 = 2r+5.

It now follows from the sequence (5.65.6) that

|hAut(Mr)| ≤ | hAut(Br)| · |Ω̂Spin
5 (Br,Mr)| ≤ 22r · 2r+5 = 23r+5.

An elementary calculation, recalling that n(r) = b2(2r−2 + 2)/3c− br/2c− 1, shows that for r ≥ 8
we have

n(r)− 2− 3r − 5 > 0.
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This implies that 2n(r)−2/|hAut(Mr)| ≥ 2n(r)−2/23r−5 = 2n(r)−2−3r−5 > 1, as desired. In addition,
note that n(r) − 2 − 3r − 5 → ∞ as r → ∞. It follows that for a given k, there exists an r such
that 2n(r)−2/|hAut(Mr)| ≥ 2n(r)−2−3r−5 > k. �
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[CHR95] A. Cavicchioli, F. Hegenbarth, and D. Repovš, On the stable classification of certain 4-manifolds, Bull.
Austral. Math. Soc. 52 (1995), no. 3, 385–398.

[CLM19] D. Crowley, W. Lück, and T. Macko, Surgery theory: Foundations, 2019. Book project in progress,
available at http://www.math.uni-bonn.de/people/macko/sb-www.pdf.

[Coh73] M. M. Cohen, A course in simple-homotopy theory, Vol. 10, Springer, New York, NY, 1973.
[CP20] A. Conway and M. Powell, Embedded surfaces with infinite cyclic knot group, 2020. Preprint, available

at arXiv:2009.13461.
[CPP22] A. Conway, L. Piccirillo, and M. Powell, 4-manifolds with boundary and fundamental group Z, 2022.

Preprint, available at arxiv:2205.12774.
[CS71] S. E. Cappell and J. L. Shaneson, On four dimensional surgery and applications, Comment. Math.

Helv. 46 (1971), 500–528.



COUNTEREXAMPLES IN 4-MANIFOLD TOPOLOGY 33

E
x
a
m

p
le

s
P

ro
p

er
ti

es
E

q
u
iv

a
le

n
ce

re
la

ti
o
n
s

sm
oo

th

or
ie

nt
ed π

1
=

1
eq

ua
l
χ

S2
×
S2

-s
ta

bl
y

ho
m

eo
.

CP
2

-s
ta

bl
y

ho
m

eo
.

S2
×
S2

-s
ta

bl
y

di
ff
eo

.

CP
2

-s
ta

bl
y

di
ff
eo

.

ho
m

ot
op

y
eq

ui
v.

si
m

pl
e

ho
m

ot
op

y
eq

ui
v.

to
p.
h
-c

ob
or

da
nt

to
p.
s-

co
b
or

da
nt

sm
oo

th
ly
h
-c

ob
or

da
nt

sm
oo

th
ly
s-

co
b
or

da
nt

ho
m

eo
m

or
ph

ic

di
ff
eo

m
or

ph
ic

§5
.1

5
.1

S
4

a
n
d
S

2
×
S

2
3

3
3

7
3

3
3

3
7

7
7

7
7

7
7

7

§5
.2

5
.2

S
2
×
S

2
a
n
d
S

2
×̃
S

2
3

3
3

3
7

3
7

3
7

7
7

7
7

7
7

7

§5
.3

5
.3

C
P2

a
n
d
∗C

P2
7

3
3

3
7

7
n
/
a

n
/
a

3
3

7
7

n
/
a

n
/
a

7
n
/
a

§5
.4

5
.4

R
P4

#
C
P2

a
n
d
R

#
∗C

P2
3

7
7

3
3

3
3

3
3

3
7

7
7

7
7

7

§5
.5

5
.5

K
3
#
R
P4

a
n
d

#
1
1
S

2
×
S

2
#
R
P4

3
7

7
3

3
3

7
3

3
3

3
3

7
7

3
7

§5
.6

5
.6

R
P4

a
n
d
R

3
7

7
3

3
3

7
3

3
3

3
3

7
7

3
7

§5
.7

5
.7

L
1
×
S

1
,.
..
,L

k
×
S

1
,

w
it

h
L
i
'
L
j

b
u
t
L
i
6∼ =
L
j

fo
r
i
6=
j

3
3

7
3

3
3

3
3

3
3

7
7

7
7

7
7

§5
.8

5
.8

E
(1

)
a
n
d
E

(1
) 2
,3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
7

§5
.9

5
.9

#
3
E

8
a
n
d
L
e

7
3

3
3

3
3

n
/
a

n
/
a

7
7

7
7

n
/
a

n
/
a

7
n
/
a

§5
.1

0
5
.1

0
K

re
ck

-S
ch

a
fe

r
m

a
n
if

o
ld

s
3

3
7

3
3

3
3

3
7

7
7

7
7

7
7

7

§5
.1

1
5
.1

1
T

ei
ch

n
er

’s
E

#
E

#
#
k
(S

2
×
S

2
)

a
n
d
∗E

#
∗E

#
#
k
(S

2
×
S

2
)

3
3

7
3

7
3

7
3

3
3

7
7

7
7

7
7

§5
.1

2
5
.1

2
A

k
b
u
lu

t’
s
P

a
n
d
Q

3
7

7
3

3
3

7
3

3
3

3
3

7
7

3
7

§5
.1

3
5
.1

3
M

(L
p
,q
×
S

1
),
p

o
d
d
,
∞

se
t

?
3

7
3

3
3

n
/
a

n
/
a

3
3

7
7

n
/
a

n
/
a

7
n
/
a

§5
.1

4
5
.1

4
{M

r
(κ

)}
κ
∈
K

?
3

7
3

3
3

n
/
a

n
/
a

3
3

3
7

n
/
a

n
/
a

7
n
/
a

T
a
b
l
e
1
.

C
o
u

n
te

re
x
a
m

p
le

s
in

4
-m

a
n

if
o
ld

to
p

o
lo

g
y.



34 DANIEL KASPROWSKI, MARK POWELL, AND ARUNIMA RAY

[CS76a] S. E. Cappell and J. L. Shaneson, Construction of some new four-dimensional manifolds, Bull. Am.

Math. Soc. 82 (1976), 69–70.

[CS76b] S. E. Cappell and J. L. Shaneson, Some new four-manifolds, Ann. Math. (2) 104 (1976), 61–72.
[CS81] S. E. Cappell and J. L. Shaneson, Non-linear similarity, Ann. Math. (2) 113 (1981), 315–355.

[CS85] S. E. Cappell and J. L. Shaneson, Torsion in L-groups, Algebraic and geometric topology (New
Brunswick, N.J., 1983), 1985, pp. 22–50.

[Deb21] A. Debray, Stable diffeomorphism classification of some unorientable 4-manifolds, 2021. Preprint, avail-

able at arXiv:2102.03965. To appear Bull. London Math. Soc.
[DK01] J. F. Davis and P. Kirk, Lecture notes in algebraic topology, Graduate Studies in Mathematics, vol. 35,

American Mathematical Society, Providence, RI, 2001.

[Don83] S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom.
18 (1983), no. 2, 279–315.

[Don87] S. K. Donaldson, Irrationality and the h-cobordism conjecture, J. Differential Geom. 26 (1987), no. 1,

141–168.
[FK78] M. Freedman and R. Kirby, A geometric proof of Rochlin’s theorem, Algebraic and geometric topology

(Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, 1978, pp. 85–97.

[FNOP19] S. Friedl, M. Nagel, P. Orson, and M. Powell, A survey of the foundations of four-manifold theory in
the topological category, 2019. Preprint, available at arXiv:1910.07372.

[FQ90] M. Freedman and F. Quinn, Topology of 4-manifolds, Princeton Mathematical Series, vol. 39, Princeton

University Press, 1990.
[Fre82] M. Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), no. 3, 357–

453.
[FS09] R. Fintushel and R. J. Stern, Six lectures on four 4-manifolds, Low dimensional topology, 2009, pp. 265–

315.

[FS81] R. Fintushel and R. J. Stern, An exotic free involution on S4, Ann. Math. (2) 113 (1981), 357–365.
[FS84] R. Fintushel and R. J. Stern, Another construction of an exotic S3 ×

∼
S1 #S2 × S2, Four-manifold

theory (Durham, N.H., 1982), 1984, pp. 269–275.
[FS98a] R. Fintushel and R. J. Stern, Constructions of smooth 4-manifolds, Doc. Math. Extra Vol. (1998),

443–452.

[FS98b] R. Fintushel and R. J. Stern, Knots, links, and 4-manifolds, Invent. Math. 134 (1998), no. 2, 363–400.
[FT95] M. H. Freedman and P. Teichner, 4-manifold topology. I. Subexponential groups, Invent. Math. 122

(1995), no. 3, 509–529.
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