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Abstract. This article describes local normal forms of functions in noncommuting

variables, up to equivalence generated by isomorphism of noncommutative Jacobi al-

gebras, extending singularity theory in the style of Arnold’s commutative local normal
forms into the noncommutative realm. This generalisation unveils many new phenom-

ena, including an ADE classification when the Jacobi ring has dimension zero and, by

taking suitable limits, a further ADE classification in dimension one. These are nat-
ural generalisations of the simple singularities and those with infinite multiplicity in

Arnold’s classification. We obtain normal forms away from some exceptional Type E

cases. Remarkably these normal forms have no continuous parameters, and the key
new feature is that the noncommutative world affords larger families.

This theory has a range of immediate consequences to the birational geometry of

3-folds. The normal forms of dimension zero are the analytic classification of smooth
3-fold flops, and one outcome of NC singularity theory is the first list of all Type D

flopping germs, generalising Reid’s famous pagoda classification of Type A, with vari-
ants covering Type E. The normal forms of dimension one have further applications to

divisorial contractions to a curve. In addition, the general techniques also give strong

evidence towards new contractibility criteria for rational curves.

1. Introduction

This article establishes a noncommutative analogue of the classical singularity theory of
function germs as set out in Arnold’s landmark paper [A2]. The fundamental components
of such a theory remain: one must (1) work with germs, or locally in some sense, (2)
establish suitable notions of equivalence, (3) determine discrete parameters to distinguish
families with similar properties, (4) classify the families for ‘small’ values of the discrete
parameters, (5) develop general theory for where classification is difficult, and crucially
(6) use the classification to give applications in other areas of mathematics.

We outline our noncommutative approach to components (1–3) in §1.1 below, with full
details given in §3 and §4. The first classifications of (4) are discussed in §1.2–1.3, and
their proofs in §5 and §6 use the general theory of §2–4 and Appendix A, which initiate (5).
Arnold remarks [A2, 2] that the definition and naming conventions of families may only
become clear after classification, and so although we use the ADE names throughout, it
is only in §7 that their intrinsic definition is established. As for applications, we instigate
component (6) in §8, giving a classification of various rational neighbourhoods in 3-fold
birational geometry, with further applications to curve counting.

1.1. Noncommutative Singularity Theory. For d ≥ 1 consider the noncommutative
formal power series ring C〈〈x〉〉 = C〈〈x1, . . . , xd〉〉, which is the complete local version of the
free algebra. From the perspective of this paper, the algebra C〈〈x〉〉 replaces the commu-
tative power series ring C[[x1, . . . , xd]] from classical singularity theory.

For any f ∈ C〈〈x〉〉, it is possible to cyclically differentiate f with respect to a variable xi
to obtain an element δif . The collection of such elements generate a closed two-sided ideal
((δ1f, . . . , δdf)), the details of which are recalled in §2.2. The resulting quotient

Jac(f) =
C〈〈x1, . . . , xd〉〉
((δ1f, . . . , δdf))

is called the Jacobi algebra of f , and the element f is called the potential.
We will regard f and g as being equivalent if their Jacobi algebras are isomorphic,

remarking that in the noncommutative setting, given the hidden dependence on cyclic
equivalence, naive versions of the Tjurina algebra do not exist (see 4.2). With the ring
C〈〈x〉〉 fixed and the equivalence relation established, the overarching aim of singularity
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theory remains: to classify all equivalence classes of potentials satisfying numerical criteria,
and to develop powerful theory in the situation where classification is not possible.

Whenever d > 1 the algebra C〈〈x〉〉 is not noetherian, and the exponential explosion in
its growth means that factoring by only d elements often results in Jacobi algebras with
pathological properties. As in the classical case, pathologies turn out not to matter: the
complexity of some singularities prevents neither the development of a general theory, nor
various classification results for those which satisfy reasonable numerical conditions.

Writing J for the Jacobson radical of Jac(f), the first and natural restriction to impose
on f is to numerically constrain the growth of successive quotients of the chain of ideals

Jac(f) ⊇ J ⊇ J2 ⊇ · · · .
This numerical growth, defined in 3.4, is called the J-dimension, and will be written
Jdim Jac(f). As explained in 3.6, since Jac(f) is a factor of a complete ring, there is no
reasonable Gelfand–Kirillov dimension, and the J-dimension replaces it.

Alongside the development of a more general theory, the motivating problem is to
extend Arnold-style classification of germs [A2] into the above noncommutative setting.

Problem 1.1. For any finite ν ≥ 0, produce a small set of potentials Sν that realise every
Jacobi algebra of J-dimension ν, up to isomorphism.

Ideally, the elements of Sν would be normal forms, namely that if f, g ∈ Sν with f 6= g,
then the resulting Jacobi algebras are not isomorphic. Building on foundational algebraic
results of Iyudu–Shkarin [IS2], in Appendix A we show that, for small J-dimension ν, 1.1
essentially reduces to a problem in d ≤ 2 variables.

We will focus mainly on the situation ν ≤ 1, which is already highly non-trivial. Below
we will observe, in the noncommutative context, exactly the same phenomena as in Arnold
[A2], whereby such precise numerical restrictions are often only motivated afterwards, by
their answer and by the incredibly rich families that they describe. The restriction ν ≤ 1
is also, happily, the condition needed for the applications to birational geometry. We do
however remark that it is not even clear that the set S0 is countable, never mind S1, and
there is certainly no prima facie reason why ADE should enter.

1.2. Noncommutative ADE Normal Forms. We now introduce the ADE families
that will turn out to solve 1.1 when ν ≤ 1. The main results regarding what precisely
these families classify are stated later, in §1.3.

It is a feature of singularity theory that it is often not possible to rigorously define a
series until after it has been classified. In the subsections that follow we will use vari-
ous different phenomena to explain the ADE names of the families, but it is only after
classification that one can make the moves needed to extract this ADE information. As
such, the definition of the families below follows the usual pattern of classical singularity
theory: their definition comes first, and their justification comes afterwards.

Below, we view the families with ν = 0 as the noncommutative version of simple
singularities of [A2], and we view the ν = 1 families as the ‘limit’ of the ν = 0 case, thus
the noncommutative versions of the singularities A∞ and D∞ of [BGS].

Type Name Normal form Conditions

A An z21 + . . .+ z2d−2 + x2 + yn n ≥ 2

D
Dn,m z21 + . . .+ z2d−2 + xy2 + x2n + x2m−1 n,m ≥ 2,m ≤ 2n− 1

Dn,∞ z21 + . . .+ z2d−2 + xy2 + x2n n ≥ 2

E
E6,n z21 + . . .+ z2d−2 + x3 + xy3 + yn n ≥ 4

z21 + . . .+ z2d−2 + x3 + O4 (various cases)

Table 1. J-dimension 0 normal forms

With the above caveats, for any d ≥ 2 consider the normal forms in Table 1. The
big O notation is explained in §1.8. It is possible to write Type D in the unified manner
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z21 + . . .+z2d−2 +xy2 +x2n +εx2m−1 where ε is either 0 or 1, but often it will be preferable
to regard them as two distinct families, both of Type D. In addition to the fact that
Type D is larger than in the classical case, what is perhaps much more remarkable is that
in Type E there are infinitely many cases: the family E6,n stated, together with various
other examples all of the form x3 + O4, whose expressions are more complicated and will
be optimised elsewhere [BW4].

Taking the limit n → ∞ of the above forms gives the normal forms of Table 2, where
again all are optimised, except the very last line. The classical case admits precisely two
examples, namely the singularities A∞ and D∞ of [BGS]. The noncommutative families
are thus again larger: Type D splits into two, there are infinitely many examples within
D∞,m, and Type E is no longer empty.

Type Name Normal form Conditions

A A∞ z21 + . . .+ z2d−2 + x2

D
D∞,m z21 + . . .+ z2d−2 + xy2 + x2m−1 m ≥ 2

D∞,∞ z21 + . . .+ z2d−2 + xy2

E
E6,∞ z21 + . . .+ z2d−2 + x3 + xy3

z21 + . . .+ z2d−2 + x3 + O4

Table 2. J-dimension 1 normal forms

With the benefit of hindsight, there are two reasons why one might expect the ν = 1
case to be the limit of ν = 0. First, on taking limits, the simple An and Dn families
give rise to the germs x2 and xy2, and the noncommutative families above generalise this
passage from the isolated to the non-isolated. Second, in terms of the birational geometry
of §1.7 below, contraction algebras should make sense of the feeling that divisor-to-curve
contractions are limits of infinite families of flops.

In this paper, we prove that every Jac(f) with Jdim Jac(f) ≤ 1 is isomorphic to a
normal form in Type A or D above, or has the general form stated for E. We remark
that the precise Type E normal forms stated, namely E6,n and E6,∞, are indeed genuine
examples with J-dimension zero and one respectively. However, we refrain from describing
the general case here, as we will treat all the exceptional Type E cases together, in a more
technical companion paper [BW4].

We now outline our results in more detail, before describing their applications.

1.3. Main Noncommutative Singularity Theory Results. Since constants differen-
tiate to zero, and elements with linear terms differentiate to units, we can and do assume
that f has only quadratic and higher terms, which we write as f ∈ C〈〈x〉〉≥2 or equivalently
as an explicit sum of its homogeneous pieces

f = f2 + f3 + f4 + . . .

Just as in the classical theory, a Splitting Lemma 4.5 identifies a coordinate system which
separates variables of the non-degenerate quadratic part from variables of a higher order
potential, so that without loss of generality

f = x21 + · · ·+ x2r + f≥3(xr+1, . . . , xd)

and thus we may turn attention to the potential f≥3 in, typically, fewer variables. The
number d− r is called the corank, and as in the classical case there is a more intrinsic way
of characterising it (4.3), namely as

Crk(f) = d− dimC

(
n2 + I

n2

)
(1.A)

where n = (x1 . . . , xd) and I = ((δ1f, . . . δdf)). By the above and A.13 it turns out,
in a manner pleasantly reminiscent of classical simple singularities, that the case when
Jdim Jac(f) ≤ 1 reduces to that of two variables. We rename the variables z1, . . . , zd−2, x, y
to emphasise this fact.
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The following, a consequence of the Splitting Lemma together with a degree three
preparation result, then characterises commutative Jacobi algebras in two variables. These
are precisely our Type A families in §1.2. Below we adopt the convenient abuse of notation
f ∼= g to mean Jac(f) ∼= Jac(g).

Proposition 1.2 (5.1, 5.4). If f ∈ C〈〈x〉〉≥2, then the following hold.

(1) Crk(f) ≤ 1 if and only if

f ∼=

{
z21 + . . .+ z2d−2 + x2

z21 + . . .+ z2d−2 + x2 + yn for some n ≥ 2.

Each member of the bottom family has finite dimensional Jacobi algebra, whereas
in the top case the algebra is infinite dimensional, with Jdim Jac(f) = 1.

(2) If d = 2, i.e. f ∈ C〈〈x, y〉〉, then Jac(f) is commutative if and only if Crk(f) ≤ 1.

Thus Jacobi algebras are commutative if and only if they are Type A, and so new
noncommutative invariants are needed to classify other types. The equation (1.A) does
admit an obvious generalisation, namely the higher coranks defined in §4.1, where for
f ∈ C〈〈x〉〉≥3 the second corank is

Crk2(f) = d2 − dimC

(
n3 + I

n3

)
. (1.B)

In classifying all f with Jdim Jac(f) ≤ 1, A.13 together with 1.2 then reduces us to the
case where Crk(f) = 2 and Crk2(f) = 2, 3. The lowest case Crk2(f) = 2 turns out to be
given by the Type D families in the tables of §1.2.

Theorem 1.3 (6.19). Suppose that f ∈ C〈〈x〉〉≥2 with Crk(f) = 2 and Crk2(f) = 2.

(1) Then either

f ∼=



z21 + . . .+ z2d−2 + xy2 D∞,∞

z21 + . . .+ z2d−2 + xy2 + x2m+1 with m ≥ 1 D∞,m

z21 + . . .+ z2d−2 + xy2 + x2n with n ≥ 2 Dn,∞

z21 + . . .+ z2d−2 + xy2 + x2n + x2m+1 with 2n− 2 ≥ m ≥ n ≥ 2 Dn,m

z21 + . . .+ z2d−2 + xy2 + x2m+1 + x2n with n > m ≥ 1 Dn,m

These f all have mutually non-isomorphic Jacobi algebras.
(2) Furthermore, those labelled D∞,∗ satisfy Jdim Jac(f) = 1, whilst those labelled

Dn,∗ satisfy Jdim Jac(f) = 0.

It is remarkable that all normal forms are polynomial, and even more remarkable that
all coefficients are integers. Indeed, all coefficients equal 1, and there are no continuous
parameters.

The last remaining case for which Jdim Jac(f) ≤ 1 holds is when Crk(f) = 2 and
Crk2(f) = 3. After a suitable change in coordinates, all such f have the form

f ∼= z21 + . . .+ z2d−2 + x3 + f≥4(x, y)

with some extra conditions on f≥4(x, y) to ensure that Jdim Jac(f) ≤ 1. We refer to
these potentials as Type E. The families described in both Types E6,n and E6,∞ in §1.2
are genuine examples. However there are many others; see [BW4]. Their classification
depends, in a rather more subtle manner, on naturally-defined higher coranks (see 4.9).
For example, the potential x3 + xy3 of Type E6,∞ has second corank equal to 3, with all
higher coranks equal to 4, while in contrast the potentials fn of Type E6,n for n ≥ 5 trim
those coranks to

Crk2(fn),Crk3(fn), . . . ,Crkn+6(fn) = 3, 4, 4, . . . , 4, 4, 3, 3, 2, 1, 1.

In particular Jac(fn) has dimension 4(n+ 3). Controlling normal forms in such situations
is both theoretically and computationally more difficult.
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1.4. Intrinsically Extracting ADE. It turns out that there are two, completely dis-
tinct, ways to extract ADE behaviour from the families defined above, and thus explain
the ADE naming conventions. In this section we explain the purely algebraic method; the
birational geometry method is explained in §1.5 below.

The first method is the most surprising. Consider the six algebras defined explicitly by
taking the quotient of C〈x, y〉 by one of the following six two-sided ideals(

x+ y + z

x, y, z

) (
x+ y + z

x2, y2, z2

) (
x+ y + z

x2, y3, z3

)
(
x+ y + z

x2, y3, z4

) (
x2 + y + z

(see 7.1)

) (
x+ y + z

x2, y3, z5

) (1.C)

These have dimension 1, 4, 12, 24, 40, and 60 respectively. A presentation-free description
of all six algebras, which is conceptually more compelling, uniformly describes each in
terms of the preprojective algebra of ADE Dynkin diagrams (see §7.1).

The following result allows us to associate ADE information directly to the normal
forms in §1.2, by asserting that all such Jacobi algebras generically slice to one of the
six algebras in (1.C) above. This is particularly striking, since nothing in the definition
of the families has involved any mention of only six algebras, nor any mention of the
preprojective algebra, and aside from our naming conventions, any mention of ADE. It is
not even clear that if Jdim Jac(f) ≤ 1, then Jac(f) admits a non-unit central element.

In order to consider all cases Jdim Jac(f) ≤ 1 together, below we adopt the convention
that each εi can be either 0 or 1.

Theorem 1.4 (7.7). Consider the normal forms An, Dn,m, Dn,∞, E6,n, A∞, D∞,m,
D∞,∞ and E6,∞ from §1.2. In each case, define an element s as follows

Type Normal form Conditions s

A z21 + . . .+ z2d−2 + x2 + ε1y
n n ∈ N≥2 ∪ {∞} y

D z21 + . . .+ z2d−2 + xy2 + ε2x
2n + ε3x

2m−1 m,n ∈ N≥2 ∪ {∞} x2

E z21 + . . .+ z2d−2 + x3 + xy3 + ε4y
n n ∈ N≥4 g6,n

where g6,n is defined in §7. Then the following statements hold.

(1) The element s is central in Jac(f), and furthermore Jac(f)/(s) is isomorphic to
one of the six algebras in (1.C).

(2) More specifically, Jac(f)/(s) is isomorphic to the first algebra in (1.C) when f is
in the family A∗, the second algebra in (1.C) when f is in the family D∗,∗, and
the third algebra in (1.C) when f is in the family E6,∗.

(3) For any generic central element g, the quotient Jac(f)/(g) is isomorphic to the
first algebra in (1.C) when f is in the family A∗, and the second algebra in (1.C)
when f is in the family D∗,∗.

Most of the content in the theorem lies within the third part since generic elements,
defined in 7.4, provide an intrinsic method of extracting the ADE information. The choice
of central element g6,n, which is rather involved, works for Type E6,∗, and there is also
strong evidence that generic elements there also quotient to give the correct algebra in the
sequence (1.C). Establishing this is computationally much harder, and will be addressed
elsewhere [BW4]. We remark that all other examples we know within Type E, but which
are not explicitly stated above, also factor to one of the six algebras in (1.C).

In the geometric context of §1.7 below, the generic central element g of 1.4 should
be thought of as the noncommutative version of Reid’s general elephant [R2, (1.14)].
Remarkably, the above theorem neither implies, nor is implied by, Reid’s version.

1.5. The Classification of Flops. The noncommutative singularity results in §1.3 have
immediate applications in birational geometry. The slogan is simple: whilst Arnold’s
commutative normal forms classify Du Val singularities, noncommutative normal forms
classify compound Du Val (cDV) singularities.
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The key and most remarkable special case is that the normal forms in Table 1 classify
smooth 3-fold flops [DW1, A3, JKM]. We first very briefly recall the geometric setting,
where general background is left to e.g. [KMM], before outlining the new results.

Given any crepant projective birational morphism X→ SpecR, where R is complete lo-
cal cDV singularity, there is an associated contraction algebra Acon formed by considering
noncommutative deformations of the curves above the unique closed point [DW1, DW3].
This is the finest known curve invariant associated to the contraction. When the contrac-
tion is furthermore simple, namely the reduced fibre above the origin is P1, and further X

is smooth, then it is well known [DW1, V1] that Acon
∼= Jac(f) for some f ∈ C〈〈x, y〉〉 (see

e.g. [BW1, 3.1(2)]).
Since cDV singularities are normal, necessarily Jdim Acon ≤ 1, and there is a natu-

ral geometric dichotomy. Indeed, as explained in 8.5, if Acon is a contraction algebra
associated to a crepant X→ SpecR as above, then

(1) Jdim Acon = 0 if and only if X→ SpecR is a flop, and
(2) Jdim Acon = 1 if and only if X→ SpecR is a divisorial contraction to a curve.

The only other fact we will require is that every X → SpecR has an associated ADE
type, since by Reid’s general elephant [R2, (1.14)] a generic g ∈ m slices to give an ADE
surface singularity R/g. We will say R has Type D if the generic slice is Type D, etc.

With this in mind, the results in §1.3 have immediate consequences. After first using
the normal forms to classify contraction algebras, the following then gives the analytic
classification of length two flops and beyond. It also gives the second, geometric, method
to extract ADE information from the normal forms in §1.2.

Theorem 1.5 (8.2, 8.9, 8.17, 8.10). With notation as above, the following hold:

(1) The only contraction algebras for Type A and D flops are, up to isomorphism, the
Jacobi algebras of Type A and D potentials in Table 1.

(2) All Jacobi algebras in 1.2 and 1.3 are contraction algebras.
(3) (a) Type A flops are classified by Type A normal forms in Table 1.

(b) Type D flops are classified by Type D normal forms in Table 1.

Furthermore, Type E flops are classified by Type E normal forms.

In the process of establishing 1.5 we use the examples of flops given in our previous work
[BW1], together with their generalisations [vG, Ka]. Whilst the above classifies flops using
noncommutative data, the following geometric description is perhaps more desirable.

Theorem 1.6 (8.11). There is a one-to-one correspondence between lattice points in
Figure 3 and the base singularities 0 ∈ SpecR of Type D flops, given by

(n,m) 7→ Spec

(
C[[u, v, x, y]]

u2 + v2y − x(y2n+1 + (x+ εym)2)

)
where ε = 1 if the lattice point is contained within the shaded region, and ε = 0 otherwise.
In particular, Type D flops do not admit moduli. Furthermore, the following hold.

(1) The quasi-homogeneous Type D flops are precisely those outside the shaded region,
and these are the standard Laufer family.

(2) The GV invariants n1, n2 of the flopping contraction associated to a point (n,m)
are written in green. The ovals group together flops with the same GV invariants.

It is possible to instead index the GV invariants to the classifying potentials, which we
do in Figure 4 on page 39. Either way, the important point is that not all pairs of GV
invariants n1, n2 can be realised.

Corollary 1.7 (8.13). There are no simple flopping contractions with GV invariants 5, n
with n ≥ 2. Similarly for 2m+ 1, n with m ≥ 2 and n 6= m− 1.

More generally, the E6,n normal forms in Table 1 predict the first ever infinite family
of E6 flops, and indeed this family turns out to exist. Furthermore, the various other
type E normal forms not stated precisely in Table 1 both predict and classify E7 and E8

flops. Details will appear elsewhere [BW4], with the point being that noncommutative
singularity theory predicts that GV invariants are extremely constrained.
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n

m

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • •

• • • • • • •

• • • • • •

• • • • • •

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

. . .

. . .

...
...

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8

6,2 6,3 6,4 6,5 6,6 6,7 6,8

8,3 8,4 8,5 8,6 8,7 8,8

10,4 10,5 10,6 10,7 10,8

12,5 12,6 12,7 12,8

14,6 14,7 14,8

16,7 16,8

5,1

7,2

9,3

11,4

13,5

15,7

Figure 3. Classifying Type D flops

1.6. Other cDV Applications. Our results also have applications to 3-fold divisorial
contractions to a curve. Whilst there is an extensive literature [T2, T3, Du] on extremal
(K-negative) divisorial contractions in the presence of terminal singularities, the K-trivial
case considered here is much less studied, aside from the notable [W].

In contrast to the previous section §1.5, the analogue of the Donovan–Wemyss [DW1]
conjecture for divisorial contractions to a curve remains open. A positive solution to
this conjecture would immediately imply that the normal forms in Table 2 give the full
classification of 3-fold divisorial contractions to a curve, exactly as in §1.5 where the normal
forms in Table 1 classified flops. For now, whilst the generalised conjecture remains open,
our noncommutative normal forms still have many consequences, and give unexpected
predictions.

First of all, our control of normal forms allows us to constrain possible deformations of
the fibres, by classifying the contraction algebras that can arise.

Proposition 1.8 (8.21, 8.22). The only contraction algebras for Type A and D4 smooth
divisor-to-curve contractions are, up to isomorphism, the Jacobi algebras of the Type A
and D potentials in Table 2.

The normal forms in Table 2, together with 1.8 and the generalised Donovan–Wemyss
conjecture, then predict the first and only infinite family of Type D divisorial contractions
to a curve. None of these have been seen before; the following realises the whole family.

Proposition 1.9 (8.16). Consider the element of C[[X,Y, Z, T ]] defined by

Fm :=

{
Y (Xm + Y )2 +XZ2 − T 2 if m ≥ 1

Y 3 +XZ2 − T 2 if m =∞

and set Rm = C[[X,Y, Z, T ]]/Fm. Then the following statements hold.

(1) Sing(Rm)red = (XM + Y,Z, T ) if m ≥ 1, and (Y,Z, T ) if m =∞.
(2) In either case, blowing up this locus gives rise to a crepant Type D divisorial

contraction to a curve Xm → SpecRm where Xm is smooth.
(3) The contraction algebra of Xm → SpecRm is isomorphic to Jac(xy2 + x2m+1)

when m ≥ 1, respectively Jac(xy2) when m =∞.

Thus in call cases the noncommutative forms D∞,∗ are geometrically realised by F∗.
The case m =∞ appeared in [DW4, 2.18], the infinite family is new.

More generally, the rather lonely E6,∞ normal form in Table 2 predicts a divisorial
contraction to a curve of Type E6. This also turns out to exist, and details will again
appear elsewhere [BW4]. In fact, all the evidence now strongly suggests that E6,∞ is the



8 GAVIN BROWN AND MICHAEL WEMYSS

final potential satisfying Jdim Jac(f) ≤ 1, which gives the striking geometric prediction
that divisorial contractions to a curve of Type E7 and E8 do not exist.

1.7. Contractibility and Realisation. It was conjectured in [Ka2, BW2] that in addi-
tion to being the classifying structure of contractible curves, noncommutative deformation
theory (implicit in the above) also detects which curves can be contracted. Specifically,
the conjecture asserts that a collection of crepant rational curves contracts to a point
suitably locally, without contracting a divisor, if and only if its associated noncommuta-
tive deformation algebra is finite dimensional. This should be viewed as a wide-ranging
generalisation of celebrated work of Artin [A1] (for surfaces) and Jiménez [J].

The key test case is when the curve is irreducible. One consequence of Appendix A is
that the conjecture is very reasonable: the only open case is now that of (−3, 1) curves.

Theorem 1.10 (A.15). Let C ⊂ X be an irreducible rational curve in a smooth CY 3-fold,
with NC deformation algebra Λdef , such that NC|X 6= (−3, 1). Then C ⊂ X contracts to a
point suitably locally, without contracting a divisor, if and only if dimC Λdef <∞.

Another consequence of this paper is a prediction regarding realising Jacobi algebras
from geometry. We will call f ∈ C〈〈x〉〉 geometric if it arises from geometry, that is, Jac(f)
isomorphic to the contraction algebra of some X→ SpecR described in §1.5. Based partly
on the results in this paper, and partly on extensive computer algebra searches using the
software [BCP, DGPS], we conjecture the following.

Conjecture 1.11 (The Realisation Conjecture). Every f ∈ C〈〈x〉〉 whose Jacobi algebra
satisfies Jdim Jac(f) ≤ 1 is geometric.

The conjecture being true would imply that every finite dimensional Jac(f) is symmetric
[A3, 2.6], that is HomC(Jac(f),C) ∼= Jac(f) as bimodules, a property which itself is
far from clear. In 2014 our original expectation was that contraction algebras are a
strict subset of Jacobi algebras and the task was to recognise them, but since then all
computer searches and all papers (e.g. [D]) which have tried to disprove the conjecture
have inadvertently ended up giving more evidence for it. This paper is no different.

Corollary 1.12 (8.18). Conjecture 1.11 is true, except possibly for the one remaining
unresolved case when f ∼= x3 + O4, where some further analysis is required.

In the remaining cases, it does now seem likely that all potentials f ∼= x3+O4 for which
Jdim Jac(f) ≤ 1 are isomorphic to contraction algebras of cEn singularities.

1.8. Notation and Conventions. Throughout we work over the complex numbers C,
which is necessary for various statements to hold, although any algebraically closed field
of characteristic zero would suffice. In addition, we adopt the following notation.

(1) Throughout d ≥ 1 is fixed to be the number of variables. Set x = x1, . . . , xd, and
C〈〈x〉〉 = C〈〈x1, . . . , xd〉〉.

(2) Vector space dimension will be written dimC V .
(3) C〈〈x〉〉i or C〈x〉i will denote the vector subspace of C〈〈x〉〉 consisting of homogeneous

degree i polynomials. For a formal power series g ∈ C〈〈x〉〉 we denote the graded
(necessarily polynomial) piece of degree i of g by gi ∈ C〈〈x〉〉i.

(4) Write g<d =
∑

i<d gi and g>d =
∑

i>d gi, with natural self-documenting variations
such as g≥d. Thus, for example, g = g3 + g4 + g≥5 is a power series with no terms
in degrees 0, 1 and 2, and no further conditions.

(5) Given g, h ∈ C〈〈x〉〉, write g = h+ Od as a shorthand for g<d = h<d.
(6) The previous conventions on degree introduce one typographical difficulty, namely

the compatibility with sequences. We will frequently work with sequences (fn)n≥1
of power series fn ∈ C〈〈x〉〉, and analogously we write (fn)d, (fn)<d ∈ C〈x〉 and
(fn)>d ∈ C〈〈x〉〉 for its pieces in the indicated degrees. To scrupulously avoid
confusion, we will systematically use Greek font fn to denote the nth power series
in a sequence, and not the nth degree graded piece of a single power series.

(7) The notation §x.y refers to Subsection x.y, (n.m) refers to displayed equation
(n.m), and n.m refers to statement n.m, where the type of statement – Definition,
Theorem, and so on – is usually left unspecified.
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2. Formal Automorphisms

This section reviews properties of the noncommutative formal power series C〈〈x〉〉, and
also constructions of various automorphisms of C〈〈x〉〉, mainly following [DWZ, §2]. From
the viewpoint of noncommutative singularity theory, it is the construction in §2.6 leading
to 3.7(3) that will be used heavily in later sections.

2.1. Polynomial and Power Series Notation. As in the introduction, write C〈〈x〉〉 for
formal noncommutative power series in d variables, and further write C〈x〉 = C〈x1, . . . , xd〉
for the free algebra in d variables. For either f ∈ C〈x〉 or C〈〈x〉〉 write f in terms of its
homogeneous pieces as

f = f0 + f1 + f2 + f3 + f4 + . . . ,

and define the order of f to be ord(f) = min{i | fi 6= 0}, where by convention ord(0) =∞.
For any t ≥ 0 set C〈〈x〉〉≥t = {f ∈ C〈〈x〉〉 | fi = 0 if i < t} = {f ∈ C〈〈x〉〉 | ord(f) ≥ t}, and
note that this contains the zero element.

2.2. Complete Completions. To fix notation, let m = (x1, . . . , xd) denote the two-sided
maximal ideal of the free algebra C〈x〉. The m-adic completion of C〈x〉 is

lim←−C〈x〉/m
n

which is the set of sequences (an)n≥1 of an ∈ C〈x〉/mn that satisfy an+1 + mn = an + mn

for all n, sometimes called coherent sequences.
On the other hand, consider the formal power series ring C〈〈x〉〉 in noncommutative

variables x1, . . . , xd, with two-sided maximal ideal n containing those power series with
zero constant term. There is an isomorphism

C〈〈x〉〉 ∼= lim←−C〈x〉/m
n

which sends a formal power series f to the coherent sequence (f<n + mn)n≥1. Below we
will freely make this identification, and further that the following diagrams for all i ≥ j
form an inverse limit system

C〈〈x〉〉

C〈x〉/mi C〈x〉/mj

πi πj

where the map πi sends f 7→ f<i + mi, and the horizontal map is the natural one.
Given a sequence (fi)i≥1 of elements of C〈〈x〉〉, and f ∈ C〈〈x〉〉, recall the following:

• (fi) converges to f if ∀n ≥ 1,∃N such that fi − f ∈ nn for all i ≥ N .
• (fi) is Cauchy if ∀n ≥ 1,∃N such that fi − fj ∈ nn for all i, j ≥ N .

Taking completions of non-noetherian rings in general can be subtle. However, in the
situation here, since for all i,

ni = Ker(πi) = {f ∈ C〈〈x〉〉 | f0 = . . . = fi−1 = 0},
it is clear that C〈〈x〉〉 is complete with respect to its n-adic topology. That is, every Cauchy
sequence in C〈〈x〉〉 converges.

The algebra C〈〈x〉〉 is a topological algebra with basis of the topology given by the ideals
{ni}, where ni is both open and closed. The free algebra C〈x〉 embeds as a dense subalgebra
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of C〈〈x〉〉, and the ideal nn is the closure of mn, or equivalently, nn is the smallest closed

ideal that contains all monomials xa1
1 . . . xad

d of degree
∑d

k=1 ak = n.

2.3. Formal Automorphisms. As input, consider a sequence of algebra isomorphisms
(φi : C〈x〉/mi → C〈x〉/mi)i≥1 for which

C〈x〉/mi C〈x〉/mj

C〈x〉/mi C〈x〉/mj

φi φj (2.A)

commutes for all i ≥ j. Then the universal property for the m-adic completion lifts these
to an algebra automorphism φ : C〈〈x〉〉 → C〈〈x〉〉 such that the following diagram commutes:

C〈〈x〉〉

C〈x〉/mi C〈x〉/mj

C〈〈x〉〉

C〈x〉/mi C〈x〉/mj

φi φj

πi πj

πi πj

φ

(2.B)

The following special case will be important later. For any fixed f1, . . . , fd ∈ n2 ⊂ C〈〈x〉〉,
consider the algebra homomorphisms

ϕi : C〈x〉/mi → C〈x〉/mi

defined by sending xk +mi 7→ xk +(fk)<i +mi for each 1 ≤ k ≤ d. On the truncated finite
dimensional algebras C〈x〉/mi, clearly each ϕi is an algebra isomorphism, and further since
the truncation of a truncation is itself a truncation, (2.A) applied to the ϕi commutes.
As a consequence, (2.B) induces an automorphism ϕ : C〈〈x〉〉 → C〈〈x〉〉.

Definition 2.1. Given f1, . . . , fd ∈ n2, the aboveϕ : C〈〈x〉〉 → C〈〈x〉〉 is called a unitriangular
automorphism. We will abuse notation slightly and write

C〈〈x〉〉 → C〈〈x〉〉
xk 7→ xk + fk

for ϕ, since indeed ϕ is induced by such morphisms on the truncations C〈x〉/mi. For
e ≥ 1 we say that ϕ has depth e provided that f1, . . . , fd ∈ ne+1.

Lemma 2.2. With notation as above, the following statements hold.

(1) A C-algebra homomorphism ϕ : C〈〈x〉〉 → C〈〈x〉〉 is a unitriangular automorphism
of depth e ≥ 1 if and only if ϕ(f)≤e = f≤e for every f ∈ C〈〈x〉〉.

(2) If ϕ and ψ are unitriangular automorphisms of C〈〈x〉〉 of depth e1 ≥ 1 and e2 ≥ 1
respectively, then their composition ψ ◦ ϕ is a unitriangular automorphism, of
depth min{e1, e2}.

Remark 2.3. Any homomorphism ϕ : C〈〈x〉〉 → C〈〈x〉〉 is continuous. Indeed, ϕ−1(n) is
the kernel of the surjective composition

C〈〈x〉〉 ϕ−→ C〈〈x〉〉 −→ C〈〈x〉〉/n

hence C〈〈x〉〉/ϕ−1(n) ∼= C and so ϕ−1(n) = n since n is the unique maximal ideal. In par-
ticular, in the language of [Wa, 5.10], any algebra automorphism of C〈〈x〉〉 is automatically
a topological isomorphism, since its inverse is automatically continuous.
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2.4. Limits of unitriangular automorphisms. Under specific situations, it is possible
to build a sequence of automorphisms ϕ1,ϕ2, . . . of C〈〈x〉〉, and take their limit.

For this, consider any d sequences (g1i )i≥1, . . . , (g
d
i )i≥1, where each gki ∈ ni+1. By 2.1

these give rise to a sequence of unitriangular automorphisms ϕ1,ϕ2, . . . where

ϕi : C〈〈x〉〉 → C〈〈x〉〉
xk 7→ xk + gki .

Again, the above are induced from the corresponding maps xk + mj 7→ xk + (gki )<j + mj

on the truncations C〈x〉/mj , and where each ϕi has depth i. To ease the subscripts in the
notation below, we will also write ϕi for these morphisms viewed on the truncations.

Given this abuse of notation, for all i ≥ j ≥ 1 we claim that the following diagram
commutes, where if i = 1 or j = 1 then the corresponding vertical map is the identity.

C〈x〉/mi C〈x〉/mj

C〈x〉/mi C〈x〉/mj

ϕi−1◦···◦ϕ1 ϕj−1◦···◦ϕ1 (2.C)

To see this, note that since each gki ∈ ni+1, it follows (in the case i > j) that the bottom
square in the following diagram commutes:

C〈x〉/mi C〈x〉/mj

C〈x〉/mi C〈x〉/mj

...
...

C〈x〉/mi C〈x〉/mj

C〈x〉/mi C〈x〉/mj

ϕ1 ϕ1

ϕ2 ϕ2

ϕj−1 ϕj−1

ϕi−1◦···◦ϕj Id

Since we are abusing notation, the higher squares commute simply since the truncation
of a truncation is itself a truncation. Thus all squares commute, establishing (2.C).

Setting ϑi := ϕi−1 ◦ · · · ◦ ϕ1 : C〈x〉/mi → C〈x〉/mi, again with the convention that
ϑ1 = Id, then each ϑi is an automorphism since each ϕt is. Thus (2.A) induces, through
(2.B), an automorphism of C〈〈x〉〉 such that for all i ≥ j the following diagram commutes.

C〈〈x〉〉 C〈〈x〉〉

C〈x〉/mi C〈x〉/mi

∃

πi πi

ϑi

(2.D)

Write lim←−ϕ
n · · ·ϕ1 for this induced automorphism.

Lemma 2.4. With notation and assumptions as directly above, for any f ∈ C〈〈x〉〉 the
sequence (ϕn · · ·ϕ1(f))n≥1 has limit lim←−ϕ

n · · ·ϕ1(f).

Proof. Set F = lim←−ϕ
n · · ·ϕ1, then it suffices to prove that for all n ≥ 1, there exists N

such that ϕt · · ·ϕ1(f)− F (f) ∈ nn for all t ≥ N . This follows since for all i > n

F (f) + nn
(2.D)
= ϕn−1 · · ·ϕ1(f) + nn

(2.C)
= ϕi−1 · · ·ϕ1(f) + nn. �
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2.5. Closure and Cyclic Permutation.

Definition 2.5. For any subset S ⊂ C〈〈x〉〉, its closure is defined to be

S =

∞⋂
i=0

(S + ni).

That is, b ∈ S if and only if for all i ≥ 0, there exists si ∈ S such that b− si ∈ ni.

Notation 2.6. For A := C〈〈x〉〉, consider {A,A}, the commutator vector space of C〈〈x〉〉.
That is, elements of {A,A} are finite sums

n∑
i=1

λi(aibi − biai)

for elements ai, bi ∈ C〈〈x〉〉 and λi ∈ C. Write {{A,A}} for the closure of the commutator
vector space {A,A}. Note that {{A,A}} is only a vector space, not an ideal.

Definition 2.7. Two elements f, g ∈ C〈〈x〉〉 are called cyclically equivalent, or f is said to
cyclically permute to g, if f − g ∈ {{A,A}}. We write f ∼ g in this case.

Remark 2.8. This notion of cyclic equivalence applied a pair of polynomials is finite and
elementary: it is generated over C by commutators [m1,m2] of monomials mi ∈ C〈x〉.
With that in mind, 2.7 is then the natural notion for formal power series, as f ∼ g means
precisely that fd ∼ gd in every degree d, and no more: the closure merely handles the
possibility that f and g may differ by infinitely many such operations.

2.6. Chasing into Higher Degrees. The following will be one of our main techniques
for producing normal forms of potentials in C〈〈x〉〉. The basic idea is to start with a given f ,
then produce an infinite sequence of automorphisms which chase terms into higher and
higher degrees. Taking limits then gives a single automorphism which takes f to the
desired normal form. The subtle point is that at each stage the automorphisms in (2)
below only give the desired elements up to cyclic permutation. As such, the content in
the following is that, with care, limits interact well with cyclic permutation.

Theorem 2.9. Let f ∈ C〈〈x〉〉, and set f1 = f . Suppose that there exist elements f2, f3, . . .
and automorphisms ϕ1,ϕ2, . . . such that

(1) Every ϕi is unitriangular, of depth of ≥ i, and
(2) ϕi(fi)− fi+1 ∈ {{A,A}} ∩ ni+1, for all i ≥ 1.

Then lim fi exists, and there exists an automorphism F such that F (f) ∼ lim fi.

Proof. The proof follows the strategy used in [DWZ, 4.7], but as the axiomatics are
different here, we give the full proof. By §2.4 there is an automorphism F := lim←−ϕ

n · · ·ϕ1.

Since the depth of ϕi is ≥ i, by 2.2(1) ϕi(fi) differs from fi only in degrees > i. By (2),
ϕi(fi) differs from fi+1 only in degrees > i. Hence fi+1 differs from fi only in degrees
> i, from which it easily follows that (fn) is a Cauchy sequence. Since Cauchy sequences
converge in C〈〈x〉〉, the limit lim fi exists.

Set ci = ϕi(fi)− fi+1 ∈ {{A,A}} ∩ ni+1. Since f = f1, it is easy to see that

ϕn · · ·ϕ1(f) = fn+1 +

n∑
t=1

ϕn · · ·ϕt+1(ct)

= fn+1 +ϕn · · ·ϕ1

(
n∑

t=1

(ϕt · · ·ϕ1)−1(ct)

)
(2.E)

where ϕn · · ·ϕt+1 is the identity when t = n. By 2.4 the left hand side has limit F (f).
The first part of the right hand side has limit lim fi, which exists by above. We next
claim that the rightmost term has limit F (g), where g is the limit of the sequence
(
∑n

t=1(ϕt · · ·ϕ1)−1(ct))n≥1.
First, g exists, since by (2) ci ∈ ni+1, and so since automorphisms preserve the

maximal ideal, (ϕt · · ·ϕ1)−1(ct) ∈ nt+1 for all t. It follows easily that the sequence(∑n
t=1(ϕt · · ·ϕ1)−1(ct)

)
n≥1 is Cauchy, and so its limit g exists in C〈〈x〉〉. Given this, the
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fact that the sequence
(
ϕn · · ·ϕ1(

∑n
t=1(ϕt · · ·ϕ1)−1(ct))

)
n≥1 has limit F (g) follows, since

for all i > n

F (g) + nn+1 = ϕn · · ·ϕ1(πn+1(g)) + nn+1 (by (2.D))

= ϕn · · ·ϕ1

(
n∑

t=1

(ϕt · · ·ϕ1)−1(ct) + nn+1

)
+ nn+1

(since (ϕt · · ·ϕ1)−1(ct) ∈ nt+1)

= ϕn · · ·ϕ1

(
i∑

t=1

(ϕt · · ·ϕ1)−1(ct) + nn+1

)
+ nn+1 (add zero)

= ϕi · · ·ϕ1

(
i∑

t=1

(ϕt · · ·ϕ1)−1(ct)

)
+ nn+1. (by (2.C))

Combining with (2.E) and taking limits it follows that

F (f) = lim fi + F (g). (2.F)

Now, it is easy to check that automorphisms preserve {{A,A}}, so each term in the sequence(
ϕn · · ·ϕ1(

∑n
t=1(ϕt · · ·ϕ1)−1(ct))

)
n≥1 belongs to {{A,A}}. But since C〈〈x〉〉 is complete,

every Cauchy sequence within a closed set has limit in that closed set. It follows that the
limit g ∈ {{A,A}}. One final application of the fact that automorphisms preserve {{A,A}}
shows that F (g) ∈ {{A,A}}, and so F (f) ∼ lim fi. �

2.7. Elementary Properties of Closed Ideals. We finish this section with some tech-
nical results on closed ideals that are used throughout §6–§8.

Notation 2.10. When I is an ideal, write ((I)) for its closure (in the sense of 2.5), which
is again an ideal since the ring operations are continuous. Note that ((I)) need not be
finitely generated, even if I is.

For a finite set of elements S in C〈〈x〉〉, consider the closed ideal ((S)) = ((s | s ∈ S)).

Lemma 2.11. Let S be a finite subset of elements in C〈〈x〉〉, and f1, . . . , fs ∈ C〈〈x〉〉. Then
the following statements hold.

(1) ((f1, . . . , fs)) = ((f1u1, . . . , fsus)) for any units u1, . . . , us ∈ C〈〈x〉〉.
(2) ((f + ((S)) )) = ((f, s | s ∈ S))/((S)) in C〈〈x〉〉/((S)).
(3) If ψ : C〈〈x〉〉/((S))→ C〈〈x〉〉/((S)) is a topological isomorphism which sends f+((S)) 7→

g + ((S)), for two elements f, g ∈ C〈〈x〉〉, then there is an induced topological iso-
morphism

C〈〈x〉〉
((f, s | s ∈ S))

∼=−→ C〈〈x〉〉
((g, s | s ∈ S))

.

Proof. (1) ((f1, . . . , fs)) is the smallest closed ideal containing all fi. Since fi = (fiui)u
−1
i ∈

((f1u1, . . . , fsus)) for each i, by minimality ((f1, . . . , fs)) ⊆ ((f1u1, . . . , fsus)). Repeating the
same argument to fiui ∈ ((f1, . . . , fs)), the converse inclusion also holds.
(2) Certainly ((f + ((S)) )) = I/((S)) for some ideal I, given it is an ideal of the quotient.
This ideal I is closed by [Wa, 5.2], since the map to the quotient is continuous, and hence
the inverse image of a closed set is closed. This closed ideal I contains both f and S, and
so ((f, s | s ∈ S)) ⊆ I.

On the other hand ((f + ((S)) )) is the smallest closed ideal containing f + ((S)). Setting
A = C〈〈x〉〉, J = ((S)), andH = ((f, s | s ∈ S)), the third isomorphism theorem for topological
rings [Wa, 5.13] asserts that there is a topological isomorphism

(A/J)/(H/J) ∼= A/H.

In particular, A/H is Hausdorff, since H is closed in A, by [Wa, 5.7(1)] applied to A.
This being the case, H/J is closed in A/J , by [Wa, 5.7(1)] applied to A/J . Hence
((f, s | s ∈ S))/((S)) is a closed ideal, which clearly contains f + ((S)). By minimality
((f + ((S)) )) = I/((S)) ⊆ ((f, s | s ∈ S))/((S)) and thus I ⊆ ((f, s | s ∈ S)). Combining
inclusions, the required equality holds.
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(3) Since ψ is a continuous isomorphism, the closed ideal generated by f+((S)) corresponds
to the closed ideal generated by g + ((S)). Thus there is a topological isomorphism

C〈〈x〉〉/((S))

((f + ((S))))
−→ C〈〈x〉〉/((S))

((g + ((S))))
.

Now by (2) we have ((f + ((S)) )) = ((f, s | s ∈ S))/((S)), and likewise for g. The statement
follows by the third isomorphism theorem for topological rings [Wa, 5.13]. �

3. Jacobi Algebras

3.1. Differentiation. Consider the C-linear maps 6i : C〈〈x〉〉 → C〈〈x〉〉 which simply ‘strike
off’ the leftmost xi of each monomial, in other words act on monomials via the rule

6i(m) =

{
n if m = xin

0 otherwise.
(3.A)

The C-linear cyclic symmetrisation map cyc: C〈〈x〉〉 → C〈〈x〉〉 on monomials sends

xi1 . . . xit 7→
t∑

j=1

xijxij+1
. . . xit · xi1 . . . xij−1

.

Combining these two gives the cyclic derivatives. These are the C-linear maps δi : C〈〈x〉〉 →
C〈〈x〉〉 which on monomials send

xi1 . . . xit 7→ 6i cyc(xi1 . . . xit) =
t∑

j=1

6i(xijxij+1
. . . xit · xi1 . . . xij−1

). (3.B)

Definition 3.1. For f ∈ C〈〈x〉〉, the Jacobi algebra is defined to be

Jac(f) =
C〈〈x〉〉

((δ1f, . . . , δdf))

where ((δ1f, . . . , δdf)) :=((δf)) is the closure of the two-sided ideal (δ1f, . . . , δdf).

In general, the quotient of a complete topological ring by a closed ideal is always
separated, but it need not be complete.

Notation 3.2. For any ring R, write J(R) for its Jacobson radical. If I is any ideal of R
contained in J(R), then J(R/I) = J(R)/I (see e.g. [L1, 4.6]).

(1) It is clear that J(C〈〈x〉〉) = n. If f ∈ C〈〈x〉〉≥2, then ((δf)) is contained in n, and so
J(Jac(f)) = n/((δf)), and furthermore J(Jac(f))

n
=
(
nn + ((δf))

)
/((δf)) for n ≥ 2.

(2) The topology on C〈〈x〉〉 is an ideal topology generated by powers of n, so the natural
quotient topology on the quotient Jac(f) is induced by powers of the image of n in
the quotient [Wa, 5.5]. Thus, by (1), provided f ∈ C〈〈x〉〉≥2 then the topology on
both C〈〈x〉〉 and Jac(f) is the radical-adic topology. Since ((δf)) is closed, Jac(f) is
Hausdorff [Wa, 5.7(1)]. Under extra assumptions it is also complete; see 8.4(3).

Remark 3.3. A (polynomial or) power series f =
∑
fi ∈ C〈〈x〉〉 is called cyclically sym-

metric if cyc(fi) = ifi for each graded piece fi ∈ C〈x〉. It is possible to phrase the whole
paper using only cyclically symmetric potentials, however this becomes notationally un-
manageable in §4–§6, since the property of being cyclically symmetric is not preserved
under change variables. Thus from the viewpoint of noncommutative singularity theory,
it is much more natural to work with plain old elements of C〈〈x〉〉. There are times when
passing to cyclically symmetric potentials is convenient, but this is confined entirely to
§A.2.

3.2. Dimension. Being a quotient of formal noncommutative power series, determining
which dimension to use for Jac(f) is a subtle point.

Definition 3.4. For f ∈ C〈〈x〉〉≥2, we say that Jac(f) has polynomial growth (with respect
to J) if there exist c, r ∈ R such that dim Jac(f)/Jn ≤ cnr for all n ∈ N. In the case
that Jac(f) has polynomial growth, then the J-dimension of Jac(f) is the degree of that
growth, precisely

Jdim Jac(f) := inf {r ∈ R≥0 | for some c ∈ R, dim Jac(f)/Jn ≤ cnr for every n ∈ N} ,
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and Jdim Jac(f) =∞ otherwise.

The J-dimension is analogous to the usual dimension of a commutative noetherian local
ring (A,m), defined as the degree of the characteristic polynomial χm(n) = `(A/mn),
where, in that context, the dimension is necessarily an integer [AM, 11.4, 11.14].

Lemma 3.5. If Jdim Jac(f) ≤ 1, then either Jdim Jac(f) = 0 or Jdim Jac(f) = 1.

Proof. Certainly Jac(f)/Jn+1 � Jac(f)/Jn for all n ≥ 1, with equality if and only if
Jn+1 = Jn. If each such map has nontrivial kernel, then dim Jac(f)/Jn ≥ n and so
Jdim Jac(f) ≥ 1. Otherwise, by Nakayama’s Lemma, Jn = 0 for some n, hence nn ⊂ ((δf))
and so dimC Jac(f) ≤ dimC〈〈x〉〉/nn = 2n − 1 and Jdim Jac(f) = 0. �

Remark 3.6. The J-dimension is used throughout, since it is better suited to the complete
local situation than the GK dimension [KL]. Indeed, it is well-known that the GK dimen-
sion does not behave well with respect to completions. For example, GKdimC[[x]] = ∞
whereas JdimC[[x]] = 1. Compare [AB, §3.4], and in particular [AB, §5.6]. Furthermore,
Jdim Jac(f) = 0 if and only if dimC Jac(f) <∞, a property which does not hold for GK
dimension since Jac(f) is not finitely generated.

3.3. Equivalences and Isomorphisms. In what follows, recognising and producing
isomorphisms of Jacobi algebras will be key. The following techniques will be used exten-
sively. The first is trivial, but worth recording since it gives great flexibility in proofs; the
second two are more substantial with Part (2) being [DWZ, 3.7], and Part (3) following
from (2), together with 2.9. Recall the notation f ∼ g from 2.7.

Summary 3.7. Suppose that f ∈ C〈〈x〉〉.
(1) If f cyclically permutes to g, so f ∼ g, then Jac(f) ∼= Jac(g).
(2) If ϕ ∈ AutC〈〈x〉〉 then Jac(f) ∼= Jac(g), where g = ϕ(f).
(3) Set f1 = f . If there exist f2, f3, . . . and automorphisms ϕ1,ϕ2, . . . such that

(a) every ϕi is unitriangular of depth of ≥ i, and
(b) ϕi(fi)− fi+1 ∈ {{A,A}} ∩ ni+1, for all i ≥ 1,
then the sequence (fi)i≥1 converges and Jac(f) ∼= Jac(g) where g = lim fi.

Lemma 3.8. Let f ∈ C〈〈x〉〉, and m ∈ C〈〈x〉〉 be a monomial. Then the following hold.

(1) cyc(m) ∼ deg(m)m.

(2) If f contains λm, then f ∼ f + λ
(

1
degm cyc(m)−m

)
.

(3) Let h be the sum of terms of f whose monomials appear in cyc(m). Then

f ∼ f − h+ α cyc(m) ∼ f − h+ α deg(m)m,

for some α ∈ C.

Proof. Writing m = m1m2 . . .mr, where each mi is a variable xj(i), we have

rm− cyc(m) = (r − 1)m1 . . .mr −m2 . . .mrm1

−m3 . . .mrm1m2 − · · · −mrm1 . . .mr−1

= [m1,m2 . . .mr] + [m1m2,m3 . . .mr] + · · ·+ [m1 . . .mr−1,mr]

and (1) follows. (2) follows at once from (1). The final claim (3) follows by applying (2)
to each monomial of h in turn. �

Below it will be convenient to work with the following three equivalence relations.

Definition 3.9. For elements f, g ∈ C〈〈x〉〉, (recall and) define

(1) f ∼ g if f − g ∈ {{C〈〈x〉〉,C〈〈x〉〉}} (see 2.7).
(2) f ' g if there is an equality of ideals ((δ1f, . . . , δdf)) = ((δ1g, . . . , δdg)).
(3) f ∼= g if there is an isomorphism of algebras Jac(f) ∼= Jac(g).

Clearly f ∼ g implies f ' g implies f ∼= g, but the converse implications do not hold.
The relation ∼ is additive by definition, but ' is not: x2 +y3 ' x2 +2y3 but x2 6' x2 +y3.

The Jacobi isomorphism relation ∼= is the equivalence relation that we will classify up
to, but the others help understand the structure of the various arguments. For example,
by 2.9, the symmetrisation relation ∼ behaves well in limits. It appears to permit creation
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from the void, in the sense that 0 ∼ xy − yx, but of course this form has all derivatives
zero, so does not contribute to Jacobi ideals. The relation ' is useful for cancelling high
order terms in potentials (see e.g. the proof of 6.5), whereas ∼= is most suited to, and is
often a by-product of, analytic changes in coordinates.

4. NC Singularity Theory 101

4.1. Corank and the Splitting Lemma. The closed vector subspace of commutators
{{C〈〈x〉〉,C〈〈x〉〉}} generates the much larger closed ideal of commutators, and the quotient of
C〈〈x〉〉 by this ideal is the ring of commutative power series C[[x1, . . . , xd]]. The quotient, or
‘abelianisation’, map C〈〈x〉〉 → C[[x1, . . . , xd]] written g 7→ gab simply takes the expression
for g to the same expression in the commutative ring.

Lemma 4.1. With notation as above, the following hold:

(1) The abelianisation map C〈〈x〉〉 → C[[x1, . . . , xd]] is continuous and surjective.
(2) For any f ∈ C〈〈x〉〉, the map f 7→ fab descends to a surjection

Jac(f) �
C[[x1, . . . , xd]]

(( 6fab/ 6xi | i = 1, . . . , n))
. (4.A)

Proof. (1) At the level of ideals, nk � nkab for every k ≥ 0, since abelianisation is a ring
homomorphism mapping each xi to xi.
(2) Since (δif)ab = 6fab/ 6xi, where 6/ 6xi is the usual differentiation of commutative
functions, surjectivity at the level of (unclosed) Jacobian ideals follows. Since the abeliani-
sation map is continuous and surjective by (1), this passes to their closures, as claimed. �

Below we will consider

Jac(f)ab :=
C[[x1, . . . , xd]]

(( 6fab/ 6xi | i = 1, . . . , n))
=

C[[x1, . . . , xd]]

( 6fab/ 6xi | i = 1, . . . , n)

where, since C[[x1, . . . , xd]] is commutative noetherian, all ideals are closed [M1, 8.1(1)].

Remark 4.2. In classical singularity theory, for g ∈ C[[x1, . . . , xd]] both the Milnor algebra
C[[x1, . . . , xd]]/(δ1g, . . . , δdg) and the Tjurina algebra C[[x1, . . . , xd]]/(g, δ1g, . . . , δdg) are
defined, and play a major role. In the noncommutative setting, the analogous Tjurina
algebra is not well defined on ∼ classes. For example, the potentials 0 ∼ xy−yx determine
the same Jacobi algebra, but their naively-defined Tjurina algebras are C〈〈x, y〉〉 and C[[x, y]]
respectively. To have any hope of classifying elements in the completed free algebra, some
identification is required, and for us identifying ∼ classes is essential for applications.
Compare [HZ], where the lack of a noncommutative Tjurina algebra motivates the use of
Hochschild classes to generalise Saito’s theorem on homogeneous potentials.

Definition 4.3. For f ∈ C〈〈x〉〉≥2, the corank of f is defined to be

Crk(f) = dimC

(
J

J2

)
where J is the Jacobson radical of Jac(f).

Remark 4.4. Clearly 0 ≤ Crk(f) ≤ d. Since J/J2 ∼= (n + I)/(n2 + I), where I = ((δf)),
the exactness of the sequence of C〈〈x〉〉/n = C-vector spaces

0 −→ n2 + I

n2
−→ n

n2
−→ n + I

n2 + I
−→ 0

shows that Crk(f) = d − dimC

(
n2+I
n2

)
, so that the corank is determined by the linear

conditions imposed by derivatives, and is therefore uniquely determined by f2.

Theorem 4.5 (Splitting Lemma). Let f ∈ C〈〈x〉〉. Then f ∼= x21 + · · · + x2r + g for some
g ∈ C〈〈xr+1, . . . , xd〉〉≥3, where d− r = Crk(f). In particular,

Jac(f) ∼=
C〈〈xr+1, . . . , xd〉〉

((δxr+1
g, . . . , δxd

g))
.

Proof. This is [DWZ, 4.5] for the d-loop quiver. Since ord g ≥ 3, the derivatives of g
impose no linear conditions, so necessarily d− r = Crk(f). �
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4.2. Golod–Shafarevich–Vinberg. The classical approach to growth of algebras comes
from the Golod–Shafarevich theorem [GS], adapted by Vinberg [V3] to power series; see
also [E2]. This result constrains f to achieve Jdim Jac(f) <∞, and we develop a stronger
version in 4.7 adapted to Jacobi algebras.

Theorem 4.6 (Golod–Shafarevich, Vinberg). Let I = (g1, . . . , gs) ⊂ C〈〈x〉〉 be an ideal,
set ri = ord gi for each i = 1, . . . , s, and write h = 1 − dt + tr1 + · · · + trs ∈ R[[t]]. If the
coefficients of (1− t)/h are non negative, then dimC C〈〈x〉〉/((I)) =∞.

In most cases where the result applies, one can in fact show exponential growth. The
Golod–Shafarevich–Vinberg estimates readily show that JdimC〈〈x〉〉/((g1, . . . , gd)) = ∞ in
the following cases:

(1) d = 2 with either r1 ≥ 3, r2 ≥ 8, or r1 ≥ 4, r2 ≥ 5.
(2) d = 3 with either r1 ≥ 2, r2, r3 ≥ 3, or r1 = r2 = 2, r3 ≥ 5.
(3) d ≥ 4 with ri ≥ 2 for every i.

For example, in the case d = 4, it is sufficient to observe the exponential growth of

(1− t)(1− 4t+ 4t2)−1 = (1− t)(1 + 4t+ 12t2 + 32t3 + 80t4 + . . .+ (1 + k)2ktk + . . .)

= 1 + 3t+ 8t2 + 20t3 + 48t4 + . . .+ (2 + k)2k−1tk + . . .

as this bounds the growth of the algebra from below in the case of an order 3 potential
with four order 2 derivatives.

Setting aside quadratic terms by the Splitting Lemma, this then puts constraints on
the motivating problem 1.1. Indeed, if f ∈ C〈〈x〉〉≥3 and Jdim Jac(f) <∞, then either

(1) d = 2, ord f ≤ 5 and f≤5 6∼ `5 for a linear form ` = `(x1, x2), or
(2) d = 3, ord f = 3, and f3 6∼ `3 for a linear form ` = `(x1, x2, x3).

It turns out that these estimates can be substantially improved, but this requires much
more work. Iyudu and collaborators [ISm, IS2] introduce several new ideas that exploit
the Jacobi structure; in Appendix A we extend their techniques into the power series
context, and establish the following. Recall that x = x1, . . . , xd.

Theorem 4.7 (A.13). Suppose that d = 2 and k ≥ 4, or d ≥ 3 and k ≥ 3. If f ∈ C〈〈x〉〉
has order k, then Jdim Jac(f) ≥ 3.

Remark 4.8. Together with the Splitting Lemma, the above 4.7 reduces the classification
of those f satisfying Jdim Jac(f) ≤ 1 to the case of two variables (d = 2).

4.3. Higher Coranks. Higher-degree versions of the corank exist, and contain more
detailed information about Jacobi algebras.

Definition 4.9. Let f ∈ C〈〈x〉〉≥2. For m ≥ 1, the mth corank of f is defined to be

Crkm(f) = dimC

(
Jm

Jm+1

)
,

where J is the Jacobson radical of Jac(f). We also define Crk0(f) = dimC Jac(f)/J = 1
and note that Crk1(f) = Crk(f).

Remark 4.10. Since Jm/Jm+1 ∼= (nm + I)/(nm+1 + I), the exactness of the sequence of
C〈〈x〉〉/n = C-vector spaces

0→ nm ∩ I
nm+1 ∩ I

∼=
(nm ∩ I) + nm+1

nm+1
→ nm

nm+1
→ nm + I

nm+1 + I
→ 0

shows that Crkm(f) = dm − dimC
(

nm∩I
nm+1∩I

)
; compare [V3, (4)]. Thus the mth corank is

determined by the conditions imposed on the leading terms of elements of the Jacobian
ideal of order exactly m. In particular, 0 ≤ Crkm(f) ≤ dm. If ord(f) ≥ m+ 1, then

(nm ∩ I) + nm+1

nm+1
∼=

nm+1 + I

nm+1

matching (1.A), (1.B), and 4.4.
By definition, the J-dimension is the growth of the sum of coranks. Calculating the mth

corank is not necessarily straightforward: essentially it amounts to calculating a Gröbner
basis of the Jacobian ideal with a local monomial order to at least order m.
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To study Jacobi algebras Jac(f) of J-dimension ≤ 1, 4.7 constrains the number of
variables to d ≤ 2 and k = ord(f) ≤ 3. The corank controls the rank of f2. The main case
is when f2 = 0, when it is clear that 2 ≤ Crk2(f) ≤ 4. The two derivatives δxf3 and δyf3
are linearly independent when Crk2(f) = 2 and they are dependent when Crk2(f) = 3.
The case Crk2(f) = 4 holds only when f3 = 0, which is ruled out by 4.7.

This provides a numerical characterisation of the ADE types. The first Type A case
is when Crk(f) = 0, in which case Jac(f) ∼= C. In addition to this, if f ∈ C〈〈x〉〉 has
Jdim Jac(f) ≤ 1, we say f has Type A, D or E according to the following table.

Type Crk(f) Crk2(f)

A 1 1

D 2 2

E 2 3

The higher coranks provide much more detail. In Type A they provide enough information
to classify up to isomorphism, however in Type D this is not true.

Example 4.11. Consider the families Dn,∞ and Dn,m from the introduction. The higher
coranks are given by the following table.

Type f Conditions Crki(f), i = 0, 1, . . .

Dn,∞ xy2 + x2n n ≥ 2

1,

2n−1︷ ︸︸ ︷
2, . . . , 2,

2n−2︷ ︸︸ ︷
1, . . . , 1Dn,m xy2 + x2n + x2m+1 2n− 2 ≥ m ≥ n ≥ 2

Dn,m xy2 + x2m+1 + x2n n > m ≥ 1 1,

2n−1︷ ︸︸ ︷
2, . . . , 2,

2m−1︷ ︸︸ ︷
1, . . . , 1

In particular dimC Jac(f) = 6n− 3 in the first families, which is independent of m, whilst
dimC Jac(f) = 4n+ 2m− 2 in the final family.

4.4. Linear Changes in Coordinates and Discriminants. In light of 4.8, from §6
onwards we work in two non-commuting variables x and y.

The following is an immediate consequence of the Splitting Lemma and abelianisation.

Lemma 4.12. Let f ∈ C〈〈x, y〉〉≥2 with f2 = ax2 + b1xy+ b2yx+ cy2 6∼ 0. Set b = b1 + b2
and consider the discriminant ∆ = b2 − 4ac. Then f ∼= g, for some g ∈ C〈〈x, y〉〉≥2 with

g2 =

{
x2 + y2 if ∆ 6= 0

x2 if ∆ = 0.

As for the quadratic forms above, up to ∼ we may commute variables appearing in
cubic forms in C〈〈x, y〉〉, and we use this to simplify the statement of the following lemma,
writing bx2y rather than b1x

2y + b2xyx + . . . , and so on. Note that, in general, cyclic
equivalence no longer simulates commutativity in higher degree, as xyxy � x2y2.

Lemma 4.13. [I] Let f ∈ C〈〈x, y〉〉≥3 with f3 ∼ ax3+bx2y+cxy2+dy3 for some a, b, c, d ∈
C, not all zero. Let ∆ = −27a2d2 + 18abcd − 4ac3 − 4b3d + b2c2 ∈ C be the cubic
discriminant. Then f ∼= g, for some g ∈ C〈〈x, y〉〉≥3 with

g3 =



x3 + y3 if ∆ 6= 0

x2y if ∆ = 0 and


a(b2 − 3ac) 6= 0 or

(c2 − 3bd)d 6= 0 or

a = d = 0

x3 otherwise.

Thus these three leading cubic normal forms are characterised by whether fab3 has three,
two or one distinct factors respectively.
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Proof. Consider the linear automorphism of C[x, y]

x 7→ αx+ βy, y 7→ γx+ δy for α,β,γ, δ ∈ C (4.B)

that maps (f3)ab ∈ C[x, y] to one of the normal forms x3 + y3, xy2 or x3. The choice of
normal form is determined by the cubic determinant. The additional conditions on the
coefficients in the statement are simply that p 6= 0 in the depressed form after completing
the cube x3 + pxy2 + qy3, in which ∆ = −4p3 − 27q2, and accounting for the fact that
a = 0 or d = 0 or both are possible.

Let ϕ be the linear automorphism of C〈〈x, y〉〉 defined by the same formula (4.B) and
g3 ∈ C〈〈x, y〉〉 be the corresponding cubic normal form. Then ϕ(f3) ∼ g3, although they
are not equal, so ϕ(f) ∼ g3 +ϕ(f≥4). Thus f ∼= ϕ(f) ∼= g3 +ϕ(f≥4), as claimed. �

5. Type A and Commutativity

This section considers the most elementary situation, namely f ∈ C〈〈x〉〉≥2 with large
quadratic part. Normal forms are established in §5.1. Together with the linear coordinate
changes from §4.4, this proves in §5.2 that for any f ∈ C〈〈x, y〉〉≥2, the algebra Jac(f) is
commutative if and only if f has corank at most 1. This fact is used in later sections.

5.1. Normal Forms of Type A. It is notationally convenient to identify y = xd and
work in the ring C〈〈x〉〉 = C〈〈x1, . . . , xd−1, y〉〉.

Theorem 5.1. If f ∈ C〈〈x〉〉≥2 with Crk(f) ≤ 1, then there is a unique polynomial g of
the form g = x21 + · · ·+ x2d−1 + εyn for some n ≥ 2 and ε ∈ {0, 1} such that f ∼= g.

(1) If ε = 1, then Jac(f) is commutative with dimC Jac(f) = n− 1.
(2) If ε = 0, then Jac(f) is commutative with Jdim Jac(f) = 1.

Proof. By the Splitting Lemma 4.5, there is f ∈ C〈〈x1, . . . , xd−1, y〉〉 with f ∼= f and either

f =

{
x21 + · · ·+ x2d−1 + y2 if Crk(f) = 0

x21 + · · ·+ x2d−1 + q(y) if Crk(f) = 1

for some q ∈ C[[y]] with ord(q) ≥ 3.
If q is zero we are done, else after pulling out the lowest term, we can write q = ynu for

some u = cn + cn+1y+ . . . ∈ C[[y]] with cn 6= 0. The homomorphism C〈〈x1, . . . , xd−1, y〉〉 →
C〈〈x1, . . . , xd−1, y〉〉 which sends xk 7→ xk and y 7→ y n

√
u is an automorphism. Since n

√
u is

a power series only in y, it commutes with y, and so this automorphism sends
∑
x2i + yn

to
∑
x2i + ynu = f. Hence Jac(

∑
x2i + yn) ∼= Jac(f) ∼= Jac(f), as required.

Parts (1)–(2) are obvious, since Jac(
∑
x2i + yn) ∼= C[[y]]/(yn−1) and Jac(

∑
x2i ) ∼= C[[y]],

and uniqueness then follows since
∑
x2i + yn1 ∼=

∑
x2i + yn2 if and only if n1 = n2. �

Recall from the introduction our geometric applications in the setting of cDV singular-
ities. These correspond to Jacobi algebras in two non-commutating variables, so we set
d = 2 and write the variables as x, y.

Corollary 5.2. Every Jac(f), where f ∈ C〈〈x, y〉〉≥2 with f2 6= 0, is geometric.

Proof. Consider R = C[[x, y, z]]
1
2 (1,1,0), and its unique crepant resolution X → SpecR.

This has contraction algebra C[[y]] ∼= Jac(x2), realising the second case in 5.1. On the
other hand, by [DW1, 3.10] the Type A m-Pagoda flop (with m ≥ 1) has contraction
algebra C[[y]]/ym ∼= Jac(x2 + ym+1), which realises the infinite family in 5.1. �

Example 5.3. Consider f = x2 + 2
3 (xy2 + yxy+ y2x) ∈ C〈〈x, y〉〉. This has 3-dimensional

Jacobi algebra

Jac(f) ∼= C〈〈x, y〉〉/((x+ y2, xy + yx)) ∼= C[y]/y3

so, by 5.1 or Reid’s Pagoda [R2], f gives the same Jacobi algebra as g = x2 + y4. Com-
mutatively, one would see this by completing the square, but that automorphism does not
work directly in the noncommutative context: x 7→ x− 2

3y
2 gives f 7→ x2 + 2

3yxy −
8
9y

4,

and we cannot attack the yxy term by coordinate changes that preserve f2 = x2. But
f ∼ x2 + xy2 + y2x, which then allows us to complete the square (and a scalar on y) to
conclude. This exemplifies the way ∼ helps to navigate the Jacobi isomorphism classes.
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5.2. Commutativity. The following characterisation of commutative Jacobi algebras in
d = 2 variables will be used later.

Proposition 5.4. f ∈ C〈〈x, y〉〉≥2, then Jac(f) is commutative if and only if Crk(f) ≤ 1.

Proof. (⇐) is clear from 5.1. For (⇒), we prove the contrapositive. If Crk(f) 6≤ 1, then
f2 = 0, and we need to prove that Jac(f) is not commutative. For this, it suffices to exhibit
a factor that is not commutative. By 4.13 without loss of generality we can assume that f
equals

x3 + y3 + O4, xy2 + O4, x3 + O4 or O4.

Write M3 for the set of all noncommutative monomials of degree 3, then factor by the
ideal ((δxf, δyf,M3))/((δxf, δyf)) in Jac(f). But in the four cases above, by differentiating
then using the third isomorphism theorem it follows that Jac(f) is one of

C〈〈x, y〉〉
((x2, y2,M3))

,
C〈〈x, y〉〉

((y2, xy + yx,M3))
,

C〈〈x, y〉〉
((x2,M3))

, or
C〈〈x, y〉〉
((M3))

.

None of these factors is commutative, and so Jac(f) is not commutative. �

6. Type D normal forms

This section considers the next case, namely those f ∈ C〈〈x〉〉≥2 with Crk(f) = 2 and
Crk2(f) = 2. Reducing to two variables by the Splitting Lemma 4.5, the assumption
Crk2(f) = 2 is then equivalent to the first two cases in 4.13, namely those f ∈ C〈〈x, y〉〉≥3
with f3 6= 0 for which fab3 has either two or three distinct linear factors. Full normal forms
are obtained in both situations, and are then merged into a unified form in §6.4. These
are the Type D normal forms in the tables in §1.2.

Throughout this section, it will be convenient to adopt the following language.

Definition 6.1. We say that a monomial m ∈ C〈〈x, y〉〉 contains x2 if m ∼ nx2 for some
monomial n, else m does not contain x2. Similarly, an element f ∈ C〈〈x, y〉〉 contains x2 if
for some (nonzero) term λm of f , the monomial m contains x2, else f does not contain x2.
We also use the analogous expressions for y2.

6.1. Abelianized Cubic with Three Factors. This subsection considers the case of
4.13 where fab3 has three distinct factors, that is f ∼= x3 + y3 + O4, and in 6.5 and 6.7
provides two different, but equivalent, normal forms.

Recall from 2.2(1) that a unitriangular automorphism ϕ of C〈〈x〉〉 has depth e ≥ 1 if
and only if ϕ(f)≤e = f≤e for all f ∈ C〈〈x〉〉.

Lemma 6.2. Fix t ≥ 4, and let f = x3+y3+f4+· · ·+ft+Ot+1. For any h1, h2 ∈ C〈〈x, y〉〉
with ord(hi) ≥ t− 2, there is a unitriangular automorphism ψ of depth ≥ t− 3 such that

ψ(f) ∼ x3 + y3 + f4 + · · ·+ ft−1 +
(
ft − h1x2 − h2y2

)
+ Ot+1

and ψ(f)− (x3 + y3 + f4 + · · ·+ ft−1) ∈ nt.

Proof. Consider the unitriangular automorphism ψ which sends x 7→ x− 1
3h1, y 7→ y− 1

3h2.
The result follows since

ψ(x3 + y3) ∼ x3 − h1x2 + 1
3h

2
1x− 1

27h
3
1 + y3 − h2y2 + 1

3h
2
2y − 1

27h
3
2,

and ψ(m) ≡ m mod nt+1 whenever deg(m) ≥ 4. �

With the preparatory lemma in place, the strategy is to first find a standard power
series form of each potential, and then distill that down to a polynomial normal form.

Proposition 6.3. Suppose that f = f3 + O4 where fab3 has three distinct factors. Then
f ∼= x3 + y3 + p(xy) for some power series p(z) ∈ C[[z]] with ord(p) ≥ 2.

Recall the Conventions 1.8 on denoting graded pieces of sequence elements: we denote
sequence elements fn ∈ C〈〈x, y〉〉 in Greek font, and we write (fn)t for its degree t piece,
and (fn)<t and (fn)>t for sub- and super-degree t portions respectively.
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Proof. We construct a sequence of power series f1, f2, . . . and unitriangular automorphisms
ϕ1,ϕ2, . . . inductively, with each ft having the form of the target power series x3 + y3 +
p(xy) in small degree. Summary 3.7(3) then constructs f = lim fi of the required form
with Jac(f) ∼= Jac(f).

By 4.13, f ∼= g where g3 = x3 + y3. After grouping together terms containing x2 or y2

and cyclically permuting, we may write

g ∼ x3 + y3 + h2 · x2 + h′2 · y2 + µ4(xy)2 + O5

for h2, h
′
2 ∈ C〈〈x, y〉〉2 and µ4 ∈ C.

Hence we begin the induction by setting

f1 = x3 + y3 + h2 · x2 + h′2 · y2 + µ4(xy)2 + g≥5

and note that f1 ∼ g ∼= f . Thus f1 is in the desired form in degrees ≤ 3 and has its
degree 4 piece prepared in standard form for further analysis.

For the inductive step more generally, we may suppose that ft ∈ C〈〈x, y〉〉 has been
constructed of the form

ft =
(
x3 + y3 + pt+2(xy)

)
+
(
ht+1 · x2 + h′t+1 · y2 + µt+3(xy)b(t+3)/2c)+ Ot+4

with p3 = 0 and by convention µt+3 = 0 for even t, where

(1) (ft)≤t+2 = x3 + y3 + pt+2(xy), for some polynomial pt+2 ∈ C[z]≥2 of degree
≤ (t + 2)/2, where the polynomials p3, . . . , pt+2 satisfy pi+1 = pi for even i and
pi+1 − pi = µi+1z

(i+1)/2 for odd i, and
(2) (ft)t+3 = ht+1 ·x2 +h′t+1 ·y2 +µt+3(xy)b(t+3)/2c for some homogeneous forms ht+1,

h′t+1 of degree t+ 1.

Applying 6.2 with h1 = ht+1 and h2 = h′t+1, there exists a unitriangular ϕt of depth
≥ t such that

ϕt(ft) ∼
(
x3 + y3 + pt+2(xy)

)
+ µt+3(xy)b(t+3)/2c + Ot+4.

In degree t + 4, again grouping together the terms containing x2 or y2 and cyclically
permuting, we may write

ϕt(ft)t+4 ∼ ht+2 · x2 + h′t+2 · y2 + µt+4(xy)b(t+4)/2c

for homogeneous forms ht+2, h′t+2 of degree t+2 and some µt+4 ∈ C, where again µt+4 = 0

for odd t. Thus, after setting pt+3(xy) = pt+2(xy) + µt+3(xy)b(t+3)/2c, define

ft+1 = x3 + y3 + pt+3(xy) +
(
ht+2 · x2 + h′t+2 · y2 + µt+4(xy)b(t+4)/2c)+ϕt(ft)≥t+5.

Note that ϕt(ft) ∼ ft+1, and ϕt(ft)− ft+1 ∈ nt+3 ⊂ nt+1 using the last statement of 6.2.
Thus we have constructed a sequence of power series f1, f2, . . . and unitriangular au-

tomorphisms ϕ1,ϕ2, . . . to which 3.7(3) applies. For s ≥ 3 either s is even, in which
case ps+1 = ps, or s is odd, in which case ps+1 = ps + µs+1z

(s+1)/2, thus it is clear that
p := lim ps =

∑∞
s=2 µ2sz

s. Further, f = lim fi = x3 + y3 + p(xy), since the difference
(fi − (x3 + y3 + p(xy)))i≥1 converges to zero.

It follows from 3.7(3) that Jac(f) ∼= Jac(x3 + y3 + p(xy)), as required. �

The next step is to replace the power series p(xy) by its leading term, without changing
the Jacobi algebra.

Lemma 6.4. If f = x3 + y3 + p(xy) ∈ C〈〈x, y〉〉 for some 0 6= p(z) ∈ C[[z]] for which
s = ord(p) ≥ 2, then the following statements hold.

(1) yx2, xy2 ∈ ((δxf, δyf)).
(2) x2y, y2x ∈ ((δxf, δyf)).
(3) (xy)sx, (yx)sy ∈ ((δxf, δyf)).

Proof. (1) Write Jf = (δxf, δyf), so that ((δxf, δyf)) is the closure of Jf . Differentiating
and pulling out the lowest terms, write

δxf = 3x2 + y(xy)s−1q(xy) and δyf = 3y2 + q(xy)(xy)s−1x (6.A)

for some q = λ0 + λ1z + λ2z
2 + · · · ∈ C[[z]] with λ0 6= 0. Writing A ≡ B for A − B ∈ Jf ,

then in particular

x2 ≡ − 1
3y(xy)s−1q(xy) and y2 ≡ − 1

3q(xy)(xy)s−1x. (6.B)
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Substituting for x2 or y2 at each step, we see that

y · x2 ≡ −13 y
2 · (xy)s−1q(xy) ∈ n2s

≡ +1
32 q(xy)(xy)s−1x · (xy)s−1q(xy)

= +1
32 q(xy)(xy)s−1 · x2 · y(xy)s−2q(xy) ∈ n4s−3

≡ −133 q(xy)(xy)s−1 · y(xy)s−1q(xy) · y(xy)s−2q(xy)

= −1
33 q(xy)(xy)s−2x · y2 · (xy)s−1q(xy)y(xy)s−2q(xy) ∈ n6s−6

= . . .

At each substitution, the resulting power series has order 2s − 3 ≥ 1 higher than the
previous one. It follows from the above that for all t ≥ 2s there exists nt ∈ nt such that
yx2−nt ∈ Jf . Hence yx2 ∈

⋂
t≥2s(Jf + nt), which is precisely the closure ((δxf, δyf)). By

symmetry in x and y, the analogous statement xy2 ∈ ((δxf, δyf)) also follows.
(2) This follows in an analogous way: start by writing

δxf = 3x2 + r(yx)(yx)s−1y and δyf = 3y2 + x(yx)s−1r(yx)

then consider x2 · y ≡ −13 r(yx)(yx)s−1y2, etc.
(3) Now write A ≡ B for A − B ∈ ((δxf, δyf)). Separating off the lowest term of q(xy)
in (6.A), we may write

δyf = 3y2 + λ0(xy)s−1x+ (q(xy)− λ0)(xy)s−1x

and so λ0(xy)s−1x ≡ −3y2 − (q(xy)− λ0)(xy)s−1x where q(xy)− λ0 ∈ n2. Then

λ0(xy)sx =
(
λ0(xy)s−1x

)
yx

≡
(
−3y2 − (q(xy)− λ0)(xy)s−1x

)
(yx)

= −3y · y2 · x− (q(xy)− λ0)(xy)sx

≡ y · q(xy)(xy)s−1x · x− (q(xy)− λ0)(xy)sx (by (6.B))

≡ −(q(xy)− λ0)(xy)sx (yx2 ≡ 0 by (1))

The λ0(xy)sx on each side cancel, showing that q(xy)(xy)sx ∈ ((δxf, δyf)). Since q(xy)
is a unit, it follows that (xy)sx ∈ ((δxf, δyf)). Again, appealing to symmetry in x and y
proves the final statement. �

Proposition 6.5. Suppose that f = x3+y3+p(xy) where p(z) ∈ C[[z]] with s = ord(p) ≥ 2.
Then

f ∼=

{
x3 + y3 when p = 0

x3 + y3 + (xy)s when p 6= 0.

Furthermore

(1) Jdim Jac(f) ≤ 1, with equality if and only if p = 0.
(2) If p 6= 0, then dimC Jac(f) = 4s, and dimC Jac(f)ab = 4.

Therefore the expressions x3 +y3 +(xy)s with s ∈ Z≥2∪{∞} form a set of normal forms.

Proof. For the first statement, if p = 0 we are done, so suppose p 6= 0. Continuing the
notation in the proof of 6.4 above, after differentiating and pulling out the lowest terms,
we may write

δxf = 3x2 + y(xy)s−1q(xy) and δyf = 3y2 + q(xy)(xy)s−1x (6.C)

for some q = λ0 + λ1z + λ2z
2 + · · · ∈ C[[z]] with λ0 6= 0. Set g = x3 + y3 + (λ0/s)(xy)s.

Now 6.4 applies equally well to both f and g, hence both (xy)sx and (yx)sy belong to
both the Jacobi ideals associated to f and g. Consequently

((δxf, δyf)) = ((δxf, δyf, (xy)sx, (yx)sy))

= ((δxg, δyg, (xy)sx, (yx)sy)) (cancel higher terms from δxf and δyf)

= ((δxg, δyg)).
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It follows that f ' g. The coordinate change x 7→ ax, y 7→ ay for a = 2s−3
√
s/λ0 then

normalises the constant factor λ0/s 6= 0, as required.
(1) Consider the case p = 0. As in 3.2, if J is the Jacobson radical of Jac(f), then

Jd

Jd+1
=

nd + ((x2, y2))

nd+1 + ((x2, y2))
.

This is always a two-dimensional vector space, since if d is even it has basis (xy)d/2 and
(yx)d/2, whilst if d is odd it has basis x(yx)(d−1)/2 and y(xy)(d−1)/2. It follows that Jac(f)
is an infinite-dimensional C-algebra, with Jdim Jac(f) = 1.

When p 6= 0, 6.4 shows at once that Jac(f) is finite dimensional: indeed any monomial
of degree t ≥ 2s+ 1 either contains one of the monomials listed in 6.4(1–3) or is xt or yt.
But by (6.C) xt = xt−4 ·x2 ·x2 and yt = y2 ·y2 ·yt−4 is equivalent, modulo ((δxf, δyf)), to a
monomial that contains one of those listed, and thus is equivalent to zero. Consequently,
the entire graded piece of degree t is zero, and so Jac(f) is finite dimensional.
(2) We compute a standard basis of ((δxf, δyf)) with respect to a local graded monomial
order, where we refer the reader to 6.6 below for references to the formal theory and its
properties in this case. In particular, leading terms have lowest degree, and lexicographical
order selects the leading term when there is more than one of lowest degree.

The proof of (1) above introduces a simplifying factor: since all monomials of degree
t = 2s+ 1 lie in the closed Jacobian ideal, it is sufficient to work in the quotient

Jac(f) ∼=
C〈x, y〉

(δxf, δyf,Mt)

where we write Mt for the set of all noncommutative monomials of degree t, and closure
is no longer an issue.

Following [GH, 3.6], we compile a standard basis {g1, g2, . . . } of (δxf, δyf,M
t) starting

with the normalised derivatives

g1 = x2 + s
3y(xy)s−1 = 1

3δxf and g2 = y2 + s
3x(yx)s−1 = 1

3δyf

which have leading terms x2 and y2 respectively, since s ≥ 2. The computation proceeds
by resolving non-trivial overlaps among leading terms. The leading term of g1 overlaps
non-trivially with itself to produce (after scaling by 3

s to normalise coefficients)

g3 := 3
s (xg1 − g1x) = (xy)s − (yx)s.

This does not reduce further modulo existing leading terms. The analogous overlap yg2−
g2y gives the same g3, and all other overlaps have order ≥ t, so reduce to zero modulo Mt.
Hence the standard basis is {g1, g2, g3}. Note that we can then dispense with Mt, since
those monomials all reduce to zero under g1, g2, g3 – that is exactly what 6.4 demonstrates
– and so they do not appear in the standard basis.

As in the commutative case, the set of monomials not divisible by the leading term of
any of g1, g2, g3 descends to give a monomial C-vector space basis for the quotient, by e.g.
[GH, 3.5 and 3.1–2]. Thus, working in increasing degree, 1, x, y are in the basis. Then, in
each pair of degrees 2e, 2e+ 1 for 1 ≤ e ≤ s− 1 the basis consists of the four monomials

(xy)e, (yx)e, (xy)ex, (yx)ey,

and finally (xy)s ≡ (yx)s in degree 2s. Summing up, this basis has size 4s, as claimed.
In the abelianisation, if s > 2 we may rewrite the derivatives as x2(unit) and y2(unit).

Hence Jac(f)ab ∼= C[[x, y]]/(x2, y2), which is four dimensional. When s = 2, it is also easy
to verify that Jac(f)ab ∼= C[[x, y]]/(x2, y2), so in all cases the dimension is four. �

Remark 6.6. The theory of standard bases, also known as local Gröbner bases, of ideals
and their closures in noncommutative power series rings is less well documented in the
literature than either global polynomial Gröbner bases (commutative or not), or Mora’s
tangent cone algorithm for commutative power series rings; see for example [M3] or [H,
III.1]. Nevertheless, the theory exists following analogous ideas, and has analogous con-
clusions. The essential reference is [GH], where §3 establishes the existence and properties
of standard bases, whilst §4–5 provides the tools needed to calculate. Standard bases may
be infinite in general, but within the context of Jdim ≤ 1 examples in this paper, this
issue does not arise.



24 GAVIN BROWN AND MICHAEL WEMYSS

In order to state a unified theorem with the xy2 case in §6.4 below, it is convenient to
mildly change basis. This is rather cheap, largely because there are no moduli.

Corollary 6.7. Suppose that f ∈ C〈〈x, y〉〉≥3 where fab3 has three roots. Then either

f ∼=

{
xy2 + x3

xy2 + x3 + x2n for some n ≥ 2.

Furthermore, the above are normal forms.

Proof. Each of the forms f listed satisfies the condition that fab3 has three roots. Thus
there exists some g from the list in 6.5 with g ∼= f . Furthermore, dimC Jac(xy2+x3) =∞,
whereas dimC Jac(xy2 +x3 +x2n) = 4n (see e.g. [vG, §5] and [Ka, §5], or 4.11), and so all
options are uniquely covered. Since the g listed in 6.5 are normal forms, it follows that
the f listed here are normal forms. �

6.2. Isomorphisms on the Quantum Plane. The following, which may be of inde-
pendent interest, is one of the key reduction steps that will be used in §6.3.

Lemma 6.8. For any units v, w ∈ C[[x2]], the unitriangular automorphism ϕ of C〈〈x, y〉〉
sending x 7→ xv, y 7→ yw descends to a topological isomorphism

C〈〈x, y〉〉
((xy + yx))

∼=−→ C〈〈x, y〉〉
((xy + yx))

.

Proof. The inverse of ϕ, as an automorphism of C〈〈x, y〉〉, is clearly given by the unitri-
angular automorphism ψ : x 7→ xv−1, y 7→ yw−1. Set I = ((xy + yx)), then since ϕ is a
topological isomorphism by 2.3, we just need to prove that ϕ(I) = I.

Now x commutes with v and w, being power series in x2, and also vw = wv. But,
modulo I = ((xy + yx)), y commutes with x2, thus since the ideal is closed y commutes
with both v and w. It follows that

ϕ(xy + yx) = xvyw + ywxv ≡ (xy + yx)vw ≡ 0 mod I. (6.D)

Since ϕ is a continuous isomorphism, and I is the smallest closed ideal containing xy+yx,
ϕ(I) is the smallest closed ideal containing ϕ(xy + yx). But by (6.D) ϕ(xy + yx) also
belongs to the closed ideal I, so by minimality ϕ(I) ⊆ I.

Since v−1 and w−1 are also units in C[[x2]], exactly the same logic applied to ψ shows
that ψ(I) ⊆ I. Applying ϕ to this inclusion, we see that I = ϕψ(I) ⊆ ϕ(I). Combining
inclusions gives ϕ(I) = I. �

6.3. Abelianized Cubic with Two Factors. This subsection considers the case of 4.13
where fab3 has two distinct factors, that is f ∼= x2y + O4, and in 6.18 provides normal
forms. This is substantially harder than in §6.1.

Lemma 6.9. Fix t ≥ 4, and let f = xy2 + f4 + · · ·+ ft +Ot+1. For any h ∈ C〈〈x, y〉〉 with
ord(h) = t− 2, the unitriangular automorphism x 7→ x− h, y 7→ y sends

f 7→ xy2 + f4 + · · ·+ ft−1 +
(
ft − hy2

)
+ Ot+1.

Proof. Write ψ for the stated automorphism. The result follows since ψ(xy2) = xy2−hy2
and ψ(m) ≡ m mod nt+1 whenever deg(m) ≥ 4. �

The next lemma is much less elementary.

Lemma 6.10. Fix t ≥ 4, and let f = xy2 + f4 + · · ·+ ft + Ot+1, where furthermore

ft = ht−2 · y2 +
∑

λax
a1y . . . xary + αxt (6.E)

for some homogeneous form ht−2 of degree t − 2, each ai ≥ 1, r ≥ 1 and r +
∑
ai = t,

α ∈ C and each λa = λa1···ar
∈ C. Then there exists a unitriangular automorphism ϕ of

depth ≥ t− 3 such that

ϕ(f) = xy2 + f4 + · · ·+ ft−1 + (gt + αxt) + Ot+1.

where gt ∈ C〈〈x, y〉〉t satisfies gt ∼ 0.
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Example 6.11. It is worth considering an example to make the notation of both the
statement and proof more transparent. Consider

f = xy2 +
(
λ51x

5yxy + λ42x
4yx2y + λ33x

3yx3y
)

+ f≥9

which has f8 of the form (6.E). Applying ϕ1 : x 7→ x and y 7→ y − λ33x3yx2, where we
cancelled xy from the right of the target λ33 term to obtain the subtracted term, gives

ϕ1(f) = xy2 + λ51x
5yxy + (λ42 − λ33)x4yx2y + g1 + O9

where g1 = λ33(x3yx3y− xyx3yx2) ∼ 0. Ignoring g1, the summation in degree 8 symboli-
cally now has only two terms, which is progress.

An analogous automorphism ϕ2 sending x 7→ x and y 7→ −(λ42 − λ33)x4yx, where we
cancelled xy from the right of the next target term, gives

ϕ2ϕ1(f) = xy2 + (λ51 − λ42 + λ33)x5yxy + g2 + O9

for some g2 ∼ 0, and again the number of terms in degree 8 (outside g2) has not increased.
Repeating again with an analogous automorphism ϕ3 gives

ϕ3ϕ2ϕ1(f) = xy2 − (λ51 − λ42 + λ33)x6y2 + g3 + O9

with g3 ∼ 0. We are now in a position to apply 6.9 to leave only g3 in degree 8.
The proof below confirms that this inductive idea works more generally.

Proof. If the middle sum in the expression for ft is zero, we are done by 6.9 (with gt = 0),
so we may assume that the sum is nonzero.

Suppose that the middle sum contains a term t1 = λbx
b1y · · ·xbry with r > 1. In

this case, consider the unitriangular automorphism ϕ defined by x 7→ x, y 7→ y −
λbx

b1y · · · yxbr−1, where we have simply cancelled xy from the right-hand side of the
target term t1. As in 6.9, ϕ(m) ≡ m mod nt+1 whenever deg(m) ≥ 4, so any change in
degree ≤ t comes from ϕ(xy2), and thus

ϕ(f) = xy2 + f4 + · · ·+ ft−1

+ (ft − λbxyxb1y · · · yxbr−1 − λbxb1+1y · · · yxbr−1y) + Ot+1 (6.F)

Writing g1 = t1 − λbxyxb1y · · · yxbr−1 ∼ 0, then the degree t term of (6.F) equals

g1 + h · y2 +
∑

λax
a1y . . . xary + αxt

where, under the summand, the target term t1 has been replaced by a term of the form
t2 = −λbxb1+1y · · · yxbr−1y, so the sum has the same number of terms or fewer (depending
on whether t2 cancels with existing terms or not).

If br = 1, then the new term t2 equals hy2 for h = −λbxb1+1y · · · yxbr−1 , and we so may
apply 6.9 to (6.F) to find ψ such that

ψϕ(f) = xy2 + f4 + · · ·+ ft−1 + (ft − λbxyxb1y · · · yxbr−1) + Ot+1

where the degree t term is equal to

ft − λbxyxb1y · · · yxbr−1 = g1 + ft − λbxb1y · · ·xbry

= g1 + h · y2 +
∑
a 6=b

λax
a1y . . . xary + αxt

and the number of terms under the summand is now strictly reduced.
Otherwise, br > 1. Set ϕ1 = ϕ, and repeating the original construction of a unitrian-

gular automorphism by cancelling xy from the right, we can construct ϕ2 such that

ϕ2ϕ1(f) = xy2 + f4 + · · ·+ ft−1

+
(
g2 + h · y2 +

∑
λax

a1y . . . xary + αxt
)

+ Ot+1 (6.G)

where g2 ∼ 0 is the sum of g1 and another binomial ∼ 0, and in the sum we have replaced
the term −λbxb1+1y · · · yxbr−1y by λbx

b1+2y · · · yxbr−2y. Repeating this, we find unitrian-
gular automorphisms ϕ1, . . . ,ϕbr−1 so that ϕbr−1 · · ·ϕ2ϕ1(f) has the form of (6.G), and
the sum has the same number of terms or fewer, but in which the target monomial we are
focussing on has become xb1+br−1yxb2 · · · yxy. A further repetition with a unitriangular
automorphism ϕbr replaces that term by one that contains y2, and once again we may
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apply 6.9 to find a unitriangular automorphism ψ that moves this term into higher degree.
Thus after applying the single unitriangular automorphism ψϕbr · · ·ϕ1 to f , the number
of terms in the summation when parsed in the form (6.E) has strictly reduced.

We repeat this process inductively, and it will terminate when there are no terms
under the summation sign of the form λax

a1y . . . xary with r > 1. Each step was achieved
by a single unitriangular automorphism (itself built as a composition of unitriangular
automorphisms), and composing each of these gives a single unitriangular automorphism
ϑ such that

ϑ(f) = xy2 + f4 + · · ·+ ft−1 + (g + h · y2 + λxt−1y + αxt) + Ot+1

for some g with g ∼ 0.
To conclude, the unitriangular automorphism ϕ defined by x 7→ x−h, y 7→ y−λ2x

a1−1 =

y− λ
2x

t−2 has depth t− 3, so again ϕ(m) ≡ m mod nt+1 whenever deg(m) ≥ 4 and thus

ϕϑ(f) = xy2 + f4 + · · ·+ ft−1 + (g + λxt−1y − λ
2xyx

t−2 − λ
2x

t−1y︸ ︷︷ ︸
h

+αxt) + Ot+1.

Set gt = g + h, then since both g ∼ 0 and h ∼ 0, we are done. �

From here, the strategy of §6.1 remains: first find a standard power series form of each
potential, then simplify into polynomial normal form.

Proposition 6.12. Suppose that f = f3 + O4 where fab3 has two distinct linear factors.
Then f ∼= xy2 + q(x) for some power series q(x) ∈ C[[x]] with ord(q) ≥ 4.

Recall the Conventions 1.8, used in 6.3, on graded pieces of sequence elements: namely
sequence elements fn ∈ C〈〈x, y〉〉 are in Greek font, whilst (fn)t is the degree t piece of fn.

Proof. We construct a sequence of power series f1, f2, . . . and unitriangular automorphisms
ϕ1,ϕ2, . . . inductively, with each ft having the form of the target power series xy2 + q(x)
in low degree. Summary 3.7(3) will then construct f = lim fi of the required form with
Jac(f) ∼= Jac(f).

By 4.13, f ∼= g where g3 = xy2. After grouping together the terms containing y2, then
the terms that contain y but not y2, and cyclically permuting, we may write

g4 ∼ h2 · y2 +
∑

λax
a1y . . . xary + µ4x

4

for h2 ∈ C〈x, y〉2, r ≥ 1 and each ai ≥ 1 and µ4 ∈ C and where we use the abbreviated
notation λa := λa1···ar

∈ C. It is convenient to write the sum as
∑
λax

a1y . . . xary by
analogy with the general case, noting that here it is nothing more than λ11xyxy+ λ3x

3y.
Hence we begin the induction by setting

f1 = xy2 + (h2 · y2 +
∑

λxa1y . . . xary + µ4x
4) + g≥5

and note that f1 ∼ g ∼= f . Thus f1 is in the desired form in degrees ≤ 3 and has its
degree 4 piece prepared in standard form for further analysis.

For the inductive step more generally, we may suppose that ft ∈ C〈〈x, y〉〉 has been
constructed of the form

ft =
(
xy2 + qt+2(x)

)
+
(
ht+1 · y2 +

∑
λax

a1y . . . xary + µt+3x
t+3
)

+ Ot+4

with q3 = 0 and

(1) (ft)≤t+2 = xy2 + qt+2(x), for some polynomial qt+2 ∈ C[x]≥4 of degree ≤ t + 2,
where the polynomials q3, . . . , qt+2 satisfy qi+1−qi = µi+1x

i+1 for µi+1 ∈ C, and
(2) (ft)t+3 = ht+1 · y2 +

∑
λax

a1y . . . xary + µt+3x
t+3 for some homogeneous form

ht+1 of degree t+ 1, each ai ≥ 1, r ≥ 1 and r +
∑
ai = t+ 3, and µt+3 ∈ C.

By 6.10 there exists a unitriangular ϕt of depth t such that

ϕt(ft) = xy2 + qt+2(x) + (kt+3 + µt+3x
t+3) + Ot+4.

where kt+3 ∼ 0. In degree t + 4, again grouping together the terms containing y2, then
the terms that contain y but not y2, and cyclically permuting, we may write

ϕt(ft)t+4 ∼ ht+2 · y2 +
∑

λax
a1y . . . xary + µt+4x

t+4.
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Thus after setting qt+3(x) = qt+2(x) + µt+3x
t+3, define

ft+1 = xy2 + qt+3(x) +
(
ht+2 · y2 +

∑
λax

a1y . . . xary + µt+4x
t+4
)

+ϕt(ft)≥t+5.

Note that ϕt(ft) ∼ ft+1, and that ϕt(ft)− ft+1 ∈ nt+3 ⊂ nt+1.
Thus we have constructed a sequence of power series f1, f2, . . . and unitriangular auto-

morphisms ϕ1,ϕ2, . . . to which 3.7(3) applies. Since at each stage qs = qs−1 + µsx
s, it

is clear that q := lim qs =
∑∞

s=4 µsx
s, and that f = lim fi = xy2 + q, since the difference

(fi − (xy2 + q))i≥1 converges to zero. Hence Jac(f) ∼= Jac(xy2 + q), as required. �

The next step is to reduce the options for q(x), using the following preliminary lemma.

Lemma 6.13. Let u ∈ C[[x]] be an even power series: that is, u is a power series in x2.

(1) If u is a unit, then u−1 and n
√
u are also even power series for any n ≥ 2.

(2) Let U ∈ C[[x]] be a unit and n ∈ Z a nonzero integer. Then there is a unit t ∈ C[[x]]
with tn = U(xt). Furthermore, if U is even then t is even.

Proof. (1) Consider v ∈ C[[z]] with u(x) = v(x2). If u is a unit, then v is a unit and v−1

and n
√
v ∈ C[[z]] for all n ≥ 2. Then u−1(x) = v−1(x2) and n

√
u(x) = n

√
v(x2).

(2) Write U = a0 + a1x+ a2x
2 + · · · with a0 6= 0. Consider the case n > 0. We show that

we may solve inductively for the coefficients bd of the expansion t = b0 + b1x+ b2x
2 + · · ·

in the equation tn = U(xt).
It is clear that the coefficient of xd in tn is a sum of nbn−10 bd with terms involving only

coefficients bi with i < d. On the other side of the equation, the coefficient of xd in U(xt)
is a sum of terms involving ai and bj with i ≤ d and j < d. Putting these together, bd
does not appear in the coefficient of xi for any i < d, and it appears linearly with nonzero
coefficient for the first time in the coefficient of xd, and so we may solve for it. Working
inductively in increasing d ≥ 0, and taking the limit, determines t as claimed. For n < 0,
the same argument proves the existence of the unit t−1, which is equivalent.

Suppose that U is even, and let b2n+1 be the smallest nonzero odd-degree coefficient
of t. Then the odd-degree term with smallest degree in tn is nbn−10 b2n+1x

2n+1, while in
U(xt) it is 2a2b0b2n+1x

2n+3 which appears in the summand a2(xt)2, a contradiction. So
t must be even. �

The point is now simple: y is under control, and so there is a relation xy + yx in the
Jacobi algebra. Then 6.8 yields the following key preparation result.

Proposition 6.14. If f = xy2 + p(x) where p(x) ∈ C[[x]] with ord(p) ≥ 4, then

f ∼= xy2 + αx2n + βx2m+1

for some n,m ≥ 2, and some α,β ∈ {0, 1}. Furthermore, α = 1 if and only if p has a
nonzero even-degree term, in which case 2n is the least even degree appearing in p, and
similarly the analogous criterion for β = 1 and least odd degree term in p.

Proof. First note that

Jac(f) = C〈〈x, y〉〉/((xy + yx, y2 + δxp)).

We exhibit an automorphism of C〈〈x, y〉〉 that takes the two generators of the Jacobian
ideal to (xy+yx)(unit) and

(
y2 + βx2m + αx2n−1

)
(unit), respectively, where either α = 0

or 2n ≥ 4 is the least even degree appearing in p, and either β = 0 or 2m + 1 ≥ 5 is the
least odd degree appearing in p. This proves all the claims.

Parsing δxp into even and odd terms, write the Jacobi algebra relations as

xy + yx and y2 + ax2Nu+ bx2M−1v

where u, v ∈ C[[x2]] are each either a unit or zero, N,M ≥ 2, and a, b ∈ C are any nonzero
numbers that carry through the calculation undisturbed; we choose a = 2N + 1 and
b = 2M at the end.

Suppose in the first place that u 6= 0, then fix a square root s =
√
u ∈ C[[x2]] and

consider the unitriangular automorphism ϕ sending x 7→ x, y 7→ ys. By 6.8 this induces
a topological isomorphism

ϕ̄ :
C〈〈x, y〉〉

((xy + yx))

∼−→ C〈〈x, y〉〉
((xy + yx))

.
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In the codomain of this map, y commutes with x2 and thus commutes with s ∈ C[[x2]]. It
follows that ϕ̄(y2) = ysys = y2s2 = yu and thus

ϕ̄(y2 + δxp) = (y2 + ax2N )u+ bx2M−1v.

By 2.11(1)(3) after right multiplying by the unit u−1, we obtain an isomorphism

C〈〈x, y〉〉
((xy + yx, y2 + δxp))

∼−→ C〈〈x, y〉〉
((xy + yx, y2 + ax2N + bx2M−1 v

u ))
. (6.H)

If v = 0, then (6.H) asserts that Jac(f) ∼= Jac(xy2 + x2N+1), and so we are done. Hence
we may assume that v 6= 0.

As u and v are both unit power series in x2, so is v
u . By 6.13(2), since 2N − 2M + 1

is nonzero, we may choose a unit t ∈ C[[x2]] such that t2N = t2M−1v(xt)/u(xt). Consider
the unitriangular automorphism ψ sending x 7→ xt, y 7→ ytN . Again by 6.8 there is an
induced topological isomorphism

ψ̄ :
C〈〈x, y〉〉

((xy + yx))

∼−→ C〈〈x, y〉〉
((xy + yx))

.

Clearly x commutes with t, tN ∈ C[[x2]], and further in the codomain of ψ̄ the element y
commutes with x2 and thus commutes with t, tN ∈ C[[x2]]. Thus

ψ̄(y2 + ax2N + bx2M−1 v
u ) = y2t2N + ax2N t2N + bx2M−1t2M−1u(xt)/v(xt)

= (y2 + ax2N + bx2M−1)t2N .

Again 2.11(1)(3) then induces an isomorphism

C〈〈x, y〉〉
((xy + yx, y2 + ax2N + bx2M−1 v

u ))

∼−→ C〈〈x, y〉〉
((xy + yx, y2 + ax2N + bx2M−1))

. (6.I)

Setting a = 2N + 1 and b = 2M , the right hand side is Jac(xy2 + x2N+1 + x2M ). Hence
composing (6.H) with (6.I) gives an isomorphism Jac(f) ∼= Jac(xy2 + x2N+1 + x2M ).

The case u = 0 and v 6= 0 works in exactly the same way as the case u 6= 0 and v = 0
above, applying an automorphism with s =

√
v, while the case u = v = 0 is trivial. �

The above is not quite yet in normal form, since some of the polynomial potentials in
6.14 have isomorphic Jacobi algebras. The next step is to discard cases where the odd
term in p(x) has significantly greater degree than the even term.

Lemma 6.15. If f = xy2 + x2n + εx2m+1 where ε ∈ {0, 1} and m ≥ n, then y3 ∈
(δxf, δyf). In particular y3 ∈ ((δxf, δyf)).

Proof. Set I = (δxf, δyf) = (y2 + 2nx2n−1 + ε(2m+ 1)x2m, xy + yx), and below write ≡
for an equality mod I. Since y2 ≡ −2nx2n−1 − ε(2m+ 1)x2m, multiplying on the left by
y and on the right by y gives

−2nx2n−1y − ε(2m+ 1)x2my ≡ y3 ≡ −2nyx2n−1 − ε(2m+ 1)yx2m

≡ 2nx2n−1y − ε(2m+ 1)x2my

where the last line holds since xy ≡ −yx using the second generator of I. Inspecting the
right and lefthand sides, the x2my terms cancel, and so 4nx2n−1y ≡ 0, thus x2n−1y ≡ 0.
Finally, since m ≥ n, taking out the common factor we see that

y3 ≡ (2n− ε(2m+ 1)x2m−2n−1)x2n−1y ≡ 0.

Thus y3 ∈ I. The final statement follows immediately. �

Corollary 6.16. If f = xy2 +x2n + εx2m+1 where m ≥ 2n− 1, then x4n−2 ∈ ((δxf, δyf)).

Proof. Continue to write ≡ for an equality mod (δxf, δyf). Then

x4n−2 = (−x2n−1)2 ≡ 1
(2n)2 (y2 + ε(2m+ 1)x2m)2 (since δxf ≡ 0)

≡ ε(2m+1)
(2n)2 (y2x2m + x2my2 + ε(2m+ 1)x4m) (y3 ≡ 0 by 6.15)

≡ ε(2m+1)
(2n)2 (2x2my2 + ε(2m+ 1)x4m). (xy ≡ −yx)
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Taking out the x2m common factor from the front, we may write x4n−2 ≡ x2mg for
some g with no constant term. Then, since 2m ≥ 4n − 2 by assumption, we see that
x4n−2 ≡ x4n−2(x2m−(4n−2)g), and so x4n−2(1− x2m−(4n−2)g) ≡ 0.

Given this statement holds mod (δxf, δyf), it also holds mod ((δxf, δyf)), and hence

x4n−2(1 − x2m−(4n−2)g) = 0 in Jac(f). But there, 1 − x2m−(4n−2)g is a unit, and so it
follows that x4n−2 = 0 in Jac(f), as required. �

The above two results combine to remove the case when the odd-degree x term is
sufficiently larger than the even-degree x term, as follows.

Corollary 6.17. If f = xy2 + x2n + x2m+1 where m ≥ 2n− 1, then f ∼= xy2 + x2n.

Proof. By 6.16 we have x4n−2 ∈ ((δxf, δyf)) and x4n−2 ∈ ((y2 + 2nx2n−1, xy + yx)). Since
2m ≥ 4n− 2, it follows that x2m belongs to both of the ideals above, and thus

((δxf, δyf)) = ((y2 + 2nx2n−1 + (2m+ 1)x2m, xy + yx, x2m))

= ((y2 + 2nx2n−1, xy + yx, x2m))

= ((y2 + 2nx2n−1, xy + yx)).

As this final ideal is obtained from xy2 + x2n by differentiation, the result follows. �

Summarising the above gives the following, which is the main result of this subsection.

Corollary 6.18. Suppose that f ∈ C〈〈x, y〉〉≥3 where (f3)ab has two roots. Then either

f ∼=



xy2

xy2 + x2m+1 m ≥ 2

xy2 + x2n n ≥ 2

xy2 + x2m+1 + x2n 2 ≤ m ≤ n− 1

xy2 + x2n + x2m+1 2 ≤ n ≤ m ≤ 2(n− 1)

All of the above are mutually non-isomorphic.

Proof. The fact that the stated list covers all cases follows from 6.14, using 6.17 to discount
the case when the odd-degree x term is sufficiently larger than the even-degree x term.
We now claim that the potentials listed give pairwise non-isomorphic Jacobi algebras.

The first two families both have infinite dimensional Jacobi algebras, whereas the bot-
tom three are all finite dimensional. As such, the only possibilities for isomorphisms are
between members in families one and two, or between members in families three, four and
five. But dimC Jac(xy2)ab = ∞, whereas dimC Jac(xy2 + x2m+1)ab = 2m + 2, and so all
members of families one and two are mutually non-isomorphic.

For the final three families, all members of families three and four and mutually non-
isomorphic, as can be seen by extending the method of [BW1, 4.7], or by using [Ka,
5.10] directly. Further, all members of family five are also mutually non-isomorphic for
dimension reasons, since for f in family five dimC Jac(f)ab = 2m + 2 and dimC Jac(f) =
(2m + 2) + 4(n − 1) by either [vG, §5] or §4.3, and thus we can distinguish between all
different m and n. The only remaining possibility is an isomorphism between a member of
family five, and a member of family three or four. But by above the dimension of Jac(f)
for f in family five is even, and the dimension of Jac(g) for g in families three and four is
odd [Ka, 5.10], so there can be no such isomorphisms. �

6.4. Overview of Type D normal forms. The previous subsections combine to give
the following, which is the main result of this section.

Theorem 6.19. Let f ∈ C〈〈x〉〉≥2 with Crk(f) = 2 and Crk2(f) = 2. Then either

f ∼=



z21 + · · ·+ z2d−2 + xy2

z21 + · · ·+ z2d−2 + xy2 + x2m+1 with m ≥ 1

z21 + · · ·+ z2d−2 + xy2 + x2n with n ≥ 2

z21 + · · ·+ z2d−2 + xy2 + x2n + x2m+1 with n ≥ 2, n ≤ m ≤ 2n− 2

z21 + · · ·+ z2d−2 + xy2 + x2m+1 + x2n with m ≥ 1, n ≥ m+ 1.
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The Jacobi algebras of these potentials are all mutually non-isomorphic, and furthermore
the following statements hold.

(1) Every f in the first two families satisfies Jdim Jac(f) = 1.
(2) Every f in the last three families satisfies Jdim Jac(f) = 0.

(a) For any fixed n ≥ 2, the algebras in families three and four combine to give
n − 1 non-isomorphic Jacobi algebras, all of which satisfy dimC Jac(f)ab =
2n+ 1 and dimC Jac(f) = (2n+ 1) + 4(n− 1) = 6n− 3.

(b) In the fifth family, dimC Jac(f)ab = 2m + 2 and dimC Jac(f) = (2m + 2) +
4(n− 1).

Proof. By the Splitting Lemma 4.5 the condition Crk(f) = 2 implies that f ∼= z21 + . . .+
z2d−2 + g for some g ∈ C〈〈x, y〉〉≥3. The condition Crk2(f) = 2 is then equivalent to the

first two cases in 4.13, namely those g ∈ C〈〈x, y〉〉≥3 with g3 6= 0 for which gab3 has either
two or three distinct linear factors. The options for all such g thus follow from combining
6.7 and 6.18

The fact that Jdim Jac(xy2 + x3) = 1 follows since Jac(xy2 + x3) ∼= Jac(x3 + y3) by
linear change in coordinates, and Jdim Jac(x3 + y3) = 1 by 6.5(1). The statements that
Jdim Jac(xy2 + x2m−1) = 1 for all m ≥ 2 and Jdim Jac(xy2) = 1 can be shown by a
very similar explicit method as in the proof of 6.5(1), or alternatively by using 8.5 below,
once we know (in 8.16) that all such Jacobi algebras are contraction algebras. The stated
vector space dimensions of the Jacobi algebras in all remaining cases have already been
justified in the proofs of 6.7 and 6.18 respectively.

The fact that the above are all mutually non-isomorphic, and thus a list of normal
forms, then follows. Indeed, by inspecting J-dimension, the only possible isomorphisms
are between members of families one and two, or between members of families three, four
and five. Given we have just added the normal forms of 6.7 to the normal forms of 6.18,
the only remaining possible isomorphisms are between these two cases. But again, either
the dimension of the abelianisation, or the dimension of the contraction algebra itself,
distinguishes in all cases. �

7. Central Elements and General Elephants

This section algebraically extracts ADE information from the normal forms in §1.2,
using generic central elements and contracted preprojective algebras.

7.1. The Six Algebras. As notation, consider the following ADE Dynkin diagrams,
which we also furnish with the information of their highest roots.

A1

1

D4

1 2

1

1

E6

1 2 3

2

2 1

E7

234

2

321

E8

246

3

5432 (7.A)

To each such Dynkin diagram, there is an associated preprojective algebra Π (see e.g.
[CBH]), which is a finite dimensional algebra. The vertices of the Dynkin diagram give rise
to idempotents in the corresponding Π. In each diagram in (7.A), let e be the idempotent
corresponding to the unique vertex marked , except for E8 when there are two cases: e
is either the left or the right . From this information, consider the algebra eΠe.

Remark 7.1. Before relating the above to the introduction, we remark that the fifth
algebra in (1.C) has full presentation

C〈x, y, z〉(
x2 + y + z,

x4, z2 + xyx, yxy + y2x+ yx3

) . (7.B)

There are many equivalent presentations, with the point being that all are necessarily less
pretty than the other five in (1.C). Indeed, 7.2 below proves that the algebra in (7.B) is
isomorphic to eΠe, where e is the vertex marked 5 in E8. This is the only time that the
chosen vertex in (7.A) is not the central vertex in the Dynkin diagram, and so slightly
different behaviour should be expected. We also remark that this algebra is strictly needed
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in order for noncommutative singularity theory to distinguish between the two different
types of E8 flop (of length 5 and 6, respectively).

The upshot from (7.A) is that there are six algebras eΠe, corresponding to the six
different vertices marked . The following result asserts that these give a presentation-
free description of the six algebras of (1.C) in the introduction.

Lemma 7.2. Consider in order the algebras eΠe where e is the vertex with label 1, . . . , 6
in (7.A). This list is isomorphic to the list of algebras in (1.C), reading left to right.

Proof. When is a central vertex (which covers all cases except the awkward one in 7.1),
the isomorphism is a direct application of [M2, Theorem 1]; see also [CB, p53]. The final
remaining case when e is the vertex marked 5 in E8, can be proved using Auslander–
Reiten theory; alternatively we may simply observe that eΠe is the factor of the algebra

in [K, 1.3(5)] by the ideal generated (in the notation there) by a, a∗, t, Tβ0 , . . . , T
δ
1 . The

result [K, 1.3(5)] then gives a presentation

eΠe ∼=
C〈β,γ〉

(β4, γβγ+ γ2β+ γβ3, (γ+ β2)2 + βγβ)

which is clearly isomorphic to the algebra in (7.B). �

7.2. Generic Central Sections. For any f ∈ C〈〈x〉〉≥2, set Z = Z(Jac(f)) to be the
centre of Jac(f), and write mZ for the Jacobson radical of Z. Recall that J denotes the
Jacobson radical of the local ring Jac(f).

Lemma 7.3. We have mZ = J ∩ Z and Z/mZ
∼= C. Thus Z is also a local ring.

Proof. Set Jf = ((δ1f, . . . , δdf)), then it is clear that J ∩ Z = {g + Jf ∈ Z | g ∈ n}. This
set is clearly a two-sided ideal of Z, and further 1 + J ∩ Z consists of units in Z. These
two properties imply that J ∩ Z equals the Jacobson radical mZ of Z, see e.g. [L1, 4.5].
The fact that Z/mZ

∼= C is clear. �

Generic elements of the centre Z will be used to intrinsically extract ADE information.

Definition 7.4. Given f ∈ C〈〈x〉〉≥2, we say that Jac(f) has Type X if for all finite
dimensional vector spaces V ⊂ mZ such that V � mZ/m

2
Z, there exists a Zariski open

subset U of V such that Jac(f)/(u) ∼= eΠe for all u ∈ U , where Π is the preprojective
algebra of Type X, and e is an idempotent marked in (7.A).

Equivalently, in the language of [R1, 2.5], Jac(f) has Type X provided that a general
hyperplane section u of Z satisfies Jac(f)/(u) ∼= eΠe where Π is the preprojective algebra
of Type X, and e is an idempotent marked in (7.A). We also remark that there are two
different Type E8’s in 7.4, corresponding to the two different choices of in E8 in (7.A).
This feature matches the two different E8 cases in the length classification of flops [KM].

Much like the definition of cDV singularities, 7.4 is only designed to be useful in specific
situations. Indeed, for general f ∈ C〈〈x〉〉≥2, it is not clear whether the centre Z of Jac(f)
is noetherian, nor whether its maximal ideal mZ is finitely generated as a Z-module.
Consequently, work is required to establish that mZ/m

2
Z is finite dimensional, which is

needed for there to exist a finite dimensional vector space V surjecting onto it.
When Jac(f) is finite dimensional, these difficulties disappear, since Jac(f) and thus

Z, mZ and mZ/m
2
Z are all finite dimensional vector spaces. Other cases are more tricky,

but for our purposes the following suffices.

Lemma 7.5. If f is a normal form from 6.19, then the following statements hold.

(1) If u ∈ mZ, then u ≡ λx2 + h in Jac(f) for some h ∈ C〈〈x, y〉〉≥3.
(2) If further f has Type D∞,∞ or D∞,m, then Z ∼= C[[x2]].

In particular, in all cases dimC(mZ/m
2
Z) <∞.

Proof. (1) In all cases δyf = xy + yx, and so certainly x2 commutes with y in Jac(f).
Obviously x2 commutes with x, thus since we are considering closed ideals, it follows that
x2 is central in Jac(f). Similarly y2 is central.
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We next claim that there are no elements in mZ that contain linear terms. Write
u ∈ mZ as u = k + g for some k = λ1x+ λ2y and g ∈ C〈〈x, y〉〉≥2. Now u remains central
after factoring by J3, so set I = ((δxf, δyf, n

3)), and observe that

0 + I = [x+ I, u+ I] = 2λ2xy + I

For any (finite-dimensional) C〈〈x, y〉〉/((δxf, δyf, nr)), r ≥ 3, we may choose a basis of the
form 1, x, . . . , xi, xy, x2y, . . . , xjy for some i, j ≥ 2. Since xy forms part of this basis it
follows that λ2 = 0. Repeating using the commutator [y + I, u+ I] shows that λ1 = 0.

Thus u = g for some g ∈ C〈〈x, y〉〉≥2. Using the relation xy+ yx to move x’s to the left,
and the other relation to move y2 either to zero, to x2, or into higher degree, write

u ≡ λ1x2 + λ2xy + h

in Jac(f), for some h ∈ C〈〈x, y〉〉≥3. We next claim that λ2 = 0. Since u is central, and x2

is central, it follows that v := λ2xy + h is also central in Jac(f). In particular it is still
central after factoring by J4. Set I = ((δxf, δyf, n

4)), so that

0 + I = [x+ I, v + I] = 2λ2x
2y + I

and thus 2λ2x
2y ∈ I. But x2y forms part of a basis of C〈〈x, y〉〉/I, so λ2 = 0.

(2) Either set I = (xy + yx, y2), or (xy + yx, y2 + x2m), so by assumption Jac(f) ∼=
C〈〈x, y〉〉/((I)). Consider an arbitrary element u ∈ Z. By using the first relation to move all
the x’s to the left, and the second relation to either move y2 to zero or to higher powers of
x, we may write u ≡ p+ qy in Jac(f), where by (1) p ∈ C[[x]]≥2 and q ∈ C[[x]]≥2. Observe
that in Jac(f)

0 ≡ [x, u] ≡ [x, p+ qy] = 2xqy

and so xqy ∈ ((I)). Thus xq≤t−3y ∈ I + nt for all t ≥ 3. Now C〈〈x, y〉〉/(I + nt) has basis

1, x, . . . , xt−1, y, xy, . . . , xt−2y. Write q≤t−3 =
∑t−3

i=2 λix
i, then the second part of this

basis on the equation xq≤t−3y ∈ I + nt shows that λ2 = . . . = λt−3 = 0. This holds for
all t, and so q = 0.

Thus the central element u ≡ p. Splitting into even and odd terms, write u ≡ P (x2) +
xQ(x2) in Jac(f) for some P,Q ∈ C[[x]]≥1. Then, in Jac(f), since x2 is central

0 ≡ [y, u] ≡ [y, P + xQ] ≡ −2(xQ)y.

Using the same argument as above, Q = 0, and so u ≡ P (x2), as claimed. This shows
that Z ⊆ C[[x2]], but since x2 is central by (1), equality holds, proving (2).

For the very last statement, all the finite-dimensional Jac(f) satisfy dimC(mZ/m
2
Z) <

∞. Since the only other potentials in 6.19 are those in (2), where visibly dimC(mZ/m
2
Z) =

1, the final statement follows. �

It follows from 7.5 that mZ/m
2
Z is finite dimensional for any f ∈ C〈〈x〉〉≥2 with Crk(f) = 2

and Crk2(f) = 2. The is a rather remarkable use of normal forms: we have no method to
prove such a result without using 6.19.

7.3. ADE preliminaries. The next problem is to exhibit a single element of the centre
Z that gives an ADE quotient. For Type A and D this turns out to be easy, but Type E
requires the following preparation. Consider the elements

g6,n :=


x2 + xyx+ yx2 if n = 3t+ 1 with t ≥ 1

x2 + xyx+ yx2 + (−1)t3t(3t+ 2)x2t+1 if n = 3t+ 2 with t ≥ 1

x2 + xyx+ yx2 + (−1)t+13tt(xyx2t−2 + yx2t−1) if n = 3t with t ≥ 2.

The following establishes, in the cases E6,n, that the centre of Jac(f) is non-trivial, and
that mZ is at least two dimensional as a vector space.

Lemma 7.6. If f has Type E6,n, then x2 is central in Jac(f), as is g6,n.

Proof. The first statement follows from the relation 3x2 + y3 ≡ 0, which implies that
yx2 ≡ − 1

3y
4 ≡ x2y and thus x2 commutes with y. Since x2 clearly commutes with x and

we are considering closed ideals, it follows that x2 is central in Jac(f).
For the second statement, we establish the first case, with the proofs of all other cases

being similar. For this, it suffices to show that xyx + yx2 is also central in Jac(f) when
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n = 3t+ 1 with t ≥ 1. We first claim that xyxy − yxyx ∈ ((δxf, δyf)). This follows since
n− 1 = 3t, then yn−1 ≡ (−3x2)t is central, and thus the commutator

((δxf, δyf)) 3 [x, δyf ] ≡ (xyxy − yxyx) + n(xyn−1 − yn−1x) ≡ xyxy − yxyx.

Using this, again with the fact that x2 is central, it follows that

[x, xyx+ yx2] ≡ (yx3 + x3y)− (x3y + yx3) = 0

[y, xyx+ yx2] ≡ (yxyx+ y2x2)− (xyxy + yx2y) ≡ 0.

Thus xyx+ yx2 commutes with both x and y, and so is central in Jac(f). �

7.4. Extracting ADE. We are now in a position to extract ADE using general hyper-
plane sections of the centre. In what follows, in the case that Jac(f) is finite dimensional,
all ideals are automatically closed. In the cases when Jdim Jac(f) = 1 this fact is also
true for Type A by inspection, and for Type D by e.g. 8.4 and 8.17 below. As such, in
the following technically we should temporarily write Jac(f)/((g)) when considering Type
D∞,m and D∞,∞ until we have established 8.4 and 8.17. However, since 8.4 and 8.17
are logically independent of what follows, we refrain from doing so, and drop the double
bracket to ease notation.

Theorem 7.7. Consider the normal forms An, Dn,m, Dn,∞, E6,n, A∞, D∞,m, D∞,∞
and E6,∞ from §1.2. In each case, define an element s as follows

Type Normal form Conditions s

A z21 + . . .+ z2d−2 + x2 + ε1y
n n ∈ N≥2 ∪ {∞} y

D z21 + . . .+ z2d−2 + xy2 + ε2x
2n + ε3x

2m−1 m,n ∈ N≥2 ∪ {∞} x2

E z21 + . . .+ z2d−2 + x3 + xy3 + ε4y
n n ∈ N≥4 g6,n

where g6,n is defined in §7.3 above. Then the following statements hold.

(1) The element s is central in Jac(f), and Jac(f)/(s) ∼= eΠe, where Π is the prepro-
jective algebra of Type A1, D4, or E6, and e is the idempotent marked .

(2) Normal forms of Type A and D give rise to Jacobi algebras which have Type A
and D respectively, in the sense of 7.4.

Proof. For (1), Type A is clear, since Jac(f) ∼= C[[y]]/yn−1 or C[[y]] depending on whether
ε1 is 1 or 0. In both cases y is central, and the quotient is Jac(f)/y ∼= C ∼= eΠe where Π
is the preprojective algebra of Type A1.
Type D is similar. The fact x2 is central was justified in 7.5(1). But then since (x2) is a
closed ideal of Jac(f), setting λ2 = (2n)ε2 and λ3 = (2m− 1)ε3 it follows that

Jac(f)/(x2) ∼=
C〈〈x, y〉〉

((x2, xy + yx, y2 + λ2x2n−1 + λ3x2m−2))
(by 2.11)

∼=
C〈〈x, y〉〉

((x2, xy + yx, y2))
(since 2n− 1 ≥ 2 and 2m− 2 ≥ 2)

∼= eΠe (by 7.2)

where Π is the preprojective algebra of Type D4, and e is the central vertex.
Type E is more involved. All proofs turn out to be similar, so here we illustrate the

technique by considering the case f of Type E6,n with n = 3t + 1 and t ≥ 2. Certainly
g6,n is central by 7.6. After rescaling the x and y appropriately,

Jac(f) ∼=
C〈〈x, y〉〉

((−x2 + y3, xy2 + yxy + y2x+ y3t))
:=Γ

and we work on the right-hand side. Under this identification, the element g6,n becomes
λx2+µ(xyx+yx2) for some non-zero scalars λ and µ. We now claim that for any non-zero
scalars λ and µ the factor

A :=
Γ

(λx2 + µ(xyx+ yx2))
=

C〈〈x, y〉〉
((−x2 + y3, xy2 + yxy + y2x+ y3t, λx2 + µ(xyx+ yx2)))
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is isomorphic to the model algebra B := C〈〈x, y〉〉/((x2, y3, (x + y)3)) ∼= eΠe in 7.2. The
result will then follow, since for particular λ,µ, there is an isomorphism A ∼= Jac(f)/(g6,n).

To establish the claim, note first that x3 ≡ 0 in A for any t ≥ 2, as follows. The
additional relation gives −λx3 ≡ µ(x2yx + xyx2), which equals µ(yx3 + x3y) since x2 is
central. Repeating, we may push x3 into higher and higher degrees, and so x3 belongs
to the closed ideal defining A, as claimed. Given x3 ≡ 0 in A, it follows from the first
relation that y6 ≡ x4 ≡ 0 in A, and since t ≥ 2 also that y3t ≡ 0 in A. Consequently

A ∼=
C〈〈x, y〉〉

((−x2 + y3, xy2 + yxy + y2x, λx2 + µ(xyx+ yx2), y3t))
(7.C)

=
C〈〈x, y〉〉

((−x2 + y3, xy2 + yxy + y2x, λx2 + µ(xyx+ yx2)))
. (7.D)

where the last equality holds since y6 belongs to the closed ideal in (7.C), and t ≥ 2. This
latter presentation has no dependence on t.

Now, composing the automorphism φ : C〈〈x, y〉〉 → C〈〈x, y〉〉 defined by

x 7→ x− (xy + yx) + yxy, y 7→ (x+ 2y)− y2 − yx
with C〈〈x〉〉 � B gives a surjective homomorphism C〈〈x〉〉 � B. It is elementary to check
that the three relations of A in (7.D) map to zero, and hence since φ is continuous, it
extends to the closure of ideals and thus induces a surjection φ : A� B.

Using the same method, it is also elementary to check that the automorphism C〈〈x, y〉〉 →
C〈〈x, y〉〉 given by

x 7→ − 2
3x(3− 2x) + (y − 2)xy, y 7→ x(1 + 25

48x) + y(1 + 1
4y + x)

descends to a surjective map B � A. Thus dimA ≤ dimB = 12, and in particular dimA
is also finite. The previous surjection A � B then implies that dimA = dimB, so that
φ : A→ B, being a surjective map between algebras of the same dimension, is necessarily
an isomorphism.

(2) For potentials of Type A, clearly Jac(f) is either C[[y]]/(yn−1) or C[[y]], both of which
are commutative, so Z = Jac(f) and further mZ/m

2
Z is spanned by the image of y. Given

any finite dimensional vector space V ⊂ mZ such that π : V � mZ/m
2
Z, set U1 = {λ ∈

A1 | λ 6= 0}, U = π−1(U1), and let u ∈ U. Then for all u ∈ U, write u = λy + p in Jac(f)
for some λ 6= 0 and some p ∈ C[[y]]≥2. In particular u equals y multiplied by a unit, and
so Jac(f)/(u) ∼= Jac(f)/(y) ∼= C ∼= eΠe, where Π is the preprojective algebra of Type A.

Lastly, consider Type D. By 7.5 all potentials f in 6.19 satisfy dimC(mZ/m
2
Z) < ∞.

Hence we can again consider a finite dimensional vector space V ⊂ mZ, such that π : V �
mZ/m

2
Z. Since x2 ∈ mZ by (1), and mZ contains no linear terms (as justified in 7.5(1)),

x2 is non-zero in mZ/m
2
Z. Thus set b1 = x2 + m2

Z, and extend to a basis b1, . . . , bt. Set
U1 = {

∑
λibi | λ1 6= 0}, and U = π−1(U1).

Let u ∈ U, then by 7.5(1) u ≡ λx2 + h in Jac(f), for some h ∈ C〈〈x, y〉〉≥3. The
assumption u ∈ U ensures that λ 6= 0. By the relation xy ≡ −yx, we may pull all the x’s
in h to the left, and since h has order at least three, afterwards each term either starts
with x2, or ends with y2. Thus in Jac(f)

h ≡ x2r + xy2p+ y2q

for some r ∈ C〈〈x, y〉〉≥1, q ∈ C[[y]]≥1 and p ∈ C[[y]]. Consequently u ≡ x2(λ+r)+xy2p+y2q,
and further using the relation δxf , it follows that

u ≡ x2
(
λ+ r − (λ2x

2n−2 + λ3x
2m−3)p− (λ2x

2n−3 + λ3x
2m−4)q

)
where again λ2 = (2n)ε2 and λ3 = (2m − 1)ε3. The term in brackets is a unit: since
n,m ≥ 2 its only degree zero term is λ, which by assumption is non-zero. It follows that
Jac(f)/(u) ∼= Jac(f)/(x2), and so the result follows by (1). �

Remark 7.8. The need for taking a generic, or at least well chosen, central element in
7.7 is essential. Indeed, by 7.6, for f of Type E6,n the element x2 is central in Jac(f).
However

Jac(f)/(x2) ∼=
C〈〈x, y〉〉

((x2, y3, (x+ y)3 − xyx))
�

C〈〈x, y〉〉
((x2, y3, (x+ y)3))

= eΠe (7.E)
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even although both sides have dimension twelve. Write U for the open set given by the
non-vanishing of the co-efficient of x2, then (7.E) together with 7.7(1) assert that the
isomorphism class of Jac(f)/(u) is not constant along u ∈ U. Consequently, for Type E
a smaller generic open set is required.

Remark 7.9. In the proof of 7.7(1) above, the inverse of φ : A→ B is not the constructed
map B � A, rather φ−1 is induced by the much more non-obvious automorphism

x 7→ x+ 1
2 (xy + yx)− 1

8yxy

y 7→ 1
2 (−x+ y) + 1

8 (x2 − 3xy − yx+ y2) +

1
64 (5yx2 + 12yxy + 16y2x) + 3

64y
2xy + 7

128y
2x2.

8. Geometric Corollaries

The previous results have geometric consequences. Section 8.1 classifies contraction
algebras, up to isomorphism, from all Type A and D flopping contractions. This imme-
diately gives, in §8.2, a classification of Type A and D flops, and it also has consequences
to GV invariants. Then §8.3 constructs the first, and conjecturally only, infinite family of
Type D divisor-to-curve contractions. Using this, and known results from flops, we then
prove that the Realisation Conjecture (1.11) is true, except possibly for some exceptional
cases, establishing 1.12 in the introduction. The last subsection classifies contraction
algebras that can arise from Type A and Type D4 divisor-to-curve contractions.

8.1. Classification of contraction algebras for A and D flops. In this section we
classify contraction algebras that can arise from Type A and D flops, in both cases without
referring to any classification of such flops (noting that a Type D flop classification arises
as a consequence, in §8.2). We will show that the only possible options are those finite
dimensional Jacobi algebras in 5.1 and 6.19 respectively. We use the notation of §1.5
freely; in particular, R is commutative noetherian and in applications SpecR is the base
of a simple 3-fold flop.

Remark 8.1. In both 8.2 and 8.9 below we classify the contraction algebras within a
given type, but in fact more is true. By [HT, 4.6] if Bcon is the contraction algebra of a
Type X flopping contraction which is isomorphic to a contraction algebra Acon of a Type Y
flopping contraction, then X = Y . Hence, the algebras in 8.2 below are the contraction
algebras of all possible Type A flops, and only of Type A flops, and the algebras in 8.9
are the contraction algebras of all possible Type D flops, and only of Type D flops.

The classification in Type A is elementary.

Proposition 8.2. If Acon is a contraction algebra of a Type A flopping contraction, then
Acon

∼= Jac(x2 + yn) for some n ≥ 2. Furthermore, any other contraction algebra of any
other type cannot be isomorphic to such a Jacobi algebra.

Proof. Consider Acon from an arbitrary Type A flop X → SpecR. By a now standard
argument of Van den Bergh [V2, A.1], any indecomposable CM R-module necessarily
has rank one. Further, since R is normal the endomorphism ring of any rank one CM
module is isomorphic to R. Hence Acon, being defined to be a factor of EndR(N) for some
indecomposable CM R-module N , is thus a factor of R, and hence is commutative.

Since Acon
∼= Jac(f) for some f , combining 5.1 and 5.4 we see that Acon

∼= Jac(x2 +yn)
or Acon

∼= Jac(x2). The last case is impossible, since dimC Acon < ∞ given that X →
SpecR is a flop [DW3]. �

Remark 8.3. A more geometric proof of 8.2 uses Reid’s Pagoda classification of Type A
flops [R2] and then applies [DW1, 3.10] to conclude that Acon

∼= Jac(x2 + yn) for some n.

Type D is much more involved, and requires multiple preliminary results. In the
following, by an R-algebra Γ we simply mean that there exists a homomorphism R→ Z(Γ),
where Z(Γ) is the centre. From 3.2, let J(Γ) denote the Jacobson radical of Γ .

Lemma 8.4. Let Γ be an R-algebra, where (R,m) is commutative local noetherian, and
suppose that Γ is finitely generated as an R-module.
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(1) The J(Γ)-adic topology coincides with the m-adic topology on Γ .
(2) Every ideal of Γ is closed with respect to the J(Γ)-adic and the m-adic topologies.
(3) If (R,m) is complete local, then Γ is complete with respect to both the J(Γ)-adic

and the m-adic topologies.

Proof. (1) Since (R,m) is local, and Γ is finitely generated as an R-module, it follows
immediately from e.g. [L1, 20.6] that there exists n ≥ 1 such that

J(Γ)n ⊆ mΓ ⊆ J(Γ). (8.A)

From this, it is clear that the J(Γ)-adic and the m-adic topologies coincide.
(2) We show that for any finitely generated R-module M , with submodule N , then N is
closed in M . Given this, applying (1) to M = Γ and N = I proves the result. But since
M is finitely generated, and R is noetherian, Krull’s intersection theorem [M1, 8.10(1)]
immediately shows that M/N is separated, and hence N is closed in M .
(3) Again, this is well known. Since Γ is a finitely generated R-module, and (R,m) is
complete local and noetherian, it follows from e.g. [L1, 21.33] that Γ is m-adically complete,
and hence the result follows by (1). �

Corollary 8.5. If Acon is a contraction algebra associated to a crepant X → SpecR as
above, then Jdim Acon = 0, 1. Furthermore, the following statements hold.

(1) Jdim Acon = 0 if and only if X→ SpecR is a flop.
(2) Jdim Acon = 1 if and only if X→ SpecR is a divisorial contraction to a curve.

Proof. Acon is module finite over R, being a factor of an NCCR [DW1].
Now if M is any finitely generated R-module (e.g. M = Acon), since (R,m) is local

dimR(M) can be defined using the m-adic topology, as the growth rate of the function
length(M/miM), see e.g. [E1, §12.1]. Taking suitable powers of the inclusions in (8.A), it
is elementary to see that the two sets

S1 = {r ∈ R | for some c ∈ R, dimC(Acon/J
n) ≤ cnr for every n ∈ N}

S2 = {r ∈ R | for some c ∈ R, dimC(Acon/m
nAcon) ≤ cnr for every n ∈ N}

are equal, so Jdim Acon = inf S1 = inf S2 = dimR(Acon).
The main result of [DW2] shows that SuppR(Acon) equals the contracted locus in

SpecR. Hence dimR(Acon) is either 0 for flops, or 1 for divisor-to-curves respectively. It
follows that Jdim(Acon) is either 0 or 1, respectively. �

Theorem 8.6. If f ∈ C〈〈x, y〉〉≥3 and Jac(f) is complete in its J-adic topology, then every
central element g + ((δxf, δyf)) ∈ Jac(f) which is not a unit satisfies g ∈ n2.

Proof. Set R = Jac(f), and J = J(R). Note that I = ((δf)) ⊆ n2, hence by 3.2(1)

J2 = (n2 + I)/I = n2/I. (8.B)

Consider the central element g′ = g+ I in R. Since g′ is not a unit in R, certainly g′ ∈ J.
Further g cannot be a unit in C〈〈x, y〉〉, or it would descend to a unit, so g ∈ n.

We now suppose that g /∈ n2, and aim for a contradiction. Since I ⊆ n2 we see that
g′ = g + I /∈ J2, and hence 0 6= g′ + J2 ∈ J/J2. But by (8.B) we have

J

J2
=

n/I

n2/I
∼=

n

n2

and so dimC J/J2 = 2. Pick 0 6= h+ J2 to complete g′ + J2 to a basis of J/J2.
But now since by assumption R is complete, and local, we may use [BIRS, 3.1] to

present R. Consider the two-loop quiver Q, and map the trivial path to the identity of R,
one of the loops `1 to h and the other loop `2 to g′. Then by [BIRS, 3.1] the completeness
of R extends this to a surjective homomorphism

ϕ : C〈〈`1, `2〉〉� R

and the kernel is a closed ideal. Since the kernel contains the relation `1`2− `2`1, given g′

is central and so commutes with h, it follows that ((`1`2 − `2`1)) ⊆ Kerϕ. In particular ϕ
induces a surjection C[[`1, `2]] � R, and so R is commutative. Given this would contradict
5.4, we conclude that g ∈ n2. �
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We will also require the following fact.

Proposition 8.7. Suppose that Acon is the contraction algebra associated to a D4 con-
traction, then there is a central element g ∈ Acon such that

Acon/(g) ∼=
C〈x, y〉

(x2, xy + yx, y2)
.

Proof. Consider the 3-fold contraction X → SpecR, and for generic g ∈ R consider the
pullback diagram

Y X

SpecR/g SpecR

By assumption, R/g is a D4 Kleinian singularity. Now let A = EndR(N) be the NCCR
associated to X → SpecR, and view g ∈ R = Z(A) ⊂ A. Since g is generic, we can find
such a g which is not contained in any associated prime ideal of Ext1R(N,N), from which
[IW2, Proof of 5.24] (the assumptions there are Type A, but the method is general) shows
that there is an isomorphism

A/g ∼= EndR/g(N/gN).

From this isomorphism [DW1, (3.C)] establishes that Acon/g is isomorphic to the con-
traction algebra associated to the surfaces contraction Y → SpecR/g. The fact that the
surfaces contraction algebra for this particular D4 contraction is C〈x, y〉/(x2, xy+ yx, y2)
can be deduced from [DW1, 8.7]; see also [M2]. �

We obtain the following remarkable consequence.

Corollary 8.8. No Jac(f) with f ∈ C〈〈x, y〉〉≥3 such that either f3 = 0 or f3 ∼= x3, can
arise as a contraction algebra of a D4 flop, or a D4 divisor-to-curve contraction.

Proof. Given such an f , suppose that Jac(f) ∼= Acon for a contraction algebra of a D4

flop, or a D4 divisor-to-curve contraction X→ SpecR. Since Acon is module finite over R,
being a factor of a NCCR [DW1], 8.4 shows that Acon and hence Jac(f) is complete with
respect to its radical-adic topology, and further every ideal is closed.

Further, by 8.7 we can find a central g such that dimC Jac(f)/(g) = 4, and since
Jac(f) ∼= Acon is complete, we can use 8.6 to write g = g′+((δxf, δyf)) where g′ ∈ n2. But
since all ideals in Jac(f) are closed, it follows that

Jac(f)

(g)
=

Jac(f)

((g))

2.11∼=
C〈〈x, y〉〉

((δxf, δyf, g′))

has dimension four. We claim that this is impossible, by exhibiting a factor with higher
dimension. Reusing the notation in 5.4, write M3 for the set of all noncommutative
monomials of degree 3, and then we will factor by ((M3)). In the two cases f3 = x3 and
f3 = 0, the factors are, respectively

C〈〈x, y〉〉
((x2, g′,M3))

and
C〈〈x, y〉〉
((g′,M3))

.

The right hand algebra surjects onto the left hand algebra, so it suffices to prove that
dimC C〈〈x, y〉〉/((x2, g′,M3)) > 4. But since g′ ∈ n2 by 8.6, inside the ideal we can replace
g′ by λ1xy+ λ2yx+ λ3y

2, which gives at most one linear relation between xy, yx and y2.
From this, the statement is clear. �

The above gives rise to the following, which is the main result in this subsection.

Corollary 8.9. If Acon is a contraction algebra of a Type D flopping contraction, then
Acon

∼= Jac(x2y + x2n) for some n ≥ 2, or Acon
∼= Jac(xy2 + x2n + x2m−1) for some

m,n ≥ 2 with m ≤ 2n− 1.

Proof. Consider Acon from an arbitrary Type D flop. By [KM] necessarily the elephant
is D4, so Acon is not commutative by 8.7, since Acon has a factor which is not commutative.
As Acon

∼= Jac(f) for some f ∈ C〈〈x, y〉〉≥2, appealing to 5.4 then gives f2 = 0.
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From this, 8.8 asserts that f3 6= 0, and f3 � `3. Hence by 6.19 Acon
∼= Jac(f) for some f

in the list stated there. Only the bottom three families are possible, since dimC Acon <∞
given the contraction is a flop [DW3]. �

8.2. Classification of Flops. The above results for contraction algebras classify flops,
given that the Donovan–Wemyss conjecture is true [DW1, A3, JKM].

Theorem 8.10. With notation as above, the following statements hold.

(1) Type A flops are classified by Type A normal forms in Table 1.
(2) Type D flops are classified by Type D normal forms in Table 1.

Furthermore, Type E flops are classified by Type E normal forms.

Proof. The fact that the isomorphism class of the contraction algebra classifies flops is
established in [JKM]. Thus (1) follows from the fact in 8.2 that the contraction algebras
of Type A flops are precisely those Jacobi algebras coming from the Type A normal
forms. Similarly, (2) follows from 8.9 and the fact that each normal form is realisable
from geometry [vG, Ka] (see also 8.11 below). Since the remaining Type E normal forms
cannot correspond to either Type A or Type D geometry (by either 8.2 or 8.8), it follows
that the contraction algebras of the remaining Type E flops must be isomorphic to Jacobi
algebras of Type E normal forms. Note that the Type E normal forms stated in Table 1
are genuine examples; full details of others will appear elsewhere [BW2]. �

The classification of contraction algebras in 8.9 then has the following consequence.

Theorem 8.11. There is a one-to-one correspondence between lattice points in the dia-
gram in 1.6 and the base singularities 0 ∈ SpecR of Type D flops, given by

(n,m) 7→ Spec

(
C[[u, v, x, y]]

u2 + v2y − x(y2n+1 + (x+ εym)2)

)
where ε = 1 if the lattice point is contained within the shaded region, and ε = 0 otherwise.

In particular, Type D flops do not admit moduli. Furthermore, the following hold.

(1) The quasi-homogeneous Type D flops are precisely those outside the shaded region,
and these are the standard Laufer family.

(2) The GV invariants n1, n2 of the flopping contraction associated to a point (n,m)
are written in green. The ovals group together flops with the same GV invariants.

Proof. It is immediate from 8.10 that the Type D normal forms in Table 1 classify Type
D flops. In particular, once we exhibit one flop for each Type D normal form in Ta-
ble 1, which has contraction algebra isomorphic to the prescribed Jacobi algebra, then the
geometric classification is complete.

In the indexing of the diagram, for (n,m) with n,m ≥ 1, consider the corresponding
potential xy2 + x2n+2 + x2m+1. Under this assignment, the points (n,m) in the shaded
region correspond to the normal forms Dn+1,m+1, which by definition have a restriction
on m relative to n. The lattice points not in the shaded region, namely those (n, 2n+ 1),
correspond to xy2 + x2n+2 + x4n+3. By 6.17 this is isomorphic to xy2 + x2n+2, which is
the normal form Dn+1,∞ in Table 1. Thus, the lattice points stated are in bijection with
the Type D normal forms.

Now by [vG, §2.2] and [Ka], given any potential xy2 + x2n+2 + x2m+1, the claimed
commutative ring in the statement is the base of a flopping contraction, and further the
corresponding contraction algebra is isomorphic to Jac(xy2 + x2n+2 + x2m+1). The first
statement regarding the bijection follows.

The fact that the quasi-homogeneous singularities correspond to those outside the
shaded region follows from [vG2, §2.2.4], which computes the Milnor and Tjurina num-
bers. For the final statement regarding GV invariants, by 6.19(2) and Toda’s dimension
formula [T, 1.1], we can read off the GV invariants. Indeed, by [T] the pair n1, n2 where
n1 = dimC Jac(f)ab and n2 = 1

4 (dimC Jac(f) − dimC Jac(f)ab)) are precisely the GV
invariants for length two flops. Only those pairs illustrated in the diagram in 1.6 (or
Figure 4) appear. �

Remark 8.12. The map in 8.11 is in fact well defined on all points (n,m) with m,n ≥ 1,
not just those marked in the picture in 1.6. This follows since the commutative ring in
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8.11 is always the base of a Type D flop, for every (n,m) [vG, §2.2]. The point is that
the domain needs to be restricted in order to obtain a bijection. The previous result 6.17
shows that any lattice point (n,m) with m ≥ 2n+1 gives an isomorphic flop to the lattice
point (n, 2n+ 1).

Simply inspecting 8.11(2) and the diagram in 1.6 gives the following corollary, which
illustrates the significant gaps in the possible GV invariants that can arise.

Corollary 8.13. Consider (a, b) ∈ N2. Then a, b are the GV invariants for a Type D
flopping contraction if and only if either

(1) (a, b) = (2m+ 3,m) for some m ≥ 1, or
(2) (a, b) = (2n, b) for some n ≥ 2, with b ≥ n− 1.

Further, when a = 2m+ 3 there are precisely m+ 1 distinct contraction algebras realising
(a, b), up to isomorphism, whilst for any given (2n, b) the contraction algebra is unique.

Remark 8.14. It is possible to instead index the GV invariants to the classifying poten-
tials, and this is done in Figure 4 below.

x3+x4 x3+x6 x3+x8 x3+x10 x3+x12 x3+x14

x5+x4, x4

x5+x6 x5+x8 x5+x10 x5+x12 x5+x14

x9+x6, x7+x6, x6

x7+x8 x7+x10 x7+x12 x7+x14

x13+x8, x11+x8, x9+x8, x8

x9+x10 x9+x12 x9+x14

4,1 4,2 4,3 4,4 4,5 4,6

5,1

6,2 6,3 6,4 6,5 6,6

7,2

8,3 8,4 8,5 8,6

9,3

10,4 10,5 10,6

Figure 4. List of p(x) for which xy2 + p(x) is one of the normal forms
in Dn,m or Dn,∞. The pair n1, n2 associated to each p(x) describes the
GV invariants of any simple flop having isomorphic contraction algebra.

8.3. Constructing divisor to curve contractions. In the list of potentials in 6.19, the
first appears as the contraction algebra of a divisor-to-curve contraction in [DW4, 2.18].
The second family, with m = 1, is isomorphic to x3 + y3, and so appears as a contraction
algebra in [DW4, 2.25]. All the other three families are contraction algebras of D4 flops
by [vG, Ka], and the above subsection.

Motivated by Conjecture 1.11, this subsection will fill the last remaining gap, and
show that the whole of the second family in 6.19, with arbitrary m, are realised as the
contraction algebra of a divisor-to-curve contraction.

Remark 8.15. In the proof below we will first construct the contraction algebraically, be-
fore passing to the formal fibre to realise the contraction algebra. This algebraic construc-
tion is advantageous, since it conceptually distinguishes between the cases: in SpecR∞
below, which locally realises D∞,∞, the origin is cD4 whilst all other points on the singular
locus are cA2. In contrast, in SpecRm below, which locally realises D∞,m, the origin is
cD4 whilst all other points on the singular locus are cA1. Compare the pictures in [DW4,
2.18] and [DW4, 2.25], and also [W].

Proposition 8.16. For m ∈ N ∪ {∞}, consider the element of C[[X,Y, Z, T ]] defined by

Fm :=

{
Y (Xm + Y )2 +XZ2 − T 2 if m ≥ 1

Y 3 +XZ2 − T 2 if m =∞

and set Rm = C[[X,Y, Z, T ]]/Fm. Then the following statements hold.

(1) Sing(Rm)red = (Xm + Y,Z, T ) if m ≥ 1, and (Y, Z, T ) if m =∞.
(2) In either case, blowing up this locus gives rise to a crepant Type D divisorial

contraction to a curve Xm → SpecRm where Xm is smooth.
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(3) The contraction algebra of Xm → SpecRm is isomorphic to Jac(xy2 + x2m+1)
when m ≥ 1, respectively Jac(xy2) when m =∞.

(4) Rm
∼= Rn if and only if m = n, and so the Fm are all distinct up to isomorphism

and so form an infinite family.

Proof. (1) is immediate.
(2) Working first on the case of finite m ≥ 1, consider the affine algebra

Rm =
C[r, s, u, v]

u2 − r(r − sm)2 − sv2

whose completion at the origin is Rm, in coordinates (r, s, u, v) = (−Y,X, T, Z). The
blowup along (u, v, r−sm) is covered by two affine patches: the first is U = SpecC[s, y0, y1],
with y0 = u/(r − sm) and y1 = v/(r − sm), the second chart is a smooth hypersurface,
and the map from U to the base is given by

(s, y0, y1) 7→ (y20 − sy21 , s, y0(y20 − sy21 − sm), y1(y20 − sy21 − sm)).

The exceptional locus in U is the divisor y20 − sy21 − sm = 0. Pulling the canonical basis
of differentials on SpecRm back to U gives

f∗2

(
dr ∧ ds ∧ dv

u

)
=
d(y20 − sy21) ∧ ds ∧ d(y1(y20 − sy21 − sm))

y0(y20 − sy21 − sm)
= 2ds ∧ dy0 ∧ dy1

which is a regular differential on U , and in particular has no zero or pole along the
exceptional divisor. Thus the map is crepant, as claimed. The case m =∞ is similar, but
easier, as both open charts are affine 3-space.
(3) The easiest way to establish the claim is to recognise Fm as a pullback from the
universal D4 flop and apply restriction theorems for contraction algebras. Consider the
six-dimensional universal D4 flop, given in [K, (1.1)] as

R =
C[r, s, t, u, v, w, z]

u2 − rw2 + 2zvw − sv2 + (rs− z2)t2

and its universal family Y −→ SpecR, which is an isomorphism away from the singular
locus in SpecR. As observed by Van Garderen [vG2, §2.2.3], slicing by the sequence
g1 = z, g2 = r − w − sm, and g3 = t yields a commutative diagram

Y = Y3 Y2 Y1 Y

SpecR3 SpecR2 SpecR1 SpecR

f

where R1 = R/g1, R2 = R1/g2 and R3 = R2/g3. The result is the affine algebra

R3 =
C[r, s, u, v]

u2 − r(r − sm)2 − sv2

whose completion at the origin is Rm. The pullback f : Y → SpecR3 is visibly an iso-
morphism away from Sing(R3)red = (u, v, r − sm), so in particular is birational.

Van Garderen observes that R3 is an integral domain [vG2, 2.12] and Y is smooth
[vG2, 2.13], and that each gi is a slice, in the terminology of [vG2, 2.9], which implies that
f is projective and surjective with Rf∗O = O [vG2, 2.10].

Furthermore, the tilting bundle yielding a derived equivalence between Y and Λ ∈ CMR
restricts to give a derived equivalence between Y and Λ⊗R3 [vG2, (2.11)]. Since g1, g2, g3
is a regular sequence, Λ ⊗ R3 ∈ CMR3 and so in particular f is crepant [IW1, 4.14].
Since visibly both the blowup in (2) and f are crepant resolutions of the same variety,
and both containing no flopping curves, they must be isomorphic (as varieties over the
base SpecRm) since minimal models are unique up to flop. Thus the contraction algebra
associated to (2) is isomorphic to the contraction algebra of the formal fibre of f . But
by [vG2, 2.8] this is the claimed Jacobi algebra, namely Jac(xy2 + x2m+1) when m ≥ 1,
respectively Jac(xy2) when m =∞.
(4) If Rm

∼= Rn are isomorphic, then the contraction algebras of Xm → SpecRm and of
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Xn → SpecRn must be isomorphic. But then their abelianisations must also be isomor-
phic, and so in particular must have the same dimension. But the abelianisations have
dimension 2(m+ 1) and 2(n+ 1) respectively, and hence m = n. �

The start of this subsection, combined with 8.16, then gives the following.

Corollary 8.17. All the potentials in 6.19 are geometric.

In turn, this establishes 1.12 in the introduction.

Corollary 8.18. Conjecture 1.11 is true, except for the one remaining unresolved case
when f ∼= x3 + O4, where some further analysis is required.

Proof. Every Acon
∼= Jac(f) for some f ∈ C〈〈x, y〉〉≥2. If f2 6= 0 the result is 5.2, so we can

assume f2 = 0. We need f3 6= 0 so that Jdim Jac(f) ≤ 1, and 4.13 splits into three cases.
The first two cases are covered by 6.19, and 8.17 asserts that these are all geometric. The
only remaining, unresolved, case from 4.13 is when f3 ∼= x3. �

Remark 8.19. It is possible to change variables to see that all type D normal forms
can be realised in a uniform way. Indeed, the contraction algebra associated to the cD4

singularity
C[[u, v, x, y]]

u2 + v2y − x(ε2y2n+1 − (x− ε3ym)2)

realises the general Type D potential f = xy2 + ε2x
2n + ε3x

2m−1, with the convention
that each εi is either 0 or 1.

Remark 8.20. Much like in Pagoda [R2] for Type A, it is also possible to view each
Type D divisor-to-curve contraction as an infinite limit of flops. The Type D situation is
more delicate, since there are more possible directions in which to take such a limit. In
relation to the classification of Type D flops in 8.11, the following are the limits which
give rise to the divisor-to-curve contractions in 8.16.

F1

F2

F3

F4

F5

F6

F7

F∞

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • •

• • • • • • •

• • • • • •

• • • • • •

. . .

...

Without the normal forms from noncommutative singularity theory, it is hard to either
see or predict the above purely geometrically.

8.4. Classification for A and D divisor-to-curve contractions. This section is the
divisor-to-curve analogue of §8.1.

Proposition 8.21. If Acon is a contraction algebra of a Type A divisor-to-curve contrac-
tion, then Acon

∼= Jac(x2).

Proof. For the same homological reason as in 8.2, in Type A the contraction algebra
Acon is necessarily commutative. Since the contraction is divisor-to-curve, necessarily
dimC Acon = ∞ [DW3]. Combining 5.4 and 5.1, we see that Acon

∼= Jac(x2), since x2 is
the only infinite dimensional example in 5.1. �

The following is the analogue of 8.9. However, it is slightly weaker, due to two key
geometric facts having only been developed in the flops setting: (1) Katz–Morrison [KM]
asserts that Type D is generically Type D4 for flops, but this is open in the divisor-to-
curve setting, and (2) Hua–Toda [HT] asserts that the isomorphism class of a contraction
algebra determines the type, but again only for flops.

However, we can say the following, without using any geometric classifications.
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Proposition 8.22. If Acon is a contraction algebra of a Type D4 divisor-to-curve con-
traction, then Acon

∼= Jac(x2y), or Acon
∼= Jac(xy2 + x2m+1) for some m ≥ 2.

Proof. The proof is very similar to 8.9. The algebra Acon is not commutative by 8.7, since
Acon has a factor which is not commutative. As Acon

∼= Jac(f) for some f ∈ C〈〈x, y〉〉≥2,
appealing to 5.4 then gives f2 = 0.

From this, 8.8 asserts that f3 6= 0, and f3 � `3. Hence by 6.19 Acon
∼= Jac(f) for some

f in the list stated there. Only the top two families are possible, since dimC Acon = ∞
given the contraction is divisor-to-curve [DW3]. �

Appendix A. J-dimension restrictions

The papers [ISm, IS2] introduce several new ideas that substantially strengthen the
Golod–Shafarevich estimates [GS] for the growth of algebraic Jacobi rings, and prove that
almost all have cubic or higher growth. In this appendix we extend the main results of
[IS2] into the setting of formal noncommutative Jacobi algebras of 3.1, in a manner which
should be viewed as the analogue of Vinberg’s [V3] extension of Golod–Shafarevich into
the setting of topological rings.

A.1. Algebraic Notation. Throughout this appendix we let d ≥ 2 and consider C〈x〉 =
C〈x1, . . . , xd〉. An element F ∈ C〈x〉 is called a superpotential if it is cyclically symmetric,
in the sense of 3.3. For m ≥ k ≥ 3 write

SPk,m = {F ∈ C〈x〉 | F is a superpotential with Fj = 0 for j < k and j > m},
where Fj is the homogeneous component of F of degree j, as in §2.1. In the special case
m = k, write SPk := SPk,k, which consists of all homogeneous superpotentials of degree k,
together with zero. Throughout, we will write elements of C〈x〉 and C〈〈x〉〉 by small letters
f and g, and superpotentials by capital letters F , G.

With the (left) strike-off derivatives 6i defined as in (3.A), the algebraic Jacobi algebra
associated to a superpotential F is the algebra

AJac(F ) :=
C〈x1, . . . , xd〉

( 61F, . . . , 6dF )
=
C〈x〉
IF

where IF = ( 61F, . . . 6dF ) is the two-sided ideal generated by 61F, . . . , 6dF . We write
m = (x1, . . . , xd) ⊂ C〈x〉, a maximal two-sided ideal, and denote its image in AJac(F ) by
R = m/IF , the powers of which are Ri = (mi + IF )/IF .

The use of strike-off derivatives 6i on superpotentials, as we use here to align with the
statements and results of [ISm, IS2], or cyclic derivatives δi on any potential, as in 3.1,
give equivalent theories but with minor differences in detail, which we address in §A.4.

A.2. Exact Potentials and Hilbert series. The differentiation package has two useful
tools. The first is the following Euler relation.

Lemma A.1. [ISm, 3.5] If F is a superpotential, then
∑d

i=1[xi, 6iF ] = 0.

The second is a sequence of right AJac(F )-modules

0→ AJac(F )
d3−→ AJac(F )⊕d

d2−→ AJac(F )⊕d
d1−→ AJac(F )

d0−→ C→ 0 (A.A)

defined in e.g. [ISm, 3.4]. The precise form of the morphisms di will not concern us, as
below we will only require the following two facts.

(1) [ISm, 3.6] For any superpotential F , the sequence (A.A) is a complex, which is
exact at the three right-most non-zero terms.

(2) If further F is homogeneous, say 0 6= F ∈ SPk, then the morphisms in the complex
(A.A) satisfy deg(d3) = 1, deg(d2) = k − 2, deg(d1) = 1, and deg(d0) = 0.

Definition A.2. An element F ∈ SPk,m is called exact if (A.A) is exact.

If G is homogeneous, then the ideal ( 61G, . . . , 6dG) is a homogeneous ideal and so the
graded decomposition of C〈x〉 induces a decomposition

AJac(G) =
⊕
i≥0

AJac(G)i. (A.B)
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For G ∈ SPk, the boundary maps di are homogeneous, and so furthermore the sequence
(A.A) also decomposes into graded pieces, or homogeneous slices, each of which is a
complex of finite-dimensional vector spaces, exact at the codomains of the restrictions of
d0, d1 and d2.

Definition A.3. For G ∈ SPk, (A.B) determines the Hilbert series of AJac(G)

HG =
∑
i≥0

dimC
(
AJac(G)i

)
ti ∈ C[[t]].

Throughout, recall that SPk and SPk,m are defined only when k ≥ 3. The following is an
easy consequence of the degree of the morphisms in (2) above, see e.g. [ISm, §3].

Corollary A.4. If G ∈ SPk is exact, then HG = (1− dt+ dtk−1 − tk)−1.

It will be convenient to consider the following subset of homogeneous superpotentials

ESPk := {G ∈ SPk | G is an exact potential, and AJac(G)
x1·−−→ AJac(G) is injective}.

Recall that d ≥ 2 is the number of variables in C〈x〉.

Lemma A.5 ([IS2, 2.1, 2.2]). If k ≥ 3 with (d, k) 6= (2, 3), then ESPk 6= ∅.

Proof. Set

g =

{∑
σ∈Sd−1

xk−d+1
d xσ(1) . . . xσ(d−1) if k ≥ d

xdxd−1 . . . xd−k+1 +
∑

j∈S xjxdmj if k < d

where Sd−1 is the symmetric group, S = {j | 1 ≤ j ≤ d − 1, j 6= d − k + 1}, and the mj

are explicit monomials explained in [IS2, 2.2]. It is a reasonably elementary calculation
to show that G = cyc(g) ∈ ESPk; see [IS2, 2.1, 2.2]. �

It turns out, although we do not need this, that if d = 2 then ESP3 = ∅. This is why
the argument in A.13 below fails in the (d, k) = (2, 3) case.

Recalling that Ri = (mi + IF )/IF , the following is one of the main insights of [IS2].

Corollary A.6. If F ∈ SPk,m with Fk ∈ ESPk, then left multiplication

AJac(F )/Rj x1·−−→ AJac(F )/Rj+1

is injective for all j ≥ 1.

Proof. This is [IS2, 3.1]. A proof in the notation used here is in arXiv:2111.05900v1, as
Proposition A.12. �

A.3. Very general elements. Fixing, once and for all, a basis f1, f2, . . . , fr of SPk,
we treat SPk as an irreducible algebraic family of superpotentials, and identify it with
Cr = SpecC[t], where t = t1, . . . , tr are parameter variables and any element of SPk is
the specialisation t = a at a point a ∈ Cr of the ‘generic’ superpotential Gt =

∑
tifi.

In particular, SPk inherits the Zariski topology from Cr. Under this identification, it is
natural to abbreviate Ga ∈ SPk by a ∈ SPk.

Lemma A.7 (c.f. [ISm, 3.9]). Fix (d, k) and consider SPk with its Zariski topology as
above. For any i ≥ 0,

(1) there is a non-empty Zariski open subset Ui ⊂ SPk on which dim AJac(Ga)i is
constant for all a ∈ Ui, and takes the minimum value of any G ∈ SPk.

(2) there is a largest Zariski open subset Vi ⊂ Ui ∩ Ui+1 on which the rank of the
restriction d3 : AJac(Ga)i → (AJac(Ga)⊕d)i+1 for any a ∈ Vi is the maximum
possible for a linear map between spaces of these dimensions (i.e. is injective).

(3) there is a largest Zariski open subset Wi ⊂ Vi ∩ Ui+k−1 on which the rank of
the restriction d2 : (AJac(Ga)⊕d)i+1 → (AJac(Ga)⊕d)i+k−1 for any a ∈Wi is the
maximum possible for a linear map whose kernel contains the image of d3.

Thus if Wi not empty, then for a ∈Wi, the homogeneous slice of (A.A) with the domain
of d3 in degree i is an exact sequence of finite-dimensional vector spaces.

https://arxiv.org/abs/2111.05900v1
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Proof. (1) This is [IS1, 2.2], proved as in [IS1, 2.1]. The point is this: let a0 ∈ SPk be a
point at which the minimum dimension is achieved, and choose a subset of the set Φi of
all monomials of degree i for which the (square) coefficient matrix of a basis of the kernel
of C〈x〉i → AJac(Ga0

)i with respect to Φi is invertible (a section of the surjection). The
entries of this square matrix are algebraic in a, so it remains invertible as a varies in a
Zariski open subset a0 ∈ Ui ⊂ SPk. Thus the kernel cannot get smaller, so must have
constant dimension, and thus the minimum is also achieved for all a ∈ Ui.
(2) Within Ui ∩ Ui+1, the map d3 : AJac(Ga)i → (AJac(Ga)⊕d)i+1 is determined by a
matrix of fixed size whose entries are functions in a. Maximising its rank is an open
condition on a, since it occurs on the complement of a locus of vanishing minors. (It is
possible that all relevant minors vanish identically, in which case the conclusion is simply
that Vi is empty.)
(3) Similarly, maximising the rank of d2 is an open condition prescribed by minors that
are functions in a. The condition that the kernel contains the image of d3 is already
imposed by the entries of the matrix, since a ∈ Vi and (A.A) is a complex. �

Corollary A.8 ([ISm, 3.2]). Let k ≥ 3 and (d, k) 6= (2, 3).

(1) For each i ≥ 0, the minimum value achieved by dim AJac(G)i for any G ∈ SPk,
as in A.7(1), is the coefficient of ti in the expansion of (1− dt+ dtk−1 − tk)−1.

(2) If G ∈ SPk is exact, then HG attains the minimum coefficient for every term ti.

In particular, each Wi in A.7(2) is non-empty, and the minimum Hilbert series in the set
{HF | F ∈ SPk} is (1− dt+ dtk−1 − tk)−1.

Proof. The proof follows [ISm, 3.2, 3.8], which is for d = 2 but generalises with no change,
using the existence of the exact potentials in A.5. �

For formal power series ϕ(t) and ψ(t), write ϕ ≥ ψ to mean that the coefficients of
ϕ − ψ are all non-negative. If P is a family of power series, then ψ ∈ P is called the
minimum if ϕ ≥ ψ for all ϕ ∈ P, noting that the minimum does not necessarily exist.

Proposition A.9. If k ≥ 3 and (d, k) 6= (2, 3), then there exists a countable intersection U

of non-empty Zariski opens of SPk such that G ∈ ESPk for all G ∈ U.

Proof. Let U1 be the countable intersection over all i ≥ 0 of the Zariski open subsets Wi

of A.7. By A.8, each Wi is non-empty, thus this intersection is non-empty. Similarly,
there is another such countable intersection U2 ⊂ SPk on which the left-multiplication
map x1 : AJac(G) → AJac(G) is injective, as injectivity maximises rank in each degree.
Since x1 is injective on the free algebra (at t = 0), or again applying A.5, this intersection
is also non-empty. Thus U = U1 ∩ U2 is a non-empty countable intersection. �

For a given F ∈ SPk,m, recall the notation m and IF from §A.1. The Poincaré series
of F is defined to be

PF =
∑
i≥0

dimC
( C〈x〉
mi+1+IF

)
ti. (A.C)

This measures the growth of the quotients of AJac(F ) by the ideals (mi+1 + IF )/IF . The
general situation is more delicate than the homogeneous case of A.9, but still a minimum
is achieved by a very general element.

Corollary A.10. If k ≥ 3 and (d, k) 6= (2, 3), then for any m ≥ k there exists F ∈ SPk,m

such that the following statements hold.

(1) PF is the minimum in {PH | H ∈ SPk,m}.
(2) Ford(F ) ∈ U, where U ⊂ SPk is defined in A.9.

Proof. Similar to A.7(1) (cf. [IS1, 2.1]), minimising each coefficient of the Poincaré series is
an open condition in a family, and so the minimum is realised on a countable intersection
of non-empty Zariski open subsets V ⊂ SPk,m.

Consider the map SPk,m → SPk given by F 7→ Fk. Intersecting the preimage of
U ⊂ SPk with V determines a countable intersection of open subsets of SPk,m on which
the claims hold. Since C is uncountable, this set contains a closed point. �
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A.4. Power Series. Given f ∈ C〈〈x〉〉, its Poincaré series is defined to be

P̂f =
∑

(dimC Jac(f)/Ji)ti

where recall that J is the Jacobson radical of Jac(f).
When F ∈ SPk,m, we can view F as either a polynomial superpotential and form PF

in (A.C), or we can view F as an element of C〈〈x〉〉 and form P̂F . Since Jac(f) is defined
with respect to the cyclic derivatives δ, and AJac(f) is defined with respect to strike-off

derivatives 6, it is not quite true that P̂F = PF .

Lemma A.11. Given G ∈ SPk,m, then PG = P̂G, where G =
∑m

i=k
1
iGi. Thus, if

G ∈ SPk, then P̂G = PG = 1
1−tHG where G = 1

kG.

Now for f ∈ C〈〈x〉〉 and for any i ≥ 0, set fi = f≤i and Fi = cyc(fi). Then, continuing
the notation of §2.2, and recalling that Ri = (mi + IF )/IF ,

Jac(f)/Ji ∼=
C〈〈x〉〉

((ni, δ1f, . . . , δdf))

∼=
C〈x〉

(mi, δ1fi, . . . , δdfi)
(A.D)

∼=
C〈x〉(

mi, 61(cyc fi), . . . , 6d(cyc fi)
) ∼= AJac(Fi)/R

i

This gives a term-by-term algebraicisation of the Poincaré series, by

P̂f =
∑
i≥0

(dimC AJac(Fi)/R
i)ti.

A.5. Main Result. The main result, A.13, requires the following elementary lemma.

Lemma A.12. For d ∈ R and k ≥ 2 consider the formal power series

1

(1− t)(1− dt+ dtk−1 − tk)
=
∑
i≥0

bit
i.

Setting bj = 0 for j < 0, the following statements hold.

(1) There is an equality bj = dbj−1 − dbj−k+1 + bj−k + 1 for all j ≥ 0.
(2) b0 = 1, and further bj = 1 + d+ . . .+ dj for all 1 ≤ j ≤ k − 2.

Proof. (1) Treating the series as a sum over i ∈ Z, with b<0 = 0, and multiplying up
shows at once that b0 = 1 and that for any j ∈ Z \ {0}

bj − (d+ 1)bj−1 + dbj−2 + dbj−k+1 − (d+ 1)bj−k + bj−k−1 = 0.

When j = 0, the claimed equality in (1) holds. For j ≥ 1, splitting off a single bj−1
summand from the equation above we see by induction that

bj = dbj−1 − dbj−2 − dbj−k+1 + (d+ 1)bj−k − bj−k−1
+ (dbj−2 − dbj−k + bj−k−1 + 1)

= dbj−1 − dbj−k+1 + bj−k + 1.

(2) For 1 ≤ j ≤ k − 2, the equality in (1) reads bj = bj−1d + 1, and so the result follows
since b0 = 1. �

The following is the main result of this appendix, and it asserts that, in almost all cases,
the J-dimension of Jac(f) is ≥ 3. In particular, in almost all cases the Jacobi algebra is
infinite dimensional, as a vector space. Recall from §2.1 that C〈〈x〉〉≥k consists of all those
f ∈ C〈〈x〉〉 for which fj = 0 for all j < k, and note that 0 ∈ C〈〈x〉〉≥k.

Theorem A.13. Suppose that d = 2 and k ≥ 4, or d ≥ 3 and k ≥ 3. If f ∈ C〈〈x〉〉 has
order k, then Jdim Jac(f) ≥ 3.
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The proof will show that the coefficients of the Poincaré series of Jac(f) are no smaller
than those of

1

(1− t)(1− dt+ dtk−1 − tk)
.

When d = 2 and k = 4 this lower bound is 1/
(
(1 − t)3(1 − t2)

)
, and when d = k = 3 it

is 1/(1− t)4, both of which have polynomial growth of degree 3. For all other d, k in the
scope of the theorem, the growth is exponential and Jdim Jac(f) =∞.

Proof. Associated to the fixed k = ord(f) and d is the power series

1

(1− t)(1− dt+ dtk−1 − tk)
=
∑
i≥0

bit
i.

The bis are integers that depend only on k and d. Similarly, associated to k and d are the
positive integers a0, a1, . . . defined to be

aj := min{dimC
(Jac(g)

Jj+1

)
| g ∈ C〈〈x〉〉≥k}

= min{dimC
(Jac(g)

Jj+1

)
| g ∈ C〈x〉≥k} (truncate terms mod Jj+1)

= min{dimC
(Jac(g)

Jj+1

)
| g ∈ C〈x〉≥k, gt = 0 for t > j + 1}

=

{
dimC

(C〈〈x〉〉
nj+1

)
if j ≤ k − 2

min
{

dimC
(AJac(G)

Rj+1

)
| G ∈ SPk,j+1

}
if j ≥ k − 1.

. (by (A.D))

Certainly P̂f ≥
∑

i≥0 ait
i, by the minimality of the ai. We claim that ai = bi for all i ≥ 0,

since then

P̂f ≥
∑
i≥0

ait
i =

∑
i≥0

bit
i =

1

(1− t)(1− dt+ dtk−1 − tk)
,

which has the prescribed growth as in the statement of the result.
So, from here on we discard the original f , and instead prove that ai = bi for all i ≥ 0.

This is a statement which depends only on k and d.

Since by assumption (d, k) 6= (2, 3), by A.5 ESPk 6= ∅ and so choose G ∈ ESPk. Since
G is exact, by A.4 HG = (1− dt+ dtk−1 − tk)−1, and so by A.11 for G = 1

kG we have

P̂G =
1

1− t
·HG =

1

(1− t)(1− dt+ dtk−1 − tk)
=
∑
i≥0

bit
i.

Since G exists, it follows immediately by minimality of the ais that ai ≤ bi for all i ≥ 0.

Now clearly a0 = b0 = 1, and further for all 1 ≤ j ≤ k − 2 we have aj = dimC
(C〈〈x〉〉
nj+1

)
,

which equals bj by A.12(2). Further, since d relations of degree k can cut down the
dimension of C〈〈x〉〉/Jk+1 by at most d, it follows that ak−1 ≥ 1 + d + . . . + dk − d. This
equals bk−1 by A.12(2), and so ak−1 ≥ bk−1, which in turn forces ak−1 = bk−1.

Thus, by induction we can suppose that aj = bj for all 0 ≤ j ≤ s, for some s ≥ k − 1.
The proof will be completed once we show that as+1 = bs+1.

Now by A.10 applied to m = s + 2, there exists F ∈ SPk,s+2 for which PF is the
minimum in {PH | H ∈ SPk,s+2}, and further Fk ∈ U where U is from A.9. By the first
of these facts, since for all j ≤ s+ 1 by truncation

aj = min
{

dimC
(AJac(H)

Rj+1

)
| H ∈ SPk,j+1

}
= min

{
dimC

(AJac(H)
Rj+1

)
| H ∈ SPk,s+2

}
it follows that

PF =

s+1∑
j=0

ajt
i + Os+2. (A.E)

On the other hand, since Fk ∈ U, by definition Fk ∈ ESPk. Thus, by A.6 for all j ≥ 1 the
left multiplication by x1

AJac(F )/Rj x1·−−→ AJac(F )/Rj+1

is injective.
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Set I = ( 61F, . . . , 6dF ) ⊂ C〈x〉. The above asserts that there is an injection

C〈x〉
I + mj

x1·−−→ C〈x〉
I + mj+1

for all j ≥ 1. This allows us to pick inductively sets of monomials Mj of C〈x〉 of degree j,
starting with M0 = {1}, such that the following two conditions are satisfied.

(1) There is an inclusion x1Mj ⊆Mj+1.
(2) The necessarily disjoint union Nj = M0 ∪ . . . ∪Mj projects down to give a basis

of C〈x〉/(I + mj+1).

To fix notation, set Bj = SpanC(Nj) ⊂ C〈x〉, and define bj via the equality

dimCBj = dimC
( C〈x〉
I+mj+1

)
= bj .

Note that the second equality implies that PF =
∑

i≥0 bjt
j .

Write V = SpanC{x1, . . . , xd} ⊆ C〈x〉, R = SpanC{ 61F, . . . , 6dF} ⊆ C〈x〉, and for j ≥ 0
consider the quotient map πj : C〈x〉 → C〈x〉/mj+1. By the definition of bj , for every j ≥ 0

dimC πj(I) = 1 + d+ . . .+ dj − bj . (A.F)

We now apply the adapted Vinberg argument: elements of the two-sided ideal I are
sums of elements, each of which either starts with an xi or starts with a derivative 6iF ,
so we can write

I = V I +RC〈x〉.
Applying πj+1 then gives an equality

πj+1(I) = πj+1(V I) + πj+1(RC〈x〉).
Since Bj descends to span C〈x〉/(I + mj+1), every element of C〈x〉 may be written as an
element in Bj , plus an element in I, plus an element in mj+1. Projecting down this sum
via πj+1, and noting that RI ⊂ RC〈x〉 gets absorbed into πj+1(I), and elements of R
have degree ≥ k, it follows that mod mj+1 there is an equality

πj+1(I) = πj+1(V I) + πj+1(RBj+2−k).

Write R′ = SpanC{ 62F, . . . , 6dF} ⊆ C〈x〉, then using the Euler relation
∑d

i=0[xi, 6iF ] = 0
of A.1 we may get rid of any appearance of the product ( 61F )x1 at the cost of terms in
the other summands. It follows that

πj+1(I) = πj+1(V I) + πj+1(R′Bj+2−k) + πj+1(( 61F )B+
j+2−k),

where B+
j+2−k = SpanC{n ∈ Nj+2−k | n 6= x1m for any m}.

The proof is completed by estimating the dimension of each of the three individual
summands. Applying (A.F) for the first summand,

dimC πj+1(I) ≤ d(1 + d+ . . .+ dj − bj) + (d− 1)bj+2−k + (bj+2−k − bj+1−k)

since dimCB
+
j+2−k ≤ bj+2−k − bj+1−k holds by construction of the Nj in (1). Plugging

(A.F) for πj+1 into the above displayed equation, and then cancelling, it follows that

1− bj+1 ≤ −dbj + dbj+2−k − bj+1−k.

which after re-arranging gives

bj+1 ≥ bjd− bj+2−kd+ bj+1−k + 1. (A.G)

Since PF =
∑

i≥0 bjt
j , by (A.E) we see that bj = aj for 0 ≤ j ≤ s+ 1, and hence

as+1 ≥ asd− as+2−kd+ as+1−k + 1 ((A.G) for j = s)

= bsd− bs+2−kd+ bs+1−k + 1 (aj = bj for j ≤ s by induction)

= bs+1 (A.12(1) for j = s+ 1)

Since we already know as+1 ≤ bs+1 by minimality, the above forces as+1 = bs+1. Hence
by induction aj = bj for all j ≥ 0, and the result follows. �

Remark A.14. The above theorem establishes that often Jdim Jac(f) ≥ 3, whilst earlier
sections considered the case Jdim Jac(f) ≤ 1. In general we do not know what, if anything,
satisfies 1 < Jdim Jac(f) < 3, even in the case when f is a polynomial. Nor do we know
whether Jdim Jac(f) is always an integer.
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A.6. Contractibility Consequence. The following is an immediate geometric conse-
quence of the above.

Theorem A.15. Let C ⊂ X be an irreducible rational curve in a smooth CY 3-fold, with
NC deformation algebra Λdef , such that NC|X 6= (−3, 1). Then C ⊂ X contracts to a point
suitably locally, without contracting a divisor, if and only if dimC Λdef <∞.

Proof. The case of (−1,−1) and (−2, 0)-curves is of course well known [R2, DW1]. The
point is that (−4, 2), (−5, 3), . . . curves never contract [L2, 4.1], and further as a conse-
quence of [V1] their noncommutative deformations are given as the Jacobi algebra quotient
of a free power series ring in 3, 4, . . . variables. By A.13, these can never be finite dimen-
sional. Thus in all these cases the statement is true, just since the curves never contract,
and the deformation algebras are always infinite dimensional. �
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