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Abstract. We define the twisted Blanchfield pairing of a symmetric triad of
chain complexes over a group ring Z[π], together with a unitary representa-
tion of π over an Ore domain with involution. We prove that the pairing is
sesquilinear, and we prove that it is hermitian and nonsingular under certain ex-
tra conditions. A twisted Blanchfield pairing is then associated to a 3-manifold
together with a decomposition of its boundary into two pieces and a unitary
representation of its fundamental group.

1. Introduction

Let (N ;A,B) be an oriented 3-manifold with a decomposition ∂N = A∪B into
codimension zero submanifolds, with A ∩ B a 1-submanifold of ∂N . Each of A,
B and A ∩ B can be empty. Let R be a (not necessarily commutative) ring with
involution. Given a right R-module P , as described in Section 2.1, we can use
the involution on R to produce a left R-module P t. Let π := π1(N), let V be
an (R,Z[π])-bimodule, and let Θ: V → V ∗ = HomR(V,R)t be an isomorphism of
(R,Z[π])-bimodules. Let S ⊂ R be a multiplicative subset with respect to which
the Ore condition is satisfied. Denote the S-torsion submodule of an R-module M
by TM . For full details on this data see Section 3. The twisted Blanchfield pairing

Bl: TH1(N,A;V )× TH1(N,B;V ) → S−1R/R

is sesquilinear, and is by definition adjoint to the sequence of homomorphisms

(1.1) TH1(N,A;V ) → TH2(N,B;V ) → HomR(TH1(N,B;V ), S−1R/R)t

given by (the inverse of) Poincaré-Lefschetz duality, followed by a map induced by
universal coefficients and a Bockstein homomorphism associated to the short exact
sequence of coefficients 0 → R → S−1R → S−1R/R → 0. The isomorphism Θ is
used to obtain Poincaré-Lefschetz duality with V coefficients from Poincaré duality
with Z[π]-coefficients; details are given in Lemma 3.1 and Definition 3.2.

As a basic example, let N be a closed oriented 3-manifold and let Z = R = V ,
with the Zπ action on V = Z given by the augmentation. Then the twisted
Blanchfield pairing is just the classical torsion linking pairing

TH1(N ;Z)× TH1(N ;Z) → Q/Z.
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Another important special case is the original Blanchfield pairing [Bla57] on the
free abelian cover of a closed oriented 3-manifold

Bl : TH1(N ;Z[G])× TH1(N ;Z[G]) → Q(G)/Z[G],

where G = H1(N ;Z)/TH1(N ;Z) and Q(G) is the quotient field of Z[G]. For an
oriented knot K in S3 and XK := S3rνK the exterior of K, we can take G = Z
and obtain the Blanchfield pairing of the knot

Bl : H1(XK ;Z[Z])×H1(XK , ∂XK ;Z[Z]) → Q(Z)/Z[Z].

Note that H1(XK ;Z[Z]) ∼= H1(XK , ∂XK ;Z[Z]), and we will see in Section 4 that
we can replace H1(XK , ∂XK ;Z[Z]) with H1(XK ;Z[Z]) to obtain a pairing on
H1(XK ;Z[Z]).

Twisted Blanchfield pairings, defined via one dimensional representations to non-
commutative rings that factor through a non-abelian solvable quotient π/π(n) of
the fundamental group π, have appeared in several recent papers, including [Bur14,
Cha14, COT03, CHL09, CHL11a, CHL11b, Dav14, Fra13, FLNP16, Lei06, Nos16a,
Nos16b]. In particular, such twisted Blanchfield pairings of knots and links have
been crucial to the study of higher order structures in the concordance of knots
and links.

In Definition 3.2, we give a purely algebraic and somewhat general definition
of twisted Blanchfield pairings, in terms of A. Ranicki’s symmetric Poincaré tri-
ads [Ran81]. We will recall this theory in Section 2. The goal of this paper is to
use the algebraic viewpoint to give a systematic treatment of the key properties
that a Blanchfield pairing might have, namely that it be sesquilinear, hermitian
or nonsingular. The hermitian property in particular does not seem to have been
satisfactorily treated in the literature previously. We collect the principal results
of the paper into the next theorem.

Theorem 1.2. Let (N ;A,B) be an oriented 3-manifold with a decomposition
∂N = A ∪ B into codimension zero submanifolds, with A ∩ B a possibly empty
1-submanifold of ∂N . Let R be a (not necessarily commutative) ring with involu-
tion and let S ⊂ R be a multiplicative subset with respect to which the Ore condition
is satisfied. Let π := π1(N) and let V be an (R,Z[π])-bimodule.

(a) The oriented 3-manifold N determines a symmetric Poincaré triad. Together
with the bimodule V and an isomorphism Θ: V → V ∗ = HomR(V,R)t of
(R,Z[π])-bimodules, this gives rise to a twisted Blanchfield pairing

Bl: TH1(N,A;V )× TH1(N,B;V ) → S−1R/R

that coincides with the pairing described in (1.1).
(b) The pairing Bl is sesquilinear, that is Bl(q · x, p · y) = qBl(x, y)p for all x ∈

TH1(N,A;V ), y ∈ TH1(N,B;V ) and for all p, q ∈ R.
(c) Suppose in addition that

ExtiR(H0(N,B;V ), S−1R/R) = 0

for i = 1, 2. Then Bl is nonsingular; that is, the adjoint map

TH1(N,A;V ) → HomR(TH1(N,B;V ), S−1R/R)t
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is an isomorphism of R-modules.
(d) Suppose that there exists a chain equivalence σ : C∗(N,B;V ) ≃ C∗(N,A;V )

such that the diagram of R-module chain complexes

C∗(N ;V )

ttjjjj
jjj

**TTT
TTTT

C∗(N,B;V )
≃
σ

// C∗(N,A;V )

commutes up to homotopy. Then σ determines an identification

TH1(N,A;V )
≃−→ TH1(N,B;V ),

with which we may define a pairing

Bl: TH1(N,A;V )× TH1(N,A;V ) → S−1R/R.

This pairing is hermitian; that is Bl(x, y) = Bl(y, x) for all x, y ∈ TH1(N,A;V ).

The theorem will be proved in Section 3. We remark that the nonsingularity
condition always holds when R is a principal ideal domain and S consists of the
nonzero elements of R, since in that case S−1R/R is divisible and divisible modules
over a principal ideal domain are injective.

Next, for the convenience of the reader, we give some situations in which the
above result guarantees that we have a nonsingular and hermitian pairing. The
simplest situation is for closed 3-manifolds; when A = B = ∅, the condition for (d)
is trivially satisfied.

We remark that the data of an isomorphism Θ: V → V ∗ is equivalent to an
R-sesquilinear, nonsingular inner product on V with respect to which the right
Z[π]-action on V is given by a unitary representation α : π → Aut(V ). Further
discussion can be found at the beginning of Section 3.

Interesting examples of representations that record non-abelian data while re-
maining potentially computable arise as follows. Consider a complex unitary rep-
resentation β : π → U(d,C) and a homomorphism ϕ : π → F , where F is a finitely
generated free abelian group. Consider C[F ] as a ring with involution where the
involution sends elements of F to their inverse and acts by complex conjugation on
the coefficients. Then the tensor product representation

α = ϕ⊗ β : π → Aut(C[F ]⊗C Cd) = Aut(C[F ]d)
g 7→ ϕ(g) · β(g)

is also a unitary representation.

Proposition 1.3. Let N be a closed, oriented 3-manifold and let V be an (R,Z[π])-
bimodule with an inner product and the right Z[π] action determined by a unitary
representation α : π → Aut(V ) such that

ExtiR(H0(N ;V ), S−1R/R) = 0

for i = 1, 2. Then Bl: TH1(N ;V ) × TH1(N ;V ) → S−1R/R is nonsingular and
hermitian.

Next, we give some easily verifiable criteria for a twisted Blanchfield pairing of
a 3-manifold with boundary to be hermitian and nonsingular.
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Proposition 1.4. Let X be an oriented 3-manifold with boundary and let V be an
(R,Z[π])-bimodule with an inner product and the right Z[π] action determined by
a unitary representation α : π → Aut(V ), such that either

ExtiR(H0(X, ∂X;V ), S−1R/R) = 0

for i = 1, 2, or

ExtiR(H0(X;V ), S−1R/R) = 0

for i = 1, 2. Moreover, suppose that the quotient map C∗(X;V ) → C∗(X, ∂X;V )
induces an isomorphism

TH1(X;V )
≃−→ TH1(X, ∂X;V ).

Then using this identification, the Blanchfield pairing

Bl: TH1(X;V )× TH1(X, ∂X;V ) → S−1R/R

induces a pairing TH1(X;V )×TH1(X;V ) → S−1R/R, that we also denote by Bl.
The latter pairing is hermitian and nonsingular.

In Section 5 we consider the more complicated situation of a 3-manifold with
toroidal boundary, where each component of the boundary is decomposed into two
annuli as S1 ×D1 ∪S1×S0 S1 ×D1. One can also extract a nonsingular, hermitian
pairing in this situation, with more care.

Further investigation of potential applications of twisted Blanchfield pairings
remains an intriguing avenue for future research. One hopes that the treatment
provided in this paper, particularly the flexibility that we allow with regards to the
boundary, will prove to be worthwhile.

Remark 1.5. We note that the techniques of the paper also apply to higher odd
dimensional manifolds, such as to the exterior of a high dimensional knot S2k−1 ⊂
S2k+1. The definition of the Blanchfield pairing and the hermitian results extend
in a straightforward fashion, except that for k even the pairing is skew-hermitian.
The nonsingularity criterion of Proposition 3.4 is based on the universal coefficients
spectral sequence, and thus requires more care to generalise both the statement and
the proof.

Here is a summary of the remainder of the paper. Section 2 gives the necessary
background and definitions on symmetric Poincaré chain complexes, pairs and tri-
ads. Section 3 gives the algebraic definition of twisted Blanchfield pairings and
gives conditions under which they are nonsingular and hermitian, proving Theo-
rem 1.2. Section 4 recovers the important special cases of the classical Blanchfield
pairing of a knot and of the universal abelian cover of a 3-manifold, as well as the
torsion linking pairing on a branched cover of a knot. Section 4 also contains the
proof of Proposition 1.4. Section 5 deals with the case of toroidal boundary with
each torus divided into two annuli.

Conventions. Throughout the paper we assume that all 3-manifolds are con-
nected, compact and oriented, unless we say explicitly otherwise.

Funding. I gratefully acknowledge the support of an NSERC Discovery grant.
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2. Symmetric Poincaré complexes

An involution on a ring R is an additive self map a 7→ a with a · b = b · a,
1 = 1 and a = a. For example, given a group π we will always view Z[π] as a ring

equipped with the involution
∑

g∈π ngg =
∑

g∈π ngg
−1. The material of Section 2

is due to Ranicki, primarily [Ran80], and the reader looking for more details is
referred to there.

2.1. Basic chain complex constructions and conventions. Let R be ring with
involution. A left R-module M becomes a right R-module using the involution,
via the action m · a := am for r ∈ R,m ∈ M . Denote this right module by M t.
A similar statement holds with left and right switched. We use the same notation
M t in both instances. Modules will be left modules by default.

Definition 2.1 (Tensor chain complexes). Given chain complexes (C, dC) and
(D, dD) of finitely generated (f.g.) projective R-modules, with Cr, Dr = 0 for
r < 0, form the tensor product chain complex C ⊗R D with chain groups:

(Ct ⊗R D)n :=
⊕

p+q=n

Ct
p ⊗R Dq.

The boundary map
d⊗ : (Ct ⊗R D)n → (Ct ⊗R D)n−1

is given, for x⊗ y ∈ Ct
p ⊗R Dq ⊆ (Ct ⊗R D)n, by

d⊗(x⊗ y) = x⊗ dD(y) + (−1)qdC(x)⊗ y.

Definition 2.2 (Hom chain complexes). Define the complex HomR(C,D) by

HomR(C,D)n :=
⊕

q−p=n

HomR(Cp, Dq)

with boundary map

dHom : HomR(C,D)n → HomR(C,D)n−1

given, for g : Cp → Dq, by

dHom(g) = dDg + (−1)qgdC .

Definition 2.3 (Dual complex). The dual complex C∗ is defined as a special case
of Definition 2.2 with D0 = R as the only non-zero chain group, which is also
an R-bimodule. Explicitly we define Cr := HomR(Cr, R)t, with boundary map
δ = d∗C : Cr−1 → Cr defined as δ(g) = g ◦ dC . Using that R is a bimodule over
itself, the chain groups of C∗ are naturally right modules. But we use the involution
to make them into left modules, as follows: for f ∈ C∗, let (a · f)(x) := f(x)a.
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The chain complex C−∗ is defined to be

(C−∗)r = C−r; dC−∗ = (dC)
∗ = δ.

Also define the complex Cm−∗ by:

(Cm−∗)r = HomR(Cm−r, R)

with boundary maps

∂∗ : (Cm−∗)r+1 → (Cm−∗)r

given by

∂∗ = (−1)r+1δ.

Define the dual of a cochain complex, that is the double dual, to be C∗∗ :=
(C−∗)−∗. The proof of the next proposition, that allows us to identify a chain
complex with its double dual, is a straightforward verification.

Proposition 2.4 (Double dual). For a f.g. projective chain complex C∗, there is
an isomorphism:

C∗
≃−→ C∗∗; x 7→ (f 7→ f(x)).

Definition 2.5 (Slant map). The slant map is the isomorphism:

\ : Ct ⊗R C → HomR(C
−∗, C∗)

x⊗ y 7→
(
g 7→ g(x)y

)
Definition 2.6 (Transposition). Let C∗ be a chain complex of projective left R-
modules for a ring with involution R. Define the transposition map

T : Ct
p ⊗ Cq → Ct

q ⊗ Cp

x⊗ y 7→ (−1)pqy ⊗ x.

This T generates an action of Z2 on C ⊗R C. Also let T denote the corresponding
map on homomorphisms:

T : HomR(C
p, Cq) → HomR(C

q, Cp)
θ 7→ (−1)pqθ∗.

Definition 2.7 (Algebraic mapping cone). The algebraic mapping cone C (g) of a
chain map g : C → D is the chain complex given by:

dC (g) =

(
dD (−1)r−1g
0 dC

)
: C (g)r = Dr ⊕ Cr−1 → C (g)r−1 = Dr−1 ⊕ Cr−2.

The (co)homology groups Hr(g) (Hr(g)) of a chain map g are defined to be the
(co)homology groups Hr(C (g)) (Hr(C (g))) of the algebraic mapping cone.
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2.2. Symmetric Poincaré complexes and closed manifolds. In this section
we explain symmetric structures on chain complexes, following Ranicki [Ran80]. In
particular the chain complex of a manifold inherits a symmetric structure. To begin,
for simplicity, we take M to be an n-dimensional closed manifold with π := π1(M)

and universal cover M̃ . Let ∆̃ : M̃ → M̃ × M̃ ; y 7→ (y, y) be the diagonal map on
the universal cover of M . This map is π-equivariant, so we can take the quotient
by the action of π to obtain

(2.8) ∆: M → M̃ ×π M̃,

where M̃ ×π M̃ := M̃ × M̃/((x, y) ∼ (gx, gy) | g ∈ π). The symmetric structure
arises from an algebraic version of this map. The Eilenberg-Zilber theorem says

that there is a natural chain equivalence EZ : C(M̃ × M̃) ≃ C(M̃) ⊗Z C(M̃). By
abuse of notation, let

∆̃ : C(M̃) → C(M̃)⊗Z C(M̃)

be the composition of the induced map on chain complexes with EZ. Take tensor
product over Z[π] with Z of both the domain and codomain, to obtain:

∆0 : C(M) → C(M̃)⊗Z[π] C(M̃).

The map ∆0 evaluated on the fundamental class [M ], composed with the slant map
yields

φ0 := \∆0([M ]) ∈ HomZ[π](C
n−∗(M̃), C∗(M̃)).

In the case n = 3 we have a collection of Z[π]-module homomorphisms of the form:

C0
∂∗
1 //

φ0

��

C1
∂∗
2 //

φ0

��

C2

φ0

��

∂∗
3 // C3

φ0

��
C3

∂3
// C2

∂2
// C1

∂1
// C0

A symmetric structure also comprises higher chain homotopies φs : C
r → Cn−r+s

which measure the failure of φs−1 to be symmetric on the chain level. We will
introduce the higher symmetric structures next, using the higher diagonal approx-
imation maps.

Definition 2.9. A chain diagonal approximation is a chain map ∆0 : C∗ → C∗⊗C∗,
with a collection, for i ≥ 1, of chain homotopies ∆i : C∗ → C∗ ⊗ C∗ between ∆i−1

and T∆i−1. That is, the ∆i satisfy the relations:

∂∆i − (−1)i∆i∂ = ∆i−1 + (−1)iT∆i−1.

The following theorem of J. Davis [Dav85] ensures the existence algebraically
of the diagonal approximation for an acyclic chain complex. For the ordinary
singular chain complex of a space, one can use the Alexander-Whitney diagonal
approximation, but for cellular or handle chain complexes with finitely generated
chain groups, the next theorem can be reassuring. In particular, most irreducible
3-manifolds have contractible universal cover, whence their augmented Z[π]-module
chain complexes are acyclic.
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Theorem 2.10 (J. Davis). Let C = (Ci, ∂)0≤i≤n be a chain complex of free Z[π]-
modules in non-negative dimensions, with augmentation α : C0 → Z, such that
the augmented chain complex is acyclic. Then there exists a Z[π]-module chain
diagonal approximation ∆i, i = 0, 1, . . . , n (∆i = 0 for i > n), as in Definition 2.9,
satisfying:

(i) For all j, ∆j(Ci) ⊂
⊕

m≤i,n≤i Cm ⊗ Cn.

(ii) (α⊗ 1) ◦∆0 = 1.
(iii) (1⊗ α) ◦∆0 = 1.
(iv) For all i, for any c ∈ Ci, there is an a ∈ Ci ⊗ Ci such that ∆i(c) − c ⊗ c =

a+ (−1)iTa.

Furthermore, any two choices of such maps are chain homotopic.

Remark 2.11. Higher diagonal maps are related to the Steenrod squares. The
cup product of f ∈ H i(C) and g ∈ Hj(C) is given by

f ∪ g = ∆∗
0(f

t ⊗ g) ∈ H i+j(C),

where f t is the induced map on Ct
i . Suppose that C is a chain complex over a ring

R. For a cohomology class f ∈ Hr(C) we define

Sqi(f) = ∆∗
r−i(f

t ⊗ f).

If 2R = 0 or if i is odd this induces a map Sqi : Hr(C) → Hr+i(C).

Using the higher ∆i we can define the entire symmetric structure on a chain com-
plex.

Definition 2.12 (Symmetric Poincaré chain complex). Let W be the standard
free Z[Z2]-resolution of Z shown below.

· · · → Z[Z2]
1+T−−−→ Z[Z2]

1−T−−−→ Z[Z2]
1+T−−−→ Z[Z2]

1−T−−−→ Z[Z2].

Given a finitely generated projective chain complex C∗ over R, define the symmetric
Q-groups to be:

Qn(C) := Hn

(
HomZ[Z2](W,Ct ⊗R C)

) ∼= Hn

(
HomZ[Z2](W,HomR(C

−∗, C∗))
)

An element φ ∈ Qn(C) can be represented by a collection of R-module homomor-
phisms

{φs ∈ HomR(C
n−r+s, Cr) | r ∈ Z, s ≥ 0}

such that:

dCφs + (−1)rφsδC + (−1)n+s−1(φs−1 + (−1)sTφs−1) = 0: Cn−r+s−1 → Cr

where φ−1 = 0. The signs which appear here arise from the signs in the boundary
maps in Definitions 2.1 and 2.2. A pair (C∗, φ), with φ ∈ Qn(C), is called an
n-dimensional symmetric R-module chain complex. It is called an n-dimensional
symmetric Poincaré complex if the maps φ0 : C

n−r → Cr form a chain equivalence.
In particular this implies that they induce isomorphisms (the cap products) on
homology:

φ0 : H
n−r(C)

≃−→ Hr(C).
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The symmetric structure is covariantly functorial with respect to chain maps, in
that a chain map f : C → C ′ induces a map f% : Qn(C) → Qn(C ′) given by

f%(φ)s = (f t ⊗R f)(φs) ∈ C ′t ⊗R C ′; or

φs 7→ fφsf
∗.

A homotopy equivalence of n-dimensional symmetric complexes f : (C,φ) → (C ′, φ′)

is a chain equivalence f : C → C ′ such that f%(φ) = φ′ ∈ Qn(C ′).

Remark 2.13. The upper indices for induced maps f% do not indicate contravari-
ance. They are used to distinguish from quadratic structure, which we will not
consider in this paper. The interested reader could learn about quadratic structure
in [Ran80], for example.

The symmetric construction, which is the process by which a manifold gives
rise to a symmetric chain complex, as in the next proposition, appears in [Ran80,
Part II, Proposition 2.1].

Proposition 2.14. An oriented n-dimensional manifold M with π1(X) = π gives
rise to a symmetric Poincaré chain complex

(C := C∗(M̃), φi := \∆i([M ]) ∈ Qn(C)),

unique up to homotopy equivalence.

A symmetric Poincaré complex need not arise from any closed manifold in general.

2.3. Symmetric Poincaré pairs and manifolds with boundary. Let (X, ∂X)

be an (n+1)-manifold with boundary, with π := π1(X), universal cover X̃
p−→ X and

∂̃X := p−1(∂X). Let [X, ∂X] ∈ Cn+1(X;Z) be a relative fundamental class, which
maps under Cn+1(X;Z) → Cn+1(X, ∂X;Z) to a generator of Hn+1(X, ∂X;Z). On
the chain level, dC([X, ∂X]) = (−1)n+1f([∂X]) ∈ Cn(X), where f is the chain
level inclusion of the boundary into X, and [∂X] is the fundamental class of the
boundary ∂X. We have

d⊗∆0([X, ∂X]) = ∆0dC([X, ∂X]) = ∆0((−1)n+1f([∂X])),

from which the symmetric pair equations in Definition 2.15 below are derived. For
a manifold with boundary denote the collection of maps given by \∆([X, ∂X]) by
δφ, and for the duality maps on the boundary \∆([∂X]) we use φ, since ∂X is a
closed manifold. The pair

(f : C∗(∂̃X) → C∗(X̃), (δφ, φ))

is a symmetric Poincaré pair in the sense of the next definition [Ran80, Part II,
Proposition 6.2]. Recall that C denotes the algebraic mapping cone of Defini-
tion 2.7.

Definition 2.15. The relative Q-groups of an R-module chain map f : C → D are
defined to be:

Qn+1(f) := Hn+1

(
HomZ[Z2](W,C (f t ⊗R f))

)
.
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An element (δφ, φ) ∈ Qn+1(f) can be represented by a collection:

{(δφs, φs) ∈ (Dt ⊗R D)n+s+1 ⊕ (Ct ⊗R C)n+s | s ≥ 0}

such that:

(d⊗(δφs) + (−1)n+s(δφs−1 + (−1)sTδφs−1) + (−1)nfφsf
∗,

d⊗(φs) + (−1)n+s−1(φs−1 + (−1)sTφs−1)) = 0

∈ (Dt ⊗R D)n+s ⊕ (Ct ⊗ C)n+s−1

where as before δφ−1 = 0 = φ−1. A chain map f : C → D together with an element
(δφ, φ) ∈ Qn+1(f) is called an (n + 1)-dimensional symmetric pair. A chain map
f together with an element of Qn+1(f) is called an (n+1)-dimensional symmetric
Poincaré pair if the relative homology class (δφ0, φ0) ∈ Hn+1(f

t ⊗R f) induces
isomorphisms

Hn+1−r(D,C) := Hn+1−r(f)
≃−→ Hr(D) (0 ≤ r ≤ n+ 1).

For a symmetric Poincaré pair corresponding to an (n + 1)-dimensional manifold
with boundary, these are the isomorphisms of Poincaré-Lefschetz duality.

The union construction is used to glue two symmetric pairs together.

Definition 2.16. [Ran80, Part I, pages 134–6] A symmetric cobordism between
symmetric complexes (C,φ) and (C ′, φ′) is an (n+1)-dimensional symmetric Poincaré
pair with boundary (C ⊕ C ′, φ⊕−φ′):

((fC , fC′) : C ⊕ C ′ → D, (δφ, φ⊕−φ′) ∈ Qn+1((fC , fC′))).

We define the union of two symmetric cobordisms:

c = ((fC , fC′) : C ⊕ C ′ → D, (δφ, φ⊕−φ′)); and

c′ = ((f ′
C′ , f ′

C′′) : C ′ ⊕ C ′′ → D′, (δφ′, φ′ ⊕−φ′′)),

to be the symmetric cobordism given by:

c ∪ c′ = ((f ′′
C , f

′′
C′′) : C ⊕ C ′′ → D′′, (δφ′′, φ⊕−φ′′)),

where:

D′′
r := Dr ⊕ C ′

r−1 ⊕D′
r;

dD′′ =

 dD (−1)r−1fC′ 0
0 dC′ 0
0 (−1)r−1f ′

C′ dD′

 : D′′
r → D′′

r−1;

f ′′
C =

 fC
0
0

 : Cr → D′′
r ;

f ′′
C′ =

 0
0

f ′
C′′

 : Cr → D′′
r ; and
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δφ′′
s =

 δφs 0 0
(−1)n−rφ′

sf
∗
C′ (−1)n−r+s+1Tφ′

s−1 0
0 (−1)sf ′

C′φ′
s δφ′

s

 :

(D′′)n−r+s+1 = Dn−r+s+1⊕(C ′)n−r+s⊕D′n−r+s+1 → D′′
r = Dr⊕C ′

r−1⊕D′
r (s ≥ 0).

We write:

(D′′ = D ∪C′ D′, δφ′′ = δφ ∪φ′ δφ′).

The next proposition can be found in[Ran78, Proposition 6.7]. The proof consists
of verifying that the preceding symmetric union construction gives a model for the
push out in the homotopy category of symmetric pairs.

Proposition 2.17. The symmetric cobordism of the geometric union of two cobor-
disms (W ;M,N) ∪N (V ;N,P ) along a common boundary component N is chain
equivalent to the symmetric union C∗(W )∪C∗(N)C∗(V ) of their respective symmet-
ric cobordisms.

2.4. Symmetric Poincaré triads. Next, we give the definition of a symmetric
Poincaré triad. This is the algebraic version of a manifold with boundary where
the boundary is split into two along a codimension one submanifold.

Definition 2.18. [Ran98, Definition 20.26] An (n + 2)-dimensional symmetric
(Poincaré) triad is a triad of f.g. projective R-module chain complexes:

D
g

$$$d
$d

$d
$d

$d
$d

jA //

jB
��

A

iA
��

B
iB

// C

with chain maps iA, iB, jA, jB, a chain homotopy g : iA ◦ jA ≃ iB ◦ jB (the square
need only commute up to homotopy) and structure maps (Φ, φA, φB, χ) such that:
(D,χ) is an n-dimensional symmetric (Poincaré) complex,

(jB : D → B, (φB, χ)) and (jA : D → A, (φA, χ))

are (n+ 1)-dimensional symmetric (Poincaré) pairs, and

(e : A ∪D B → C, (Φ, φA ∪χ −φB))

is an (n+ 2)-dimensional symmetric (Poincaré) pair, where:

e =
(
iA , (−1)r−1g , −iB

)
: (A)r ⊕Dr−1 ⊕ (B)r → Cr.

Now we suppose that all the maps of a symmetric (Poincaré) triad are split
injections. This may be arranged up to chain equivalence for any symmetric triad,
using the algebraic mapping cylinder construction [Ran81, pages 80–1]. Now the
chain homotopy g vanishes; that is, we require iA ◦ jA = iB ◦ jB precisely, not just
up to chain homotopy.

We may replace all mapping cones with cokernels. Thus for a chain map
f : D → C which is a split injection, let C/D := coker(f : D → C) and (re)define
the homology groups Hr(f) := Hr(C/D). In the notation of Definition 2.18, the
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quotient maps qA : C → C/A and qB : C → C/B and the symmetric structure
maps induce chain maps

(C/A)n+2−r q∗A−→ Cn+2−r Φ0−→ Cr
qB−→ (C/B)r.

The central map Φ0 is not a chain map in general, but the composite qBΦ0q
∗
A

is a chain map. This is not too hard to see, but just to be on the safe side a
proof is provided as part of the proof of Lemma 3.6. With pB : B → B/D and
pC : C → C/(A∪D B) the quotient maps, by similar arguments we also have chain
maps

φB
0 p

∗
B : (B/D)n+1−r p∗B−−→ Bn+1−r φB

0−−→ Br

and

Φ0p
∗
C : (C/(A ∪D B))n+2−r p∗C−−→ Cn+2−r Φ0−→ Cr.

Now suppose that the (n+ 2)-dimensional symmetric triad

D
jA //

jB
��

A

iA
��

B
iB

// C

, (Φ, φA, φB, χ)

is Poincaré (since g = 0, we omit it from the notation). Then, by definition, φB
0 p

∗
B

and Φ0p
∗
C induce isomorphisms between cohomology and homology analogous to

Poincaré-Lefschetz duality for manifolds with boundary. It follows that the maps

qBΦ0q
∗
A : (C/A)n+2−r → (C/B)r induce isomorphisms Hn+2−r(iA)

≃−→ Hr(iB), by
the five lemma applied to the following diagram:

Hn+1−r(jB)

∼= φB
0 p∗B

��

// Hn+2−r(e) //

∼= Φ0p∗C

��

Hn+2−r(iA) //

qBΦ0q∗A

��

Hn+2−r(jB) //

∼= φB
0 p∗B

��

Hn+3−r(e)

Φ0p∗C ∼=

��
Hr(B) // Hr(C) // Hr(iB) // Hr−1(B) // Hr−1(C).

The same applies with A and B switched. By abuse of notation we will also refer
to the map qBΦ0q

∗
A : (C/A)n+2−r → (C/B)r as Φ0.

The following proposition follows from three applications of the relative sym-
metric construction of [Ran80, Part II, Proposition 6.2]. Given a connected space
X and a connected subspace Y ⊂ X, choose a path γY from the basepoint of Y to
the basepoint of X. Produce a chain complex

C∗(Y ;Z[π1(X)]) := Z[π1(X)]⊗Z[π1(Y )] C∗(Y ;Z[π1(Y )])

as the chain complex of the pullback cover of Y , pulling back the universal cover
of Y with respect to the inclusion Y ⊂ X. The map π1(Y ) → π1(X) depends on
the choice of path γY . Now let Z :=

⊔
Zi ⊂ X be a disconnected subspace of X.
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Choose a path γZi from the basepoint of X to the basepoint of Zi for each i, and
thus obtain homomorphisms π1(Zi) → π1(X). Define:

C∗(Z;Z[π1(X)]) :=
⊕
i

C∗(Zi;Z[π1(X)]) =
⊕
i

Z[π1(X)]⊗Z[π1(Zi)]C∗(Zi;Z[π1(Zi)]).

Proposition 2.19. Let N be an n-dimensional manifold with boundary ∂N =
A∪DB, where A,B ⊂ ∂N are codimension 0 submanifolds with A∩B = D, a pos-
sibly empty codimension 1 submanifold of ∂N . Let π = π1(N). This manifold triad
determines an n-dimensional Z[π]-module symmetric Poincaré triad as in Defini-
tion 2.18 with C = C∗(N ;Z[π]) and D, A and B Z[π]-modules chain complexes
with the same notation as their respective submanifolds of ∂N .

3. Algebraic definition of the twisted Blanchfield form

Let π be a finitely presented group, let R be a ring with involution and let V be
an (R,Z[π])-bimodule. Let

D
jA //

jB
��

A

iA
��

B
iB

// C

, (Φ, φA, φB, χ)

be a 3-dimensional symmetric triad of finitely generated free left Z[π]-modules with
all maps iA, iB, jA, jB split injections. Let S ⊂ R be a multiplicative subset for
which the pair (R,S) satisfies the Ore condition, so that the localisation S−1R is
well-defined. That is, S contains no zero divisors, and for each pair (s, r) ∈ S ×R
with s ̸= 0, there exists another pair (s′, r′) such that r′s = s′r. See [Ste75,
Chapter II] for an introduction to Ore domains.

Define V ∗ := HomR(V,R)t, the R-dual, converted into a left R-module using the
involution. The right Z[π]-module structure of V ∗ is defined via (f · g)(v) = f(vg),
where f ∈ V ∗, g ∈ Z[π] and v ∈ V . After tensoring a chain complex and its dual
with V , boundary, coboundary and symmetric structure maps f = ∂, ∂∗ or Φs

become Id⊗f , however we usually omit Id⊗ from the notation.
For future reference we record the following elementary lemma.

Lemma 3.1. Let R and A be rings with involution. Let V be an (R,A)-bimodule
and let W be a free finitely generated A-module. Define V ∗ := HomR(V,R)t and
W ∗ := HomA(W,A)t. Define the right A-module structure on V ∗ by (f · s)(v) =
f(vs), where f ∈ V ∗, v ∈ V and s ∈ A. Then the map

(V ∗ ⊗A W ∗) → (V ⊗A W )∗

(ϕ⊗ f) 7→ (v ⊗ w 7→ ϕ(v · f(w))
is an isomorphism of left R-modules.

As an example, of an (R,Z[π])-bimodule, suppose that V = Rk, and the Z[π]-
action on V is defined via a representation α : π → Aut(Rk). A representation

α : π → Aut(Rk) is called unitary if α(g−1) = α(g)
T
for each g ∈ π.
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In more generality, let V be an arbitrary (R,Z[π])-bimodule that possesses an
R-sesquilinear, nonsingular inner product ⟨·, ·⟩, and let α : π → Aut(V ) be a repre-
sentation. Then α is called unitary if ⟨vα(g), wα(g)⟩ = ⟨v, w⟩ for all v, w ∈ V and
g ∈ π. (The first definition of unitary above corresponds to the standard hermitian
inner product on Rk.) This data is equivalent to an isomorphism of (R,Z[π])-
bimodules Θ: V

≃−→ V ∗. From now on we require that V is always equipped with
such an isomorphism Θ, or equivalently we require that the representation α be
unitary.

For an R-module M let TM denote the maximal S-torsion submodule

{m ∈ M | sm = 0 for some s ∈ S}.

That this is a submodule follows from the Ore condition. The next definition is
based on [Ran81, Page 185]. See also [Ran81, Proposition 3.4.1] for the precise
relationship (in the case A = B = 0) between symmetric complexes and linking
pairings.

Definition 3.2 (Twisted Blanchfield pairing). The twisted Blanchfield pairing of
a symmetric triad

B̃l : TH2(V ⊗Z[π] C/B)× TH2(V ⊗Z[π] C/A) → S−1R/R

is defined as follows. For [x] ∈ TH2(V ⊗Z[π]C/A) and [y] ∈ TH2(V ⊗Z[π]C/B), let

B̃l([y], [x]) =
1

s
z(Φ0(x))

where x ∈ V ⊗Z[π] (C/A)2, y ∈ V ⊗Z[π] (C/B)2, z ∈ V ⊗Z[π] (C/B)1, ∂∗(z) = sy for
some s ∈ S. To evaluate z on Φ0(x) use the image of z under the isomorphisms

V ⊗Z[π] (C/B)1
Θ⊗Id−−−→ V ∗ ⊗Z[π] (C/B)∗1

Lemma 3.1−−−−−−−→ (V ⊗ (C/B)1)
∗

For a symmetric Poincaré triad, we can also define the Blanchfield pairing on
homology:

Bl : TH1(V ⊗Z[π] C/A)× TH1(V ⊗Z[π] C/B) → S−1R/R

via Bl([u], [v]) := B̃l([Φ0]
−1([u]), [Φ0]

−1([v])), where [Φ0] is the induced map on
homology.

Using the identification of a finitely generated free module with its double dual:

M
≃−→ M∗∗; x 7→ (f 7→ f(x))

one can also write z(Φ0(x)) as Φ0(x)(z), if one prefers to hide the involution in the
definition.

Proposition 3.3 (Well-defined and linearity). The twisted Blanchfield pairing is
well-defined and sesquilinear:

B̃l(q[u], p[v]) = qB̃l([u], [v])p.
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Under additional assumptions the twisted Blanchfield pairing is also nonsingular
and hermitian. We will investigate these two properties in Sections 3.1 and 3.2. All

properties will be proven for the cohomology Blanchfield pairing B̃l. This implies
the same properties for Bl in the case that we have a Poincaré triad. Recall that a
symmetric triad arising from a 3-manifold is Poincaré, as in Proposition 2.19.

Proof of Proposition 3.3. First we consider the dependence on the choice of chain

representative. Suppose instead we compute B̃l using x′ = x+∂∗u and y′ = y+∂∗v,
where u ∈ V ⊗Z[π] (C/A)1 and v ∈ V ⊗Z[π] (C/B)1. Then Φ0(x

′) = Φ0(x+∂∗(u)) =
Φ0(x) + ∂Φ0(u). Also sy′ = sy + ∂∗sv = ∂∗(z + sv). Then we have

B̃l(y′, x′) =
1

s
(z + sv)(Φ0(x) + ∂Φ0(u))

=
1

s
z(Φ0(x)) +

1

s
(sv)(Φ0(x) + ∂Φ0(u)) +

1

s
z(∂Φ0(u))

=
1

s
z(Φ0(x)) +

1

s
v(Φ0(x) + ∂Φ0(u))s+

1

s
(∂∗z)(Φ0(u))

=
1

s
z(Φ0(x)) +

1

s
sv(Φ0(x) + ∂Φ0(u)) +

1

s
(sy)(Φ0(u))

=
1

s
z(Φ0(x)) +

s

s
v(Φ0(x) + ∂Φ0(u)) +

s

s
y(Φ0(u))

=
1

s
z(Φ0(x)) + v(Φ0(x) + ∂Φ0(u)) + y(Φ0(u))

=
1

s
z(Φ0(x)) = B̃l(y, x)

where the penultimate equality follows since all but the first terms lie in R, and
the Blanchfield pairing is valued in S−1R/R.

To show that the definition is independent of the choice of s and z, suppose that
there are also s′ ∈ S, z′ ∈ V ⊗Z[π] (C/B)1 such that ∂∗(z′) = s′y. Since Φ0(x) is a
torsion element of H1(V ⊗Z[π] C/B), there is a chain w ∈ V ⊗Z[π] (C/B)2 and an
r ∈ S such that ∂(w) = rΦ0(x). Then:

1

s
z(Φ0(x))− 1

s′
z′(Φ0(x)) =

(
1

s
z(Φ0(x))− 1

s′
z′(Φ0(x))

)
r

r

=
(
1

s
z(Φ0(x)) r − 1

s′
z′(Φ0(x)) r

)
1

r
=

(
1

s
r(z(Φ0(x)))− 1

s′
r(z′(Φ0(x)))

)
1

r

=
(
1

s
z(rΦ0(x))− 1

s′
z′(rΦ0(x))

)
1

r
=

(
1

s
z(∂w)− 1

s′
z′(∂w)

)
1

r

=
(
1

s
∂∗(z)(w)− 1

s′
∂∗(z′)(w)

)
1

r
=

(
1

s
(sy)(w)− 1

s′
(s′y)(w)

)
1

r

=
(
1

s
(y)(w)s− 1

s′
(y)(w)s′

)
1

r
=

(
1

s
s(y)(w)− 1

s′
s′(y)(w)

)
1

r

=
(
y(w)− y(w)

)
1

r
= 0.

Furthermore, for p ∈ R:

B̃l(y, px) =
1

s
(z)(Φ0(px)) =

1

s
pz(Φ0(x)) =

1

s
z(Φ0(x))p = B̃l(y, x)p,

so that B̃l is conjugate-linear in the second variable. Then for q ∈ R, suppose as
usual that ∂∗(z) = sy. By the Ore condition, there exist q′ ∈ R and s′ ∈ S such
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that q′s = s′q. Then ∂∗(q′z) = q′sy = s′(qy). Note that q′s = s′q implies that
1

s′
q′ = q

1

s
. Therefore

B̃l(qy, x) =
1

s′
(q′z)(Φ0(x)) =

1

s′
z(Φ0(x))q′ =

1

s′
q′z(Φ0(x))

= q
1

s
z(Φ0(x)) = qB̃l(y, x).

Linearity under addition is a straightforward verification and is left to the reader.
�

This completes the proof of Theorem 1.2 (b) from the introduction. It also proves
Theorem 1.2 (a), except for the claim that the pairing of Definition 3.2 coincides
with the homological definition of the pairing given in the introduction.

3.1. Nonsingular Blanchfield pairings. The twisted Blanchfield pairing of a
symmetric Poincaré triad is often nonsingular. The next proposition proves Theo-
rem 1.2 (c).

Proposition 3.4 (Non-singularity). Suppose that

ExtiR(H0(V ⊗Z[π] C/B), S−1R/R) = 0

for i = 1, 2. Then the twisted Blanchfield pairing of a symmetric Poincaré triad is
nonsingular; that is, the adjoint map

B̃l : TH2(V ⊗Z[π] C/A) → HomR(TH
2(V ⊗Z[π] C/B), S−1R/R)t

is an isomorphism.

Recall that for a left R-module P and an (R,R′)-bimodule Q, as in Definition 2.3,
we have that HomR(P,Q) is naturally a right R′-module, but we convert it to a
left R′-module HomR(P,Q)t using the involution of R′.

As remarked in the introduction, if R is a principal ideal domain and S consists
of the nonzero elements of R, then since S−1R/R is divisible it is an injective R-
module (see [Ste75, I.6.10]). Therefore ExtiR(M,S−1R/R) = 0 for any i > 0, as
can be seen by computing Ext using the injective resolution of length zero of the
second variable. Thus the pairing of a Poincaré triad is nonsingular.

Proof of Proposition 3.4. For an (R,R)-bimodule M , for the duration of this proof
we write

H i(C/B;M) := Hi(M ⊗R (V ⊗Z[π] C/B)∗).

The Bockstein homomorphism β associated to the short exact sequence

0 → R → S−1R → S−1R/R → 0

yields a long exact sequence

H1(C/B;S−1R)
γ−→ H1(C/B;S−1R/R)

β−→ H2(C/B;R) → H2(C/B;S−1R).

Since [y] ∈ H2(C/B;R) is S-torsion, [y] 7→ 0 ∈ H2(C/B;S−1R), so there is a
[z] ∈ H1(C/B;S−1R/R) such that β(z) = y. The chain z is determined up to
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addition of an element γ(w) where w ∈ H1(C/B;S−1R). The Exti vanishing
hypothesis implies, by universal coefficients, that we have an isomorphism

H1(C/B;S−1R/R)
≃−→ HomR(H1(C/B;R), S−1R/R)t.

Then Poincaré duality induces an isomorphism

HomR(H1(C/B;R);S−1R/R)t
≃−→ HomR(H

2(C/A;R), S−1R/R)t.

Denote the image of z + γ(w) in HomR(H
2(C/A;R), S−1R/R)t by z∗ + γ(w)∗.

For x ∈ TH2(C/A;R), we have that γ(w)∗(x) = 0 since γ(w)∗ originates from
HomR(H1(C/B;R), S−1R)t, and homomorphisms to S−1R vanish on S-torsion,
since S contains no zero divisors. Therefore the indeterminacy in z has no effect,
and the combination of the Bockstein, universal coefficients and Poincaré duality
induce a bijection:

Γ: TH2(C/B;R) → HomR(TH
2(C/A;R), S−1R/R)t.

It is straightforward to check that Γ is a module homomorphism, and therefore is
an isomorphism. Inspection of the sequence of isomorphisms, together with the fact
that the symmetric structure map Φ0 is the chain level map inducing the Poincaré

duality isomorphism on homology, yields that the isomorphism Γ is adjoint to B̃l.
This completes the proof of Proposition 3.4. �

The sequence of isomorphisms used in the above proof leads to the definition
of the twisted Blanchfield pairing given in the introduction, by applying Poincaré
duality at the beginning and at the end, as in Definition 3.2. This completes the
proof of Theorem 1.2 (a) from the introduction.

3.2. Hermitian triads and hermitian Blanchfield pairings.

Definition 3.5 (Hermitian triad). Suppose that a symmetric triad is chain equiv-
alent to a triad (the maps of the triad are still required to be split injections) for

which there is a chain equivalence σ : C/B
≃−→ C/A, such that the following diagram

commutes up to homotopy:

CqB

xxqqq
qqq qA

&&NN
NNN

N

C/B
≃
σ

// C/A.

Then we say that the symmetric triad is hermitian.

It is worth noting that in order to check this criterion in practice, for a 3-
manifold, one has to take extra care with basepoints and basing paths, due to their
appearance in the preamble to Proposition 2.19. See the proof of Proposition 5.1
for an example of this principle in practice.

Lemma 3.6. For a hermitian triad, the homomorphisms

(C/A)3−r q∗A−→ C3−r Φ0−→ Cr
qB−→ (C/B)r

σ−→ (C/A)r

and

(C/A)3−r σ∗
−→ (C/B)3−r q∗B−→ C3−r Φ∗

0−−→ Cr
qA−→ (C/A)r.
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determine chain homotopic chain maps (C/A)3−∗ → (C/A)∗.

We remark that the maps Φ0,Φ
∗
0 are not chain maps by themselves, only the

composition qBΦ0q
∗
A and its dual qAΦ

∗
0q

∗
B are chain maps, as we will show in the

proof of the lemma. The proof that the two maps are chain homotopic uses a
combination of the chain homotopy witnessing the homotopy commutativity of the
diagram from Definition 3.5, and the higher symmetric structure maps Φ1 : C

3−r →
Cr+1.

Proof. We begin by showing that the first composition is a chain map. In this proof
let ∂Φ := φA ∪χ φB. The symmetric pair equations tell us that

∂CΦ0 + (−1)rΦ0δC = e∂Φ0e
∗ : C2−r → Cr.

Here

e =
(
iA 0 −iB

)
: Ar ⊕Dr−1 ⊕Br → Cr.

The maps σ, qA and qB are chain maps so we obtain:

σqB(∂CΦ0 + (−1)rΦ0δC)q
∗
A = ∂CσqBΦ0q

∗
A + (−1)rσqBΦ0q

∗
AδC .

In order to show that σqBΦ0q
∗
A is a chain map, it therefore suffices to show that

σqBe(∂Φ)0e
∗q∗A vanishes.

Claim. We have qBe(∂Φ)0e
∗q∗A = 0.

Since iA : D → A is a split injection, the image of e∗q∗A : (C/A)3−r → A3−r ⊕
D2−r ⊕B3−r is contained in B3−r. The symmetric structure (∂Φ)0 is given by φA

0 0 0
(−1)rχ0i

∗
A 0 0

0 iBχ0 φB
0

 .

This maps (0, 0, b)T ∈ A3−r ⊕D2−r ⊕B3−r to

(0, 0, φB
0 (b))

T ∈ Ar−2 ⊕Dr−2 ⊕Br−1,

which is in the kernel of Cr−1 → (C/B)r−1. This completes the proof of the claim
that qBe(∂Φ)0e

∗q∗A = 0.
Thus σqBΦ0q

∗
A is a chain map (C/A)3−∗ → (C/A)∗. It follows that its dual is

also such a chain map.
Now we need to show that the two compositions in the statement of the lemma

are chain homotopic chain maps. To begin, we recall the symmetric pair structure
equation

(3.7) Φ0 − Φ∗
0 = (−1)rΦ1δC − ∂CΦ1 + e(∂Φ)1e

∗ : C3−r → Cr.

Now (∂Φ)1 is given by  φA
1 0 0

(−1)rχ1i
∗
A (−1)rχ∗

0 0
0 −iBχ1 φB

1

 .
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Compared to (∂Φ)0, there is an extra nonzero term in the (2, 2) position. Never-
theless, an analogous argument to that used for the previous claim can be applied
to show that qBe(∂Φ)1e

∗q∗A = 0. Now we have:

σqBΦ0q
∗
A − qAΦ

∗
0q

∗
Bσ

∗

=σqB
(
Φ∗
0 + (−1)rΦ1δC − ∂CΦ1 + e(∂Φ)1e

∗)q∗A − qAΦ
∗
0q

∗
Bσ

∗

=σqBΦ
∗
0q

∗
A + (−1)rσqBΦ1δCq

∗
A − σqB∂CΦ1q

∗
A + σqBe(∂Φ)1e

∗q∗A − qAΦ
∗
0q

∗
Bσ

∗

=σqBΦ
∗
0q

∗
A + (−1)rσqBΦ1q

∗
AδC/A − ∂C/AσqBΦ1q

∗
A − qAΦ

∗
0q

∗
Bσ

∗.

The first equality follows from (3.7). The second equality is just expanding the
brackets. The third equality uses that qBe(∂Φ)1e

∗q∗A = 0 and that qA, qB and σ
are chain maps, and so commute with boundary maps. Now use that there is a
chain homotopy k : Cr → (C/A)r+1 for which

σqB − qA = k∂C + ∂C/Ak : Cr → (C/A)r.

Note that by dualising we also have

q∗Bσ
∗ − q∗A = (−1)rδCk

∗ + (−1)r+1k∗δC/A : (C/A)r → Cr.

In addition, define L := σqBΦ1q
∗
A. Thus:

σqBΦ
∗
0q

∗
A + (−1)rσqBΦ1q

∗
AδC/A − ∂C/AσqBΦ1q

∗
A − qAΦ

∗
0q

∗
Bσ

∗

=
(
qA + k∂C + ∂C/Ak

)
Φ∗
0q

∗
A + (−1)rLδC/A − ∂C/AL

− qAΦ
∗
0

(
q∗A + (−1)rδCk

∗ + (−1)r+1k∗δC/A

)
=qAΦ

∗
0q

∗
A + k∂CΦ

∗
0q

∗
A + ∂C/AkΦ

∗
0q

∗
A + (−1)rLδC/A

− ∂C/AL− qAΦ
∗
0q

∗
A − (−1)rqAΦ

∗
0δCk

∗ − (−1)r+1qAΦ
∗
0k

∗δC/A

=k∂CΦ
∗
0q

∗
A + ∂C/AkΦ

∗
0q

∗
A + (−1)rLδC/A − ∂C/AL

+ (−1)r+1qAΦ
∗
0δCk

∗ + (−1)rqAΦ
∗
0k

∗δC/A

=(−1)r+1kΦ∗
0q

∗
AδC/A + ∂C/AkΦ

∗
0q

∗
A + (−1)rLδC/A − ∂C/AL

− ∂C/AqAΦ
∗
0k

∗ + (−1)rqAΦ
∗
0k

∗δC/A.

In the first equality we substitute L for σqBΦ1q
∗
A and we substitute σqB = qA +

k∂C+∂C/Ak and q∗Bσ
∗ = q∗A+δCk

∗+k∗δC/A. In the second equality we expand the
brackets. In the third equality we delete cancelling copies of qAΦ

∗
0q

∗
A. In the fourth

equality we use that qA and Φ∗
0 are chain maps, to commute them with certain

boundary and coboundary maps. Now define J = kΦ∗
0q

∗
A and K = qAΦ

∗
0k

∗. Then
making these substitutions and rearranging, we obtain:

(−1)r+1kΦ∗
0q

∗
AδC/A + ∂C/AkΦ

∗
0q

∗
A + (−1)rLδC/A − ∂C/AL

− ∂C/AqAΦ
∗
0k

∗ + (−1)rqAΦ
∗
0k

∗δC/A

=(−1)r+1JδC/A + ∂C/AJ + (−1)rLδC/A − ∂C/AL− ∂C/AK + (−1)rKδC/A

=∂C/A(J −K − L) + (−1)r+1(J −K − L)δC/A.

Thus H = J −K + L is the chain homotopy we seek, with

σqBΦ0q
∗
A − qAΦ

∗
0q

∗
Bσ

∗ = ∂C/AH + (−1)r+1HδC/A.
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�
Using σ, we can identify TH2(V ⊗Z[π]C/B) and TH2(V ⊗Z[π]C/A), and whence

define a twisted Blanchfield pairing

B̃l : TH2(V ⊗Z[π] C/A)× TH2(V ⊗Z[π] C/A) → S−1R/R.

In the proof of Proposition 3.8 below, we abuse but simplify notation by referring
to the chain maps and the chain homotopy given to us by Lemma 3.6 as Φ1 : Φ0 ∼
Φ∗
0 : (C/A)3−∗ → (C/A)∗.

Proposition 3.8 (Hermitian). The twisted Blanchfield pairing on TH2(V ⊗Z[π]

C/A) associated to a hermitian triad is a hermitian pairing: B̃l(x, y) = B̃l(y, x) for
all x, y ∈ TH2(C/A;V ).

Note that we can define a sesquilinear hermitian pairing without the hypothesis that
the symmetric triad be Poincaré. The next proposition proves Theorem 1.2 (d).

Proof of Proposition 3.8. First, we claim that we can calculate B̃l using Φ∗
0 : (C/A)2 →

(C/A)1 instead of Φ0. This follows from the following computation:

1

s
z(Φ0(x))− 1

s
z(Φ∗

0(x)) =
1

s
z(Φ0 − Φ∗

0)(x) =
1

s
z((∂Φ1 − Φ1∂∗)(x))

=
1

s
z(∂Φ1(x)) =

1

s
(∂∗(z))(Φ1(x)) =

1

s
(sy)(Φ1(x))

=
1

s
y(Φ1(x))s =

1

s
sy(Φ1(x)) = y(Φ1(x)) = 0 ∈ S−1R/R

since y(Φ1(x)) ∈ R. Now, suppose we also have an r ∈ S,w ∈ V ⊗Z[π] (C/A)1, such
that ∂w = rx. Then:

B̃l(y, x) =
1

s
z(Φ∗

0(x)) =
1

s
z(Φ∗

0(x)) r
1

r
=

1

s
rz(Φ∗

0(x))
1

r
=

1

s
z(Φ∗

0(rx))
1

r

=
1

s
z(Φ∗

0(∂
∗w))

1

r
=

1

s
z(∂Φ∗

0(w))
1

r
=

1

s
∂∗z(Φ∗

0(w))
1

r
=

1

s
(sy)(Φ∗

0(w))
1

r

=
1

s
(y)(Φ∗

0(w))s
1

r
=

1

s
s y(Φ∗

0(w))
1

r
= y(Φ∗

0(w))
1

r
= Φ∗

0(w)(y)
1

r
= w(Φ0(y))

1

r

=
1

r
w(Φ0(y)) = B̃l(x, y),

which shows that B̃l is hermitian. This completes the proof of Proposition 3.8. �
Remark 3.9. The fact that one may use Φ∗

0 to compute the twisted Blanchfield
form may sometimes be exploited in computations, when the map Φ∗

0 : (C/A)2 →
(C/A)1 may be simpler than Φ0 : (C/A)2 → (C/A)1.

Corollary 3.10. Let M be a closed oriented 3-manifold. For any unitary repre-
sentation over an Ore domain R, the associated twisted Blanchfield pairing of M
is hermitian.

Proof. In the case of a closed 3-manifold, the chain complexes A, B and D of the
associated symmetric triad all vanish. �

The corollary, together with Proposition 3.4, gives Proposition 1.3 from the
introduction.
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4. Recovering the classical Blanchfield pairing

Let K be an oriented knot in S3 and let XK = S3rνK be the knot exterior.
To recover the classical Blanchfield pairing on XK , define π := π1(XK), use R =
Z[t, t−1], let S = Z[t, t−1]r{0}, let V = R = Z[t, t−1], and let α : π → Z = ⟨t⟩
be the abelianisation. Then Z[π] acts on V via Z[π] → Z[t, t−1] and then right
multiplication. Write Λ := Z[t, t−1] and Q := Q(t). Note that H1(XK ; Λ) ∼=
H2(XK , ∂XK ; Λ) is a Λ-torsion module [Lev77, Corollary 1.3].

First consider the symmetric hermitian triad

0 //

��

0

��
0 // C∗(XK , ∂XK ; Λ)

, (∆([XK , ∂XK ])/∆([∂XK ]), 0, 0, 0).

From this we obtain a sesquilinear hermitian Blanchfield pairing

Bl1 : H
2(XK , ∂XK ; Λ)×H2(XK , ∂XK ; Λ) → Q/Λ.

Next consider the symmetric Poincaré triad

0 //

��

C∗(∂X; Λ)

��
0 // C∗(XK ; Λ)

, (∆([XK , ∂XK ],∆([∂XK ]), 0, 0).

From this we obtain a sesquilinear, nonsingular Blanchfield pairing

Bl2 : H
2(XK ; Λ)×H2(XK , ∂XK ; Λ) → Q/Λ.

The Exti condition for nonsingularity, from Proposition 3.4, is easily seen to be sat-
isfied since H0(XK , ∂XK ; Λ) vanishes1. Note that C∗(XK ; Λ) and C∗(XK , ∂X; Λ)
are not chain homotopy equivalent – they have different zeroth homology groups,
for example – so we cannot directly apply Proposition 3.8 to deduce that Bl2 is
hermitian. In the long exact sequence of the pair (XK , ∂XK) we have zero maps
as shown

H1(∂XK ; Λ)
0−→ H2(XK , ∂XK ; Λ)

≃−→ H2(XK ; Λ)
0−→ H2(∂XK ; Λ),

1That the zeroth homology vanished was not crucial. For pairings over Λ associated to closed
manifolds, the zeroth homology is Z, and we have a Bockstein exact sequence 0 = Ext1Λ(Z, Q) →
Ext1Λ(Z, Q/Λ) → Ext2Λ(Z,Λ) = 0, from which it follows that the central module is trivial, so the
Ext condition for nonsingularity is satisfied.
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so the middle map is an isomorphism. The adjoints of the two Blanchfield pairings
above fit into the following diagram.

H2(XK , ∂XK ; Λ)

∼=
�� Bl2

∼=

,,XXXXX
XXXXXX

XXXXXX
XXXXXX

X

HomΛ(H1(XK , ∂XK ; Λ), Q/Λ)

(Φ1
0)

∗

��

∼=
(Φ2

0)
∗

// HomΛ(H
2(XK ; Λ), Q/Λ)

∼=rrffffff
ffffff

ffffff
ffffff

HomΛ(H
2(XK , ∂XK ; Λ), Q/Λ)

Some explanation of the diagram follows.

(1) The top left vertical map is given by the combination of the Bockstein and
universal coefficients described in the proof of Proposition 3.4.

(2) The bottom right diagonal map arises from the long exact sequence of the
pair (XK , ∂XK), as above.

(3) The maps (Φ1
0)

∗ and (Φ2
0)

∗ are induced by the symmetric structure maps
of the triads above that gave rise to Bl1 and Bl2 respectively.

(4) The bottom triangle commutes since, by definition, Φ1
0 and Φ2

0 factor through
the maps in the sequence of a pair; see Section 2.4.

(5) The top triangle commutes by definition of Bl2.
(6) The adjoint of the first pairing Bl1 is given by the composition of the two

vertical maps.

It follows immediately from the diagram and the above observations that Bl1 is
nonsingular. Applying Poincaré duality we obtain the classical Blanchfield pairing

Bl : H1(XK ; Λ)×H1(XK ; Λ) → Q/Λ.

We have verified that it is hermitian and nonsingular (see [FP15] for an alternative
argument). Inspection of the essential properties that we have used in the argument
yields the following potentially useful proposition, which was Proposition 1.4 in the
introduction.

Proposition 4.1. Let X be an oriented 3-manifold with boundary, let (R,S) be
an Ore pair, let Q = S−1R and let V be an (R,Z[π])-bimodule with an inner product
and a unitary representation α : π → Aut(V ), such that either ExtiR(H0(X, ∂X;V ), S−1R/R) =
0 for i = 1, 2 or ExtiR(H0(X;V ), S−1R/R) = 0 for i = 1, 2. Moreover, sup-
pose that the quotient map C∗(X;V ) → C∗(X, ∂X;V ) induces an isomorphism

TH2(X, ∂X;V )
≃−→ TH2(X;V ). Then the Blanchfield pairing Bl: TH1(X;V ) ×

TH1(X;V ) → Q/R is hermitian and nonsingular.

Remark 4.2. For example, as in [Hil12], take X to be the exterior of an m-
component oriented link L in S3, let R be the ring obtained from Z[t±1

1 , . . . , t±1
m ]

by inverting (ti−1) for i = 1, . . . ,m, and let V = R, with the action induced by the
abelianisation Z[π1(X)] → Z[Zm] = Z[t±1

1 , . . . , t±1
m ] → R. Then since C∗(∂X;R) is

contractible, the proposition applies and the corresponding Blanchfield form of the
link L is hermitian and nonsingular.
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We can also recover the torsion linking pairing on a k-fold branched cover of a
knot from the knot exterior. We obtain the linking pairing on a finite branched
covering space by using a representation whose dimension is equal to the degree of
the covering space, in terms of data in the base space, instead of first understanding
the covering space geometrically and then computing its linking pairing.

Compose the abelianisation homomorphism with the quotient map Z → Zk,
for some natural number k > 1, to obtain a homomorphism π1(XK) → Zk. Let
R = Z, let S = Zr{0}, let V = Zk and let α : π1(XK) → Zk → Aut(V ) = GL(k,Z)
be determined by the regular representation. Now, with two meridians of a knot
dividing the boundary of XK in two, we have ∂XK = S1 ×D1 ∪S1×S0 S1 ×D1, so
we obtain:

Blk : H1(XK , S1 ×D1;Zk)×H1(XK , S1 ×D1;Zk) → Q/Z.

Note that ∂XKrS1 × D1 ∼= S1 × D1, and moreover the longitude of K maps
trivially to Zk. Thus the two boundary components A = C∗(S

1 × D1;Zk) = B
are isomorphic, and there is a self -diffeomorphism of XK , that is isotopic to the
identity map, taking that switches the two S1×D1 components of ∂XK . It follows
that we have a hermitian triad. Now, H1(XK , S1;Zk) is isomorphic to H1(Σk;Z),
where Σk is the k-fold cover of S3 branched over K. We obtain the classical linking
form on this 3-manifold. We also note that H1(XK , S1;Zk) is Z-torsion, since Σk

is a rational homology sphere.

5. Toroidal boundary divided into two annuli

In this section we consider the following situation. Let N be a 3-manifold whose
boundary is a union of tori ∂N =

⊔m S1 × S1, and let A = B =
⊔m S1 × D1 ⊂

∂N be such that each torus boundary component of N is decomposed as S1 ×
D1 ∪S1×S0 S1 × D1, with one annulus lying in A and one lying in B. As usual
we denote π = π1(N). With this setup, we can also obtain a hermitian pairing
for certain representations. It may be that TH2(N, ∂N ;V ) and TH2(N ;V ) are
not isomorphic, so Proposition 1.4 cannot be applied, and therefore one is led to
decompose the boundary tori as above.

The key point is that the two inclusions A → ∂N and B → ∂N are homotopic
maps, and in fact the map B → N can be obtained from the inclusion A → N
composed with a self-diffeomorphism of N that is isotopic to the identity. Simply
rotate each boundary torus by π radians, in such a way as to interchange A and
B, and then interpolate between this diffeomorphism and the identity in a collar
neighbourhood of ∂N . More precisely, for each torus S1 × S1 ⊂ ∂N , given coordi-
nates on a collar neighbourhood S1×S1×I, (θ, ϕ, t) 7→ (eiθ, eiϕ, t), for θ, ϕ ∈ [0, 2π)
and t ∈ [0, 1], where S1 × S1 × {1} ⊂ ∂N , we have a diffeomorphism

S : S1 × S1 × I → S1 × S1 × I
(θ, ϕ, t) 7→ (θ, ϕ+ tπ, t).

On S1 × S1 × {0}, S is the identity, while on S1 × S1 × {1} it is the promised
rotation, isotopic to the identity, that interchanges A and B. The isotopy to the
identity is realised as t varies from 0 to 1.
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Choose a point p ∈ S1 and choose a parametrisation of each connected compo-
nent of A and B as S1 × D1

A, respectively S1 × D1
B, such that (p, 0A) ∼ (p, 1B)

and (p, 0B) ∼ (p, 1A) in the gluing S1 ×D1
A ∪S1×S0 S1 ×D1

B. In the following, we
refer to the curve on S1 × S1 ⊂ ∂N defined as the union {p} ×D1

A ∪ {p} ×D1
B as

a longitude of the boundary component.

Proposition 5.1. Let N be an oriented 3-manifold with toroidal boundary, and
let A and B be as above. Let V be an (R,Z[π])-bimodule with a unitary represen-
tation α : π → Aut(V ), such that ExtiR(H0(N,A;V ), S−1R/R) = 0 (equivalently
ExtiR(H0(N,B;V ), S−1R/R) = 0) for i = 1, 2. Then using the slide diffeomor-
phism S defined above (which depends on the parametrisation) to induce an iden-
tification

TH1(N,A;V )
≃−→ TH1(N,B;V ),

we obtain a twisted Blanchfield pairing

Bl: TH1(N,A;V )× TH1(N,A;V ) → S−1R/R

that is hermitian and nonsingular.

Proof. The nonsingularity follows from Proposition 3.4. In order to prove that the
pairing is hermitian, we will investigate the following diagram.

0 // C∗(A;V ) // C∗(N ;V )
qA // C∗(N,A;V ) // 0

0 // C∗(B;V ) //

≃

OO

C∗(N ;V )
qB //

S∗ ≃

OO

qA

88rrrrrrrrrrrrrrrr
C∗(N,B;V ) //

σ

OO�
�
�
�

0

We will construct a chain equivalence C∗(B;V ) → C∗(A;V ) so that that the left
hand square commutes up to homotopy. There is therefore an induced homotopy
equivalence σ between the mapping cones, unique up to homotopy, shown as a
dashed arrow in the diagram, that makes the right hand square commute up to ho-
motopy. Since the diffeomorphism S is isotopic to the identity, the upper triangle
commutes up to homotopy. Thus the lower right triangle also commutes up to ho-
motopy. But this is exactly the requirement for a hermitian triad in Definition 3.5.

We can and will assume that ∂N = S1 × S1 has one connected component, for
simplicity of exposition. The argument for the general case just requires duplicating
the following argument for each copy of S1 × S1 in ∂N .

Let A ∩ B = D, which is homeomorphic to S1 × S0. The choices of parametri-

sation determine a diffeomorphism B
≃−→ A, such that the diagram

A // N

B //

OO

N

S

OO

commutes. We need to carefully consider the basepoints and basing paths so that
the corresponding diagram for chain complexes with V coefficients commutes. First
we consider Z[π] coefficients, and then at the end we will specialise to V coefficients.
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Choose a path γ0 from the basepoint of N to the point (1,−1) of D = S1 × S0.
For the basepoint of A use (1,−1) ∈ S1 × S0, and in order to define the chain
complex C∗(A;Z[π]) use the path γ0. Divide the longitude ℓ into ℓ = ℓA ∪ ℓB,
where ℓA = ℓ∩A and ℓB = ℓ∩B. For the basepoint of B, use (1, 1) ∈ D = S1×S0,
and for the basing path use the concatenation ℓA · γ0. Note that S sends ℓA · γ0 to
ℓ · γ0.

With these basing paths, we have representatives C∗(A;Z[π]) = C∗(B;Z[π]) =
(Z[π] (g−1)−−−→ Z[π]) for the chain equivalence classes of the chain complexes of A
and B, where g ∈ π is the homotopy class of curve γ0 · µ−1 · γ0 corresponding
to the meridian µ−1 of ∂N that traverses S1 × {−1} ⊂ D once with positive
orientation. In particular, one should observe that there is a homotopy γ0 ·µ−1 ·γ0 ∼
γ0 · ℓA ·µ−1 · ℓA ·γ0. We can therefore use the identity map for the left hand vertical
map of the diagram above.

We remark that in the symmetric Poincaré triad, the maps C∗(D;Z[π]) →
C∗(A;Z[π]) and C∗(D;Z[π]) → C∗(B;Z[π]) are required to be split injections, so
these chain complexes for A and B are only chain equivalent to the chain complexes
we need to use to compute the Blanchfield form. However for the current proof we
only need the chain equivalence classes, since we only need the left hand square of
the diagram above to commute up to homotopy.

The chain complex S∗(C∗(B;Z[π])) is given by (Z[π] (ℓgℓ−1−1)−−−−−−→ Z[π]), whereas
the image of C∗(A;Z[π]) is the chain complex (Z[π] (g−1)−−−→ Z[π]) as discussed above.
Since g and ℓ form a basis of π1(∂N) = Z ⊕ Z ≤ π1(N), they commute, and so
ℓgℓ−1 = g. It follows that the left hand square of the diagram above commutes.
Therefore, as explained at the beginning of the proof, we obtain the chain equiva-
lence σ : C∗(N,B;V ) ≃ C∗(N,A;V ) as required.

�
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