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Abstract. Suppose that f : X → SpecR is a minimal model of a complete local

Gorenstein 3-fold, where the fibres of f are at most one dimensional, so by [VdB]

there is a noncommutative ring Λ derived equivalent to X. For any collection of curves
above the origin, we show that this collection contracts to a point without contracting

a divisor if and only if a certain factor of Λ is finite dimensional, improving a result

of [DW2]. We further show that the mutation functor of [IW2, §6] is functorially
isomorphic to the inverse of the Bridgeland–Chen flop functor in the case when the

factor of Λ is finite dimensional. These results then allow us to jump between all

the minimal models of SpecR in an algorithmic way, without having to compute the
geometry at each stage. We call this process the Homological MMP.

This has several applications in GIT approaches to derived categories, and also
to birational geometry. First, using mutation we are able to compute the full GIT

chamber structure by passing to surfaces. We say precisely which chambers give the

distinct minimal models, and also say which walls give flops and which do not, enabling
us to prove the Craw–Ishii conjecture in this setting. Second, we are able to precisely

count the number of minimal models, and also give bounds for both the maximum and

the minimum numbers of minimal models based only on the dual graph enriched with
scheme theoretic multiplicity. Third, we prove a bijective correspondence between

maximal modifying R-module generators and minimal models, and for each such pair

in this correspondence give a further correspondence linking the endomorphism ring
and the geometry. This lifts the Auslander–McKay correspondence to dimension three.
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1. Introduction

1.1. Setting. One of the central problems in the birational geometry of 3-folds is to
construct, given a suitable singular space SpecR, all its minimal models Xi → SpecR
and to furthermore pass between them, via flops, in an effective manner.

The classical geometric method of producing minimal models is to take Proj of an
appropriate graded ring. It is known that the graded ring is finitely generated, so this
method produces a variety equipped with an ample line bundle. However, for many
purposes this ample bundle does not tell us much information, and one of the themes of
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this paper, and also other homological approaches in the literature, is that we should be
aiming for a much larger (ideally tilting) bundle, one containing many summands, whose
determinant bundle recovers the classically obtained ample bundle. These larger bundles,
and their noncommutative endomorphism rings, encode much more information about the
variety than simply the ample bundle does.

At the same time, passing between minimal models in an effective way is also a
rather hard problem in general. There are various approaches to this; one is to hope for
some form of GIT chamber decomposition in which wandering around, crashing through
appropriate walls, eventually yields all the projective minimal models. Another is just to
find a curve, flop, compute all the geometry explicitly, and repeat. Neither is ideal, since
both usually require a tremendous amount of calculation. For example the GIT method
needs first a calculation of the chamber structure, then second a method to determine what
happens when we pass through a wall. Without additional information, and without just
computing both sides, standing in any given chamber it is very hard to tell which wall to
crash through next in order to obtain a new minimal model.

The purpose of this paper is to demonstrate, in certain cases where we have this
larger tilting bundle, that the extra information encoded in the endomorphism ring can
be used to produce a very effective homological method to pass between the minimal
models, both in detecting which curves are floppable, and also in producing the flop. As
a consequence, this then supplies us with the map to navigate the GIT chambers, and the
much finer control that this map gives means that our results imply (but are not implied
by) many results in derived category approaches to GIT, braiding of flops, and faithful
group actions. We outline only some in this paper, as there are a surprising number of
other corollaries.

1.2. Overview of the Algorithm. We work over C. Throughout this introduction, for
simplicity of the exposition, the initial geometric input is a crepant projective birational
morphism X → SpecR, with one dimensional fibres, where R is a three dimensional
normal Gorenstein complete local ring and X has only Gorenstein terminal singularities.
This need not be a flopping contraction, X need not be a minimal model, and R need
not have isolated singularities. We remark that many of our arguments work much more
generally than this, see §1.5.

Given this input, we associate a noncommutative ring Λ := EndR(N) for some re-
flexive R-module N , and a derived equivalence

ΨX : Db(cohX)→ Db(mod Λ) (1.A)

as described in [VdB, §3].
It is not strictly necessary, but it is helpful to keep in mind, that a presentation of Λ as

a quiver with relations can be obtained by replacing every curve above the origin by a dot
(=vertex), and just as in the two-dimensional McKay correspondence we add an additional
vertex corresponding to the whole scheme–theoretic fibre. We draw arrows between the
vertices if the curves intersect, and there are rules that establish how the additional vertex
connects to the others. The loops on vertices correspond to self-extension groups, and so
in the case that X is smooth, the loops encode the normal bundle of the curves. This is
illustrated in Figure 1, but for details see §2.2.

At its heart, this paper contains two key new ideas. The first is that certain factors
of the algebra Λ encode noncommutative deformations of the curves, and thus detects
which curves are floppable. The second is that when curves flop we should not view the
flop as a variation of GIT, rather we should view the flop as a change in the algebra (via
a universal property) whilst keeping the GIT stability constant. See 1.3. Specifically, we
prove that the mutation functor of [IW2, §6] is functorially isomorphic to the inverse of
the Bridgeland–Chen flop functor [B02, C02] when the curves are floppable. It is viewing
the flop via this universal property that gives us the new extra control over the process;
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Figure 1. From geometry to algebra.

indeed it is the mutated algebra that contains exactly the information needed to iterate,
without having to explicitly calculate the geometry at each step.

This new viewpoint, and the control it gives, in fact implies many results in GIT,
specifically chamber structures and wall crossing, and also many results in the theory of
noncommutative minimal models, in particular producing an Auslander–McKay corre-
spondence in dimension three. We describe the GIT results in §1.3, and the other results
in §1.4. In the remainder of this subsection we sketch the algorithm that jumps between
the minimal models of SpecR. The process, which we call the Homological MMP, is run
as illustrated in Figure 2 on page 5.

The initial input is the crepant morphism X → SpecR above, where X has only
Gorenstein terminal singularities.

Step 1: Contractions. The first task is to determine which subsets of the curves
contract to points without contracting a divisor, and can thus be flopped. Although this is
usually obvious at the input stage (we generally understand the initial input), it becomes
important after the flop if we are to continue running the programme.

Let C be the scheme-theoretic fibre above the unique closed point of SpecR, so that
taking the reduced scheme structure we obtain

⋃n
i=1 Ci with each Ci ∼= P1. We pick a

subset of the curves, say I ⊆ {1, . . . , n}, and ask whether
⋃
i∈I Ci contracts to a point

without contracting a divisor. Corresponding to each curve Ci is an idempotent ei in the
algebra Λ := EndR(N) from (1.A), and we set ΛI := Λ/Λ(1−

∑
i∈I ei)Λ. Our first main

result, a refinement of [DW2], is the following.

Theorem 1.1 (=3.5).
⋃
i∈I Ci contracts to a point without contracting a divisor if and

only if dimC ΛI <∞.

In fact 1.1 is true regardless of the singularities on X and SpecR, and needs no
assumptions on crepancy. Contracting the curves

⋃
i∈I Ci, which we can do at will since

R is complete local, yields a diagram

X

Xcon

SpecR

g

h
f (1.B)

By [DW2] there is a contraction algebra Acon, constructed with respect to the morphism
g, that detects whether the curves in I contract to a point without contracting a divisor.
The subtlety in the proof of 1.1 is that Λ and thus ΛI is constructed with respect to the
morphism f , so to establish 1.1 requires us to relate the algebras Acon and ΛI . It turns
out that they are isomorphic, but this can only be established by appealing to a universal
property. There is not even any obvious morphism between them.

Step 2: Mutation and Flops. We again pick a subset of curves {Ci | i ∈ I},
but for simplicity in this introduction we assume that there is only one curve Ci (i.e.
I = {i}), although this paper does also cover the general situation, and all of the theorems
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stated here have multi–curve analogues. The curve Ci corresponds to an indecomposable
summand Ni of the R-module N . By Step 1 the curve Ci flops if and only if dimC Λi <∞.
Regardless of whether it flops or not, we can always categorically mutate the module N
with respect to the summand Ni, in the sense of [IW2, §6], to produce another module
νiN (possibly equal to N), together with a derived equivalence

Φi : Db(mod Λ)→ Db(modνiΛ)

where νiΛ := EndR(νiN). See §2.3 for definitions and details. This requires no assump-
tions on the singularities of X, but does require R to be normal Gorenstein. Note that the
categorical mutation used here is inspired by, but in many ways is much different than,
the mutation in cluster theory and elsewhere in the literature. The main point is that the
mutation here tackles the situation where there are loops, 2-cycles, and no superpotential,
which is the level of generality needed to apply the results to possibly singular minimal
models. Consequently, this mutation is not just a simple combinatorial rule (unlike, say,
Fomin–Zelevinsky mutation from cluster theory), however in practice νiΛ can still be
calculated easily.

The following is our next main result. When Ci flops, we denote the flop by X+.

Theorem 1.2 (=4.2, 4.20). With the notation as above,

(1) The irreducible curve Ci flops if and only if νiN 6= N .
(2) If Γ denotes the natural algebra associated to the flop X+ [VdB], then Γ ∼= νiΛ.
(3) If further X → SpecR is a minimal model, and dimC Λi <∞, then

Φi ∼= ΨX+ ◦ Flop ◦ Ψ−1
X

where Ψ are the functors in (1.A), and Flop is the inverse of the flop functor of
Bridgeland–Chen [B02, C02].

The first part of the theorem allows us later to give a lower bound on the number of
minimal models, and it turns out that the third part is one half of a dichotomy, namely

Φi ∼=

{
ΨX+ ◦ Flop ◦ Ψ−1

X if dimC Λi <∞
ΨX ◦ Twist ◦ Ψ−1

X if dimC Λi =∞,

where Twist is a Fourier–Mukai twist-like functor over a noncommutative one-dimensional
scheme. We do not give the details here, as a more general treatment is given in [DW4].

We also remark that the proof of 1.2 does not need or refer to properties of the generic
hyperplane section, so there is a good chance that in future we will be able to remove the
assumption that X has only Gorenstein terminal singularities, see B.2.

However, of the results in 1.2, it is part two that is the key, since it allows us to iterate.
First, 1.2(2) allows us to immediately read off the dual graph of the flop without explicitly
calculating it in coordinates, since the dual graph can be read off from the mutated quiver.
Second, and most importantly, combining 1.2(2) with 1.1 (applied to νiΛ) allows us to
detect which curves are contractible after the flop by inspecting factor algebras of the form
νiΛ/νiΛ(1− e)νiΛ. There is no way of seeing this information on the original algebra Λ,
which is one of the main reasons why fixing Λ and changing the stability there does not
lend itself easily to iterations. Hence we do not change GIT stability, we instead change
the algebra by plugging νiΛ back in as the new input, and continue the programme in an
algorithmic way. This is summarised in Figure 2.

1.3. Applications to GIT. There are various other outputs to the Homological MMP
that for clarity have not been included in Figure 2. One such output, when the curve does
flop, is obtained by combining 1.2(2) with [Kar, 5.2.5]. This shows that it is possible to
output the flop as a fixed, specified, GIT moduli space of the mutated algebra.

As notation, for any algebra Γ := EndR(N) with Γ ∈ CMR, we denote the dimension
vector given by the ranks of the summands of N by rk. If N is a generator, that is N
contains R as a summand, then the GIT chamber decomposition Θ(Γ) associated to
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input X → SpecR

associate Λ

pick curves
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dimension
of factor
algebra
finite?

read off
dual graph
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3.5(3)

yes

4.2

2.15

3.5(3)

no

Figure 2. The Homological MMP, jumping between minimal models.

Γ (with dimension vector rk) has co-ordinates ϑi for i 6= 0, where by convention ϑ0

corresponds to the summand R of N . We consider the region

C+(Γ) := {ϑ ∈ Θ(Γ) | ϑi > 0 for all i > 0}.

As usual, we let Mrk,φ(Λ) denote the moduli space of φ-semistable Λ-modules of dimen-
sion vector rk.

Corollary 1.3 (=4.19). With setup X → SpecR as above, choose Ci and suppose that
dimC Λi <∞, so that Ci flops. Then

(1) Mrk,φ(Λ) ∼= X for all φ ∈ C+(Λ).
(2) Mrk,φ(νiΛ) ∼= X+ for all φ ∈ C+(νiΛ).

This allows us to view the flop as changing the algebra but keeping the GIT chamber
structure fixed, and so since mutation is easier to control than GIT wall crossing, 1.3
implies, but is not implied by, results in GIT. Mutation always induces a derived equiva-
lence, and it turns out that it is possible to track the moduli space in 1.3(2) back across
the equivalence to obtain the flop as a moduli space on the original algebra. Again, as in
Step 1 in §1.2, the subtlety is that the flop of Bridgeland–Chen is constructed as a moduli
with respect to the morphism g in (1.B), whereas here we want to establish the flop as a
moduli with respect to global information associated to the morphism f .

The following moduli–tracking theorem allows us to do this. Later, we prove it in
much greater generality, and with multiple summands.
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Proposition 1.4 (=5.13(1)). Let S be a d-dimensional complete local normal Gorenstein
ring, M ∈ ref R with Λ := EndS(M) ∈ CMR, and suppose that νiM satisfies the tech-
nical assumptions in 5.12. Consider the minimal left add(⊕j 6=iMj)-approximation of Mi,
namely

0→Mi →
⊕
j 6=i

M
⊕bj
j

Suppose that β is a dimension vector, and ϑ is a stability condition on Λ with ϑi > 0.
Then as schemes Mβ,ϑ(Λ) ∼=Mνiβ,νiϑ(νiΛ), where the vectors νiβ and νiϑ are given by

(νiβ)t =

{
βt if t 6= i(∑

j 6=i bjβj

)
− βi if t = i

(νiϑ)t =

{
ϑt + btϑi if t 6= i
−ϑi if t = i

The technical assumptions in 1.4 hold for flopping contractions, and they also hold
automatically for any noncommutative crepant resolution (=NCCR) or maximal modifi-
cation algebra (=MMA) in dimension three. Thus 1.4 can be applied to situations where
the fibre is two–dimensional, and we expect to be able to extend some of the techniques in
this paper to cover general minimal models of general Gorenstein 3-folds. We also remark
that 1.4 is known in special situations; it generalises [SY, 3.6, 4.20], which dealt with
Kleinian singularities, and [NS, 6.12], which dealt with specific examples of smooth 3-folds
with mutations of NCCRs given by quivers with potentials at vertices with no loops.

It is also possible to track moduli from νiΛ to moduli on Λ, see 5.13(2). This leads
to the following corollary.

Corollary 1.5 (=5.23). With the running hypothesis f : X → SpecR as above, assume
that either f is a flopping contraction, or a minimal model. Let Λ := EndR(N) from (1.A),
where N automatically has R as a summand, and consider the GIT chamber decomposition
Θ associated to Λ, with co-ordinates ϑi for i 6= 0 (where ϑ0 corresponds to the summand
R of N). Pick an indecomposable non-free summand Ni, and consider the bj defined in
1.4 (for the case M := N). Then the region

ϑi < 0, ϑj + bjϑi > 0 for all j 6= i

defines a chamber in Θ(Λ), and for any parameter ϑ inside this chamber,

Mrk,ϑ(Λ) ∼=
{
X+ if Ci flops
X else,

where X+ denotes the flop of X at Ci. Thus the flop, if it exists, is obtained by crashing
through the single wall ϑi = 0 in Θ(Λ).

Of course, our viewpoint is that 1.5 should be viewed as a consequence of the Homo-
logical MMP, since without the extra data the Homological MMP offers, it is hard to say
which should be the next wall to crash through, and then which wall to crash through
after that. The information in the next chamber needed to iterate is contained in νiΛ, not
the original Λ. Mutation allows us to successfully track this data, and as a consequence
we obtain the following corollary.

Corollary 1.6 (=6.2(1)). There exists a connected path in the GIT chamber decomposi-
tion of Λ where every minimal model of SpecR can be found, and each wall crossing in
this path corresponds to the flop of a single curve.

We remark that 1.6 was verified in specific quotient singularities in [NS, 1.5], and is
also implicit in the setting of cAn singularities in [IW3, §6], but both these papers relied
on direct calculations. The Homological MMP removes the need to calculate.

The following conjecture is an extension to singular minimal models of a conjecture
posed by Craw–Ishii [CI], originally for quotient singularities and their NCCRs.
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Conjecture 1.7 (Craw–Ishii). Suppose that S is an arbitrary complete local normal
Gorenstein 3-fold with rational singularities, and EndR(N) is an MMA where R ∈ addN .
Then every projective minimal model of SpecR can be obtained as a quiver GIT moduli
space of EndR(N).

There are versions of the conjecture for rings R that are not complete local, but in
the absence of a grading, which for example exists for quotient singularities, there are
subtleties due to the failure of Krull–Schmidt. Nevertheless, a direct application of 1.6
gives the following result.

Corollary 1.8 (=6.2(2)). The Craw–Ishii conjecture is true for all compound du Val
(=cDV) singularities.

In fact we go further than 1.6 and 1.8, and describe the whole GIT chamber structure.
In principle this is hard, since obtaining the numbers bj needed in 1.4 directly on the 3-
fold is difficult without explicit knowledge of Λ or indeed without knowing the explicit
equation defining R. However, the next result asserts that mutation is preserved under
generic hyperplane sections, and this allows us to obtain the numbers bj by reducing to
the case of Kleinian surface singularities, about which all is known.

Lemma 1.9 (=5.20). With the setup X → SpecR as above, if g is a sufficiently generic
hyperplane section, then Λ/gΛ ∼= EndR/gR(N/gN), and minimal approximations are pre-
served under tensoring by R/gR.

For a more precise wording, see 5.20. Now by Reid’s general elephant conjecture,
true in the setting here by [Re, 1.1, 1.14], cutting by a generic hyperplane section yields

X2 X

Spec(R/g) SpecR

ϕ f

where R/g is an ADE singularity and ϕ is a partial crepant resolution. Since N ∈ CMR
and g is not a zero-divisor on N , necessarily N/gN ∈ CMR/g, and so any indecomposable
summand Ni of N cuts to Ni/gNi, which must correspond to a vertex in an ADE Dynkin
diagram via the Auslander–McKay correspondence. This then allows us to obtain the
numbers bj using Auslander–Reiten (=AR) theory, using the knitting–type constructions
on the known AR quivers, as in [IW1]. We refer the reader to §5.4 for details, in particular
the example 5.26.

Once we have obtained the bj for all exchange sequences, which in particular depends
only on the curves which appear in the partial resolution X2, we are able to use this data
to do two things. First, we are able to compute the full GIT chamber structure.

Corollary 1.10 (=5.18, 5.24, 5.25). In the setup X → SpecR above, suppose that f is a
minimal model, or a flopping contraction. Set Λ := EndR(N) from (1.A). Then

(1) C+(Λ) is a chamber in Θ.
(2) For sufficiently generic g ∈ R, the chamber structure of Θ for Λ is the same as the

chamber structure for EndR/gR(N/gN). There are a finite number of chambers,
and the walls are given by a finite collection of hyperplanes containing the origin.
The co-ordinate hyperplanes ϑi = 0 are included in this collection.

(3) Tracking all the chambers C+(νit . . .νi1Λ) through mutation, via knitting combi-
natorics, gives the full chamber structure of Θ.

We list and draw some examples in 5.26 and §7. In the course of the proof of 1.10, if Π
denotes the preprojective algebra of an extended Dynkin diagram and e is an idempotent
containing the extending vertex, then in 5.24 we describe the chamber structure of Θ(eΠe)
by intersecting hyperplanes with a certain subspace in a root system, a result which may
be of independent interest. It may come as a surprise that the resulting chamber structures
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are not in general the root system of a Weyl group, even up to an appropriate change of
parameters, and this has implications to the braiding of flops [DW3] and faithful group
actions [HW]. It also means, for example, that any naive extension of [T1] or [BIKR, DH]
is not possible, since root systems and Weyl groups do not necessarily appear. However,
this phenomenon will come as no surprise to Pinkham [P, p366].

Second, we are able to give minimal as well as maximal bounds on the number of
minimal models, based only on the curves which appear in the partial resolution X2.
The Homological MMP enriches the GIT chamber structure not only with the mutated
quiver (allowing us to iterate), but by 1.9 it also enriches it with the information of the
curves appearing after cutting by a generic hyperplane. Certainly if two minimal models
X and Y cut under generic hyperplane section to two different curve configurations, then
X and Y must be different minimal models. The surface curve configurations obtained
via mutation can be calculated very easily using knitting combinatorics, so keeping track
of this extra information (see e.g. 7.3) allows us to enhance the chamber structure, and
to improve upon the results of [P] as follows.

Corollary 1.11 (=5.28). Suppose that R is a cDV singularity, with a minimal model
X → SpecR. Set Λ := EndR(N) as in (1.A). By passing to a general hyperplane section
g as in 1.10, the number of minimal models of SpecR is bounded below by the number of
different curve configurations obtained in the enhanced chamber structure of Θ(Λ/gΛ).

A closer analysis (see e.g. 5.27) reveals that it is possible to obtain better lower
bounds, also by tracking mutation, but we do not detail this here. See §5.4 and §7.1.

1.4. Auslander–McKay Correspondence. There are also purely algebraic outputs of
the Homological MMP. One such output is that we are able to lift the Auslander–McKay
correspondence from dimension two [A86] to 3-fold compound du Val singularities. One
feature is that for 3-folds, unlike for surfaces, there are two correspondences. First, there
is a correspondence (1.C) between maximal modifying (=MM) R-module generators and
minimal models, and then for each such pair there is a further correspondence (in parts
(1) and (2) below) along the lines of the classical Auslander–McKay Correspondence.
Parts (3) and (4), the relationship between flops and mutation, describe how these two
correspondences relate.

Corollary 1.12 (=4.10, 4.24). Let R be a complete local cDV singularity. Then there
exists a one-to-one correspondence

{basic MM R-module generators} {minimal models fi : Xi → SpecR} (1.C)

where the left-hand side is taken up to isomorphism, and the right-hand side is taken up
to isomorphism of the Xi compatible with the morphisms fi. Under this correspondence

(1) For any fixed MM generator, its non-free indecomposable summands are in one-
to-one correspondence with the exceptional curves in the corresponding minimal
model.

(2) For any fixed MM generator N , the quiver of EndR(N) (for definition see 4.9)
encodes the dual graph of the corresponding minimal model.

(3) The full mutation graph of the MM generators coincides with the full flops graph
of the minimal models.

(4) The derived mutation groupoid of the MM generators is functorially isomorphic
to the derived flops groupoid of the minimal models.

For all undefined terminology, and the detailed description of the bijection maps
in (1.C), we refer the reader to §2.1, §4.2 and §6.2. We remark that the graphs in (3)
are simply the framework to express the relationship between flops and mutation on a
combinatorial level, and the derived groupoids in (4) are the language to express the
relationship on the level of functors.
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In addition to 1.12, we also establish the following. For unexplained terminology, we
again refer the reader to §6.2.

Corollary 1.13 (=4.10, 6.4, 6.9). Let R be a complete local cDV singularity. Then

(1) R admits only finitely many MM generators, and any two such modules are con-
nected by a finite sequence of mutations.

(2) The mutation graph of MM generators can be viewed as a subgraph of the skeleton
of the GIT chamber decomposition of Θ(Λ).

If further R is isolated, then

(3) The mutation graph of MM generators coincides with the skeleton of the GIT
chamber decomposition. In particular, the number of basic MM generators equals
the number of chambers.

Although (3) is simply a special case, the setting whenR has only isolated singularities
is particularly interesting since it relates maximal rigid and cluster tilting objects in certain
Krull–Schmidt Hom-finite 2-CY triangulated categories to birational geometry.

We also remark that the above greatly generalises and simplifies [BIKR, DH], which
considered isolated cAn singularities with smooth minimal models and observed the con-
nection to the Weyl group Sn, [NS] which considered specific quotient singularities, again
with smooth minimal models, and [IW3] which considered general cAn singularities. All
these previous works relied heavily on direct calculation, manipulating explicit forms.

Based on the above results, we offer the following conjecture.

Conjecture 1.14. Let R be a Gorenstein 3-fold with only rational singularities. Then R
admits only a finite number of basic MM generators if and only if the minimal models of
SpecR have one-dimensional fibres (equivalently, R is cDV).

The direction (⇐) is true by 1.13. Although we cannot yet prove (⇒), by strength-
ening some results in [B13] to cover non-isolated singularities, we do show the following
as a corollary of a more general d-dimensional result.

Proposition 1.15 (=6.12). Suppose that R is a complete local 3-dimensional normal
Gorenstein ring, and suppose that R admits an NCCR (which by [VdB2] implies that
the minimal models of SpecR are smooth). If R admits only finitely many basic MM
generators up to isomorphism, then R is a hypersurface singularity.

1.5. Generalities. In this paper we work over an affine base, restrict to complete local
rings, work over one-dimensional fibres and sometimes restrict to minimal models. Often
these assumptions are not necessary, and are mainly made just for technical simplification
of the notation and exposition. In Appendix B we outline questions and conjectures for
when R is not Gorenstein, including flips and other aspects of the MMP.

1.6. Notation and Conventions. Everything in this paper takes place over the complex
numbers C, or any algebraically closed field of characteristic zero. All complete local rings
appearing are the completions of finitely generated C-algebras at some maximal ideal.
Throughout modules will be left modules, and for a ring A, modA denotes the category
of finitely generated left A-modules, and fdmodA denotes the category of finite length
left A-modules. For M ∈ modA we denote by addM the full subcategory consisting of
summands of finite direct sums of copies of M . We say that M is a generator if R ∈ addM ,
and we denote by projA := addA the category of finitely generated projective A-modules.
Throughout we use the letters R and S to denote commutative noetherian rings, whereas
Greek letters Λ and Γ will denote noncommutative noetherian rings.

We use the convention that when composing maps fg, or f ·g, will mean f then g, and
similarly for quivers ab will mean a then b. Note that with this convention HomR(M,X)
is a EndR(M)-module and HomR(X,M) is a EndR(M)op-module. Functors will use the
opposite convention, but this will always be notated by the composition symbol ◦, so
throughout F ◦G will mean G then F .
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2. General Preliminaries

We begin by outlining the necessary preliminaries on aspects of the MMP, MM mod-
ules, MMAs, perverse sheaves, and mutation. With the exception of 2.15, 2.21, 2.22, 2.25
and 2.26 nothing in this section is original to this paper, and so the confident reader can
skip to §3.

2.1. General Background. If (R,m) is a commutative noetherian local ring and M ∈
modR, recall that the depth of M is defined to be

depthRM := inf{i ≥ 0 | ExtiR(R/m,M) 6= 0}.

We say thatM ∈ modR is maximal Cohen-Macaulay (=CM) if depthRM = dimR. In the
non-local setting, if R is an arbitrary commutative noetherian ring we say that M ∈ modR
is CM ifMp is CM for all prime ideals p in R, and we denote the category of CM R-modules
by CMR. We say that R is a CM ring if R ∈ CMR, and if further inj.dimRR < ∞,
we say that R is Gorenstein. Throughout, we denote (−)∗ := HomR(−, R) and let ref R
denote the category of reflexive R-modules, that is those M ∈ modR for which the natural
morphism M →M∗∗ is an isomorphism.

Singular d-CY algebras are a convenient language that unify the commutative Goren-
stein algebras and the mildly noncommutative algebras under consideration.

Definition 2.1. Let Λ be a module finite R-algebra, then for d ∈ Z we call Λ d-Calabi–Yau
(=d-CY) if there is a functorial isomorphism

HomD(Mod Λ)(x, y[d]) ∼= DHomD(Mod Λ)(y, x)

for all x ∈ Db(fdmod Λ), y ∈ Db(mod Λ), where D = HomC(−,C). Similarly we call
Λ singular d-Calabi–Yau (=d-sCY) if the above functorial isomorphism holds for all x ∈
Db(fdmod Λ) and y ∈ Kb(proj Λ), where Kb(proj Λ) denotes the subcategory of Db(mod Λ)
consisting of perfect complexes.

When Λ = R, it is known [IR, 3.10] that R is d-sCY if and only if R is Gorenstein and
equi-codimensional with dimR = d. One noncommutative source of d-sCY algebras are
maximal modification algebras, introduced in [IW2] as the notion of a noncommutative
minimal model.

Definition 2.2. Suppose that R is a normal d-sCY algebra. We call N ∈ ref R a mod-
ifying module if EndR(N) ∈ CMR, and we say that N ∈ ref R is a maximal modifying
(MM) module if it is modifying and it is maximal with respect to this property. Equiva-
lently, N ∈ ref R is an MM module if and only if

addN = {X ∈ ref R | EndR(N ⊕X) ∈ CMR}.

If N is an MM module, we call EndR(N) a maximal modification algebra (=MMA).

The notion of a smooth noncommutative minimal model, called a noncommutative
crepant resolution, is due to Van den Bergh [VdB2].

Definition 2.3. Suppose that R is a normal d-sCY algebra. By a noncommutative
crepant resolution (NCCR) of R we mean Λ := EndR(N) where N ∈ ref R is such that
Λ ∈ CMR and gl.dim Λ = d.



FLOPS AND CLUSTERS IN THE HOMOLOGICAL MINIMAL MODEL PROGRAMME 11

In the setting of the definition, provided that N is nonzero, it is equivalent to ask
for Λ ∈ CMR and gl.dim Λ < ∞ [VdB2, 4.2]. Note that any modifying module N gives
rise to a d-sCY algebra EndR(N) by [IW2, 2.22(2)], and EndR(N) is d-CY if and only if
EndR(N) is an NCCR [IW2, 2.23]. Further, an NCCR is precisely an MMA with finite
global dimension, that is, a smooth noncommutative minimal model. On the base R, those
NCCRs where N ∈ CMR can be characterised in terms of CT modules [IW2, 5.9(1)].

Definition 2.4. Suppose that R is a normal d-sCY algebra. We say that N ∈ CMR is a
CT module if

addN = {X ∈ CMR | HomR(N,X) ∈ CMR}.

Throughout this paper we will freely use the language of terminal, canonical and
compound Du Val (=cDV) singularities in the MMP, for which we refer the reader to
[CKM, Re, KoM] for a general overview. Recall that a normal scheme X is defined to be
Q-factorial if for every Weil divisor D, there exists n ∈ N for which nD is Cartier. Also, if
X and Xcon are normal, then recall that a projective birational morphism f : X → Xcon

is called crepant if f∗ωXcon = ωX . A Q-factorial terminalisation, or minimal model, of
Xcon is a crepant projective birational morphism f : X → Xcon such that X has only
Q-factorial terminal singularities. When X is furthermore smooth, we call f a crepant
resolution.

The following theorem, linking commutative and noncommutative minimal models,
will be used implicitly throughout.

Theorem 2.5. [IW3, 4.16, 4.17] Let f : X → SpecR be a projective birational morphism,
where X and R are both Gorenstein normal varieties of dimension three, and X has at
worst terminal singularities. If X is derived equivalent to some ring Λ, then the following
are equivalent.

(1) X → SpecR is a minimal model.
(2) Λ is an MMA of R.

The result is also true when R is complete local, see [IW3, 4.19].
Throughout this paper, we require the ability to contract curves. Suppose that

f : X → SpecR is a projective birational morphism where R is complete local, such that
Rf∗OX = OR, with at most one-dimensional fibres. Choose a subset of curves

⋃
i∈I Ci

in X above the unique closed point of SpecR, then since R is complete local we may
factorise f into

X
g−→ Xcon

h−→ SpecR

where g contracts Cj to a closed point if and only if j ∈ I, and further g∗OX = OXcon
,

see e.g. [Ko1, p25] or [S, §2]. Further, by the vanishing theorem [KMM, 1-2-5] Rg∗OX =
OXcon , which since Rf∗OX = OR in turn implies that Rh∗OXcon = OR.

Recall that a Q-Cartier divisor D is called g-nef if D ·C ≥ 0 for all curves contracted
by g, and D is called g-ample if D ·C > 0 for all curves contracted by g. There are many
(equivalent) definitions of flops in the literature, see e.g. [Ko2]. We will use the following.

Definition 2.6. Suppose that f : X → SpecR is a crepant projective birational morphism,
where R is complete local, with at most one-dimensional fibres. Choose

⋃
i∈I Ci in X,

contract them to give g : X → Xcon, and suppose that g is an isomorphism away from⋃
i∈I Ci. Then we say that g+ : X+ → Xcon is the flop of g if for every line bundle
L = OX(D) on X such that −D is g-nef, then the proper transform of D is Q-Cartier,
and g+-nef.

The following is obvious, and will be used later.

Lemma 2.7. With the setup in 2.6, suppose that Di is a Cartier divisor on X such that
Di ·Cj = δij for all i, j ∈ I (such a Di exists since R is complete local), let D′i denote the
proper transform of −Di to X+. Then if D′i is Cartier and there is an ordering of the
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exceptional curves C+
i of g+ such that D′i · C

+
j = δij, then g+ : X+ → Xcon is the flop of

g.

2.2. Perverse Sheaves and Tilting. Some of the arguments in this paper are not spe-
cific to dimension three, and are not specific to crepant morphisms. Consequently, at
times we will refer to the following setup.

Setup 2.8. (General Setup). Suppose that f : X → SpecR is a projective birational
morphism, where R is complete local, X and R are noetherian and normal, such that
Rf∗OX = OR and the fibres of f have dimension at most one.

However, some parts will require the following restriction.

Setup 2.9. (Crepant Setup). Suppose that f : X → SpecR is a crepant projective
birational morphism between d ≤ 3 dimensional schemes, where R is complete local
normal Gorenstein, and the fibres of f have dimension at most one. Further

(1) If d = 2 we allow X to have canonical Gorenstein singularities, so X → SpecR is
a partial crepant resolution of a Kleinian singularity.

(2) If d = 3 we further assume that X has only Gorenstein terminal singularities.

By Kawamata vanishing, it is automatic that Rf∗OX = OR. We will not assume that X
is Q-factorial unless explicitly stated.

Now if g : X → Xcon is a projective birational morphism satisfying Rg∗OX = OXcon ,
the category of perverse sheaves relative to g, denoted 0Per(X,Xcon), is defined to be

0Per(X,Xcon) :=

a ∈ Db(cohX)

∣∣∣∣∣∣
Hi(a) = 0 if i 6= 0,−1

g∗H
−1(a) = 0, Rg∗H

0(a) = 0
Hom(c,H−1(a)) = 0 for all c ∈ Cg


where Cg := {c ∈ cohX | Rg∗c = 0}. In the setup of 2.8, it is well-known [VdB, 3.2.8]
that there is a vector bundle VX , described below, inducing a derived equivalence

Db(cohX) Db(mod EndX(VX))

0Per(X,R) mod EndX(VX)

ΨX :=RHomX(VX ,−)

∼

∼

(2.A)

The bundle VX is constructed as follows. Consider C = π−1(m) where m is the unique
closed point of SpecR, then giving C the reduced scheme structure, write Cred =

⋃n
i=1 Ci

where each Ci ∼= P1. Since R is complete local, we can find Cartier divisors Di with the
property that Di · Cj = δij , and set Li := OX(Di). If the multiplicity of Ci is equal to
one, set Mi := Li, else define Mi to be given by the maximal extension

0→ O⊕(r−1)
X →Mi → Li → 0 (2.B)

associated to a minimal set of r − 1 generators of H1(X,L∗i ) [VdB, 3.5.4].

Notation 2.10. With notation as above, in the general setting of 2.8,

(1) Set Ni :=M∗i , and VX := OX ⊕
⊕n

i=1Ni.
(2) Set Ni := H0(Ni) and N := H0(VX).

By [VdB, 3.5.5], VX is a basic progenerator of 0Per(X,R), and furthermore is a
tilting bundle on X. Note that rankRNi is equal to the scheme-theoretic multiplicity of
the curve Ci [VdB, 3.5.4].

Remark 2.11. Under the derived equivalence ΨX in (2.A), the coherent sheaves OCi(−1)
belong to 0Per(X,R) and correspond to simple left EndX(VX)-modules Si.

Unfortunately, at this level of generality EndX(VX) � EndR(N) (see e.g. [DW2, §2]).
However, in the crepant setup of 2.9, this does hold, which later will allow us to reduce
many problems to the base SpecR.
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Lemma 2.12 ([VdB, 3.2.10]). In the setup of 2.9, EndX(VX) ∼= EndR(N).

Notation 2.13. In the setup of 2.8, pick a subset
⋃
i∈I Ci of curves above the origin,

indexed by a (finite) set I. We set

(1) NI :=
⊕

i∈I Ni and NIc := OX ⊕
⊕

j /∈I Nj , so that VX = NI ⊕NIc .

(2) NI :=
⊕

i∈I Ni and NIc := R⊕
⊕

j /∈I Nj , so that N = NI ⊕NIc .

The following result is implicit in the literature.

Proposition 2.14. Under the general setup of 2.8, choose a subset of curves
⋃
i∈I Ci and

contract them to obtain X → Xcon → SpecR. Let eIc be the idempotent in EndX(VX)
corresponding to the summand NIc , and let e be the idempotent in EndXcon

(VXcon
) corre-

sponding to the summand OXcon . Then

(1) VXcon
∼= g∗NIc ∼= Rg∗NIc , and EndX(NIc) ∼= EndXcon

(VXcon
).

(2) The following diagram commutes

Db(cohX) Db(mod EndX(VX))

Db(cohXcon) Db(mod EndXcon
(VXcon

))

Db(coh SpecR) Db(modR)

ΨX

∼

ΨXcon

∼

∼

Rg∗

Rh∗

eIc (−)

e(−)

Further, under the crepant setup of 2.9, EndX(VX) ∼= EndR(N) and EndXcon(VXcon) ∼=
EndR(NIc), so EndR(NIc) is derived equivalent to Xcon via the tilting bundle VXcon .

Proof. (1) As in §2.1, by the vanishing theorem Rg∗OX ∼= OXcon . Given this, the proof
of [KIWY, 4.6] (which considered surfaces and −1Per instead) shows that g∗(V∗Xcon

) ∼=
OX ⊕j /∈IMj . Thus

HomX(g∗VXcon ,OX) ∼= g∗HomX(VXcon ,OXcon) ∼= OX ⊕j /∈IMj

and so dualizing gives g∗VXcon
∼= OX ⊕j /∈I Nj := NIc , where the right-hand side is a

summand of VX . Applying Rg∗ and using the projection formula

VXcon
∼= Rg∗g

∗VXcon
∼= Rg∗NIc

and so inspecting cohomology shows that g∗NIc ∼= Rg∗NIc ∼= VXcon
. It follows that

EndXcon(VXcon) = EndXcon(g∗NIc) ∼= HomX(g∗g∗NIc ,NIc) ∼= EndX(NIc),

and chasing through shows this isomorphism is a ring isomorphism.
(2) The commutativity of the top diagram follows from the functorial isomorphisms

RHomXcon
(VXcon

,Rg∗(−)) ∼= RHomX(g∗VXcon
,−)

∼= RHomX(NIc ,−)

∼= eIcRHomX(VX ,−).

with the bottom diagram being similar. The last statements then follow from 2.12. �

The following is an easy extension of [Wem, 3.2], and will be needed later to read off
the dual graph after the flop.

Theorem 2.15. In the general setup of 2.8, set Λ := EndX(VX). Then Λop can be written
as a quiver with relations, where the quiver is given as follows: for every exceptional curve
Ci associate a vertex labelled i, and also associate a vertex ? corresponding to OX . Then
the number of arrows between the vertices is precisely
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Number of arrows If setup 2.9, d = 3 and X is smooth

?→ ? dimC Ext1
X(ωC , ωC).

i→ ? dimC HomX(OCi
(−1), ωC)

?→ i dimC Ext2
X(ωC ,OCi

(−1))

i→ i dimC Ext1
X(OCi

,OCi
) =

 0 if (−1,−1)-curve
1 if (−2, 0)-curve
2 if (−3, 1)-curve

i→ j

{
1 if Ci ∩ Cj = {pt}
0 else

where in the bottom row i 6= j.

2.3. Mutation. Throughout this subsection R denotes a normal d-sCY complete local
commutative algebra, with d ≥ 2, and M ∈ ref R denotes a basic modifying module M .
We summarise and extend the theory of mutation from [IW2, §6] and [DW1, §5].

Setup 2.16. With assumptions as above, given the basic modifying R-module M , set
Λ := EndR(M) and pick a summand MI of M .

(1) Denote MIc to be the complement of MI , so that

M = MI ⊕MIc .

(2) We define [MIc ] to be the two-sided ideal of Λ consisting of morphisms M → M
which factor through a member of addMIc . We define ΛI := Λ/[MIc ]. Equiv-
alently, if eI denotes the idempotent of Λ = EndR(M) corresponding to the
summand MI of M , then ΛI = Λ/Λ(1− eI)Λ.

Given our choice of summand MI , we then mutate. In the theory of mutation, the
complement submodule MIc is fixed, and the summand MI changes in a universal way.
Recall from §2.1 that (−)∗ := HomR(−, R).

Setup 2.17. With the setup as in 2.16, write MI =
⊕

i∈IMi as a direct sum of inde-
composables. For each i ∈ I, consider a minimal right (addMIc)-approximation

Vi
ai−→Mi

of Mi, which by definition means that

(1) Vi ∈ addMIc and (·ai) : HomR(MIc , Vi)→ HomR(MIc ,Mi) is surjective,
(2) If g ∈ EndR(Vi) satisfies ai = gai, then g is an automorphism.

Since R is complete, such an ai exists and is unique up to isomorphism. Denote Ki :=
Ker ai, so there is an exact sequence

0→ Ki
ci−→ Vi

ai−→Mi (2.C)

such that

0→ HomR(MIc ,Ki)
·ci−→ HomR(MIc , Vi)

·ai−−→ HomR(MIc ,Mi)→ 0 (2.D)

is exact. Summing the sequences (2.C) over all i ∈ I gives an exact sequence

0→ KI
c−→ VI

a−→MI (2.E)

such that

0→ HomR(MIc ,KI)
·c−→ HomR(MIc , VI)

·a−→ HomR(MIc ,MI)→ 0 (2.F)

is exact.
Dually, for each i ∈ I, consider a minimal right (addM∗Ic)-approximation

U∗i
bi−→M∗i
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of M∗i , and denote Ji := Ker bi. Thus

0→ Ji
di−→ U∗i

bi−→M∗i (2.G)

0→ HomR(M∗Ic , Ji)
·di−−→ HomR(M∗Ic , U

∗
i )
·bi−→ HomR(M∗Ic ,M

∗
i )→ 0 (2.H)

are exact. Summing over all i ∈ I gives exact sequences

0→ JI
d−→ U∗I

b−→M∗I (2.I)

0→ HomR(M∗Ic , JI)
·d−→ HomR(M∗Ic , U

∗
I )
·b−→ HomR(M∗Ic ,M

∗
I )→ 0. (2.J)

Definition 2.18. With notation as above,

(1) We define the right mutation of M at MI as

µIM := MIc ⊕KI ,

that is we remove the summand MI and replace it with KI .
(2) We define the left mutation of M at MI as

νIM := MIc ⊕ (JI)
∗.

In this level of generality, νIM is not necessarily isomorphic to µIM .

Remark 2.19. Even if MI = Mi is indecomposable, when we view EndR(M) as a quiver
with relations, with arrows a, and left projective EndR(M)-modules Pj corresponding to
the indecomposable summands Mj , it is a common misconception that mutation can be
defined using simply the arrows into (respectively, out of) the vertex i. Indeed, we could
consider the combinatorially defined morphisms⊕

head(a)=i
tail(a) 6=i

Ptail(a) → Pi and Pi →
⊕

tail(a)=i
head(a)6=i

Phead(a)

which by reflexive equivalence arise from morphisms⊕
head(a)=i
tail(a)6=i

Mtail(a) →Mi and Mi →
⊕

tail(a)=i
head(a)6=i

Mhead(a).

However these morphisms are not approximations in general. In other words, the mutation
defined in 2.18 above is not in general a vertex tilt in the sense of Bridgeland–Stern [BS],
and in full generality there is no simple combinatorial description of the decomposition of
UI or VI . In the case of cDV singularities, we do give a combinatorial description later in
§5.3 and §5.4 by relating the problem to partial crepant resolutions of ADE singularities.

One of the key properties of mutation is that it always gives rise to a derived equiva-
lence. With the setup as above, for the case of left mutation νIM , the derived equivalence
between EndR(M) and EndR(νIM) is given by a tilting EndR(M)-module TI constructed
as follows. By (A.A) there is an exact sequence

0→MI
b∗−→ UI → J∗I

obtained by dualizing (2.I). Applying HomR(M,−) induces (·b∗) : HomR(M,MI) →
HomR(M,UI), so denoting the cokernel by CI we obtain an exact sequence

0→ HomR(M,MI)
·b∗−−→ HomR(M,UI)→ CI → 0. (2.K)

The tilting EndR(M)-module TI is defined to be TI := HomR(M,MIc)⊕CI . It turns out
that EndΛ(TI) ∼= EndR(νIM) [IW2, 6.7, 6.8], and there is always an equivalence

ΦI := RHom(TI ,−) : Db(mod EndR(M))→ Db(mod EndR(νIM)), (2.L)

which is called the mutation functor [IW2, 6.8]. It is never the identity functor. On the
other hand νIM = M can happen (see e.g. A.2). Note that, by construction, TI has the
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structure of a Λ-Γ bimodule, where Γ := νIΛ := EndΛ(TI) ∼= EndR(νIM). The following
is elementary.

Lemma 2.20. With notation as above, the following statements hold.

(1) TI is a tilting Λ-module with pdΛTI = 1.
(2) TI is a tilting Γop ∼= EndR((νIM)∗)-module, with TI ∼= HomR((νIM)∗,M∗Ic)⊕DI

where DI arises from the exact sequence

0→ HomR((νIM)∗, JI)
·d−→ HomR((νIM)∗, U∗I )→ DI → 0

of Γop-modules. Thus pdΓopTI = 1 and EndΓop(TI) ∼= Λop.

Proof. (1) is [IW2, 6.8], and (2) follows from (1), see for example [SY, 2.2] or [Ke, 4.1],
[BB, 2.6]. As a sketch proof, by (2.K)

0→ HomR(M,M)→ HomR(M,UI ⊕MIc)→ CI → 0.

is exact, and applying HomΛ(−, TI) gives an exact sequence

0→ HomΛ(CI , TI)→ HomΛ(HomR(M,UI ⊕MIc), TI)→ TI → 0 (2.M)

of Γop-modules. Under the isomorphism EndΛ(TI) ∼= EndR(νIM),

HomΛ(CI , TI) ∼= HomR(J∗I ,νIM) ∼= HomR((νIM)∗, JI),

HomΛ(HomR(M,UI ⊕MIc), TI) ∼= HomR(UI ⊕MIc ,νIM) ∼= HomR((νIM)∗, U∗I ⊕M∗Ic),

so (2.M) is isomorphic to

0→ HomR((νIM)∗, JI)
(·d0 )
−−→ HomR((νIM)∗, U∗I ⊕M∗Ic)→ TI → 0,

proving the statements by applying the analysis in (1) to EndR((νIM)∗). �

For our purposes later we will require the finer information encoded in the following
two key technical results. They are both an extension of [IW2, §6] and [DW1, §4], and
are proved using similar techniques, so we postpone the proofs until Appendix A.

Theorem 2.21 (=A.5). Suppose that νIM ∼= M . Then

(1) TI = Λ(1− eI)Λ and Γ := EndΛ(TI) ∼= Λ.
(2) ΩΛΛI = TI , thus pdΛΛI = 2 and Ext1

Λ(TI ,−) ∼= Ext2
Λ(ΛI ,−).

Theorem 2.22 (=A.8). Suppose that d = 3, νIνIM ∼= M and dimC ΛI <∞. As above,
set Γ := EndΛ(TI) ∼= EndR(νIM). Then

(1) TI ∼= HomR(M,νIM).
(2) Ω2

ΛΛI = TI , thus pdΛΛI = 3 and Ext1
Λ(TI ,−) ∼= Ext3

Λ(ΛI ,−).

The following, one of the main results in [IW2], will allow us to establish properties
non-explicitly when we restrict to minimal models and mutate at single curves.

Theorem 2.23. Suppose that d = 3, and M is a maximal modifying R-module with
indecomposable summand Mj. Set Λ := EndR(M). Then

(1) We have µj(M) ∼= νj(M).
(2) Always νjνj(M) ∼= M .
(3) νj(M) �M if and only if dimC Λj <∞.
(4) νj(M) ∼= M if and only if dimC Λj =∞.

Proof. (1) and (2) are special cases of [IW2, 6.25].
(3)(⇒) is [IW2, 6.25(2)], and (4)(⇒) is [IW2, 6.25(1)]. (3)(⇐) is the contrapositive of
(4)(⇒), and (4)(⇐) is the contrapositive of (3)(⇒). �
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Remark 2.24. Theorem 2.23(3)(4) shows that there is a dichotomy in the theory of
mutation depending on whether the dimension of Λj is finite or not. In the flops setting,
this dichotomy will correspond to the fact that in a 3-fold, an irreducible curve may or
may not be floppable. In either case we will obtain a derived equivalence from mutation,
and the results 2.21 and 2.22 will allow us to control it.

The above 2.23 will allow us to easily relate flops and mutations in the case when
d = 3 and the singularities of X are Q-factorial. When we want to drop the Q-factorial
assumption, or consider d = 2 with canonical singularities, we will need the following.

Proposition 2.25. With the crepant setup of 2.9, and notation from 2.13, choose a subset⋃
i∈I Ci of curves above the origin and contract them to obtain X → Xcon → SpecR. If

Xcon has only isolated hypersurface singularities, then νIνIN ∼= N in such a way that Ni
mutates to J∗i mutates to Ni.

Proof. Denote F := HomR(N∗Ic ,−). The choice of curves gives us a summand NI such
that NIc is a generator. This being the case, the right-hand morphisms in all the exchange
sequences are all surjective. By (2.H)

0→ FJi → FU∗i → FN∗i → 0

is exact. Denoting ∆ := EndR(N∗Ic), since FU∗i is a projective ∆-module, this shows that
Ω∆(FN∗i ) ∼= FJi. If we denote the minimal addN∗Ic-approximation of Ji by

0→ Li →Wi → Ji → 0,

then νIνI takes Ni to J∗i to L∗i . We claim that L∗i
∼= Ni, so by reflexive equivalence it

suffices to prove that FLi ∼= FN∗i . Since

0→ FLi → FWi → FJi → 0

is exact and FWi is a projective ∆-module, Ω∆(FJi) ∼= FLi, so the result follows if we can
establish that Ω2

∆(FN∗i ) ∼= FN∗i . Since FN∗i ∈ CM ∆ has no ∆-projective summands, and
Ω∆ = [−1] on the category CM ∆, it suffices to show that [2] = Id on CM ∆.

But by 2.14 ∆ is derived equivalent to Xcon and so

CM ∆ ' Dsg(∆) ' Dsg(Xcon) '
⊕

x∈SingXcon

CM ÔXcon,x

by Orlov [O09], since all categories under consideration are idempotent complete. Since

each of ÔXcon,x are hypersurfaces, [2] = Id for each of the categories on the right-hand
side, so since the above are triangle equivalences, [2] = Id for the left-hand category. �

In the study of terminal (and even smooth) 3-folds, canonical surfaces appear nat-
urally via hyperplane sections, and in this setting pdΛΛi can be infinite, which is very
different to 2.21 and 2.22. The next result will allow us to bypass this problem.

Proposition 2.26. Suppose that R is a normal complete local 2-sCY commutative algebra,
and M ∈ CMR is basic. Choose a summand MI , set Λ := EndR(M) and denote the
simple Λ-modules by Sj. Assume that νIνIM ∼= M . If x ∈ fdmod Λ with HomΛ(x, Si) = 0

for all i ∈ I, then Ext1
Λ(TI , x) = 0.

Proof. Since Λ is 2-sCY, x has finite length and CI has finite projective dimension,

Ext1
Λ(TI , x) ∼= Ext1

Λ(CI , x) ∼= DExt1
Λ(x,CI),

so it suffices to show that Ext1
Λ(x,CI) = 0. By the assumption νIνIM ∼= M , it follows

that J∗I
∼= KI . Since 0 → HomR(M,MI) → HomR(M,UI) → HomR(M,KI) is exact,

splicing we obtain exact sequences

0→ HomR(M,MI)→ HomR(M,UI)→ CI → 0 (2.N)

0→ CI → HomR(M,KI)→ FI → 0 (2.O)



18 MICHAEL WEMYSS

But by (A.C)

0→ HomR(MIc ,MI)→ HomR(MIc , UI)→ HomR(MIc ,KI)→ 0

is exact, so FI is a finitely generated ΛI -module. But since d = 2 and R is normal,
necessarily ΛI has finite length, hence so too has FI . Thus the assumptions then imply
that HomΛ(x, FI) = 0, so Ext1

Λ(x,CI) ↪→ Ext1
Λ(x,HomR(M,KI)).

Hence it suffices to show that Ext1
Λ(x,HomR(M,KI)) = 0. But

0→ HomR(M,KI)
·c−→ HomR(M,VI)→ HomR(M,MI)→ ΛI → 0

is exact, so denoting EI := Cok(·c), then HomΛ(x,EI) embeds inside

HomΛ(x,HomR(M,MI)) ∼= DExt2
Λ(HomR(M,MI), x) = 0,

so HomΛ(x,EI) = 0. This in turns implies that Ext1
Λ(x,HomR(M,KI)) embeds inside

Ext1
Λ(x,HomR(M,VI)), which is zero. Thus Ext1

Λ(x,HomR(M,KI)) = 0, as required. �

3. Contractions and Deformation Theory

The purpose of this section is use noncommutative deformations to detect whether
a divisor has been contracted to a curve, in such a manner that is useful for iterations,
improving [DW2]. This part of the Homological MMP does not need any restriction on
singularities, so throughout this section we adopt the general setup of 2.8.

3.1. Background on Noncommutative Deformations. With the setup f : X →
SpecR of 2.8, set Λ := EndX(VX). Given any E ∈ cohX, there is an associated classical
commutative deformation functor

cDefE : cart1 → Sets

where cart1 denotes the category of local commutative artinian C-algebras. The definition
of this functor, which we do not state here, involves a flatness condition over the test
object R ∈ cart1.

Noncommutative deformations add two new features to this classical picture. First,
the test objects are enlarged from commutative artinian rings to allow certain (basic)
noncommutative artinian C-algebras. This thickens the universal sheaf. Second, they
allow us to deform a finite collection {Ei | i ∈ I} of objects whilst remembering Ext
information between them.

For the purposes of this paper, we will not deform coherent sheaves, but rather their
images under the derived equivalence in §2.2. Deforming on either side of the derived
equivalence turns out to give the same answer [DW2], but the noncommutative side is
slightly easier to formulate. Thus we input a finite collection {Si | i ∈ I} of simple
Λ-modules, and define the associated noncommutative deformation functor as follows.

As preparation, recall that an n-pointed C-algebra Γ is an associative C-algebra,
together with C-algebra morphisms p : Γ→ Cn and i : Cn → Γ such that ip = Id. A mor-
phism of n-pointed C-algebras ψ : (Γ, p, i)→ (Γ′, p′, i′) is a ring homomorphism ψ : Γ→ Γ′

such that

Cn

Γ

Γ′

Cn
i

i′

p

p′

ψ

commutes. We denote the category of n-pointed C-algebras by Algn, and denote the full
subcategory consisting of those objects that are commutative rings by CAlgn. Further-
more, denote by artn the full subcategory of Algn consisting of objects (Γ, p, i) for which
dimC Γ < ∞ and the augmentation ideal n := Ker(p) is nilpotent. The full subcategory
of artn consisting of those objects that are commutative rings is denoted cartn.
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Given Γ ∈ artn, the morphism i produces n idempotents e1, . . . , en ∈ Γ, and we
denote Γij := eiΓej .

Definition 3.1. [L02] Fix a finite collection S := {Si | i ∈ I} of left Λ-modules. Then

(1) For Γ ∈ art|I|, we say that M ∈ Mod Λ⊗C Γop (i.e. a Λ-Γ bimodule) is Γ-matric-
free if

M ∼= (Si ⊗C Γij)

as Γop-modules, where the right-hand side is the matrix built by varying i, j ∈
{1, . . . , n}, which has an obvious Γop-module structure.

(2) The noncommutative deformation functor

DefS : artn → Sets

is defined by sending

(Γ, n) 7→

(M, δ)

∣∣∣∣∣∣
M ∈ Mod Λ⊗C Γop

M is Γ-matric-free

δ = (δi) with δi : M ⊗Γ (Γ/n)ei
∼−→ Si


/
∼

where (M, δ) ∼ (M ′, δ′) if there exists an isomorphism τ : M → M ′ of bimodules
such that

M ⊗Γ (Γ/n)ei M ′ ⊗Γ (Γ/n)ei

Si

τ⊗1

δi δ′i

commutes, for all i.
(3) The commutative deformation functor is defined to be the restriction of DefS to

cart|I|, and is denoted cDefS .

Given the general setup f : X → SpecR of 2.8, choose a subset of curves
⋃
i∈I Ci

above the unique closed point and contract them as in §2.1 to factorise f as

X
g−→ Xcon

h−→ SpecR

with Rg∗OX = OXcon
and Rh∗OXcon

= OR. By 2.11, across the derived equivalence the
coherent sheaves OCi(−1) ∈ cohX (i ∈ I) correspond to simple left Λ-modules Si. The
following is the d = 3 special case of the main result of [DW2].

Theorem 3.2 (Contraction Theorem). With the general setup in 2.8, if d = 3 then f
contracts

⋃
i∈I Ci to a point without contracting a divisor if and only if DefS is repre-

sentable.

3.2. Global and Local Contraction Algebras. We maintain the notation from the
general setup of the previous subsection. In this subsection we detect whether g contracts
a curve without contracting a divisor by using the algebra Λ = EndX(VX), constructed
in §2.2 using the morphism f . This will allow us to iterate.

Definition 3.3. For Λ = EndX(VX), with notation from 2.13 define [NIc ] to be the
2-sided ideal of Λ consisting of morphisms that factor through addNIc , and set ΛI :=
Λ/[NIc ].

In [DW2] the prorepresenting object of DefS was constructed locally with respect
to the morphism g, using the following method. Let x ∈ Xcon be the closed point above
which sits

⋃
i∈I Ci. Choose an affine neighbourhood Ucon := SpecR′ containing x, set

U := g−1(Ucon), let R′ be the completion of R′ at x, and consider the formal fibre
U→ SpecR′. This morphism satisfies all the assumptions of the general setup of 2.8, and
we define the contraction algebra to be AI

con := EndU(VU)/[OU]. By [DW1, DW2] the
contraction algebra is independent of choice of U , and

DefS(−) ∼= HomAlg|I|(A
I
con,−). (3.A)
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Even in the case |I| = 1, comparing ΛI and AI
con directly is a subtle problem. If

|I| = 1 and the scheme-theoretic multiplicity of Ci with respect to g is n, then we can

view A
{i}
con as factor of an endomorphism ring of an indecomposable rank n bundle on

U. On the other hand, Λi can be viewed as a factor of an endomorphism ring of an
indecomposable rank m bundle on X, where m is the scheme theoretic multiplicity of Ci
with respect to the morphism f . The next example demonstrates that m 6= n in general.

Example 3.4. Consider the cD4 singularity R := C[[u, x, y, z]]/(u2 − xyz), which is
isomorphic to the toric quotient singularity C3/G where G = Z2 × Z2 ≤ SL(3,C) . We
consider X+ = G−Hilb(C3), and one of its flops

X X+

Xcon

SpecR

g g′

f f ′

Locally, being the Atiyah flop, the scheme theoretic multiplicity of the flopping curve with
respect to g is one, but with respect to f the scheme theoretic multiplicity is two. This
can be calculated directly, but it also follows from the example 7.6 later, once we have
proved 4.6.

The following is the main result of this section.

Theorem 3.5. With the general setup in 2.8, suppose that d = 3 and pick a subset⋃
i∈I Ci of curves above the origin. Then

(1) DefS ∼= HomAlg|I|(ΛI ,−).

(2) ΛI ∼= AI
con.

(3)
⋃
i∈I Ci contracts to point without contracting a divisor ⇔ dimC ΛI <∞.

Proof. (1) Arguing exactly as in [DW1, 3.1], since Si = C as Λ-modules, if we denote the
natural homomorphisms Λ→ Si by qi, then for (Γ, n) ∈ art|I|,

DefS(Γ) ∼=


• A left Λ-module structure on (Si ⊗C Γij) such that

(Si ⊗C Γij) becomes a Λ-Γ bimodule.

• δ = (δi) such that δi : (Si ⊗C Γij)⊗Γ (Γ/n)ei
∼−→ Si

as Λ-modules


/
∼

∼=
{

A C-algebra homomorphism Λ→ Γ such that the
composition Λ→ Γ→ (Γ/n)ei = Si is qi for all i ∈ I

}/
∼

∼= HomAlg|I|(ΛI ,Γ).

(2) Since R is complete, both AI
con and ΛI belong to the pro-category of art|I|, so DefS

is prorepresented by both ΛI and AI
con. Hence by uniqueness of prorepresenting object,

AI
con
∼= ΛI .

(3) This follows by combining (1) and 3.2. �

4. Mutation, Flops and Twists

4.1. Flops and Mutation. We now consider the crepant setup of 2.9 with d = 3, namely
f : X → SpecR is a crepant projective birational morphism, with one dimensional fibres,
where R is a complete local Gorenstein algebra, and X has at worst Gorenstein terminal
singularities. As in §2.2, we consider VX , the basic progenerator of 0Per(X,R), set N :=
H0(VX) and by 2.12 denote Λ := EndX(VX) ∼= EndR(N).
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Remark 4.1. It also follows from 2.12 that EndX(VX)/[NIc ] ∼= EndR(N)/[NIc ] and so
the ΛI defined in 3.3 and 2.16 coincide. This allows us to link the previous contraction
section to mutation.

We aim to prove the following theorem.

Theorem 4.2. With the crepant setup as above, with d = 3, pick a subset of curves⋃
i∈I Ci above the origin, and suppose that dimC ΛI <∞ (equivalently, by 3.5, the curves

flop). Denote the flop by X+, then

(1) νIN ∼= H0(VX+), where VX+ is the basic progenerator of 0Per(X+, R).
(2) The following diagram of equivalences is naturally commutative

D(cohX) D(cohX+)

D(mod Λ) D(modνIΛ)

Flop

ΦI

ΨX ΨX+

where Flop is the inverse of the Bridgeland–Chen flop functor, ΨX and ΨX+ are
the tilting equivalences in (1.A), and ΦI is the mutation functor in (2.L).

The proof of 4.2 will be split into two stages. Stage one, proved in this subsection,
is to establish 4.2(1) in the case where X is a minimal model and I = {i}. Stage two
is then to prove 4.2 in full generality, lifting the Q-factorial and |I| = 1 assumption.
The second stage uses the Auslander–McKay correspondence in §4.2, together with the
Bongartz completion to pass to the minimal model, before we then contract back down.
Thus, the full proof of 4.2 will not finally appear until §4.3.

To establish functoriality, the following results will be useful later.

Proposition 4.3. Suppose that f : X → SpecR and f ′ : X ′ → SpecR both satisfy the
crepant setup 2.9, and admit a common contraction

X X ′

Xcon

SpecR

g g′

f f ′

Suppose that g and g′ contract the same number of curves, and denote the contracted
curves by {Ci | i ∈ I} and {C ′i | i ∈ I} respectively. If Θ : Db(cohX) → Db(cohX ′) is a
Fourier–Mukai equivalence that satisfies

(1) Rg′∗ ◦Θ ∼= Rg∗
(2) Θ(OX) ∼= OX′
(3) Θ(OCi(−1)) ∼= OC′i(−1) for all i ∈ I,

then Θ ∼= φ∗ where φ : X → X ′ is an isomorphism such that g′ ◦ φ = g,

Proof. This is identical to [DW1, §7.6], which itself is based on [T1]. As in [DW1, 7.17],
from properties (1) and (3) it follows that Θ takes 0Per(X,Xcon) to 0Per(X ′, Xcon). The
argument is then word-for-word identical to the proof of [DW1, 7.17, 7.18], since although
there it was assumed that X was projective, this is not needed in the proof. �

Corollary 4.4. Suppose that f : X → SpecR and f ′ : X ′ → SpecR both satisfy the
crepant setup 2.9. If H0(VX) ∼= H0(VX′), then there is an isomorphism X ∼= X ′ compat-
ible with f and f ′.

Proof. Temporarily denote N := H0(VX) and M := H0(VX′). Since N ∼= M by assump-
tion, certainly they have the same number of indecomposable summands, so since VX and
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VX′ are basic, it follows that the numbers of curves contracted by f and f ′ are the same.
Further, we have a diagram of equivalences

D(cohX) D(cohX ′)

D(mod EndX(VX)) D(mod EndX′(VX′))
∼=
F

ΨX Ψ−1

X′

since EndX(VX) ∼= EndR(N) ∼= EndR(M) ∼= EndX′(VX′) by 2.12. Denote the composi-
tion of equivalences by Θ, then the composition is a Fourier–Mukai functor [DW1, 6.16],
which is thus also an equivalence. Now

Rf ′∗ ◦Θ ∼= Rf ′∗ ◦ Ψ−1
X′ ◦ F ◦ ΨX ∼= e(−) ◦ ΨX ∼= Rf∗

where the second and third isomorphisms are 2.14. Further by 2.11 Θ takes

OCi
(−1) 7→ Si 7→ S′i 7→ OC′i(−1)

for all exceptional curves Ci, where Si are simple EndR(N)-modules and S′i are simple
EndR(M)-modules. Lastly, Θ sends

OX 7→ P0 7→ P ′0 7→ OX′
where P0

∼= HomR(N,R) and P ′0 = HomR(M,R). Hence applying 4.3 with Xcon = SpecR
gives the result. �

The following lemma, an easy consequence of Riedtmann–Schofield, proves 4.2(1)
with restricted hypotheses.

Lemma 4.5. With the crepant setup of 2.9, suppose further that d = 3 and X is Q-
factorial, that is f : X → SpecR is a minimal model. Choose a single curve Ci above the
origin, suppose that dimC Λi <∞ (equivalently, by 3.5, Ci flops), and let X+ denote the
flop of Ci. Then νiN ∼= H0(VX+).

Proof. Denote the base of the contraction of Ci by Xcon, set M := H0(VX+) and let Mi

denote the indecomposable summand of M corresponding to C+
i . It is clear that M � N .

Applying 2.14 to both sides of the contraction, M
Mi

∼= H0(VXcon
) ∼= N

Ni
, so the module M

differs from N only at the summand Ni. Similarly, by 2.23(3) νiN � N , and by definition
of mutation, νiN differs from N only at the summand Ni. Consequently, as R-modules,
νiN and M share all summands except one, and neither is isomorphic to N .

But by 2.5 both EndR(M) and EndR(N) are MMAs, and since EndR(νiN) is also
derived equivalent to these, it too is an MMA [IW2, 4.16]. Further, HomR(N,νiN) and
HomR(N,M) are tilting EndR(N)-modules by [IW2, 4.17(1)], and by above as EndR(N)-
modules they share all summands except one. Hence as in [IW2, 6.22], a Riedtmann–
Schofield type theorem implies that νiN ∼= M . �

Corollary 4.6. With the crepant setup of 2.9, suppose further that d = 3 and X is
Q-factorial. Then

νiN ∼=
{
H0(VX+) if Ci flops
H0(VX) else.

Proof. This now follows by combining 2.23 and 4.5. �

The above allows us to verify Figure 2 under restricted hypotheses.

Corollary 4.7. We can run the Homological MMP in Figure 2 when d = 3 and X has
only Q-factorial Gorenstein terminal singularities, and we choose only irreducible curves.

Proof. This now follows from 3.5, 4.5 and 2.15. �

Later in §4.3 we will drop the Q-factorial assumption, and also drop the restriction
to single curves.
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4.2. Auslander–McKay Correspondence. Throughout this subsection we keep the
crepant setup of 2.9, and as in the previous subsection assume further that d = 3 and X
is Q-factorial. The R admitting such a setup are of course well-known to be precisely the
cDV singularities [Re].

Definition 4.8. With R as above,

(1) We define the full mutation graph of the MM generators to have as vertices the
basic MM generators (up to isomorphism of R-modules), where each vertex N has
an edge to νIN provided that dimC ΛI < ∞, for I running through all possible
summands NI of N that are not generators. The simple mutation graph is defined
in a similar way, but we only allow mutation at indecomposable summands.

(2) We define the full flops graph of the minimal models of SpecR to have as vertices
the minimal models of SpecR (up to isomorphism of R-schemes), and we connect
two vertices if the corresponding minimal models are connected by a flop at some
curve. The simple flops graph is defined in a similar way, but we only connect
two vertices if the corresponding minimal models differ by a flop at an irreducible
curve.

The following is standard.

Definition 4.9. For N ∈ modR, the stable endomorphism ring EndR(N) is defined to
be the quotient of EndR(N) by the two sided ideal consisting of those morphisms N → N
which factor through addR.

Recall from the introduction §1.3 that there is a specified region C+ of the GIT
chamber decomposition of Θ(EndR(N)), and Mrk,φ(Λ) denotes the moduli space of φ-
semistable Λ-modules of dimension vector rk (see §5.1 for more details).

Theorem 4.10. With the d = 3 crepant setup of 2.9, assume further that X is Q-factorial.
Then there exists a one-to-one correspondence

{basic MM R-module generators} {minimal models fi : Xi → SpecR}
F

G

N Mrk,ϑ(EndR(N))

H0(VXi) Xi

where VXi
is the basic progenerator of 0Per(Xi, R), and ϑ is any element of C+. Elements

in the set on the left-hand side are taken up to isomorphism of R-modules, and elements
of the set on the right-hand side are taken up to isomorphism of R-schemes.

Under this correspondence

(1) For any fixed MM generator, its non-free indecomposable summands are in one-
to-one correspondence with the exceptional curves in the corresponding minimal
model.

(2) For any fixed MM generator N , the quiver of EndR(N) encodes the dual graph of
the corresponding minimal model.

(3) The simple mutation graph of the MM generators coincides with the simple flops
graph of the minimal models.

In particular the number of basic MM generators is finite.

Proof. Pick a minimal model X → SpecR and denote N := H0(VX), which we know to
be an MM generator by 2.5. We now mutate N at all possible non-free indecomposable
summands. By 4.6, the only new MM generators that this produces are the global sections
from the progenerators of perverse sheaves of the possible flops. We continue mutating
these at the non-free indecomposable summands, then either we go back to the original
N , or the only new MM generators are those arising from flops of flops. Continuing in
this way, since there are only a finite number of minimal models [KMa, Main Theorem],
which are connected by a finite sequence of simple flops (see e.g. [Ko1]), by repeatedly
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mutating at non-free summands we recover only a finite number of MM generators. By
[IW4, 4.3] this implies that they are all the MM generators, in particular there is only a
finite number and each is isomorphic to H0(VY ) for some minimal model Y . This shows
that the function G is surjective. The fact that G is injective is just 4.4, and so G is
bijective. The fact that its inverse is given by F is precisely [Kar, 5.2.5], with the small
caveat that [Kar, 5.2.5] works with the opposite algebra, but only since his conventions
for composing morphisms are opposite to ours.
(1) Let N be an MM generator, then since by the above N ∼= H0(VY ) for some minimal
model Y → SpecR, the statement follows from the construction of the bundle VY in §2.2.
(2) Since the quiver of EndR(N) is the quiver of EndR(N) ∼= EndY (VY ) with the vertex
? (corresponding to the summand R of N) removed, it follows from 2.15 that the quiver
of EndR(N) is the double of the dual graph, together with some loops.
(3) This follows from 4.6 and the above argument. �

We extend the correspondence later in §6.2–§6.4.

Remark 4.11. SpecR may be its own minimal model, in which case the correspondence
in 4.10 reduces to the statement that R is the only basic modifying generator.

Remark 4.12. The proof of 4.10 uses the fact that there are only a finite number of
minimal models, and that they are connected by a finite sequence of simple flops. We
use these results only to simplify the exposition; it is possible to instead use the moduli
tracking results of §5, specifically 5.25, to give a purely homological proof of 4.10.

Remark 4.13. The bijection in 4.10 extends to a bijection

{basic modifying objects in CMR} {crepant modifications fi : Xi → SpecR},
F

G

satisfying the obvious extensions of (1) and (2), where by crepant modification we mean
that Xi is obtained from a minimal model by contracting curves to points, and divisors to
curves. However, because of 4.21, comparing mutation and flop at arbitrary summands is
not so well behaved when the Xi are not minimal models.

Sometimes the minimal models of SpecR can be smooth. Recall from 2.4 the defini-
tion of a CT module.

Corollary 4.14. With the setup as in 4.10, assume further that the minimal models
of SpecR are smooth (equivalently, R admits a CT module). Then 4.10 reduces to a
one-to-one correspondence

{basic CT R-modules} {crepant resolutions fi : Xi → SpecR}

satisfying the same conditions (1)–(3).

Proof. If one of (equivalently, all of) the minimal models is smooth, then EndX(VX) ∼=
EndR(N) has finite global dimension and hence is an NCCR. Thus N is a CT module.
Since CMR has a CT module, by [IW2, 5.11(2)] CT modules are precisely the MM
generators. �

4.3. Flops and Mutation Revisited. In this subsection we use the Auslander–McKay
Correspondence to finally prove 4.2 in full generality, then run the Homological MMP in
Figure 2 when X has only Gorenstein terminal singularities.

We first track certain objects under the mutation functor ΦI in (2.L). As notation,
suppose that M is a basic modifying R-module, where R is complete local d-sCY. Then for
each indecomposable summand Mj of M , denote the corresponding simple and projective
EndR(M)-modules by Sj and Pj respectively. For an indecomposable summand Xj of
νIM , we order the indecomposable summands of νIM so that either Xj

∼= Mj when
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j /∈ I, or Xi
∼= J∗i when i ∈ I. We denote the corresponding simple and projective

EndR(νIM)-modules by S′i and P ′i respectively.

Lemma 4.15. Suppose that R is a complete local d-sCY normal domain, and M ∈ ref R
is a basic modifying module. With notation as above, choose a summand MI of M , and
consider the mutation functor ΦI in (2.L). Then

(1) ΦI(Pj) = P ′j for all j /∈ I.
(2) ΦI(Si) = S′i[−1] for all i ∈ I.

Proof. By definition, TI := (⊕j /∈IPj) ⊕ CI , so part (1) is obvious. For (2), fix i ∈ I and
consider Si. Set PI :=

⊕
k∈I Pk, and note that CI =

⊕
k∈I Ck, where the sequence (2.K)

is a direct sum of exact sequences

0→ Pk → Qk → Ck → 0

with PI /∈ addQk for all k ∈ I. Applying HomΛ(−, Si) gives, for every k ∈ I, an exact
sequence

0→ HomΛ(Ck, Si)→ HomΛ(Qk, Si)→ HomΛ(Pk, Si)→ Ext1
Λ(Ck, Si)→ 0.

Since PI /∈ addQk, necessarily HomΛ(Qk, Si) = 0. Thus by the above sequence

ejRHomΛ(TI , Si) ∼=
{

RHomΛ(Pj , Si) if j /∈ I
RHomΛ(Cj , Si) if j ∈ I

∼=
{

0 if j /∈ I
HomΛ(Pj , Si)[−1] if j ∈ I,

and thus ejRHomΛ(TI , Si) ∼= Cδij [−1] follows. From this, ΦI(Si) ∼= S′i[−1]. �

We also require the following, which does not need the crepant assumption.

Lemma 4.16. In the general setup of 2.8, Ψ−1
X ΛI is a sheaf in degree zero, which we

denote by EI .

Proof. Clearly ΛI is a finitely generated Λ-module, so Ψ−1
X ΛI ∈ 0Per(X,R). Further, by

2.14 Rf∗(Ψ
−1
X ΛI) = 0 since eΛI = 0, so since the spectral sequence collapses it follows

that H−1(Ψ−1
X ΛI) ∈ Cf and H0(Ψ−1

X ΛI) ∈ Cf . But since Ψ−1
X ΛI ∈ 0Per(X,R), by def-

inition Hom(Cf , H−1(Ψ−1
X ΛI)) = 0. Thus Hom(H−1(Ψ−1

X ΛI), H
−1(Ψ−1

X ΛI)) = 0 and so

H−1(Ψ−1
X ΛI) = 0. Thus Ψ−1

X ΛI is a sheaf in degree zero. �

The following is one of the main results, from which 4.2 will follow easily.

Proposition 4.17. Assume the crepant setup of 2.9, with d = 3. We have f : X → SpecR
and as always set N := H0(VX), Λ := EndR(N), and pick a collection of curves

⋃
i∈I Ci

above the origin. If dimC ΛI <∞ and νIN ∼= H0(VX+) for some other f+ : X+ → SpecR
satisfying the crepant setup 2.9, then

(1) X+ is the flop of X at the curves
⋃
i∈I Ci.

(2) The following diagram of equivalences is naturally commutative

Db(cohX) Db(cohX+)

Db(mod Λ) Db(modνIΛ).

Flop

ΦI

ΨX ΨX+

Proof. (1) We first establish that there are morphisms

X X+

Xcon

SpecR

g g+

f f+
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to a common Xcon. We define Xcon to be the base space of the contraction of the curves⋃
i∈I Ci in X. By 2.14, EndR(NIc) is derived equivalent to Xcon, with H0(VXcon

) ∼= NIc .

On the other hand, since EndR(νIN) is derived equivalent to X+ via H0(VX+) ∼=
νIN , the summands of νIN correspond to exceptional curves. If we contract all the curves
corresponding to the summand J∗I , we obtain X+

con say. But again by 2.14 EndR(νIN
J∗I

) =

EndR(NIc) is derived equivalent to X+
con with H0(VX+

con
) ∼= NIc , so by 4.4 Xcon

∼= X+
con

and we can suppose that we are in the situation of the diagram above. As notation, we
denote C+

i to be the curve in X+ corresponding to the summand J∗i of νIN .
We next claim that g+ : X+ → Xcon is the flop of g, and to do this we use 2.7.

First, g+ : X+ → Xcon does not contract a divisor to a curve, since ΛI ∼= (νIΛ)I and so
dimC(νIΛ)I <∞ by [IW2, 6.20]. Now with the notation as in §2.2, we let Di in X be the
Cartier divisor cutting exactly the curve Ci, and D+

i be the Cartier divisor in X+ cutting
exactly the curve C+

i . Since −(−Di) is g-ample, we let D′i denote the proper transform
of −Di. In what follows, we will use the notation [−]X to denote something viewed in the
class group of X. Since g and g+ give reflexive equivalences, we will also abuse notation
and for example refer to the divisor Di on Xcon, and on X+.

We next claim that D′i is Cartier. Since Xcon has only Gorenstein terminal singular-
ities, which locally are hypersurfaces, by 2.25 νIνIN ∼= N , and further recall νIN has
summands Ni (i /∈ I) and J∗i

∼= Ki (i ∈ I). Further, by A.7 applied to EndR(νIN) there
is an exact sequence

0→ HomR(νIN,Ki)→ HomR(νIN,Vi)→ HomR(νIN,Ui)→
→ HomR(νIN,Ki)→ C → 0,

where C has a finite filtration by the simple νIΛ-modules S′j (j ∈ I). Across the equiva-
lence, this gives an exact sequence

0→ N+
i

δi−→Wi
εi−→ Ui → N+

i → E → 0 (4.A)

in 0Per(X+, R) for some g+-trivial bundles Wi and Ui, and by 2.11 and 4.16 E is a
sheaf with a finite filtration with factors from OCj (−1) (j ∈ I). Since all terms are
sheaves, by splicing, considering the associated triangles and then taking cohomology, it
follows that (4.A) is an exact sequence in cohX+. Let Fi := Cok δi, then for any closed
point x ∈ X+\C, Ex = 0, and so certainly (Fi)x is free. Further, if x ∈ C then (4.A)
localises to a finite projective resolution of Ex. Since the OCj

(−1) are Cohen–Macaulay,
depthOX+,x

Ex = 1, so by Auslander–Buchsbaum pdOX+,x
Ex = 2 and thus (Fi)x is free.

This shows that Fi is a locally free sheaf.
Denote Gi := Cok εi. Since R1g+

∗ Ui = 0 as in the proof of 2.14, it follows that
R1g+

∗ Gi = 0. Then since Rg+
∗ E = 0, it then follows that R1g+

∗ N+
i = 0. Thus Rg+

∗ N+
i =

g+
∗ N+

i , and again as in the proof of 2.14, Rg+
∗Wi = g+

∗Wi.
As a consequence, Rg+

∗ Fi = g+
∗ Fi and there is an exact sequence

0→ g+
∗ N+

i → g+
∗Wi → g+

∗ Fi → 0 (4.B)

on Xcon. Across the equivalence with EndR(NIc), by 2.14 this corresponds to a triangle

HomR(NIc ,Ki)
·ci−→ HomR(NIc , Vi)→ ΨXcon

(g+
∗ Fi)→

But by construction

0→ HomR(NIc ,Ki)
·ci−→ HomR(NIc , Vi)→ HomR(NIc , Ni)→ 0

is exact, and by 2.14 g∗Ni corresponds under the equivalence to HomR(NIc , Ni). It follows
that g∗Ni ∼= g+

∗ Fi, and so by reflexive equivalence D′i, the proper transform of −Di, is
Cartier and is represented by [detFi]X+ . Using the exact sequence

0→ N+
i →Wi → Fi → 0
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it follows that

[D′i]X+ · C+
j = [detFi]X+ · C+

j = −[detN+
i ]X+ · C+

j = δij

for all j ∈ I, since Wi is g+-trivial. Hence by 2.7 g+ : X+ → Xcon is the flop of g.
(2) Denote Θ := Ψ−1

X+ ◦ΦI ◦ ΨX : Db(cohX) → Db(cohX+), then it is well known that
this is a Fourier–Mukai functor [DW1, 6.16], and being the composition of equivalences it
is also an equivalence. Note that

(1) Rg+
∗ ◦ F ∼= Rg∗,

(2) F (OX) ∼= OX+ ,
(3) F (OCi

(−1)) ∼= OC+
i

(−1)[−1] for all i ∈ I,

when F is either Flop or Θ. For Flop, the inverse of the Bridgeland–Chen flop functor,
this is well–known; see e.g. [DW1, 7.16] or [T3, Appendix B]. For the functor Θ, denoting
Γ := EndR(NIc), property (1) follows from the commutative diagram

Db(cohX)

Db(cohXcon)

Db(mod Λ)

Db(mod Γ)

Db(modνIΛ)

Db(mod Γ)

Db(cohX+)

Db(cohXcon)

ΨX ΦI
Ψ−1

X+

ΨXcon Id Ψ−1
Xcon

Rg∗ eIc (−) e+
Ic

(−) Rg+
∗

where the two outer squares commute by 2.14 and the commutativity of the inner square
is obvious. Property (2) follows from 4.15(1), and property (3) from 4.15(2). Hence
the functor Θ−1 ◦ Flop satisfies the conditions (1)–(3) of 4.3, so Θ−1 ◦ Flop ∼= φ∗ where
φ : X → X is an isomorphism compatible with the contraction. Since φ is necessarily the
identity away from the flopping locus, φ = Id, so Θ ∼= Flop. �

Thus to prove 4.2, by 4.17 we just need to establish that νIN ∼= H0(VX+) for some
X+ → SpecR. The trick in 4.5 in the minimal model case with I = {i} was to use
Riedtmann–Schofield. To work in full generality requires another standard technique
from representation theory, namely the Bongartz completion.

Proof of 4.2. Since R admits an MM module, by Bongartz completion we may find F ∈
ref R such that EndR(νIN ⊕ F ) is an MMA [IW2, 4.18]. Since νIN is a generator,
necessarily F ∈ CMR. By the Auslander–McKay Correspondence 4.10 νIN ⊕F is one of
the finite number of MM generators, and further νIN ⊕ F = H0(VY ) for some minimal
model Y , where the non-free summands of νIN ⊕F correspond to the exceptional curves
for Y → SpecR. Contracting all the curves in Y that correspond to the summand F ,
as in (1.B) we factorise Y → SpecR as Y → X+ → SpecR for some X+. By 2.14
νIN ∼= H0(VX+), so parts (1) and (2) both follow from 4.17. �

Corollary 4.18. We can run the Homological MMP in Figure 2 when X has only Goren-
stein terminal singularities, for arbitrary subsets of curves.

Proof. This now follows from 3.5, 4.2 and 2.15. �

Corollary 4.19. With the crepant setup X → SpecR with d = 3, choose a subset of
curves

⋃
i∈I Ci and suppose that dimC ΛI <∞, so that

⋃
i∈I Ci flops. Then

(1) Mrk,ϑ(Λ) ∼= X for all ϑ ∈ C+(Λ).
(2) Mrk,ϑ(νIΛ) ∼= X+ for all ϑ ∈ C+(νIΛ).

Proof. Part (1) follows immediately from [Kar, 5.2.5] applied to X. By 4.2, part (2)
follows from [Kar, 5.2.5] applied to X+. �

The following extends 4.6 by dropping the Q-factorial assumption and considering
multiple curves, but now the statement is a little more subtle.
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Corollary 4.20. With the crepant setup of 2.9, suppose further that d = 3. Set N :=
H0(VX), and pick a subset of curves

⋃
i∈I Ci. Then

(1) If
⋃
i∈I Ci flops (equivalently, by 3.5, dimC ΛI <∞), then νIN ∼= H0(VX+).

(2) If I = {i}, pdΛΛi < ∞ and Ci does not flop (equivalently, dimC Λi = ∞), then
νIN ∼= N .

Proof. Part (1) is just 4.2. For part (2), since Λi is local and has finite projective di-
mension, by [Ra, 2.15] depthR Λi = dimR Λi = inj.dimΛi

Λi. The result follows using the
argument of [IW2, 6.23(1)]. �

Remark 4.21. The statement in 4.20(2) is not true for multiple curves, indeed the
hypothesis in 4.20(2) cannot be weakened. First, if I 6= {i} then Λi is not local and there
are examples that satisfy νIN � N even when pdΛΛI <∞ and dimC ΛI =∞. Second, if
I = {i} and pdΛΛI =∞, there are examples that satisfy dimC Λi =∞ but νIN � N .

There are two separate problems here, namely in general ΛI need not be perfect, and
it need not be Cohen–Macaulay. Both cause independent technical difficulties, and this
will also be evident in §5. See also B.1.

One further corollary of this section is that both commutative and noncommutative
deformations of curves are preserved under flop.

Corollary 4.22. With the crepant setup of 2.9, and d = 3, pick a subset
⋃
i∈I Ci of

curves, and suppose that
⋃
i∈I Ci flops. Then

(1) The noncommutative deformation functor of
⋃
i∈I Ci is represented by the same

ring as the noncommutative deformation functor of
⋃
i∈I C

+
i .

(2) The statement in (1) also holds for commutative deformations.

Proof. By 3.5, since
⋃
i∈I Ci flops, dimC ΛI < ∞ and the noncommutative deformations

of
⋃
i∈I Ci are represented by ΛI . By 3.5 and 4.2, the noncommutative deformations of⋃

i∈I C
+
i are represented by (νIΛ)I . By [IW2, 6.20] ΛI ∼= (νIΛ)I .

(2) This follows by taking the abelianization of (1). �

4.4. Auslander–McKay Revisited. Now that 4.2 has been established in full general-
ity, we can extend the Auslander–McKay Correspondence in 4.10.

Definition 4.23. Let R be as above, then

(1) The derived mutation groupoid is defined by the following generating set. It
has vertices Db(mod EndR(N)), running over all isomorphism classes of basic
MM generators N , and as arrows each vertex Db(mod EndR(N)) has the muta-
tion functors ΦI emerging, as I runs through all possible summands satisfying
dimC ΛI <∞.

(2) The derived flops groupoid is defined by the following generating set. It has ver-
tices Db(cohX), running over all minimal models X, and as arrows we connect
vertices by the inverse of the Bridgeland–Chen flop functors, running through all
possible combinations of flopping curves.

Theorem 4.24. The correspondence in 4.10 further satisfies

(3)′ The full mutation graph of the MM generators coincides with the full flops graph
of the minimal models.

(4) The derived groupoid of the MM modules is functorially isomorphic to the derived
flops groupoid of the minimal models.

Proof. (3)′ By definition, the full mutation graph and derived mutation groupoid only
considers νI provided that dimC ΛI <∞, which by 3.5 is equivalent to the condition that⋃
i∈I Ci flops. Hence the result follows by combining the bijection in 4.10 with 4.2(1).

(4) This follows by combining the bijection with 4.2(2). �
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5. Stability and Mutation

In this section we relate stability and mutation, then use this together with the
Homological MMP (proved in 4.18) to give results in GIT, specifically regarding chamber
decompositions and later in §6.1 the Craw–Ishii conjecture.

After first proving general moduli–tracking results in §5.2, running Figure 2 over all
possibilities and tracking all the moduli back then computes the full GIT chamber decom-
position. We further prove in §5.3 that mutation is preserved under generic hyperplane
section, which in effect means (in §5.4) that the chamber decomposition reduces to knit-
ting on ADE surface singularities, which is very easy to calculate. Amongst other things,
this observation can be used to prove the braiding of flops in dimension three [DW3].

5.1. GIT background. There are two GIT approaches to moduli that could be used in
this paper. The first is quiver GIT, which relies on presenting Λop as (the completion of)
a quiver with relations, and the second is the more abstract approach given in [VdB2,
§6.2]. For most purposes either is sufficient, so for ease of exposition we use quiver GIT.

Consider Λ = EndR(N) and present Λop as the complete path algebra of a quiver Q
subject to relations I, where the number of vertices in Q equals the number of indecom-
posable summands of N . We denote by Q0 the vertex set of Q, and remark that under
the conventions in §1.6, Λ-modules correspond to representations of (Q, I). Below, we will

implicitly use this identification. We call an element β ∈ Z|Q0|
≥0 a dimension vector. We

denote by (Z|Q0|)∗ the dual lattice of Z|Q0|, and define the parameter space Θ by

Θ := (Z|Q0|)∗ ⊗Z Q.

An element ϑ ∈ Θ is called a stability parameter. For a stability parameter ϑ and a
dimension vector β, the canonical pairing defines us

ϑ · β :=
∑
i∈Q0

ϑiβi.

Given x ∈ fdmod Λ = Rep(Q, I), let dimx ∈ Z|Q0|
≥0 denote its dimension vector, considering

x as a finite dimensional representation.

Definition 5.1. [Ki] Given ϑ ∈ Θ, x ∈ fdmod Λ = Rep(Q, I) is called ϑ-semistable if
ϑ · dimx = 0 and every subobject x′ ⊆ x satisfies ϑ · dimx′ ≥ 0. Such an object x is
called ϑ-stable if the only subobjects x′ with ϑ · dimx′ = 0 are x and 0. Two ϑ-semistable
modules are called S-equivalent if they have filtrations by ϑ-stable modules which give
isomorphic associated graded modules. Further, for a given β, we say that ϑ is generic if
every ϑ-semistable module of dimension vector β is ϑ-stable.

Notation 5.2. For any ϑ ∈ Θ and any dimension vector β,

(1) Denote by Mβ,ϑ(Λ) the moduli space of ϑ-semistable Λ-modules of dimension
vector β.

(2) Denote by Sϑ(Λ) the full subcategory of fdmod Λ which has as objects the ϑ-
semistable objects, and denote by Sβ,ϑ(Λ) the full subcategory of Sϑ(Λ) consisting
of those elements with dimension vector β.

By King [Ki] (see also [VdB2, 6.2.1]) Mβ,ϑ(Λ) is a coarse moduli space that param-
eterises S-equivalence classes of ϑ-semistable modules of dimension vector β. If further
β is an indivisible vector and ϑ is generic, then Mβ,ϑ(Λ) is a fine moduli space, and
S-equivalence classes coincide with isomorphism classes.

5.2. Tracking Stability Through Mutation. In this subsection we track stability con-
ditions through mutation, extending [SY, NS] to work in a much greater level of generality.
Throughout, we will make use of the following setup.
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Setup 5.3. Suppose that R is a normal complete local d-sCY commutative algebra with
d ≥ 2, M is a basic modifying module and MI is a summand of M . Set Λ := EndR(M)
and Γ := νIΛ. We denote the projective Λ-modules by Pj , the simple Λ-modules by Sj ,
and the simple Γ-modules by S′j .

For each indecomposable summand M∗i of M∗I , consider its minimal right addM∗Ic-
approximation ⊕

j /∈I

M
∗⊕bi,j
j →M∗i

for some collection bi.j ∈ Z≥0. Dualizing and using (A.A) gives an exact sequence

0→Mi →
⊕
j /∈I

M
⊕bi,j
j . (5.A)

Summing the sequences (5.A) together gives the minimal left addMIc -approximation of
MI , namely (A.A). In other words, we decompose UI as UI = ⊕i∈IUi, then decompose

each Ui as Ui = ⊕j /∈IM
⊕bi,j
j .

Applying HomR(M,−) to (5.A) gives exact sequences

0→ HomR(M,Mi)→ HomR(M,⊕j /∈IM
⊕bi,j
j )→ Ci → 0 (5.B)

for each i ∈ I, and summing the sequences in (5.B) together gives (2.K). Hence by
definition TI = (⊕j /∈IPj)⊕ (⊕i∈ICi), where recall that TI is the tilting module defined in
§2.3.

Definition 5.4. Suppose that β is a dimension vector, and ϑ ∈ Θ is a stability condition.
Given the data bI = (bi,j)i∈I,j /∈I from (5.A), we define the vectors νbI

β and νbI
ϑ by

(νbI
β)i =

{
βi if i /∈ I(∑

j /∈I bi,jβj

)
− βi if i ∈ I (νbI

ϑ)j =

{
ϑj +

∑
i∈I bi,jϑi if j /∈ I
−ϑj if j ∈ I.

Thus given the data of bI = (bi,j), we thus view νbI
as an operation on dimension

vectors, and as a (different) operation on stability parameters.

Remark 5.5. We remark that the b’s are defined with respect to the mutation Λ 7→ νIΛ.
When we iterate and consider another mutation νIΛ 7→ νJνIΛ, the b’s may change for
this second mutation. This change may occur even in the situation νIνIΛ ∼= Λ, and we
are considering the mutation back νIΛ 7→ νIνIΛ ∼= Λ. The papers [SY, NS] involve a
global rule for νbI

ϑ (in their notation, siϑ), and this is the reason why their combinatorial
rule, and proofs, only work in a very restricted setting.

The following two lemmas are elementary.

Lemma 5.6. For any dimension vector β and any stability ϑ ∈ Θ,

(1) νbI
β · νbI

ϑ = β · ϑ.
(2) νbI

νbI
β = β.

(3) ϑ · νbI
β = νbI

ϑ · β.

Proof. This is easily verified by direct calculation. �

Lemma 5.7. With the setup 5.3 of this subsection, let x ∈ mod Λ and y ∈ mod Γ.

(1) If Ext1
Λ(TI , x) = 0, then dim HomΛ(TI , x) = νbI

dimx.

(2) If TorΓ
1 (TI , y) = 0, then dim(TI ⊗Γ y) = νbI

dim y.

Proof. (1) By definition TI = (⊕j /∈IPj)⊕ (⊕i∈ICi). Set β := dimx. It is clear that

et HomΛ(TI , x) =

{
HomΛ(Pt, x) if t /∈ I
HomΛ(Ct, x) if t ∈ I

∼=
{

etx if t /∈ I
HomΛ(Ct, x) if t ∈ I
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and thus (dim HomΛ(TI , x))t = βt when t /∈ I, and hence we just need to verify that

dimC HomΛ(Ct, x) =
(∑

j /∈I bt,jβj

)
− βt. But by the assumptions, applying HomΛ(−, x)

to the exact sequence (5.B) gives an exact sequence

0→ HomΛ(Ct, x)→ HomΛ(⊕j /∈IP
⊕bt,j
j , x)→ HomΛ(Pt, x)→ 0.

Counting dimensions, using HomΛ(Pj , x) ∼= ejx, yields the result.
(2) By assumption and 2.20, TI ⊗L

Γ y = TI ⊗Γ y. Mutation gives a derived equivalence, so
RHomΛ(TI , TI ⊗Γ y) ∼= y, which implies that TI ⊗Γ y satisfies the conditions in (1), and
further HomΛ(TI , TI ⊗Γ y) ∼= y. Consequently

dim y = dim HomΛ(TI , TI ⊗Γ y)
(1)
= νbI

dim(TI ⊗Γ y),

which by 5.6(2) implies that dim(TI ⊗Γ y) = νbI
νbI

dim(TI ⊗Γ y) = νbI
dim y. �

When tracking stability under mutation, as in 4.21 the fact that ΛI need not be
Cohen-Macaulay and need not be perfect causes problems. The following two technical
results allows us to overcome the first. To avoid cases in the statement and proof, as a
convention M

(a1,...,at)M
:= M when t = 0.

Lemma 5.8. With the setup 5.3 of this subsection, let M,N ∈ mod Λ with depthRM := t,
and choose a regular sequence {a1, . . . , at} for M . If

(1) pdΛM <∞,
(2) N ∈ fdmod Λ,

(3) HomΛ

(
N, M

(a1,...,at)M

)
= 0,

then Extd−tΛ (M,N) = 0.

Proof. When t = 0, ExtdΛ(M,N) ∼= DHomΛ(N,M) = 0 since Λ is d-sCY, M has finite
projective dimension and N has finite length. This establishes the result in the case t = 0,
so we can assume that t > 0. Hence a1 exists, and applying HomΛ(−, N) to the exact
sequence

0→M
a1−→M → M

a1M
→ 0

gives an exact sequence

. . .→ Extd−tΛ (M,N)
·a1−−→ Extd−tΛ (M,N)→ Ext

(d−t)+1
Λ

(
M
a1M

, N
)
→ . . .

If Extd−tΛ (M,N) 6= 0, then by Nakayama’s Lemma the image of (·a1) is a proper submodule

of Extd−tΛ (M,N), which implies that Ext
(d−t)+1
Λ ( M

a1M
, N) 6= 0. Inducting along the regular

sequence gives ExtdΛ( M
(a1,...,at)M

, N) 6= 0. But again

ExtdΛ

(
M

(a1,...,at)M
, N
)
∼= DHomΛ

(
N, M

(a1,...,at)M

)
= 0

since Λ is d-sCY, M
(a1,...,at)M

has finite projective dimension [Wei, 4.3.14], and N has finite

length. This is a contradiction, and so Extd−tΛ (M,N) = 0, as claimed. �

Corollary 5.9. With the setup 5.3 of this subsection, suppose that either

(a) νIM ∼= M , or
(b) d = 3, νIνIM ∼= M and dimC ΛI <∞.

Set t := depthR ΛI , then Extd−tΛ (ΛI , x) = 0 for all x ∈ fdmod Λ provided HomΛ(x, Si) = 0
for all i ∈ I.

Proof. By either 2.21(2) or 2.22(2), pdΛΛI <∞. Thus by 5.8 applied with M = ΛI and
N = x, we only need to verify that HomΛ(x, ΛI

(a1,...,at)ΛI
) is zero. Consider an element f ,

then since x is finite dimensional, so is Im f . Thus being a submodule of a factor of ΛI , Im f
must have a finite filtration with factors from the set {Si | i ∈ I}. Since HomΛ(x, Si) = 0
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for all i ∈ I, inducting along the finite filtration gives HomΛ(x, Im f) = 0, and hence
HomΛ(x, ΛI

(a1,...,at)ΛI
) = 0. �

The following, which is a consequence of 2.26 and 5.9, will be needed in 5.12.

Corollary 5.10. With the setup 5.3 of this subsection, assume that either

(a) νIM ∼= M , or
(b) νIνIM ∼= M and dimC ΛI <∞.

Then for all x ∈ fdmod Λ and y ∈ fdmod Γ,

(1) Ext1
Λ(TI , x) = 0 provided HomΛ(x, Si) = 0 for all i ∈ I.

(2) TorΓ
1 (TI , y) = 0 provided HomΓ(S′i, y) = 0 for all i ∈ I.

Proof. Denote t = depth ΛI .
(1) In situation (a), by 2.21(2) pdΛΛI = 2 and Ext1

Λ(TI , x) ∼= Ext2
Λ(ΛI , x), which is

Extd−tΛ (ΛI , x) by Auslander–Buchsbaum. This is zero by 5.9. In situation (b), by A.7(4)
the assumptions in fact force d ≤ 3. If d = 2 then the result is precisely 2.26, so we can
assume that d = 3. In this case, by 2.22(2) pdΛΛI = 3 and Ext1

Λ(TI , x) ∼= Ext3
Λ(ΛI , x) =

Extd−tΛ (ΛI , x), which again is zero by 5.9.
(2) By [CE, VI.5.1] There is an isomorphism

TorΓ
1 (TI , y) ∼= DExt1

Γop(TI , Dy),

where D is the C-dual. Note that 0 = HomΓ(S′i, y) ∼= HomΓop(Dy,DS′i) for all i ∈ I. Now
the simple left Γop-modules are the DS′j , and by A.6 either the assumptions (a) or (b)
hold for (νIM)∗. Hence by 2.20(2) we can apply (1) to Γop ∼= EndR((νIM)∗) to obtain

Ext1
Γop(TI , Dy) = 0, and so TorΓ

1 (TI , y) = 0. �

The following lemma is elementary.

Lemma 5.11. Assume the setup 5.3 of this subsection. Suppose that ϑ ∈ Θ(Λ) and
φ ∈ Θ(Γ) are stability parameters, with x ∈ Sϑ(Λ) and y ∈ Sφ(Γ).

(1) If ϑi > 0 for all i ∈ I, then HomΛ(x, Si) = 0 for all i ∈ I.
(2) If φi < 0 for all i ∈ I, then HomΓ(S′i, y) = 0 for all i ∈ I.

Proof. (1) If there exists a non-zero morphism x → Si, then necessarily it has to be
surjective, so there is a short exact sequence

0→ Ki → x→ Si → 0.

This implies that ϑi = ϑ ·dimSi = ϑ ·dimx−ϑ ·dimKi ≤ 0, since x ∈ Sϑ(Λ), contradicting
the assumption ϑi > 0.
(2) Any non-zero morphism S′i → y is necessarily injective, so φi = φ · dimS′i ≥ 0 since
y ∈ Sφ(Γ). Since φi < 0, the morphism must be zero. �

Given the technical preparation above, the following is now very similar to [SY, 3.5].

Theorem 5.12. With the setup 5.3 of this subsection, assume that either

(a) νIM ∼= M , or
(b) νIνIM ∼= M and dimC ΛI <∞.

Then for every dimension vector β, and for every ϑ ∈ Θ with ϑi > 0 for all i ∈ I,

(1) HomΛ(TI ,−) : Sϑ(Λ)→ SνbI
ϑ(Γ) is an exact functor.

(2) TI ⊗Γ − : SνbI
ϑ(Γ)→ Sϑ(Λ) is an exact functor.

(3) There is a categorical equivalence

Sβ,ϑ(Λ) SνbI
β,νbI

ϑ(Γ)
HomΛ(TI ,−)

TI⊗Γ−
(5.C)

preserving S-equivalence classes, under which ϑ-stable modules correspond to νbI
ϑ-

stable modules.
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(4) ϑ is generic if and only if νbI
ϑ is generic.

Proof. (1) By 5.10(1) and 5.11(1), HomΛ(TI ,−) is exact out of Sϑ(Λ). To see that
HomΛ(TI ,−) maps Sϑ(Λ) to SνbI

ϑ(Γ), suppose that x ∈ Sϑ(Λ), let y := HomΛ(TI , x) ∼=
RHomΛ(TI , x) and consider a Γ-submodule y′ ⊆ y. Since νbI

ϑ ·dim y = νbI
ϑ ·νbI

dimx =
ϑ · dimx = 0 by 5.7(1) and 5.6(1), it suffices to show that νbI

ϑ · dim y′ ≥ 0.
The inclusion y′ ⊆ y induces an exact sequence

0→ y′ → y → c→ 0.

Since mutation is a derived equivalence, TI ⊗L
Γ y
∼= x, so TorΓ

1 (TI , y) = 0. Thus applying
TI ⊗Γ − to the above sequence and using 2.20 gives an exact sequence

0→ TorΓ
1 (TI , y

′)→ 0→ TorΓ
1 (TI , c)→ TI ⊗Γ y

′ → TI ⊗Γ y → TI ⊗Γ c→ 0 (5.D)

of Λ-modules. Now ej TorΓ
1 (TI , c) = TorΓ

1 (ejTI , c) = 0 for all j /∈ I, since ejTI =
ej HomΛ(Λ, TI) ∼= HomΛ(Pj , TI) is a projective Γop-module if j /∈ I. Consequently

(dim TorΓ
1 (TI , c))j =

{
0 if j /∈ I
nj if j ∈ I

for some collection nj ∈ Z≥0. Splicing (5.D) gives an exact sequence

0→ TorΓ
1 (TI , c)→ TI ⊗Γ y

′ → a→ 0 (5.E)

where a is a submodule of TI ⊗Γ y ∼= x, so ϑ · dim a ≥ 0 since x is ϑ-semistable. Thus
applying ϑ· to (5.E) we obtain

ϑ · dim(TI ⊗Γ y
′) = ϑ · dim a+ ϑ · dim TorΓ

1 (TI , c) = ϑ · dim a+
∑
i∈I
ϑini ≥ 0. (5.F)

It follows that

νbI
ϑ · dim y′ = ϑ · νbI

dim y′ (by 5.6(3))

= ϑ · dim(TI ⊗Γ y
′) (by (5.D) and 5.7(2))

≥ 0, (by (5.F))

and so y is νbI
ϑ-semistable, proving the claim.

(2) This is similar to (1), but we give the proof for completeness. By 5.10(2) and 5.11(2),
TI ⊗Γ − is exact out of SνbI

ϑ(Γ). To see that TI ⊗Γ − maps SνbI
ϑ(Γ) to Sϑ(Λ), let

y ∈ SνbI
ϑ(Γ) and consider x := TI ⊗Γ y ∼= TI ⊗L

Γ y where the last isomorphism holds

by 2.20 and Tor1 vanishing. Consider a Λ-submodule x′ ⊆ x, then this induces an exact
sequence

0→ x′ → x→ d→ 0.

Since ϑ · dimx = ϑ · νbI
dim y = νbI

ϑ · dim y = 0 by 5.7(2) and 5.6(3), it suffices to show
that ϑ · dimx′ ≥ 0, or equivalently ϑ · dim d ≤ 0.

The above exact sequence induces an exact sequence

0→ HomΛ(TI , x
′)→ y → HomΛ(TI , d)→ Ext1

Λ(TI , x
′)→ 0→ Ext1

Λ(TI , d)→ 0, (5.G)

again using 2.20. Splicing this sequence gives an exact sequence

0→ b→ HomΛ(TI , d)→ Ext1
Λ(TI , x

′)→ 0 (5.H)

where νbI
ϑ·dim b ≤ 0 since b is a factor of the νbI

ϑ-stable module y. But now ej Ext1
Λ(TI , x

′) =

Ext1
Λ(Pj , x

′) = 0 for all j /∈ I, so

(dim Ext1
Λ(TI , x

′))j =

{
0 if j /∈ I
mj if j ∈ I
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for some collection mj ∈ Z≥0. Hence

ϑ · dim d = ϑ · νbI
dim HomΛ(TI , d) (by (5.G) and 5.7(1))

= νbI
ϑ · dim HomΛ(TI , d) (by 5.6(3))

= νbI
ϑ · dim b+ νbI

ϑ · dim Ext1
Λ(TI , x

′) (by (5.H))

= νbI
ϑ · dim b+

∑
i∈I

(νbI
ϑ)imi,

which is less than or equal to zero.
(3) If x ∈ Sβ,ϑ(Λ) then by 5.10(1) and 5.11(1) Ext1

Λ(TI , x) = 0. Thus dim HomΛ(TI , x) =

νbI
β by 5.7(1). Similarly if y ∈ SνbI

β,νbI
ϑ(Γ) then by 5.10(2) and and 5.11(2) TorΓ

1 (TI , y) =

0 and so dim(TI⊗Γy) = νbI
dim y = νbI

νbI
β = β by 5.7(2) and 5.6(2). Thus the functors

in (5.C) are well defined, and further since TI has projective dimension one (on both sides)
by 2.20, they are isomorphic to their derived versions. Since the derived versions are an
equivalence, we deduce the underived versions are. They are exact by (1) and (2), so it
follows that they preserve the S-equivalence classes. It is also clear in the above proof
that replacing ≥ 0 by > 0 throughout shows that under the equivalence, stable modules
correspond to stable modules.
(4) Follows immediately from (3). �

Leading up to the next corollary, recall that bI is defined in (5.A) by decomposing
first UI = ⊕i∈IUi, then further decomposing each Ui. We may play the same trick to
the VI ’s, namely for each indecomposable summand Mi of MI consider its minimal right
addMIc-approximation ⊕

j /∈I

M
⊕ci,j
j →Mi

for some collection ci,j ∈ Z≥0. These give cI := (ci,j)i∈I,j /∈I . In general, bI 6= cI.

Corollary 5.13. With notation and assumptions as in 5.12, for every dimension vector
β, and for every ϑ ∈ Θ with ϑi > 0 for all i ∈ I,

(1) There is an isomorphism Mβ,ϑ(Λ) ∼=MνbI
β,νbI

ϑ(Γ).

(2) There is an isomorphism MνcI
β,νcI

ϑ(Λ) ∼=Mβ,ϑ(Γ).

Proof. (1) It follows immediately from 5.12(3) that there is a bijection on closed points.
The fact that 5.12(3) holds after base change, and so there is an isomorphism of schemes,
is dealt with in [SY, 4.20], noting the small correction in [Kar, Appendix A].
(2) By A.6 either the assumption (a) or (b) holds for νIM . Hence we can apply 5.12(3)
to the mutation Γ 7→ νIΓ ∼= Λ. For this mutation, the b’s are given by cI, using (A.K)
(and the fact that WI

∼= VI there). �

Recall from the introduction §1.3 the definition of the dimension vector rk.

Corollary 5.14. With the notation and assumptions as in 5.13, suppose further that
bI = cI (equivalently, Ui ∼= Vi for all i ∈ I). Then for every dimension vector β, and for
every ϑ ∈ Θ with ϑi 6= 0 for all i ∈ I, there is an isomorphism

Mβ,ϑ(Λ) ∼=MνbI
β,νbI

ϑ(Γ).

In particular, if bI = cI, then Mrk,ϑ(Λ) ∼= Mrk,νbI
ϑ(Γ) for every ϑ ∈ Θ with ϑi 6= 0 for

all i ∈ I.

Remark 5.15. We will prove later in 5.22 that Ui ∼= Vi for all i ∈ I in the case of cDV
singularities, so bI = cI in this case. However, even for NCCRs in dimension three with
I = {i}, bI 6= cI in general.
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5.3. Chamber Structure: Reduction to Surfaces. In this subsection we revert back
to the crepant one dimensional fibre setting of 2.9. Throughout, we restrict to the dimen-
sion vector rk, and show that (for this dimension vector) the chamber structure on the
stability parameters can be calculated by passing to a Kleinian singularity.

Remark 5.16. As the moduli space Mrk,ϑ(Λ) parameterises only semistable Λ-modules
of dimension vector rk, and such modules x necessarily satisfy ϑ · rk = ϑ · dimx = 0 by
definition of semistability, henceforth we are only concerned with those stability param-
eters for which ϑ · rk = 0. This subspace of Θ, which we will temporarily denote by Θrk,
has a wall and chamber structure. The non-generic parameters cut out walls, dividing the
generic parameters of Θrk into chambers.

Recall in the general setup of 2.8 that Λ = EndX(VX), where VX has a summand
OX , which has rank one. Write ? (or sometimes 0) for the vertex in Λ corresponding to
OX , and consider the dimension vector rk. Since by definition all elements ϑ ∈ Θrk satisfy
ϑ · rk = 0, it follows that

ϑ? = −
∑

i∈Q0\?

(rankNi) ϑi

and so Θrk can be viewed as Q|Q0|−1, with co-ordinates ϑi for i 6= 0. Later, this means
that to calculate the wall and chamber structure in Θrk, we do not need to mutate at the
summand R.

Each Λ in the general setup of 2.8 has an associated Θrk, and as the chamber structure
of Θrk depends on Λ, later care will be required. When it is necessary to emphasise which
ring is being considered, we will use the notation Θrk(Λ).

Notation 5.17. Henceforth, until the end of the paper, we will write Θrk as simply Θ,
and Θrk(Λ) as simply Θ(Λ), with it being implicit that everywhere walls and chambers are
discussed, this involves only working with those stability parameters ϑ such that ϑ ·rk = 0.
This is an abuse of notation, but it is required to maintain readability later.

Lemma 5.18. In the general setup of 2.8, consider Λ := EndX(VX), with dimension
vector rk. As above, consider Θ with co-ordinates ϑi for i 6= 0. Then

C+ := {(ϑi) ∈ Θ | ϑi > 0 for all i}

is a chamber in Θ.

Proof. It is clear that every element of C+ is generic, and further if ϑ, ϑ′ ∈ C+, then x
is ϑ-stable if and only if it is ϑ′-stable. Hence C+ is contained in some GIT chamber.
It suffices to show that for each i, there exists some xi ∈ Mrk,C+

(Λ) and an injection
Si ↪→ xi, since this implies that xi is not stable in the limit ϑi → 0 and so ϑi = 0 then
defines a wall.

Consider the curve Ci and pick a point y ∈ Ci. There is a short exact sequence

0→ OCi
(−1)→ OCi

→ Oy → 0

and thus after tensoring by L∗i and rotating gives a triangle

OCi(−1)→ Oy → OCi(−2)[1]→

in Db(cohX). Applying RHomX(VX ,−), using 2.11 gives a triangle

Si → xi → C →

in Db(mod EndX(VX)), where xi is a C+-stable module of dimension vector rk by [Kar,
§5.2]. The first morphism is non-zero, and so since Si = C it is necessarily injective. �

The strategy to describe the chambers of Θ(Λ) is to track C+ through mutation, and
calculate the combinatorics by passing to surfaces. This requires a special case of the
following general result.
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Proposition 5.19. Let R be a complete local 3-sCY normal domain, suppose that M
is modifying, and MI is a summand of M with R ∈ addMIc . Consider the exchange
sequence (2.C)

0→ Ki
ci−→ Vi

ai−→Mi.

Then ai is surjective. Further, for any x ∈ m which is an Ext1
R(M,M)-regular element,

denoting F := (R/xR)⊗R −, then

(1) (R/xR)⊗R EndR(M) ∼= EndFR(FM), and FM is indecomposable.
(2) If further x is Ext1

R(Ki,Ki)-regular, the sequence

0→ FKi → FVi
Fai−−→ FMi → 0 (5.I)

is exact, and further Fai is a minimal addFMIc-approximation.

Proof. (1) The first statement is well-known; see for example the argument in [IW4, 5.24],
which uses the fact that x is Ext1

R(M,M)-regular. The second follows from the first,
since if FM decomposes, since R is complete local we can lift idempotents to obtain a
contradiction.
(2) Since MIc is a generator and HomR(MIc ,−) applied to (2.E) is exact, it follows that ai
is surjective. Also, since MIc is a generator and EndR(M) ∈ CMR, necessarily M ∈ CMR
and since CM modules are closed under kernels of epimorphisms, KI ∈ CMR.

Now since x ∈ m and CM modules are submodules of free modules, x is not a zero
divisor on any of the modules in (2.E), thus

0 Ki Vi Mi 0

0 Ki Vi Mi 0

x x x

and so by the snake lemma (5.I) is exact. Now since ai is an addMIc-approximation,
there is a commutative diagram

HomR(MIc , Vi) HomR(MIc ,Mi)

(R/xR)⊗R HomR(MIc , Vi) (R/xR)⊗R HomR(MIc ,Mi)

HomFR(FMIc , FVi) HomFR(FMIc , FMi)

·ai

F (·ai)

·Fai

∼ ∼

where the bottom two vertical maps are isomorphisms by (1). It follows that the bot-
tom horizontal map is surjective, so Fai is indeed an addFMIc-approximation. For
minimality, by (1) applied to Ki, EndR(Ki)/xEndR(Ki) ∼= EndFR(FKi). Thus if Fai
were not minimal then FKi would decompose into more summands than Ki, which since
EndR(Ki)/xEndR(Ki) ∼= EndFR(FKi) is impossible since R is complete local so we can
lift idempotents. �

In the crepant setup of 2.9 with d = 3, by Reid’s general elephant principle [Re, 1.1,
1.14], cutting by a generic hyperplane section yields

X2 X

Spec(R/g) SpecR

ϕ f

where R/g is an ADE singularity and ϕ is a partial crepant resolution. Since N ∈ CMR
and g is not a zero-divisor on N , necessarily N/gN ∈ CMR/g, and so any indecomposable
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summand Ni of N cuts to Ni/gNi, which must correspond to a vertex in an ADE Dynkin
diagram via the original Auslander–McKay correspondence.

Following the notation from [K], we encode X2 pictorially by simply describing which
curves are blown down from the minimal resolution. The diagrams

represent, respectively, the minimal resolution of theD5 surface singularity, and the partial
resolution obtained from it by contracting the curves corresponding to the black vertices.

Corollary 5.20. With the crepant setup 2.9 with d = 3, if g is a sufficiently generic
hyperplane section, then

(1) Λ/gΛ ∼= EndR/gR(N/gN).
(2) Let NI be a summand as in 2.13, and consider the exchange sequences

0→ Ki
ci−→ Vi

ai−→ Ni

0→ Ji
di−→ U∗i

bi−→ N∗i

Then ai and bi are surjective, and

0→ FKi
Fci−−→ FVi

Fai−−→ FNi → 0

0→ FJi
Fdi−−→ FU∗i

Fbi−−→ FN∗i → 0

are exact, with Fai and Fbi being minimal right approximations.

(3) We have that 0→ Ji
di−→ U∗i

bi−→ N∗i → 0 is exact, inducing an exact sequence

0→ FNi
F (b∗i )−−−→ FUi

F (d∗i )−−−−→ FJ∗i → 0

where F (b∗i ) is a minimal left addFMIc-approximation.

Proof. (1)(2) Since EndR(N) ∈ CMR, depth Ext1
R(N,N) > 0 and so if an element g acts

on EN := Ext1
R(N,N) as a zero divisor, then it is contained in one of the finitely many

associated primes of EN , which are all non-maximal. We can apply the same logic to
both KI and J∗I , and thus the finite number of associated primes of EN ⊕EKI

⊕EJ∗I are
non-maximal. Hence we can find g sufficiently generic to be EN ⊕EKI

⊕EJ∗I -regular, so
the first two parts follow from 5.19.
(3) This is just the dual of (2), and follows by A.1, part (2) and isomorphisms such as
HomFR(FN∗i , FR) ∼= F HomR(N∗i , R) ∼= FNi. �

The proof of the next lemma, 5.22, requires a little knowledge regarding knitting on
AR quivers, which we briefly review in an example. We refer the reader to [IW1, §4] for
full details.

Example 5.21. Consider the D5 ADE surface singularity R. The AR quiver, which
coincides with the McKay quiver [A86], is

R R

A1 B1 A1

B2 A2 B2

A3

where the left and right hand sides are identified. In this example, suppose that N :=
R⊕A1 ⊕B2 and NI := B2 (so that NIc := R⊕A1). We calculate the minimal addNIc-
approximation of NI .
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Consider the cover of the AR quiver, since this is easiest to draw, and drop labels
and the directions of arrows. The calculation begins by placing a 1 in the position of B2

(boxed below), and circling all the vertices corresponding to indecomposable summands
of NIc

1
. . .

The calculation continues by counting backwards, using the usual knitting rule that for
any given AR sequence, the left-hand value is the sum of the middle values, minus the
right-hand value. Doing this, we obtain

1

1 1

1

1

1 1

2 1 1

1

1

1 1 1

1 2 1 1

1 1

Step 1 Step 2 Step 3

where in Step 3 the values in the circled vertices act like zero. Continuing, the process
stops when the value −1 appears

0 1 1

0 0 1 1 1 1

−1 0 1 1 2 1 1

0 1 1

Summing up the values on the circled vertices gives R⊕2 ⊕ A⊕2
1 , and the vertex with −1

corresponds to B2. From this, we read off that

0→ B2 → R⊕2 ⊕A⊕2
1 → B2 → 0

is an exact sequence, with the first map a minimal right addNIc-approximation. The
calculation for the minimal left approximation is similar, by placing a 1 and counting
forwards to give

1 1 0

1 1 1 1 0 0

1 1 2 1 1 0 −1

1 1 0

This also gives the exact sequence 0 → B2 → R⊕2 ⊕ A⊕2
1 → B2 → 0. Observe that the

second calculation can be obtained from the first simply by reflecting in the vertical line
through the boxed vertex.

The following is an extension of the above observation.

Lemma 5.22. With the crepant setup 2.9, consider the modifying R-module N := H0(VX)
and choose a summand NI as in 2.13. With the notation in 5.20,

(1) FUi ∼= FVi.
(2) Ui ∼= Vi.
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Proof. As in 5.20, let g be a sufficiently generic hyperplane section and let F := (R/gR)⊗R
(−). As before, decompose Ui ∼=

⊕
j /∈I N

⊕bi,j
j and Vi ∼=

⊕
j /∈I N

⊕ci,j
j , from which it is

clear that FUi ∼=
⊕

j /∈I(FNj)
⊕bi,j and FVi ∼=

⊕
j /∈I(FNj)

⊕ci,j . By 5.19(1) the FNj are
indecomposable, so by Krull–Schmidt to prove both parts it suffices to show that bi,j = ci,j
for all i ∈ I, j /∈ I.

Both FUi and FVi can be calculated by knitting on the AR quiver of the ADE
singularity FR. As in 5.21, the calculation for FUi begins by placing a 1 in the place of
FNi, and proceeds by counting to the left, using the usual knitting rules, and records the
numbers in the circles whilst treating them as zero for the next step. At the end of the
calculation, we read off the bi,j by adding the numbers in the circled vertices.

On the other hand, the calculation for FVi begins by placing a 1 in the place of
FNi, then proceeds by counting to the right. In exactly the same way, we read off the
ci,j by adding the numbers in the circled vertices. Since the AR quiver of ADE surface
singularities coincides with the McKay quiver [A86], which is symmetric, we can obtain
one calculation from the other by reflecting in the line through the original boxed vertex.
Thus both calculations return the same numbers, so ci,j = bi,j for all i ∈ I and j /∈ I. �

Corollary 5.23. With the d = 3 crepant setup f : X → SpecR of 2.9, set N := H0(VX)
and Λ := EndX(VX) ∼= EndR(N). Suppose further that either

(A) f : X → SpecR is a minimal model, or
(B) f : X → SpecR is a flopping contraction.

Then, for any i, the region

ϑi < 0, ϑj + bjϑi > 0 for all j 6= i

defines a chamber in Θ(Λ), and for any parameter ϑ inside this chamber,

Mrk,ϑ(Λ) ∼=
{
X+
i if Ci flops

X else,

where X+
i denotes the flop of X at Ci. Thus the flop of Ci, if it exists, is obtained by

crashing through the single wall ϑi = 0 in Θ(Λ).

Proof. Pick a curve Ci (i.e. consider I = {i}), and mutate at the indecomposable summand
Ni of N . By 5.18, ϑi = 0 is a wall. Since we are mutating only at indecomposable
summands, in situation (A) 2.23 shows that the assumptions of 5.12 are satisfied. In
situation (B), 2.25 together with 3.5 shows that the assumptions of 5.12 are satisfied.
Thus, in either case, since Ui ∼= Vi by 5.22, provided that ϑi 6= 0 it is possible to track
moduli using 5.14.

In either (A) or (B), if dimC Λi <∞ then Ci flops, in which case νiN ∼= H0(VX+
i

) by

4.20. Thus Mrk,φ(νiΛ) ∼= X+
i for all φ ∈ C+(νiΛ) by 4.19(2), so the result then follows

by moduli tracking 5.14. The only remaining case is when dimC Λi =∞ in situation (A),
but then νiN ∼= N by 2.23 and so the result is obvious. �

The main result of this subsection needs the following result, which may be of inde-
pendent interest. The case when Y is the minimal resolution is well known [CS, Kr].

Theorem 5.24. Consider an ADE singularity SpecR, let Λ be the corresponding NCCR,
and let Y → SpecR be a partial crepant resolution. Set N := H0(VY ) and Γ := EndR(N).
Suppose that the minimal resolution X → SpecR has curves C1, . . . , Cn, and after re-
indexing if necessary Y is obtained from X by contracting the curves Cr+1, . . . , Cn. Then

(1) The walls of Θ(Γ) are obtained by intersecting the subspace L of Θ(Λ) spanned by
ϑ1, . . . , ϑr with the walls of Θ(Λ) that do not contain L.

(2) Θ(Γ) has a finite number of chambers, and the walls are given by a finite collection
of hyperplanes containing the origin. The co-ordinate hyperplanes ϑi = 0 are
included in this collection.
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(3) Considering iterated mutations at indecomposable summands, tracking the cham-
ber C+ on νi1 . . .νit(Γ) back to Θ(Γ) gives all the chambers of Θ(Γ).

Proof. With the ordering of the curves as in the statement, we first contract Cn, then
Cn−1, and continue to obtain a chain of crepant morphisms

X
f1−→ Xn−1

f2−→ . . .→ Y.

The intersection in (1) can be calculated inductively, so we first establish the result is true
for Λn−1 := EndXn−1

(VXn−1
) ∼= (1− en)Λ(1− en).

As notation, Θ(Λ) has coordinates ϑ1, . . . , ϑn, and we let S be the subspace spanned
by ϑ1, . . . , ϑn−1. By abuse of notation, we let ϑ1, . . . , ϑn−1 also denote the coordinates of
Θ(Λn−1), so that we identify Θ(Λn−1) with S. We let WS be the set of walls of Θ(Λ) not
containing S, then the intersection S ∩WS partitions S into a finite number of regions.
We claim that these are precisely the chambers of Θ(Λn−1).

First, since by 5.18 {ϑ ∈ Θ(Λ) | ϑi > 0 for all 1 ≤ i ≤ n} is a chamber of Θ(Λ),
certainly no walls of Θ(Λ) intersect {ϑ ∈ S | ϑi > 0 for all 1 ≤ i ≤ n− 1}. Thus we may
identify this region of S\(S ∩WS) with C+ in Θ(Λn−1).

Next, on Λ we mutate the summand N1⊕Nn. By 5.14, tracking C+ from ν{1,n}Λ to
Λ using the formula in 5.4 gives the chamber

ϑ1 < 0, ϑn < 0, ϑi + biϑ1 + aiϑn > 0 for all i /∈ {1, n} (5.J)

of Θ(Λ), where the bi are obtained from an add(R ⊕N2 ⊕ . . .⊕Nn−1)-approximation of
N1, and the ai are obtained from an add(R⊕N2⊕ . . .⊕Nn−1)-approximation of Nn. On
the other hand, using the approximation of N1 above, by 5.14 tracking C+ from ν1Λn−1

to Λn−1 using the formula in 5.4 gives the chamber

ϑ1 < 0, ϑi + biϑ1 > 0 for all i 6= 1 (5.K)

of Θ(Λn−1). We already know the ϑ1 = 0 edge of (5.K) is a wall, and since the other edge
walls of C+ on ν1Λn−1 can also be tracked by 5.12(4) to give strictly semi-stable points,
the walls bounding (5.K) are precisely the intersection of the walls bounding (5.J) with
S (just set ϑn = 0). Since we know that the walls of Θ(Λ) are a hyperplane arrangement
of planes through the origin [CS, Kr], this implies that the walls of the chamber (5.K) of
Θ(Λn−1) are given by intersecting S with all members of WS . There is nothing special
about ϑ1, so by symmetry all the walls of all the chambers bordering C+ in Θ(Λn−1) are
given by intersecting S with the elements of WS .

The proof then proceeds by induction. By applying the argument above, tracking
C+ from ν{2,n}ν{1,n}Λ to ν{1,n}Λ, implies that tracking C+ from ν2ν1Λn−1 to ν1Λn−1

gives a chamber in Θ(ν1Λn−1), adjacent to C+, cut out by intersecting walls from Θ(Λ).
In particular, the plane x1 = 0 does not cut through this chamber, so by 5.14 we can
track the full chamber all the way back to Θ(Λn−1) to obtain a chamber adjacent to
(5.K). Again, the same argument shows that its walls are given by intersecting S with
the elements of WS . By symmetry, all the walls of all the chambers bordering all the
chambers that border C+ in Θ(Λn−1) are given by intersecting S with the elements of
WS .

Since Θ(Λ) has finitely many walls [CS, Kr], so does S ∩WS , so continuing the above
process all the walls of Θ(Λn−1) are given by intersecting S with the elements of WS , and
each region is the tracking of C+ under iterated mutation. This proves (1), (2) and (3)
for Xn−1.

Next, consider f2 : Xn−1 → Xn−2. Since by above Θ(Λn−1), and all other Λ′n−1

obtained from X by contracting only a single curve, have walls given by a finite collec-
tion of hyperplanes passing through the origin, the above argument can be repeated to
Λn−2

∼= (1− en−1)Λn−1(1− en−1) to show that Θ(Λn−2) can be obtained from Θ(Λn−1)
by intersecting (and thus from Θ(Λ) by intersecting), and each region is the tracking of
C+ under iterated mutation. By induction, parts (1), (2) and (3) follow. �
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The following is the main result of this subsection.

Corollary 5.25. With the d = 3 crepant setup f : X → SpecR of 2.9, set N := H0(VX)
and Λ := EndX(VX) ∼= EndR(N). Suppose further that either

(A) f : X → SpecR is a minimal model, or
(B) f : X → SpecR is a flopping contraction.

Then for sufficiently generic g,

(1) The chamber structure of Θ(Λ) is the same as the chamber structure of Θ(Λ/gΛ).
(2) Θ(Λ) has a finite number of chambers, and the walls are given by a finite collection

of hyperplanes containing the origin. The co-ordinate hyperplanes ϑi = 0 are
included in this collection.

(3) Considering iterated mutations at indecomposable summands, tracking the cham-
ber C+ on νi1 . . .νitΛ back to Θ(Λ) gives all the chambers of Θ(Λ).

Proof. By 5.20 the combinatorics of tracking C+ are the same for the surface R/gR as
they are for the 3-fold R, so all parts follow immediately from 5.24. �

5.4. Surfaces Chamber Structure via AR theory. Having in 5.24 and 5.25 reduced
the problem to tracking the chamber C+ under iterated mutation for partial crepant
resolutions of Kleinian singularities, in this subsection we illustrate the combinatorics in
two examples, summarising others in §7.1, and give some applications.

The intersection in 5.24(1) is in practice very cumbersome to calculate, since the
full root systems are very large and contain much redundant information. In addition to
giving an easy, direct way of calculating the chamber structure, the benefit of working
with mutation is that we also obtain, in 5.28, a lower bound for the number of minimal
models on the 3-fold.

Example 5.26. Let S be the E7 surface singularity, and consider the partial resolution
Y → SpecS depicted by

B1 C1 D

B3

C2 B2 A2

(5.L)

where the vertices have been labelled by their corresponding CM S-modules. We calculate
the chamber structure of EndS(S ⊕B2 ⊕D). The AR quiver for CMS is

S

B1 B1

C1

D B3 D

C2

B2 B2

A2



42 MICHAEL WEMYSS

where the left and right hand sides are identified. Via knitting, as in 5.21,

0 0
0

0 0
0 1 0
0 1

−1 1 1
0 1

0 1 1 0
1 1 0

0 1 2 1
−1 0 1 1 2 1 2 1 1

0 1 1 1
1 1 1

0 0 0 0

we obtain the exchange sequences

0→ B2 → D → B2 → 0 (5.M)

0→ D → R⊕2 ⊕B⊕3
2 → D → 0 (5.N)

Thus in this example, the dual graph does not change under mutation. Now fix the
ordering of the curves

2 1

First, we track the C+ chamber from ν1Λ to Λ. By 5.14,

φ1

φ2

(5.M)7→ −φ1

φ1 + φ2

and so the C+ chamber from ν1Λ maps to the region ϑ1 < 0 and ϑ1 + ϑ2 > 0 of Λ, and
thus this is a chamber for Λ. Next, we track the C+ chamber from ν2ν1Λ to ν1Λ to Λ.
By the same logic

φ1

φ2

(5.N)7→ φ1 + 3φ2

−φ2

(5.M)7→ −(φ1 + 3φ2)
−φ2 + (φ1 + 3φ2)

=
−φ1 − 3φ2

φ1 + 2φ2

which is precisely the region ϑ1 + ϑ2 < 0 and 2ϑ1 + 3ϑ2 > 0 of Λ, and so this too is
a chamber. Continuing in this fashion, we obtain the chamber structure illustrated in
Figure 3, where there are 12 chambers in total.

ϑ1

ϑ2

ϑ1 = 0
ϑ2 = 0
ϑ1 + ϑ2 = 0
2ϑ1 + 3ϑ2 = 0
ϑ1 + 2ϑ2 = 0
ϑ1 + 3ϑ2 = 0

Figure 3. Chamber structure for E7 with configuration (5.L).

However, often the dual graph does change under mutation.

Example 5.27. Let S be the D4 surface singularity, and consider the partial resolution
depicted by

A1 M

A3

A2

(5.O)
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Via knitting, to mutate at A3 the relevant exchange sequence is

0→M → R⊕A1 ⊕A2 → A3 → 0 (5.P)

Hence ν3Λ = EndR(R⊕A1 ⊕A2 ⊕M), and this corresponds to the partial resolution

(5.Q)

Hence under mutation, the dual graph changes from (5.O) to (5.Q). Tracking the chamber
C+ from ν3Λ to Λ, by 5.14

φ1

φ2

φ3

(5.P)7→
φ1 + φ3

φ2 + φ3

−φ3

which is the region ϑ3 < 0, ϑ1 + ϑ3 > 0, ϑ2 + ϑ3 > 0. Hence this is a chamber for Λ,
and it corresponds to a difference curve configuration. Note that since ν3N � N on the
surface, by combining 4.6 and 5.20 any cDV singularity with minimal model that cuts
under generic hyperplane section to (5.O) must flop when crossing the wall ϑ3 = 0. By
symmetry, it must also flop when crossing the walls ϑ1 = 0 and ϑ2 = 0. This shows
that any such 3-fold must have at least four minimal models, since we can flop three
different curves. In this example, the full chamber structure coincides (after a change in
parameters) with the chamber structure in Figure 6, so there are 32 chambers in total.

The following is an extension of the above observation. In each chamber of Θ(Λ/gΛ),
we draw the curve configuration appearing on the surface mutation calculation, as cal-
culated in the above example. We refer to this as the enhanced chamber structure of
Θ(Λ/gΛ). See 7.3 for an example.

Lemma 5.28. Suppose that R is a cDV singularity, with a minimal model X → SpecR.
Set Λ := EndR(N), where N := H0(VX). Calculating Θ(Λ) by passing to a general
hyperplane section g, the number of minimal models of SpecR is bounded below by the
number of different curve configurations obtained in the enhanced chamber structure of
Θ(Λ/gΛ).

Proof. Certainly if two minimal models X and Y cut under generic hyperplane section to
two different curve configurations, then X and Y must be different minimal models. Thus
it suffices to show that every curve configuration in the enhanced chamber structure of
Θ(Λ/gΛ) does actually appear as the cut of some minimal model. By 5.24(3) and 5.25(3) it
is possible to reach any such configuration starting at C+ by mutating at indecomposable
summands. Since by 4.6 at each wall crossing either the moduli stays the same, or some
curve flops, each chamber in Θ(Λ) gives a minimal model of SpecR. Hence if a curve
configuration is in a chamber D of Θ(Λ/gΛ), consider the minimal model given by the
chamber D of Θ(Λ). This minimal model cuts to the desired curve configuration, by
5.20. �

6. First Applications

6.1. The Craw–Ishii Conjecture. Combining moduli tracking from §5 with the Ho-
mological MMP in Figure 2 leads immediately to a proof of the Craw–Ishii conjecture for
cDV singularities. To prove a slightly more precise version, the following terminology will
be convenient.

Definition 6.1. The skeleton of the GIT chamber decomposition of Θ is defined to be
the graph obtained by placing a vertex in every chamber, and two vertices are connected
by an edge if and only if the associated chambers share a codimension one wall.

The following is the main result of this subsection.
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Theorem 6.2. With the d = 3 crepant setup of 2.9, assume further that X is Q-factorial.
Set N = H0(VX) and Λ = EndR(N), then

(1) In the skeleton of Θ(Λ), there exists a connected path, containing the chamber C+,
where every minimal model can be found. Furthermore, each wall crossing in this
path corresponds to a flop.

(2) The Craw–Ishii Conjecture 1.7 is true for cDV singularities, namely for any fixed
MMA Γ := EndR(M) with R ∈ addM , every projective minimal model can be
obtained as the moduli space of Γ for some stability parameter ϑ.

Proof. (1) We run Figure 2 whilst picking only single curves satisfying dimC Λi <∞. As
in 4.10, this produces all minimal models. By 4.19 we can view all these minimal models
as the C+ moduli on their corresponding algebra νi1 . . .νitΛ. By 5.25(3) it is possible
to track all these back to give chambers in Θ(Λ), and the proof of 5.24 shows that this
combinatorial tracking gives a connected path. The fact that each wall gives a flop is
identical to 5.23, since at each stage dimC Λi <∞.
(2) Consider an MMA Γ := EndR(M) as in the statement. By the Auslander–McKay
correspondence 4.10 M ∼= H0(VY ) for some minimal model Y → SpecR. The result then
follows by applying (1) to Y → SpecR. �

We remark that flops of multiple curves can also be easily described. The following
is the multi-curve version of 5.23.

Lemma 6.3. With the d = 3 crepant setup of 2.9, set N = H0(VX), Λ = EndR(N), and
pick a subset of curves I above the origin. If dimC ΛI <∞, then Mrk,νbI

ϑ(Λ) is the flop

of
⋃
i∈I Ci, for all ϑ ∈ C+(Λ)

Proof. This follows by combining 4.19 with moduli tracking 5.14, using 5.22 to establish
that bI = cI. �

6.2. Auslander–McKay Revisited. In the d = 3 crepant setup of 2.9, in this subsection
we use the extra information of the GIT chamber decomposition of Θ(Λ) from §5 to extend
aspects of the Auslander–McKay Correspondence from §4.2.

Theorem 6.4. The correspondence in 4.10 and 4.24 further satisfies

(5) The simple mutation graph of MM generators can be viewed as a subgraph of the
skeleton of the GIT chamber decomposition of Θ(Λ).

(6) The number of MM generators is bounded above by the number of chambers in
the GIT chamber decomposition of any of the MMAs, and is bounded below by
the number of different curve configurations obtained in the enhanced chamber
structure of Θ(Λ/gΛ).

Proof. Part (5) follows from 6.2(1) together with 4.10(3). The first part of (6) is then
obvious, and the second half is 5.28. �

6.3. Root Systems. We observed in 5.26 that the chamber structure of partial resolu-
tions of Kleinian singularities, and thus by 5.25 also the corresponding cDV singularities,
cannot in general be identified with the root system of a semisimple Lie algebra. In special
cases, however, they can.

Lemma 6.5. With the crepant setup f : X → SpecR of 2.9, suppose that d = 2 and R
is a type A Kleinian singularity. Set Λ := EndX(VX) ∼= EndR(N). If there are t curves
above the unique closed point, then the chamber structure for Θ(Λ) can be identified with
the root system of slt.

Proof. Label the CM R-modules corresponding to the curves in the minimal resolution
by N1, . . . , Nn, from left to right. Since X is dominated by the minimal resolution, it
is obtained by contracting curves, to leave CM modules Nj1 , . . . , Njt say, so that N =
H0(VX) = Nj1 ⊕ . . .⊕Njt .
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By 5.24(3), the chamber structure can be calculated by tracking C+ back through
iterated mutation at indecomposable summands. The AR quiver is

i i+1

i−1 i

Consider an indecomposable summand Nji (i.e. I = {ji}), then to calculate its addNIc-
approximation, by knitting it is clear that

ji ji+1 ji+2 ji+1

ji−1 ji

ji−1

1 1 1 1 1

1 1 1 1 0

1 1 1 1 0

1 0 0 0 −1

and so the combinatorics that determine the tracking negates ϑji and adds ϑji to each of
its neighbours.

On the other hand, if we consider the minimal resolution of the Type A singularity
1
t+1 (1,−1), which also has t curves above the origin, the combinatorics that governs track-
ing C+ in this case is also the rule that negates ϑj and adds ϑj to its neighbours. Hence
since the chamber structure for the minimal resolution of 1

t+1 (1,−1) can be identified with

the root system of slt [CS, Kr], so too can the chamber structure of Θ(Λ). �

By combining 5.25 and 6.5, the following is immediate.

Corollary 6.6. With the d = 3 crepant setup f : X → SpecR of 2.9, set N := H0(VX)
and Λ := EndX(VX) ∼= EndR(N). Suppose further that either

(A) f : X → SpecR is a minimal model, or
(B) f : X → SpecR is a flopping contraction.

where R is a complete local cAn singularity. Set Λ := EndX(VX) ∼= EndR(N). If there
are t curves above the unique closed point, then the chamber structure for Θ(Λ) can be
identified with the root system of slt.

There are also other cases in which root systems appear. Consider the following
assumption, made throughout in [T1].

Setup 6.7. In the d = 3 crepant setup of 2.9, suppose that R is isolated and there is a
hyperplane section which cuts X to give the minimal resolution.

The setup is restrictive, for example in the case of a minimal model of SpecR with
only one curve above the origin, it forces R to be Type A. Nevertheless, under the setup
6.7, associated to R is some ADE Dynkin diagram. The following recovers [T2, §5.1].

Lemma 6.8. With the assumption in 6.7,

(1) The chamber structure of Θ(Λ) can be identified with the root system of the cor-
responding Dynkin diagram.

(2) There are precisely |W | chambers, where W is the corresponding Weyl group.

Proof. (1) Since R is isolated Ext1
R(N,N) = 0. Thus the Ext1

R(N,N)-regular condition
in 5.19 is redundant, so 5.20 holds for the particular g in 6.7. Appealing to this directly in
the proof of 5.25 shows that the chamber structure of Θ(Λ) and Θ(Λ/gΛ) coincide. Since
by 6.7 the pullback of the hyperplane section is the full minimal resolution, it follows that
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Λ/gΛ is the preprojective algebra of the corresponding Dynkin diagram, and its chamber
structure is well-known [CS, Kr]. Part (2) is immediate. �

6.4. Auslander–McKay for Isolated Singularities. With the crepant setup of 2.9,
the case when R is in addition an isolated singularity is particularly important for two
reasons. First, it aligns well with cluster theory, since in this setting CMR is a Hom-finite
2-CY category, with maximal rigid objects the MM generators, and cluster tilting objects
(if they exist) the CT modules. Second, the minimal models are easier to count, thus we
have finer control over the mutation graph.

Recall that if C is an exact category, then M ∈ C is called rigid if Ext1
C(M,M) = 0,

and M ∈ C is called maximal rigid if M is rigid and further it is maximal with respect to
this property, namely if there exists Y ∈ C such that M ⊕ Y is rigid, then Y ∈ addM .
Equivalently, M is a maximal rigid object of C if

addM = {Y ∈ C | Ext1
C(M ⊕ Y,M ⊕ Y ) = 0}.

Also, recall that M ∈ C is called a cluster tilting object in C if

addM = {Y ∈ C | Ext1
C(M,Y ) = 0} = {X ∈ C | Ext1

C(X,M) = 0}.
Corollary 6.9. Let R be a complete local isolated cDV singularity. Then 4.10 reduces to
a one-to-one correspondence

{basic maximal rigid objects in CMR} {minimal models fi : Xi → SpecR}.

If further the minimal models of SpecR are smooth (equivalently, CMR admits a cluster
tilting object), then this reduces to

{basic cluster tilting objects in CMR} {crepant resolutions fi : Xi → SpecR}.

In either case, under this correspondence properties (1)–(4) in 4.10 and 4.24 still hold,
but further we now also have

(5) The simple mutation graph of the maximal rigid (respectively, cluster tilting) ob-
jects in CMR is precisely the skeleton of the GIT chamber structure.

(6) The number of basic maximal rigid (respectively, cluster tilting) objects in CMR
is precisely the number of chambers in the GIT chamber decomposition.

If furthermore 6.7 is satisfied, then

(7) There are precisely |W | maximal rigid objects in C = CMR, where W is the
corresponding Weyl group.

Proof. Since R is isolated, M is a maximal rigid object in the category CMR if and only
if M is an MM generator [IW2, 5.12], so the first bijection is a special case of the bijection
in 4.10. The second bijection is similar, using [IW2, 5.11]. Further, since R is isolated,
it follows that always dimC Λi < ∞, so all curves flop, and all summands non-trivially
mutate. Thus (5) follows from 4.10(3), using the argument of 6.2(1). Part (6) follows
immediately from (5), and part (7) follows from (6) together with 6.8. �

We refer the reader to §7.1 for examples of chamber structures and mutation graphs.
The following is a non-explicit proof of [BIKR, 4.15], extended from crepant resolutions
to also cover minimal models.

Corollary 6.10. Consider an isolated cDV singularity R := C[[u, v, x, y]]/(uv−f1 . . . fn)
where each fi ∈ m := (x, y) ⊆ C[[x, y]]. Then there are precisely n! maximal rigid objects
in CMR, and all are connected by mutation.

Proof. As in [BIKR, 6.1(e)], R is a cAm singularity, where m = ord(f1 . . . fn)− 1, and it
is well known (see e.g. the calculation in [IW3, §5.1]) that the minimal models of SpecR
have n curves above the origin. But by 6.6 the GIT chamber decomposition of any of the
MMAs EndR(M) with R ∈ addM has precisely n! chambers, so the result follows from
6.9. �
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6.5. Partial Converse. Let R be a complete local Gorenstein 3-fold. By the Auslander–
McKay correspondence, if R is cDV then there are only finitely many basic MM modules
up to isomorphism. Recall from 1.14 that we conjecture the converse to be true. Since
such R are known to be hypersurfaces, the corollary of the following result, although it
does not prove the conjecture, does give it some credibility.

As preparation, recall that the complexity of M ∈ modR measures the rate of growth
of the ranks of the free modules in the minimal projective resolution of M , and is defined

cxR(M) := inf{t ∈ Z≥0 | ∃ a ∈ R with dimC ExtnR(M,k) ≤ ant−1 for n� 0}.

Since cxR(M) measures the asymptotic behaviour, it is clear that cxR(M) = cxR(ΩiM)
for all i ≥ 0.

The following extends [B13, §3] to cover not-necessarily-isolated singularities.

Proposition 6.11. Suppose that R is a d-dimensional complete local Gorenstein alge-
bra. If R admits only finitely many basic CT modules up to isomorphism, then R is a
hypersurface.

Proof. Let M be such a CT module, which is necessarily a generator, and consider X :=
Ωdk ∈ CMR. Since R is Gorenstein, by taking a projective cover of X∗ then dualizing, we
have an exact sequence 0→ X → P0 → P1 with each Pi ∈ addR. Applying HomR(M,−)
gives an exact sequence

0→ HomR(M,X)→ HomR(M,P0)
g→ HomR(M,P1)→ Cok g → 0.

Since both HomR(M,Pi) are projective EndR(M)-modules, and gl.dim EndR(M) = d by
[IW2, 5.4], it follows that pdEndR(M) HomR(M,X) ≤ d− 2.

Since M is a generator, HomR(M,−) : modR→ mod EndR(M) is fully faithful, and
restricts to an equivalence addM → proj EndR(M), see e.g. [IW2, 2.5(1)]. Thus we may
take a projective resolution

0→ HomR(M,Md−2)→ . . .→ HomR(M,M0)→ HomR(M,X)→ 0

which necessarily comes from a complex

0→Md−2 →Md−3 . . .→M0 → X → 0. (6.A)

This complex (6.A) is exact, since M is a generator.
Now, by general mutation theory, ΩiM are CT modules for all i ∈ N [IW2, 6.11], and

since by assumption there are only finitely many basic CT modules, ΩiM ∼= ΩjM for some
i 6= j, which by taking cosyzygies implies that ΩtM ∼= M for some t ≥ 1. Consequently,
cxRM ≤ 1.

But splicing the sequence (6.A) gives an exact sequence

0→Md−2 →Md−3 → Cd−3 → 0

and thus an exact sequence

. . .→ ExtnR(Md−2, k)→ Extn+1
R (Cd−3, k)→ Extn+1

R (Md−3, k)→ . . . . (6.B)

Since cxRM ≤ 1 there exist ai ∈ R such that dimC ExtnR(Mi, k) ≤ ai for n � 0.
Thus inspecting (6.B) it follows that dimC ExtnR(Cd−3, k) ≤ ad−2 + ad−3 for n � 0,
so cxR Cd−3 ≤ 1. Inducting along the splicing of (6.A) gives cxRX ≤ 1, which implies
that cxR k ≤ 1. This is well-known to imply that R is a hypersurface [G]. �

Corollary 6.12. Suppose that R is a 3-dimensional complete local normal Gorenstein
algebra, and suppose that R admits an NCCR. If there are only finitely many basic MM
generators up to isomorphism, then R is a hypersurface.

Proof. Since R admits an NCCR, by [IW2, 5.9] CMR has a CT module. As a consequence,
by [IW2, 5.11(2)] CT modules are precisely the MM generators, so the assumptions now
imply that there are only finitely many CT modules. Thus the result follows from 6.11. �
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7. Examples

In this section we summarise the GIT chamber decompositions of some crepant partial
resolutions of ADE surface singularities, and give the corresponding applications to cDV
singularities. We also illustrate how to run Figure 2 in some explicit cases.

7.1. GIT Chamber structures. Throughout this subsection, Y → SpecS denotes a
crepant partial resolution, where S is a complete local ADE surface singularity, and X →
SpecR denotes a crepant partial resolution, where R is cDV.

Example 7.1. Suppose that Y → SpecS has only one curve above the origin. Then Θ
is parametrised by ϑ1, and there is a single wall at ϑ1 = 0

ϑ1

In the d = 3 crepant setting 2.9, if X → SpecR has only one curve above the origin and
does not contract a divisor, then it has the above chamber structure. This includes, as a
special case, all simple flops.

Example 7.2. With notation as in §5.3, using a similar argument as in 5.26, the following
are examples of chamber structures for some 2-curve configurations.

ϑ1 = 0
ϑ2 = 0
ϑ1 + ϑ2 = 0
ϑ1 + 2ϑ2 = 0
ϑ1 + 3ϑ2 = 0
ϑ1 + 4ϑ2 = 0

Figure 4. Chamber structures for some two curve configurations.

Example 7.3. If further we enhance each chamber with the curve configuration for that
chamber (calculated as a byproduct of mutation, as in 5.27), for E6 with configuration

(7.A)

after rescaling we obtain the enhanced GIT chamber decomposition

Figure 5. Enhanced chamber decomposition for E6 with configuration (7.A).
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By 5.28, it follows that any cDV singularity with a minimal model that cuts under generic
hyperplane section to (7.A) has at least 5, and at most 10, minimal models.

Example 7.4. For the 3-curve configuration , the chamber structure is

ϑ1 = 0
ϑ2 = 0
ϑ3 = 0
ϑ1 + ϑ3 = 0
ϑ2 + ϑ3 = 0
ϑ1 + ϑ2 + ϑ3 = 0
ϑ1 + ϑ2 + 2ϑ3 = 0

Figure 6. The 32 chambers for (1, 2, 1)

whereas for the 3-curve configuration , the chamber structure is

ϑ1 = 0
ϑ2 = 0
ϑ3 = 0
ϑ1 + ϑ3 = 0
ϑ1 + 2ϑ3 = 0
ϑ2 + ϑ3 = 0
ϑ2 + 2ϑ3 = 0
ϑ1 + ϑ2 + ϑ3 = 0
ϑ1 + ϑ2 + 2ϑ3 = 0
ϑ1 + ϑ2 + 3ϑ3 = 0

Figure 7. The 60 chambers for (1, 3, 1)

Tracking the dual graph through mutation, as in 5.27 and 5.28, any cDV singularity with
a minimal model that cuts to the above D4 configuration has at least 4 and at most 32
minimal models. Any cDV singularity with a minimal model that cuts to the above E6

configuration has at least 5 and at most 60 minimal models.

Remark 7.5. The singularity R := C[[u, x, y, z]]/(u2 − xyz) in 3.4 is in fact cD4 with a
three curve configuration, so the chamber structure is precisely Figure 6. The chamber
structure for the particular example u2 = xyz was computed independently, using entirely
different methods, by Craw and King in 2000. Indeed, [C01, 5.31, footnote 5 p117]
computes the first four chambers. See also [MT].

7.2. Running the algorithm. This subsection illustrates how to run the Homological
MMP in two examples. For the aid of the reader, we begin with the toric example in 3.4,
since the geometry will already be familiar.

Example 7.6. Consider again the cD4 singularity R := C[[u, x, y, z]]/(u2 = xyz). As in
[IW2, 6.26], N := R⊕ (u, x)⊕ (u, y)⊕ (u, z) is an MM (in fact, CT) R-module, and
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Λ := EndR(N) ∼=

N2N1

R N3

x xx x

y
y

y
y

z

z

z

z

xy = yx
xz = zx
yz = zy

(7.B)

with the relations being interpreted as x, y and z commute wherever that makes sense.
From the quiver, by 2.15 we read off that the fibre above the origin has three curves
meeting at a point, and all are (−1,−1)-curves.

Step 1: Contractions. We inspect the contraction algebras to determine which
sets of curves are floppable. It is clear that Λ{1} = Λ{2} = Λ{3} = C, and so each of the
three curves is individually floppable. Furthermore,

Λ{1,2} ∼=

N2N1

R N3

x xx x

y
y

y
y

z

z

z

z
∼= (no relations)

since all relations in (7.B) involve x’s and z’s, and these are zero in the quotient. Thus
dimC Λ{1,2} =∞ and so curves 1 and 2 do not flop together. By symmetry in this example,
the same can be said of all pairs. Finally dimC Λ{1,2,3} =∞. Hence each individual curve
flops, but no other combinations do.

Step 2: Flops. By symmetry, we only need mutate at N2 (i.e. flop curve two), since
the other cases are identical. In this example, it is clear that the relevant approximation
is

0→ N2
(z y x)−−−−→ R⊕N1 ⊕N3

Thus the mutation at vertex N2 changes N = R ⊕N1 ⊕N2 ⊕N3 into ν2N := R ⊕N1 ⊕
K2 ⊕N3 where K2 is the cokernel of the above map which (by counting ranks) has rank
2. On the level of quivers of the endomorphism rings, this induces the mutation

EndR(ν2N) ∼=

K2N1

R N3

cC

b
B

aA

v

u
w

aA = 0
bB = 0
cC = 0

ua = aCcBb+ aBbCc
vb = bAaCc+ bCcAa
wc = cAaBb+ cBbAa
Au = BbCcA+ CcBbA
Bv = AaCcB + CcAaB
Cw = AaBbC + BbAaC

By 2.15 we read off that the new dual graph has three curves intersecting in a type A
configuration, with the outer two curves being (−2, 0)-curves, and the inner curve being a
(−1,−1)-curve. By the symmetry of the situation, we obtain the beginning of the simple
mutation graph:
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N

ν1N

ν3N

ν2N

Figure 8. The simple mutation graph for u2 = xyz.

We next claim that this is precisely the simple mutation graph of the MM generators,
equivalently we have already found all minimal models of SpecR.

Step 1b: Contractions. We plug in the mutated algebra EndR(ν2N) into Step
1, and repeat. Due to the relations in the algebra ν2Λ = EndR(ν2N), it follows that
dimC(ν2Λ){1} = ∞ = dimC(ν2Λ){3}, thus in ν2Λ the only curve we can non-trivially
mutate is the middle one, which gives us back our original N . Thus the Homological
MMP stops, and we have reached all minimal models.

Example 7.7. Consider the cD4 singularity R := C[[u, v, y, z]]/(u2− v(x2− 4y3)). Since
R ∼= C[[x, y, z]]S3 for the subgroup

S3 :=

〈ε3 0 0
0 ε2

3 0
0 0 1

 ,

0 1 0
1 0 0
0 0 −1

〉 ≤ SL(3,C),

there is an MM generator (in fact, CT module) given by the skew group ring Λ :=
EndR(N), and further by [BSW] it can be presented as

Λ ∼=

N2

R N1

Aa

x
y

b B

l z
aB = 0
bA = 0

Aa+ Bb = 2l2

az = xb
bz = ya
zA = By
zB = Ax
lz + zl = 0

given by the superpotential Φ := Axb + Bya − zAa − zBb + 2zl2. By 2.15 we read off
that there are two curves intersecting transversely, one with normal bundle (−3, 1), the
other with normal bundle (−1,−1). Further,

Λ{2} ∼=

N2

R N1

Aa

x
y

b B

l z

∼= C〈〈l,z〉〉
(l2,lz+zl)
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which is infinite dimensional, and clearly Λ{1} = C, which is finite dimensional. Hence by
3.5 only the (−1,−1)-curve flops. It is easy to calculate that

ν1Λ ∼=

N2

R K1
s
t

c C

l

(xy)

lCc+ Ccl = 0
st = 0

t(xy) = cCcCt
(xy)s = scCcC

2l2C = CcCts+ CtscC
2cl2 = tscCc+ cCtsc

given by potential Φ′ := −t(xy)s−cl2C+cCcCts. Again by inspection, (ν1Λ){2} = C[[l]],
which is infinite dimensional, and (ν1Λ){2} = C, which is finite dimensional.

Hence the only way to mutate is back, so the Homological MMP finishes. It follows
that the full mutation graph, viewed inside the GIT chamber structure Θ(Λ), is

ϑ1

ϑ2

ϑ1 = 0
ϑ2 = 0
ϑ1 + ϑ2 = 0
ϑ1 + 2ϑ2 = 0

Remark 7.8. The mutation trees of quivers are usually quite easy to write down, and
this then determines all the geometry. We refer the reader to [NS, §4.1] for the calculation
of the mutation trees for some other quotient singularities, in particular [NS, 4.4]. We
remark that it follows from Figure 2 that [NS, §4.1] is now enough to establish we have all
minimal models. In particular, we can immediately read off the dual graph and whether
curves flop from the quivers there, avoiding all the hard explicit calculations in [NS, §5–6].

Appendix A. Mutation Summary

This appendix contains the mutation results needed in the text, including 2.21 and
2.22, which for the most part are just mild generalisations of some of the results in [IW2,
§6]. Throughout, we maintain the setup of §2.3 and 5.3, so unless stated otherwise R
denotes a complete local normal d-sCY commutative algebra with d ≥ 2, M ∈ ref R
denotes a basic modifying module M , and MI is a summand of M .

The following duality proposition is important, and will be used extensively.

Proposition A.1. [IW2, 6.4] With notation as above,

(1) Applying HomR(−,MIc) to (2.E) induces an exact sequence

0→ HomR(MI ,MIc)
·a→ HomR(VI ,MIc)

·c→ HomR(KI ,MIc)→ 0.

In particular c is a minimal left addMIc-approximation.
(2) Applying HomR(−,M∗Ic) to (2.I) induces an exact sequence

0→ HomR(M∗I ,M
∗
Ic)

·b→ HomR(U∗I ,M
∗
Ic)

·d→ HomR(JI ,M
∗
Ic)→ 0

In particular d is a minimal left addM∗Ic-approximation.
(3) We have that

0→M∗I
a∗→ V ∗I

c∗→ K∗I

0→MI
b∗→ UI

d∗→ J∗I (A.A)
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are exact, inducing exact sequences

0→ HomR(M∗Ic ,M
∗
I )

a∗·→ HomR(M∗Ic , V
∗
I )

c∗·→ HomR(M∗Ic ,K
∗
I )→ 0 (A.B)

0→ HomR(K∗I ,M
∗
Ic)
·c∗→ HomR(V ∗I ,M

∗
Ic)
·a∗→ HomR(M∗I ,M

∗
Ic)→ 0

0→ HomR(MIc ,MI)
b∗·→ HomR(MIc , UI)

d∗·→ HomR(MIc , J
∗
I )→ 0 (A.C)

0→ HomR(J∗I ,MIc)
·d∗→ HomR(UI ,MIc)

·b∗→ HomR(MI ,MIc)→ 0

In this level of generality, usually νIM � µIM , and νIνIM �M . However, we will
be interested in when these, and other, nice situations occur.

Proposition A.2. In setup of 5.3, assume further that pdΛΛI = 2. Then

(1) µIM ∼= M ∼= νIM .
(2) The minimal projective resolution of ΛI as a Λ-module is

0→ HomR(M,MI)
·c−→ HomR(M,VI)→ HomR(M,MI)

·a−→ ΛI → 0

(3) The minimal projective resolution of Λop
I as a Λop ∼= EndR(M∗)-module is

0→ HomR(M∗,M∗I )
·a∗−−→ HomR(M∗, V ∗I )

·c∗−−→ HomR(M∗,M∗I )→ Λop
I → 0

Proof. Since pdΛΛI = 2 there is a minimal projective resolution

0→ Q1 → Q0
f→ PI → ΛI → 0 (A.D)

where PI := HomR(M,MI) is not a summand of Q0. Now MI =
⊕

i∈IMi, so taking the
minimal right MIc -approximations of each Mi gives exact sequences

0→ Ki
ci−→ Vi

ai−→Mi (A.E)

which sum together to give the exact sequence

0→ (KI =
⊕
i∈I

Ki)
c−→ (VI =

⊕
i∈I

Vi)
a−→ (MI =

⊕
i∈I

Mi). (A.F)

This is the minimal right addMIc-approximation of MI , so applying HomR(M,−) gives
(A.D). In particular KI ∈ addM . We claim that KI

∼= MI , as this proves (2).
First, each Ki ∈ addMI . To see this, suppose it is false, which since KI ∈ addM

would mean that Ki ∈ addMIc . By A.1, dualizing (A.E) gives exact sequences

0→M∗i → V ∗i → K∗i (A.G)

such that

0→ HomR(M∗Ic ,M
∗
i )→ HomR(M∗Ic , V

∗
i )→ HomR(M∗Ic ,K

∗
i )→ 0 (A.H)

is exact. Since we are assuming Ki ∈ addMIc , this would mean that

0→ HomR(K∗i ,M
∗
i )→ HomR(K∗i , V

∗
i )→ HomR(K∗i ,K

∗
i )→ 0

is exact. Considered as EndR(K∗i )-modules, the last term is projective, so the sequence
splits. It follows that HomR(K∗i ,M

∗
i ) is a summand of HomR(K∗i , V

∗
i ). By reflexive

equivalence, M∗i is then a summand of V ∗i , thus Mi is a summand of Vi, which is a
contradiction since Vi ∈ addMIc . This shows that each Ki ∈ addMI .

Now since each Ki is indecomposable, it remains to show that Ki � Kj for i 6= j.
Suppose that it is false, i.e. Ki

∼= Kj with i 6= j. By (A.G) and (A.H), the map c∗i : V ∗i →
K∗i is a minimal right addM∗Ic-approximation for all i ∈ I, thus since K∗i

∼= K∗j it follows
that M∗i

∼= M∗j , which is a contradiction since M is basic. It follows that KI
∼= MI , so

(2) holds. Further, (A.F) is the exact sequence

0→MI
c−→ VI

a−→MI (A.I)
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with a a minimal right addMIc-approximation of MI , so by definition µIM = MIc ⊕
Ker a ∼= M , proving the first half of (1). Now by A.1, dualizing (A.I) gives an exact
sequence

0→M∗I
a∗−→ V ∗I

c∗−→M∗I (A.J)

and by (A.B) c∗ is a minimal right addM∗Ic-approximation. Thus applying HomR(M∗,−)
gives the minimal projective resolution of Λop

I , proving (3). Also, by definition νIM =
MIc ⊕ (Ker(c∗))∗ ∼= M , proving the second half of (1). �

The following gives equivalent conditions to when the assumptions of A.2 hold.

Lemma A.3. In the setup of 5.3, the following are equivalent

(1) pdΛΛI = 2.
(2) pdΛΛI <∞ and depthR ΛI = d− 2.
(3) νIM ∼= M .
(4) µIM ∼= M .

Proof. (1)⇔(2) is just the Auslander–Buchsbaum formula [IW2, 2.15].
(1)⇒(3) is A.2.
(3)⇒(4) Since νIM ∼= M , (A.A) is simply

0→MI
b∗→ UI

d∗→MI

where d∗ is a minimal addMIc-approximation by A.1. Since minimal approximations are
unique, VI ∼= UI and µIM ∼= MIc ⊕MI = M .
(4)⇒(1) Applying HomR(M,−) to (2.E) gives an exact sequence

0→ HomR(M,KI)→ HomR(M,VI)→ HomR(M,MI)→ ΛI → 0.

Since µIM ∼= M , KI
∼= MI and so the first three terms are all projective. �

Remark A.4. We remark that when dimR = 2, R is an isolated singularity and so
automatically dimC ΛI < ∞, which implies that depthR ΛI = 0. Thus in this case the
conditions in A.3 are equivalent to simply pdΛΛI <∞.

The last two results combine to prove the following, which was stated in §2.3.

Corollary A.5. In the setup of 5.3, suppose that νIM ∼= M . Then

(1) TI = Λ(1− eI)Λ and Γ := EndΛ(TI) ∼= Λ.
(2) ΩΛΛI = TI , thus pdΛΛI = 2 and Ext1

Λ(TI ,−) ∼= Ext2
Λ(ΛI ,−).

Proof. (1) Adding the exact sequence 0 → 0 → HomR(M,MIc)
Id−→ HomR(M,MIc) →

0→ 0 to the minimal projective resolution in A.2(2) gives the projective resolution

0→ HomR(M,MI)
ψ−→ HomR(M,VI ⊕MIc)→ Λ→ ΛI → 0.

By definition TI is the cokernel of the morphism ψ, which by inspection is Λ(1 − eI)Λ.
The isomorphism EndΛ(TI) ∼= Λ is [DW1, 6.1(1)].
(2) This follows from the exact sequence above, together with dimension shifting. �

By contrast to A.5, it is often the case that νIM �M . The following is needed, and
depends heavily on A.1.

Lemma A.6. In the setup of 5.3, suppose further that either

(a) νIM ∼= M , or
(b) νIνIM ∼= M and dimC EndR(M)I <∞.

holds. Then (a) or (b) also holds for N1 := νIM , N2 := M∗ and N3 := (νIM)∗.
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Proof. Suppose that M satisfies assumption (a). The fact that νIM also satisfies (a) is
obvious. The fact that M∗ does too is a consequence of A.1, so since (νIM)∗ = M∗ in
this case, so too does N3.

Hence we can assume that M satisfies assumption (b). We see that νIνIN1
∼= N1

simply by applying νI to both sides of the equation νIνIM ∼= M . Since ΛI ∼= (νIΛ)I
by [IW1, 6.20], the finite dimensionality is preserved too. For the statement involving
N2, we need some notation. Since νIM := MIc ⊕ J∗I , we consider a minimal right

add(νIM
J∗I

)∗ = addM∗Ic approximation of (J∗I )∗ ∼= JI

0→ Ker→W ∗I → JI

then since νIνIM ∼= M , Ker∗ ∼= MI . Thus dualizing the above, using A.1,

0→ J∗I →WI →MI (A.K)

is exact, where the last map is a minimal addMIc-approximation. By uniqueness of
minimal approximations WI

∼= VI , and νI(M
∗) = M∗Ic ⊕ JI . Finally (A.A) and (A.C)

show that νIνI(M
∗) ∼= M∗. The finite dimensionality part follows since (ΛI)

op = (Λop)I .
The statement for N3 follows by combining the statements for N1 and N2. . �

Proposition A.7. In the setup of 5.3, suppose further that d ≥ 3, and that assumption
(b) in A.6 is satisfied. Then

(1) Applying HomR(M,−) to the sequence (A.A) gives an exact sequence

0→ HomR(M,MI)→ HomR(M,UI)→ HomR(M,J∗I )→ 0.

(2) νIM �M .
(3) The minimal projective resolution of ΛI as a Λ-module is

0→ HomR(M,MI)→ HomR(M,UI)→ HomR(M,VI)→ HomR(M,MI)→ ΛI → 0.

(4) d = 3.

Proof. (1) This is the argument in [IW2, (6.Q)]. Denote G := HomR(MIc ,−), then apply-
ing HomR(M,−) to (A.A) and applying HomΛ(GM,−) to (A.C) and comparing them,
by reflexive equivalence

0 HomΛ(GM,GMI) HomΛ(GM,GUI) HomΛ(GM,GJ∗I ) Ext1
Λ(GM,GMI)

0 HomR(M,MI) HomR(M,UI) HomR(M,J∗I ) C 0

∼= ∼= ∼=

Hence C is a submodule of Ext1
Λ(GM,GMI). But since (A.C) is exact, it follows that

eIC = 0 and so C is a finitely generated ΛI -module. Since ΛI has finite length, so too does
C. But depthR Ext1

Λ(GM,GMI) > 0 since HomΛ(GM,GMI) ∼= HomR(M,MI) ∈ CMR,
hence C = 0.
(2) If νIM ∼= M , then J∗I

∼= MI . Consequently, viewing the exact sequence in (1) as
EndR(M)-modules, the last term is projective and so the sequence splits. By reflexive
equivalence this would imply that MI is a summand of UI ∈ addMIc , which is a contra-
diction.
(3) Since the last map in (A.K) is a minimal right addMIc-approximation, applying
HomR(M,−) to (A.K) gives an exact sequence

0→ HomR(M,J∗I )→ HomR(M,VI)→ HomR(M,MI)→ ΛIcon → 0.

Splicing this with the exact sequence in (1) gives the result.
(4) If d > 3, applying the depth lemma to the projective resolution in (3) gives a contra-
diction. �

The above results give the following, stated in §2.3.
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Corollary A.8. Suppose that d ≥ 3, νIνIM ∼= M and dimC ΛI < ∞. As above, set
Γ := EndΛ(TI) ∼= EndR(νIM). Then

(1) TI ∼= HomR(M,νIM).
(2) Ω2

ΛΛI = TI , thus pdΛΛI = 3 and Ext1
Λ(TI ,−) ∼= Ext3

Λ(ΛI ,−).

Proof. (1) This follows from the definition of TI , together with A.7(1).
(2) This is now immediate from (1), A.7(1) and A.7(3). �

Appendix B. Conjectures

This appendix outlines conjectures and further directions. First and foremost, we
are hampered by the fact that the Bridgeland–Chen flop functor is only known to be an
equivalence in the setting of Gorenstein terminal singularities. This paper began by trying
to lift the reconstruction algebra of [Wem] to 3-folds, and through the analysis of many
non-Gorenstein examples. There is evidence to suggest the following.

Conjecture B.1. Suppose that X → Xcon is a flopping contraction of 3-folds, where X
has at worst CM rational singularities. Then the flop functor is an equivalence if and only
if the universal sheaf of the noncommutative deformation functor associated to the curves
is a perfect complex (equivalently, pdΛΛcon <∞).

This would recover Bridgeland [B02] and Chen [C02], since when X has only Goren-
stein terminal singularities, the universal sheaf is guaranteed to be perfect [DW1, 7.1].

Whilst mutation needs R to be Gorenstein to ensure that it gives a derived equiv-
alence, it can sometimes be an equivalence when R is not Gorenstein. The relationship
between flops and mutation seems to be tight.

Conjecture B.2. When Ci is a crepant curve whose universal sheaf is perfect, and X
has at worst CM rational singularities, then Theorem 1.2 remains true.

Conjecture B.3. The Homological MMP in Figure 2 can be used to flop curves and
jump between minimal models of non–Gorenstein singularities, again in the CM rational
singularities setting, provided that we account for pdΛΛcon <∞.

Even although pdΛΛcon <∞ seems necessary to relate mutation to flops, it does not
seem so relevant for moduli tracking purposes. The following is at least true in many
examples, and may be true more generally.

Conjecture B.4. The moduli tracking theorem 5.12 is true under the simplifying as-
sumption νIνIM ∼= M .

Tracking moduli in the non-Gorenstein setting is substantially harder, since even
reasonable algebras like NCCRs need not be closed under derived equivalence.

In an algebraic direction, 4.10 should extend to the situation when R is not Goren-
stein. There is a version of the Auslander–McKay Correspondence in dimension two when
R is not Gorenstein [Wun, Wem], obtained by replacing CM modules by Wunram’s notion
of a special CM module [Wun]. There should be a three dimensional analogue of this.

Conjecture B.5. There is a notion of ‘special MM generator’ such that the Auslander–
McKay Correspondence 4.10 holds for non–Gorenstein rational 3-fold singularities whose
minimal models have fibres that are at most one-dimensional.

Of course, the above conjecture must also account for pdΛΛcon <∞, but again this is
guaranteed if we restrict to those SpecR admitting minimal models with only Gorenstein
terminal singularities.

Since the noncommutative deformations in §3 detect contractions for both flips and
flops, and has no restriction on singularities, it is reasonable to speculate about modifying
the Homological MMP to cover flips. Indeed, philosophically there we should not be
changing the GIT stability, since there is no derived equivalence so we do not expect to
be able to track the moduli back. Instead, we change the algebra, keeping the GIT fixed.
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Conjecture B.6. In the setting of CM rational singularities, given N = H0(VX), there
is some homological modification of mutation that produces H0(VX′) where X ′ is the flip.
Consequently, the Homological MMP in Figure 2 can be extended to cover both flips and
flops.
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