
Tunisian Journal of Mathematics
an international publication organized by the Tunisian Mathematical Society

msp

The Kervaire–Milnor invariant
in the stable classification of spin 4-manifolds

Daniel Kasprowski, Mark Powell and Peter Teichner

2025 vol. 7 no. 2



msp
TUNISIAN JOURNAL OF MATHEMATICS

Vol. 7 (2025), No. 2, pp. 417–436

DOI: 10.2140/tunis.2025.7.417

The Kervaire–Milnor invariant
in the stable classification of spin 4-manifolds

Daniel Kasprowski, Mark Powell and Peter Teichner

We consider the role of the Kervaire–Milnor invariant in the classification of closed, connected, spin
4-manifolds, typically denoted by M , up to stabilisation by connected sums with copies of S2

× S2. This
stable classification is detected by a spin bordism group over the classifying space Bπ of the fundamental
group. Part of the computation of this bordism group via an Atiyah–Hirzebruch spectral sequence is
determined by a collection of codimension-two Arf invariants. We show that these Arf invariants can be
computed by the Kervaire–Milnor invariant evaluated on certain elements of π2(M). In particular this
yields a new stable classification of spin 4-manifolds with 2-dimensional fundamental groups, namely
those for which Bπ admits a finite 2-dimensional CW-complex model.

1. Introduction

Two smooth, closed, connected, oriented 4-manifolds M and N are called stably diffeomorphic if there
exist integers m, n ∈ N0 such that

M #m (S2
× S2)∼= N #n (S2

× S2),

where ∼= denotes diffeomorphism. We require that the diffeomorphism respects orientations, and we will
always assume without comment that manifolds are smooth and connected. Note that we allow m ̸= n,
but n − m = (χ(M)−χ(N ))/2, so by only considering 4-manifolds with the same Euler characteristic
one can enforce m = n.

The problem of giving algebraic invariants that determine whether two 4-manifolds are stably diffeo-
morphic is the stable classification problem. For example, the isometry class of the equivariant intersection
form on the second homotopy group, up to stabilisation by hyperbolic forms, is such an invariant. Two
closed, simply connected 4-manifolds are stably diffeomorphic if and only if their intersection forms have
the same parity and equal signatures.

Given an immersed 2-sphere S in M with vanishing self-intersection number, the Kervaire–Milnor
invariant arises as a secondary obstruction to homotoping S to an embedding. Our aim in this article is to
explain its role in the stable classification problem for spin 4-manifolds. There is an additional condition,
namely that S is RP2-characteristic, under which the Kervaire–Milnor invariant τ(S)∈Z/2 is well defined,
depending only on the homotopy class [S] ∈ π2(M). We defer the precise definitions to Section 1.1.
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For every closed, oriented 4-manifold M with π = π1(M) and 2-connected map f : M → Bπ , the
radical Rad(λM)⊆ π2(M) of the intersection form λM , which by definition is the kernel of the adjoint
λad

M : π2(M)→ π2(M)∗, is isomorphic to H 2(π; Zπ). In more detail, the map PD ◦ f ∗
: H 2(π; Zπ)→

H2(M; Zπ)
∼=

−→ π2(M) is injective and has image ker λad
M ⊆ π2(M), by [5, Corollary 3.2]. Also, write

red2 : H 2(π; Zπ) → H 2(π; Z/2) for the map induced by modulo-two augmentation, which we also
denote by red2 : Zπ → Z/2. Define

Sq := (Sq2
◦ red2) : H 2(π; Zπ)→ H 4(π; Z/2).

Note that Sq2
: H 2(π; Z/2)→ H 4(π; Z/2) is the map x 7→ x ∪ x .

By restricting to the radical, [S] ∈ Rad(λM), we guarantee vanishing self-intersection number. For
spin M we will show that restricting further to PD( f ∗(ker Sq)) ⊆ Rad(λM) ensures that S is RP2-
characteristic, and thus that τ gives rise to a stable diffeomorphism invariant of spin 4-manifolds, as
follows. We will restrict to spin M for the remainder of the article.

Theorem 1.1. Let M be a closed, spin 4-manifold with a 2-connected map f : M → Bπ .

(i) For every element x ∈ ker Sq ⊆ H 2(π; Zπ), its image PD( f ∗(x))∈ π2(M) has trivial self-intersection
number and is RP2-characteristic, so the Kervaire–Milnor invariant

τ
(
PD( f ∗(x))

)
∈ Z/2

is well defined.

(ii) The induced map τM, f : ker Sq → Z/2 factors through Z/2 ⊗Zπ ker Sq.

(iii) If a closed, spin 4-manifold N is stably diffeomorphic to M , then π1(N ) ∼= π and there exists a
2-connected map g : N → Bπ such that τM, f = τN ,g : ker Sq → Z/2.

In Theorem 1.5 below, we explain how τM, f appears in the general stable classification programme, in
the case that f factors through a 2-dimensional complex. Theorem 1.5 requires some more background
in order to state, so for now we present its application in the case of geometrically 2-dimensional
fundamental groups. A group π is (geometrically) d-dimensional if d is the least integer for which
the classifying space Bπ admits a finite d-dimensional CW-complex model. If d < ∞ then each d-
dimensional group is torsion-free. For a 2-dimensional group π we have that H 4(π; Z/2) = 0, and
therefore ker Sq = H 2(π; Zπ).

Theorem 1.2. Let π be a 2-dimensional group, let M and N be closed, spin 4-manifolds, and let
f : M → Bπ be a 2-connected map.

(i) The map τM, f is a homomorphism, i.e., an element of HomZπ (H 2(π; Zπ),Z/2).

(ii) The 4-manifolds M and N are stably diffeomorphic if and only if

(a) the signatures of M and N are equal, and
(b) there exists a 2-connected map g : N → Bπ , so in particular π1(N )∼= π , such that the Kervaire–

Milnor invariants τM, f and τN ,g coincide in HomZπ (H 2(π; Zπ); Z/2).
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Hambleton, Kreck, and Teichner [5] previously classified 4-manifolds with 2-dimensional fundamental
groups, up to s-cobordism, in terms of the equivariant intersection form. They also assumed that the
assembly map H4(Bπ; L⟨1⟩)→ L4(Zπ) is injective, where L⟨1⟩ denotes the 1-connected cover of the
L-theory spectrum of the integers [14]. This in particular holds for a torsion-free group π whenever the
Farrell–Jones conjecture holds for π by [4, Lemma 3.3]. While Theorem 1.2 only concerns the stable
classification, it has the advantage that to apply it one only needs to compute a relatively small number of
Kervaire–Milnor invariants, compared with computing the entire intersection form.

By Theorem 1.2, the map τM, f is a homomorphism if π is 2-dimensional. In Theorem 1.5, we will
see that this is also the case whenever f factors through a 2-dimensional complex. But in general the
following question remains open.

Question 1.3. Is the map τM, f : ker Sq → Z/2 always a homomorphism?

Example 1.4. Let 6 be a closed, oriented surface with positive genus and suppose π = π1(M)∼= π1(6).
Then the radical of λM is isomorphic to H 2(π; Zπ)∼= H 2(6; Zπ)∼= H0(6; Zπ)∼= Z. In this case our
classification is particularly efficient since it requires the computation of just a single Kervaire–Milnor
invariant τ(S), where [S] generates Z/2 ⊗Z Rad(λM) ∼= Z/2. In particular, τM, f is independent of the
choice of f .

Among closed, smooth 4-manifolds with π1(M) ∼= π1(6) and signature zero, there are two stable
diffeomorphism classes. The class with trivial τM is represented by M = 6 × S2 where the radical
Rad(λM)= π2(M)∼= Z is generated by an embedded sphere {pt}× S2. The second stable diffeomorphism
class is represented by a 4-manifold M ′ constructed from 6×T 2 by performing surgery on framed circles
representing a dual pair of generators of π1(T 2)∼= Z2, where the framing of the circles is “twisted”. The
generator of Rad(λM ′)∼= Z cannot be represented by an embedding, even stably.

As mentioned above, Theorem 1.2 follows from our main technical theorem, Theorem 1.5, which we
will explain below. First we review the definition of the Kervaire–Milnor invariant and the reformulation
of the stable diffeomorphism question into bordism theory by Kreck [11, Theorem C].

1.1. Review of the Kervaire–Milnor invariant. The Kervaire–Milnor invariant appeared previously
in [2; 15; 17], following a closely related invariant defined in [1; 12]. A version of this invariant was
used by Freedman and Quinn to detect the Kirby–Siebenmann obstruction to smoothing the topological
tangent bundle of a simply connected topological 4-manifold with odd intersection form, in particular
detecting the difference between CP2 and its star partner ∗CP2. This is somewhat orthogonal to the
appearance of this invariant in the stable classification of spin 4-manifolds, since for spin topological
4-manifolds, it follows from Rochlin’s theorem that the Kirby–Siebenmann invariant is computed as the
signature divided by eight, and then modulo two.

Let M be a smooth, spin 4-manifold with fundamental group π and equivariant intersection form

λM : π2(M)×π2(M)→ Zπ, (x, y) 7→ ⟨PD−1(y), x⟩.
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To recall the definition of the Kervaire–Milnor invariant, suppose that x ∈ π2(M)∼= H2(M; Zπ) satisfies
λM(x, x)= 0. Then we can represent x by a generic immersion S : S2 ↬ M whose double points can
be paired up by generically immersed Whitney discs {Wi }; see, e.g., [13, Proposition 11.10], or [9]. By
boundary twisting and pushing down [2, Sections 1.3 and 2.5], the Whitney discs can be chosen to be
disjointly embedded, framed, and to intersect S transversely. Then the Kervaire–Milnor invariant of S is

τ(S; {Wi }) :=
∑

i
|W̊i ⋔ S| mod 2.

Suppose that x is RP2-characteristic, which for M spin means that for every map R : RP2
→ M ,

λ2(red2(x), [R])= 0,

where red2 : π2(M)∼= H2(M; Zπ)→ H2(M; Z/2) is again the map induced by the modulo-two augmen-
tation, λ2 : H2(M; Z/2)× H2(M; Z/2)→ Z/2 is the modulo-two intersection pairing, and [R] denotes
the image of the generator [RP2

] ∈ H2(RP2
; Z/2) under R∗. Then τ(S; {Wi }) is well defined [15] on the

homotopy class x ∈ π2(M), independent of the choices of S and the {Wi }, and so we write

τ(x) := τ(S; {Wi }) ∈ Z/2.

In Section 2 we will give more details on the Kervaire–Milnor invariant, as well as relating it with an
equivalent definition that is used in the proof of our theorems.

1.2. Review of the stable classification via spin bordism. Kreck [11, Theorem C] showed that two closed,
spin 4-manifolds with fundamental group π are stably diffeomorphic if and only if there are choices of
spin structures and identifications of the fundamental groups with π , giving rise to equal elements in the
bordism group �Spin

4 (Bπ). To understand this group of bordism classes of pairs (M, c), where M is a
closed 4-manifold with spin structure and c : M → Bπ classifies the universal cover, we consider the
Atiyah–Hirzebruch spectral sequence computing �Spin

4 (Bπ). Since we will use this spectral sequence for
spaces other than Bπ , we recall it in the necessary generality, for an arbitrary topological space X . It
takes the form

E2
p,q = Hp(X;�Spin

q ) ⇒ �
Spin
4 (X).

The Atiyah–Hirzebruch spectral sequence gives rise to a filtration whose iterated graded quotients are

Z ∼=�
Spin
4 ⊆}

E∞

2,2

F2,2 ⊆}

E∞

3,1

F3,1 ⊆}

E∞

4,0

�
Spin
4 (X).

The first isomorphism is determined by the signature divided by sixteen. The signature extends to the
entire group �Spin

4 (X) and so we reduce our study to �̃Spin
4 (X), the kernel of the signature map. The

spectral sequence then reduces to a shorter filtration

E∞

2,2 ⊆}

E∞

3,1

F ⊆}

E∞

4,0

�̃
Spin
4 (X),
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where the subgroup F consists of bordism classes represented by signature-zero 4-manifolds M with spin
structure such that c : M → X (3) lands in the 3-skeleton of X . Similarly, the smallest filtration term E∞

2,2

is represented by elements (M, c) with c : M → X (2).
Now we restrict to X = Bπ . Since the E2

p,q-term of the spectral sequence is Hp(π;�
Spin
q ), the

E∞
p,q -terms in this case are

E2,2 := E∞

2,2 = H2(π; Z/2)/im(d2, d3);

E3,1 := E∞

3,1 = H3(π; Z/2)/im(d2);

E4,0 := E∞

4,0 = ker(d2, d3)⊆ H4(π; Z).

Moreover, by [18, Theorem 3.1.3] the d2 differentials are given by the dual homomorphisms Sq2 :

Hi+2(π; Z/2) → Hi (π; Z/2) to the Steenrod squares Sq2
: H i (π; Z/2) → H i+2(π; Z/2), in the case

i = 3 precomposed with the homomorphism induced by reduction modulo two, red2 : Hi+2(π; Z)→

Hi+2(π; Z/2). Following [18], we obtain the primary invariant pri(M)= c∗[M] ∈ E4,0, the secondary
invariant sec(M) ∈ E3,1 and the tertiary invariant ter(M) ∈ E2,2.

1.3. Relating the tertiary and Kervaire–Milnor invariants. We studied the primary invariant in [8],
and we studied the secondary and tertiary invariants in [7], building on [6]. In [7; 8], we gave criteria
which can decide whether (M, c) ∈ E2,2 ⊆ �̃

Spin
4 (Bπ), that is, whether (M, c) is bordant to (M ′, c′)

such that c′
: M ′

→ Bπ factors through the 2-skeleton Bπ (2) ⊆ Bπ . Our main theorem, stated next,
says that assuming there is such a bordism, one can compute the tertiary invariant ter(M ′) using the
Kervaire–Milnor invariant.

One can compute ter(M ′) via a collection of codimension-two Arf invariants. The difficulty with this
in practice is that one need to first find a homotopy of our 2-connected map to the 2-skeleton of Bπ , take
precise inverse images of regular points, and compute with spin structures. Since the Kervaire–Milnor
invariant is well defined on homotopy classes, and does not depend on the choice of spin structure, it
represents a computational improvement.

Theorem 1.5. Let M be a closed, smooth, spin 4-manifold with fundamental group π . Suppose that there
is a map f : M → K to a 2-complex K that is an isomorphism on fundamental groups. Let i : K → Bπ
be a 2-connected map.

(i) For each ϕ ∈ ker(Sq2
: H 2(π; Z/2) → H 4(π; Z/2)), there exists a lift ϕ̂ ∈ H 2(K ; Zπ) of i∗(ϕ) ∈

H 2(K ; Z/2).

(ii) The element PD( f ∗(ϕ̂))∈ H2(M; Zπ)∼=π2(M) is RP2-characteristic and has trivial self-intersection
number, so that the Kervaire–Milnor invariant τ

(
PD( f ∗(ϕ̂))

)
∈ Z/2 is well defined.

(iii) The map

τ̂M, f : ker Sq2
→ Z/2, ϕ 7→ τM, f (ϕ̂)= τ

(
PD( f ∗(ϕ̂))

)
,

is well defined (i.e., is independent of the choice of ϕ̂) and is a homomorphism.



422 DANIEL KASPROWSKI, MARK POWELL AND PETER TEICHNER

(iv) Under the map

Hom(ker Sq2,Z/2) ∼=
−→ H2(π; Z/2)/im Sq2 → H2(π; Z/2)/im(d2, d3),

where the first isomorphism is the inverse of the evaluation map, τ̂M, f is sent to ter(M). Here d2 = Sq2 :

H4(π; Z/2)→ H2(π; Z/2) and d3 : H5(π; Z)→ H2(π; Z/2)/im(d2) are the differentials in the Atiyah–
Hirzebruch spectral sequence as in Section 1.2. In particular, the image of τ̂M, f under the displayed map
is independent of the choices of f and K .

Proof of Theorem 1.2 assuming Theorem 1.5. For π a 2-dimensional group, take K = Bπ and f : M → Bπ
as in Theorem 1.2. Since H 4(π; Z/2) = 0, we have that Sq2

= 0, and thus τ̂M, f is a homomorphism
H 2(π; Z/2) → Z/2 by Theorem 1.5(iii). For x ∈ H 2(π; Zπ), we have τM, f (x) = τ̂M, f ([x]), where
[x] ∈ H 2(π; Z/2) is the image of x under modulo-two augmentation. Hence τM, f : H 2(π; Zπ)→ Z/2
is a composition of two homomorphisms, so is a homomorphism. This shows Theorem 1.2(i).

Since E3,1 = E4,0 = 0, M and N are stably diffeomorphic if and only if their signatures are equal
and ter(M)= ter(N ) ∈ H2(π; Z/2) by [11, Theorem C]. Again Bπ is 2-dimensional, d2 = Sq2 = 0 and
d3 = 0, and hence the displayed map in Theorem 1.5(iv) is an isomorphism Hom(H 2(π; Z/2),Z/2)→

H2(π; Z/2) that sends τ̂M, f to ter(M), and similarly for N . Thus ter(M) = ter(N ) if and only if
τ̂M, f = τ̂N ,g. Since by definition, τ̂M, f ([x])= τM, f (x) and H 2(π; Zπ)→ H 2(π; Z/2) is surjective, it
follows that τM, f = τN ,g if and only if τ̂M, f = τ̂N ,g. This completes the proof of Theorem 1.2. □

Organisation of the paper. In Section 2 we provide more details on the Kervaire–Milnor invariant
of immersed spheres, and give an alternative equivalent description in terms of π1-trivial immersed
surfaces. In Section 3 we explain how the Arf invariant arises in the Atiyah–Hirzebruch spectral sequence
computation of spin bordism. In Section 4 we show Theorem 1.5 by comparing the Kervaire–Milnor
invariant with the Arf invariant.

2. The Kervaire–Milnor invariant

Let M be a smooth, closed, oriented, spin 4-manifold. In this section, a surface in M is an abstract
surface 6 together with a generic immersion F : 6 → M , meaning the map is an immersion, and all
intersections and self-intersections are transverse double points. In particular there are no triple points.
Moreover the boundary of 6, if nonempty, is assumed to be embedded in M . We will typically denote
the data (6, F) just by F for brevity.

Let S be a generically immersed sphere in M with λM([S], [S])= 0. Generalising work of Freedman
and Kirby [1, p. 93], Guillou and Marin [3], Matsumoto [12], and Freedman and Quinn [2, Definition 10.8],
Schneiderman and Teichner [15] defined an invariant τ̃ (S) with values in a quotient of Z[π ×π ]. Which
quotients of Z[π ×π ] one can take in order to get an invariant of the homotopy class of 6 depends on
the intersection numbers of 6 with other immersed surfaces in M .

Assuming that S is RP2-characteristic, the image of τ̃ (S) under the augmentation and reduction
modulo-two map Z[π ×π ] → Z/2 is a well-defined invariant of the homotopy class of 6. Following
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the nomenclature of Freedman and Quinn, we call this image the Kervaire–Milnor invariant τ(S) ∈ Z/2
of [S] ∈ π2(M).

We will define τ(S) carefully in Section 2.1. Then in Section 2.2 we will extend the definition to
π1-trivial generically immersed closed, oriented surfaces in M .

2.1. The τ invariant for generically immersed spheres. As before, let M be a smooth, closed, oriented,
spin 4-manifold, and fix an identification π1(M)∼= π .

Definition 2.1 (self-intersection number [2, Section 1.7; 19, Chapter 5]). Let x ∈ π2(M). Since M is spin,
we can represent x by a generically immersed sphere S′

: S2
→ M whose normal bundle has even Euler

number. Add cusp homotopies (see, for example, [10, Chapter XII, p. 72] for the local model) in a small
open set to make the Euler number of the normal bundle zero, and call the resulting sphere S. It can be
checked in the local model that a cusp homotopy changes the Euler number of the normal bundle by ±2.

Now count the self intersections of S with sign and group elements. The attribution of signs uses the
orientation of M . The group element is the image in π1(M) of a double point loop associated to the
self-intersection point, with some choice of orientation of the double point loop. This count gives rise to
an element

µ(x) ∈ Zπ/{g ∼ g−1
| g ∈ π}.

This self-intersection number is valued in a quotient abelian group of the Zπ -module Zπ . The indetermi-
nacy arises because there is no canonical way to decide whether to associate g or g−1 to a given double
point of 6. The number µ(x) is an invariant of the homotopy class of x .

Remark 2.2. The normalisation of µ(x) at 1 ∈π , obtained by choosing the regular homotopy class whose
normal bundle has trivial Euler number, implies that λM(x, x)=µ(x)+µ(x)∈ Zπ , where (−) : Zπ→ Zπ

is determined by g 7→ g−1 and in order to see that the right-hand side is well defined in Zπ we use that
γ 7→ γ + γ factors through Zπ/{g ∼ g−1

}. This normalisation works if the Euler number e(νS) is even
for every S, or equivalently if w2(M̃)= 0, i.e., the universal cover of M is spin.

On the other hand, using cusp homotopies it is always possible to change S so that the self-intersection
number of S at 1 is trivial, even if the universal cover of M is not spin. This gives an element µ′(x) ∈

Zπ/{g ∼ g−1
} which again only depends on the homotopy class of x . Using this convention, µ′(x) is an

obstruction to representing x by an embedded sphere. In the setting of this paper, our 4-manifolds are spin
and we usually assume that λM(x, x)= 0. In that case, the two conventions agree and µ(x)= µ′(x)= 0.

The following lemma is rather useful, since it tells us that it is enough to consider the equivariant
intersection pairing in order to find spheres with vanishing self-intersection number.

Lemma 2.3. For a closed, oriented, spin 4-manifold M , if λM(x, x)= 0 for x ∈ π2(M), then µ(x)= 0.

Proof. Using a representative as in Definition 2.1, we can assume that 0 = λM(x, x) = µ(x)+µ(x).
Suppose that

∑
g ngg ∈ Zπ is a lift of µ(x). Then µ(x)+µ(x)= 0 implies that ng + ng−1 = 0 for every

g ∈ π . If g = g−1 then we immediately see ng = 0. For the remaining group elements, in the value group
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of µ we have g ∼ g−1, so ngg + ng−1 g−1
= (ng + ng−1)g = 0 · g = 0. Sum over a set of representatives

for the subsets {g, g−1
} with g ̸= g−1, to obtain µ(x)= 0. □

Definition 2.4. Recall that M is assumed to be spin. Let λ2 : H2(M; Z/2)× H2(M; Z/2)→ Z/2 be the
Z/2-valued intersection pairing.

(1) An element α ∈ π2(M) is called S2-characteristic if red2(λM(α, β))= 0 ∈ Z/2 for all β ∈ π2(M).
Let SC ⊆ π2(M) denote the subset of S2-characteristic elements α with µ(α)= 0.

(2) An element α ∈ π2(M) is called RP2-characteristic if λ2(red2(α), [R]) = 0 ∈ Z/2 for every map
R : RP2

→ M . Let RC ⊆ π2(M) denote the subset of RP2-characteristic elements α with µ(α)= 0.

Lemma 2.5. An RP2-characteristic sphere α ∈ π2(M) is S2-characteristic. Moreover if π1(M) has no
elements of order two, then α is S2-characteristic if and only if it is RP2-characteristic.

Proof. A generic immersion f : S2 ↬ M determines a map RP2
→ RP2/RP1

= S2 f
−→ M , which can

be perturbed to a generic immersion of RP2 into M with the same intersection behaviour with α as the
original S2. Thus RP2-characteristic implies S2-characteristic.

On the other hand, if no element of π1(M) has order 2, then for every generic immersion R of RP2,
the induced map π1(RP2)→ π1(M) is the zero map. Therefore R is homotopic to a map that factors as
RP2

→ RP2/RP1
= S2 f

−→ M , and intersections with f (S2) agree with intersections with R. It follows
that S2-characteristic implies RP2-characteristic. □

Let S : S2 ↬ M be a generically immersed 2-sphere with vanishing self-intersection number µ(S)= 0.
Then the self-intersection points of S can be paired up so that each pair consists of two points having
oppositely signed but equal group elements associated to their double point loops. Therefore, one can
choose a Whitney disc Wi for each pair of self-intersections, and arrange that all the boundary arcs are
disjoint. The normal bundle to the disc Wi has a unique framing, and the Whitney framing of the normal
bundle of Wi restricted to ∂Wi differs from the restriction of the disc framing by an integer ni ∈ Z. (The
Whitney framing is determined by a section of the normal bundle νWi |∂Wi that lies in DS(T S2)∩ νWi

along one boundary arc of ∂Wi and lies in νS2 ∩ νWi along the other boundary arc.)

Definition 2.6. If S is RP2-characteristic, then

τ(S) :=
∑

i
|W̊i ⋔ S| + ni mod 2.

Lemma 2.7. The expression τ(S) is independent of the choice of pairings of double points, sheet choices
and Whitney arcs, and Whitney discs. Moreover, τ(S) only depends on the regular homotopy class of the
generic immersion.

Proof. The lemma essentially follows from [15, Theorem 1]. A key observation here is due to Stong [17].
We make a couple of remarks on how to translate the version in [15] to the current version. First note that
in the formulation of [15], as mentioned above the intersections were decorated with a pair of fundamental
group elements, to give an invariant in a quotient of Z[π ×π ] by certain relations. Since we consider the
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augmentation followed by the reduction modulo two, all but the last relation given in [15, Theorem 1]
are vacuous. In addition their last relation is irrelevant because we consider RP2-characteristic elements.
Secondly, the formulation of Schneiderman–Teichner requires that Whitney discs be framed, whereas we
do not, and include the framing coefficient as part of the definition. However by boundary twisting [2,
Section 1.3], one can alter ni to be zero at the cost of introducing |ni | intersection points in W̊i ⋔ S, and
so the two ways of computing τ(S) agree. □

For every element of π2(M), we fix a regular homotopy class within the homotopy class by the
requirement that the Euler number of the normal bundle be zero. That fixing the Euler number determines
a regular homotopy class of immersions is a consequence of Smale–Hirsch immersion theory; for details
specific to surfaces in 4-manifolds, see, for example, [9, Theorem 2.32(3)]. Thus τ becomes well defined
on RC ⊆ π2(M). So we have defined a map

τ : RC → Z/2.

Remark 2.8. If S is not S2-characteristic then τ(S) is not well defined, since adding a sphere that
intersects S in an odd number of points to one of the Whitney discs would change the sum in the definition
of τ by one.

If S is S2-characteristic but not RP2-characteristic, then τ(S) is also not well defined, as observed by
Stong [17]. In this case, a change in choice of Whitney arcs can also change τ(S).

2.2. The τ invariant for π1-trivial generically immersed surfaces. In this subsection we introduce the
following extension of the τ invariant, which is defined on RP2-characteristic, π1-trivial, generically
immersed surfaces instead of on RP2-characteristic generically immersed spheres. We will not need the
full version of this invariant, only the embedded version. But we anticipate that the full version might be
useful in the future, so we include it here, as it requires little extra work.

As before let M be a smooth, closed, oriented, spin 4-manifold together with an identification
π1(M)∼= π . We call a generically immersed, closed, oriented surface F : 6↬ M a π1-trivial surface
if F∗ : π1(6)→ π1(M) is the trivial map.

Definition 2.9. A π1-trivial generically immersed surface F :6↬ M is said to be RP2-characteristic
if it intersects every generically immersed RP2 in general position in an even number of points, that is,
if the element of π2(M) determined by F via the Hurewicz isomorphism H2(M; Zπ) ∼= π2(M) is
RP2-characteristic.

A π1-trivial RP2-characteristic generically immersed surface F has a self-intersection number µ(F) ∈
Zπ/{g ∼ g−1

| g ∈ π} defined as follows. Change F by cusp homotopies such that its normal bundle is
trivial; this is possible since F is S2-characteristic by Lemma 2.5. Now count self-intersection points
of the generically immersed surface with group elements and sign. We use π1-triviality to see that the
associated group elements do not depend on the choice of double point loop on F used to compute it.

Let F :6↬ M be a generically immersed π1-trivial surface with µ(F)= 0, and let α be an embedded
circle in 6 such that the restriction of F to α is an embedding. The circle F(α) bounds a disc C in M ,
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since F is π1-trivial. The normal direction of α in 6, pushed forward into M , gives a section of the
normal bundle of C at the boundary F(α). Therefore, the relative Euler number e(C) of the normal
bundle of C is a well-defined integer. We define

ϖ(α) := |C̊ ⋔ F | + e(C) mod 2,

where |C̊ ⋔ F | is the number of transverse intersections between the interior of C and F(6).

Lemma 2.10. If F is S2-characteristic, then the count ϖ(α) does not depend on the choice of C.

Proof. Let C and C ′ be two choices of discs with boundary F(α), and let ϖC(α) and ϖC ′(α) temporarily
denote the count made using C and C ′, respectively. Perform boundary twists [2, Section 1.3] in order
to arrange that C and C ′ are framed with respect to their boundaries, i.e., e(C)= e(C ′)= 0. Boundary
twists do not change the counts ϖC(α) and ϖC ′(α), since a boundary twist changes the relative Euler
number of the disc by one and produces a single new intersection between the disc being twisted and F .
Now rotate C ′ near F(α) so that the union of C and C ′ is a generically immersed 2-sphere. Since F is
S2-characteristic, we have

0 = λ2([F], [C ∪α C ′
])=ϖC(α)+ϖC ′(α) ∈ Z/2

as desired. □

Consider a hyperbolic basis of H1(6; Z) represented by embedded circles a1, . . . , an, b1, . . . , bn that
are disjoint from each other except that ai intersects bi transversely in a single point. Suppose that the
restriction of F to each of the ai and the b j is an embedding.

Since µ(F) = 0, all double points of F can be paired up by generically immersed Whitney discs
W1, . . . ,Wm ↪→ M whose boundary arcs on F(6) are disjoint from each other, the F(ai ), and the F(bi ).
Let n j again denote the framing coefficient of the Whitney discs discussed in Section 2.1. Then define

τ(F) :=

n∑
i=1
ϖ(ai )ϖ(bi )+

m∑
j=1

|W̊ j ⋔ F | + n j mod 2.

Remark 2.11. In the case that 6 has genus zero, this reduces to the τ invariant of the previous subsection
since the first sum vanishes. Also note that in the case of an embedded surface, only the first summand
appears, and again the definition simplifies. The restriction to the case that F is an embedding is similar
to the version of τ from [1]. In this case it is the Arf invariant of the quadratic form given by ϖ .

Next we will show that τ(F) is independent of the choice of basis {ai , bi }, as well as the choice of
Whitney discs W j .

Lemma 2.12. If F is RP2-characteristic, then the expression τ(F) ∈ Z/2 is independent of the choices of
ai , bi , C and W j made in its definition. Moreover, τ(F) only depends on the regular homotopy class of
the generic immersion.

Proof. We already showed in Lemma 2.10 that τ(F) is independent of the choices of the discs C .
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C

C ′

Figure 1. A schematic of a genus-one surface F in M with a cap C ′ attached to the longitude,
two parallel copies of a cap C attached to the meridian, each of which intersect F in a single
point. A band is shown that, together with the cap C ′, forms a Whitney disc pairing the two
self-intersection points of the sphere obtained from surgery on F using C .

Choose a path in M from each component of F(6) to the base point of M . Since these paths are
1-dimensional we can choose them so that the interiors of the paths do not intersect F . Since F is π1-trivial,
it lifts to a generically immersed surface in M̃ , and hence defines an element of H2(M̃; Z)∼= π2(M). The
strategy is to relate τ(F) to τ(S) for S ∈ π2(M), and use that τ(S) is well defined by [15].

Choose generic null-homotopies Ci : D2
→ M for F(ai ) and C ′

i : D2
→ M for F(bi ). As in the proof

of Lemma 2.10, perform boundary twists to arrange e(Ci )= e(C ′

i )= 0. Again, this does not changeϖ(α).
We can turn F into a generically immersed 2-sphere S by performing surgeries along all the F(ai ), and
gluing in two parallel copies of each of the Ci in place of a neighbourhood νF(ai ) of F(ai ). We make
the following observations.

(i) Each intersection C̊i ⋔ F yields a pair of cancelling self-intersections of S paired by a Whitney disc
constructed from (a parallel copy of) C ′

i union a band. A schematic is shown in Figure 1.

(ii) Each self-intersection of Ci yields two pairs of cancelling self-intersections of S, each with generically
immersed Whitney disc constructed from (a parallel copy) of C ′

i union a band. A schematic is shown
in Figure 2.

The boundary arcs of the new Whitney discs are disjoint from the boundary arcs of the old Whitney
discs. Thus modulo two we see that

τ(S)=

n∑
i=1
(|C̊i ⋔ F | · |C̊ ′

i ⋔ F | + 2|C̊i ⋔ C̊i | · |C̊ ′

i ⋔ F |)+
m∑

j=1
|W̊ j ⋔ F | + n j

=

n∑
i=1
ϖ(ai )ϖ(bi )+

m∑
j=1

|W̊ j ⋔ F | + n j = τ(F).

The first summand of the first summand corresponds to (i) and the second summand corresponds to (ii).
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C

C ′

Figure 2. A schematic of a genus-one surface F with a cap C ′ attached to the longitude and two
parallel copies of a cap C attached to the meridian. The cap C has a single self-intersection points,
which gives rise to four self-intersection points of the sphere resulting from surgery on F using C .
For one pair of these four points, a band is shown, that together with the cap C ′, forms a Whitney
disc pairing these two self-intersection points.

Note that S and F determine the same element of π2(M), with the right choice of basing paths, since S
and F determine the same element of H2(M̃; Z), which in turn holds because [S]−[F] (viewed as singular
chains instead of homology classes) bounds the trace of the surgery along the F(ai ). Thus S is RP2-
characteristic. We know that τ(S) only depends on the homotopy class of S by [15]. But the homotopy
class of S is determined by the regular homotopy class of the generic immersion F and does not depend
on the choices of ai , bi ,Ci ,C ′

i ,W j . Hence the fact that τ(S) is well defined implies that τ(F) is too. □

3. The Arf invariant in the stable classification

We will prove Theorem 1.5 by comparing the Kervaire–Milnor invariant to a codimension-two Arf
invariant that arises in the Atiyah–Hirzebruch spectral sequence for �Spin

4 (Bπ). Let us explain how this
Arf invariant appears.

Let M be a closed, smooth, oriented, spin 4-manifold, where the spin structure will be fixed from
now on. Let K be a 2-complex with fundamental group π and let i : K → Bπ be the 2-connected map.
Let f : M → K be a map that is an isomorphism on fundamental groups.

Denote the barycentres of the 2-cells {e2
i }i∈I of K by {b2

i }i∈I . Denote the regular preimage of the
barycentre b2

i ∈ K by N f
i ⊆ M . We can consider [N f

i ] ∈�
Spin
2 since the normal bundle of N f

i in M is
trivialised as a pullback of the normal bundle of b2

i in e2
i , and hence N f

i inherits a spin structure from M .
The next lemma is well known; see [6, Lemma 2.5] for a proof.

Lemma 3.1. The homomorphism �
Spin
4 (K ) → H2(K ;�

Spin
2 ) from the Atiyah–Hirzebruch spectral se-

quence coincides with composition of the map

�
Spin
4 (K )→ H cell

2 (K ;�
Spin
2 ), [ f : M → K ] 7→

[ ∑
i∈I

[N f
i ] · e2

i

]
,
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and the canonical isomorphism H cell
2 (K ;�

Spin
2 )∼= H2(K ;�

Spin
2 ). Moreover this maps to ter(M) under

H2(K ;�
Spin
2 )∼= H2(K ; Z/2)→ H2(π; Z/2)→ H2(π; Z/2)/im(d2, d3).

Remark 3.2. The homomorphism in the statement of the lemma �Spin
4 (K )→ H2(K ;�

Spin
2 ) arises as

follows. The abutment of the Atiyah–Hirzebruch spectral sequence �Spin
4 (K )= F4,0 maps to its quotient

by the first filtration step F0,4 = F1,3 that differs from F4,0. This term is indeed F1,3, since the homology
of K vanishes in degrees greater than 2, thus E2

p,q = E∞
p,q = 0 for all p > 2. Moreover, because K is a

2-complex no differentials have image in Ek
2,2, for any k, so E∞

2,2 ⊆ E2
2,2. The composition

�
Spin
4 (K )= F4,0 → F4,0/F1,3

∼=
−→ E∞

2,2 → E2
2,2 = H2(K ;�

Spin
2 )

gives the desired map.

We will need a slight variation of Lemma 3.1. For ϕ ∈ H 2(K ; Z/2), represent ϕ by a map K → S2
⊆

K (Z/2, 2) and let F f
ϕ ⊆ M be a regular preimage of a point s ∈ S2 under ϕ ◦ f : M → S2. As before, a

framing of the normal bundle of s in S2 induces a framing of the normal bundle of F f
ϕ in M , and since M

is spin, we obtain a spin structure on F f
ϕ . Thus we can again consider [F f

ϕ ] in �Spin
2 .

Lemma 3.3. The composition

�
Spin
4 (K )→ H2(K ; Z/2) x 7→⟨−,x⟩

−−−−−→ HomZ/2(H 2(K ; Z/2),Z/2)

maps [ f : M → K ] to (ϕ 7→ [F f
ϕ ] ∈�

Spin
2

∼= Z/2).

Proof. By a homotopy of f we can assume that the b2
i are regular points. The first map sends

�
Spin
4 (K )→ H2(K ; Z/2), [ f : M → K ] 7→

∑
i∈I

[N f
i ] · e2

i ,

with N f
i := f −1(b2

i ) as in Lemma 3.1. Let p ∈ S2 be a basepoint and let s ∈ S2 be antipodal to p. As
above, given ϕ ∈ H 2(K ; Z/2), we represent ϕ by a map K → S2

⊆ K (Z/2, 2). We can choose the
representative ϕ : K → S2 so that for each 2-cell e2

i of K , either

(i) ϕ|ē2
i

sends the whole closed 2-cell to p, or

(ii) ϕ|ē2
i

factors as the quotient map followed by a homeomorphism ē2
i → ē2

i /∂ ē2
i
∼= S2, with ϕ(∂ ē2

i )= p,
ϕ(b2

i )= s, and such that b2
i ∈ e2

i is a regular preimage of s ∈ S2.

Let E(ϕ) ⊆ I be the subset of indices corresponding to the cells for which the latter option (ii) holds.
Then

⊔
i∈E(ϕ) b2

i is a regular preimage of s ∈ S2 under ϕ.
Let F f

ϕ := (ϕ ◦ f )−1({s}), as above. As usual, [F f
ϕ ] does not depend on the choice of a representative

for ϕ since different choices give spin bordant surfaces. Hence F f
ϕ =

⊔
i∈E(ϕ) N f

i . Then(
ϕ 7→ [F f

ϕ ] =
∑

i∈E(ϕ)
[N f

i ] ∈�
Spin
2

∼= Z/2
)

∈ HomZ/2(H 2(K ; Z/2),Z/2)

is the image of
∑

i∈I [N f
i ] · e2

i under the evaluation map H2(K ; Z/2)−→ HomZ/2(H 2(K ; Z/2),Z/2). □
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For our comparison of the Kervaire–Milnor invariant with the codimension-two Arf invariant, we
need to recall the definition of the Arf invariant Arf : �

Spin
2

∼=
−→ Z/2. Let 6 be spin surface. One

defines a quadratic refinement of the Z/2 intersection form of 6, ϒ : H1(6; Z/2) → Z/2 as follows.
Represent [α] ∈ H1(6; Z/2) by a simple closed curve α in 6. Since the normal bundle ν6α of α in 6 is
1-dimensional, the normal bundle ν6α has a canonical framing, where the choice of the direction comes
from the orientations. Therefore, together with the spin structure on 6, this determines a spin structure
on α, so we may consider it as an element of �Spin

1 . We define ϒ([α]) = 0 if and only if α is spin
null-bordant. Then Arf(6) is defined to be the Arf invariant of the quadratic form (H1(6; Z/2), λ6, ϒ).

4. Proof of Theorems 1.1 and 1.5

First let us recall the setup of Theorem 1.5. Let M be a closed, smooth, oriented, spin 4-manifold with
fundamental group π , and suppose that there is a map f : M → K to a finite 2-complex K that is an
isomorphism on fundamental groups. Let i : K → Bπ be a 2-connected map.

We start by proving Theorem 1.5(i); it follows immediately from the next lemma.

Lemma 4.1. The map red2 : H 2(K ; Zπ)→ H 2(K ; Z/2) is surjective.

Proof. This follows from Bockstein sequence associated with 0 → ker(red2)→ Zπ
red2−−→ Z/2 → 0, using

that H 3(K ; ker(red2))= 0 since K is 2-dimensional. □

We move on to the proof of Theorem 1.5(ii). It states: the element PD( f ∗(ϕ̂)) ∈ H2(M; Zπ)∼= π2(M)
is RP2-characteristic and has trivial self-intersection number, so that the Kervaire–Milnor invariant
τ
(
PD( f ∗(ϕ̂))

)
∈ Z/2 is well defined.

Let M (3) be the 3-skeleton of M for some chosen handle decomposition. The following lemma is more
general than needed in the paper, since it starts with g : M (3)

→ K only defined on the 3-skeleton, but we
give the generalisation here since we appeal to it in [7].

Lemma 4.2. Let g : M (3)
→ K be a map that is an isomorphism on fundamental groups. Let j : M (3)

→ M
be the inclusion of the 3-skeleton. For every ϕ ∈ ker Sq2

⊆ H 2(π; Z/2) and every lift ϕ̂ ∈ H 2(K ; Zπ)

of i∗ϕ ∈ H 2(K ; Z/2), the element

(PD ◦ ( j∗)−1
◦ g∗)(ϕ̂) ∈ H2(M; Zπ)∼= π2(M)

is RP2-characteristic.

In Lemma 4.2 we used the following sequence of maps:

ϕ̂ ∈ H 2(K ; Zπ)
g∗

−→ H 2(M (3)
; Zπ)

( j∗)−1
−−−→ H 2(M; Zπ)

PD
−−→ H2(M; Zπ)∼= π2(M).

Proof. Fix a map β : RP2
→ M . Let c : M → Bπ be a 2-connected map such that

i∗ ◦ g∗ = c∗ ◦ j∗ : π1(M (3))→ π1(Bπ)= π,
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from which it follows that i ◦ g and c ◦ j are homotopic. Consider the following equalities:

λ2
(
red2

(
PD(( j∗)−1g∗(ϕ̂))

)
, β∗[RP2

]
)
= λ2

(
β∗[RP2

], red2
(
PD(( j∗)−1g∗(ϕ̂))

))
=

〈
red2(( j∗)−1g∗(ϕ̂)), β∗[RP2

]
〉
= ⟨( j∗)−1g∗red2(ϕ̂), β∗[RP2

]⟩

= ⟨( j∗)−1g∗i∗(ϕ), β∗[RP2
]⟩ = ⟨( j∗)−1 j∗c∗(ϕ), β∗[RP2

]⟩

= ⟨c∗(ϕ), β∗[RP2
]⟩ = ⟨β∗c∗(ϕ), [RP2

]⟩.

The first equality uses symmetry of λ2. The second equality is the algebraic definition of the intersection
form. The third equality uses the naturality of the reduction modulo two. The fourth equality uses that, by
definition of ϕ̂, red2(ϕ̂)= i∗ϕ. The fifth equality uses that i ◦ g and c ◦ j are homotopic. The last equality
uses the naturality of the evaluation.

To see that PD(( j∗)−1g∗ϕ̂) ∈ π2(M) is RP2-characteristic we therefore need to prove the equality
⟨β∗c∗(ϕ), [RP2

]⟩ = 0. Using obstruction theory and the fact that Bπ is aspherical, the map c ◦ β :

RP2
→ Bπ extends to a map β ′

: RP∞
→ Bπ . Now assume for a contradiction that ⟨β∗c∗(ϕ), [RP2

]⟩

is nontrivial. Then β∗c∗(ϕ) ∈ H 2(RP2
; Z/2) is nontrivial, and hence also (β ′)∗(ϕ) ∈ H 2(RP∞

; Z/2) is
nontrivial. In this case, also Sq2((β ′)∗(ϕ))= (β ′)∗Sq2(ϕ) ∈ H 4(RP∞

; Z/2) has to be nontrivial. But we
assumed that ϕ lies in the kernel of Sq2. Hence ⟨β∗c∗(ϕ), [RP2

]⟩ has to be trivial, as desired. □

As explained in Section 2.1, the Kervaire–Milnor invariant is well defined on RP2-characteristic spheres
with vanishing self-intersection number, so Theorem 1.5(ii) follows from the next two lemmas.

Lemma 4.3. The element PD( f ∗(ϕ̂)) ∈ H2(M; Zπ)= π2(M) is RP2-characteristic.

Proof. This follows directly from Lemma 4.2 applied to the composition f ◦ j : M (3)
→ K , where as in

that lemma j : M (3)
→ M is the inclusion of the 3-skeleton. □

Lemma 4.4. For every x, y ∈ H 2(K ; Zπ), we have that λM
(
PD( f ∗(x)),PD( f ∗(y))

)
= 0. In particular,

the self-intersection number vanishes: µ
(
PD( f ∗(x))

)
= 0.

Proof. Since K is 2-dimensional we have f∗([M])= 0, and thus

λ
(
PD( f ∗(x)),PD( f ∗(y))

)
=

〈
f ∗(y),PD( f ∗(x))

〉
=

〈
y, f∗( f ∗(x)∩ [M])

〉
=

〈
y, x ∩ f∗([M])

〉
= ⟨y, 0⟩ = 0.

The last sentence in the statement, that µ
(
PD( f ∗(x))

)
= 0, now follows from Lemma 2.3. □

This completes the proof of Theorem 1.5(ii). The methods used in its proof also allow us to prove
Theorem 1.1. Recall that we have to show:

(i) For every element x ∈ ker Sq, PD( f ∗(x)) ∈ π2(M) has trivial self-intersection number and is
RP2-characteristic.

(ii) The induced map τM, f : ker Sq → Z/2 factors through Z/2 ⊗Zπ ker Sq.

(iii) τM, f , up to the action of Aut(π) on the choice of f , is a stable diffeomorphism invariant.
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Proof of Theorem 1.1. By Lemma 4.4 every element in the radical Rad(λM) has trivial self-intersection
number. We will now show that every element in PD( f ∗(ker Sq)) is also RP2-characteristic. Let
x ∈ ker Sq ⊆ H 2(π; Zπ) and fix a map β : RP2

→ M . As in the proof of Lemma 4.2,

λ2
(
red2

(
PD( f ∗(x))

)
, β∗[RP2

]
)
=

〈
red2( f ∗(x)), β∗[RP2

]
〉
=

〈
red2(β

∗ f ∗(x)), [RP2
]
〉
.

Let β ′
: RP∞

→ Bπ be an extension of f ◦β. We continue to follow the pattern of the proof of Lemma 4.2.
Assume for a contradiction that

〈
red2(β

∗ f ∗(x)), [RP2
]
〉

is nontrivial. Then red2(β
∗ f ∗(x)) ̸= 0 ∈

H 2(RP2
; Z/2), so red2 ◦ (β ′)∗(x) is nontrivial in H 2(RP∞

; Z/2). Therefore

(β ′)∗(Sq(x))= (β ′)∗(Sq2
◦ red2(x))= Sq2

◦ red2((β
′)∗(x)) ∈ H 4(RP∞

; Z/2)

is also nontrivial. This contradicts that x ∈ ker Sq. We deduce that ⟨red2(β
∗ f ∗x), [RP2

]⟩ vanishes, so
that PD( f ∗(x)) is RP2-characteristic as desired, proving (i).

Since stabilisation does not change the value of τ , it follows that τM, f is a stable diffeomorphism
invariant, up to the choice of f , as asserted in (iii).

It remains to show (ii), that τM, f factors through Z/2⊗Zπ ker Sq. Assume [x] = [y] ∈ Z/2⊗Zπ ker Sq.
Then there are zi ∈ ker Sq and κi ∈ ker(red2 : Zπ → Z/2) such that x = y +

∑n
i=1 κi zi . As µ(y) =

µ(zi )= λ(y, zi )= 0, it follows from [6, Lemma 8.3] that τ(y)= τ
(
y +

∑n
i=1 κi zi

)
= τ(x). □

Now we continue with the proof of Theorem 1.5. We have proven Theorem 1.5(ii), and so we may
define τ

(
PD( f ∗(ϕ̂))

)
∈ Z/2. We will prove Theorem 1.5(iii) and (iv) by comparing the Kervaire–Milnor

invariant to the Arf invariant.
Recall that we have to show the following:

(iii) The map τ̂M, f : ker Sq2
→ Z/2, ϕ 7→ τ

(
PD( f ∗(ϕ̂))

)
, is a well-defined homomorphism.

(iv) Under the map Hom(ker Sq2,Z/2) ∼=
−→ H2(π; Z/2)/im Sq2 → H2(π; Z/2)/im(d2, d3), τ̂M, f is sent

to ter(M).

Remark 4.5. Let us explain the strategy of the rest of the proof. By Lemmas 3.1 and 3.3, computing
the Arf invariant Arf( f ∗i∗(ϕ)) gives rise to a well-defined homomorphism in Hom(ker Sq2,Z/2) that
determines ter(M). Thus, to show (iii) and (iv), we shall prove that the Arf invariant Arf( f ∗i∗(ϕ))

coincides with the Kervaire–Milnor invariant τ
(
PD( f ∗(ϕ̂))

)
, where as before ϕ̂ ∈ H 2(K ; Zπ) is a lift

of i∗ϕ ∈ H 2(K ; Z/2). For this we will use the description of the Kervaire–Milnor invariant for π1-trivial
(embedded) surfaces from Section 2.2.

For a π1-trivial, closed, oriented, generically immersed surface F : 6↬ M , the definition of τ(F)
uses a quadratic refinement ϖ : H1(6; Z/2)→ Z/2 of the Z/2-intersection form of 6 that uses, for each
curve γ on 6, a relative Euler number and a count of intersections arising from F(γ ).

For the specific F that arise in our situation, which will be embedded, we will show that after picking
a correctly framed disc, the relative Euler number in the definition of ϖ agrees with ϒ . (Recall that ϒ
is the quadratic refinement we use for computing the Arf invariant.) Then we will show that for such a
disc the intersection component of the quadratic refinement ϖ is always even, so does not contribute
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to the calculation of ϖ . It will follow that ϖ and ϒ coincide, and therefore the Arf invariant and the
Kervaire–Milnor invariant of F agree.

Next, we want to produce, for each ϕ̂ ∈ H 2(K ; Zπ), a suitable surface F on which to compare the
two invariants. Recall that H 2(K ; Zπ) is isomorphic to the compactly supported cohomology H 2

cs(K̃ ; Z)

of the universal cover K̃ of K . An element ϕ̂ ∈ H 2(K ; Zπ)∼= H 2
cs(K̃ ; Z) can be represented as a map

ϕ̂ : K̃ → S2 with compact support (i.e., the closure of the inverse image of S2
\ {∗} is compact). This

follows from the fact that K̃ is 2-dimensional, and the definition of cohomology with compact support as
a colimit of H 2(K̃ , K̃ \ L) over compact subsets L ⊆ K̃ .

Let f̃ : M̃ → K̃ be a lift of the map f : M → K . We want to consider f̃ ∗ϕ̂ as an element of H 2
cs(M̃; Z),

and thus we need the following lemma.

Lemma 4.6. The map f̃ is proper, that is, closed and preimages of compact sets are compact.

Proof. Since M is compact and both M and K are Hausdorff, standard arguments show that the map f is
proper. This implies that f̃ is proper since pullbacks of proper maps are proper. This is well known but
we give a short proof. Recall that a map h is called universally closed if every pullback of h is closed.
By [16, Tag 005R], a map is proper if and only if it is universally closed. Hence it remains to show that
pullbacks of universally closed maps are universally closed. If g is a pullback of a universally closed
map h, then every pullback of g is also a pullback of h and hence is closed. It follows that g is universally
closed, as needed. □

Lemma 4.7. Let x ∈ S2 be a regular value of ϕ̂ ◦ f̃ : M̃ → S2. Then the inverse image of x ∈ S2 yields a
surface F̂ :6 → M̃ such that F̂(6) represents P D( f̃ ∗(ϕ̂)) ∈ H2(M̃; Z).

Proof. We start with a general remark about the compact case. For Y a compact 4-manifold, each
cohomology class y in H 2(Y, ∂Y ; Z) can be represented by a map h y : (Y, ∂Y ) → (CP2, ∗) (upon
postcomposing with the inclusion CP2

→ CP∞
≃ K (Z, 2)), and the inverse image of CP1

⊆ CP2 is the
Poincaré dual to the original class y.

Since f̃ is proper by Lemma 4.6, and ϕ̂ has compact support, it follows that ϕ̂◦ f̃ : M̃ → S2 has compact
support. Take the composition with the inclusion ι : S2

→ CP2. This yields a map ι ◦ ϕ̂ ◦ f̃ : M̃ → CP2

representing f̃ ∗(ϕ̂) ∈ H 2
cs(M̃; Z). We have an isomorphism

H 2
cs(M̃; Z)= colim

L
H 2(M̃, M̃ \ L; Z),

where L belongs to the collection of compact subsets of M̃ ordered by inclusions. Our class f̃ ∗(ϕ̂) is
represented in the colimit by an element of H 2(M̃, M̃ \ L; Z), for some compact set L containing the
support of ι ◦ ϕ̂ ◦ f̃ . We may and shall assume that L is a compact codimension-zero submanifold in M̃ .
We consider the maps shown in this diagram:

H 2
cs(M̃;Z) H 2(M̃, M̃\L;Z) H 2(L ,∂L;Z) H2(L;Z) H2(M̃;Z)

f̃ ∗(ϕ̂) ι◦ϕ̂◦ f̃ ι◦ϕ̂◦ f̃ |L (ι◦ϕ̂◦ f̃ )|−1
L (CP1) (ι◦ϕ̂◦ f̃ )−1(CP1)

∼=

exc
∼=

PD incl

∈ ∈ ∈ ∈ ∈

https://stacks.math.columbia.edu/tag/005R
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Consider ι◦ ϕ̂ ◦ f̃ ∈ H 2(M̃, M̃ \ L; Z). We argued above that this maps to the left to f̃ ∗(ϕ̂). By naturality
of cap products, PD( f̃ ∗(ϕ̂)) is given by the image of ι◦ ϕ̂ ◦ f̃ in H2(M̃; Z), under the composition shown.
In the diagram we claim that this image is (ι ◦ ϕ̂ ◦ f̃ )−1(CP1). To see this, use the fact for compact
manifolds from the first paragraph of the proof, to see that Poincaré duality maps ι◦ ϕ̂ ◦ f̃ |L to the inverse
image of CP1

⊆ CP2, as shown. Since ι ◦ ϕ̂ ◦ f̃ is supported in L , the claim follows. We see that

PD( f̃ ∗(ϕ̂))= (ι ◦ ϕ̂ ◦ f̃ )−1(CP1)= (ϕ̂ ◦ f̃ )−1(x),

which proves the desired statement. Here for the second equality we use that, since the map ϕ̂◦ f̃ : M̃ →CP2

factors through S2, the inverse image of a generic CP1 is the inverse image of the point x ∈ S2. □

Lemma 4.8. After potentially perturbing the map ϕ̂ : K̃ → S2, the composition F :6 F̂
−→ M̃ → M is a

π1-trivial embedding with µ(F)= 0 and such that [F] is RP2-characteristic.

Proof. Note that F̂ is an embedding, since it is the inverse image of the point x ∈ S2. Since π1(M̃)= 0, F̂
is π1-trivial. We can perturb the map ϕ̂ : K̃ → S2 so that (ϕ̂)−1(x)⊆ K̃ is a finite (coming from compact
support) discrete set, which satisfies that no two points of (ϕ̂)−1(x) have the same image under K̃ → K .
Then F is still an embedded π1-trivial surface, representing a class [F] ∈ H2(M; Zπ) ∼= π2(M). By
Lemma 4.3, [F] is RP2-characteristic. By Lemma 4.4, µ(F)= 0. □

Definition 4.9. Let (v1, v2) ∈ Tx S2
⊕ Tx S2 be a framing of the point x . For each simple closed curve α

in 6 we pick a generically immersed disc Cα in M with boundary F(α), such that the image of the
normal vector of S1

⊆ D2 in

TCα(y)M ∼= DF(TCα(y)6)⊕ νM
F |Cα(y)

agrees with (0, (ϕ̂ ◦ f )∗v1) for every y ∈ S1. We can construct such a disc Cα by taking an annulus
S1

× I ⊆ M with S1
× {0} = F(α) and such that a nonvanishing section of νS1

×I
S1×{0}

, pushed forward
into TM , agrees with (0, (ϕ̂ ◦ f )∗v1). Then cap off S1

×{1} with the trace of a null-homotopy in M . We
say that Cα is an f -cap for α.

Lemma 4.10. Let α be a simple closed curve on 6 and let Cα be an f -cap for α. The spin bordism class
of α, as an element of �Spin

1
∼= Z/2, is equal to the relative Euler number e(Cα) of Cα.

Proof. The bundle νF(6)
F(α) is 1-dimensional, and thus we obtain a canonical framing w from the orientation.

The framing (w, (ϕ̂ ◦ f )∗v1, (ϕ̂ ◦ f )∗v2) of νM
F(α) together with the given spin structure on νR∞

M |F(α)

determines the spin structure on α.
As νR∞

M |α extends over Cα and νCα
F(α) agrees with (ϕ̂ ◦ f )∗v1, α is spin null bordant if and only if the

framing (w, (ϕ̂ ◦ f )∗v2) stably extends over Cα . Since νM
Cα is 2-dimensional, the normal vector w extends

over Cα if and only if (w, (ϕ̂ ◦ f )∗v2) extends over Cα. Thus (w, (ϕ̂ ◦ f )∗v2) can stably be extended
over Cα if and only if the relative Euler number e(Cα) is even, so is zero modulo two. This completes the
proof of the lemma. □

We have one final lemma for the proof of Theorem 1.5.
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Lemma 4.11. Let α be a simple closed curve on F and let Cα be an f -cap for α. The interior of the
image of Cα intersects F transversely in an even number of points.

Proof. The image of the boundary S1 under f ◦ Cα : D2
→ K is a point. Thus f ◦ Cα factors as

f ◦ Cα : D2
→ S2 j

−→ K , where j is defined by this factorisation.
Recall that we have a map ϕ̂ : K̃ → S2 representing ϕ̂ ∈ H 2

cs(K̃ ; Z) ∼= H 2(K ; Zπ) that lifts i∗ϕ ∈

H 2(K ; Z/2), where i : K → Bπ is the inclusion of the 2-skeleton. Let p : K̃ → K be the projection and
define a map ψ : K → S2 that sends the points p((ϕ̂)−1(x)) to x and sends everything outside a small
neighbourhood of these points to the base point of S2. Choose a model for K (Z/2, 2) with 2-skeleton S2.
Then ψ : K → S2 composed with the inclusion ϱ : S2

→ K (Z/2, 2) represents i∗ϕ ∈ H 2(K ; Z/2).
Since the normal bundle of S1

⊆ D2 under DCα : TD2
→ TM agrees with the direction of (ϕ̂ ◦ f )∗v1,

and F(6) is the preimage of the points p((ϕ̂)−1(x)), the mapping degree of ψ ◦ j : S2
→ S2 agrees with

the number of transverse intersections of C̊α with F .
Compose ψ ◦ j : S2

→ S2 with the inclusion of the 2-skeleton ϱ : S2
→ K (Z/2, 2). The map

ϱ ◦ψ ◦ j : S2
→ K (Z/2, 2) factors through Bπ by definition of ψ = i∗ϕ, and therefore is null homotopic,

since Bπ is aspherical. It follows that the mapping degree of ψ ◦ j is even, which proves the lemma. □

Proof of Theorem 1.5. As already mentioned, (ii) follows directly from Lemmas 4.3 and 4.4.
By Lemmas 3.1 and 3.3, ter(M) can be computed using the codimension-two Arf invariant and the latter

determines a homomorphism. Hence to prove (iii) and (iv) it suffices to show Arf(F)=τ(F) for the surface
F defined in Lemma 4.8: it will follow that τ̂M, f is a homomorphism and that this homomorphism maps
to ter(M) under the composition displayed in Theorem 1.5(iv). In that lemma we also showed that F is π1-
trivial, RP2-characteristic and µ(F)= 0. Therefore we can compute and compare both Arf(F) and τ(F).

The Arf invariant of F depends only on the relative Euler numbers of the f -caps by Lemma 4.10,
whereas the τ invariant depends on the relative Euler number and the intersections of the form C̊ ⋔ F .
Lemma 4.11 shows that the latter do not contribute to the calculation of the τ invariant. Therefore we
have Arf(F)= τ(F), as desired, which completes the proof. □
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