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Abstract

The first part of this memoir assigns hyperplane arrangements to any choice of vertices
in a Coxeter graph, by taking an intersection arrangement inside a Tits cone. For each
such arrangement obtained in this way, a combinatorial labelling of the chambers is given,
and under mild assumptions a combinatorial description of wall crossing is also described.
As a special case, given any choice Jc of n nodes in any Dynkin diagram, a tiling of Rn

is produced. In the case n = 2 there are are precisely sixteen tilings, where three are the
standard affine Lie algebra arrangements, and thirteen are new. The special case when Jc

equals all nodes gives the full affine arrangement, however the flexibility of choice allows
for the construction of affine-type structures, even in R2 and R3, when the non-affine
situation does not classically have an affine analogue.

The second part is representation-theoretic, and is based around tilting theory. It
is shown that the above combinatorial tilings control the tilting theory of contracted
preprojective algebras, namely those algebras eΠe, where Π is the preprojective algebra
associated to some Dynkin, or extended Dynkin quiver. This is used to give a derived
classification of such algebras in both cases.

The third part is also algebraic, and focuses on cDV singularities, from the viewpoint
of noncommutative resolutions and their variants. A bijection is established between
the building blocks of noncommutative resolutions, namely modifying modules, and var-
ious (higher codimension) walls of the arrangement, thus classifying for the first time all
such modules. Furthermore, it is shown that mutation corresponds to wall crossing, and
from this, many strong properties are extracted, such as mutation being an involution on
arbitrary modifying modules, at arbitrary summands. As a consequence, the Auslander–
McKay Correspondence for cDV singularities [W2] is strengthened, and is furthermore
extended into the affine setting by using the new infinite arrangements.

The final part contains all the geometric corollaries. The new combinatorial structure,
together with the previous algebraic results, are combined to put the first affine-type
actions both on the derived categories of 3-folds that admit flopping contractions, and
on singular surfaces arising from partial resolutions of Kleinian singularities. A derived
classification of partial crepant resolutions of Kleinian singularities is given. The fibre twist
of [DW3] is extended to cover non-Q-factorial singularities, and the non-affine actions
from [HW1] is extended to cover flops with at worst Gorenstein terminal singularities.
The maximum length of the braid relation for 3-fold flops is described, and various ‘finite-
type’ group actions are shown to be faithful.

Osamu Iyama was supported by JSPS Grant-in-Aid for Scientific Research (B)24340004, (B)16H03923,

(C)23540045 and (S)15H05738, and Michael Wemyss was supported by EPSRC grants EP/K021400/2
and EP/R009325/1.
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Introduction

The purpose of this work is to extend and generalise hyperplane arrangements from
Coxeter theory, and to use these new structures as the fundamental ingredient that then
establishes results in various algebraic geometric situations, such as surfaces and 3-folds,
and also in various representation theoretic contexts, such as in contracted preprojective
algebras, in noncommutative resolutions, and in all their variants. In essence, we first pro-
vide the correct combinatorial structure and describe its wall-crossing rules, then use this
information to derive results in homological algebra, commutative algebra through reflex-
ive modules, tilting theory of preprojective algebras, group actions on derived categories,
and stability conditions.

There are many further consequences, all underpinned by the same new combinatorial
rules and structure. The hyperplane arrangements and tilings that are obtained, whilst
not forming part of classical Coxeter theory, turn out to be surprisingly rich and beautiful,
much like their classical Coxeter cousins.

When and What is Affine? Our original motivation stems from the following
simple problem. Classical Coxeter theory asserts that various braid and Coxeter groups
associated to the Coxeter graph I5 do not admit an affine version. However, there is a
situation arising in algebraic geometry, namely 3-fold flopping contractions, that suggests
something ‘affine’ exists. This memoir grew out of first trying to uncover this structure,
and as such, it is instructive to first review this motivational setting in slightly more detail.

Three dimensional flops are perhaps the most elementary higher-dimensional bira-
tional surgery, however many of their properties remain mysterious. It was observed in
[W2, 7.2] that there exists a 3-fold flop

X X+

SpecR

f f+

where both f and f+ contract two intersecting curves to a point, and for which the movable
cone of f is described, in suitable co-ordinates, by the following hyperplane arrangement

inside R2. As is well known, the fundamental group of the complexified complement
C2\HC is equal to the pure braid group PBr(I5) associated to the Coxeter graph I5.
Starting from X, iteratively flopping the two individual curves (that is, performing the
birational surgery of flop on the two curves individually and repeatedly), gives ten different

vii
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flopping contractions Xi → SpecR. These correspond to the chambers of the movable
cone, and so to the chambers of the above hyperplane arrangement.

All the Xi, whilst being non-isomorphic as R-schemes, are derived equivalent via the
Bridgeland–Chen flop functors. It was shown in [DW3] that, in this example, the length
five braid relation holds for the flops functors, namely

F1 ◦F2 ◦F1 ◦F2 ◦F1
∼= F2 ◦F1 ◦F2 ◦F1 ◦F2 .

Visually, this can be viewed as

F1
F2

F1

F2

F1

F2

F1

F2

F1
F2

The existence of a group homomorphism PBr(I5)→ Auteq Db(cohX) follows immediately.
This homomorphism turns out to be quite important: it is injective [HW1], and its image
is the Galois group of the universal cover Stab◦C→ C2\HC, where C is the null category
inside Db(cohX), see [HW2].

However, this is not the whole picture. It was furthermore shown in [DW3] that,
provided X is smooth (or more generally, Q-factorial), there exists an additional autoe-
quivalence, called the fibre twist, which, motivated by happens for smooth surfaces [B6],
should be some affine element in some naturally occurring ‘affine’ version of PBr(I5). The
question is: what is this affine structure? In classical Coxeter theory, there is no affine
pure braid group associated to I5.

Solution: Finite and Affine. Of course, the question is not well posed, as the
algebraic geometric setup contains more information. Whilst the finite arrangement with
10 chambers can be identified with the root system I5, it turns out that it is much more
natural to view it as the intersection arrangement (or localisation arrangement) inside a E6

root system. Indeed, via Reid’s general elephant conjecture and McKay correspondence,
it is more natural to identify the two curves with a subset of vertices of an E6 Dynkin
diagram. For the f : X → SpecR example above, the two curves correspond to the

unshaded vertices in the following: .
In turn, the two unshaded vertices correspond to linearly independent vectors in the

E6 root system, taking so their span gives R2. Intersecting all the reflecting hyperplanes
inside the root system (which is R6) with this R2 cuts out a hyperplane arrangement on
the R2, which gives precisely the 10 chamber example above. A cartoon description of
this intersection in R6 is depicted by the following diagram.
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In particular, before even extending into the affine case, this on its own motivates us to
develop a full theory for intersection arrangements inside all Coxeter root systems.

Our construction of the ‘affine’ version is verified in Example 2.10. It involves first
adding the extended vertex

Then, inside the full Tits cone of the affine E6 root system sits R3, based by the three
unshaded vertices. Intersecting all the hyperplanes in the Tits cone with this R3 gives a
cone, and after taking a suitable ‘level’ (for details, see below), the corresponding infinite
hyperplane arrangement in R2 is precisely:

In general, taking intersection arrangements leaves the world of Coxeter arrangements,
and so the language adopted is not one of global rules, governed by the Coxeter matrix,
but rather a language of local rules, governing local wall crossing behaviour. Explicitly
describing the affine arrangements produced in principle remains easy, as it is possible to
start anywhere and iterate well-described local rules. In practice, these calculations are
quite involved: even in the case of two curves, which produces a tiling of the plane, Theo-
rem 0.5 below demonstrates that the tilings produced exhibit quite exceptional behaviour,
and they take much longer to repeat than might naively be expected.

Nonetheless, Parts 2, 3 and 4 provide justification for calling these new infinite ar-
rangements ‘affine’, since they achieve our geometric motivation, and much more.

Forward. With this motivation in hand, we start at the beginning, and develop a
general theory for intersection arrangements in both finite and affine cases. We then
use this new theory to help uncover and prove results in various algebraic and geometric
settings. To achieve this, the memoir naturally splits into four parts.

• Part 1, which is entirely combinatorial and logically independent of all the other
Parts, develops the general theory of intersection arrangements inside Coxeter
arrangements. It constructs the arrangements and labels the chambers using
Coxeter data, describes the local wall crossing rules, and classifies the arrange-
ments, finite and affine, that arise in low dimension.

• Part 2 considers, for the first time, contracted preprojective algebras, which are
eΠe where Π is the usual preprojective algebra and e is some idempotent. Un-
der various assumptions on the underlying quiver, one of the main results is
that the tilting theory of these algebras is controlled by the affine arrangements
constructed in Part 1. A derived classification is given.

• Part 3 lifts the technical heart of Part 2 into the world of 3-folds, and completely
describes all noncommutative resolutions and their variants for compound Du
Val (=cDV) singularities, again in terms of the affine hyperplane arrangements
of Part 1. The finite arrangements correspond to a certain natural subset. In
all cases, mutation corresponds to wall crossing, and crucially the topology of
the arrangements is used to strengthen and extend many results in mutation to
cover arbitrary rigid reflexive modules.

• The techniques in all of the Parts 1, 2 and 3 then allows, in Part 4, a return to
the original algebraic geometry motivation, where the geometric corollaries are
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spelled out in some detail in dimensions two and three. The advances in Part 3
allow many of the assumptions in the literature to be swept away, generalising
many results from smooth flops to terminal flops, including braiding, existence
of the fibre twists, affine actions, and various results on faithful actions.

We now describe the content of each of the four Parts in more detail.

Part 1. Intersection Arrangements. The construction requires two pieces of
input data. The first is an n × n Coxeter matrix M = (mij), with entries in the set
{1, 2, . . . ,∞}. As is standard, M can alternatively be described by a Coxeter graph ∆
with n nodes, where we draw an edge between i and j if and only if mij ≥ 3. There is a
naturally associated Coxeter group, denoted W∆.

Let V be the R-vector space with basis {αi | i ∈ ∆}, and B the symmetric bilinear
form on V defined by B(αi,αj) = − cos(π/mij). The Coxeter group W∆ acts on V
by si(v) := v − 2B(αi, v)αi. Set Θ := V ∗ to be the dual space of V , which has basis
{α∗i | i ∈ ∆}. The Tits cone Cone(∆) is defined to be

Cone(∆) :=
⋃

x∈W∆

x(C),

where C := {ϑ ∈ Θ | ϑi ≥ 0 for all i ∈ ∆}.
Our second piece of input data is a choice J of a subset of vertices of ∆. Given this

input pair (∆, J), consider the vector space

ΘJ := {ϑ ∈ Θ | ϑi = 0 if i ∈ J},
which has as basis {α∗i | i /∈ J}. The main object of our study, called the J-cone, is the
intersection

Cone(∆, J) := Cone(∆) ∩ΘJ.

In order to describe this object, we first label its chambers. For J ⊆ ∆, let Cham(∆, J) be
the set of those pairs (x, J), where x is an element of the Weyl group W∆, J is a subset
of ∆, satisfying the two properties that `(x) = min{`(y) | y ∈ xWJ }, and WJx = xWJ .

Theorem 0.1 (1.12). Let ∆ be a Coxeter graph. Then there is a bijection from the
set Cham(∆, J) to the set of chambers in Cone(J), given by

Cham(∆, J) 3 (x, J) 7→ x(CJ).

Now for any (x, J) ∈ Cham(∆, J), by the above theorem topologically we land in some
chamber of Cone(∆, J). From this, we try to wall cross into an adjacent chamber. Walls
of the chamber x(CJ) correspond to i ∈ Jc. In particular, there are |Jc| of them.

To describe this, suppose we are in a situation where i ∈ Jc is such that WJ+i is
finite. This happens often, and for example holds automatically for all extended ADE
Dynkin diagrams. In this case, we define simple wall crossing by

ωi(x, J) := (xwJwJ+i, J + i− ιJ+i(i)),

where wJ is the longest element in WJ , wJ+i is the longest element in WJ+i , and ιJ+i is
the involution on the graph J + i from 1.2(2).

The name simple wall crossing in 1.16 is justified by the following theorem, which is
the main result of Chapter 1.

Theorem 0.2 (1.20). Let ∆ be a Coxeter graph, and J a subset of ∆.

(1) For any (x, J) ∈ Cham(∆, J) and i ∈ Jc such that J + i is Dynkin, the following
assertions hold.
(a) ωi(x, J) belongs to Cham(∆, J) for any (x, J) ∈ Cham(∆, J) and i ∈ Jc.
(b) x < xsi ⇐⇒ (x, J) < ωi(x, J), and x > xsi ⇐⇒ (x, J) > ωi(x, J).
(c) Wall crossing is involutive, that is,

ωi′ωi(x, J) = (x, J)

for i′ := ιJ+i(i).
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(d) Let (y, J ′) := ωi(x, J). Then the J-chambers x(CJ) and y(CJ′) are adjacent
via the wall x(CJ+i).

(2) If J is strongly Dynkin, then the following assertions hold.
(a) Any two elements in Cham(∆, J) are connected by a finite sequence of wall

crossings.
(b) Two elements in Cham(∆, J) are related by a simple wall crossing if and

only if the corresponding J-chambers are adjacent.
(3) If W∆ is finite, then Cham(∆, J) has the minimum element (1, J) and the maxi-

mum element (wJw∆, ι∆(J)).

It is the ADE Dynkin, and extended Dynkin cases that interest us the most. Suppose
that ∆ is ADE Dynkin, J ⊆ ∆, then the simplest case is when Jc = ∆\J is small. The case
when |Jc| = 1 is degenerate, always having precisely two chambers (Lemma 3.1). The
case |Jc| = 2 is much more surprising.

Theorem 0.3 (3.11). Suppose that ∆ is ADE Dynkin, and J ⊆ ∆ is such that |Jc| = 2.
Then, up to changing the slopes of some of the hyperplanes, Cone(∆, J) is one of the
following five hyperplane arrangements.

In each case, the number of chambers is 6, 8, 10, 12 and 16 respectively.

If we take into account the precise slopes of the hyperplanes, then more arrangements
can occur, but for the vast majority of our applications the slopes of the hyperplanes
do not matter. The slopes, and also an associated weighting of each hyperplane, do
give a method of computing the infinite arrangement below, but this data is not strictly
necessary; the infinite arrangement can be computed without knowledge of the slopes.

Consider next the extended Dynkin case ∆aff . Given a subset J of vertices of the
Dynkin diagram ∆, we can consider J as a subset of ∆aff . We then call

Cone(Jaff) := Cone(∆aff , J) ⊆ R|∆aff |−|J|

the J-affine Tits cone. As for usual Tits cones, there is redundancy as Cone(Jaff) does not
fill R|∆aff |−|J|. Suppose that ∆aff has corresponding Θ = V ∗, then for any K ⊆ ∆aff , the
level is defined to be

Level(K) := {ϑ ∈ Cone(∆aff ,K) |
∑

k/∈K
δkϑk = 1}.

Thus for J ⊆ ∆, the level Level(Jaff) inside Cone(∆aff , J) is an infinite hyperplane arrange-
ment in R|Jc|, where Jc = ∆\J. The chambers of Cone(Jaff) partition Level(Jaff) into
alcoves. More details are given in Section 2.2, and all these concepts are illustrated in
Example 2.9.

One remarkable feature is that different choices in different Dynkin diagrams can lead
to the same finite hyperplane arrangement, but different affine arrangements.

Example 0.4. Consider the following Dynkin diagrams D4 and D5, where the shaded
vertices denote the elements of a subset J.

In both cases, Cone(∆, J) gives the second-left hyperplane arrangement in Theorem 0.3,
with eight chambers. However, the levels Level(Jaff) differ, and they are both illustrated



xii INTRODUCTION

below. On top of these arrangements, we have drawn the dual groupoid, to illustrate the
difference.

1

The left arrangement is the traditional affine B2 arrangement, and the right arrangement
is obtained from the left by removing hyperplanes.

The level Level(Jaff) then becomes the fundamental new object. In turn, this mo-
tivates the investigation of its basic properties, especially when |Jc| is small. The case
|Jc| = 1 is described in [DW5, HW2], which finds precisely six infinite hyperplane ar-
rangements (equipped with Z-action) in R. Far from being the trivial case, these have
already uncovered surprising new phenomena in derived autoequivalence groups.

The next case is |Jc| = 2, which is treated in Chapter 4, where a full classification is
obtained. Again, this unveils surprising structure.

Theorem 0.5 (Section 4.2). Suppose that ∆aff is extended ADE Dynkin, and K ⊆ ∆aff

satisfies |K| = 3. Then, up to changing the slopes of some of the hyperplanes, Level(K) is
one of following sixteen hyperplane arrangements:

In addition, each of the sixteen arrangements appears as Level(Jaff) for some subset of the
ADE Dynkin J ⊆ ∆ satisfying |Jc| = 2.

The first and third tilings in the top row are the same as abstract hyperplane ar-
rangements, but they have different Z2 actions, illustrated by black dots. More details
are given in Section 4.2. What is perhaps the most striking about the above is the sheer
complexity of some of the tilings. This was unexpected, from the viewpoint of both the
algebraic and the geometric applications below.
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Part 2. Contracted Preprojective Algebras. To the input of a Coxeter graph ∆
and a choice of vertices J ⊆ ∆, Part 2 investigates the first, and most basic, representation
theory questions.

Let Q = (Q0, Q1) be any quiver with underlying graph ∆, and let Q be the double
quiver of Q. The preprojective algebra Π associated to this data is the (complete) pre-
projective algebra of ∆, that is the complete path algebra of Q, modulo the closure of the
ideal generated by the element ∑

a∈Q1

(aa∗ − a∗a).

For each vertex i ∈ ∆, there is a corresponding idempotent ei of Π. Given the subset
J ⊆ ∆, consider the idempotent

eJ := 1−
∑

j∈J
ej .

The following is our fundamental new object of study.

Definition 0.6. For any J ⊆ ∆, we call ΓJ := eJΠeJ the contracted preprojective
algebra associated to J.

It turns out that tilting theory for ΓJ is controlled by the chambers Cham(∆, J). Set
tilt ΓJ to be the the set of isomorphism classes of basic tilting E-modules of projective
dimension one. As notation, for i ∈ ∆, let Ii be the two-sided ideal of Π generated by
1− ei. For w ∈W with reduced expression w = si1 . . . si` , recall that the ideal Iw of Π is
defined

Iw := Ii1 . . . Ii` .

This is independent of a choice of reduced expression [BIRS]. By convention, I1 = Π.

Theorem 0.7 (5.2). Let ∆ be a non-Dynkin graph without loops, and Π the prepro-
jective algebra of ∆. Let J be a strongly Dynkin subset of ∆.

(1) There is a map

Cham(∆, J)→ tilt ΓJ

given by (x, J) 7→ eJIxeJ .
(2) Wall crossing is compatible with mutation, that is, if ωi(x, J) = (y, J ′), then

νi(eJIxeJ) = eJIyeJ′ .
(3) If ∆ is extended Dynkin, then the above map Cham(∆, J)→ tilt ΓJ is a bijection.

An immediate corollary of the above theorem is that the set of algebras ΓJ, as J runs
over J ⊆ ∆, is split into derived equivalence classes. Indeed, ΓJ and ΓJ′ are derived equiv-
alent provided that J and J′ can be linked through a sequence of iterated combinatorial
wall-crossing moves. In the extended Dynkin setting, this gives the first known derived
equivalences between partial crepant resolutions of Kleinian singularities (see 0.23 below).

In Chapter 6 we consider the case when ∆ is ADE Dynkin, and J ⊆ ∆. In this
setting, both Π and ΓJ are finite dimensional algebras, but since Π is self-injective it has
no classical tilting modules. The algebras Π and ΓJ do, however, have both silting and
tilting complexes. Our main result in this context is the following, where 2 silt ΓJ denotes
the two-term silting complexes, and 2 tilt ΓJ denotes the two-term silting complexes. The
assumption ι(J) = J is necessary to ensure that ΓJ is also self-injective (see 6.2).

Theorem 0.8 (6.4). Let ∆ be ADE, and J ⊆ ∆ with ι(J) = J.

(1) There are bijections

Cham(∆, J) 2 silt ΓJ

Cham(∆, J)ι 2 tilt ΓJ.
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(2) The endomorphism algebra of any irreducible left tilting mutation of ΓJ is iso-
morphic to ΓJ for some J ⊆ ∆ such that there exists (x, J) ∈ Cham(∆, J)ι. In
particular, Kb(proj ΓJ) is tilting-discrete.

(3) The derived and Morita equivalence classes of ΓJ coincide. The basic algebras in
this class are precisely {ΓJ | J ⊆ ∆, ∃ (x, J) ∈ Cham(∆, J)ι}.

The focus of Chapter 7 is the case when ∆aff is extended ADE, and J ⊆ ∆aff . The
main idea is that, in this setting, the derived equivalence classification of all contracted
preprojective algebras (not only those derived equivalent to partial resolutions) is always
combinatorially determined, and furthermore the derived equivalence class does not con-
tain anything unexpected.

Conjecture 0.9 (7.1). Suppose that I ⊆ ∆aff where ∆aff is extended ADE Dynkin,
and let A be a basic ring. Then A is derived equivalent to ΓI if and only if there exists
I′ ⊆ ∆aff such that A ∼= ΓI′ , and furthermore I and I′ are iterated combinatorial mutation
of each other, up to symmetries of ∆aff .

The direction (⇐) is clear follows using 0.7, since wall crossing gives derived equiva-
lences (§5.6), as do isomorphisms. The content in the conjecture is the (⇒) direction. In
Chapter 7 we prove the conjecture in all cases, except when ∆ = Dn with n ≥ 8, due to
its combinatorial complexity. To this end, we introduce the following four invariants: the
type, the cotype, the Grothendieck group, and the subgroup HI +KI; for definitions see
§7.1. Our main result is the following.

Theorem 0.10 (7.21). Suppose that I ⊆ ∆aff and I′ ⊆ ∆′aff where ∆ and ∆′ are ADE
Dynkin. Consider the following conditions.

(1) ΓI is derived equivalent to ΓI′ .
(2) The types match (namely ∆ = ∆′), and I ∼ I′.
(3) The types match, the cotypes match, G0(ΓI) ∼= G0(ΓI′), and HI+KI

∼= HI′+KI′ .

Then (2)⇒(1)⇒(3). If ∆ ∈ {An, D4, D5, D6, D7, E6, E7, E8}, then (1)⇔(2)⇔(3).

In most cases it is possible to get by using less than the four invariants in (3) above;
see 7.21 for a more precise statement.

Although slightly technical, the above 0.7 together with the natural partial order on
the set tilt ΓJ is the key to much of what follows. It allows us to describe a large portion of
the autoequivalence group of Db(mod ΓJ), to deduce many of the homological properties
of three-dimensional cDV singularities below, to classifying noncommutative resolutions
and their variants, and to verify that the wall crossing functors satisfy the relations of the
Deligne groupoid, and hence give affine group actions in geometric settings.

Part 3. cDV Singularities. Compound du Val (=cDV) singularities are fundamen-
tal objects in birational geometry. Those cDV singularities with only isolated singularities
are precisely the Gorenstein terminal singularities in dimension three, and these form the
base of flopping contractions [R]. More generally, cDV singularities that are not isolated
form the base of crepant divisor-to-curve contractions.

The distinction between isolated and non-isolated cDV singularities is in many ways
artificial. The unifying feature is that each any such R admits a crepant birational mor-
phism X → SpecR, with only one-dimensional fibres, such that X has only Q-factorial
terminal singularities. The variety X is called a minimal model for SpecR; there are
finitely many such minimal models, and they are all linked by flops. When one such X is
smooth, all minimal models are smooth.

Our motivation behind Part 3 is to understand the birational geometry of SpecR
from a derived and homological perspective. We achieve this through understanding the
representation theory of cDV singularities, namely through those modules which give rise
to noncommutative minimal models of R, and their variants.
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Given a Gorenstein ring R, recall that a reflexive R-module M is called modifying if
EndR(M) is (maximal) Cohen–Macaulay, as an R-module. Further, M is called maximal
modifying provided it is modifying and maximal with respect to this property, and in such
a case we call EndR(M) a maximal modification algebra (=MMA). In analogy with the
paragraph above, if one MMA has finite global dimension, all MMAs have finite global
dimension.

Henceforth, let R be a complete local cDV singularity. We first give a purely algebraic
proof of the following result, first obtained in [W2]. The proof here is much shorter, and
does not rely on tilting and on the existence of minimal models.

Proposition 0.11 (9.4). Let R be a cDV singularity, then R admits an MMA.

Much of, in fact almost all of, the homological aspects of the MMAs of R turn out
to be controlled by a factor of R. Given an MMA EndR(M), for generic g ∈ R there are
isomorphisms

EndR(M)/g ∼= EndR/g(M/g) ∼= eΠe

for some idempotent e, linking the setting to the previous parts of this memoir. The
following is then key, since it relates properties of maximal modifying R-modules to tilting
modules on eΠe, and hence to our previous affine hyperplane arrangements.

We remark that the following holds more generally; see 8.17 for full details. As
notation, write MMR for the isomorphism classes of basic maximal modifying modules,
and MMGR for the subset for those which have R as a direct summand.

Proposition 0.12 (8.17). With notation as above, set Λ := EndR(M). Then for any
0 6= g ∈ R, there is an injective map MMR ↪→ tilt(Λ/g). If further that R is an isolated
singularity, then the following statements hold.

(1) The map is compatible with mutation.
(2) If the exchange graph of tilt(Λ/g) is connected, then the map is bijective.

Our main result is the following, which gives a full classification of maximal modifi-
cation R-modules. The result is quite unexpected, and is very specific to the cDV setting;
usually there is no hope in being able to classify maximal modification modules in this way.
The following can also be viewed as an extension of the Auslander–McKay correspondence
in [W2] into the affine setting, which justifies the name.

Theorem 0.13 (9.8, Affine Auslander–McKay Correspondence). Let R be a complete
normal cDV singularity of type ∆ and ∆aff the corresponding extended Dynkin graph. Then
the following assertions hold.

(1) There exists a subset J ⊆ ∆ and an injective map

MMR ↪→ Cham(∆aff , J).

This induces an injective map MMGR ↪→ Cham(∆, J).
(2) Wall crossing corresponds to mutation.
(3) There exist only finitely many maximal modifying generators of R, and finitely

many indecomposable modifying Cohen-Macaulay R-modules.
(4) If furthermore R is an isolated singularity, then the following diagram commutes,

where the horizontal arrows are bijections.

MMR Cham(∆aff , J)

MMGR Cham(∆, J)

∼

∼

Corollary 0.14. Let R be a complete local cDV singularity. Then the exchange
graphs of both MMR and MMGR are connected.
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In particular, it follows that the exchange graph of MMR has a highly regular struc-
ture. An example of such an exchange graph, drawn on top of the associated hyperplane
arrangement (see Example 4.29), is illustrated below in one case where the maximal mod-
ifying modules have three indecomposable summands.

One of our new observations is that the sets MMR and MMGR, and by extension their
geometric counterparts, do not have a natural order. However, for any fixed M ∈ MMR,
the equivalence

HomR(M,−) : MMR→ tilt EndR(M)

transfers information from MMR to the category of reflexive tilting modules, which does
have a partial order. It is by exploiting this partial order that we are able to obtain,
rather easily, many of our results.

Perhaps the main content of Chapter 9 though, is that we then extend the Affine
Auslander–McKay Correspondence in 0.13 to also cover the case when the modifying
modules are not maximal. The extension of the representation theory to cover this case
is much harder, since usually the set modif R of modifying modules is not well behaved.
For cDV singularities however, the payoff is significant: it turns out that the mutation
class of any N ∈ modif R also exhibits highly regular behaviour, and is again controlled
topologically by some intersection arrangement. The extension of the theory to cover the
non-maximal case, and the fact that mutation is still highly regular, is crucial later in
order to understand the special case of a flopping contractions X → SpecR where X has
only terminal singularities.

For N ∈ modif R, write modifNR for those modifying reflexive R-modules than have
a two-term approximation by addN , and write MMNR for those L ∈ modifNR which
have the same number of indecomposable summands as N .

Theorem 0.15 (9.25). Let R be a cDV singularity, and fix N = N1 ⊕ . . . ⊕ Nt ∈
modif R with indecomposable. For any X ∈ modif R, the following holds.

(1) X ∈ modifNR if and only if HomR(N,X) ∈ ref-ptilt EndR(N).

(2) X ∈ MMNR if and only if HomR(N,X) ∈ ref-tilt EndR(N).
(3) There are bijections

HomR(N,−) : modifN R
∼−→ ref-ptilt EndR(N)

HomR(N,−) : MMN R
∼−→ ref-tilt EndR(N)

where ref-tilt are those classical tilting modules that are reflexive with respect to R, and
ref-ptilt is the partial version, where we do not require generation.

Given a summand X of N ∈ modif R, there always is a well-defined left and right
mutation νX and µX of the module M . Over general Gorenstein rings, it is very rare that
these operations coincide, even when X is indecomposable. The following result is thus
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very remarkable, even more so since we can use any summand. To ease the exposition
we state the following in the case when R is isolated; the more general statement can be
found in 9.28.

Corollary 0.16 (9.28). Suppose that R is isolated cDV, N ∈ modif R, and X is an
arbitrary summand of N .

(1) νX(N) ∼= µX(N).
(2) νXνX(N) ∼= N .

Since left mutation equals right mutation, we henceforth just refer to this process as
mutation, and denote it νX . This means that in the exchange sequences, the same module
appears on both the right and on the left. The power of 0.16 comes since it holds for any
summand of N , where N is any modifying module; the proof boils down to mutation
being a topological property of the hyperplane arrangement.

In fact, the statement νY νYN ∼= N can be strengthened further, as there is an even
more remarkable symmetry in the exchange sequences. Again, there is a more general
version of the following, but the case when R is isolated is easiest to state.

Theorem 0.17 (9.29, 9.28). Suppose that R is isolated cDV, and let N ∈ modif R.

(1) MMNR coincides with the mutation classes of N .
(2) For any direct summand X = NI of N , consider the exchange sequences

0→ NI → UI → ν(NI) and 0→ ν(NI)→ VI → NI .

Then there is an isomorphism UI
∼= VI .

The first part is a strong version of the fact that for a maximal rigid object N in a
2-CY Krull–Schmidt triangulated categories, N ∗N [1] coincides with the mutation class
of N . Again, this is not typical behaviour for rigid objects, which makes the first part of
0.17 all the more remarkable. The second part, namely UI

∼= VI , should be viewed as a
strong form of Ext vanishing (see 9.30), and this has many consequences in the study of
twist autoequivalences, developed further in Part 4.

The above combines to give the following general form of the Affine Auslander–McKay
Correspondence. Again, for ease of exposition, here we restrict to the case where R has
only isolated singularities.

Theorem 0.18 (Affine Auslander–McKay Correspondence, general version). Let R

be cDV singularity of type ∆, with isolated singularities. Fix N ∈ modif R.

(1) There exist a subset J ⊆ ∆ and horizontal bijective maps

MMNR Cham(∆aff , J)

MMGNR Cham(∆, J)

∼

∼

such that the diagram commutes. Furthermore, MMNR coincides with the full
mutation classes of N , and MMGNR coincides with the Cohen–Macaulay muta-
tion class of N .

(2) Wall crossing corresponds to mutation.

Part 4. Applications to Birational Geometry. Given a cDV singularity R, and
crepant birational map X → SpecR where X has only Gorenstein terminal singularities
(e.g. a minimal model), then for generic g ∈ R consider the pullback diagram

(0.0.A)

Y X

SpecR/g SpecR

f
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By Reid’s general elephant, the ring R/g is a Kleinian singularity, and the left hand
morphism is a partial crepant resolution of singularities. Given the fibre dimension is at
most one, there are canonical tilting bundles on X and Y . The endomorphism ring of
the tilting bundle on X will be denoted Λ, and it is well-known that Λ ∼= EndR(M) for
some M ∈ modif R. The endomorphism ring of the tilting bundle on Y is isomorphic to
ΓJ = eJΠeJ, where Π is the preprojective algebra of extended Dynkin type, and J ⊆ ∆ is
some subset of the vertices of the non-extended Dynkin diagram. This is summarised in
the following commutative diagram.

Db(cohY ) Db(cohX)

Db(modR/g) Db(modR)

Db(mod ΓJ) Db(mod Λ)

Db(modR/g) Db(modR)

∼ ∼

Problems on the geometry of the back square can thus be transferred to the front
square, involving ΓJ and Λ, where the techniques of the previous Parts come to the fore.
Being derived equivalent to Y , the homological algebra of ΓJ, developed in Part 2, thus
controls partial crepant resolutions of Kleinian singularities, which are surfaces. In con-
trast, being derived equivalent to X, the homological algebra of Λ developed in Part 3
controls the 3-folds X → SpecR, where R is cDV. Thus, as a special case, it controls all
terminal 3-fold flopping contractions.

Our applications now split into two, depending on the dimension.

Surfaces. For simplicity, consider first g : Y → C2/Z3, the minimal resolution of
the Z3-Kleinian surface singularity, although all the arguments do work generally. It is
well known that in this case the fibre above the origin, with reduced scheme structure,
is C1 ∪ C2, with both Ci

∼= P1. To each of these curves we can associate the sheaf
Ei := OCi

(−1) ∈ cohY , and these are examples of spherical objects, namely they satisfy

ExttY (Ei, Ei) ∼=
{
C if t = 0, 2,
0 else,

and Ei ⊗Y ωY
∼= Ei. Thus, by [ST], we obtain two derived autoequivalences T1 and T2.

It is not difficult to show that the relation T1 ◦ T2 ◦ T1
∼= T2 ◦ T1 ◦ T2 holds, and so there

is an induced group homomorphism

(0.0.B) ϕ : Br2 → Auteq Db(cohY ),

where Br2 is the braid group. With some more work, ϕ is even injective [BT].
On the other hand, the whole scheme-theoretic fibre C := g−1(0) gives a sheaf OC ,

and this also turns out to be spherical, and thus give another derived autoequivalence
TC . Adding this to the existing group above, it is easy to check that TC , T1, T2 satisfy the
relations of the affine braid group, and so ϕ lifts to a group homomorphism

(0.0.C) ϕ̃ : B̃r2 → Auteq Db(cohY ),

which we will refer to as the affine action on the derived category.
Our results on contracted preprojective algebras generalise this to any partial crepant

resolution of any Kleinian singularity. The caveat is that, for general partial resolutions,
the best we can hope for is a pure braid-type action, due to the presence of other partial
resolutions in the same derived equivalence class. This manifests itself as the fundamental
group in the following result.
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As notation, consider a partial crepant resolution Y → C2/G for some finite subgroup
G ≤ SL(2,C). As Y is dominated by the minimal resolution, it can be obtained by blowing
down a subset J of curves in the minimal resolution, and thus by McKay correspondence
a subset J of an ADE Dynkin configuration. From Part 1, consider the associated finite
hyperplane arrangement Cone(∆, J) and infinite hyperplane arrangement Level(Jaff), both
of which are hyperplane arrangements inside R|Jc|. Write X for the complexification of
Cone(∆, J), and Xaff for the complexification of Level(Jaff).

Theorem 0.19 (10.4). Consider a partial crepant resolution Y → C2/G for some
finite subgroup G ≤ SL(2,C), with associated X and Xaff as above. Then there exist group
homomorphisms such that the following diagram commutes.

π1(X)

π1(Xaff)

Auteq Db(cohY )
ϕ

ϕ̃

The above is in fact a direct consequence of a more general statement about the
existence of a functor from the Deligne groupoid; we refer the reader to 5.35 for more
details. The groupoid viewpoint illustrates one key difference between the classical case
of the minimal resolution (which is J = ∅) and here. Namely, in the formula for simple
wall crossings, J 7→ J + i − ιJ+i(i), and so J changes, in general. This translates into
the categories in the groupoid not being equal, and thus we must monodromy in order to
guarantee autoequivalences.

Thus, in general, the π1 actions in 0.19 are the best that we can hope for. The
homomorphism ϕ should be thought of as generalising and extending the pure braid group
action on the minimal resolution in (0.0.B) to partial resolutions. The homomorphism ϕ̃
generalises and extends the pure affine braid group action in (0.0.C). Also, as usual, the
arrangements Cone(∆, J) and Level(Jaff) need not be Coxeter, and so there is no braid or
affine braid group to aim for.

However, in some cases, most notably when J = ∅ but also in many others examples,
there will be some wall crossings in which the categories in each side of the wall are equal.
In this case, it is reasonable to expect that wall crossing is given by some twist, over some
possibly noncommutative base. Indeed, this is the case, and more surprisingly some new
phenomena appear.

As notation, suppose that our partial crepant resolution Y → C2/G corresponds to
J ⊂ ∆. For i ∈ ∆aff\ J, set Si = OCi(−1) if i is not the extended vertex, and Si = ωC[1]
if i is the extended vertex. In all cases, consider the noncommutative deformation theory
(see e.g. [DW2]) of Si, which in this setting is representable. Write Ei for the universal
sheaf, with endomorphism ring ΓJ,i.

Proposition 0.20 (10.5). Suppose that in a simple wall crossing, ωi(x, J) = (xx0, J),
i.e. the second term J does not change. Then the following hold.

(1) Ei is perfect, as a complex in Db(cohY ).
(2) There is an autoequivalence Twisti fitting into a functorial triangle

RHomY (Ei,−)⊗L
ΓJ,i

Ei → (−)→ Twisti(−)→
The algebras ΓJ,i are finite dimensional and self-injective, but they are not symmetric

in general. For example, in 10.3 we obtain a spherical twist over the exterior algebra
in two variables. This is a new example of a natural geometric autoequivalence over a
noncommutative base, and is the first where the base is not a symmetric algebra. In
particular, the cotwist is not the identity.

Remark 0.21. In some cases, it may be the case that J 6= ∅ (so, Y is not the minimal
resolution), but yet all wall crossing rules satisfy the conditions in 0.20. In this case, the
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π1 actions in 0.19 can be improved substantially, as we no longer require to monodromy
to obtain autoequivalences. Using this observation, many partial resolutions of ADE
singularities admit braid and affine braid group actions, but crucially these braid actions
need not be of ADE type. Example 10.3 constructs an action of type B2 on a certain
partial resolution of the D4 surface singularity. By 4.20 (see also Example 10.3) there
also exists partial resolutions of the E6, E7 and E8 surface singularities that admit braid
actions of type G2.

Whilst 0.20 gives an intrinsic description of wall crossing, in some cases, in terms of
twist functors and noncommutative deformation theory, we remark that we do not give an
intrinsic geometric description of monodromy. There is an algebraic description, via ten-
soring by compositions of the ideals in 0.7, but an intrinsic twist-functor characterisation
requires derived noncommutative deformation theory, since Y has canonical singularities.
Booth describes the image of some monodromy under the finite action ϕ in [B1]; the
general case remains open.

A small extension of the techniques in [HW1] then gives the following, which asserts
that the finite action is faithful.

Theorem 0.22 (10.19). The homomorphism ϕ in 0.19 is injective.

We conjecture that our affine action is also faithful. However, even in the case of
the classical affine braid group action on minimal resolutions, this is still not known in
general. The papers [IU, IUU] establish this for minimal resolutions of cyclic groups
(Type A), and are still the state-of-the-art.

The other main corollary of the results in the previous sections, and in particular of
0.7, is the implication (2)⇒(1) in the following. As above, by McKay correspondence we
can identify partial crepant resolutions with subsets J of nodes of the associated ADE
Dynkin diagram.

Corollary 0.23 (10.8). Suppose that Y → C2/G and Y ′ → C2/G′ are crepant partial
resolutions, with associated J ⊂ ∆aff and J′ ⊂ ∆′aff . Consider the following conditions.

(1) Y is derived equivalent to Y ′.
(2) G ∼= G′ (equivalently ∆ = ∆′) and up to symmetries of the extended ADE graph,

J and J′ can be linked through a sequence of iterated wall-crossing moves.

Then (2)⇒(1). Further, if either ∆,∆′ ∈ {An, D4, D5, D6, D7, E6, E7, E8} then (1)⇒(2).

We conjecture that (1)⇒(2) is always true, and indeed this would follow from the
stronger algebraic Conjecture 0.9.

Threefolds. The main applications of this memoir are to 3-folds. For the ease of
exposition in this introduction, we restrict to the special case when X → SpecR is a
flopping contraction, where X has only Gorenstein terminal singularities; necessarily R

is isolated cDV. Many of the results below generalise to crepant partial resolutions of
arbitrary cDV singularities.

The partial order on the tilting theory, and using 0.15 above, first allows us to elegantly
recover, via an independent proof, the braiding of flop functors in [DW3, 1.1]. The
following is stated globally, but it follows from the complete local case. In that setting,
the technical assumption that the curves are independently floppable automatically holds.

Corollary 0.24 (10.11). Suppose that X → Xcon is a flopping contraction be-
tween quasi-projective 3-folds, contracting precisely two independently floppable irreducible
curves. If X has at worst Gorenstein terminal singularities, then

F1 ◦F2 ◦F1 ◦ · · ·︸ ︷︷ ︸
d

∼= F2 ◦F1 ◦F2 ◦ · · ·︸ ︷︷ ︸
d

where d is the number of hyperplanes in Cone(∆, J), where J ⊆ ∆ is the Dynkin type of
the flopping contraction.
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The number d is called the length of the braid relation. Whilst 0.24 above recovers a
known result, from here onwards the results are new. Theorem 0.3 now gives very precise
information on the possible braid relation lengths for 3-fold flops.

Corollary 0.25 (10.12). Suppose that X → Xcon is a flopping contraction be-
tween quasi-projective 3-folds, as in 0.24. Then the length of the braid relation is either
2, 3, 4, 5, 6, or 8. The first case, namely d = 2, holds if and only if the curves are disjoint.

We are next able to extend previously known constructions. As one example, the
following was established in [DW3] with an additional technical assumption that X is
Q-factorial. We can now drop this assumption, treating all simples same, and putting
them on the same footing. There is a much more general version of the following result
stated in 10.13; here we highlight only the second part.

Theorem 0.26 (10.13). Suppose that f : X → Xcon is a flopping contraction of quasi-
projective 3-folds, where X has only Gorenstein terminal singularities. Let Efib be the uni-
versal object of the noncommutative deformation theory of OC, and set Afib = EndX(Efib).
Then there is a fibre twist autoequivalence FTwist, together with a functorial triangle

RHomX(Efib, x)⊗L
Afib

Efib → x→ FTwist(x)→
A consequence of our earlier tilting results in Part 2 is that there are a lot more

autoequivalences than this. The following is one of main results, and is new even in the
case when X is smooth. For convenience, we state the following locally. Recall that to
X → SpecR we can associate a partial crepant resolution of a Kleinian singularity by
(0.19), and thus associate a subset J of an ADE Dynkin diagram ∆ exactly as above 0.19,
with complexifications X and Xaff .

Theorem 0.27 (10.14). Let X → SpecR denote a 3-fold flopping contraction, where
X has only Gorenstein terminal singularities. Then there are group homomorphisms such
that the following diagram commutes.

π1(X)

π1(Xaff)

Auteq Db(cohX)
ϕ

ϕ̃

The above is a consequence of a more general result (explained in 9.36) that the

mutation functors between Db(mod EndR(M)), where M ∈ MMNR, form a representation
of the corresponding Deligne groupoid. A small extension of the techniques in [HW1]
then gives the following, which asserts that the finite action is faithful.

Theorem 0.28 (10.19). The homomorphism ϕ in 0.27 is injective.

Summary Theorem. We end this introduction with a summary theorem to illus-
trates the commonalities amongst all the four parts of the memoir. Given a subset J of
nodes in an ADE Dynkin diagram ∆, we can associate:

• A partial crepant resolution Y → C2/G, given by blowing down the curves in J

from the minimal resolution.
• A contracted preprojective algebra ΓJ = eJΠeJ, where Π is the preprojective

algebra of extended type ∆aff .
• A flopping contraction X → SpecR, where X has only terminal singularities,

which slices to Y under generic g ∈ R.
• To this flopping contraction, via Auslander–McKay, is a corresponding N ∈

modif R such that R ∈ addN .
• A finite hyperplane arrangement Cone(J) inside R|Jc|.
• The J-Tits cone Cone(∆aff , J), and its level Level(Jaff) which is an infinite hyper-

plane arrangement inside R|Jc|.
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Alas, it is not possible in general to construct such an X → SpecR above where X is also
smooth [KM]. Indeed, this is why the techniques in Part 3 are necessary.

The following summary theorem links all these notions, through a series of bijections.

Theorem 0.29. Let ∆ be ADE Dynkin, and J ⊂ ∆ be arbitrary. With notation as
above, there exist bijections between the following sets.

(1) Chambers of Cone(∆aff , J).
(2) Alcoves in Level(Jaff).
(3) Classical tilting modules for the contracted preprojective algebra ΓJ = eJΠeJ.
(4) Reflexive classical tilting modules for EndR(N).
(5) Elements in the mutation class of N .
(6) Reflexive R-modules with the same number of indecomposable summands as N ,

which furthermore admit a two-term approximation by addN .

If further X → SpecR is minimal model (equivalently, N is a maximal rigid module), the
above sets are further in bijection with:

(7) Maximal rigid R-modules.

If further X is smooth (equivalently, N is a cluster tilting object), the above sets are further
in bijection with:

(8) Cluster tilting R-modules.

In all cases, mutation corresponds to wall crossing.

The above bijections are set-theoretic, with an action by mutation/wall crossing.
One level up, we have already seen above that these lift to the next categorical level,
namely the corresponding categories and mutation functors form a representations of the
corresponding Deligne groupoid. One further level up, summarised in the next subsection,
all this information glues together to describe the stability manifold associated to X.

The finite analogue of 0.29 is the following, which may be of independent interest.

Theorem 0.30. If J ⊂ ∆ with ∆ ADE Dynkin, then there are bijections between the
following sets.

(1) Chambers of the finite arrangement Cone(∆, J) ⊆ R|Jc|.
(2) Classical tilting modules for ΓJ which contain e0Πe0 as a summand.
(3) Reflexive classical tilting modules for EndR(N) containing summand HomR(N,R).
(4) Elements in the mutation class of N containing R as a summand.
(5) Elements in the Cohen–Macaulay mutation class of N .
(6) L ∈ CMR with the same number of summands of N , which have a two-term

approximation by addN .

Again the above can be categorified, and lifted to the Deligne groupoid and Bridgeland
stability manifold levels.

Further Uses. There are many further consequences of the results above, many
of which appear elsewhere. As a quick summary, given a flopping contraction f : X →
SpecR, with scheme fibre C, consider the subcategories

C := {F ∈ Db(cohX) | Rf∗F = 0}
D := {F ∈ Db(cohX) | SuppF ⊆ C}.

Further consequences of this memoir include the following.

(1) The J-Tits cones Cone(∆aff , J) and their levels give a description of Bridgeland
stability conditions on D [HW2]. Indeed, there is a component of normalised
stability conditions Stab◦nD such that the forgetful map

Stab◦nD→ Xaff
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is a regular covering map, with Galois group given by the image of the homo-
morphism ϕ̃ from 0.27. Even in the case when X is smooth, the hyperplane
technology in this memoir is heavily required to prove this result.

(2) The finite Cone(∆, J) describe stability conditions on C, again in [HW2]. There
is a component of stability conditions such that the forgetful map

Stab◦C→ X

is the universal covering map, with Galois group given by the image of the
homomorphism ϕ from 0.27. By 0.22, this group is isomorphic to π1(X).

(3) Autoequivalence groups. Let PBrC denote the image of ϕ, and APBrD denote
the image of ϕ̃. It turns out that for suitably defined autoequivalences preserving
the stability manifold, Aut◦D ∼= APBrDo PicX, and Aut◦C ∼= PBrC [HW2].

(4) The local wall-crossing rules developed here, together with the stability condition
results above, allow for the first full computation of the Stingy Kähler Moduli
Space (SKMS) in the flops setting [DW5]. Furthermore, the mutation results,
most notably 0.17, allow for a full geometric description of monodromy on the
SKMS to be realised, in terms of twist functors.

(5) Via Aulander–McKay, f : X → SpecR corresponds to some N ∈ modif R. The
algebra Acon := EndR(N) is called the contraction algebra; it is a finite dimen-
sional symmetric algebra. The strong form of mutation in 0.17 allows for a
description of stability conditions on an arbitrary contraction algebra Acon, not
just those from smooth minimal models, via Cone(∆, J) [AW]. It turns out that
the forgetful map from the full space of Bridgeland stability conditions

Stab (Db(mod Acon))→ X

is the universal cover. In turn, since Acon is silting discrete, this establishes a
homological proof of K(π, 1) for all intersection arrangements inside ADE root
systems [AW].

Conventions. All modules are left modules. If A is a ring, modA is the category of
finitely generated A-modules, and projA is the subcategory of those projective modules.
For M ∈ modA, we write addM to denote all summands of finite sums of M , and say
that M is a generator if A ∈ addM .
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this memoir was in preparation. Both authors thank Caro Namanya for helpful comments
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CHAPTER 1

J-Cones, J-Chambers and Wall Crossing

This chapter investigates intersection arrangements inside Tits cones, in various levels
of generality, and is fundamental to all what follows.

1.1. Coxeter Preliminaries

Recall that a symmetric n×n matrix M = (mij), with entries in the set {1, 2, . . . ,∞},
is called Coxeter if mij = 1 ⇐⇒ i = j. As is standard, M can be represented by a
Coxeter graph ∆ = (∆,∆1) whose nodes are ∆ := {1, . . . , n} and where we draw an edge
between i and j if and only if mij ≥ 3. The edges with mij ≥ 4 are labelled by that
number. Typical examples arise from the following simply laced Dynkin graphs

An (n ≥ 1)

Dn (n ≥ 4)

En (n = 6, 7, 8)

however, throughout when we refer to Dynkin diagrams, we will also allow for the non-
simply laced cases Bn = Cn, F4, G2, H2,3,4, and In.

The matrix M = (mij) determines the Coxeter group W∆, which is given abstractly
as the group generated by {si | i ∈ ∆}, subject to the relations

(1) s2
i = 1 for any i ∈ ∆.

(2) . . . ◦ sj ◦ si︸ ︷︷ ︸
mij

= . . . ◦ si ◦ sj︸ ︷︷ ︸
mij

for all i, j ∈ ∆ with i 6= j.

For x ∈ W∆, we say that an expression x = si1si2 · · · sik is reduced if k is smallest
possible. In this case we write k = `(x). We denote by ≤ the right order (=weak order)
on the Coxeter group, that is, we write x ≤ y if `(y) = `(x)+`(x−1y) holds. Topologically,
viewing elements of W∆ as paths in the associated hyperplane arrangement ending at a
fixed chamber C,

x ≤ y ⇐⇒
D C

D′

y

∃ x

Notation 1.1. To set notation, for a subset J ⊆ ∆,

(1) If j ∈ J and i ∈ ∆\J , we will write

J + i := J t {i},
J − j := J\{j}.

(2) Write Jc = ∆\J , and note that this corresponds to the full subgraph obtained
from ∆ by removing the vertices in J .

(3) Consider the subgroup WJ := 〈si | i ∈ J〉 of W∆, which is called a parabolic sub-
group. This is isomorphic to the Coxeter group associated with the full subgraph
of ∆ with vertices J , see e.g. [BB, 2.4.1(i)].

3
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1.2. The Finite Case

Although we will not always be considering the case when W∆ is finite, later we will
sometimes have finite, or at least locally finite, assumptions, so we briefly recall some
known facts here.

When W∆ is finite we will write w∆ for the longest element in W∆. For reference later,
the length of the w∆ for ADE ∆ is summarised in the following table.

(1.2.A)
∆ An Dn E6 E7 E8

`(w∆) n(n+1)
2 n(n− 1) 36 63 120

The following observation is basic, as is well-known. Throughout, we regard W∆ as a
poset with respect to the right order ≤.

Lemma 1.2. Let W = W∆ be a finite Coxeter group, and w∆ be the longest element.

(1) (−)w∆ : W →W and w∆(−) : W →W are anti-automorphisms, and

w∆(−)w∆ : W →W

is an automorphism of the poset W .
(2) There exists an automorphism ι = ι∆ : ∆ → ∆ of the graph ∆ such that for all

i ∈ ∆,

w∆siw∆ = sι(i).

(3) For all i ∈ ∆,
(a) w∆−iw∆w∆−ι(i)w∆ = 1.
(b) w∆−iw∆ = w∆w∆−ι(i).

Proof. (1) is [BB, 3.1.5(i)(ii)], and (2) and (3) are consequences of (1). �

By 1.2, when W∆ is finite, certainly w∆ satisfies w∆w∆ = 1, and further it induces an
involution ι∆ of the graph ∆. Again, although we do not need this until much later, for
reference the involution ι∆ for ADE ∆ is summarised in the following table:

(1.2.B)
∆ An D2n D2n+1 E6 E7 E8

ι∆ ! id ! ! id id

where id is the identity, and ! is the unique non-trivial involution.

1.3. The Tits Cone

Let ∆ = (∆,∆1) be the Coxeter graph arising from a Coxeter matrix M∆ = (mij).
Following [H, §5.13], we now recall the Tits cone associated with W∆. Let V be the
R-vector space with basis {αi | i ∈ ∆}, and B the symmetric bilinear form on V defined
by

B(αi,αj) = − cos(π/mij).

Then the Coxeter group W∆ acts on V by

si(v) := v − 2B(αi, v)αi,

and let Φ := {x(αi) | i ∈ ∆, x ∈W∆} denote the set of roots.
The V ∗ be the dual space of V . To ease notation with duals, and so as to match the

notation in [W2, §5], write V ∗ = Θ. Note that Θ has basis {α∗i | i ∈ ∆}. Throughout,
elements of Θ will be written with respect to this basis, so ϑ ∈ Θ will mean

ϑ = (ϑi)i∈∆ =
∑

i∈∆
ϑiα
∗
i .
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The group W∆ acts on Θ by (xϑ)(v) = ϑ(x−1v) for all x ∈ W∆, ϑ ∈ Θ and v ∈ V . Each
i ∈ ∆ induces a hyperplane in Θ, namely

Hi := {ϑ ∈ Θ | ϑi = 0},
and a decomposition

Θ = H−i tHi tH+
i ,

where Hi := Hαi , and H+
i and H−i are the half-spaces

H+
i = {ϑ ∈ Θ | ϑi > 0}

H−i = {ϑ ∈ Θ | ϑi < 0}.
Below, it will be convenient to consider the upper orthant C in Θ, defined as

C := {ϑ ∈ Θ | ϑi ≥ 0 for all i ∈ ∆} =
⋂

i∈∆
(Hi tH+

i ),

and its open interior C := {ϑ ∈ Θ | ϑi > 0 for all i ∈ ∆} =
⋂

i∈∆H
+
i .

Definition 1.3. Suppose that ∆ is a Coxeter graph.

(1) The Tits cone Cone(∆) is defined to be

Cone(∆) :=
⋃

x∈W∆

x(C).

(2) A Weyl chamber is an open subset of Cone(∆) of the form x(C) for some x ∈W∆.

Weyl chambers are the connected components of Cone(∆)\⋃α∈ΦHα, where

Hα := {ϑ ∈ Θ | ϑ(α) = 0}.
It is well known that the Tits cone spans the whole of Θ (that is, Cone(∆) = Θ) if and
only if W∆ is finite (see e.g. [Wan, Prop 4.3A]).

1.4. J-cones and J-chambers

This subsection considers intersections of the Tits cone Cone(∆) with certain sub-
spaces, and produces the combinatorial objects that will be needed later. These intersec-
tions need not give Coxeter arrangements; however, they still exhibit somewhat remark-
able behaviour. Some limited examples are given throughout, with the understanding
that many more can be found in Chapter 3.

Definition 1.4. For a subset J of ∆, we set

CJ :=

{
ϑ ∈ Θ

∣∣∣∣
ϑi = 0 if i ∈ J,
ϑi > 0 if i /∈ J

}
,

that is CJ =
(⋂

i∈J Hi

)
∩
(⋂

i∈Jc H
+
i

)
.

The degenerate case is J = ∅, when C∅ = C. Every element in CJ has stabilizer WJ ,
and the Tits cone decomposes, although not into chambers, as

(1.4.A) Cone(∆) =
⊔

J⊆∆

⊔

x∈W/WJ

x(CJ).

The following is our key new definition, which is motivated by finding an affine version
of [W2, §5] and [DW3].

Definition 1.5. For every subset J ⊆ ∆, consider the following.

(1) The subspace ΘJ of Θ, defined as

ΘJ := {ϑ ∈ Θ | ϑi = 0 if i ∈ J}.
That is, ΘJ is the subspace with basis {α∗i | i /∈ J}. Note that ΘJ :=

⋂
i∈JHi.
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(2) We define the J-cone to be the intersection

Cone(∆, J) := Cone(∆) ∩ΘJ.

(3) We call ΦJ := {α ∈ Φ | ΘJ 6⊆ Hα} the set of J-roots.

Once J has been fixed, we can consider x ∈W∆ and another J ⊆ ∆. Note that either
x(CJ) ⊆ Cone(∆, J), or x(CJ) ∩ Cone(∆, J) = ∅ holds, therefore it follows from (1.4.A)
that Cone(∆, J) decomposes, although again not into chambers, as

Cone(∆, J) =
⊔

J⊆∆

⊔

x ∈W/WJ ,
x(CJ) ⊆ ΘJ

x(CJ).

We next consider the chamber structure of Cone(∆, J).

Definition 1.6. Let ∆ = (∆,∆1) be a graph without loops, and W = W∆ the Coxeter
group. Fix a subset J of ∆.

(1) For J ⊆ ∆ and x ∈ W/WJ , we say that x(CJ) is an J-chamber if x(CJ) ⊆ ΘJ

and |J | = |J|.
(2) A wall of a J-chamber x(CJ) is the intersection of the closure of x(CJ) with Hα

for some α ∈ ΦJ.

The J-chambers are the connected components of Cone(∆, J)\⋃α∈ΦJ
Hα.

Example 1.7. Let ∆ = A3 =
1 2 3

.

(1) If J = {2, 3}, then Cone(A3, J) is

s1s2s3C{1,2} C{2,3}
ϑ1

(2) If J = {3}, then Cone(A3, J) is

ϑ1

ϑ2

C{3}
s1C{3}

s1s2s3C{2}

s1s2s3s1s2C{1}

s2s3s1s2C{1}

s2s3C{2}

α ∈ ΦJ Hyperplane in ΘJ

010, 011 ϑ1 = 0
100 ϑ2 = 0

110, 111 ϑ1 + ϑ2 = 0

We refer the reader to 2.10 and Chapter 3 for many more examples of Cone(∆, J).
One of the key points is that Cone(∆, J) need not be Coxeter.

1.5. Labelling the J-chambers

It will be convenient, especially with respect to wall crossing later, to be able to label
the J-chambers in a slightly different way.

Definition 1.8. Let ∆ = (∆,∆1) be a Coxeter graph, then for a fixed subset J ⊆ ∆,
let Cham(∆, J) be the set of pairs (x, J) of elements x ∈W∆ and subsets J ⊆ ∆ satisfying
the following two conditions.

(1) `(x) = min{`(y) | y ∈ xWJ }.
(2) WJx = xWJ .

By 1.14, we can identify Cham(∆, J) with the set of all left cosets C in WJ\W∆ satisfying
the following conditions.
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(1) There exists a subset J ⊆ ∆ such that C is a right coset in W∆/WJ .

We remark that the extreme case is J = ∅, where since W∅ = {1},
Cham(∆, ∅) = {(x, ∅) | x ∈W∆}.

Thus in this case we can identify the set Cham(∆, ∅) with W∆.

Notation 1.9. We will depict a subset J ⊆ ∆ as a shading of the vertices of the
graph ∆. The vertices j for which j ∈ J will be shaded (i.e. drawn •), whilst the vertices
j for which j /∈ J will be unshaded (i.e. drawn ◦).

Remark 1.10. As calibration in our algebraic geometric flops setup in later chapters,
J will correspond to the choice of curves that get contracted from the minimal resolution
to describe the generic slice. Thus, the vertices not in J, those drawn ◦, will correspond
to the flopping curves. See Remark 10.9 for more information.

Example 1.11. Continuing the examples in 1.7, for J = {2, 3} and J = {3}, the labels
in Cham(∆, J) are, respectively

(s1s2s3, ) (1, )
ϑ1 ϑ1

ϑ2

(1, )

(s1, )

(s1s2s3, )

(s1s2s3s1s2, )

(s2s3s1s2, )

(s2s3, )

The benefit of the above approach is that wall crossing will become easier to describe
visually, and we do this in the next subsection. The main result of this subsection is the
following theorem, which verifies that the labelling is correct.

Theorem 1.12. Let ∆ be a Coxeter graph. Then there is a bijection from the set
Cham(∆, J) to the set of chambers in Cone(∆, J), given by

Cham(∆, J) 3 (x, J) 7→ x(CJ).

We prove the theorem by first preparing a series of lemmas. As before, regard the
Coxeter group W∆ as a poset with respect to the right (weak) order ≤, and for J ⊆ ∆,
consider the parabolic subgroup WJ = 〈si | i ∈ J〉 of W∆.

By [BB, 2.4.4], for any element x ∈W∆, there exist unique xJ ∈ xWJ and Jx ∈WJx
such that

(1.5.A) `(xJ · y) = `(xJ) + `(y) and `(y · Jx) = `(y) + `(Jx)

for all y ∈WJ . The following observations follow immediately.

Lemma 1.13. Let ∆ be a Coxeter graph. Fix x ∈W∆ and J ⊆ ∆.

(1) The subposet xWJ of W∆ is isomorphic to WJ .
(2) If WJ is finite, then the map (·wJ) : xWJ → xWJ is an anti-automorphism of

posets. Thus xWJ has minimum element xJ and maximum element xJwJ .

Proof. For (1), by (1.5.A), the map (xJ ·) : WJ → xJWJ = xWJ is an isomorphism
of posets. Part (2) then follows immediately from (1), using 1.2(1). �

The special case when a right coset coincides with a left coset is of particular interest.

Lemma 1.14. Let ∆ be a Coxeter graph. Consider subsets J and J of ∆, and x ∈W∆.

(1) The following conditions are equivalent.
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(a) WJx = xWJ .
(b) There exists a bijection a : J → J such that xJsj = sa(j)x

J for all j ∈ J .

If these conditions are satisfied, then the following assertion holds.

(2) WJx = xWJ has minimum element xJ = Jx and maximum element wJx
J =

xJwJ with respect to both of the left order and the right order.

Proof. (1) It suffices to show that the first condition implies the second one. Since
both of xJ and Jx are the unique elements with the minimal length in WJx = xWJ , we
have xJ = Jx. For any i ∈ J , using (1.5.A) twice, we have

`(xJsi(x
J)−1) + `(xJ) = `(xJsi) = `(xJ) + 1

and so `(xJsi(x
J)−1) = 1. Thus xJsi = sa(i)x

J holds for some a(i) ∈ ∆. Then a has to
be a bijection J → J by [BB, 2.4.1(v)].
(2) We have shown xJ = Jx. By (1.5.A), both of xJwJ and wJ

Jx are the unique elements
with the maximal length in WJx = xWJ , thus they must coincide. �

It follows from 1.14(1) that a pair (x, J) ∈ Cham(∆, J) is uniquely determined by x,
thus we can regard Cham(∆, J) as a subset of W∆. This need not be a subgroup, but
nevertheless the right order on W∆ induces a right order on Cham(∆, J), via

(x, J) ≤ (y, J ′)⇐⇒ x ≤ y.
Also, by 1.14(2), the following is immediate.

Corollary 1.15. If WJx = xWJ , then the following are equivalent.

(1) (x, J) ∈ Cham(∆, J).
(2) `(x) = min{`(y) | y ∈ xWJ }.
(3) x is the minimum element in xWJ with respect to the right order.
(4) x is the minimum element in xWJ with respect to the left order.

Now we are ready to prove 1.12.

Proof of 1.12. Let (x, J) ∈ Cham(∆, J). Then WJx = xWJ holds. Thus there
exists a bijection a : J → J such that six = xsa(i) by 1.14(1). Comparing fixed points of

si = xsa(i)x
−1, we have x(Ha(i)) = Hi. Therefore

x(CJ) ⊆
⋂

i∈J
x(Hi) =

⋂

i∈J
Hi = ΘJ

holds, and x(CJ) is a J-chamber in Cone(∆, J).
Conversely, assume that x(CJ) is a J-chamber in Cone(∆, J). Then any p ∈ CJ has a

stabilizer WJ . Since xp ∈ ΘJ =
⋂

i∈JHi, it is stablized by WJ . Therefore xWJx
−1 ⊆ WJ

holds. Since |J | = |J| by definition of J-chamber, the equality holds and so WJx = xWJ .
Replacing x by the minimum element xJ in xWJ , it follows that (x, J) ∈ Cham(∆, J). �

1.6. Simple Wall Crossing

In this subsection we use the above labelling give a combinatorial model of simple
wall crossing in the set of chambers Cham(∆, J). This holds under a suitable assumption
on the label of the chamber, and on its wall. We remark that this assumption is local,
and does not require any finiteness of the global W∆.

Definition 1.16. Let ∆ = (∆,∆1) be a Coxeter graph, and J ⊆ ∆. For any (x, J) ∈
Cham(∆, J) and i ∈ Jc such that WJ+i is finite, we define simple wall crossing by

ωi(x, J) := (xwJwJ+i, J + i− ιJ+i(i)),

where wJ is the longest element in WJ , wJ+i is the longest element in WJ+i , and ιJ+i is
the involution on the graph J + i from 1.2(2).
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Remark 1.17. When ∆ is ADE, the element w∆−iw∆ ∈ W∆ appears naturally in
study of the Grassmannian of type ∆ associated with the vertex i (e.g. [GLS]).

Example 1.18. In the running example 1.11 with J = {3}, simple wall crossing in
the set Cham(A3, J) is given as follows

(1, )(s1, )

(s1s2s3, )

(s1s2s3s1s2, ) (s2s3s1s2, )

(s2s3, )

ω1

ω2

ω1

ω2

ω1

ω2

Again we refer the reader to Chapter 3 for more substantial examples. Note that
when W∆ is infinite, it is still possible that the local assumption in 1.16 can hold at all
chambers and all walls of Cone(∆, J).

Definition 1.19. We say that a subset J ( ∆ is strongly Dynkin if WJ+i is finite for
all i ∈ Jc, that is the full subgraph J + i of ∆ is a disjoint union of Dynkin graphs for all
i ∈ Jc.

For example, if ∆ is Dynkin, then every subset J ( ∆ is strongly Dynkin. Furthermore,
if ∆ is extended Dynkin, then every subset J of ∆ with |Jc| ≥ 2 is strongly Dynkin.

The name simple wall crossing in 1.16 is justified by the following theorem, which is
the main result of this subsection. Note that the assumptions become gradually stronger,
as we move from (1) to (3).

Theorem 1.20. Let ∆ be a Coxeter graph, and J a subset of ∆.

(1) For any (x, J) ∈ Cham(∆, J) and i ∈ Jc such that J + i is Dynkin, the following
assertions hold.
(a) ωi(x, J) belongs to Cham(∆, J) for any (x, J) ∈ Cham(∆, J) and i ∈ Jc.
(b) x < xsi ⇐⇒ (x, J) < ωi(x, J), and x > xsi ⇐⇒ (x, J) > ωi(x, J).
(c) Wall crossing is involutive, that is,

ωi′ωi(x, J) = (x, J)

for i′ := ιJ+i(i).
(d) Let (y, J ′) := ωi(x, J). Then the J-chambers x(CJ) and y(CJ′) are adjacent

via the wall x(CJ+i).
(2) If J is strongly Dynkin, then the following assertions hold.

(a) Any two elements in Cham(∆, J) are connected by a finite sequence of wall
crossings.

(b) Two elements in Cham(∆, J) are related by a simple wall crossing if and
only if the corresponding J-chambers are adjacent.

(3) If W∆ is finite, then Cham(∆, J) has the minimum element (1, J) and the maxi-
mum element (wJw∆, ι∆(J)).

The proof will be split into three propositions, and in the process we prove more than
that stated above. We begin with the following lemma.

Lemma 1.21. Let W be a Coxeter group of a graph ∆, and J a subset of ∆. For any
(x, J) ∈ Cham(∆, J), the following assertions hold.

(1) WJx = xWJ has minimum element x and maximum element wJx = xwJ .
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(2) If i ∈ Jc, then either x < xsi or x > xsi holds. Furthermore, the minimum and
maximum elements of xWJ+i are

min element max element

x < xsi x xwJ+i

x > xsi xwJwJ+i xwJ

Proof. By 1.13(1), we know that xWJ+i is isomorphic to the Coxeter group WJ+i .
(1) This is 1.14(2).
(2) The first assertion is a basic fact about the weak order. Suppose that x < xsi, then
by 1.2(2), we only have to show that x is the minimum element in xWJ+i . It suffices to
show x < xsk holds for all k ∈ J + i. If k ∈ J , then this follows from (1). Otherwise k = i
holds, and we have x < xsi by our assumption.

Suppose that x > xsi, then by 1.2(2), we only have to show that xwJ is the maximum
element in xWJ+i . It suffices to show that xwJ > xwJsk holds for any k ∈ J + i. If k ∈ J ,
then this follows from (1). Otherwise k = i holds. Since xsi < x holds by our assumption,

`(xwJsi) = `(wJxsi) ≤ `(wJ) + `(xsi)

< `(wJ) + `(x) = `(x) + `(wJ) = `(xwJ).

Thus xwJsi < xwJ holds. �

We are ready to prove 1.20(1).

Proposition 1.22. Let ∆ be a graph, and J a subset of ∆. For any (x, J) ∈
Cham(∆, J) and i ∈ Jc such that J + i is Dynkin, we have the following assertions.

(1) ωi(x, J) belongs to Cham(∆, J).
(2) x < xsi ⇐⇒ (x, J) < ωi(x, J), and x > xsi ⇐⇒ (x, J) > ωi(x, J).
(3) Mutation is involutive, that is, ωi′ωi(x, J) = (x, J) holds for i′ := ιJ+i(i).
(4) Let (y, J ′) := ωi(x, J). Then the J-chambers x(CJ) and y(CJ′) are adjacent

through the wall x(CJ+i).

Proof. (1) Let (y, J ′) := ωi(x, J) = (xwJwJ+i, (J + i)− j). Then y = xwJ+iwJ′ .
We first show that WJy = yWJ′ . Since WJx = xWJ holds, we have

WJy = WJxwJwJ+i

= xWJwJwJ+i

= ywJ+iwJWJwJwJ+i = ywJ+iWJwJ+i

= yWιJ+i(J) = yWJ′ .(by 1.2(2))

We next show that y is the minimum element in yWJ′ , and to do this we divide into
two cases. If x > xsi, then y = xwJwJ+i is the minimum element in xWJ+i ⊃ yWJ′ by
1.21(2). If x < xsi, then xwJ+i is the maximum element in xWJ+i ⊃ yWJ′ by 1.21(2),
and so y = xwJ+iwJ′ is the minimum element in yWJ′ by 1.2(2). In either case, the
assertion follows.
(2) Again by 1.21(2), the assertions follow.
(3) This is immediate from 1.2(3).
(4) Since CJ+i is a wall of CJ , it follows that x(CJ+i) is a wall of x(CJ). Similarly y(CJ+i)
is a wall of y(CJ′). Moreover x−1y = wJwJ+i ∈ WJ+i holds. Since CJ+i is stabilised by
WJ+i, we have y(CJ+i) = x(CJ+i), and so the assertion follows. �

Next we prove 1.20(2).

Proposition 1.23. Let ∆ be a graph, and J a strongly Dynkin subset of ∆.

(1) Any two elements in Cham(∆, J) can be connected by a finite sequence of simple
wall crossings.
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(2) For any (x, J) ∈ Cham(∆, J), there exists a finite sequence (xt, J t) for t = 0, . . . , s
satisfying the following conditions.
(a) (x0, J) = (1, J) and (xs, Js) = (x, J).
(b) (xt+1, J t+1) is a mutation of (xt, J t) for any t = 0, . . . , s− 1.
(c) 1 = x0 < x1 < · · · < xt = x.

(3) Two elements in Cham(∆, J) are related by a simple wall crossing if and only if
the corresponding J-chambers are adjacent.

Proof. (2) Fix (x, J) ∈ Cham(∆, J). If x > xsi holds for some i ∈ Jc, then (x, J) >
ωi(x, J) by 1.22(2). Thus an inductive argument on `(x) proves the assertion.

Now assume that x < xsi holds for all i ∈ Jc. Then (x, J) ∈ Cham(∆, J) implies that
x < xsi holds for all i ∈ ∆, from which x = 1 follows. The equality WJ = WJ implies
J = J by [BB, 2.4.1(v)]. The assertion is clear in this case (x, J) = (1, J).
(1) This follows immediately from (2).
(3)(⇒) is 1.22(4). For (⇐), since all the walls of the J-chamber x(CJ) are given by x(CJ+i)
for i ∈ Jc, and the chamber at the other side of these walls are given by the simple wall
crossing formula by 1.22(4), the assertion follows. �

Finally we prove 1.20(3).

Proposition 1.24. Suppose that W∆ is finite, and J is a subset of ∆.

(1) If (x, J) ∈ Cham(∆, J), then (wJxw∆, ι∆(J)) ∈ Cham(∆, J).
(2) Cham(∆, J) has an anti-automorphism (x, J) 7→ (wJxw∆, ι∆(J)).
(3) Cham(∆, J) has minimum element (1, J) and maximum element (wJw∆, ι∆(J)).
(4) (x, J) ∈ Cham(∆, J) satisfies (x, J) < ωi(x, J) (respectively, (x, J) > ωi(x, J))

for all i ∈ Jc if and only if (x, J) = (1, J) (respectively, (x, J) = (wJw∆, ι∆(J))).

Proof. (1) We have

wJxw∆Wι∆(J) = wJxWJw∆ = wJWJxw∆ = WJwJxw∆.

Since x is the minimum element in WJx, the element wJx is the maximum element in
WJx by 1.2(1). Thus the element wJxw∆ is the minimum in WJxw∆ = WJwJxw∆ again
by 1.2(1). Thus (wJxw∆, ι∆(J)) belongs to Cham(∆, J).
(2) Assume that (x, J), (y, J ′) satisfy x ≤ y, that is, `(y) = `(x) + `(x−1y). Then

`(wJy) = `(wJ) + `(y) = `(wJ) + `(x) + `(x−1y)

= `(wJx) + `((wJx)−1wJy),

which implies that wJx ≤ wJy. Thus wJxw∆ ≥ wJyw∆ holds by 1.2(1).
(3) Clearly (1, J) is the minimum element in Cham(∆, J). By (2), (wJw∆, ι∆(J)) is the
maximum element in Cham(∆, J).
(4) We only have to prove “if” part. It follows from 1.23(2) that (x, J) < ωi(x, J) for
any i ∈ Jc implies (x, J) = (1, J). Dually, by (2), (x, J) > ωi(x, J) for any i ∈ Jc implies
(x, J) = (wJw∆, ι∆(J)). �





CHAPTER 2

Affine Arrangements, Levels and Groupoids

In this chapter we apply the theory in the last chapter to the case of affine, or extended,
Dynkin diagrams. Given a subset J of an ADE Dynkin ∆, we may also view J as a subset
of the extended diagram ∆aff . Then, applying 1.5 to J ⊆ ∆ constructs Cone(∆, J), and
applying 1.5 to J ⊆ ∆aff constructs Cone(∆aff , J).

The arrangement Cone(∆, J) is finite and fills R|∆\J|. However, just as for the usual
Tits cone (see 2.1), Cone(∆aff , J) does not fill the vector space R|∆aff\J|. As such, it is
convenient to take the level in (2.1.B) below, which we will denote Level(Jaff). This exists
in our more general setting, and we thus obtain an infinite hyperplane arrangement in
one dimension lower, back in R|∆\J|. Taking the level make the picture easier to draw,
without losing information, and also overlays the infinite arrangement on top of the finite
arrangement, making the comparison easier.

Topologically, both the finite and infinite hyperplane arrangement is largely controlled
by the Deligne, or arrangement, groupoid. We also introduce these here, mainly to set
notation, as they will be heavily used in later chapters.

2.1. Θaff for extended Dynkin case

We mostly follow the setting Humphreys [H], but sometimes using different notation.
Let ∆ be an ADE Dynkin diagram, and ∆aff the corresponding extended Dynkin diagram.
Let Θaff be an R-vector space with basis α∗i for i ∈ ∆aff , and let L be the lattice in Θaff

generated by α∗i . Thus

Θaff =
⊕

i∈∆aff

Rα∗i ⊃ L =
⊕

i∈∆aff

Zα∗i .

We denote the dual vector space with dual basis αi by

Vaff =
⊕

i∈∆aff

Rαi.

Write 〈−,−〉 : Vaff × Θaff → R for the natural paring, and for simplicity write ·α and ϑ·
for the maps 〈−,α〉 : Vaff → R and 〈ϑ,−〉 : Θaff → R, respectively.

Furthermore, write Waff for the affine Weyl group, and

Φ := {wαi | i ∈ ∆aff , w ∈Waff} ⊂ Vaff

for the set of real roots. Consider also the null root

(2.1.A) δ :=
∑

i∈∆aff

δiαi ∈ Vaff

Any element α ∈ Φ t {δ} gives rise to a hyperplane

Hα := Ker(·α) ⊂ Θaff

and a decomposition
Θaff = H−α tHα tH+

α ,

where H−α = {ϑ ∈ Θaff | ϑ · α < 0} and H+
α = {ϑ ∈ Θaff | ϑ · α > 0}.

Recall that the Tits cone Cone(∆aff) is defined in 1.3 as

Cone(∆aff) :=
⋃

x∈Waff

x(C).

13



14 2. AFFINE ARRANGEMENTS, LEVELS AND GROUPOIDS

and by definition is subset of Θaff . As is standard, in the Tits cone does not fill Θaff .

Proposition 2.1. [H, §6.5] If ∆ is ADE, then Cone(∆aff) = H+
δ t {0}.

By definition, a chamber is a connected component of Cone(∆aff) \ ⋃α∈ΦHα, and
we write Cham(∆aff) for the set of all chambers. As usual, we describe Cham(∆aff) by
projecting to the hyperplane

Level := δ−1(1) ⊂ Θaff .

For each α ∈ Φ, we consider the intersection hyperplane

(2.1.B) Hα := Level ∩Hα.
An alcove is a connected component of Level \⋃α∈Φ Hα, and we write Alcove(∆aff) for the
set of all alcoves. Since there is a homeomorphism

R>0 × Level
∼−→ H+

δ

given by (r, ϑ) 7→ rϑ, the following is immediate.

Proposition 2.2. [H, §6.5] The maps C 7→ C ∩ E and A 7→ R>0A give a bijection

Cham(∆aff)
∼−→ Alcove(∆aff).

Next, consider the R-vector space

V :=
⊕

i∈∆
Rαi ⊂ Vaff .

Since Vaff = V ⊕ Rδ, the pairing 〈−,−〉 : Θaff × Vaff → R restricts to a non-degenerate
pairing

〈−,−〉 : Hδ × V → R.
Let {$i}i∈∆ ⊂ Hδ be the dual basis of {αi}i∈∆ ⊂ V . Let

CoWt =
⊕

i∈∆
Z$i ⊂ Hδ.

be the coweight lattice. In what follows, we write the roots α0, . . . ,αn, where 0 corresponds
to the extended vertex.

Lemma 2.3. With notation as above, the following statements hold.

(1) α∗i = δiα
∗
0 +$i for all i ∈ ∆.

(2) L = Zα∗0 ⊕ CoWt and L ∩ Level = α∗0 + CoWt.

Proof. (1) We compare both sides by evaluating elements in the basis {αj , δ | j ∈ ∆}
of Vaff . For all j ∈ ∆, we have 〈α∗i ,αj〉 = δij = 〈δiα∗0 +$i,αj〉. Further 〈α∗i , δ〉 = δi =
〈δiα∗0 +$i, δ〉, thus the assertion follows.

(2) Immediate from (1). �

2.1.1. ΘJaff
for Extended Dynkin Diagrams. Throughout ∆ is ADE Dynkin di-

agram, with extended diagram ∆aff . For a subset J of ∆, we may view J as a subset of
∆aff , and consider

LJ :=
⊕

i∈∆aff\J
Zα∗i and CoWtJ :=

⊕

i∈∆\J
Z$i.

The following is immediate from 2.3.

Proposition 2.4. For any subset J of ∆, we have

LJ = Zα∗0 ⊕ CoWtJ and LJ ∩ Level = α∗0 + CoWtJ .
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In particular, there is a bijection

(2.1.A) LJ ∩ Level ' CoWtJ given by x 7→ x− α∗0.
Regarding J as a subset of ∆, we can form ΘJ as as subspace of Θ, as in 1.5. On the
other hand, regarding J as a subset of Θaff , we can also form the corresponding subspace
of ∆aff . To avoid confusion, we will denote this by ΘJaff

, so that

ΘJaff
:= {ϑ ∈ Θaff | ϑi = 0 if i ∈ J}.

Thus, ΘJaff
is the subspace of Θaff with basis {α∗i | i ∈ ∆aff\J}.

Similarly, using the coefficients of the null root in (2.1.A), consider

δJaff
:=

∑

i∈∆aff\J
δiαi,

which via the natural pairing 〈−,−〉 : Θ∗Jaff
× ΘJaff

→ R can be viewed as a linear map
ΘJaff

→ R. Thus we define

(2.1.B) Level(Jaff) := δ−1
Jaff

(1) ⊂ ΘJaff
.

It is clear that Level(Jaff) = Level∩ΘJaff
, since intersection is associative.

Definition 2.5. Suppose that ∆ is ADE Dynkin, with extended diagram ∆aff . Then
for any J ⊆ ∆,

(1) We call Cone(∆, J) ⊆ R|∆\J| the J-finite hyperplane arrangement.
(2) We call Cone(∆aff , J) ⊆ R|∆aff\J| the J-affine Tits cone.
(3) We call Level(Jaff) ⊆ R|∆\J| the J-level.

The above constructions allow us to produce an infinite hyperplane arrangement for
any subset of nodes J in any ADE Dynkin diagram. Indeed, continuing the notation and
setting from above, specifically (2.1.B), let

ΦJaff
:= {α ∈ Φ | ΘJaff

* Hα} = Φ \
⊕

i∈Jaff

Rαi.

Thus inside Level(Jaff) is the infinite collection of hyperplanes

HJaff
:= {Hα ∩ ΘJaff

| α ∈ ΦJaff
}.

Definition 2.6. A J-alcove is a connected component of

Level(Jaff) \
⋃

H∈HJaff

H.

We write Alcove(Jaff) for the set of all J-alcoves.

The following is clear, and generalises 2.2.

Proposition 2.7. The maps C 7→ C ∩ E and A 7→ R>0A give a bijection

Cham(∆aff , J)
∼−→ Alcove(Jaff).

The labelling of the chambers of Cone(∆aff , J) in 1.12 allows for a more precise de-
scription and labelling of the alcoves, which we will need in Chapter 4. Consider again
the open chamber decomposition

⊔

(x,J)∈Cham(∆aff ,J)

x(CJ) ⊂ Cone(∆aff , J).

This induces an open decomposition of the level, and thus a labelling of the J-alcoves.
Indeed, for (x, J) ∈ Cham(∆aff , Jaff), set

Alcove(x,J) := x(CJ) ∩ Level(Jaff).
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From the induced open decomposition

A :=
⊔

(x,J)∈Cham(∆aff ,J)

Alcove(x,J) ⊂ Level(Jaff),

we recover the infinite hyperplane arrangement HJaff
above as Level(Jaff)\A.

For Dynkin ∆ and J ⊆ ∆, it is clear that HJaff
is an infinite hyperplane arrangement

in R|∆\J|. For extended Dynkin case, the J-Tits cone does not fill ∆Jaff
, and so sometimes

the following is convenient.

Notation 2.8. For I ⊂ ∆aff , consider WI, the set of full hyperplanes that separate
the open chambers of Cone(∆aff , I). This is an infinite hyperplane arrangement in R|∆aff\I|.

These concepts are illustrated in the example below.

Example 2.9. When ∆ = D4 and J is

1
,

Viewing J as a subset of ∆aff , then WJ is the infinite hyperplane arrangement

The hyperplanes converge on the line ϑ0 + 2ϑ1 = 0, but WJ does not contain this line.
In contrast, Cone(Jaff) is the shaded region in the following picture, and Level(Jaff) is
illustrated by the dotted blue line ϑ0 + 2ϑ1 = 1.

ϑ1

ϑ0

The circles on the blue line are, reading top left to bottom right, at ϑ1 = 3
2 , 1,

1
2 , 0,− 1

2 ,−1.
Thus basing Level(Jaff) by α∗1 (see §1.3), the level is the infinite hyperplane arrangement

ϑ1

01
21 − 1

2 −1

The J-alcoves are the open intervals on the blue line between two adjacent dots, and HJaff

is the infinite collection of dots.

Example 2.10. When ∆ = E6 and J is

,
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then Cone(Jaff) ⊆ R3 is harder to draw, but Level(Jaff) ⊆ R2 is easier. Indeed, in suitable
coordinates Example 4.19 shows that Level(Jaff) is the arrangement given by all lines

Note that, as in the introduction, Cone(∆, J) does not traditionally have an affine version.

Drawing Cone(∆, J) and Cone(Jaff) in a canonical way, with all the correct angles, is
possible, but it is long and tedious to calculate all the angles in all cases. We refrain from
doing this since from the viewpoint of the applications in later chapters, the precise angles
in the arrangements are not important. Even if we did calculate all the angles, coding the
resulting pictures accurately is a non-trivial task.

2.2. K-affine Arrangements and Levels

In the affine case, as already remarked in 2.1, the full Tits cone does not fill Θaff =
R|∆aff |, and indeed Cone(∆aff) is the region

{ϑ ∈ Θaff |
∑

i∈∆aff

δiϑi > 0}.

The previous subsection required the assumption that J ⊆ ∆. From this, we then viewed J

as a subset of ∆aff , and from this constructed objects such as Cone(∆aff , J) and Level(Jaff).
However, for much of the previous subsection (except notably 2.4), the assumption that
J ⊆ ∆ is not required. We may in fact consider any subset K ⊆ ∆aff , and form a
corresponding Cone(∆aff ,K) and Level(∆aff ,K)

Definition 2.11. Suppose that ∆aff is extended Dynkin, then for any K ⊆ ∆aff , the
level is defined to be

Level(∆aff ,K) := {ϑ ∈ Cone(∆aff ,K) |
∑

k/∈K
δkϑk = 1}.

For most of our applications, this level of generality is not required. However, in
Chapter 4 when we are classifying the possible arrangements in low dimension, we will
work in this more general setting.

2.3. The affine J-pure braid group

Let ∆ be ADE Dynkin, and consider the extended diagram ∆aff . For J ⊆ ∆, consider
the finite Cone(∆, J) and the infinite Level(Jaff), both of which are inside R|Jc|, where
Jc := ∆\J. Both these arrangements are locally finite, i.e. every point of R|Jc| is contained
in at most finitely many hyperplanes, and essential, i.e. the minimal intersections of
hyperplanes are points.
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2.3.1. Arrangements groupoids. In this subsection we briefly recall the basics of
the arrangement (=Deligne) groupoids, mainly to set notation. In order to later apply
this to both Cone(∆, J) and Level(Jaff), throughout this subsection let H be any essential,
locally finite arrangement inside Rn.

The graph ΓH of oriented arrows is defined as follows. The vertices of ΓH are the
chambers (i.e. the connected components) of Rn\H. There is a unique arrow a : v1 → v2

from chamber v1 to chamber v2 if the chambers are adjacent, otherwise there is no arrow.
For an arrow a : v1 → v2, we set s(a) := v1 and t(a) := v2. By definition, if there is an
arrow a : v1 → v2, there is a unique arrow b : v2 → v1 with the opposite direction of a.

A positive path of length n in ΓH is defined to be a formal symbol

p = an ◦ . . . ◦ a2 ◦ a1,

whenever there exists a sequence of vertices v0, . . . , vn of ΓH and exist arrows ai : vi−1 → vi
in ΓH. Set s(p) := v0, t(p) := vn, and `(p) := n, and write p : s(p) → t(p). The
notation ◦ should remind us of composition, but we will often drop the ◦’s in future. If
q = bm ◦ . . . ◦ b2 ◦ b1 is another positive path with t(p) = s(q), we consider the formal
symbol

q ◦ p := bm ◦ . . . ◦ b2 ◦ b1 ◦ an ◦ . . . ◦ a2 ◦ a1,

and call it the composition of p and q.
A positive path is called reduced if it does not cross any hyperplane twice. In this

setting where H is locally-finite, reduced positive paths coincide with shortest positive
paths; see e.g. [S, Lemma 2].

Following [D2, p7], let ∼ denote the smallest equivalence relation, compatible with
morphism composition, that identifies all morphisms that arise as positive reduced paths
with same source and target. Then consider the free category Free(ΓH) on the graph ΓH,
where morphisms are directed paths, and the quotient category

G+
H

:= Free(ΓH)/ ∼,
called the category of positive paths.

Example 2.12. For the infinite hyperplane arrangement in 2.10, G+
H is generated by

the following arrows:

AFFINE ACTIONS 17

We prepare the following observation for preprojective algebras of extended Dynkin
type.

Lemma 3.17. Let ⇧ be a preprojective algebra of extended Dynkin type.

(1) The center R of ⇧ is a simple singularity in dimension two.
(2) There is an isomorphism ⇧ ' EndR(M) for some Cohen-Macaulay R-module M .
(3) ⇧p is Morita equivalent to the local ring Rp for all non-maximal primes p of R.

Proof. (1) and (2) are well-known [CBH], and (3) holds since ⇧p ' EndRp
(Mp) holds Mp

is a free Rp-module for all non-maximal primes. ⇤
Now we are ready to prove 3.2(3).

Proof. Again set � := eJ⇧eJ , and consider C := �P
f2Hom� (T,�) Im f . By 3.16, we only have

to check that dimk C <1.
To prove this, it su�ces to show that Cp = 0 holds for any non-maximal prime ideal p

of R. Since �p ⇠= eJ⇧peJ is Morita equivalent to the local ring Rp by 3.17(3), any tilting
�p-module is a progenerator. Since tilting modules are preserved by localization, it follows
that Tp a progenerator, and so certainly

�p =
X

f2Hom�p (Tp,�p)

Im f

holds. Since Hom� (T, �)p
⇠= Hom�p

(Tp, �p), this implies that Cp = 0. ⇤
3.6. The J -cone Groupoid.

Example 3.18. Continuing the example in 2.26, the J -cone monoid is generated by

4. Applications to 3-folds

4.1. Application to cDV singularities. Let R be a local Gorenstein normal ring, ref R
the category of reflexive R-modules and CM R the category of Cohen-Macaulay R-modules.

Definition 4.1. Recall

(1) M 2 ref R is called modifying if EndR(M) 2 CM R.
(2) An R-module M is called maximal modifying if it is modifying, and maximal with

respect to this property; equivalently

add M = {X 2 ref R | EndR(M �X) 2 CM R}.

The following properties are elementary [IW, 2.7, 5.12].

Lemma 4.2. With notation as above,

(1) If M 2 CM R is a modifying R-module, then so is R �M . Therefore a maximal
modifying R-module M is Cohen-Macaulay if and only if it is a generator (that
is, R 2 add M).

If further dim R = 3, then

(2) M 2 CM R is modifying if and only if Ext1R(M, M) has positive depth.

The relations in this example are generated by the polygon face relations, namely the two
shortest paths around any 4-gon, 6-gon or 10-gon are identified.

Definition 2.13. The arrangement (=Deligne) groupoid GH is defined to be the
groupoid completion of G+

H, that is, a formal inverse is added for every morphism in G+
H.

Warning 2.14. In this level of generality, it is not known whether the natural mor-
phism G+

H → GH is injective. When H is a finite simplicial arrangement, the morphism is
injective [D].
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The following is well-known [D, P1, P2, S]. The statement below in our possibly infi-
nite setting can be found for example in [D2, p9]. Recall that throughout this subsection,
H is a locally finite, essential, arrangement inside Rn.

Theorem 2.15. If v ∈ GH is any vertex, then EndGH
(v) ∼= π1(Cn\HC).

2.3.2. Groupoids for Intersection Arrangements. We revert to the setting of
intersection arrangements. In this subsection we apply the above to these special cases,
mainly to set notation for future sections.

Notation 2.16. Suppose that ∆ is ADE Dynkin, and J ⊆ ∆.

(1) For H = Cone(∆, J), which is a finite simplicial arrangement inside R|Jc|, the
resulting Deligne groupoid will be written GJ.

(2) For H = Level(Jaff), which is an infinite arrangement inside R|Jc|, the resulting
Deligne groupoid will be written GJaff

.

Example 2.17. For the J the subset of E6 in 2.10, then GJaff
and GJ are respectively:

The following definition solves one of our main motivations, namely it constructs what
we think of as the affine pure braid group, even when the affine braid group need not exist.

Definition 2.18. Suppose that ∆ is Dynkin, and J ⊆ ∆.

(1) Write π1(J) for any vertex group of GJ, and call it the J-pure braid group.
(2) Write π1(Jaff) for any vertex group of GJaff

, and call it the affine J-pure braid
group.

By 2.15 both π1(J) and π1(Jaff) are fundamental groups of the complexified com-
plements of the associated hyperplane arrangements. It will be through controlling the
groupoids GJ and GJaff

that we will be able, in later sections, to produce π1-group actions
on derived categories in various algebraic and geometric settings.





CHAPTER 3

Finite Type Examples and Classification

In this chapter, when ∆ is an ADE Dynkin diagram, we classify all the possible
Cham(∆, J) that arise when |Jc| = 1, 2, and illustrate the complexity in the general case.
Furthermore, the techniques developed (specifically 3.4) significantly simplify the general
theory of Chapter 1, which in turn simplify the calculation of the infinite arrangements
in Chapter 4.

3.1. Degenerate Cases

When J = ∅, as already remarked, Cham(∆, ∅) = {(x, ∅) | x ∈ W∆}, which can be
identified with the usual root system for ∆. The other extreme is J = ∆, in which case
Cham(∆,∆) = {(1,∆)}.

The other main degenerate case is when |Jc| = 1, which we will refer to as rank one.

Lemma 3.1. If ∆ is Dynkin and J = ∆ − i for some i ∈ ∆, (equivalently, |Jc| = 1),
then wall crossing in Cham(∆, J) is described by

(1,∆− i) (w∆−iw∆,∆− j)
i

j

where j = ι∆(i). In particular, there are only ever two chambers, and one wall.

Proof. This is a direct consequence of 1.20. �

The other slightly degenerate case is when ∆ = An and J is arbitrary. As is typical in
this setting, see e.g. [W2, 6.5], constructions in type-A only ever give type-A phenomena.
This is made precise in the following (see also 4.5).

Proposition 3.2. If ∆ = An, and J ⊆ ∆, then the arrangement Cone(∆, J) is the
finite root system of type An−|J|.

Proof. There are many ways to see this. Consider Jc, and order its elements in
increasing order j1 < . . . < jm. It is easy to check, in a similar way to 3.4 below, that the
vertices ji and ji+1 braid under iterated wall crossing, with a length three braid relation.
It is also easy to check that wall crossing under js and jt commute provided that |s−t| > 1,
since there is a vertex in between them, which splits the Dynkin diagram into two disjoint
pieces. Thus, although the local labels change, the arrangement is controlled by the same
global rules as the finite root system of type An−|J|, and so it is An−|J|.

The other way to see this is from the explicit description of roots of An in terms of
connected chains of 1s on the Dynkin diagram. This immediately implies that the set of
restricted roots on {j1, . . . , jm} is also given in terms of connected chains of 1s. From this,
it follows that the arrangement is An−|J|. �

3.2. Rank Two Examples and General Techniques

This section illustrates how to use the general theory to calculate any given Cham(∆, J)
with |Jc| = 2, which we will refer to as rank two. Example 3.3 explains this in full detail,
however keeping track of the full Weyl group elements quickly becomes cumbersome. As
such, group elements are then replaced by their length, leading to slimlined Examples 3.5,
3.6 and 3.7. These illustrate some phenomena appearing in the cases of E6, E7 and E8

21
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respectively, such as the slopes of the hyperplanes changing. These turn out to be a
representative of the full rank two classification, which appears in the next section.

As before, in what follows we depict vertices in J by •. It will be convenient to colour
the other vertices, those in Jc, so for example the picture

depicts the case ∆ is E8, with J equal to the set of black vertices.

Example 3.3. Let ∆ = D4.

(1) For J = , Cham(D4, J) is

(1, ) (s1s2s4, ) (s1s2s4s3s2s1, )

(s3s2s4, ) (s3s2s4s1s2s3, ) (s1s2s4s3s2s1s4s2s3, )

1

4

3

1

1

3

4

1

34 43

and Cone(D4, J) is the hyperplane arrangement as in 1.7(2), with the same re-
stricted roots 10, 01 and 11.

(2) For J = , Cham(D4, J) is given by the following calculation

(1, ) (s1, ) (s1s2s3s4s2, )

(s2s3s4s2, ) (s1s2s3s4s2s1, )

(s2s3s4s2s1, ) (s2s3s4s2s1s2s3s4s2, ) (s2s3s4s2s1s2s3s4s2s1, )

1

1

2

2

2

2

1

1

22

11

11

22

Furthermore, Cone(D4, ) is the following hyperplane arrangement

ϑ1

ϑ2

Hyperplane Restricted Roots

ϑ1 = 0 10
ϑ2 = 0 01

ϑ1 + ϑ2 = 0 11
ϑ1 + 2ϑ2 = 0 12

In this example the equality ν1ν2ν1ν2(1, J) = ν2ν1ν2ν1(1, J) implies that

s2s3s4s2s1s2s3s4s2s1 = s1s2s3s4s2s1s2s3s4s2,

which takes some time to be checked directly by hand.

Remark 3.4. In the case |Jc| = 2, in fact we do not have to check such kind of equality
since the chamber structure of Cham(∆, J) is given by positive roots. Indeed, consider first
the table below (found using (1.2.A)), which records `(w∆−iw∆) = `(w∆) − `(w∆−i) for
each Dynkin diagram ∆ and each vertex i ∈ ∆.

It follows from 1.20(2) that alternating wall crossings gives all elements in Cham(∆, J).
Moreover, thanks to 1.20(3), we only have to calculate `(x) for each (x, J) ∈ Cham(∆, J)
until it reaches `(wJw∆). This can be done inductively, using the table below.
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∆ `(w∆−iw∆) = `(w∆)− `(w∆−i)

An
n 2(n− 1) 3(n− 2) . . . (n− 2)3 (n− 1)2 n

Dn n(n−1)
2

(n+5)(n−2)
2

n(n−1)
2

(n+8)(n−3)
2

(n+11)(n−4)
2

. . . (4n−7)2
2

(4n−4)1
2

E6 16 25 29 25 16
21

E7 33 47 53 50 42 27
42

E8 78 98 106 104 97 83 57
92

In the examples that follow, we thus write (`(x), J) instead of (x, J).

Example 3.5. Let ∆ = E6.

(1) When J = , then `(w∆−Jw∆) = 36− 12 = 24 and Cham(E6, J) is

(0, ) (8, ) (16, )

(8, ) (16, ) (24, )

Moreover Cone(E6, J) is the 6-chamber example in 1.7(2) and 3.3(1), with the
same three restricted roots.

(2) When J = , then `(w∆−Jw∆) = 36− 10 = 26 and Cham(E6, J) is

(0, ) (1, ) (11, ) (16, )

(10, ) (15, ) (25, ) (26, )

Further, Cone(E6, J) is the 8-chamber example in 3.3(2), with the same four
restricted roots.

(3) If J = , then `(w∆−Jw∆) = 36− (6 + 1) = 29 and Cham(E6, J) is

(0, ) (4, ) (12, ) (16, )

(13, ) (17, ) (25, ) (29, )

Again, Cone(E6, J) is the 8-chamber arrangement in 3.3(2), but now the re-
stricted roots have multiplicity.

ϑ1

ϑ2

Hyperplane Restricted Roots

ϑ1 = 0 10
ϑ2 = 0 01, 02

ϑ1 + ϑ2 = 0 11
ϑ1 + 2ϑ2 = 0 12
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The restricted root 02 gives the hyperplane 2ϑ2 = 0, which is the same as the
hyperplane ϑ2 = 0. However, when later in the next chapter we translate by the
integers (see 4.4), this multiplicity effects the affine arrangement that is obtained.
Compare 4.15 versus 4.16 later.

(4) If J = , then `(w∆−Jw∆) = 36− (3 + 1 + 1) = 31 and Cham(E6, J) is

(0, ) (2, ) (8, ) (14, )) (16, ))

(15, ) (17, ) (23, ) (29, ) (31, )

In this case, Cone(E6, J) is the following hyperplane arrangement.

ϑ1

ϑ3

Hyperplane Restricted Roots

ϑ1 = 0 10
ϑ3 = 0 01, 02

ϑ1 + ϑ3 = 0 11
ϑ1 + 2ϑ3 = 0 12
ϑ1 + 3ϑ3 = 0 13

Note that these simple calculations imply the non-obvious equality

s3s2s4s3s5s6s3s2s4s3s5s3s2s4s3s1s2s3s5s6s4s3s5s2s3s4s1s2s3s5s6

= s1s2s3s5s6s4s3s5s2s3s4s1s2s3s5s6s3s4s5s3s2s1s3s4s5s3s2s3s4s5s3

in the Weyl group WE6
.

(5) Let J = . Then `(w∆−Jw∆) = 36− 6 = 30 and Cham(E6, J) is

(0, ) (9, ) (10, ) (19, )) (20, ))

(10, ) (11, ) (20, ) (21, ) (30, )

(1, ) (29, )

Moreover, Cone(E6, J) is the following hyperplane arrangement.

ϑ4

ϑ3

Hyperplane Restricted Roots

ϑ4 = 0 10
ϑ3 = 0 01

ϑ4 + ϑ3 = 0 11
ϑ4 + 3

2ϑ3 = 0 23
ϑ4 + 2ϑ3 = 0 12
ϑ4 + 3ϑ3 = 0 13

The next example, which takes place in E7, illustrates that whilst from a topological
(and π1) perspective the hyperplane arrangements can be considered the same, the slopes
of some of the hyperplanes may vary.

Example 3.6. Consider ∆ = E7.



3.2. RANK TWO EXAMPLES AND GENERAL TECHNIQUES 25

(1) Let J = . Then `(w∆−Jw∆) = 63− (6 + 1 + 1) = 55 and Cham(E7, J) is

(0, ) (2, ) (10, ) (23, ) (31, ))

(24, ) (32, ) (45, ) (53, ) (55, )

(22, ) (33, )

In this case Cone(E7, J) is the following hyperplane arrangement.

ϑ1

ϑ3

Hyperplane Restricted Roots

ϑ1 = 0 10
ϑ3 = 0 01, 02

ϑ1 + ϑ3 = 0 11
ϑ1 + 2ϑ3 = 0 12, 24
ϑ1 + 3ϑ3 = 0 13
ϑ1 + 4ϑ3 = 0 14

Note that, up to gradients, this is the same as Example 3.5(5) above.

(2) Let J = . Then `(w∆−Jw∆) = 63− (3 + 3 + 1) = 56 and Cham(E7, J) is

(0, ) (29, ) (32, ) (38, ) (47, )

(9, ) (18, ) (24, ) (27, ) (56, )

(3, ) (53, )

Moreover Cone(E7, J) is the same hyperplane arrangement as in (1) above, but
the multiplicities of the restricted roots differ.

ϑ1

ϑ3

Hyperplane Restricted Roots

ϑ1 = 0 10
ϑ3 = 0 01, 02, 03

ϑ1 + ϑ3 = 0 11
ϑ1 + 2ϑ3 = 0 12
ϑ1 + 3ϑ3 = 0 13
ϑ1 + 4ϑ3 = 0 14

The multiplicities effect the affine arrangements later; compare 4.23 and 4.25.

Example 3.7. Let ∆ = E8.
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(1) J = . Then `(w∆−Jw∆) = 120− (10 + 1 + 1) = 108 and Cham(E8, J) is

(0, ) (2, ) (12, ) (37, ) (41, )

(67, ) (71, ) (96, ) (106, ) (108, )

(30, )

(32, )

(42, )

(66, )

(76, )

(78, )

In this case Cone(E8, J) is the following hyperplane arrangement.

ϑ1

ϑ3 Hyperplane Restricted Roots

ϑ1 = 0 10
ϑ3 = 0 01, 02

ϑ1 + ϑ3 = 0 11
ϑ1 + 2ϑ3 = 0 12, 24
ϑ1 + 5

2ϑ3 = 0 25
ϑ1 + 3ϑ3 = 0 13, 26
ϑ1 + 4ϑ3 = 0 14
ϑ1 + 5ϑ3 = 0 15

(2) J = . Then `(w∆−Jw∆) = 120− (6 + 3 + 1) = 110 and Cham(E8, J) is

(0, ) (53, ) (57, ) (63, ) (75, )

(35, ) (47, ) (53, ) (57, ) (110, )

(4, )

(10, )

(22, )

(88, )

(100, )

(106, )

In this case Cone(E8, J) is the following hyperplane arrangement

ϑ8

ϑ3

Hyperplane Restricted Roots

ϑ8 = 0 10
ϑ3 = 0 01, 02, 03, 04

ϑ8 + ϑ3 = 0 11
ϑ8 + 2ϑ3 = 0 12
ϑ8 + 3ϑ3 = 0 13, 26
ϑ8 + 4ϑ3 = 0 14
ϑ8 + 5ϑ3 = 0 15
ϑ8 + 6ϑ3 = 0 16
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Up to gradients, this is the same hyperplane arrangement as in (1) above. The
gradients, and their multiplicities, effect the corresponding affine arrangements;
compare 4.25 and 4.26.

3.3. Rank Two Classification

In this section we consider Cone(∆, J) when ∆ is ADE Dynkin and |Jc| = 2, and we
classify the hyperplane arrangements that can arise. The methods of the previous section
allows for a full calculation of the arrangement, including the slopes of the hyperplanes,
but for most purposes of this section (and for our applications in finite type), we will
ignore the slopes.

The following results asserts that for ∆ = An, Dn, and |Jc| = 2, few possibilities occur.

Proposition 3.8. Consider J ⊂ ∆ with |Jc| = 2.

(1) Cone(An, J) is the finite root system A2, which has 6 chambers.
(2) Up to permutation of the co-ordinates, Cone(Dn, J) is one of the following:

where the red line is x+ y = 0 and the green line 2x+ y = 0.

Proof. (1) This follows immediately from 3.2.
(2) The case of D4 is slightly degenerate. Up to mutation, and symmetries of the graph
any J with |Jc| = 2 is either the example in 3.3(1) or 3.3(2). These have have either six
chambers, or eight chambers respectively, and are precisely the arrangements claimed.

Hence we can consider Dn with n ≥ 5, and we draw this as .. . Consider the

leftmost vertex in Jc, and suppose it contains at least one of the left rank-one vertices.
If it contains both, namely J = .. , then the restricted roots are 10, 01, 11 and so we

obtain the six chamber arrangement claimed. Note that this J is mutation equivalent to
.. and so this too gives the six chamber arrangement. Hence, we can assume that the

second vertex in Jc does not have rank one, which up to symmetry of the left rank-one
vertices means J = .. .. . In this case, the restricted roots are 10, 01, 11, 12, which up
to permutation of the co-ordinates is the eight chamber arrangement claimed.

Hence we can assume that the leftmost vertex in Jc does not have rank one. If the
rightmost element of Jc has rank one, there are two cases. Firstly, if J = .. , then
the restricted roots are 10, 01, 11, 21, which is the eight chamber arrangement claimed.
Secondly, if J = .. .. , then this is mutation equivalent to .. .. . This has restricted
roots 10, 01, 11, 22, 21, which gives the eight chamber arrangement claimed.

Hence we can assume that both vertices in Jc have rank two, and further by the above
paragraph the case when both vertices are adjacent has already been covered. This means
that J = .. .. .. . In this case, the restricted roots are 01, 10, 20, 11, 22, 21, and again
we obtain the eight chamber arrangement claimed. �

Remark 3.9. Another way to approach 3.8(2) is to classify the mutation classes in
Dn with |Jc| = 2, then run the techniques as in 3.3, with the simplification in 3.4. This
method is slightly more time-consuming to write, but in practice is often more useful. It
turns out that D4 has four mutation classes, D2n+1 with n ≥ 2 has n2 mutation classes,
and D2n with n ≥ 3 has n2 − 1 mutation classes. Up to symmetries of the graph, D4 has
two classes, D2n+1 has n2 classes, and D2n with n ≥ 3 has n2 − (n− 1) classes.

The following classifies Cone(∆, J) when ∆ = E6, E7, E8, and |Jc| = 2, by first classify-
ing the mutation classes, then performing a single calculation for each one. This reduces
the number of cases substantially, whilst giving very precise information in each case.
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Remarkably, all phenomena can be found using only E6, E7, and E8. The hyperplane ar-
rangements from Type A and D repeat here, but more arrangements are obtained. Later
in Chapter 4 the same phenomena occurs: all our affine tilings in R2 can also be realised
using only type E.

Theorem 3.10. For ∆ = E6, E7, E8, and |Jc| = 2, the mutation classes, and in each
case the number of chambers in Cone(∆, J), are as follows.

Family Mutation Class |Chambers|
E6,1 10

E6,2 6

E6,3 12

E6,4 8

E6,5 8

E7,1 8

E7,2 10

E7,3 12

E7,4 12

E7,5 12

E7,6 12

E7,7 8

E7,8 12

E7,9 8

E8,1 8

E8,2 12

E8,3 12

E8,4 12

E8,5 12

E8,6 12

E8,7 16

E8,8 16

E8,9 16

E8,10 16

E8,11 16

Proof. In each line, it is easy to verify that the diagrams listed are all linked via
the wall crossing rule 1.16, and further that the diagrams listed exhaust all possibilities
of wall crossing at the coloured vertices. In particular, each line is a full mutation class.

Since
(

6
2

)
= 15, and the total number of diagrams in the five stated E6 families is

also 15, we have exhausted all possible choices of two nodes in an E6 Dynkin diagram.
Consequently, there can be no further E6 families. Similarly, since

(
7
2

)
= 21, and

(
8
2

)
= 28,

and there are 21 diagrams in the E7 families above, and 28 diagrams in the E8 families
above, there are no further E7 or E8 mutation families. It follows that the above is a
complete classification of mutation classes for E6, E7 and E8.

The last column is a case-by-case analysis, using the method in 3.5, 3.6 and 3.7, or
by looking at the restricted roots. �

The following is the main result in this section.
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Corollary 3.11. Suppose that ∆ is Dynkin, and J ⊆ ∆ with |Jc| = 2. Then, up
to changing the slopes of some of the hyperplanes, Cone(∆, J) is one of the following five
hyperplane arrangements.

In each case, the number of chambers is 6, 8, 10, 12 and 16 respectively.

Proof. Simplicial hyperplane arrangements in R2 are determined, up to the slopes
of the hyperplanes, by the number of chambers. Since we are ignoring slops, the result
follows from the either 3.8 or the last column in 3.10, which is always 6, 8, 10, 12 or 16. �

3.4. Rank Three Phenomena

The last section classified the Cone(∆, J) inside R2, when ∆ is ADE Dynkin. It is clear
that all simplicial arrangements inside R2 are, up to moving the slopes of the hyperplanes,
Coxeter arrangements. In this section we will consider those Cone(∆, J) inside R3 when
∆ is ADE Dynkin, and demonstrate both the non-Coxeter nature, and also the surprising
complexity that occurs.

By 3.2, any choice of three vertices in Type A only ever gives Type A3, which has 6
hyperplanes and 24 chambers. Thus, to find new phenomena, we must consider types D
and E. The following is the most elementary example.

Example 3.12. Consider J = . Then Cone(D4, J) is the following non-Coxeter
arrangement.

ϑ1 = 0
ϑ2 = 0
ϑ3 = 0

ϑ1 + ϑ2 = 0
ϑ1 + ϑ3 = 0
ϑ2 + ϑ3 = 0

ϑ1 + ϑ2 + ϑ3 = 0

It turns out that there are many more possible arrangements that can occur. Both
the number of hyperplanes and the number of chambers becomes surprisingly large.

Theorem 3.13. Let ∆ be ADE, and consider J ⊂ ∆ with |Jc| = 3. Then Cone(∆, J)
has either 6, 7, 8, 9, 10, 11, 13, 16, 17 or 19 hyperplanes.

Proof. This is a case-by-case analysis over all types. As above, by 3.2, any choice
of three vertices in Type A only ever gives Type A3, which has 6 hyperplanes and 24
chambers. Type D is mildly harder, as in 3.8(2), however, any choice of three vertices
gives 7, 8 or 9 hyperplanes. For E6, via an exhaustive calculation aided by magma, any
choice of three vertices gives either 8 or 10 hyperplanes. Similarly, for E7, any choice of
three vertices gives either 9, 10, 11 or 13 hyperplanes, and for E8, any choice of three
vertices gives 13, 16, 17 or 19 hyperplanes. �

Remark 3.14. At this stage, it is not clear whether the number of hyperplanes in
3.13 determine the arrangement. It would seem that there are always 24, 32, 40, 48, 60,
72, 96, 144, 160, or 192 chambers respectively, but it is not clear whether the 1-skeleta
remain constant within a given class.
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The following is one example of a Cone(∆, J) inside R3 with 19 hyperplanes. This
ignores multiplicity; with multiplicity there are 23. We explicitly describe the arrangement
here, given it is our largest example inside R3.

Example 3.15. Consider J = . Then Cone(E8, J) is the following hyper-
plane arrangement, which has 19 hyperplanes and 192 chambers.

ϑ1 = 0
ϑ2 = 0
ϑ3 = 0

ϑ1 + ϑ2 = 0
ϑ2 + ϑ3 = 0

2ϑ2 + 3ϑ3 = 0
ϑ2 + 2ϑ3 = 0
ϑ2 + 3ϑ3 = 0

ϑ1 + ϑ2 + ϑ3 = 0

ϑ1 + ϑ2 + 2ϑ3 = 0

ϑ1 + ϑ2 + 3ϑ3 = 0

ϑ1 + 2ϑ2 + 2ϑ3 = 0

ϑ1 + 2ϑ2 + 3ϑ3 = 0

ϑ1 + 2ϑ2 + 4ϑ3 = 0

ϑ1 + 3ϑ2 + 3ϑ3 = 0

ϑ1 + 3ϑ2 + 4ϑ3 = 0

ϑ1 + 3ϑ2 + 5ϑ3 = 0

ϑ1 + 3ϑ2 + 6ϑ3 = 0

ϑ1 + 4ϑ2 + 6ϑ3 = 0



CHAPTER 4

Affine Tilings in R2

Given a subset J of vertices of the Dynkin diagram ∆, Section 2.2 constructs an infinite
hyperplane arrangement Level(Jaff) inside R|Jc|. The case |Jc| = 2 is then particularly
important: given any choice of two vertices Jc in an ADE Dynkin diagram, there is a
corresponding tiling of the plane R2. This chapter classifies the tilings that are constructed
in this way. The main result is that there are precisely sixteen tilings, counted with Z2

action, or fifteen counted without the Z2 action. Only three of the fifteen are Coxeter.
We view these new tilings as fundamental building blocks, and so in this chapter we

draw each of them in some detail. They turn out to exhibit remarkable phenomena, which
have further applications later in this memoir, and also elsewhere in the literature.

4.1. The Main Techniques

In this section we show how to calculate the associated tiling of the plane in one
extended example. In later sections we use this technique implicitly, and for brevity
we will mainly just present the results for the exceptional types, without outlining the
underlying calculations.

Since wall crossing is combinatorial, we will begin in one chamber, and wall-cross
repeatedly. The first step is always to view Cone(∆, J) inside Level(Jaff), as illustrated in
the following example.

Example 4.1. Consider J = , which is J = when viewed inside the affine

diagram. Since Cone(∆, J) ⊂ Level(Jaff), we begin by fixing the extended vertex, and
mutating at the two other colours. Since the wJwJ+i wall crossing rules are not effected
by the addition of the extended vertex, the calculation 1.11 can be transferred to describe
part of the affine tiling (see also 5.27). This is illustrated below, where in the right hand
picture we drop the labelling coming from the Weyl group for convenience.

(1, )

(s1, )

(s1s2s3, )

(s1s2s3s1s2, )

(s2s3s1s2, )

(s2s3, )
←→

All the tilings below will be calculated by taking the first step Cone(∆, J) ⊂ Level(Jaff),
and for each of those chambers, calculating the wall crossing for the extended vertex. From
here, the calculations in the rank two ADE setting in §3.2, and especially 3.4, will be used
to determine the size of the new tiles that are glued on. The calculation repeats, stopping
once it becomes clear that the same tiles are being repeated.

We illustrate this main argument in one extended example.

31
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Example 4.2. As in 3.5(3) consider J = , which is when viewed inside
the affine diagram. As in 4.1, we begin with Cone(∆, J) ⊂ Level Jaff , obtained by fixing the
extended vertex, and mutating at the others. As above, since the wJwJ+i wall crossing
rules are not effected by the addition of the extended vertex, the extended vertex can
be ignored for the purposes of this calculation. So, 3.5(3) gives the left hand side of the
following, namely an 8-gon with appropriate labels. The right hand side views this inside
the affine picture.

The calculation continues by crashing through the remaining wall in each of these cham-
bers. In each case, this is the wall crossing given by the extended vertex. We thus extend
the calculation out, to cover these green wall crossings, and obtain the following.

We next complete the outer edges into full n-gons. The value of n varies. For example,
consider the very bottom of the above picture, where red is being fixed, and we are
mutating green and blue. Since removing the green vertex leaves a disjoint union, in
which the red and blue vertices are in different pieces, the wall-crossing rules in §3.2
imply a length two braid relation, and so we glue on a 4-gon to the bottom of the picture.

In contrast, consider the right hand side of the above, where red is fixed, and we are
mutating green and blue. As in 4.1, the wJwJ+i wall crossing rule is not effected if we
delete the fixed red vertex. Doing this we obtain the situation in 3.5(3), and thus we glue
an 8-gon onto the right hand side.

Continuing, completing the outer edges into full n-gons gives the following.

We next continue by completing the new outer edges into full n-gons. Again, in each case,
6-gons and 8-gons arise by 3.5(3) or 3.5(2), and sometimes 6-gons arise by the Type A
situation (see 3.2). The 4-gons always arise whenever removing the fixed vertex leaves a
disjoint union, in which the two remaining vertices are in different pieces.
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Continuing in this way, over and over, we obtain the following.

There is a clear line of reflection in a central vertical line, which fixes blue but swaps
green and red. The is also a line of reflection in a central horizontal line, which fixes all
colours. This determines the rest of the tiling.

Since in the above picture, at every label there are three wall crossings, it follows
that there are no further chambers, and so the above is the 1-skeleton of the hyperplane
arrangement. As such, the infinite hyperplane arrangement is the following.

This is example E6,5 in 4.16 later.



34 4. AFFINE TILINGS IN R2

All the hyperplane arrangements in §4.2 below are calculated using the above method.
In each case, after deleting the fixed vertex for any potential n-gon, the value of n is
calculated using 3.4.

Remark 4.3. The above calculation enriches the hyerplane arrangement with the
information of the null root δ :=

∑
i∈∆aff

δiαi. Indeed, if at the centre of each n-gon we
record the value of δi for the vertex in Jc which is being fixed, we obtain the following.
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2 2

1

2 2

1

2 2

1

2 2
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2 2
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2 2
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The 1’s form a Z2 lattice, which we will later refer to as the action of the class group.
This action becomes very important in Part 3.

Remark 4.4. It is possible to calculate the hyperplane arrangements by translating
the finite arrangements and their multiples (see below). However, the above gives us
more information, as it links different choices through wall crossing, and thus makes
classification significantly easier. The above method gives the class group action, and the
other numbers in 4.3 also become important in Part 3 later.

We also illustrate the translation method here. Consider J = , which exactly
as 3.5(3) has the following finite arrangement:

ϑ1

ϑ2

Hyperplane Restricted Roots

ϑ2 = 0 01, 02
ϑ1 + 2ϑ2 = 0 12
ϑ1 + ϑ2 = 0 11

ϑ1 = 0 10

We then translate all hyperplanes given by the restricted roots, and so consider

ϑ1 = z,
ϑ2 = z,

2ϑ2 = z,
ϑ1 + ϑ2 = z, ϑ1 + 2ϑ2 = z
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for all z ∈ Z. The set where all z = 0 is precisely the finite arrangement illustrated, whilst
translating all by the integers give the following infinite arrangement, extended to infinity
in all directions:

The area in bold bounds a rectangle from (0, 0) to (1, 1), and is the fundamental region.
It terms of the arrangement in 4.3, this bold region corresponds to the following:

1 1

1 1

4.2. Summary of Classification

Given a subset J of vertices of a Dynkin diagram ∆, such that |∆\J| = 2, this section
classifies the infinite hyperplane arrangements Level(Jaff) that can occur. Equivalently, in
the notation of §2.2, it classifies those Level(∆aff ,K) such that |∆aff\K| = 3 and further-
more K is mutation equivalent to J such that ∆aff\J contains the extended vertex.

For our applications later, we are mostly interested in the hyperplane arrangements
Level(Jaff) equipped with their class group Z2-action explained in 4.3. Consequently, we
classify not the abstract arrangements (of which there are 14), but instead the arrange-
ments together with the Z2-action (of which there are 16). Of course, by the wall crossing
rules, the only possible Level(∆aff ,K) that have a class group action are those K which
are, up to symmetries of the graph, mutation equivalent to J such that ∆aff\J contains
the extended vertex. This is why we restrict our attention to Level(Jaff). However, many
of our arguments are more general, and we will make various remarks on the more general
case Level(∆aff ,K) throughout.

4.2.1. Extended Type A. Exactly as above 3.2 in the finite type A setting, it
turns out that constructions in extended Type A also only ever give extended Type A
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phenomena, as follows. This implies that no new phenomena arise in extended Type A,
and so for classification purposes it can largely be ignored.

Proposition 4.5. Let ∆ = An. Then for any K ( ∆aff , the cone Cone(∆aff ,K) is
precisely the Tits cone Cone(Γaff) for Γ = An−|K|.

Proof. If K = ∅ then Cone(∆aff ,K) = Cone(∆aff) and there is nothing to prove, hence
we can assume that K 6= ∅. This being the case, label the vertices of ∆aff by 0, 1, . . . , n,
reading around the circle clockwise, where 0 is the extended vertex, and suppose that the
elements of ∆aff\K are i1 < . . . < it. By rotating if necessary, up to symmetries of the
graph we can assume that i1 = 0.

The fact that the vertices i2, . . . , it satisfy the Type A braid rules is 3.2, using 4.1 to
see that adding the extended vertex does not effect the braiding. It is easy to check that
the extended vertex braids with i2 and it, and commutes with the others. Thus, although
the local labels change, Cone(∆aff ,K) is controlled by the same global rules as the Tits
cone for affine An−|K|, and hence it is the Tits cone Cone(Γaff) for Γ = An−|K|.

The other way to see the result is that, since we can assume i1 = 0 by rotating if
necessary, as in 4.4 the level can be obtained from the finite root system by translating
the restricted roots. By 3.2 these are connected chains of 1s, and hence translating them
gives the standard level of affine An−|K|. Since by 2.2 the cones can be recovered from
their levels, the result follows. �

Remark 4.6. The rotational symmetry used in the proof of 4.5 above shows that, for
∆ = An, the more general setting of Level(∆aff ,K) from §2.2 yields no new arrangements
than simply considering those Level(Jaff) with J ⊆ ∆, irrespective of |J|

4.2.2. Extended Type D. In this subsection we consider the case ∆ = Dn. By
3.8(2), up to slopes, Cone(∆, J) with |Jc| = 2 can be one of two options. However, both
the slopes and the multiplicities of the hyperplanes are required in order to translate these
arrangements, as in 4.4, to obtain the affine versions.

The following show that, in total, if ∆ = Dn and J ⊆ ∆ with |Jc| = 2, then Level(Jaff)
is one of four affine arrangements. One is the classical affine A2 arrangement, and two
(4.15 and 4.17) are the classical affine B2 arrangement, albeit with different Z2-lattices.
The other, namely 4.16, is similar to affine B2, but is mildly different.

Proposition 4.7. Let ∆ = Dn, and J ⊆ ∆ with |Jc| = 2. Then Level(Jaff), together
with its class group action, is one of the four arrangements on the right hand side of the
following table. The middle column shows the restricted roots that translate to give the
affine arrangement, and thus J is mutation equivalent to some I for which Cone(∆, I) has
these restricted roots.

Family Name Finite Arrangement Affine Arrangement

D1 {10, 01, 11} 4.18
D2 {10, 01, 11, 21} 4.15
D3 {10, 01, 11, 22, 21} 4.16
D4 {01, 10, 20, 11, 22, 21} 4.17

Proof. The key point is that, inspecting the proof of 3.8(2), we see that J is mutation
equivalent to some I for which Cone(∆, I) is given by one of the four sets of restricted roots
listed. Our method of calculating the affine arrangement via wall crossing in 4.2 shows
that Level(Jaff) = Level(Iaff), i.e. the affine arrangements are the same. As in 4.4, we
can then calculate Level(Iaff) by translating the finite hyperplanes listed, together with
multiplicity. This results in 4.18, 4.15, 4.16, and 4.17 respectively, where in each case the
translation is visually illustrated. �

Remark 4.8. The ‘up to mutation’ in the statement and proof of 4.7 is important,
but subtle. Indeed, Cone(∆, J) may be given by a different set of restricted roots than
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those listed, but after translation these still give the affine arrangement listed. Such a

phenomena already appears in 4.4, where given the representative J = of the
mutation class, both the affine fundamental region and the finite hyperplane arrangement
are illustrated below, with the fundamental region being exactly as in 4.4.

1

1

1
2

Hyperplanes

01
11
21

10, 20

Note that, in 4.4, the affine representative sits in the bottom left triangle of this
fundamental region. Also, we remark that the bottom horizontal line on the left hand side
corresponds to the vertical y-axis in the above arrangement, and the leftmost diagonal on
the left hand side corresponds to the x-axis.

On the other hand, the representative can be obtained as a single wall cross-
ing. In contrast, its fundamental region and finite hyperplane arrangement (ignoring the
extended vertex) are illustrated in 4.16. Both of these are mildly different to the fun-
damental region and the finite hyperplane arrangement above, however, being mutation
equivalent, they give the same tiling. Visually, the two fundamental regions are as follows.

y
x

x

y

4.2.3. Extended Type E6. In the previous subsections, Level(Jaff) with J ⊆ An, Dn

and |Jc| = 2 has yielded only four affine arrangements. Many more arise from extended
type E, and in this subsection we consider the case ∆ = E6, and K ⊆ ∆aff with |∆aff\K| =
3. In this case, it turns out to be easiest to first classify the affine mutation classes, then
in each case to calculate the associated affine arrangement.

As symmetries of the graph do not effect the arrangements, in fact it suffices to classify
the mutation classes, up to symmetries.

Proposition 4.9. Up to symmetries, there are five mutation classes for K ⊆ ∆aff ,
when ∆ = E6 and |∆aff\K| = 3. Four of these can be realised via J ⊆ ∆, and one cannot.
The table below summarises a representative of each mutation class, the number in each,
and in the case when the class arises from ∆, where the associated affine arrangement
may be found.

Rep.
Label E6,1 E6,2 E6,3 E6,4 E6,5 E6,6

|Class| 15 1 1∗ 6 9 1
Arr. 4.19 4.18 4.20 4.15 4.16 x
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The star denotes a mutation class that is not closed under symmetries. Thus E6,3 repre-
sents any of three singleton mutation classes obtained from the representative above, and
its image under the action of Z3.

Proof. Via the wall-crossing rule 1.16, it is very easy to check, in each case, that
the number in the mutation class is as claimed. Since there are three versions of E6,3, in
total there are 15 + 1 + 3 + 6 + 9 + 1 = 35 diagrams in the above mutation classes. Since(

7
3

)
= 35, the above classes must be them all. In each case, the affine arrangement can

be calculated by using either the method in 4.2, or the translation method in 4.4. This is
briefly summarised in each of the corresponding linked examples. �

Remark 4.10. The method in 4.2 can be used to calculate Level(∆aff ,K) for the
family E6,6. This gives the honeycomb tiling, but where the numbers on the intersection
points (as in 4.3) are always 2. Hence, ignoring the Z2 lattice, this is 4.18.

4.2.4. Extended Type E7. This subsection considers the case ∆ = E7, and K ⊆
∆aff with |∆aff\K| = 3. Again, it turns out to be easiest to first classify the affine mutation
classes, then in each case to calculate the associated affine arrangement. The symmetry
group is now Z2.

Proposition 4.11. Let ∆ = E7, and K ⊆ ∆aff with |∆aff\K| = 3. Up to symmetries
of the graph, the table below summarises the mutation classes, a representative of each,
the number in each, and in the case when the class arises from ∆, where the associated
affine arrangement may be found.

Rep.
Label E7,1 E7,2 E7,3 E7,4 E7,5 E7,6

|Class| 3 10 1∗ 8 5∗ 11
Arr. 4.16 4.19 4.20 4.22 4.23 4.25

Rep.
Label E7,7 E7,8 E7,9 E7,10 E7,11

|Class| 1∗ 2∗ 2 3 1
Arr. 4.17 4.21 4.15 x x

Again, ∗ denotes a mutation class that is not closed under symmetries, so each class
starred represents two classes, of the size stated.

Proof. The proof is the same as 4.9: via the wall-crossing rule 1.16, it is very easy to
check, in each case, that the number in the mutation class is as claimed. As each starred
class is doubled, since it represents two classes, the total number in the classes above is
56, which equals

(
8
3

)
. Hence these are the only classes. Again, in each case, the affine

arrangement can be calculated either by using 4.2 or 4.4. �

Remark 4.12. As in 4.10, ignoring the Z2-lattice, the family E7,11 gives the affine B2

arrangement 4.15, and the family E7,10 gives the arrangement 4.16.

4.2.5. Extended Type E8. This subsection considers the case ∆ = E8, and K ⊆
∆aff with |∆aff\K| = 3. As above, we first classify the affine mutation classes, then in each
case to calculate the associated affine arrangement. The symmetry group is now trivial.

Proposition 4.13. Let ∆ = E8, and K ⊆ ∆aff with |∆aff\K| = 3. The table below
summarises the mutation classes, a representative of each, the number in each, and in the
case where the class arises from ∆, where the associated affine arrangement may be found.

Rep.
Label E8,1 E8,2 E8,3 E8,4 E8,5 E8,6

|Class| 1 1 2 5 4 7
Arr. 4.17 4.20 4.21 4.23 4.22 4.24
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Rep.
Label E8,7 E8,8 E8,9 E8,10 E8,11

|Class| 5 12 11 15 10
Arr. 4.29 4.27 4.28 4.26 4.30

Rep.
Label E8,12 E8,13 E8,14 E8,15 E8,16 E8,17

|Class| 2 1 1 1 1 5
Rep. x x x x x x

Proof. The proof is the same as 4.11: via the wall-crossing rule 1.16, it is very
easy to check, in each case, that the number in the mutation class is as claimed. The
total number in the classes stated above is 84, which equals

(
9
3

)
, hence these are the only

mutation classes. Again, in each case, the affine arrangement can be calculated either by
using 4.2 or 4.4. �

Remark 4.14. As in 4.10 and 4.12, using the method in 4.2 if we ignore the Z2-
lattices, the families E8,12, E8,13, E8,14, E8,15, E8,16, and E8,17 give the arrangements 4.21,
4.15, 4.15, 4.20, 4.20 and 4.23 respectively.

4.2.6. Summary of Notation and Tables. Using the above subsections, the fol-
lowing sixteen pages summarise the classification of arrangements in R2 obtained as
Level(Jaff) for some J ⊆ ∆, with ∆ ADE Dynkin.

In each case, we draw the arrangement equipped with the Z2-lattice explained in
4.3. We will also draw a fundamental domain in each case. As in 4.8, the fundamental
domain depends on the choice of representative, and so in each case we also state the
representative for the fundamental domain we choose. This representative will always
correspond to the bottom left triangle, in the chamber marked with a dot in the following
picture. From that chamber, we extend out arrows until they reach lattice points. The
fundamental region, shown on the right, is the rectangle enclosing this.
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Example 4.15. The families D2, E6,4, and E7,9.

Affine arrangement:

Made of: 8-gons, 4-gons. As an abstract arrangement, this is affine B2.

1

1

1
1

Hyperplanes

01
11
21

10

Fundamental domain representatives: , respectively.
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Example 4.16. The families D3, E6,5, and E7,1.

Affine arrangement:

Made of: 8-gons, 6-gons, 4-gons.

1

2

1
1

Hyperplanes

01
11, 22

21

10

Fundamental domain representatives: , respectively.
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Example 4.17. The families D4, E7,7, and E8,1.

Affine arrangement:

Made of: 8-gons, 4-gons. Same arrangement as 4.15, but the Z2-lattice is different.

1

2

1
2

Hyperplanes

01
11, 22

21

10, 20

Fundamental domain representatives: , respectively.
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Example 4.18. The families A, D1, and E6,2.

Affine arrangement:

Made of: 6-gons. This is affine A2.

1

1

1

Hyperplanes

01
11

10

Fundamental domain representative: .
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Example 4.19. The families E6,1 and E7,2.

Affine arrangement:

Made of: 10-gons, 6-gons, 4-gons.

1

1

1 1 2

Hyperplanes

01
11
21
31

10, 20

Fundamental domain representatives: and respectively.
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Example 4.20. The families E6,3, E7,3, and E8,2.

Affine arrangement:

Made of: 12-gons, 6-gons, 4-gons. This is affine G2.

1

1
1

1 1 1

Hyperplanes

01
11
32
21
31

10

Fundamental domain representatives: , , and respectively.
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Example 4.21. The families E7,8 and E8,3.

Affine arrangement:

Made of: 12-gons, 8-gons, 6-gons, 4-gons.

1

2
1

2 1 2

Hyperplanes

01
11, 22

32
21, 42

31

10, 20

Fundamental domain representatives: , and respectively.
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Example 4.22. The families E7,4 and E8,5.

Affine arrangement:

Made of: 12-gons, 6-gons, 4-gons.

1

1
1

1 1 2

Hyperplanes

01
11
32
21
31

10, 20

Fundamental domain representatives: , and respectively.
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Example 4.23. The families E7,5 and E8,4.

Affine arrangement:

Made of: 12-gons, 8-gons, 6-gons, 4-gons.

1

1

2 11 2

Hyperplanes

01
11

21, 42
31
41

10, 20

Fundamental domain representatives: , and .
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Example 4.24. The family E8,6.

Affine arrangement:

Made of: 12-gons, 8-gons, 6-gons, 4-gons.

1

1

2 11 3

Hyperplanes

01
11

21, 42
31
41

10, 20, 30

Fundamental domain representative: .
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Example 4.25. The family E7,6.

Affine arrangement:

Made of: 12-gons, 8-gons, 6-gons, 4-gons.

1

1

1 11 3

Hyperplanes

01
11
21
31
41

10, 20, 30

Fundamental domain representative: .
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Example 4.26. The family E8,10.

Affine arrangement:

Made of: 16-gons, 12-gons, 8-gons, 6-gons, 4-gons.

1

1

1 2111 4

Hyperplanes

01
11
21

31, 62
41
51
61

10, 20, 30, 40

Fundamental domain representative: .
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Example 4.27. The family E8,8.

Affine arrangement:

Made of: 16-gons, 10-gons, 8-gons, 6-gons, 4-gons.

1

1

21211 2

Hyperplanes

01
11

21, 42
52

31, 62
41
51

10, 20

Fundamental domain representative: .
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Example 4.28. The family E8,9.

Affine arrangement:

Made of: 16-gons, 8-gons, 6-gons, 4-gons.

1

1

11111 3

Hyperplanes

01
11
21
52
31
41
51

10, 20, 30

Fundamental domain representative: .
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Example 4.29. The family E8,7.

Affine arrangement:

Made of: 16-gons, 8-gons, 6-gons, 4-gons.

1

1
1

2111 2

Hyperplanes

01
11
32

21, 42
52
31
41

10, 20

Fundamental domain representative: .
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Example 4.30. The family E8,11.

Affine arrangement:

Made of: 16-gons, 12-gons, 10-gons, 8-gons, 6-gons, 4-gons.

1

1
2

3121 3

Hyperplanes

01
11, 22

32
21, 42, 63

52
31, 62

41

10, 20, 30

Fundamental domain representative: .
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CHAPTER 5

Classical Tilting Modules of Contracted Preprojective
Algebras

In this chapter we introduce contracted preprojective algebras ΓJ, and then describe
their classical tilting modules using the combinatorics of J-chambers from the previous
sections. These classical tilting modules have a partial order, which can be described
using the Coxeter combinatorics of Part 1. We exploit this in §5.7 to prove that ΓJ
carries the action of the fundamental group π1(Jaff), which generalises the braiding of
spherical twists of Seidel–Thomas. More generally, we construct a representation of the
corresponding infinite groupoid.

5.1. Contracted Preprojective Algebras

Let Q = (Q0, Q1) be a quiver with underlying graph ∆, and Q the double quiver of
Q. Let Π be the (complete) preprojective algebra of ∆, that is the complete path algebra
of Q, modulo the closure of the ideal generated by the element

∑

a∈Q1

(aa∗ − a∗a).

For each vertex i ∈ ∆, we write ei for the corresponding idempotent of Π. Subsets
J ⊆ ∆ can be identified with idempotents of Π which are sums of e1, . . . , en, and we use
the convention that

eJ := 1−
∑

j∈J
ej .

Definition 5.1. For any subset J ⊆ ∆, we call ΓJ := eJΠeJ the contracted preprojec-
tive algebra associated to J.

The aim of this section is to understand, for every J ⊆ ∆, classical tilting ΓJ-modules
in terms of elements of Cham(∆, J). For i ∈ ∆, let Ii := 〈1− ei〉 be the two-sided maximal
ideal of Π generated by 1− ei. For w ∈W∆ with reduced expression w = si1 . . . si` , recall
that the ideal Iw of Π is defined by

Iw := Ii1 . . . Ii` .

This is independent of a choice of reduced expression [BIRS]. By convention I1 = Π.
The aim of this chapter is to prove the following result.

Theorem 5.2. Let ∆ be a non-Dynkin graph without loops, and Π the preprojective
algebra of ∆. Let J be a strongly Dynkin subset of ∆.

(1) There is a map
Cham(∆, J)→ tilt ΓJ

given by (x, J) 7→ eJIxeJ .
(2) Wall crossing is compatible with mutation, that is, if ωi(x, J) = (y, J ′), then

νi(eJIxeJ) = eJIyeJ′ .
(3) The tilting order is the reflection of the weak order. Namely, if ωi(x, J) = (y, J ′),

then eJIxeJ > eJIyeJ′ if and only if x < y.
(4) If ∆ is extended Dynkin, then the above map Cham(∆, J)→ tilt ΓJ is a bijection,

and the exchange graph of tiltΠJ is connected.

59



60 5. CLASSICAL TILTING MODULES OF CONTRACTED PREPROJECTIVE ALGEBRAS

Corollary 5.3. Let ∆ be a Dynkin graph, J ⊂ ∆aff , with contracted preprojective
algebra ΓI. Then the following assertions hold.

(1) There exist bijective maps

ptilt ΓI
∼−→ L+

I and C: tilt ΓI
∼−→ Cham(∆aff , I).

Moreover, if T = T1 ⊕ · · · ⊕ Tn ∈ tilt ΓI is basic with indecomposable Ti, then
T1, . . . , Tn is a basis of C(T ) ∩ LI.

(2) If 0 /∈ I, then the maps above restrict to bijective maps

ptilt(ΓI, ΓIe0)
∼−→ L+

∆,I and C: tilt(ΓI, ΓIe0)
∼−→ Cham(∆, I).

In particular, # tilt(ΓI, ΓIe0) <∞.
(3) Let T,U ∈ tilt ΓI. Then T and U are mutation of each other if and only if C(T )

and C(U) are wall crossing of each other.

The proof will be split into a series of lemmas; parts (1), (2) and (3) will be proved
at the end of §5.4, and part (4) will be proved in §5.5. All results need properties of the
preprojective algebras Π, and the ideals Ix, which we briefly review in the next subsection.

5.2. Reminder on Tilting Modules

Let A be a ring. For an A-module X, we write addX for the category of A-modules
which are direct summands of finite direct sums of copies of X.

Definition 5.4. T ∈ modA is called tilting if the following are satisfied.

(1) There exists an exact sequence 0→ P1 → P0 → T → 0 with P0, P1 ∈ addA
(2) There exists an exact sequence 0→ A→ T 0 → T 1 → 0 and T 0, T 1 ∈ addT .
(3) Ext1

A(T, T ) = 0.

T is called partial tilting if it satisfies (1) and (3). Write ptiltA for the set of isomor-
phism classes of (not necessarily basic) partial tilting A-modules, and tiltA for the set of
isomorphism classes of basic tilting A-modules.

If T ∈ tiltA, then it is very well-known that A and EndA(T ) is derived equivalent,
via the functor RHomA(T,−).

Let Λ be a noetherian ring, and X,Y ∈ mod Λ. A morphism f : X ′ → Y is called a
right addX-approximation of Y if X ′ ∈ addX and the map

f : HomΛ(X,X ′)→ HomΛ(X,Y )

is surjective. It is called right minimal if each morphism g : X ′ → X ′ satisfying f = fg is
an automorphism. A right addX-approximation which is right minimal is called a minimal
right addX-approximation. Dually, we define a (minimal) left addX-approximation.1

It is basic that Y has a right (respectively, left) addX-approximation if and only
if HomΛ(X,Y ) is finitely generated as an EndΛ(X)-module (respectively, EndΛ(Y )op-
module). This condition is automatically satisfied if Λ is a module-finite algebra over
a commutative noetherian ring. More strongly, if Λ is a module-finite algebra over a
commutative noetherian complete local ring, then each Y ∈ mod Λ has a minimal right
(respectively, left) addX-approximation.

The following result is basic (see e.g. [IR, 5.2]).

Proposition 5.5. Let A be a ring and T = X ⊕ U a tilting A-module.

(1) Suppose 0 → X
f−→ U ′ → Y → 0 is an exact sequence where f is a left addU -

approximation of X, and proj.dimAY ≤ 1. Then Y ⊕ U is a tilting A-module.

(2) Suppose 0→ Y → U ′
f−→ X → 0 is an exact sequence where f is a right addU -

approximation of X. Then Y ⊕ U is a tilting A-module.

1A right (respectively, left) addX-approximation is often called an addX-precover (respectively, addX-
preenvelope).
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If either case occurs, we write νX(T ) := Y ⊕U , and call it the tilting mutation of T at
X. Now recall that A-modules X and Y are called additively equivalent if addX = addY
holds; we write tiltA for the set of additive equivalence classes of tilting A-modules. For a
ring A and T ∈ tiltA, we assume that EndA(T ) is semiperfect and that T = T1⊕· · ·⊕Tn
for non-isomorphic indecomposable A-modules Ti. In this case, we write

νi(T ) := νTi
(T ).

One of the key properties of tiltA is that it has a partial order, defined by

T ≥ U =⇒ FacT ⊃ FacU.

Proposition 5.6. [AI, 2.25] Let Λ be a semiperfect ring. For T ∈ tilt Λ, take a
minimal projective resolution 0 → P1 → P0 → T → 0. Then P0 and P1 do not have
non-zero common direct summands.

The following is due to Riedtmann–Schofield [RS] in the context of finite dimensional
algebras.

Proposition 5.7. [IR, 4.2] Suppose that Λ is a module-finite algebra over a com-
mutative noetherian complete local ring. If T ∈ tilt Λ, with indecomposable summand Ti,
then there is at most one T ′i � Ti such that (T/Ti)⊕ T ′i ∈ tilt Λ.

We recall basic properties on tilting mutation which will be used later.

Proposition 5.8. If T ≥ U , then there exists exact sequences

0→ T → U0 → U1 → 0 and 0→ T1 → T0 → U → 0

with U i ∈ addU and Ti ∈ addT .

Proposition 5.9. Let A be a ring A and T,U ∈ tiltA. Assume that EndA(T ) is
semiperfect and that T = T1⊕ · · · ⊕ Tn for non-isomorphic indecomposable A-modules Ti.
If T > U , then there exists i ∈ {1, . . . , n} such that νi(T ) ≥ U .

Proof. This follows easily from [AI, 2.36] (see also [IW2, 4.4]). �

5.3. Recap on Tilting on Preprojective Algebras

Throughout this subsection ∆ will be a non-Dynkin graph without loops, and Π the
preprojective algebra of ∆. For an idempotent e ∈ Π, set Πe := Π/〈e〉.

The following singular 2-Calabi-Yau property of eΠe is known. Recall that if A is a
k-algebra, we write Aen = A⊗k A

op.

Proposition 5.10. Suppose that ∆ is a non-Dynkin graph without loops, and let e be
an idempotent of Π such that dimk(Πe) <∞. There is a functorial isomorphism

RHomeΠe(X,Y ) ∼= DRHomeΠe(Y,X[2])

for all X ∈ Kb(proj eΠe) and Y ∈ Db
fd eΠe(Mod eΠe).

Proof. It is well-known (e.g. [K2]) that Π is a 2-Calabi-Yau algebra, that is, Π ∈
perΠen and RHomΠen(Π,Πen) ∼= Π[−2] in D(ModΠen). Our assumption dimk(Πe) < ∞
impies that eΠe is a singular 2-Calabi-Yau algebra, that is,

(5.3.A) RHom(eΠe)en(eΠe, (eΠe)en) ∼= Π[−2]

in D(Mod(eΠe)en) by [AIR, Remark 2.7], noting that the assumption (A2) there is not
used in the proof.

As is then standard, the assertion follows from (5.3.A) using an identical argument as
in the proof of [K, 4.1], where our assumption X ∈ Kb(proj eΠe) replaces the smoothness
assumption of [K]. �

Lemma 5.11. Suppose that ∆ is a non-Dynkin graph without loops. For a subset
J ⊆ ∆, let e =

∑
j∈J ej = 1− eJ. Then for any i ∈ J, the following statements hold.
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(1) Πe−eiei ∼= Πe⊗eΠe Si as Π-modules.
(2) eiΠe−ei ∼= Sop

i ⊗eΠe eΠ as Πop-modules.

Proof. We only prove (1), since (2) is the dual. Since Si = eΠe−eiei as (eΠe)-
modules, it follows that

Πe⊗eΠe Si = Πe⊗eΠe eΠe−eiei =
Πei

Πe〈e− ei〉ei
= Πe−eiei. �

Lemma 5.12. Suppose that ∆ is a non-Dynkin graph without loops, and let e be an
idempotent of Π such that dimk(Πe) <∞.

(1) If X is a (eΠe)-submodule of eΠ with proj.dimeΠeX < ∞, then necessarily
proj.dimeΠeX ≤ 1.

(2) If Y is a finite dimensional (eΠe)-module, then
(a) dimk(Πe⊗eΠe Y ) <∞.
(b) ExtteΠe(Y, eΠ) = 0 for t = 0, 1.

Proof. (2) For any simple (eΠe)-module Si, by 5.11 Πe ⊗eΠe Si = Πe−eiei, which
is finite dimensional since Πe is by assumption. Therefore, if Y is a finite dimensional
(eΠe)-module, then so is Πe⊗eΠe Y . Thus

RHomeΠe(Y, eΠ) = RHomΠ(Πe
L
⊗eΠe Y,Π)

= DRHomΠ(Π,Πe
L
⊗eΠe Y [2])(by 5.10)

= D(Πe
L
⊗eΠe Y )[−2].

Taking cohomology, it follows that for t = 0, 1

ExtteΠe(Y, eΠ) = Ht−2(D(Πe
L
⊗eΠe Y )) = DH2−t(Πe

L
⊗eΠe Y ) = 0,

since Hi(Πe
L
⊗eΠe Y ) = 0 for all i > 0.

(1) Since proj.dimeΠeX <∞, we have

Ext2
(eΠe)op(X,Si)

5.10
= DHom(eΠe)op(Si, X) = 0,

where the last equality holds by (2) since X is a submodule of eΠ. By the existence of a
minimal projective resolution of X, the result follows. �

We next recall some basic properties of the ideals Ix of Π.

Lemma 5.13. Suppose that ∆ is a non-Dynkin graph without loops, and let x, y ∈W∆.

(1) If `(xy) = `(x) + `(y) holds, then we have Ixy = IxIy. Moreover

Iy ∼= HomΠ(Ix, Ixy) and Ix ∼= HomΠop(Iy, Ixy).

via a 7→ (b 7→ ba) and a 7→ (b 7→ ab) respectively.
(2) `(six) = `(x) + 1 if and only if IiIx ( Ix if and only if HomΠ(Ix, Si) 6= 0 if and

only if Ext1
Π(Ix, Si) = 0 if and only if Ext1

Π(Si, Ix) = 0.
(3) `(six) = `(x)− 1 if and only if IiIx = Ix if and only if HomΠ(Ix, Si) = 0 if and

only if Ext1
Π(Ix, Si) 6= 0 if and only if Ext1

Π(Si, Ix) 6= 0.
(4) If `(six) = `(x) − 1, then Isix is maximum among left ideals I of Π satisfying

the following condition.
• I ⊃ Ix and any composition factor of the Π-module I/Ix is Si.

Proof. (1) This is shown in [BIRS, Part II].
(2)(3) The first equivalence is [BIRS, III.1.10]. The second one is clear. The third is
basic in tilting theory. The fourth follows from 5.10.
(4) Since `(si(six)) = `(x) = `(six) + `(si) holds, there is an isomorphism Isix

∼=
HomΠ(Ii, Ix), a 7→ (b 7→ ba) by (1). Thus Isix = {a ∈ Π | Iia ∈ Ix} holds, the as-
sertion follows. �
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The following properties of IwJwJ+i
play a key role. Recall eJ = 1−∑j∈J ej =

∑
i/∈J ei.

Proposition 5.14. Suppose that ∆ is a non-Dynkin graph without loops, and let
J ⊆ ∆. For i ∈ Jc such that J + i is Dynkin, let j := ιJ+i(i) and x0 := wJwJ+i.

(1) We have 〈eJ〉 = IwJ
and 〈eJ − ei〉 = IwJ+i

.
(2) Ix0

⊃ 〈eJ − ei〉 and 〈eJ〉Ix0
= 〈eJ − ei〉.

(3) Ix0
is maximum among left ideals I of Π satisfying the following condition.
• I ⊃ 〈eJ−ei〉 and Si is not a composition factor of the Π-module I/〈eJ−ei〉.

(4) Ix0
is maximum among right ideals I of Π satisfying the following condition.
• I ⊃ 〈eJ − ei〉, and furthermore Sj is not a composition factor of the Πop-

module I/〈eJ − ei〉.
(5) We have Ix0

(eJ − ei) = Π(eJ − ei) = 〈eJ − ei〉(eJ − ei) and Ix0
ej = 〈eJ − ei〉ej.

Proof. (1) This is shown in [BIRS, III.3.5].
(2) Since `(wJ) + `(x0) = `(wJ+i),

〈eJ〉Ix0

(1)
= IwJ

Ix0

5.13(1)
= IwJ+i

(1)
= 〈eJ − ei〉.

(3) Applying 5.13(4) repeatedly, we know from (2) that any composition factor of the Π-
module Ix0

/〈eJ − ei〉 has a form Sk for some k ∈ J . In particular, Si is not a composition
factor of Ix0

/〈eJ − ei〉. Now for all k ∈ J , there is an inequality

`(skx0) = `(wJ+i)− `(skwJ) > `(wJ+i)− `(wJ) = `(x0).

Thus Ext1
Π(Ix0

, Sk) = 0 holds by 5.13(2). This implies the desired maximality.
(4) Since Ix0

= IwJ′+jwJ′ holds by 1.2(3), the assertion is dual to (3).

(5) Since Π ⊃ Ix0 ⊃ 〈eJ − ei〉, it follows that

Π(eJ − ei) ⊃ Ix0(eJ − ei) ⊃ 〈eJ − ei〉(eJ − ei) = Π(eJ − ei).
Thus the first assertion follows. Further by (4), (Ix0/〈eJ − ei〉)ej = 0 and so the second
assertion follows. �

5.4. Tilting Mutation for Contracted Preprojective Algebras

Again, throughout this section let ∆ be a non-Dynkin graph without loops, and Π the
preprojective algebra of ∆. We require the following basic result.

Proposition 5.15. Let e be an idempotent of Π with dimk(Πe) <∞, and x, y ∈W∆.

(1) If x ≤ y, then there is an isomorphism

HomΠ(Ix, Iy)→ EndeΠe(eIx, eIy), f 7→ ef.

(2) There is an isomorphism of k-algebras

Π→ EndeΠe(eIx), a 7→ (·a).

(3) There are equivalences

eIx ⊗Π − : addΠΠ→ addeΠe(eIx),

HomΠop(−, eIx) : addΠΠ → addeΠe(eIx).

Proof. (1) For injectivity, suppose that f ∈ HomΠ(Ix, Iy) satisfies ef = 0. Then
Im f is a finitely generated Πe-module, and thus dimk(Im f) <∞ by our assumption. It
follows that

HomΠ(Im f,Π) = DExt2
Π(Π, Im f) = 0

by 5.10, so HomΠ(Im f, Iy) = 0 holds. Thus f = 0.
For surjectivity, let g ∈ EndeΠe(eIx, eIy). Consider the obvious multiplication map

mx : Πe⊗eΠe eIx → Ix, then there is an exact sequence

0→ Kermx → Πe⊗eΠe eIx
mx−−→ Ix → Cokmx → 0.
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Since emx : eΠe ⊗eΠe eIx → eIx is an isomorphism, both Kermx and Cokmx are Πe-
modules, and hence by our assumption are finite dimensional. Thus HomΠ(Kermx,Π) = 0
again by 5.10, which implies that HomΠ(Kermx, Iy) = 0 and so HomΠ(Kermx, Immy) =
0.

Therefore 1⊗ g ∈ Πe⊗eΠe HomΠ(eIx, eIy) gives a commutative diagram

0 Kermx Πe⊗eΠe eIx Immx 0

0 Kermy Πe⊗eΠe eIy Immy 0

// // // //

// // // //
��

1⊗g
��

h

��

for some h ∈ HomΠ(Immx, Immy). Since Cokmx is a factor of Ix, and Ext1
Π(Ix, Iy) = 0

by [BIRS, II.1.13] since x ≤ y, it follows that Ext1
Π(Iy,Cokmx) = 0. Hence by 5.10,

Ext1
Π(Cokmx, Iy) ∼= DExt1

Π(Iy,Cokmx) = 0.

We can thus lift h to a morphism f ∈ HomΠ(Ix, Iy) fitting into a commutative diagram

0 Immx Ix Cokmx 0

0 Immy Iy Cokmy 0

// // // //

// // // //

h

��

f

��

Now ef = eh = e(1⊗ g) = g, as required.
(2) Since Π is non-Dynkin, by [BIRS, III.1.6] there is an isomorphism of k-algebras
Π→ EndΠ(Ix) given by a 7→ (·a). This gives an isomorphism of k-algebras

Π→ EndΠ(Ix), a 7→ (·a).

Thus it is enough to show that the map EndΠ(Ix)→ EndeΠe(eIx) given by f 7→ ef is an
isomorphism, which follows by (1).
(3) This is immediate from (2). �

Corollary 5.16. Let ∆ be a non-Dynkin graph without loops, and suppose J ⊆ ∆
such that eJ = 1 −∑j∈J ej satisfies dimk(ΠeJ) < ∞. Then for any J ⊆ ∆ and for any
x ∈W∆, there is an isomorphism of k-algebras

ΓJ → EndΓJ(eJIxeJ), a 7→ (·a).

Proof. By 5.15(2) there is an isomorphism Π→ EndeJΠeJ(eJIx) given by a 7→ (·a).
Applying eJ(−)eJ gives the result. �

As in the case e = 1, the following result plays an important role.

Proposition 5.17. Suppose that ∆ is a non-Dynkin graph without loops. For a subset
J ⊆ ∆ and i ∈ Jc, assume that J + i is Dynkin, and let e = eJ and j := ιJ+i(i). Then
there exists an exact sequence

0→ Πei
f−→ P → 〈e− ei〉ej → 0

of Π-modules with a left addΠ(e− ei)-approximation f .

Proof. Since Π is complete, let 0 → P ′
f−→ P → 〈e − ei〉ej → 0 be a minimal

projective resolution of the Π-module 〈e− ei〉ej . Then P ∈ addΠ(e− ei) holds. Applying
HomΠ(−,Π) to the exact sequence

0→ P ′
f−→ P → Πej → Πe−eiej → 0

gives an exact sequence

(5.4.A) HomΠ(P,Π)
f−→ HomΠ(P ′,Π)→ Ext1

Π(〈e− ei〉ej ,Π)→ 0
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of Πop-modules. Since f : HomΠ(P,Π)→ HomΠ(P ′,Π) belongs to the radical and

(5.4.B) Ext1
Π(〈e− ei〉ej ,Π) ∼= Ext2

Π(Πe−eiej ,Π)
5.10∼= D(Πe−eiej) ∼= eiΠe−ei

holds, it follows that P ′ ∼= Πei. On the other hand, multiplying (5.4.B) by e − ei on the
right,

Ext1
Π(〈e− ei〉ej ,Π(e− ei)) ∼= eiΠe−ei(e− ei) = 0.

Hence multiplying (5.4.A) by e− ei on the right gives an exact sequence

HomΠ(P,Π(e− ei)) f−→ HomΠ(P ′,Π(e− ei))→ 0,

showing that f is a left addΠ(e− ei)-approximation. The assertions follow. �

We need the following vanishing property.

Lemma 5.18. If x < xsi, then TorΠ1 (Ix,Πe−ei) = 0 holds.

Proof. Our assumptions (x, J) ∈ Cham(∆, J) and x < xsi imply x < xsk for any
k ∈ J + i. By 5.13(2), we have Ext1

Πop(Ix, Sk) = 0 for any k ∈ J + i and hence

TorΠ1 (Ix, Sk) = DExt1
Πop(Ix, Sk) = 0.

Since any composition factor of the Π-module Πe−ei has the form Sk for some k ∈ J + i,
we have Tor1

Π(Ix,Πe−ei) = 0. �

In the rest of this subsection, we will consider the following setup.

Setup 5.19. Suppose that J ⊂ ∆, and (x, J) ∈ Cham(∆, J) with J strongly Dynkin.
For i ∈ Jc, set

i′ := ιJ+i(i), J
′ := (J + i)− i′ and (y, J ′) := (xwJwJ+i, J

′) = ωi(x, J).

The following is our crucial observation.

Proposition 5.20. Under Setup 5.19, assume that x < xsi and eJIxeJ ∈ tilt eJΠeJ.
Then νi(eJIxeJ) = eJIyeJ′ , and so in particular eJIyeJ′ ∈ tilt eJΠeJ.

Proof. Recall that eJ = 1−∑j∈J ej =
∑

k∈Jc ek. Note that ΠeJ is the preprojective
algebra of type J , where J is Dynkin by assumption, and thus ΠeJ is finite dimensional.
Hence we can appeal to 5.17, under which applying eJIx ⊗Π (−) to the exact sequence

0→ Πei
f−→ P → 〈eJ − ei〉ej → 0

and using TorΠ1 (eJIx, 〈eJ − ei〉ej) = TorΠ3 (eJ(Π/Ix),ΠeJ−eiej) = 0 by dimension shifting
(twice), gives an exact sequence

(5.4.C) 0→ eJIxei
1⊗f−−−→ eJIx ⊗Π P → eJIx ⊗Π 〈eJ − ei〉ej → 0.

Moreover the map 1⊗ f is a left add(eJΠ(eJ − ei))-approximation by 5.15(3).
On the other hand, applying eJIx ⊗Π (−) to the exact sequence

0→ 〈eJ − ei〉ej g−→ Πej → ΠeJ−eiej → 0

gives an exact sequence

0
5.18
= TorΠ1 (eJIx,ΠeJ−eiej)→ eJIx ⊗Π 〈eJ − ei〉ej 1⊗g−−→ eJIxej ,

where Im(1⊗ g) = eJIx〈eJ − ei〉ej holds. Therefore eJIx⊗Π 〈eJ − ei〉ej ∼= eJIx〈eJ − ei〉ej .
Hence proj.dimeJΠeJ

(eJIx〈eJ −ei〉ej) is finite by the sequence (5.4.C), so it is at most

one by 5.12(1). By 5.5(1), it follows that

νi(eJIxe) = eJIx(eJ − ei)⊕ eJIx〈eJ − ei〉ej
= eJIxIwJwJ+i

(eJ − ei + ej)(by 5.14(5))

= eJIxIwJwJ+i
eJ′ .
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Since our assumption x < xsi implies that x < y = xwJwJ+i by 1.22(2), by 5.13(1) we
see that eJIxIwJwJ+i

eJ′ = eJIyeJ′ . The assertion follows. �

With the above, we can now prove 5.2(1)–(3).

Proof. (1) Since I1 = Π, and eJI1eJ = eJΠeJ is clearly a tilting eJΠeJ module, the
assertion follows inductively by using 5.20 and the wall crossing sequence given in 1.23(2).
(2) Certainly either x < y or x > y by 1.22(2). Replacing (x, J) by (y, J ′) as necessary,
we can assume that x < y. In this case x < xsi, again by 1.22(2). The assertion then
follows from 5.20.
(3)(⇐) If x < y, then x < xsi by 1.22(2), and so by the proof of 5.20 there is an
isomorphism eJIx ⊗Π 〈e− ei〉ej ∼= eJIx〈e− ei〉ej . Consequently, (5.4.C) becomes

0→ eJIxei
1⊗f−−−→ eJIx ⊗Π P → eJIx〈e− ei〉ej → 0.

In passing from eJIxeJ to νi(eJIxeJ), we replace the summand eJIxei with eJIx〈e−ei〉ej .
As is standard, the approximation sequence above implies that eJIxeJ > νi(eJIxe).
(⇒) By contrapositive, suppose that x ≮ y. As in the proof of (2) above, since either
x < y or y < x holds, we deduce that y < x. Exactly the same reasoning as above,
now using 5.20 applied to y < ysi, gives eJIyeJ′ > νi(eJIyeJ′) = eJIxeJ . It follows that
eJIxeJ ≯ eJIyeJ , as required. �

5.5. The Extended Dynkin Setting

The proof of the last part of 5.2, namely 5.2(4), we involve a localization argument,
and this requires Π to have a large centre; this is why we will restrict to the extended
Dynkin setting. However, most of the preparatory results in this subsection hold more
generally.

The following is a mild generalization of 5.15(2).

Lemma 5.21. Suppose that ∆ is a non-Dynkin graph without loops, and let e be an
idempotent such that dimk Πe <∞. Then for any x ∈W , the map Π→ HomeΠe(eIx, eΠ)
given by a 7→ (·a) is an isomorphism.

Proof. Applying HomeΠe(−, eΠ) to 0 → eIx → eΠ → e(Π/Ix) → 0, gives an exact
sequence

HomeΠe(e(Π/Ix), eΠ)→ HomeΠe(eΠ, eΠ)→ HomeΠe(eIx, eΠ)→ Ext1
eΠe(e(Π/Ix), eΠ)

where the two outer spaces are zero by 5.12(2). Therefore there are isomorphisms

Π
5.15(2)∼= HomeΠe(eΠ, eΠ) ∼= HomeΠe(eIx, eΠ)

and it is easy to check that the composition is given by a 7→ (·a). �

Lemma 5.22. Suppose that ∆ is a non-Dynkin graph without loops, and let e be an
idempotent such that dimk Πe <∞. Then for any chain x1 > x2 > . . . in W∆,

(1) limi dimk(Π/Ixi
) =∞,

(2) limi dimk(e(Π/Ixi
)e) =∞.

Proof. (1) By the dual of 5.13(2) there is a strictly descending chain Ix1
) Ix2

) . . .,
proving the assertion.
(2) Assume that limi dimk(e(Π/Ixi)e) <∞. Then n :=

⋂
i≥0(eIxie) satisfies n = eIxie for

i� 0 and hence dimk(eΠe/n) <∞. Using 5.12 twice,

dimk(Πe⊗eΠe (eΠe/n)) <∞ and dimk(Πe⊗eΠe (eΠe/n)⊗eΠe eΠ) <∞.
But since there is a surjective map

Πe⊗eΠe (eΠe/n)⊗eΠe eΠ� ΠeΠ/ΠnΠ,
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it follows that dimk(ΠeΠ/ΠnΠ) <∞ and hence dimk(Π/ΠnΠ) <∞. But then since

Ixi ⊃ ΠeIxieΠ ⊃ ΠnΠ,

it follows that

dimk(Π/Ixi) < dimk(Π/ΠnΠ) <∞
for all i > 0, which contradicts limi dimk(Π/Ixi

) =∞. �

The following is the key technical result of this subsection; we show below that all the
assumptions hold in the extended Dynkin case.

Proposition 5.23. Let ΓJ = eJΠeJ be a complete partial preprojective algebra of
non-Dynkin type, and J a strongly Dynkin subset of ∆. If a tilting ΓJ module T satisfies

(5.5.A) dimk

(
ΓJ∑

f∈HomΓJ
(T,ΓJ) Im f

)
<∞,

then there exists (x, J) ∈ Cham(∆, J) such that addT = add(eJIxeJ).

Proof. To ease notation, set Γ := ΓJ. Assume that T does not satisfy the desired
condition. Using 5.9 repeatedly, there is an infinite sequence

Γ > T 1 > T 2 > . . .

of tilting mutation such that T i > T for all i ≥ 0. By 5.2(2), there exists (xi, J
i) ∈

Cham(∆, J) such that T i = eJIxi
eJi . Then T i > T implies that

∑

f∈HomΓ (T,Γ)

Im f ⊆
∑

f∈HomΓ (T i,Γ)

Im f
5.21
= (eJIxieJi)(eJiΠeJ) ⊆ eJIxieJ

for all i. Hence

dimk

(
Γ∑

f∈HomΓ (T,Γ) Im f

)
> dimk(eJ(Π/Ixi)eJ)

for any i > 0, which contradicts the fact limi dimk(eJ(Π/Ixi
)eJ) =∞ in 5.22. �

As final preparation before 5.2(4) we require the following, which is very well-known.

Lemma 5.24. Let Π be a preprojective algebra of extended Dynkin type.

(1) The centre R of Π is a simple singularity in dimension two.
(2) Π ∼= EndR(M) for some Cohen-Macaulay R-module M .
(3) Πp is Morita equivalent to the local ring Rp for all non-maximal primes p of R.

Proof. (1) and (2) are well-known [CBH], and (3) follows since Πp
∼= EndRp

(Mp)
where Mp is a free Rp-module for all non-maximal primes. �

With the above, we now prove 5.2(4).

Proof. Again set Γ := eJΠeJ, and consider C := Γ∑
f∈HomΓ (T,Γ) Im f . By 5.23, we only

have to check that dimk C <∞.
To prove this, it suffices to show that Cp = 0 holds for any non-maximal prime ideal

p of R. Since Γp ∼= eJΠpeJ is Morita equivalent to the local ring Rp by 5.24(3), any tilting
Γp-module is a progenerator. Since tilting modules are preserved by localization, it follows
that Tp a progenerator, and so certainly

Γp =
∑

f∈HomΓp (Tp,Γp)

Im f

holds. Since HomΓ (T, Γ)p ∼= HomΓp(Tp, Γp), this implies that Cp = 0. �
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We can now use 5.2(4), in the extended Dynkin setting, to link tilting to chambers
via K-theory. As such, let ∆ be ADE Dynkin, with affine version ∆aff , and recall that Θ
is a R-vector space with basis α∗i with i ∈ ∆aff , and that L is the lattice in Θ generated
by α∗i with i ∈ ∆aff . There is a natural identification

β : K0(projΠ)
∼−→ L,

given by Πei 7→ α∗i . The following is known.

Theorem 5.25. [IR] There are natural bijections

(1) ptiltΠ
∼−→ L+ given by T 7→ β[T ].

(2) tiltΠ
∼−→ Cham(∆aff) given by T = T1 ⊕ . . .⊕ Tn 7→

∑n
i=1R>0(β[Ti]).

For any subset J of ∆aff , recall that ΘJ is the subspace of Θ spanned by α∗i with i /∈ J,
and that LJ is the lattice in ΘJ generated by α∗i with i /∈ J. Set

L+
J

:= LJ ∩ Cone(∆aff , J).

As above, set eJ = 1−∑j∈J ej , and ΓJ = eJΠeJ, where Π is the preprojective algebra of
type ∆aff . There is a natural identification

βJ : K0(proj ΓJ)
∼−→ LJ,

given by ΓJei 7→ α∗i . The following extends 5.25, and will be used later.

Theorem 5.26. For any subset J of ∆aff , there are natural bijections

(1) ptilt ΓJ
∼−→ L+

J given by T 7→ βJ[T ].

(2) tilt ΓJ
∼−→ Cham(∆aff , J) given by T = T1 ⊕ . . .⊕ Tn 7→

∑n
i=1R>0(βJ[Ti]).

Proof. By 5.25, there is an isomorphism β : K0(projΠ)
∼−→ L given by Πei 7→ α∗i .

For any x ∈W and i ∈ ∆aff , we have β[Ixei] = xα∗i .
Every element of tilt ΓJ is isomorphic to eJIxeK for some (x,K) ∈ Cham(∆aff , J), using

5.2(4). Since eJIxeK =
⊕

i/∈K eJIxei, and βJ[eJIxei] = xα∗i holds via the commutative
diagram

K0(projΠ)

K0(proj ΓJ)

L

LJ

we see that [−] ◦β takes elements of tilt ΓJ to the primitive vectors defining the chambers
Cham(∆, J). Thus (2) holds. Part (1) follows immediately, since by Bongartz completion,
every partial tilting module is the summand of a (not necessarily basic) tilting module. �

5.6. Orders, Paths and Basepoints

As notation, recall for a fixed J ⊆ ∆aff , by 5.2 there is a bijection

Cham(∆aff , J)→ tilt ΓJ

given by (x, J) 7→ eJIxeJ , under which wall crossing corresponds to mutation.

Example 5.27. Continuing Example 1.11, for the A3 Dynkin diagram consider the
choice J = , viewed in affine A3 as J = , where green is the extended vertex. As
in 4.1, provided that we do not mutate at the extended vertex, then the wJwJ+i wall
crossing rules are not effected by this additional vertex, so the calculation 1.11 can be
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transferred to describe part of the affine tiling. This is illustrated below.

(1, )

(s1, )

(s1s2s3, )

(s1s2s3s1s2, )

(s2s3s1s2, )

(s2s3, )
←→

(1, )(s1, )

(s1s2s3,

)

(s1s2s3s1s2,

)

(s2s3s1s2,

)

(s2s3, )

It is easier to draw the left hand side, but to emphasise that we are working with the
preprojective algebra of the extended Dynkin quiver, we will always label the chambers
there with the extra green extended vertex. Doing this, the map Cham(∆aff , J) → tilt ΓJ
restricted to Cham(∆, J) then sends

(1, )

(s1, )

(s1s2s3, )

(s1s2s3s1s2, )

(s2s3s1s2, )

(s2s3, )
7→

ΓJ

e Is1
e

e Is1s2s3
e

e Is1s2s3s1s2e

e Is2s3s1s2
e

e Is2s3
e

We now decompose the elements of tilt ΓJ into smaller pieces. For the case J = ∅, in
which case ΓJ = Π, this was achieved in [BIRS]; see also [SY, 2.13(2)]. Indeed, when
J = ∅ then every tilting module has the form Iw for some w ∈ W , and any choice of
reduced expression w = sin ◦ . . . ◦ si1 induces isomorphisms

Iw ∼= Isin . . . Isi1
∼= Isin⊗L

Π ◦ . . . ◦ ⊗L
ΠIsi1 .

The purpose of this section is to replicate the above decomposition in the setting of tilting
modules for an arbitrary ΓJ.

Recall that, for any hyperplane arrangement, the length of a positive path is the
number of simple wall crossings that it traverses.

Lemma 5.28. If β : (x1, J1) → (x2, J2) is a positive path in Cham(∆aff , J), then the
following are equivalent.

(1) β is reduced, that is, it does not cross any hyperplane twice.
(2) β is minimal, that is, there is no path (x1, J1)→ (x2, J2) of shorter length.

Proof. This is a property of locally finite arrangements; see e.g. [S, Lemma 2]. �

Lemma 5.29. Suppose that β : (1, J)→ (x, J) is a reduced path, and consider a simple
wall crossing ωi : (x, J)→ (y, J ′). The following are equivalent

(1) ωi ◦ β is reduced.
(2) ωi ◦ β is minimal.
(3) x < y.
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Proof. Write H for the hyperplane separating (x, J) and (y, J ′). Since β is reduced,
ωi ◦ β is not reduced if and only if β also crosses H.
(1)⇔(2) is 5.28.
(3)⇔(1) By 5.2(3), y < x if and only if eJIyeJ > eJIxeJ′ . Passing to K-theory classes
using 5.26, an argument similar to [HW1, B.4] shows that eJIyeJ > eJIxeJ′ if and only
if the chamber (y, J ′) is on the same side of H as [ΓJ] ∈ (1, J). Clearly this holds if and
only if ωi ◦β crosses H at least twice, which holds if and only if β crosses H. By the top
paragraph of the proof, this holds if and only ωi ◦ β is not reduced. �

Consider a positive reduced path α : (1, J)→ (x, J), and then decompose α into simple
wall crossings

α : (1, J) = (x1, J1)
ωi1−−→ (x2, J2)

ωi2−−→ . . .
ωin−−−→ (xn+1, Jn+1) = (x, J) in Cham(∆aff , J)

By 5.29, necessarily x1 < x2 < . . . < xn+1. Recall from 1.16 that every simple wall
crossing is of the form

ωit(xt, Jt) := (xtwJt
wJt+it , Jt + it − ιJt+it(it)).

Thus, under each wall crossing (xt, Jt)→ (xt+1, Jt+1), we can obtain xt+1 from xt by post
multiplying by wJt

wJt+it
.

Consider now instead Cham(∆aff , Jt), which is in bijection with tilt ΓJt
. From (1, Jt) ∈

Cham(∆aff , Jt), we can still wall cross ωit , which now becomes

ωit : (1, Jt)→ (wJt
wJt+it , Jt+1) in Cham(∆aff , J).

Applying 5.2 to Jt, we obtain eJt
Iw

Jt
w
Jt+it

eJt+1 ∈ tilt ΓJt for all t = 1, . . . , n. For calibra-

tion, when J = ∅, all Jt = ∅, and these tilting modules are precisely Isit .
Summarising, for every decomposition of a reduced positive path α into simple wall

crossings,

α : (1, J) = (x1, J1)
ωi1−−→ (x2, J2)

ωi2−−→ . . .
ωin−−−→ (xn+1, Jn+1)

we can form eJIw
J
w
J+i1

eJ2
⊗L
ΓJ2

eJ2
Iw

J2
w
J2+i2

eJ3
⊗L
ΓJ3

. . .⊗L
ΓJn

eJn
Iw

Jn
w
Jn+in

eJn+1
. As the

derived tensor of tilting modules, this is a tilting complex. The following is the main
result of this section, which in particular asserts that this tilting complex is in fact a
tilting module, and it is independent of the decomposition of α.

Theorem 5.30. Suppose that ∆aff is extended Dynkin, and J is a subset of vertices.
Then for any decomposition of a positive reduced path α : (1, J) → (x, J) as above, there
are isomorphisms of bimodules

eJIw
J
w
J+i1

eJ2 ⊗L
ΓJ2

eJ2Iw
J2

w
J2+i2

eJ3
⊗L
ΓJ3

. . .⊗L
ΓJn

eJn
Iw

Jn
w
Jn+in

eJn+1

∼= eJIw
J
w
J+i1

eJ2
⊗ΓJ2

eJ2Iw
J2

w
J2+i2

eJ3 ⊗ΓJ3
. . .⊗ΓJn

eJnIw
Jn

w
Jn+in

eJn+1

∼= eJIxn+1
eJn+1

Proof. We proceed by induction on the length of the path α, where in the case of
length one there is nothing to prove. Hence we can assume that the result is true for paths
of smaller length, and so it suffices to prove that there are bimodule isomorphisms

eJIxneJn ⊗L
ΓJn

eJnIw
Jn

w
Jn+in

eJn+1
∼= eJIxn

eJn
⊗ΓJn

eJn
Iw

Jn
w
Jn+in

eJn+1
∼= eJIxn+1

eJn+1
.

To ease notation, set A = eJIxn
eJn

, B = eJn
Iw

Jn
w
Jn+in

eJn+1
, so that we need to prove

there are bimodule isomorphisms

(5.6.A) A⊗L
ΓJn
B ∼= A⊗ΓJn

B ∼= eJIxn+1
eJn+1

.

As above, since α is reduced, by 5.29 necessarily xn < xn+1, and thus by 5.2(3) A > νinA.
Given this last fact, as is standard (see e.g. [HW1, B.1]), it follows that

νinA
∼= A⊗L

EndΓJ
(A) νinEndΓJ(A)



5.7. THE J-CONE GROUPOID 71

as left ΓJ-modules, and further RHomΓJ(A,νinA) ∼= HomΓJ(A,νinA).
By 5.16, EndΓJ(A) ∼= ΓJ, and by definition νinEndΓJ(A) ∼= B. Note that under the

isomorphism in 5.16, the natural right action of ΓJn
on A by multiplication coincides with

the natural right action of EndΓJ(A) on A, and thus

νinA
∼= A⊗L

ΓJn
B

as left ΓJ-modules. In particular, the right hand side is only concentrated in degree zero,
so truncating in the category of bimodules establishes the first isomorphism in (5.6.A).

For the second bimodule isomorphism in (5.6.A), note first that

B = eJn
Iw

Jn
w
Jn+in

eJn+1

∼= eJnHomΠ(Ixn , Ixn+1)eJn+1(by 5.13(1))

∼= eJn
HomΓJ(eJIxn

, eJIxn+1
)eJn+1

(by 5.15(1))

∼= HomΓJ(eJIxn
eJn

, eJIxn+1
eJn+1

)

= HomΓJ(A,νinA),

and so B ∼= HomΓJ(A,νinA) via b 7→ (·b). Then, consider the composition of isomorphisms

A⊗ΓJn
B
∼−→ A⊗ΓJn

HomΓJ(A,νinA)
∼−→ νinA

where the first given by a⊗ b 7→ a⊗ (·b) above, and the second is the derived adjunction
(after noting RHomΓJ(A,νinA) ∼= HomΓJ(A,νinA) above), which is a ⊗ f 7→ f(a). The
composition is the isomorphism a⊗ b 7→ ab, which is clearly a bimodule isomorphism. �

Example 5.31. Continuing the running Example 5.27, as a consequence of 5.30, the
following diagram commutes.

Db(ΓJ)

Db(Γ )

Db(Γ )

Db(Γ )

Db(Γ )

Db(Γ )

⊗L
ΓJ

eJIs1
e

⊗L
Γ e Is2s3

e

⊗L
Γ e Is1s2

e

⊗L
Γ e Is3e

⊗L
Γ e Is1s2

e

⊗L
ΓJ

eJIs2s3e

⊗L
ΓJ

eJIs1s2s3
e

⊗
L
Γ J

eJ
Is 1

s 2
s 3

s 1
s 2
e

⊗
L Γ
J
e J

I s
2
s
3
s
1
s
2
e

5.7. The J-cone Groupoid

In this section we will re-interpret the above results in terms of Deligne groupoid
GJaff

from §2.3, and show that iterated tilts form a representation of the groupoid. As
a corollary, we obtain an action of both the finite and affine J-pure braid group on the
derived category of contracted preprojective algebras.

We observed above that under each wall crossing ωi(x, I1) → (y, I2), we can obtain
y from xt by post-multiplying by wI1

wI1+i.

Definition 5.32. Let ∆ be ADE Dynkin, and consider J ⊆ ∆.

(1) The groupoid GJaff
is defined as follows. As objects, for every chamber (x, I) ∈

Cham(∆aff , J), associate a vertex labelled Db(mod ΓI). The morphisms are gen-
erated by the simple wall crossings, where to ωi(x, I1) = (y, I2) we associate the
equivalence RHomΓI1

(eI1
Iw

I1
w
I1+i

eI2
,−).
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(2) The groupoid GJ is defined as follows. As objects, for every chamber (x, I) ∈
Cham(∆, J), associate a vertex labelled Db(mod ΓI). The morphisms are gener-
ated by the simple wall crossings, where to ωi(x, I1) = (y, I2) we associate the
equivalence RHomΓI1

(eI1
Iw

I1
w
I1+i

eI2
,−).

Example 5.33. Continuing the example 2.17, the groupoids GJaff
and GJ are obtained

from those pictures by replacing each dot with an appropriate derived category of a
contracted preprojective algebra, and each arrow by the equivalence described in 5.32.

Remark 5.34. Even although by 1.20 simple wall crossing is an involution, the
functorial version is not an involution. Indeed, even in the case J = ∅, the functor
RHomΠ(Ii,−) ◦RHomΠ(Ii,−) ∼= RHomΠ(Ii ⊗L

Π Ii,−) is not the identity, and is instead
a spherical twist. A generalisation of this, in special cases, is given in 10.2 below, however
the general description of monodromy in terms of spherical twists needs derived noncom-
mutative deformation theory in this setting; see [B1].

The following is the main result of this section.

Theorem 5.35. Suppose that ∆ is ADE Dynkin, and J ⊆ ∆. Then there are functors:

GJ → GJ

GJaff
→ GJaff

given, in both cases, by sending a vertex corresponding to a chamber labelled (x, I) to
Db(mod ΓI), and to ωi(x, I1) = (y, I2) the equivalence RHomΓI1

(eI1
Iw

I1
w
I1+i

eI2
,−)

Proof. All the work has already been done. In either case, denote the functor above
by F . It suffices to show that the relations on GJ and GJaff

in 2.16 are satisfied functorially
in GJ and GJaff

. By definition, in 2.13, it suffices to show that any positive two reduced
paths

α,β : (x, I1)→ (y, I2)

give rise to isomorphic functors F (α) ∼= F (β). This is just a relabelling trick. We can
change the labels of the chambers, indexing instead by Cham(∆aff , I1), such that both
α and β start at (1, I1), and end at (y′, I2) say. This reindexing does not effect the
wall crossing functors, and thus does not effect the functors F (α) or F (β), which are
compositions of these. The result then follows immediately from 5.30, since both F (α)
and F (β) are isomorphic to the direct functor given by RHomΓI1

(eI1Iy′eI2 ,−). �

Recall the notation π1(J) and π1(Jaff) from 2.18. By passing to vertex groups, the
following is then immediate from 5.35.

Corollary 5.36. Suppose that ∆ is ADE Dynkin, and J ⊆ ∆. Then there are group
homomorphisms such that the following diagram commutes.

π1(J)

π1(Jaff)

Auteq Db(mod ΓJ)
ϕ

ϕ̃

We will show in Part 4 that ϕ is faithful.



CHAPTER 6

Derived Classification: Dynkin Type

Throughout this chapter, let Π be the preprojective algebra of an ADE Dynkin quiver,
and for a fixed subset J ⊆ ∆, consider the corresponding contracted preprojective algebra
ΓJ := eJΠeJ. In this setting, both Π and ΓJ are finite dimensional algebras.

In this setting, since Π is self-injective, the only modules of finite projective dimension
are free. Thus Π has no classical tilting modules, and the results of the previous chapter
do not apply. The algebra Π does, however, have both silting and tilting complexes, and
its derived equivalence class is understood [AM].

In this chapter we describe two-term silting and tilting complexes for ΓJ, under the
assumption that ι(J) = J. This assumption is needed to ensure that ΓJ is also self-
injective (see 6.2 below). We establish that various silting and tilting complexes for ΓJ
can be described in terms of the intersection arrangements from Chapter 1 and in the
process, intersection arrangements from non-ADE Dynkin diagrams naturally arise. This
gives some justification to the level of generality developed in Part 1. One of the main
consequences of this chapter is that in the case ι(J) = J, the algebra ΓJ is tilting-discrete,
its derived equivalence class is finite, and we give a complete classification of all basic
members of this class.

6.1. Silting, Tilting and Folding

This chapter, and Chapter 7, will be concerned with properties of silting and tilting
complexes. We recall the following, mainly to set notation.

Definition 6.1. Let A be a ring, P = . . .→ P−1 → P0 → P1 → . . . ∈ Kb(projA).

(1) P is called two-term if Pi = 0 for all i 6= −1, 0.
(2) P is called silting if HomKb(projA)(P, P [i]) = 0 for all i > 0.
(3) P is called tilting if HomKb(projA)(P, P [i]) = 0 for all i 6= 0.

When projA is Krull–Schmidt, We write tilt·A for the set of basic tilting complexes,
2 siltA for the set of basic two-term silting complexes, and 2 tiltA for the set of basic
two-term tilting complexes.

It is a classical fact that the preprojective algebra Π of Dynkin type is self-injective
finite dimensional algebra; this corresponds to the J = ∅ case of the following. Recall the
notation ι∆ = ι from 1.2, which denotes the Dynkin involution.

Lemma 6.2. Let ∆ be ADE Dynkin and J ⊆ ∆. Then ΓJ is self-injective if and only
if ι∆(J) = J.

Proof. ΓJ is self-injective if and only if the Nakayama functor N = DHomΓJ(−, ΓJ)
preserves projectives. These are precisely the eJΠei with i ∈ ∆\J. Now

N(eJΠei) = DHomeJΠeJ(eJΠei, eJΠeJ) ∼= DHomΠ(Πei,ΠeJ) = eJDHomΠ(Πei,Π).

Since DHomΠ(−,Π) is the Nakayama functor on Π, and ι∆ is the Nakayama permutation,
DHomΠ(Πei,Π) ∼= Πeι(i). Hence N(eJΠei) ∼= eJΠeι(i), so N preserves projectives if and
only if ι(i) ∈ ∆\J for all i ∈ ∆\J. Clearly this is equivalent to ι(J) = J. �
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In what follows, we will largely restrict to the case ι(J) = J. Now recall that the
non-ADE Dynkin diagrams Bn and F4 are defined to be:

Bn
4 (n ≥ 1)

F4
4

Given any ADE Dynkin digram ∆, we now fold the diagram under the action of the
Dynkin involution to obtain the folded graph ∆f , defined using the following table.

∆ A2n−1 A2n D2n D2n+1 E6 E7 E8

∆f Bn Bn D2n B2n F4 E7 E8

There is a natural map ∆→ ∆f which induces a natural map

{J ⊆ ∆ | ι(J) = J} → {K ⊆ ∆f},
which, to set notation, sends J 7→ Jf .

Example 6.3. If J = , then Jf = , viewed as a subset of ∆f = B4.

These foldings arise naturally via the subgroup (W∆)ι = {w ∈W∆ | ι(w) = w}, where
recall from 1.2 that ι(w) = w∆ww∆. Indeed, it is easy to show that (W∆)ι = 〈ti | i ∈ ∆f〉,
where

ti =





si if i = ι(i)
sisι(i)si if there is an edge i− ι(i)
sisι(i) if there is no edge i− ι(i),

and that φ : W∆f

∼−→ (W∆)ι as groups, via φ(si) = ti (see e.g. [AM, 3.1]). Furthermore,
given any J ⊆ ∆ such that ι(J) = J, the following diagram commutes

(6.1.A)

W∆f (W∆)ι

WJf (WJ)ι

φ

∼

φ

∼

To apply this to intersection arrangements, consider the fixed subset

Cham(∆, J)ι := {(x, J) ∈ Cham(∆, J) | (x, J) = (ι(w), ι(J))}.

6.2. Main Results, and Derived Classification

The aim of this section is to prove the following result. The first part generalises
[M, AM], and the other parts [AM], who all considered the case J = ∅.

Theorem 6.4. Let ∆ be ADE, and J ⊆ ∆ with ι(J) = J. Then the following hold.

(1) There are bijections

Cham(∆, J) 2 silt ΓJ

Cham(∆, J)ι 2 tilt ΓJ.

(2) The endomorphism algebra of any irreducible left tilting mutation of ΓJ is iso-
morphic to ΓJ for some J ⊆ ∆ such that there exists (x, J) ∈ Cham(∆, J)ι. In
particular, Kb(proj ΓJ) is tilting-discrete.

(3) The derived and Morita equivalence classes of ΓJ coincide. The basic algebras in
this class are precisely {ΓJ | J ⊆ ∆, ∃ (x, J) ∈ Cham(∆, J)ι}.
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Part (1) follows from 6.7 and 6.8 below. Parts (2) and (3) are 6.12, 6.13 and 6.14
respectively.

To approach these problems, our main main new insight is to leverage the fact that
the natural restriction of scalars functor

F : Db(mod ΓJ)→ Db(modΛJ)

is spherical, where ΛJ is the contracted preprojective algebra of extended Dynkin type
(see below). Mapping the tilting theory for ΛJ, established in 5.2, under the left adjoint
of F will rather easily establish the properties for the silting and tilting modules for ΓJ.
Even in the case J = ∅, this is a considerable simplification.

Since we will be passing to the extended Dynkin diagram, to avoid a proliferation of
tildes, or affs, we now ease notation.

Setup 6.5. For the remainder of this chapter, let ∆ be ADE Dynkin, and consider
a subset J ⊂ ∆, satisfying ι(J) = J. The preprojective algebra associated to ∆ will be
written Π, and the preprojective algebra associated to ∆aff will be written Λ. Viewing
J ⊂ ∆, we will write

ΓJ = eJΠeJ,

which is a finite dimensional algebra. Viewing J as a subset of ∆aff , we will write

ΛJ = eJΛeJ,

which is 2-sCY. Denote the extended vertex by 0, so that ΓJ = ΛJ/〈e0〉.
6.2.1. Two-term silting and tilting. By 5.2, all tiling ΛJ-modules are of the form

eJIxeJ for (x, J) ∈ Cham(∆aff , J). Consider again the natural inclusion

Ψ : Cham(∆, J) ↪→ Cham(∆aff , J).

We will be interested in those tilting ΛJ-modules that arise from the image of Ψ, which
we then push down to ΓJ as follows.

Definition 6.6. Under Setup 6.5, for (x, J) ∈ ImΨ define Sx,J to be

Sx,J := ΓJ ⊗L
ΛJ

eJIxeJ .

Since proj.dimΛJ
eJIxeJ ≤ 1, the Sx,J are clearly two-term complexes of projective

ΓJ-modules. We will show in 6.7 below, using the crucial assumption ι(J) = J, that the
Sx,J are precisely the two-term silting complexes for ΓJ.

Since ι(J) = J, the kernel of the natural homomorphism ΛJ → ΓJ is given by
eJIwJw∆

eJ, by 1.20(3). Hence, it follows that

(6.2.A) 0→ eJIwJw∆
eJ → ΛJ → ΓJ → 0

is a short exact sequence of ΛJ-bimodules.

Lemma 6.7. Under Setup 6.5, the map

Cham(∆, J)→ 2 silt ΓJ

sending (x, J) 7→ Sx,J is a bijection.

Proof. We first claim that Sx,J ∈ 2 silt ΓJ for (x, J) ∈ ImΨ. Since they are clearly
two-term complexes of projectives, we just need to show that HomΓJ(Sx,J , Sx,J [1]) = 0.

To ease notation write I = eJIwJw∆
eJ from (6.2.A), and a = eJIxeJ . Applying

−⊗L
ΛJ

a to (6.2.A) gives a triangle

I ⊗L
ΛJ

a→ a→ ΓJ ⊗L
ΛJ

a

of (left) ΛJ-modules. Applying HomΛJ
(a,−) then gives an exact sequence

0→ HomΛJ
(a, ΓJ ⊗L

ΛJ
a[1])→ HomΛJ

(a, I ⊗L
ΛJ

a[2])→ 0,



76 6. DERIVED CLASSIFICATION: DYNKIN TYPE

where we have used ExtiΛJ
(a, a) = 0 for i > 0 since a ∈ tiltΛJ. Hence

HomΓJ(Sx,J , Sx,J [1]) = HomΓJ(ΓJ ⊗L
ΛJ

a, ΓJ ⊗L
ΛJ

a[1])

∼= HomΛJ
(a, ΓJ ⊗L

ΛJ
a[1])(ext/res of scalars)

∼= HomΛJ
(a, I ⊗L

ΛJ
a[2]).

We claim that this last group is zero. Indeed, we can compute this group by replacing a
by its projective resolution (which is a complex in degrees −1 and 0), and computing the
Hom space in the homotopy category. However, I⊗L

ΛJ
a[2] is given by applying I⊗ΛJ

− to

the projective resolution of a and shifting, hence is a complex in degrees −3 and −2. Thus
there can be no morphisms in the homotopy category, and so HomΓJ(Sx,J , Sx,J [1]) ∼= 0.
It follows that Sx,J ∈ 2 silt ΓJ.

To prove the bijection, we use g-vectors. By 5.3(2), for (x, J) ∈ ImΨ, each eJIxeJ
has P0 as a summand, and the g-vectors of the other summands describe the intersection
arrangement Cone(∆, J). Since tensoring ΓJ ⊗ΛJ

− sends P0 7→ 0, but maps the other
projective ΛJ-modules to projective ΓJ-modules, it is clear that the g-vectors of the Sx,J

still describe the (finite) intersection arrangement Cone(∆, J). In particular, the open
chambers of the associated Sx,J are the chambers of the finite hyperplane arrangement,
so we deduce the following.

(1) The open chambers for the varying Sx,J do not overlap. Hence the Sx,J are
mutually non-isomorphic, and so (x, J) 7→ Sx,J is injective.

(2) The closure of the union of the all the open chambers is the whole vector space.
As is now standard [DIJ], this implies that Sx,J are all elements of 2 silt ΓJ, and
thus (x, J) 7→ Sx,J is surjective. �

It is also possible to describe explicitly which of the Sx,J are tilting. Recall that N is
the Nakayama functor on ΓJ.

Proposition 6.8. Under Setup 6.5, for (x, J) ∈ ImΨ, the following are equivalent.

(1) Sx,J ∈ 2 tilt ΓJ.
(2) N(Sx,J) ∼= Sx,J .
(3) (x, J) ∈ Cham(∆, J)ι ∼= Cham(∆f , Jf).
(4) ι(x) = x.

Proof. (1)⇔(2) It is a general fact that a basic silting object is tilting iff it is fixed
by the Nakayama functor, see e.g. [A, A.4].
(2)⇔(3). As already observed in 6.2, N(eJΠei) ∼= eJΠeι(i), and so N acts on K0(proj ΓJ)
via ι. Since two-term silting complexes are determined by their g-vectors,

N(Sx,J) ∼= Sx,J ⇔ N(C(Sx,J)) ∼= C(Sx,J)⇔ ι(x(CJ)) = x(CJ)⇔ ι(x, J) = (x, J).

This holds iff (x, J) ∈ Cham(∆, J)ι.
(3)⇒(4) is clear, and (4)⇒(3) holds since both (x, J) and (x, ι(J)) = (ι(x), ι(J)) belong
to Cham(∆, J), and by 1.14(1) any chamber (y,K) is determined by y. Hence J = ι(J),
and so (x, J) ∈ Cham(∆, J)ι. �

6.2.2. Endomorphism rings of two-term tilting complexes. Leading up to
a proof of 6.4(2), we need to control the endomorphism rings of the two-term tilting
complexes established in 6.8. This requires the following two results. The first is a
general fact, since given any ring homomorphism ρ : A→ B we can consider the following
four functors ModA→ ModA, and natural transformations between them

(6.2.A)

1A HomB(B,B ⊗A −)

A⊗A − B⊗A,−

η

ρ⊗−

∼ ∼
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All morphisms are given by the obvious maps, and by inspection of these maps the diagram
commutes. Furthermore, the top map η is the unit of the restriction and extension of
scalars adjunction. The leftmost functors are exact, whilst the rightmost functors are
right exact, so we can form their left derived functors. The following is standard.

Lemma 6.9. Given a ring homomorphism A → B, consider the derived restriction
and extension of scalars adjunction, with unit η. Then the following diagram commutes

1A HomB(B,B ⊗L
A −)

A⊗A − B⊗L
A,−

η

ρ⊗−

∼ ∼

Proof. The commutativity follows formally from the commutativity of (6.2.A), to-
gether with standard properties of derived functors. �

Now, under Setup 6.5 consider a two-term tilting complex Sx,J . By 6.8, necessarily
(x, J) ∈ Cham(∆, J)ι, and so ι(J) = J . Thus, on one hand we have I := eJIwJw∆

eJ and
the short exact sequence of ΛJ-bimodules (6.2.A), which we now write as

(6.2.B) 0→ I
i−→ ΛJ

ρ−→ ΓJ → 0

On the other hand, we have I ′ := eJIwJw∆
eJ and a short exact sequence of ΛJ -bimodules

(6.2.C) 0→ I ′
i−→ ΛJ → ΓJ → 0.

In both cases, i denotes the inclusion map. In the following, to again ease notation, for
any K ⊆ ∆, set ⊗K := ⊗ΛK

.

Proposition 6.10. Under Setup 6.5, for (x, J) ∈ Cham(∆, J)ι consider a = eJIxeJ .

Then there is an isomorphism of ΛJ-ΛJ -bimodules I ⊗J a
∼−→ a⊗J I

′ such that

I ⊗J a ΛJ ⊗J a

a⊗J I
′ a⊗J ΛJ

i⊗1

1⊗i

∼ ∼ sw

commutes, where the right hand map sw sends 1⊗ a 7→ a⊗ 1.

Proof. This is just a repeated use of 5.30. Set y := x−1wJw∆ = wJw∆x
−1, and

consider b := eJIyeJ ∈ tilt ΓJ . Since (x, J) ∈ Cham(∆, J), and the longest positive minimal
path (1, J)→ (wJw∆, J) factors into positive minimal paths

(1, J)→ (x, J)→ (wJw∆, J),

it follows from the proof of 5.30 that there is a bimodule isomorphism

a⊗J b
∼−→ I

which sends f ⊗ g 7→ fg. Write µ for this multiplication map.
Similarly, since (y, J) = (wJw∆x

−1, J) ∈ Cham(∆, J), and the longest positive minimal
path (1, J)→ (y, wJw∆, J) factors into positive minimal paths

(1, J)→ (y, J)→ (wJw∆, J),

it follows from the proof of 5.30 that there is a bimodule isomorphism

b⊗J a
∼−→ I ′

which sends f ⊗ g 7→ fg. Again, write µ for this multiplication map.
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Consider also the multiplication maps µ : b ⊗J a → ΛJ and µ : a ⊗J b → ΛJ, then
it is clear by inspection that the top and the bottom squares in the following diagram
commute:

I ⊗J a ΛJ ⊗J a

a⊗J b⊗J a ΛJ ⊗J a

a⊗J b⊗J a a⊗J ΛJ

a⊗J I
′ a⊗J ΛJ

i⊗1

µ⊗1

1⊗µ

1⊗i

µ⊗1 ∼

∼ sw

1⊗µ ∼

The middle square also commutes, by inspection. Composing horizontal maps from top
to bottom gives the required statement. �

Theorem 6.11. Under Setup 6.5, if (x, J) ∈ Cham(∆, J)ι then there is an isomor-
phism of rings EndΓJ(Sx,J) ∼= ΓJ .

Proof. As in 6.10, set a = eJIxeJ . We first claim that RHomΓJ(a, I⊗J a) ∼= I ′. This
follows since

RHomΓJ(a, I ⊗J a) ∼= RHomΓJ(a, a⊗J I
′)(by 6.10)

∼= RHomΛJ
(a, a)⊗J I

′(see e.g. [IR, 2.10(2)])

∼= I ′(since a ∈ tiltΛJ)

In particular, HomΓJ(a, I ⊗J a[1]) = 0. Further, since Sx,J is tilting by 6.8, by extension
and restriction of scalars we have

HomΓJ(a, ΓJ ⊗L
J a[−1]) ∼= HomΓJ(Sx,J , Sx,J [−1]) = 0.

Using these facts, first applying − ⊗L
J a to (6.2.B), then applying HomΓJ(a,−) gives a

short exact sequence

0→ HomΓJ(a, I ⊗J a)→ HomΓJ(a,ΛJ ⊗J a)→ HomΓJ(a, ΓJ ⊗L
J a)→ 0.

Now consider the ring homomorphism ρ in (6.2.B). Set F = HomΓJ(ΓJ,−) to be restriction

of scalars, with left adjoint FLA = ΓJ ⊗L
ΛJ
−. Dropping HomΓJ from the notation, we

claim that the following diagram commutes. Indeed, the top square follows from standard
properties of adjunctions, and the second square follows from 6.9. The third square is
6.10, and the bottom square is clear; again RHomΛJ

(a, a ⊗ d) ∼= RHomΛJ
(a, a) ⊗ d ∼= d

since a is tilting.
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(a, a) (FLAa, FLAa)

(a, a) (a, FFLAa)

0 (a, I ⊗J a) (a,ΛJ ⊗J a) (a, ΓJ ⊗L
J a) 0

(a, a⊗J I
′) (a, a⊗J ΛJ)

I ′ ΛJ

FLA

η◦

(i⊗1)◦ (ρ⊗1)◦

(1⊗i)◦

i

adj

∼ ∼

∼ ∼ sw◦

∼ ∼

Since unadorned maps are the obvious ones, the middle vertical maps compose to give
a map ΛJ → (a, a) sending

λ 7→ (a 7→ a⊗ λ = aλ⊗ 1) 7→ (a 7→ 1⊗ aλ) 7→ (a 7→ aλ),

which is clearly a ring homomorphism. Hence, composing with the top right ring homo-
morphism given by FLA, we obtain a surjective ring homomorphism ΛJ → (FLAa, FLAa),
with kernel I ′. It follows that EndΓJ(FLAa) ∼= ΛJ/I

′ ∼= ΓJ , using (6.2.C). �

6.2.3. Tilting discrete and derived classification. In this subsection we finally
prove 6.4(2) and 6.4(3). In particular, we show that under Setup 6.5, the number of basic
algebras in the derived equivalence class of ΓJ is finite, and has a very precise description.

Lemma 6.12. Under Setup 6.5, the endomorphism algebra of any irreducible left tilting
mutation of ΓJ is isomorphic to ΓJ for some J ⊆ ∆ such that ∃ (x, J) ∈ Cham(∆, J)ι.

Proof. This is a simple induction on the length of T = µ(t) . . .µ(1)ΓJ, where each
µ(i) is an irreducible tilting mutation, with the case t = 1 being 6.11. Hence we can
assume that T ′ = µ(t−1) . . .µ(1)ΓJ satisfies EndΓJ(T ′) ∼= ΓK for some K ⊆ ∆ such that
∃ (z,K) ∈ Cham(∆, J)ι. But since T ′ is tilting, there exists an equivalence

Kb(proj ΓJ)
∼−→ Kb(proj ΓK)

sending T ′ 7→ ΓK . Since equivalences preserve mutation, necessarily

EndΓJ(T ) = EndΓJ(µ(t)T
′) ∼= EndΓK (µ(t)ΓK).

Applying 6.11 to ΓK , it follows that EndΓK (µ(t)ΓK) ∼= ΓJ for some J such that ∃ (y, J) ∈
Cham(∆,K)ι. Now WJzy = zWKy = zyWJ , and the element zy(CJ) ∈ Cone(∆, J) is fixed
by ι. Hence, under the bijection in 1.12, the corresponding (x, J) ∈ Cham(∆, J) is fixed
by ι, and the statement follows. �

Proposition 6.13. Under Setup 6.5, Kb(proj ΓJ) is tilting-discrete.

Proof. With 6.12 in hand, this is quite elementary. We just need to check [AM,
2.11], namely {U ∈ tilt·ΓJ | T ≥ U ≥ T [1]} is a finite set for all T obtained from ΓJ by
iterated irreducible tilting mutation. Choose such a T , then by 6.12 EndΓJ(T ) ∼= ΓJ say.
Since T is tilting, there exists an equivalence

Kb(proj ΓJ)
∼−→ Kb(proj ΓJ)

sending T 7→ ΓJ . Thus

{U ∈ tilt·ΓJ | T ≥ U ≥ T [1]} = {V ∈ tilt·ΓJ | ΓJ ≥ V ≥ ΓJ [1]}.
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But this is precisely the set of two-term tilting complexes for ΓJ , which is finite by 6.8. �
The following is the main result of this chapter.

Corollary 6.14. Under Setup 6.5, there are only finitely many basic algebras derived
equivalent to ΓJ, and these are precisely {ΓJ | J ⊆ ∆, ∃ (x, J) ∈ Cham(∆, J)ι}.

Proof. Let T ∈ tilt·ΓJ. By [AI, 2.4] there exists ` ≥ 0 such that ΓJ ≥ T [`]. Thus,
since ΓJ is tilting discrete by 6.13, T [`] can be obtained from ΓJ by iterated irreducible
left mutation [A, 3.5]. Now EndΓJ(T ) ∼= EndΓJ(T [`]), and by 6.12 this is isomorphic to
ΓJ for some J ⊆ ∆ such that ∃ (x, J) ∈ Cham(∆, J)ι. That all such ΓJ arise in the derived
equivalence class follows from 6.8 and 6.11. �



CHAPTER 7

Derived Classification: Extended Dynkin Type

Given an extended ADE Dynkin diagram ∆aff , write Π for the associated preprojective
algebra. For any subset I ⊆ ∆aff , consider the corresponding contracted preprojective
algebra ΓI = eIΠeI, where recall that eI := 1 −∑i∈I ei. For our geometric applications,
we will be most interested in the case when J ⊆ ∆, which we then view as a subset of ∆aff

and form ΓJ = eJΠeJ.
The following asserts that the derived equivalence classification of contracted prepro-

jective algebras is entirely combinatorial, and also that the derived equivalence class does
not contain anything unexpected.

Conjecture 7.1. Suppose that I ⊆ ∆aff where ∆aff is extended ADE Dynkin, and let
A be a basic ring. Then A is derived equivalent to ΓI if and only if there exists I′ ⊆ ∆aff

such that A ∼= ΓI′ , and furthermore I and I′ are iterated combinatorial mutation of each
other, up to symmetries of ∆aff .

The direction (⇐) is clear, since wall crossing gives derived equivalences (§5.6), as do
isomorphisms. The content in the conjecture is the (⇒) direction, where amongst other
things we need to produce invariants that distinguish between different mutation classes.

In this chapter we prove the conjecture in all cases, except when ∆ = Dn with n ≥ 8,
due to its combinatorial complexity. Our main result is 7.21, which also describes which
invariants are needed in order to distinguish the derived equivalence classes; this varies,
according to Dynkin type. Geometric applications are given later, in 10.8.

The above shows that the endomorphism rings of all tilting complexes for ΓI are well
behaved. For applications to stability manifolds and autoequivalences, it is in fact more
important to show that the tilting complexes themselves are controlled, and behave well.
We then make partial progress towards this in §7.4, where in 7.24 we show that the 2-term
tilting complexes for ΓI are also controlled by Coxeter-style data, in the form of the infinite
hyperplane arrangement WI from 2.8.

7.1. Derived Invariants

As in Chapter 3, in what follows we depict vertices in I by •. It will be convenient
to colour the other vertices red, which are precisely the vertices in ∆aff\ I. The ‘up to
symmetries’ part of 7.1 is important: the two choices of I given by

and

are not in the same mutation class, but one can be obtained from the other via a symmetry.
The corresponding contracted preprojective algebras are isomorphic, so in particular they
are derived equivalent.

Remark 7.2. As calibration, the case where all vertices are red corresponds to ΓI =
Π, and thus the minimal resolution. The case where only the extended vertex is red
corresponds to ΓI = R/g, and thus the singularity C2/G.

Definition 7.3. Define ∼ by I1 ∼ I2 if and only if I1 can be obtained from I2 by a
finite sequence of mutation moves and symmetries of the graph.

(1) The resulting equivalence classes are called the symmetric mutation classes.

81
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(2) A symmetric mutation class is called geometric if there is some element of the
class in which the extended node is red.

We approach 7.1 by first associating a triple of invariants to each contracted preprojec-
tive algebra ΓI. This will consist of the type of the extended Dynkin diagram to which I is a
subset, the cotype defined below, and the Grothendieck group G0(ΓI) := K0(Db(mod ΓI)).
We will see below that all three of these invariants are preserved under derived equiv-
alence, and furthermore the triple distinguishes the derived equivalence classes when
∆ ∈ {An, D4, D5, D6, E6, E8}. In other cases, we will need slightly finer invariants.

Definition 7.4. We say that the partial preprojective algebra ΓI = eIΠeI has cotype
∆1 . . .∆m if the full subgraph given by the vertices in I is a disjoint union of ∆1, . . . ,∆m.

Example 7.5. J = has cotype A1A5.

It is clear that the type and cotype are constant over all members of a given symmetric
mutation class. The Grothendieck group G0(ΓI) is also an invariant of the symmetric
mutation class, since it is invariant under derived equivalences. Our next result will show
that in fact all three invariants can be extracted from just the derived equivalence class.
This requires the following preparation, where Dsg(ΓI) = Db(mod ΓI)/Kb(proj ΓI).

Proposition 7.6. For a subset I ⊆ ∆aff , the following conditions hold.

(1) The centre Z(ΓI) is isomorphic to a Kleinian singularity, and the type of I equals
the type of this Kleinian singularity.

(2) The AR quiver of Dsg(ΓI) is the double quiver of the cotype graph.

In particular, both the type and cotype can be obtained from the derived equivalence class.

Proof. (1) It is clear that Z(ΓI) = Z(Π), and hence by 5.24 is isomorphic to a
Kleinian singularity of the given type.
(2) By 5.24, we can write Π ∼= EndR(M) with M =

⊕
i∈∆aff

Mi. Since eI := 1−∑i∈I ei,
setting MI =

⊕
i∈∆aff\IMi, it follows that

ΓI = eIΠeI ∼= EndR(MI).

Since dimR = 2, reflexive equivalence is HomR(MI,−) : CMR
∼−→ CM ΓI, where by

CM ΓI we mean those ΓI-modules that are maximal Cohen–Macaulay as an R-module.
Clearly, this equivalence sends addMI to proj ΓI, and so induces an equivalence

(CMR)/[MI] ' CM ΓI

where the Hom-spaces on the left hand side are modulo those morphisms that factor
through addMI, and the Hom-spaces on the right hand side are modulo those morphisms
that factor through proj ΓI. Furthermore, since ΓI ∼= EndR(MI) is 2-sCY by [IW, 2.22],
it follows that CM modules in the sense above are precisely the Gorenstein projective
modules. Consequently, (CMR)/[MI] ' CM ΓI ' Dsg(ΓI), and so the result follows. �

Corollary 7.7. The type, cotype and Grothendieck groups are derived invariants.

Proof. The type is a derived invariant by 7.6(1), since derived equivalences preserve
the centre [R89, 9.2]. Cotype is a derived invariant by 7.6(2), since derived equivalences
induce equivalences of singularity categories. The fact that the Grothendieck group is a
derived invariant is clear. �

The following will be used to calculate the Grothendieck group G0(ΓI), which since ΓI
has infinite projective dimension, is a priori difficult. The point is that Π has finite global
dimension, and all its simples have prescribed projective resolutions.

Proposition 7.8. For I ⊆ ∆aff , the Grothendieck group G0(ΓI) is isomorphic to
the free abelian group with basis {Pi | i ∈ ∆aff}, modulo the subgroup generated by the
projective resolution of the simple Π-modules Si with i ∈ I.
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Proof. For a partial preprojective algebra ΓJ = eJΠeJ, the standard idempotent
recollement induces equivalences

Db(mod ΓJ) ∼= Db(modΠ)/Db
mod(Π/〈1−eJ〉)(modΠ)

∼= Kb(projΠ)/Db
mod(Π/〈1−eJ〉)(modΠ).

Since 1− eJ =
∑

j∈J ej , it follows that the Grothendieck group G0(ΓI) = K0(Db(mod ΓJ))

is the quotient of the free abelian group with basis {Pi | i ∈ ∆aff} modulo the subgroup
generated by the projective resolution of the simple Π-modules Si with i ∈ J. �

The following illustrates how to use 7.8, and also demonstrates that the type and
cotype alone are not enough to distinguish symmetric mutation classes.

Corollary 7.9. Consider I1 = and I2 = . Both have type extended D5,
and cotype A3. However, ΓI1

and ΓI2
are not derived equivalent, since G0(ΓI1

) � G0(ΓI1
).

Proof. Label the vertices 1 32 4 5
6 so that I1 = {4, 5, 6} and I2 = {3, 4, 5}. By 7.8,

G0(ΓI1
) ∼= Z6/〈S4, S5, S6〉 = Z6/

(
0 0 −1 2 −1 −1
0 0 0 −1 2 0
0 0 0 −1 0 2

)
∼= Z3 ⊕ (Z/2Z).

On the other hand, again by 7.8,

G0(ΓI2
) ∼= Z6/〈S3, S4, S5〉 = Z6/

(−1 −1 2 −1 0 0
0 0 −1 2 −1 −1
0 0 0 −1 2 0

)
∼= Z3.

Since the Grothendieck groups differ, ΓI1
and ΓI2

are not derived equivalent. �

It turns out that the triple (type, cotype, G0) also does not distinguish symmetric
mutation classes, as 7.11 below demonstrates. In this case, we will use the following
more refined invariants. Any derived equivalence Db(mod ΓI)

∼−→ Db(mod ΓJ) preserves
the subcategory of perfect complexes, and also the subcategory of compactly supported
objects, so restricts to give the following commutative diagrams

Db(mod ΓI) Db(mod ΓJ)

Kb(proj ΓI) Kb(proj ΓJ)
∼

Db(mod ΓI) Db(mod ΓJ)

Db
fd(mod ΓI) Db

fd(mod ΓJ)
∼

The inclusion Db
fd(mod ΓI) ↪→ Db(mod ΓI) gives rise to a homomorphism

K0(Db
fd(mod ΓI))→ G0(ΓI)

sending [S] 7→ [S], and let HI denote the image. Writing G0(ΓI) = (
⊕

i∈∆aff
Z[Pi])/R by

7.8, then HI is the subgroup generated by {[Si] + R | i ∈ ∆aff\I}.
Similarly, the inclusion Kb(proj ΓI) ↪→ Db(mod ΓI) induces a homomorphism

K0(Kb(proj ΓI))→ G0(ΓI)

sending [P] 7→ [P]. Let KI denote the image, so that KI is the subgroup of G0(ΓI)
generated by {[Pi] + R | i ∈ ∆aff\I}.

Lemma 7.10. The subgroups HI, KI and HI+KI of G0(ΓI) are all derived invariants.

Proof. The first two statements are a consequence of the above commutative dia-
grams. The final statement follows from the first two. �

Corollary 7.11. Consider I = and I′ = . Both have type extended
D6, cotype (A1)3, and Grothendieck group Z4⊕Z/2Z. However, ΓI and ΓI′ are not derived
equivalent, since HI +KI

∼= Z4 whilst HI′ +KI′
∼= Z4 ⊕ Z/2Z, so HI +KI � HI′ +KI′ .
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Proof. Label the vertices 7 21 3 4 5
6 so that I = {1, 3, 6} and I′ = {2, 5, 6}. The type

is extended D6, and cotype of both I and I′ is clearly (A1)3. Further, using 7.8

G0(ΓI) ∼= Z7/〈S1, S3, S6〉 = Z7/
(

2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0
0 0 0 −1 0 2 0

)
∼= Z4 ⊕ (Z/2Z).

Inside this group,

HI =

〈
[ −1 2 −1 0 0 0 −1 ]
[ 0 0 −1 2 −1 −1 0 ]
[ 0 0 0 −1 2 0 0 ]
[ 0 −1 0 0 0 0 2 ]

〉
and KI =

〈
[ 0 1 0 0 0 0 0 ]
[ 0 0 0 1 0 0 0 ]
[ 0 0 0 0 1 0 0 ]
[ 0 0 0 0 0 0 1 ]

〉

By elementary transformations of integer matrices, HI +KI
∼= Z4. The verifications that

HI′ +KI′
∼= Z4 ⊕ Z/2Z is very similar. �

7.2. Symmetric Mutation Classes

In this section we determine the symmetric equivalence classes for all extended ADE
Dynkin diagrams (except Dn with n ≥ 8), since this will be required for the derived
equivalence classification in the next section. We keep the notation that elements in
I ⊂ (∆)aff are drawn black, the other vertices are drawn red, and recall that we mutate at
the red vertices.

We begin with Type A, which is elementary. By convention, A0 = ∅.
Lemma 7.12. Let ∆ = An with n ≥ 1, and consider ∆aff .

(1) If I1 and I2 are subsets of ∆aff with the same cotype, then they can connected by
a finite sequence of mutations, up to symmetries of the graph.

(2) For each i such that 0 ≤ i ≤ n, ∆aff has a unique symmetric mutation class with
cotype Ai, and this class contains

(
n+1
i

)
elements.

In particular, symmetric mutation classes are indexed by cotype.

Proof. (1) is a direct verification, using the wall-crossing rule, and (2) follows. �

Notation 7.13. In the notation (a; b) below, a is the rank, and b is the torsion. So,
for example (1; 3, 3) = Z ⊕ Z/3Z ⊕ Z/3Z, and (6; 0) = Z6. Also, in what follows we will
discount the case I = ∆aff , since in that case ΓI = 0.

Proposition 7.14. The symmetric mutation classes for extended D4 and D5 are as
follows. In each case, a representative of the class, and the number in each class is listed.
For convenience later, we also list the cotype and G0(ΓI).

∅
1, (5; 0)

A1

5, (4; 0)

(A1)
2

6, (3; 2)
A2

4, (3; 0)

(A1)
3

4, (2; 2, 2)
A3

6, (2; 2)

D4

4, (1; 2, 2)
(A1)

4

1, (1; 2, 2, 2)

∅
1, (6; 0)

A1

6, (5; 0)

(A1)
2

8, (4; 0)
(A1)

2

2, (4; 2)
A2

5, (4; 0)

A3

2, (3; 2)
A3

4, (3; 0)
(A1)

3

6, (3; 2)
A1A2

8, (3; 0)

A1A3

4, (2; 4)
D4

2, (2; 2)
(A1)

2A2

4, (2; 2)
A4

4, (2; 0)
(A1)

4

1, (2; 2, 2)

D5

4, (1; 4)
(A1)

2A3

2, (1; 2, 4)
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Furthermore, the symmetric equivalence classes for extended D6 are as follows:

∅
1, (7; 0)

A1

7, (6; 0)

(A1)
2

13, (5; 0)
(A1)

2

2, (5; 2)
A2

6, (5; 0)

A3

2, (4; 2)
A3

5, (4; 0)
(A1)

3

4, (4; 2)
(A1)

3

8, (4; 2)
A1A2

16, (4; 0)

A1A3

6, (3; 2)
A1A3

8, (3; 2)
(A1)

2A2

6, (3; 2)
(A2)

2

4, (3; 0)
D4

2, (3; 2)
A4

4, (3; 0)
(A1)

4

4, (3; 2, 2)
(A1)

4

1, (3; 2, 2)

D5

2, (2; 2)
A1D4

4, (2; 2, 2)
A2A3

4, (2; 2)
A5

4, (2; 2)
(A1)

2A3

4, (2; 2, 2)
(A1)

2A3

2, (2; 2, 2)
(A1)

5

1, (2; 2, 2, 2)

D6

4, (1; 2, 2)
(A1)

2D4

2, (1; 2, 2, 2)
(A3)

2

1, (1; 2, 4)

and the symmetric equivalence classes for extended D7 are:

∅
1, (8; 0)

A1

8, (7; 0)

(A1)
2

19, (6; 0)
(A1)

2

2, (6; 2)
A2

7, (6; 0)

A3

6, (5; 0)
A3

2, (5; 2)
(A1)

3

12, (5; 0)
(A1)

3

10, (5; 2)
A2

26, (5; 0)

A1A3

8, (4; 2)
A1A3

16, (4; 0)
A4

5, (4; 0)
(A1)

4

10, (4; 2)

(A1)
4

1, (4; 2, 2)

(A1)
2A2

12, (4; 0)
(A1)

2A2

8, (4; 2)
A2A2

8, (4; 0)
D4

2, (4; 2)

(A1)
2A3

6(3; 2)

A2A3

6, (3; 2)
A2A3

8, (3; 0)
(A1)

3A2

8, (3; 2)
A1D4

6, (3; 2)
(A1)

5

2, (3; 2, 2)

A1A4

8, (3; 0)
A5

4, (3; 0)
D5

2, (3; 2)
(A1)

2A3

4, (3; 4)
(A1)

2A3

2, (3; 2, 2)

(A1)
2A4

4, (2; 2)
A2D4

4, (2; 2)
(A3)

2

4, (2; 4)
(A3)

2

1, (2; 2, 2)
(A1)

4A2

1, (2; 2, 2)

A1D5

4, (2; 4)
A6

4, (2; 0)
D6

2, (2; 2)
(A1)

2D4

2, (2; 2, 2)
(A1)

3A3

2, (2; 2, 4)

D7

4, (1; 4)
(A1)

2D5

2, (1; 2, 4)
A3D4

2, (1; 2, 4)

The classes boxed are precisely those symmetric equivalence classes that are not geometric.
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Proof. Each row in each case is a direct verification. Here, we prove the third row
for ∆ = D7, to illustrate the method. For this, consider the set C = {I ⊂ ∆aff : |I| = 2},
which has

(
8
2

)
= 28 elements, and begin by choosing an element in C, say I = . It

is easy to verify that the set

is closed under the wall crossing, and symmetries of the graph. Hence it is precisely the
symmetric mutation class containing I.

Next, choose an element of C which is not in the above class. There are 28− 19 = 9

to choose from, say I = . In this case, the set

is closed under wall crossing and symmetries, so is the second symmetric mutation class.
Finally, choose an element in C which is not in the above two classes. There are

28− (19 + 2) = 7 to choose from, say . In this case, the set

is closed under wall crossing and symmetries, so is the third symmetric mutation class.
The above three classes total 28 elements, so exhaust all elements of the C. As such,

there can be no more symmetric mutation classes with |I| = 2. The number of elements
in each of the three classes is 19, 2, 7 respectively, and the cotype is (A1)2, (A1)2 and A2

respectively. In each class, the Grothendieck group ΓI is calculated using 7.8, and is easily
seen to be Z6, Z6 ⊕ (Z/2Z) and Z6 respectively. �

Proposition 7.15. Let ∆ = E6. Then ∆aff has the following 21 symmetric equivalence
classes. In each case, a representative of the class, the number in each class, the cotype
and G0(ΓI) is listed.

∅
1, (7; 0)

A1

7, (6; 0)

(A1)
2

15, (5; 0)
A2

6, (5; 0)

A1A2

18, (4; 0)
(A1)

3

11, (4; 0)
A3

6, (4; 0)

A1A3

9, (3; 0)
(A1)

2A2

15, (3; 0)
A4

6, (3; 0)
(A2)

2

3, (3; 3)
D4

1, (3; 0)
(A1)

4

1, (3; 2)

A5

3, (2; 3)
A1(A2)

2

6, (2; 3)
A1A4

6, (2; 0)
D5

3, (2; 0)
(A1)

2A3

3, (2; 2)

E6

3, (1; 3)
(A2)

3

1, (1; 3, 3)
A1A5

3, (1; 6)

The classes boxed are precisely those symmetric equivalence classes that are not geometric.
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Proof. This is also a direct verification, exactly as in 7.14. Note that here, the case
|I| = 4 is 4.9. �

Remark 7.16. Direct inspection of 7.12, 7.14 and 7.15 reveals the following.

(1) For ∆ ∈ {An, D4, E6}, cotype distinguishes all symmetric equivalence classes.
(2) For ∆ ∈ {D5, D7}, the pair (cotype, G0) distinguishes the symmetric equivalence

classes. For example, when ∆ = D5, everything is distinguished just using
cotype, with the exception of (A1)2 and A3, each of which is the cotype for two
different classes. However, in these two, cases G0 distinguishes.

(3) For ∆ = D6, the pair (cotype, G0) does not distinguish the classes, but later the
triple (cotype, G0, H +K) will.

Proposition 7.17. Let ∆ = E7 and consider ∆aff . Then ∆aff has the following 44
symmetric equivalence classes. In each case, a representative of the class, the number in
each class, the cotype and G0(ΓI) is listed.

∅
1, (8; 0)

A1

8, (7; 0)

A2

7, (6; 0)
(A1)

2

21, (6; 0)

(A1)
3

19, (5; 0)
(A1)

3

2, (5; 2)
A3

7, (5; 0)
A1A2

28, (5; 0)

A1A3

4, (4; 2)
A1A3

16, (4; 0)
(A1)

2A2

28, (4; 0)
D4

1, (4; 0)
A4

6, (4; 0)
(A2)

2

8, (4; 0)
(A1)

4

6, (4; 2)
(A1)

4

1, (4; 2)

A5

3, (3; 0)
A5

2, (3; 2)
A2A3

8, (3; 0)
A1A4

10, (3; 0)
(A1)

2A3

10, (3; 2)
(A1)

2A3

3, (3; 2)

A1(A2)
2

11, (3; 0)
(A1)

3A2

4, (3; 2)
A1D4

2, (3; 2)
D5

2, (3; 0)
(A1)

5

1, (3; 2, 2)

A2A4

4, (2; 0)
A1A2A3

6, (2; 2)
A6

2, (2; 0)
A1A5

4, (2; 2)
A1A5

2, (2; 2)
(A1)

3A3

2, (2; 2, 2)

A1D5

2, (2; 2)
D6

2, (2; 2)
E6

1, (2; 0)
(A1)

2D4

1, (2; 2, 2)
(A2)

3

1, (2; 3)
(A3)

2

1, (2; 4)

E7

2, (1; 2)
A1D6

2, (1; 2, 2)
A7

1, (1; 4)
A2A5

2, (1; 6)
A1(A3)

2

1, (1; 2, 4)

The classes boxed are precisely those symmetric equivalence classes that are not geometric.

Proof. This is again a direct verification, exactly as in 7.14. The case |I| = 5 has
already been verified in 4.11, but the classes here are permuted. �
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Proposition 7.18. Let ∆ = E8 and consider ∆aff . Then ∆aff has the following 67
symmetric equivalence classes. In each case, a representative of the class, the number in
each class, the cotype and G0(ΓI) is listed.

∅
1, (9; 0)

A1

9, (8; 0)

(A1)
2

28, (7; 0)
A2

8, (7; 0)

A1A2

40, (6; 0)
A3

8, (6; 0)
(A1)

3

36, (6; 0)

A1A3

31, (5; 0)
(A1)

2A2

56, (5; 0)
(A2)

2

13, (5; 0)
A4

7, (5; 0)
D4

1, (5; 0)
(A1)

4

17, (5; 0)
(A1)

4

1, (5; 2)

(A1)
3A2

25, (4; 0)
A1(A2)

2

22, (4; 0)
A2A3

19, (4; 0)
(A1)

2A3

24, (4; 0)
(A1)

2A3

3, (4; 2)

A1D4

3, (4; 0)
A1A4

21, (4; 0)
A5

5, (4; 0)
D5

2, (4; 0)
(A1)

5

2, (4; 2)

A1A2A3

15, (3; 0)
(A1)

2A4

12, (3; 0)
A2A4

11, (3; 0)
(A3)

2

5, (3; 0)
(A3)

2

1, (3; 2)
(A1)

4A2

1, (3; 2)

E6

1, (3; 0)
A1D5

5, (3; 0)
A1A5

7, (3; 0)
A1A5

2, (3; 2)
(A1)

3A3

5, (3; 2)

(A1)
2(A2)

2

10, (3; 0)
A6

4, (3; 0)
A2D4

2, (3; 0)
D6

1, (3; 0)
(A2)

3

1, (3; 3)
(A1)

2D4

1, (3; 2)

A1A2A4

6, (2; 0)
A3A4

5, (2; 0)
A7

2, (2; 0)
A7

1, (2; 2)
A1(A2)

3

1, (2; 3)
A1D6

1, (2; 2)

A1A6

3, (2; 0)
A2D5

3, (2; 0)
A1(A3)

2

1, (2; 4)
(A1)

2A5

3, (2; 2)
(A1)

2A2A3

2, (2; 2)

A1E6

2, (2; 0)
D7

1, (2; 0)
E7

1, (2; 0)
A2A5

2, (2; 3)
A3D4

1, (2; 2)
(A1)

2D5

1, (2; 2)

E8

1, (1; 0)

D8

1, (1; 2)
(A4)

2

1, (1; 5)
A1A2A5

1, (1; 6)
A8

1, (1; 3)

A1A7

1, (1; 4)
A3D5

1, (1; 4)
A2E6

1, (1; 3)
A1E7

1, (1; 2)

The classes boxed are precisely those symmetric equivalence classes that are not geometric.
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Proof. Direct verification, exactly as in 7.14. The case |I| = 6 is 4.13. �

Remark 7.19. Direct inspection of 7.18 reveals that when ∆ = E8, the pair (cotype,
G0) distinguishes the symmetric mutation classes for ∆aff .

7.3. The Derived Classification

The main result in this section, 7.21, gives a full derived equivalence classification of
contracted preprojective algebras ΓI of extended Dynkin type, in particular confirming
7.1, when ∆ ∈ {An, D4, D5, D6, D7, E6, E7, E8}. Partial results are obtained in all cases,
including the (⇐) direction of 7.1.

The following also verifies that the first part of (⇒) in 7.1 holds in all cases.

Lemma 7.20. Suppose that I ⊆ ∆aff where ∆ is ADE Dynkin, and suppose that A is
a basic ring that is derived equivalent to ΓI. Then there exists I′ ⊆ ∆aff such that A ∼= ΓI′ .

Proof. Using the notation from the proof of 7.6, say ΓI ∼= EndR(MI). Since dimR =
2, it is automatic that ΓI ∈ CMR, so ΓI is a modifying R-algebra. By [IW, 4.6(1)], since
A is derived equivalent to ΓI, necessarily A ∼= EndR(N) for some modifying R-module N .
Since R has finite CM type, necessarily N ∼= MI′ for some subset I′. �

Thus, to verify 7.1, we can restrict to considering derived equivalences between con-
tracted preprojective algebras, of the same type.

Theorem 7.21. Suppose that I ⊆ ∆aff and I′ ⊆ ∆′aff where ∆ and ∆′ are ADE Dynkin.
Consider the following conditions.

(1) ΓI is derived equivalent to ΓI′ .
(2) The types match (namely ∆ = ∆′), and I ∼ I′.
(3) The types match, and the cotypes match.
(4) The types match, the cotypes match, and G0(ΓI) ∼= G0(ΓI′).
(5) The types match, the cotypes match, G0(ΓI) ∼= G0(ΓI′), and HI+KI

∼= HI′+KI′ .

Then (2)⇒(1). If ∆ ∈ {An, D4, D5, D6, D7, E6, E7, E8}, then (1)⇒(2). Furthermore:

• If ∆ ∈ {An, D4, E6} then (1)⇔(2)⇔(3).
• If ∆ ∈ {D5, D7, E8} then (1)⇔(2)⇔(4).
• If ∆ ∈ {D6, E7} then (1)⇔(2)⇔(5).

Proof. The implication (2)⇒(1) always holds, since wall crossing gives derived
equivalences (§5.6), as do isomorphisms. The statement regarding (1)⇒(2) follows from
the bulleted statements, which we prove now.

• If ∆ ∈ {An, D4, E6}, then (1)⇒(3) by 7.7, and 7.16(1) shows that (3)⇒(2).
• If ∆ ∈ {D5, D7, E8}, then (1)⇒(4) by 7.7, and 7.16(2) and 7.19 show that (4)⇒(2).
• If ∆ ∈ {D6, E7}, then (1)⇒(5) by 7.7 and 7.10. Hence it suffices to show (5)⇒(2).

For E7, by 7.17 the pair (cotype, G0) distinguishes all classes except the following.
These are distinguished by considering H +K, which are calculated using 7.11.

cotype
G0

H + K

(A1)
4

(4; 2)
(4; 0)

(A1)
4

(4; 2)
(4; 2)

(A1)
2A3

(3; 2)
(3; 0)

(A1)
2A3

(3; 2)
(3; 2)

A1A5

(2; 2)
(2; 0)

A1A5

(2; 2)
(2; 2)

For D6, by 7.14 the pair (cotype, G0) distinguishes all classes except the following,
which are again distinguished by considering H +K

cotype
G0

H + K

A1A3

(3; 2)
(3; 2)

A1A3

(3; 2)
(3; 0)

(A1)
3

(4; 2)
(4; 0)

(A1)
3

(4; 2)
(4; 2)

(A1)
4

(3; 2, 2)
(3; 0)

(A1)
4

(3; 2, 2)
(3; 2, 2)

(A1)
2A3

(2; 2, 2)
(2; 0)

(A1)
2A3

(2; 2, 2)
(2; 2, 2)

The result follows. �
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Corollary 7.22. Conjecture 7.1 is true if ∆ ∈ {An, D4, D5, D6, D7, E6, E7, E8}.
Proof. (⇒) holds by combining 7.20 with 7.21(1)⇒(2). (⇐) is 7.21(2)⇒(1). �

Remark 7.23. Consider I = and I′ = . These are in different
symmetric mutation classes, but both have type extended D8, and both have cotype (A1)4.
Furthermore, in both cases the Grothendieck group G0 is isomorphic to Z5 ⊕ Z/2Z, and
in both cases H +K ∼= Z5 ⊕ Z/2Z. This is the first case where the invariants in 7.21 do
not distinguish between ΓI and ΓI′ . Consequently, to extend 7.21 to cover all of type Dn

will require finer invariants.

7.4. Two-term Tilting Complexes

This section classifies all 2-term tilting complexes for ΓI, for any I ⊆ ∆aff . The main
result 7.24 is that the 2-tilting complexes of ΓI are in bijection with chambers of the infinite
arrangement WI from 2.8, which is the ‘double’ of the associated Tits cone (see e.g. 2.10).
Just as ΘI splits into two halves, it turns out that there are two types of 2-term tilting
complexes, and their mutation graphs never meet. This whole section should be seen as
generalisation of [KiM], which described the case I = ∅.

7.4.1. Construction. For (x, J) ∈ Cham(∆aff , I), set Ix,J = eIIxeJ . By 5.2, each
Ix,J is a tilting ΓI-module with projective dimension one, and so in particular their pro-
jective resolutions give two-term tilting complexes. Below, these will give half of the
two-term tilting complexes.

In order to obtain the other half, recycling the notation from the proof of 7.6, say
ΓI ∼= EndR(MI). Then Γop

I
∼= EndR(M∗I ), where ()∗ = HomR(−, R). But under McKay

Correspondence, the dual (−)∗ fixes the extended vertex, and acts as the Dynkin involution
on the other vertices. Write ιaff for this symmetry. Thus EndR(M∗I ) ∼= ΓI′ , where I′ =
ιaff(I). Since I and I′ differ by the symmetry of the graph ιaff , it is clear that they induce
exactly the same Tits cone, and so have exactly the same tilting theory.

Now, since ΓI is a symmetric R-order, by [IR, p1103], there is a duality

D−(mod ΓI)
RHomΓI

(−,ΓI)
−−−−−−−−−→ D+(mod Γop

I )
RHom

Γ
op
I

(−,ΓI)

−−−−−−−−−−→ D−(mod ΓI).

The strategy is to apply the functor RHomΓop
I

(−, ΓI[1]) to tilt ΓI′ = tilt Γop
I to obtain the

‘other half’ of the two-term tilting complexes. As notation, set

Ry,K = RHomΓop
I

(eI′IyeK , ΓI[1])

for (y,K) ∈ Cham(∆aff , I
′). Replacing eI′IyeK by its two-term projective resolution, it is

clear that Ry,K is a two-term tilting complex for ΓI.

7.4.2. Two-Term Tilting. Our previous 7.21 showed which algebras are in the de-
rived equivalence class of ΓI, and so demonstrated that the endomorphism rings of general
tilting complexes behave well. In comparison, the following, which is a generalisation of
[KiM, 2.7, 3.1], takes this further, and gives evidence that the set of all tilting complexes
could in fact be very well-behaved, not just their endomorphism rings.

Theorem 7.24. Suppose that ∆ is ADE, I ⊂ ∆aff , and I′ = ιaff(I).

(1) {Ix,J | (x, J) ∈ Cham(∆aff , I)} ∩ {Ry,K | (y,K) ∈ Cham(∆aff , I
′)} = ∅. In

particular, there exist two different families of tilting complexes for ΓI.
(2) 2 tilt ΓI = 2 silt ΓI.
(3) Under the isomorphism ΘI

∼= K0(proj ΓI),

ΘI\WI =


 ⋃

(x,J)∈Cham(∆aff ,I)

C(Ix,J)


⋃


 ⋃

(y,K)∈Cham(∆aff ,I′)

C(Ry,K)


 .

Furthermore, the closure equals ΘI.
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(4) 2 tilt ΓI = {Ix,J | (x, J) ∈ Cham(∆aff , I)} ∪ {Ry,K | (y,K) ∈ Cham(∆aff , I
′)}.

Proof. (1) By 5.2 the Ix,J = eIIxeJ are classical tilting modules, and so give 2-term
tilting complexes with homology only in degree zero. In contrast, since eI′IyeK ∈ tilt ΓI′

and so give two-term tilting complexes for Γop
I , by construction the Ry,K are two-term

tilting complexes for ΓI. They certainly have homology in degree −1. For these homology
reasons, the intersection is thus empty.
(2) Since ΓI is a symmetric R-order, this is clear (see e.g. [KiM, A.2]).
(3) Under the isomorphism, we already know that elements in tilt ΓI, namely

⋃

(x,J)∈Cham(∆aff ,I)

C(Ix,J)

gives Cone(∆aff , I). This fills precisely half of K0(proj ΓI), and so half of ΘI.
Applying the same logic to tilt ΓI′ , ⋃

(y,K)∈Cham(∆aff ,I′)

C(Iy,K)

gives precisely half of K0(proj ΓI′). Since the dividing half-plane for both I and I′ is the
same (dual respects the rank), mapping this across the duality, it is clear that

⋃

(y,K)∈Cham(∆aff ,I′)

C(Ry,K)

fills the other half of ΘI. Furthermore, since I and I′ differ by the symmetry ιaff , it is
clear that their Tits cones are identical. Consequently, the full hyperplanes WI describe
the walls on both halves of the dividing half-plane, and so the statement about ΘI\WI

follows. That the closure is everything is clear.
(4) As is standard, this follows from (3) by a [DIJ]-type argument (see e.g. [KiM, 3.8(2)]).

�

Example 7.25. Continuing 2.9, consider I = . Then by 7.24, the g-vector fan of
the two-term tilting complexes for ΓI is the following.

ΓI

ΓI[1]

The hyperplanes converge on the line [P0] + 2[P1] = 0, but WI does not contain this line.
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CHAPTER 8

Tilting Modules and Modifying Modules

This chapter is concerned with general properties of tilting, and tilting modulo a
regular element. These results obtained here are general; they are then specialised, and
strengthened, in the cDV setting in Chapter 9.

The first section describes tilting modules modulo a regular element for module-finite
R-algebras. Section 8.2 recalls the setting of 3-dimensional Gorenstein rings, recaps the
notion of modifying modules and mutation, and recalls known theorems. The section after,
§8.3, generalises some of these, and gives three new general results, the most notable that
K-theory can be used to detect partial tilting modules. All these results, new and old,
are combined in Section 8.4 to give the most general results for 3-dimensional Gorenstein
rings, and their associated modification algebras.

8.1. Tilting Modules Modulo a Regular Element

When R is a commutative noetherian ring and g ∈ R, write R := R/gR and

(−) := R⊗R − : modR→ modR.

In particular, if Λ is an R-algebra, then we can consider the R-algebra Λ.

Notation 8.1. Given an R-algebra Λ, and g ∈ R, write tiltg Λ for the subset of tilt Λ
consisting of those T on which g acts a non-zerodivisor.

We need the following elementary observation.

Lemma 8.2. If g is a non-zerodivisor on R, then for any X ∈ modR,

TorR1 (R,X) = {x ∈ X | gx = 0}.

Proof. The short exact sequence 0→ R
g−→ R→ R→ 0 gives a projective resolution

of R. Applying −⊗R X gives an exact sequence

0→ TorR1 (R,X)→ X
g−→ X,

which proves the assertion. �

The following general observation is the main result of this section.

Theorem 8.3. Let R be a commutative noetherian ring and Λ a module-finite R-
algebra. Assume that g is a non-zerodivisor on R.

(1) There is a map

(−) : tiltg Λ→ tilt Λ

making the following diagram commute.

(8.1.A)

tiltg Λ
(−)

//

��

tilt Λ

��

K0(proj Λ)
(−)
// K0(proj Λ)

(2) If g is contained in all maximal ideals of R, then the map in (1) is injective.
(3) If R is complete local, then the map in (1) is compatible with mutation.

95
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Proof. (1) Fix T ∈ tiltg Λ, and let

(8.1.B) 0→ P1 → P0 → T → 0

be a projective resolution of the Λ-module T . Applying R⊗R − gives an exact sequence

(8.1.C) 0 = TorR1 (R, T )→ P1 → P0 → T → 0,

where the first term is zero by 8.2, since T ∈ tiltg Λ. Thus T has projective dimension at

most one, as a Λ-module.
Applying HomΛ(−, T ) to (8.1.B), and HomΛ(−, T ) to (8.1.C), gives a commutative

diagram of exact sequences

HomΛ(P1, T ) HomΛ(P0, T ) Ext1
Λ(T, T ) = 0

HomΛ(P1, T ) HomΛ(P0, T ) Ext1
Λ

(T , T ) 0

// //

// // //

���� ����

where the vertical maps are clearly surjective. It follows that Ext1
Λ

(T , T ) = 0.
Lastly, take an exact sequence 0 → Λ → T0 → T1 → 0 with Ti ∈ addT . Applying

R⊗R − gives an exact sequence

0 = TorR1 (R, T1)→ Λ→ T0 → T1 → 0,

where the first term is zero by 8.2, since T ∈ tiltg Λ. Consequently, T ∈ tilt Λ. Using

(8.1.B) and (8.1.C), [T ] = [P0]− [P1] = [P0]− [P1] = [T ] and so the diagram commutes.
(2) Without loss of generality, we can assume that R is complete local. Indeed, by [IW,

2.26], if add(R̂m ⊗R T ) = add(R̂m ⊗R U) for all maximal ideals m, then addT = addU .
For any T ∈ tilt Λ, write FacT for the full subcategory of mod Λ consisting of the

factor modules of an object in addT . It is well-known in tilting theory that

FacT = {X ∈ mod Λ | Ext1
Λ(T,X) = 0}

holds, and we can recover addT from FacT as Ext-projective objects, that is,

(8.1.D) addT = {X ∈ FacT | Ext1
Λ(X,FacT ) = 0}.

Assume that T,U ∈ tiltg Λ satisfies addT = addU . To prove addT = addU , it
suffices to show FacT = FacU by (8.1.D), and by symmetry, we only have to show
U ∈ FacT . For any ` > 0, consider the short exact sequence

(8.1.E) 0→ U/gU
g`−1

−−−→ U/g`U
h`−→ U/g`−1U → 0.

Since U = U/gU belongs to addT ⊆ FacT and FacT is closed under extensions, it follows
that U/g`U ∈ FacT for all ` > 0 by using (8.1.E) repeatedly. Therefore Ext1

Λ(T,U/g`U) =
0 holds for all ` > 0.

Now fix an epimorphism f1 : T ′ → U = U/gU for T ′ ∈ addT . Using the sequence
(8.1.E) repeatedly, there is a morphism f` : T ′ → U/g`U satisfying h` ◦ f` = f`−1. We
lift (f`)` to a morphism f : T ′ → lim←−`

U/g`U = U , where the equality holds since R is

complete. By Nakayama’s Lemma, f is surjective, and thus U ∈ FacT holds.
(3) This is clear, since if T,U ∈ tiltg Λ share all summands except one, then T ,U ∈ tiltg Λ
share all summands except one. �

8.2. Modifying Modules, Mutation and Tilting

In this section we recall various concepts and results, mainly to set notation. Let R
be a local Gorenstein normal ring, write ref R for the category of reflexive R-modules, and
CMR for the category of Cohen-Macaulay R-modules. For a module-finite R-algebra Λ,
we consider the category

ref Λ := {X ∈ mod Λ | X ∈ ref R}.
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For non-zero M ∈ ref R, there is an equivalence [RV, 1.2] (see also [IR, 2.4(2)(i)])

(8.2.A) HomR(M,−) : ref R
∼−→ ref EndR(M).

which we will refer to as reflexive equivalence.
Recall from [IW] that M ∈ ref R is called modifying if EndR(M) ∈ CMR. An R-

module M is called maximal modifying if it is modifying, and maximal with respect to
this property; equivalently

addM = {X ∈ ref R | EndR(M ⊕X) ∈ CMR}.
We write MMR (respectively, MMGR) for the set of additive equivalence classes of max-
imal modifying R-modules (respectively, maximal modifying generators of R).

The following properties are elementary.

Lemma 8.4. [IW, 2.7, 5.12] With notation as above,

(1) If M ∈ CMR is a modifying R-module, then so is R⊕M . Therefore a maximal
modifying R-module M is Cohen-Macaulay if and only if R ∈ addM .

(2) If dimR = 3, then M ∈ CMR is modifying if and only if Ext1
R(M,M) has

positive depth.
(3) If dimR = 3 and R is isolated, then M ∈ CMR is modifying if and only if M

is rigid (that is, Ext1
R(M,M) = 0).

As for tilting modules, there is an operation on MMR called mutation [IW, §6]. We
describe this for the case when R is complete local. Let M ∈ modif R be basic, and let
M = N ⊕ L be a direct sum decomposition. There exists an exact sequence

(8.2.B) 0→ K
g−→ V

f−→ L

where f is a minimal right (addN)-approximation. We call (8.2.B) an exchange sequence,
and set

µL(M) := N ⊕Ker f,

which is called the right mutation of M at L. Furthermore, we say µL(M) is an artinian
mutation if EndR(M)/[N ] is an artinian ring. Later, when we work over a field, this
condition is equivalent to EndR(M)/[N ] being a finite dimensional algebra.

Dually, there exists an exact sequence

(8.2.C) 0→ L
f−→ U

g−→ C

where f is a minimal left (addN)-approximation, such that

0→ C∗
g∗−→ U∗

f∗−→ L∗

is exact. We call (8.2.C) an exchange sequence. Set

νL(M) := N ⊕ C,
and call νL(M) the left mutation of M at L. Again, we call νL(M) an artinian mutation
if EndR(M)/[N ] is an artinian ring. Clearly this is equivalent to µL(M) being an artinian
mutation.

Proposition 8.5. The following assertions hold.

(1) [IW, 6.10] µL(M),νL(M) ∈ modif R.
(2) [IW, 6.4] g in (8.2.B) is a minimal left (addN)-approximation, and g in (8.2.C)

is a minimal right (addN)-approximation.
(3) [IW, 6.5] µ and ν are inverse operations of each other, that is,

νL′ ◦ µL(M) ∼= M and µL′′ ◦ νL(M) ∼= M

hold for L′ := Ker f and L′′ := (Ker g)∗.
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(4) [IW, 6.14] If µL(M) and νL(M) are artinian mutations, then

HomR(µL(M),M) ∈ ref-tilt Λop and HomR(M,νL(M)) ∈ ref-tilt Λ.

hold for Λ = EndR(M), and the following sequences are exact.

0→ HomR(L,M)→ HomR(V,M)→ HomR(K,M)→ 0,

0→ HomR(M,L)→ HomR(M,U)→ HomR(M,C)→ 0.

Now let M = M1 ⊕ . . . ⊕Mn ∈ modif R be a basic modifying R-module such that
each Mi is indecomposable. For simplicity, set

µi(M) := µMi
(M) and νi(M) := νMi

(M),

and call them simple mutation. In the following case, simple mutation behaves nicely.

Proposition 8.6. [IW, 6.25] Assume dimR = 3 and M ∈ MMR. Let M = M1 ⊕
. . .⊕Mn with indecomposable Mi. For each 1 ≤ i ≤ n, the following assertions hold.

(1) νi(M) ∼= µi(M).
(2) νi(M) and µi(M) are finite dimensional mutations if and only if νi(M) �M if

and only if µi(M) �M .

In the setting of the above proposition, we define the exchange graph as follows.

Notation 8.7. The exchange graph of MMR is the graph where:

• The vertices are the elements of MMR.
• For M,N ∈ MMR, we draw an edge between M and N if they are can be

obtained from each other by a simple mutation.

In the rest of this section, we assume dimR = 3 in addition to the first assumptions
that R is a local Gorenstein normal ring.

Proposition 8.8. [IW, 4.12] Let R be a local Gorenstein normal ring with dimR = 3.
For each M ∈ MMR and N ∈ modif R, there exists exact sequences

(8.2.D) 0→M1 →M0
f−→ N and 0→ N

g−→M0 →M1

with Mi,M
i ∈ addM such that f is right minimal, g is left minimal and the following

sequences are exact.

0→ HomR(M,M1)→ HomR(M,M0)→ HomR(M,N)→ 0,

0→ HomR(M1,M)→ HomR(M0,M)→ HomR(N,M)→ 0.

Moreover, M0 and M1 do not have non-zero common direct summands, and M0 and M1

do not have non-zero common direct summands.

Proof. In [IW, 4.12], clearly we can choose the sequences such that f is right min-
imal and g is left minimal. The last assertion follows from 5.6. �

Notation 8.9. For a module-finite R-algebra Λ, write

ref-ptilt Λ := {T ∈ ptilt Λ | T ∈ ref R},
ref-tilt Λ := {T ∈ tilt Λ | T ∈ ref R}.

The following bijections are fundamental, and will be heavily used.

Proposition 8.10. [IW, 4.17] Let R be a Gorenstein normal local domain such that
dimR = 3. For each M ∈ MMR, there are bijections

HomR(M,−) : modif R
∼−→ ref-ptilt EndR(M)(8.2.E)

HomR(M,−) : MMR
∼−→ ref-tilt EndR(M).(8.2.F)
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8.3. Three General Results

This section contains three new general results, which for the most part are just mild
extensions of known techniques. All are needed for our applications in Chapter 9.

The following result gives a characterization of artinian mutation. The first part
justifies our abuse of notation of writing νi for simple mutation on modifying modules,
and also writing νi for mutation on tilting modules.

Theorem 8.11. Let R be a complete local Gorenstein normal domain with dimR = 3.
Let N = N1 ⊕ . . . ⊕Nn ∈ modif R be basic with indecomposable Ni, Λ = EndR(N), and
let i be such that 1 ≤ i ≤ n.

(1) The following conditions are equivalent.
(a) νi(N) is an artinian mutation
(b) νi(Λ) ∈ ref-tilt Λ.
(c) νi(Λ) ∼= HomR(N,νi(N)).

Assuming any of the equivalent conditions in (1), then the following holds.

(2) Let 0 → Ni → U
f−→ L be the exchange sequence. For any M ∈ modif R such

that N ∈ addM , the map f is a right (addM)-approximation.

We need the following preparation.

Lemma 8.12. If R is a complete local Gorenstein normal ring with dimR = 2, and

(8.3.A) 0→ X
a−→ Y

b−→ Z

be an exact sequence with terms in ref R such that b : HomR(X,Y ) → HomR(X,Z) is
surjective. Then a is a split monomorphism.

Proof. Write X = X ′ ⊕ P , where P is the maximal projective direct summand
of X. By our assumptions on R, Auslander–Reiten translation τ is the identity, and
there is a functorial isomorphism Ext1

R(L,M) ∼= DHomR(M,L) for L,M ∈ ref R, called
Auslander–Reiten duality.

First, consider the case P = 0. For Z ′ := Im b, there is an exact sequence

HomR(X,Y )→ HomR(X,Z ′)→ Ext1
R(X,X)→ Ext1

R(X,Y ).

By our assumption, the left map is surjective and hence the right map is injective. By
Auslander–Reiten duality, the map HomR(Y,X) → HomR(X,X) is surjective. Since X
does not have a non-zero projective direct summand, the map HomR(Y,X)→ HomR(X,X)
is also surjective. Thus a is a split monomorphism.

Next, we consider the case P 6= 0. Then b must be surjective. Further, since Z ∈ ref R

implies Ext1
R(Z,R) = 0, the sequence (8.3.A) is a direct sum of 0 → P

1−→ P → 0 and

0 → X ′
a′−→ Y ′ → Z, where the latter sequence satisfies the same condition. By the first

case, a′ is a split monomorphism. Thus so is a. �
With this preparation, we now prove 8.11.

Proof of 8.11. (1)(a)⇒(b) If νi(N) is an artinian mutation, then by 8.5(4), we
obtain νi(Λ) ∼= HomR(N,νi(N)) ∈ ref Λ.

(b)⇒(c) Assume νi(Λ) ∈ ref Λ. By construction [IW, 6.8], applying HomR(N,−) to
the exchange sequence

(8.3.B) 0→ Ni
a−→ U → L,

gives an exact sequence

(8.3.C)
0 Λei HomR(N,U)

C

HomR(N,L)
f

α
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where f is a right add Λ(1− ei)-approximation, νi(Λ) = Λ(1− ei)⊕C, and α is a height
one isomorphism. Since C ∈ ref R by our assumption, α is thus a height one isomorphism
between reflexive modules, and thus is an isomorphism.

(c)⇒(a) Assume νi(Λ) ∼= HomR(N,νi(N)), then in particular νi(Λ) ∈ ref R. Hence,
by the above, applying HomR(N,−) to the exchange sequence gives an exact sequence

(8.3.D) 0→ HomR(N,Ni)→ HomR(N,U)→ HomR(N,L)→ 0.

Now we fix p ∈ SpecR with dimRp = 2. Localising (8.3.B) at p gives an exact sequence

0→ Nip
ap−→ Up → Lp

with terms in ref Rp, such that HomRp
(Np, Up) � HomRp

(Np, Lp). By 8.12, the map ap
is a split monomorphism.

The sequence obtained by applying HomR(−, Ni) to (8.3.B) is isomorphic to the
sequence obtained by applying HomΛ(−,HomR(N,Ni)) to (8.3.D), hence

(8.3.E) HomR(U,Ni)
HomR(a,Ni)−−−−−−−−→ HomR(Ni, Ni)→ Λ/(1− ei)→ 0.

is exact. Since ap is a split monomorphism, HomRp
(ap, (Ni)p) is a split epimorphism.

Localising the sequence (8.3.E) at p then implies that (Λ/(1 − ei))p = 0, and so the
support of the R-module Λ/(1− ei) contains only the maximal ideal of R. Consequently,
it is an artinian ring.
(2) Applying HomΛ(FM,−) to (8.3.D), where F = HomR(N,−), then applying reflexive
equivalence (8.2.A) gives an an exact sequence

0→ HomR(M,Ni)→ HomR(M,U)→ HomR(M,L)→ Ext1
Λ(FM,FNi).

The last term vanishes since FM ∈ CM Λ and FNi ∈ proj Λ, so the assertion follows. �
Lemma 8.13. For any N ∈ modif R and T ∈ ref-ptilt EndR(N), there exists L ∈

modif R such that T = HomR(N,L).

Proof. The assertion is clear for N = 0, so assume N 6= 0 and set Λ = EndR(N).
Take T ∈ ref-ptilt Λ. By Bongartz completion [IR, 2.8], there exists U such that T ⊕U ∈
ref-tilt Λ. By reflexive equivalence (8.2.A), HomR(N,−) : ref R

∼−→ ref Λ, so there exists
L′ ∈ ref R such that T ⊕ U = HomR(N,L′). Thus EndR(L′) ∼= EndΛ(T ⊕ U) is derived
equivalent to Λ. Since modifying algebras are closed under derived equivalences [IW,
4.6(1)], we obtain L′ ∈ modif R. Again by reflexive equivalence, L′ has a direct summand
L such that T = HomR(N,L). �

Approximations behave well with respect to rank.

Lemma 8.14. Let R be a commutative normal ring, M,N ∈ ref R such that f : M ′ →
N is a right addM -approximation. Write K := Ker f , then the following hold.

(1) 0→ Kp →M ′p → Np → 0 is exact for all height one primes p ∈ SpecR.
(2) rankRM

′ = rankRK + rankRN .

Proof. (1) By definition there is an exact sequence

(8.3.F) 0→ HomR(M,K)→ HomR(M,M ′)→ HomR(M,N)→ 0

Localising at a height one prime p gives the following commutative diagram, where the
top row is exact

0

0

HomR(M,K)p

HomRp
(Mp,Kp)

HomR(M,M ′)p

HomRp
(Mp,M

′
p)

HomR(M,N)p

HomRp
(Mp, Np)

0

0

Hence the bottom row is exact. Since R is normal, Mp ∈ addRp, so the assertion follows.
(2) This is immediate from (1), after further localising to the zero ideal. �
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K-theory can be used to detect partial tilting modules.

Theorem 8.15. Let R be a complete local Gorenstein normal domain with dimR =
3, and M ∈ MMR. Let N = N1 ⊕ . . . ⊕ Nt ∈ addM with indecomposable Ni, and
Γ = EndR(N). Then for any X ∈ modif R, the following conditions are equivalent.

(1) HomR(N,X) is a partial tilting Γ-module.
(2) [HomR(M,X)] belongs to the subgroup of K0(proj Γ) generated by the elements

[HomR(M,Ni)] with 1 ≤ i ≤ t.

Proof. (2)⇒(1) By (8.2.E) we know that HomR(M,X) is a partial tilting Γ-module.
Thus there exists a projective resolution

0→ P1 → P0 → HomR(M,X)→ 0

such that P0 and P1 do not have common direct summands. Then [HomS(M,X)] =
[P0]−[P1] holds in K0(EndS(M)). Since [HomS(M,X)] belongs to the subgroup generated
by [HomR(M,Ni)] with 1 ≤ i ≤ t, and P0 and P1 do not share any common summands,
it follows that both [P0] and [P1] also belong to the subgroup.

By projectivisation, for i = 0, 1, write Pi := HomR(M,Mi) with Mi ∈ addM . Since
[P0] and [P1] belong to the subgroup, M0 and M1 belong to addN . Since the above
projective resolution induces an exact sequence

0→ HomR(N,M1)→ HomR(N,M0)→ HomR(N,X)→ 0,

it follows again by projectivisation that HomR(N,X) has projective dimension at most
one, as a Γ-module. As in [IW, §4], it is routine to check that it has no self Ext1

Γ’s.
(1)⇒(2) Write F = HomR(N,−). By assumption FX is a partial tilting Γ-module, so in
particular it has projective dimension at most one. Thus there is an exact sequence

0→ FM1 → FM0 → FX → 0

for someM1,M0 ∈ addN . Applying HomΓ(FM,−), and dropping Hom from the notation,
we obtain a commutative diagram

0

0

Γ(FM,FM1)

R(M,M1)

Γ(FM,FM0)

R(M,M0)

Γ(FM,FX)

R(M,X)

Ext1
Γ(FM,FM1)

∼= ∼= ∼=

where the vertical isomorphisms are reflexive equivalence. Since N is a summand of
M ∈ MMR, we have FM ∈ CMR. Thus by [IR, 3.4(5)], since Γ is 3-sCY, Ext1

Γ(FM,Γ) ∼=
Ext1

R(FM,R) = 0, from which since M1 ∈ addN , Ext1
Γ(FM,FM1) = 0 follows. Hence the

top row of the above diagram is a short exact sequence, and hence so too is the bottom
row. This clearly implies that [HomR(M,X)] belongs to the stated subgroup. �

8.4. Modifying Modules Modulo a Regular Element

We now apply the general 8.3 to the setting in §8.2 of modifying modules over Goren-
stein local normal domains in dimension three, and obtain some general corollaries. These
can, and will, be strengthened in the cDV setting in Chapter 9. Both here and later, re-
stricting to subsets of tilt Λ that share common summands will be useful.

Notation 8.16. If A is a ring, and P ∈ modA, write tilt(A,P ) for the subset of
tiltA consisting of those T which satisfy P ∈ addT .

Theorem 8.17. Let R be a complete local Gorenstein normal domain with dimR = 3,
M ∈ MMR, and set Λ := EndR(M). Then for any 0 6= g ∈ R, the following hold.
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(1) There is an injective map

F := HomR(M,−) : MMR→ tilt Λ,

which induces an injective map F : MMGR→ tilt(Λ, FR).

(2) If N ∈ MMR satisfies νi(N) 6' N , then F (νi(N)) ∼= νi(FN).
(3) If R is an isolated singularity, then the map in (1) is compatible with mutation.

Proof. (1) By (8.2.F), there is a bijection

F := HomR(M,−) : MMR
∼−→ ref-tilt Λ.

Since g is a non-zero element in the domain R, it is a non-zerodivisor on any N ∈ ref R
and also on HomR(M,N). Therefore ref-tilt Λ ⊆ tiltg Λ, so composing with the injective
map

(−) : tiltg Λ ↪→ tilt Λ

in 8.3 gives an injective map F : MMR → tilt Λ. This clearly induces an injective map
F : MMGR→ tilt(Λ, FR).

(2) Since both F (νi(N)) and νi(FN) are tilting modules, distinct from FN , and they
have the same indecomposable direct summands except one, they must be isomorphic by
5.7.
(3) If R has an isolated singularity, then νi(N) 6' N holds by [IW, 6.22]. Thus (3) follows
immediately from (2). �

Immediately we obtain the following corollary, which reduce many questions regarding
the representation theory of CM and reflexive modules to the tilting theory of an algebra
one dimension lower.

Corollary 8.18. In 8.17, assume further that R is an isolated singularity.

(1) If the exchange graph of tilt Λ is connected, then F : MMR→ tilt Λ is bijective.
(2) If the exchange graph tilt(Λ, FR) is connected, then F : MMGR → tilt(Λ, FR)

is bijective.

Proof. (1) By 8.17(1) it suffices to prove surjectivity. Let T ∈ tilt Λ. By our
assumption, there is a finite sequence of mutations such that T = νi` . . .νi1(Λ). Then
N := νi` . . .νi1(M) satisfies FN = T by 8.17(2)(3).
(2) The proof is very similar to (1). �

The following criterion for connectedness of the exchange graphs plays a key role in
the next chapter.

Proposition 8.19. In 8.17, assume that there is no T ∈ tilt Λ and an infinite se-
quence Λ = T0 > T1 > T2 > . . . such that Ti ≥ T for all i ≥ 0. Then the exchange graph
of MMR is connected.

Proof. Fix M,N ∈ MMR. We will find a sequence of mutation from M to N . Let
Λ = EndR(M) and F := HomR(M,−) : MMR→ tilt Λ. Then FN ∈ ref-tilt Λ. Applying
5.9 to Λ ≥ FN repeatedly, we obtain a sequence of mutations

(8.4.A) Λ = U0 > U1 > U2 > . . .

such that

(1) Ui ≥ FN for each i ≥ 0.
(2) Either there exists ` ≥ 0 such that U` = FN , or the sequence is infinite.

By 5.8, the first condition implies that there exists an exact sequence

0→ Ui → V 0 → V 1 → 0



8.4. MODIFYING MODULES MODULO A REGULAR ELEMENT 103

with V 0, V 1 ∈ addFN . Since FN ∈ ref-tilt Λ, and reflexive modules are closed under
kernels, it follows that Ui ∈ ref-tilt Λ ⊂ tiltg Λ. By 8.3(3), applying (−) gives a sequence
of mutations

Λ = U0 > U1 > U2 > . . .

such that Ti ≥ FN for each i ≥ 0. By our assumption, the sequence has to be finite, and
hence U` = FN holds for some ` ≥ 0. Since Ui ∈ ref-tilt Λ for each i ≥ 0, by 8.17(2) the
sequence (8.4.A) corresponds to a sequence of mutations in MMR from M to N . �

For a commutative ring R and g ∈ R, recall (−) = R⊗R −. Consider the functor

(−)? := HomR(−, R) : modR→ modR

and the evaluation map εX : X → X?? for each X ∈ modR. The following result will
play a key role in the next charter.

Proposition 8.20. Let R be a noetherian local ring with dimR = 3, and g ∈ R a
non-zerodivisor on R such that R is a normal domain. For M ∈ ref R, the following hold.

(1) M
??∈ CMR.

(2) εM is injective.

(3) (εM )p is an isomorphism for all non-maximal prime ideals p ∈ SpecR.

(4) If M ∈ modif R, then there is a canonical isomorphism EndR(M) ∼= EndR(M
??

)

of R-algebras.

Proof. (1) Since R is normal, M
?? ∈ ref R. Further, since g is a non-zerodivisor

on R, clearly dimR = 2. By Serre’s (S2) criteria, normal surfaces are automatically CM,
and so ref R = CMR.
(2) Since M ∈ ref R, by applying (−)∗ = HomR(−, R) to a projective presentation of M∗,
and splicing, gives exact sequences

0→M → F0 → N → 0 and 0→ N → F1

with Fi ∈ projR. Since g is a non-zerodivisor on R, the second sequence and 8.2 implies
that TorR1 (R,N) = 0. Applying (−) to the first sequence then gives an exact sequence

(8.4.B) 0 = TorR1 (R,N)→M
a−→ F0 → N → 0.

Since a is injective, and the evaluation gives the commutative diagram

M F0

M
??

F
??

0 .

a

a??

εM εF0∼

it follows that εM is injective.

(3) For each non-maximal prime ideal p of R, since Rp is regular, the sequence (8.4.B)

shows that Mp ∈ projRp and hence (εM )p is an isomorphism. .
(4) Since g is a non-zerodivisor on R, it is also a non-zerodivisor on M ∈ ref R. Thus

0 → M
g−→ M → M → 0 is exact. Applying HomR(M,−) and using HomR(M,M) ∼=

EndR(M) ∼= EndR(M) gives an exact sequence

0→ EndR(M)
g−→ EndR(M)→ EndR(M)

and thus an injective morphism of rings

φ : EndR(M)→ EndR(M).

We now show that φp is an isomorphism for each non-maximal p ∈ SpecR. Take q ∈
SpecR such that p = q/gR. Then Rq/gRq = Rp is regular since R is normal and

dimR = 2. Since g is a non-zerodivisor on Rq, we have dimRq/gRq = dimRq − 1. Thus
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Rq is also regular, by inspection of the minimal number of generators of the maximal ideal
qRq. In particular, Mq ∈ ref Rq = projRq. Thus

EndR(M)p = EndRq
(Mq)/gEndRq

(Mq) ∼= EndRq/gRq
(Mq/gMq) = EndR(M)p,

where the middle isomorphism holds since Mq ∈ projRq.
On the other hand, consider the canonical morphism of rings

ψ : EndR(M)→ EndR(M
??

).

Each b ∈ EndR(M) gives a commutative diagram

M M

M
??

M
??
.

b

b??

εM εM

Since εM is injective by (2), b?? = 0 implies b = 0, so ψ is injective. For each non-maximal

p ∈ SpecR, (εM )p is an isomorphism by (1), and hence ψp is also an isomorphism.
Consequently, the composition

ψ ◦ φ : EndR(M)→ EndR(M
??

)

is injective and (ψ ◦ φ)p is an isomorphism for each non-maximal p ∈ SpecR. Thus

Cok(ψ ◦φ) ∈ fdR. Since M ∈ modif R, it follows that EndR(M) ∈ CMR. Further, since

M
?? ∈ CMR by (1), and R is a normal surface, EndR(M

??
) ∈ CMR. In particular, both

EndR(M) and EndR(M
??

) have depth two. Thus Cok(ψ ◦ φ) = 0 holds, as desired. �

8.5. Summary of Notation

In what follows, all modules are finitely generated, Λ is a module-finite R-algebra,
and whenever basic is mentioned, implicitly R will be complete local.

Notation Reference Meaning

CMR §8.2 (Maximal) Cohen-Macaulay R-modules
ref Λ §8.2 Λ-modules which are reflexive as R-modules.
modif R §8.2 Modifying reflexive R-modules.
MMR §8.2 Maximal modifying reflexive R-modules.
MMGR §8.2 Those X ∈ MMR such that R ∈ addX.
νL(M) §8.2 Left mutation of M at L.
µL(M) §8.2 Right mutation of M at L.
tilt Λ 5.4 Basic tilting Λ-modules of projective dimension one.
ptilt Λ 5.4 Not-necessarily-basic partial tilting Λ-modules.
tilt(Λ, P ) 8.16 Basic tilting Λ-modules containing fixed projective P .
tiltg Λ 8.1 Those elements of tilt Λ where g acts a non-zerodivisor
2 tilt Λ 6.1 Two-term tilting complexes for Λ
ref-ptilt Λ 8.9 Elements in (ref Λ) ∩ (ptilt Λ). These need not be basic.
ref-tilt Λ 8.9 Elements in (ref Λ) ∩ (tilt Λ). These are basic.



CHAPTER 9

Modifying Modules on cDV Singularities

Throughout this chapter, let R be a complete cDV singularity, that is,

R = k[[x, y, z, t]]/(f(x, y, z) + tg(x, y, z, t))

for some simple surface singularity f and arbitrary g. Note that R is normal if k is perfect;
see 9.2 below. We write modif R for the set of isomorphism classes of not-necessarily-basic
modifying R-modules, and MMR (respectively, MMGR) for the set of isomorphism classes
of basic maximal modifying R-modules (respectively, generators of R). By [B2, VII.4.7],
there is an isomorphism

(9.0.A) Z⊕ Cl(R) = K0(modR)/〈[X] | dimRX ≤ 1〉.
In particular, there is a natural map

(9.0.B) modR→ Z⊕ Cl(R).

Below we will introduce the index as the composition

(9.0.C) ind: modR
[−]−−→ K0(modR)

(9.0.B)−−−−→ Z⊕ Cl(R),

which sends M to (rankRM, detM), and consider the submonoid of Z⊕Cl(R) defined by

(Z⊕ Cl(R))+ := (Z>0 ⊕ Cl(R)) ∪ {0}.
The purpose of this chapter is to prove the following result, in the setting of isolated

cDV singularities.

Theorem 9.1. Let R be an isolated cDV singularity.

(1) There exists N ∈ MMR, say N =
⊕n

i=1Ni.
(2) There is an isomorphism Cl(R) ∼= Zn−1.
(3) The map (9.0.C) restricts to a bijection modif R ∼= (Z⊕ Cl(R))+.
(4) There exists an extended Dynkin diagram ∆aff , a subset J, and bijections

modif R ∼= L+
J and MMR ∼= Cham(∆aff , J).

(5) #(modif R ∩ ind CMR) <∞ and # MMGR <∞.

The proof is split across the following subsections. Many of the preparatory results
do not require the assumption that R is not isolated, and so in what follows, we do not
assume that R has an isolated singularity unless explicitly stated otherwise. For example,
in the case g = 0, R = k[[x, y, z, t]]/(f) is a non-isolated cDV singularity.

9.1. Existence of Maximal modifying modules

Throughout this subsection, let R be an arbitrary cDV singularity.

Proposition 9.2. When k is a perfect field, R is a normal domain.

Proof. Let R = S/hS be a cDV singularity for S = k[[x, y, z, t]]. Since R is Cohen-
Macaulay, by Serre’s normality criterion, it suffices to show dim(SingR) ≤ 1. By the
Jacobian criterion [E, 16.20], SingR = V (J)∩SpecR = SpecA where J is the Jacobi ideal
and A := S/(J+hS). Again by the Jacobian criterion, Sing(R/tR) = V (J)∩Spec(R/tR) =
Spec(A/tA) and thus

dim(SingR)− dim(Sing(R/tR)) = dimA− dim(A/tA) ≤ 1.

105
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Since R/tR is a simple singularity, dim(Sing(R/tR)) = 0, which proves the assertion. �

For a cDV singularity R, we take a hyperplane g ∈ R such that

R := R/gR

is a simple singularity of type ∆. Let ∆aff be the extended Dynkin graph as above, and
δ =

∑
i∈∆aff

δiαi the imaginary root, where {α∗i | i ∈ ∆aff} and {αi | i ∈ ∆aff} are the
dual basis. We regard δ as a map Θ → R. The following is well-known by McKay
Correspondence, where indecC denotes the set of indecomposable objects of a category C.

Proposition 9.3. The following assertions hold.

(1) There exists a bijection ∆aff
∼−→ indec(CMR) given by i 7→ Ni, such that rankRNi =

δi for all i ∈ ∆aff .
(2) There is an algebra isomorphism Π ∼= EndR(

⊕
i∈∆aff

Ni), where Π is the prepro-
jective algebra of type ∆aff .

Proof. See e.g. [AV, 1.11], [LW, 6.31]. �

Consider (−) := R⊗R−. The following result is the starting point of our study of R.

Proposition 9.4. Under the above setting, let M ∈ modif R. Then the following
statements hold.

(1) There exist a subset JM ⊆ ∆aff and an isomorphism of algebras:

EndR(M) ∼= ΓJM
.

(2) There exist a natural bijection from ∆aff \ JM to the isomorphism classes of
indecomposable direct summands of M .

(3) Let Mi be an indecomposable direct summand of M corresponding to i ∈ ∆aff \JM
via the bijection in (2). Then rankRMi = δi.

Proof. (1) Let (−)? = HomR(−,R). By 8.20(4), EndR(M) ∼= EndR(M
??

). By

8.20(1), M
?? ∈ CMR holds. Thus the assertion follows from 9.3.

(2) Let E := EndR(M). By projectivisation there is a bijection

indec(addM) ' indec(projE).

On the other hand, any maximal left ideal I of E contains gE by Nakayama’s Lemma for
R-modules. Thus gE belongs to the radical of E, and there is a bijection

indec(projE) ' indec(projE).

The righthand side corresponds bijectively with ∆aff \JM . Composing the above bijections
gives the desired one.
(3) This is immediate since rankRMi = rankRMi, and this equals δi by 9.3. �

The following result follows immediately from 9.4(2). This was shown in [W2, 1.12]
by using minimal models of SpecR.

Theorem 9.5. Let R be a cDV singularity of type ∆. Then any modifying R-module
has at most 1 + |∆| non-isomorphic indecomposable direct summands. In particular, R

has a maximal modifying generator.

9.2. Modifying Modules and Chambers

Let R be an arbitrary complete local cDV singularity, and let M ∈ MMR, which exists
by 9.5. Since R is a three-dimensional Gorenstein normal domain, recall from (8.2.E) and
(8.2.F) that there are bijections

HomR(M,−) : modif R
∼−→ ref-ptilt EndR(M)(9.2.A)

HomR(M,−) : MMR
∼−→ ref-tilt EndR(M).(9.2.B)
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These bijections hold for general three dimensional Gorenstein normal domains admit-
ting a maximal modifying module. The point here is that cDV singularities R have much
more structure, and we now extend these bijections, and describe them using Coxeter
combinatorics.

As above, choose a hyperplane g ∈ k[[x, y, z, t]] such that R/gR is a simple singularity

of type ∆, and write R := R/(g) and (−) := R⊗R −. From 9.4 recall that:

• There is a bijection indec(CMR)
∼−→ ∆aff for some extended Dynkin ∆,

• There exists a subset JM of ∆aff such that EndR(M) ∼= ΓJM
.

Then, using 8.3, it follows that there are injections:

(−) : ref-ptilt EndR(M)→ ptilt ΓJM
(9.2.C)

(−) : ref-tilt EndR(M)→ tilt ΓJM
.(9.2.D)

Combining these facts, we immediately obtain the following crucial result.

Theorem 9.6. Let R be cDV, M ∈ MMR and set FM = HomR(M,−).

(1) For P := FMR, there are injections

FM : modif R→ ptilt ΓJM
(9.2.E)

FM : MMR→ tilt ΓJM
(9.2.F)

FM : modif R ∩ CMR→ ptilt(ΓJM
, P )(9.2.G)

FM : MMGR→ tilt(ΓJM
, P ).(9.2.H)

(2) Let L,N ∈ MMR with L 6∼= N . Then L and N are related by a simple mutation
if and only if the tilting modules FML and FMN are related by a simple tilting
mutation.

(3) The exchange graphs of MMR and MMGR are connected.
(4) If R is an isolated singularity, then all the maps in (1) are bijective.

Proof. (1) This is now immediate, by composing (9.2.A) and (9.2.C), respectively
(9.2.B) and (9.2.D).
(2)(⇒) follows using 8.17(2). (⇐) follows by injectivity of the map in (1). Indeed,
suppose that FML and FMN share all summands except one. Since (9.2.D) is injective,
HomR(M,L) and HomR(M,N) share all summands except one. Given this, the fact that
L and N are linked by a simple mutation is [IW2, 4.5(2)].
(3) We apply the criterion 8.19 for connectedness, namely there is no T ∈ tilt ΓJM

and an
infinite sequence ΓJM

= T0 > T1 > T2 > . . . such that Ti ≥ T for all i ≥ 0. Since each Ti
corresponds to a chamber, this follows using exactly the same argument as in 5.23.
(4) The exchange graph of tilt ΓJM

is connected by 5.2. Thus all the assertion follow from
8.17(1). �

To apply our results in tilting theory of contracted preprojective algebras, recall from
5.26 that there is a natural bijection

βJM
: K0(proj ΓJM

)
∼−→ LJM

.

The following index allows us to assign to every modifying R-module a point in a combi-
natorial lattice described using the Coxeter combinatorics of Part 1.

Definition 9.7. For M ∈ MMR, write indM for the composition of bijections

modif R ptilt ΓJM L+
JM
.

HomR(M,−)

(9.2.E)

βJM
◦[−]

(5.26)
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For N = N1 ⊕ . . .⊕N` ∈ modif R, let

CM (N) :=
∑̀

i=1

R>0(indM Ni) ⊂ ΘJM
.

The following is the main result of this section. The injections in part (2) are known by
[W2], but here we reprove it without using any birational geometry. All other parts are
new, and should be viewed as the providing the affine version of the Auslander–McKay
correspondence in [W2].

Corollary 9.8. Let R be cDV of type ∆, and fix M ∈ MMR. Then the following
assertions hold.

(1) There exists a subset JM ⊆ ∆ and injective maps

indM : modif R ↪→ L+
JM

and CM : MMR ↪→ Cham(∆aff , JM ).

Furthermore, if N = N1 ⊕ . . . ⊕ Nn ∈ MMR is basic with indecomposables Ni,
then indM N1, . . . , indM Nn is a basis of CM(N) ∩ LJM

.
(2) If M has R as a direct summand, then the maps above restrict to injective maps

indM : modif R ∩ CMR ↪→ L+
∆,JM

and CM : MMGR ↪→ Cham(∆, JM ).

In particular, #(modif R ∩ indec CMR) <∞ and # MMGR <∞.
(3) Let L,N ∈ MMR with L 6∼= N . Then L and N linked by a simple mutation if

and only if CM (L) and CM (N) are linked by a simple wall crossing.
(4) If R has an isolated singularity, then the maps in (1) and (2) are bijective.

Proof. All the assertions follow from 9.6 and 5.3. �

For a fixed M ∈ MMR, the following property of the index indM is elementary.

Proposition 9.9. Let N ∈ modif R, and consider 0 → M1 → M0 → N , namely the
exact sequence (8.2.D). Then

(9.2.I) indM N = indM M0 − indM M1.

Proof. Since 0 → HomR(M,M1) → HomR(M,M0) → HomR(M,N) → 0 in 8.8 is
exact, this is clear. �

Let δ =
∑

i∈∆aff
δiαi be the imaginary root for the extended Dynkin graph ∆aff , where

{α∗i | i ∈ ∆aff} and {αi | i ∈ ∆aff} are the dual basis. We regard δ as a map Θaff → R.

Proposition 9.10. For M ∈ MMR, the following statements hold.

(1) If N ∈ modif R, then rankRN = δ(indM N).
(2) For each positive integer r, there is an injection

indM : {X ∈ modif R | rankX = r} → LJM
∩ δ−1(r).

In particular, there is an injection indM : Cl(R)→ LJM
∩ Level.

(3) Assume that R has an isolated singularity. Then the maps in (2) are bijective.
Moreover, LJM

= indM (Cl(R)) + Z indM R holds.

Proof. (1) By 9.4(3), we have M =
⊕

i∈∆0\JM
M i and rankRM

i = δi. Thus

(9.2.J) rankRM
i = δi = δ(α∗i ) = δ(indM M i).

Now consider an arbitrary N ∈ modif R. For any N ∈ modif R, there exists an exact
sequence 0 → M1 → M0 → N with Mi ∈ addM where the last map is an addM -
approximation. By (9.2.I), we obtain indM N = indM M0 − indM M1. By 8.14(2) we see
that rankRN = rankRM0 − rankRM1. Thus

rankRN = rankRM0 − rankRM1
(9.2.J)

= δ(indM M0)− δ(indM M1) = δ(indM N).
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(2) The first assertion is clear from (1) and 9.8(1). The second one is clear since Cl(R) =
{N ∈ modif R | rankN = 1}.
(3) The first assertion follows from (2) and 9.8(4). To show the second assertion, fix
x ∈ LJM

. For r := δ(x) and y := x − (r − 1) indM R, we have x = y + (r − 1) indM R,
where y ∈ LJM

∩ δ−1(1) = indM (Cl(R)). �

9.3. Universality of index

The definition of the index indM given in the previous section depends on the choice
of a fixed M ∈ MMR. We now show, in 9.11, that indM does not depend on this choice
of M , up to a specific isomorphism, then in 9.17 show that it is left/right symmetric.

As such, consider N ∈ MMR. By 9.4 applied to N , there is an associated subset JN
of ∆aff . Furthermore, it is clear that the image of N under the map

MMR→ tilt ΓJM
∼= Cham(∆aff , JM ).

has the form (xNM , JN ) for some element xNM of the affine Weyl group. It is also clear that
multiplication xNM : Θaff → Θaff relabels chambers, and so restricts to an isomorphism
xNM : LJN

→ LJM
via the labelling rules of 1.12.

Theorem 9.11. For M,N ∈ MMR, the following diagram is commutative.

modif R

modif R

LJN

LJM

indN

indM

xNM

To prove this requires the following notion.

Definition 9.12. For J ⊂ ∆aff , we call a map

f : modif R→ L+
J

compatible if it is injective and, furthermore, the following two conditions hold for each
N = N1 ⊕ . . .⊕Nn ∈ MMR with indecomposable Ni.

(1) The elements f(N1), . . . , f(Nn) form a Z-basis of some Cf (N) ∈ Cham(∆aff , J).

(2) For all m1, . . . ,mn ≥ 0, f(
⊕n

i=1N
⊕mi
i ) =

∑n
i=1mif(Ni).

We also require the following easy observations.

Lemma 9.13. Let J be a subset of ∆aff .

(1) For each M ∈ MMR, the map indM : modif R→ LJM
is compatible.

(2) Let (x, J) ∈ Cham(∆aff , J) and f : modif R → LJ be a compatible map. Then
x ◦ f : modif R→ LJ is also a compatible map.

(3) Let f : modif R → LJ be a compatible map and M,N ∈ MMR. If M and N
are linked by a simple mutation, then Cf (M) and Cf (N) are related by a simple
wall crossing.

(4) Let f, g : modif R → LJ be compatible maps. Then f = g holds if there exists
basic M = M1 ⊕ . . . ⊕Mn ∈ MMR with indecomposable Mi such that f(Mi) =
g(Mi) for all i with 1 ≤ i ≤ n.

Proof. (1) This is an immediate consequence of the definition, using 9.8(1).
(2) This is clear since the isomorphism x : LJ → LJ sends the chambers in Cham(∆aff , J)
to those in Cham(∆aff , J).
(3) This is clear, since M and N share all summands except one.
(4) By [IW, 4.18(1)], any element in modif R belongs to addN for some N ∈ MMR. It
suffices to show that f = g holds on addN for each N ∈ MMR.
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Let N,L ∈ MMR be linked by a simple mutation. If f = g holds on addN , then
f = g holds on addL by (3). Since the exchange graph of MMR is connected by 9.6(3),
the existence of M implies that f = g holds on addL for each L ∈ MMR. �

Now for M,N ∈ MMR there are isomorphisms

EndR(M) ∼= ΓJM
and EndR(N) ∼= ΓJN

of algebras and an isomorphism

(9.3.A) HomR(M,N) ∼= eJM
IxNM

eJN

of (EndR(M),EndR(N))-bimodules.

Proof of 9.11. By 9.13(1)(2), the maps indM and xNM ◦ indN are compatible.
Let N = N1 ⊕ . . .⊕Nn with indecomposable Ni. Then

indM Ni = βJN
[HomR(M,Ni)]

(9.3.A)
= [eJM

IxNM
ei]

5.26
= xNM (α∗i ) = xNM (indN Ni).

By 9.13(3), it follows that indM = xNM ◦ indN . �

Remark 9.14. It follows from the above that the following diagram commutes.

modif R

modif R

K0(proj EndR(N))

K0(proj EndR(M))

HomR(N,−)

HomR(M,−)

[RHomΛM
(HomR(M,N),−)]

In what follows, a key role is played by the swap involution

sw : Π
∼−→ Πop

of the preprojective algebra Π defined by

sw(ei) = ei and sw(a) = a∗.

Let J be a subset of ∆. Since sw fixes the idempotent eJ ∈ Π, it induces an involution

sw : ΓJ
∼−→ Γop

J .

This induces an equivalence sw∗ : mod ΓJ ∼= mod Γop
J which clearly gives rise to bijections

sw∗ : ptilt ΓJ
∼−→ ptilt Γop

J and sw∗ : tilt ΓJ
∼−→ tilt Γop

J .

Similarly, if M ∈ MMR, then R-dual satisfies M∗ ∈ MMR, and furthermore EndR(M∗) ∼=
EndR(M)op. Then the dual version of (9.2.A) is

HomR(M∗,−) ∼= HomR(−,M) : modif R
∼−→ ref-ptilt EndR(M)op

The right module version of 8.3 asserts that

(−) : ref-tilt EndR(M)op ↪→ tilt Γop
JM
,

and so combining gives the dual version of (9.2.E), namely

(9.3.B) HomR(−,M) : modif R ↪→ tilt Γop
JM
.

Lemma 9.15. If M ∈ MMR, then the following diagram is commutative.

modif R

modif R

ref-ptilt EndR(M)

ref-ptilt EndR(M)op

ptilt ΓJM

ptilt Γop
JM

HomR(M,−)

HomR(−,M)

(−)

(−)

∼ sw∗
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Proof. By the same argument as in the proof of 9.13(4), it suffices to show that the
diagram commutes for each indecomposable direct summand Mi of M . Let ei ∈ Λ be
the idempotent corresponding to Mi. Then HomR(M,Mi) = ΓJM

ei and HomR(Mi,M) =
eiΓJM

hold. Thus

sw∗HomR(M,Mi) = sw∗(ΓJM
ei) = eiΓJM

= HomR(Mi,M).

Hence the diagram commutes for Mi, as desired. �

Next we show that the index is left-right symmetric in the following sense. Fix
M ∈ MMR, then in a similar way to 5.26, there is a bijection

βop
JM

: K0(proj Γop
JM

)
∼−→ LJM

.

sending eiΓJM
7→ α∗i .

Definition 9.16. For M ∈ MMR, write indM for the composition

modif R ptilt Γop
JM

L+
JM
.

HomR(−,M)

(9.3.B)

β
op
JM
◦[−]

∼

Theorem 9.17. For any M ∈ MMR, we have indM = indM .

Proof. Consider the following diagram, where the top row is indM and the bottom
row is indM .

modif R

modif R

ptilt ΓJM

ptilt Γop
JM

LJM

LJM

HomR(M,−)

HomR(−,M)

βJM
◦[−]

β
op
JM
◦[−]

sw∗

The left hand square commutes by 9.15, and the right hand square clearly commutes. �

A corollary of the above is the following remarkable symmetry property for cDV
singularities, which does not usually hold for general 3-dimensional Gorenstein rings. We
will extend the following in §9.5 later.

Corollary 9.18. Let M ∈ MMR and L ∈ modif R. Then the sequences (8.2.D)

0→ L→ U0 → U1 and 0→ V1 → V0 → L

satisfy U0
∼= V0 and U1

∼= V1. Moreover, indM L = indM U0 − indM U1 holds.

Proof. By 9.9 and its dual, we have indM L = indM V0 − indM V1 and indM L =
indM U0−indM U1. Hence, using 9.17, indM V0−indM V1 = indM L = indM U0−indM U1.
In particular

indM (V0 ⊕ U1) = indM V0 + indM U1 = indM V1 + indM U0 = indM (V1 ⊕ U0).

Hence, by injectivity of indM , V1 ⊕ U0
∼= V0 ⊕ U1. Since V0 and V1 (respectively, U0 and

U1) do not share non-zero common direct summands by 8.8, the assertion follows. �

As a consequence, we obtain the following remarkable property of exchange sequences.

Proposition 9.19. Let M = M1 ⊕ . . . ⊕Mn ∈ MMR with indecomposable Mi. For
all i such that 1 ≤ i ≤ n, consider the exchange sequences

0→ Ni → Vi →Mi and 0→Mi → Ui → Ni.

Then Ui
∼= Vi. Moreover, indM Mi + indM Ni = indM Ui = indM Vi.
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Proof. Let Λi = EndR(M)/(1 − ei). The proof divides into two cases. If Λi is not
artinian, then Mi

∼= Ni holds by 8.6(2). Thus the two exchange sequences are isomorphic
by 8.5(2), and, in particular, Ui

∼= Vi. On the other hand, if Λi is artinian, then by 8.5(4),
Ui → Ni is a right (addM)-approximation, and Ni → Vi is a left (addM)-approximation.
By 9.18, Ui

∼= Vi holds.
In either case, using 9.9, indM Ni = indM Ui − indM Mi holds. �

9.4. Class Group and Global Index

Throughout this section, let R be a cDV singularity. We regard Z⊕Cl(R) has a factor
group of K0(R) by the map (9.0.B), and as in (9.0.C) we define the global index to be the
composition

ind: modR
[−]−−→ K0(modR)

(9.0.B)−−−−→ Z⊕ Cl(R).

This sends M to (rankRM,detM). In this section, for each M ∈ MMR, we will show in
9.21 that ind and indM are related by a specific isomorphism.

We begin by constructing a morphism from LJM
to Z⊕Cl(R). Consider the triangle

functor

M
L
⊗EndR(M)− : Kb(proj EndR(M))→ Db(modR),

which induces a group homomorphism

[M
L
⊗EndR(M)−] : K0(proj EndR(M))→ K0(modR).

We define the group homomorphism γM : LJM
→ Z⊕Cl(R) via the following commutative

diagram.

(9.4.A)

K0(proj EndR(M)) LJM

K0(modR) Z⊕ Cl(R)

βJM
(−)

∼

(9.0.B)

[M
L
⊗EndR(M)−] γM

Leading up to our next result, we need the following general observations. Note that
all are clear for the case M ∈ MMGR, since then M is a projective Λ-module.

Lemma 9.20. Let M ∈ ref R and Λ = EndR(M).

(1) For each X ∈ mod Λ, we have [M
L
⊗ΛX] = [M ⊗Λ X] in Z⊕ Cl(R).

(2) For each N ∈ ref R, we have

[M
L
⊗Λ HomR(M,N)] = [M ⊗Λ HomR(M,N)] = [N ] in Z⊕ Cl(R).

Proof. (1) Let Λ = EndR(M). For all height one prime ideal p ∈ SpecR, the
Rp-module Mp is free. Hence Mp is projective as a module over EndRp

(Mp) = Λp. In
particular,

TorΛ
i (M,N)p = Tor

Λp

i (Mp, Np) = 0

holds for all i > 0. Thus dimR TorΛ
i (M,N) ≤ 1 for all i > 0. By (9.0.A), we obtain the

assertion.
(2) The first equality is (1). For the second equality, by the same argument as above, the
canonical map M ⊗Λ HomR(M,N)→ N becomes an isomorphism after localising at each
height one prime ideal of R. �

Theorem 9.21. Let R be a cDV singularity and M ∈ MMR.
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(1) The following diagram commutes.

modif R LJM

modR Z⊕ Cl(R)

indM

ind

γM

(2) γM is surjective, and satisfies γM (indM I) = (1, I) for all I ∈ Cl(R).
(3) If R is isolated, then the map δ : LJM

→ Z coincides with the composition of
γM : LJM

→ Z⊕ Cl(R) and the first projection Z⊕ Cl(R)→ Z.

Proof. (1) Let N ∈ modif R. Then

γM (indM N) = γM ◦ βJM
([HomR(M,N)])

(9.4.A)
= [M

L
⊗Λ HomR(M,N)]

9.20(2)
= [N ].

(2) By (1), we have γM (indM I) = [I] = (1, I). Since γM (indM R) = (1, 0), the image of
γM contains both Z and Cl(R). Thus γM is surjective.
(3) It suffices to show the assertion for each element x ∈ L+

JM
. Since R is isolated, by

9.8(4) we can write x = indM N by some N ∈ modif R. The assertion then follows since

γM (x)
(1)
= indN = (rankRN, detN)

9.10(1)
= (δ(x),detN). �

As a consequence, we obtain the following explicit description of Cl(R). The first part
can also be obtained using the theory of minimal models, but the following description
falls out of the Coxeter combinatorics.

Corollary 9.22. Let R be isolated cDV, and M ∈ MMR.

(1) γM : LJM
→ Z⊕Cl(R) is a group isomorphism. Therefore Cl(R) ∼= Zn−1, where

n is the number of indecomposable direct summands of M .
(2) If M ∈ MMGR, then γM restricts to a group isomorphism CoWtJM

∼−→ Cl(R).
(3) There are bijections

modif R L+
JM

(Z⊕ Cl(R))+
indM

∼
γM

∼

Proof. (1) The map γM : LJM
→ Z ⊕ Cl(R) is surjective by 9.21(2), so it suffices

to prove injectivity. Let r = indM R ∈ LJM
. Since R has an isolated singularity, 9.10(3)

shows that each x ∈ LJM
can be written as x = indM I + ` indM R for some I ∈ Cl(R)

and ` ∈ Z. If γM (x) = 0, then

0 = γM (x)
9.21(1)

= ind I + ` indR = (1 + `, I).

Thus ` = −1 and I = R hold, and hence x = 0. This proves the first assertion. The
second assertion follows, since LJM

∼= Zn.
(2) Since M ∈ MMGR, the subset JM ⊆ ∆aff can be viewed as a subset of ∆. Hence, as in
§2.1, it is possible to consider CoWtJM

. Since CoWtJM
= LJM

∩ δ−1(0), the result follows
by combining (1) and 9.21(3).
(3) The first bijection is 9.8(4), and the second bijection is a direct consequence of (1). �

The following observation is elementary.

Proposition 9.23. Let X ∈ modif R, and I ∈ Cl(R).

(1) indX + indX∗ = (2, 0).
(2) ind((I ⊗R X)∗∗) = indX + rankX(ind I − indR).
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Proof. (1) This is clear.
(2) We have det(I ⊗R X) = detX + rankX · det I (e.g. [DITW, 3.1]). Thus

ind(I ⊗R X) = (rank(I ⊗R X),det(I ⊗R X))

= (rankX,detX + rankX · det I)

= indX + rankX(ind I − indR). �

One of the advantage of the global index is that it simplifies some arguments.

Lemma 9.24. Let A,B,C ∈ ref R, and let

0→ A→ B
f−→ C

be exact such that either

(1) dimR Cok f ≤ 1, or
(2) there exists non-zero X ∈ ref R such that HomR(X, f) is surjective.

Then indB = indA+ indC.

Proof. (1) This is clear since Cok f is zero in Z⊕ Cl(R).
(2) Let p ∈ SpecR be a height one prime ideal. Then Xp is a non-zero free Rp-module.
Since HomRp

(Xp, fp) : HomRp
(Xp, Bp) → HomRp

(Xp, Cp) is surjective, fp : Bp → Cp is
surjective. It follows that dimR Cok f ≤ 1, so the assertion follows from (1). �

As an application, we give a more direct proof of 9.18 for isolated cDV singularities.
Another application will be in 9.29 below.

Proof of 9.18 for isolated case. Since the sequences

0 HomR(M,V1) HomR(M,V0) HomR(M,L) 0

0 HomR(M∗, U∗1 ) HomR(M∗, U∗0 ) HomR(M∗, L∗) 0

are exact, by 9.24 we have indL = indV0 − indV1 and indL∗ = indU∗0 − indU∗1 . Hence

indL = indL∗ − 2(rankL, 0)(by 9.23(1))

= indL∗ − 2(rankU0, 0) + 2(rankU1, 0)

= (indU∗0 − indU∗1 )− 2(rankU0) + 2(rankU1)

= indU0 − indU1.(by 9.23(1))

Equating both expressions for indL, it follows that

ind(V0 ⊕ U1) = indV0 + indU1 = indU0 + indV1 = ind(U0 ⊕ V1),

and hence V0 ⊕ U1 ' U0 ⊕ V1 since ind is bijective on modifying modules by 9.21(1) and
9.22(3). Since V0 and V1 (respectively, U0 and U1) do not have non-zero common direct
summands by 8.8, the assertion follows. �

9.5. Extension to Modifying Modules

In this subsection we extend the above symmetry properties to all modifying modules.
Geometrically this is important; later, this is precisely what allows us to work on arbitrary
crepant partial resolutions. The consequences are striking: we prove in 9.28 that when
R is isolated, the mutation of any modifying module, at any summand, is an involution.
This is not the typical behaviour for 3-dimensional Gorenstein rings.

Let R be a cDV singularity. For a fixed modifying R-module

N = N1 ⊕ . . .⊕Nt ∈ modif R
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with indecomposable summands Ni, choose some M ∈ MMR, and define

HN := 〈indM N1, . . . , indM Nt〉 ⊂ LJM
,

modifNR := {L ∈ modif R | indM X ∈ HN},
MMNR := {L ∈ modifNR | |L| = |N |}.

where |X| denotes the number of non-isomorphic indecomposable summands of X. By

9.11 (see also 9.25(3)), modifNR and MMNR are independent of the choice of M ∈ MMR.

Note that MMNR is not a subset of MMR, unless N ∈ MMR.
In the following theorem, we remark that all parts are not typical behaviour of mod-

ifying modules on 3-dimensional Gorenstein rings. The key point is that it is our precise
understanding of the K-theory of MMAs for cDV singularities in the previous sections,
via Coxeter combinatorics, that allows us to extract these corollaries.

Theorem 9.25. Let R be a cDV singularity and M ∈ MMR. Fix N = N1⊕ . . .⊕Nt ∈
modif R with indecomposable. For any X ∈ modif R, the following holds.

(1) X ∈ modifNR if and only if HomR(N,X) ∈ ref-ptilt EndR(N).

(2) X ∈ MMNR if and only if HomR(N,X) ∈ ref-tilt EndR(N).
(3) There are bijections

HomR(N,−) : modifN R
∼−→ ref-ptilt EndR(N)(9.5.A)

HomR(N,−) : MMNR
∼−→ ref-tilt EndR(N).(9.5.B)

Proof. (1) The following diagram is clearly commutative, where the symbol ∼ de-
notes a bijection, and the symbol ∼= a group isomorphism.

ref-ptilt EndR(M)

K0(proj EndR(M))

ptilt ΓJM

K0(proj ΓJM
)

L+
JM

LJM

(−) βJM
◦[−]

∼

(−)

∼=

βJM

∼=

Thus X ∈ modifNR holds if and only if [HomR(M,X)] ∈ K0(proj EndR(M)) belongs to
the subgroup generated by [HomR(M,Ni)] with 1 ≤ i ≤ t. By 8.15, this is equivalent to
HomR(N,X) ∈ ref-ptilt EndR(N).
(2) This is clear from (1).
(3) If N = 0, then the assertion is clear since modif0 R = 0. Assume N 6= 0. The maps
are well-defined by (1) and (2). Since N 6= 0, there is a reflexive equivalence

(9.5.C) HomR(N,−) : ref R
∼−→ ref EndR(N)

by (8.2.A). In particular, both maps in the statement are injective. To prove the
surjectivity, fix T ∈ ref-ptilt EndR(N). By 8.13, there exists L ∈ modif R such that

T = HomR(N,L). By (1), L ∈ modifNR. This shows that the first map is surjective. If
T ∈ ref-tilt EndR(N), then

|RL|
(9.5.C)

= |ΛT | = |ΛΛ| (9.5.C)
= |RN |.

Thus L ∈ MMNR holds, and the second map is also surjective. �
We will now work towards showing that, when R is isolated, MMNR is the mutation

class of N , and modifNR are all possible summands of these. Although many of the
arguments below are more general, the non-isolated case remains more subtle; see 9.27.

The following is a generalisation of 9.19, and also generalises [W2, 5.22].

Corollary 9.26. Let N = N1 ⊕ . . . ⊕ Nn ∈ modif R be basic with indecomposable
Ni, and let M ∈ MMR contain N as a summand. Then for each i such that 1 ≤ i ≤ n,
the following statement holds.
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(1) νi(N) is an artinian mutation if and only if there exists N ′i 6∼= Ni such that

(N/Ni)⊕N ′i ∈ MMNR.

Assuming further the equivalent conditions in (1), then the following statements hold.

(2) νi(N) ∼= µi(N) ∼= (N/Ni)⊕N ′i ∈ MMNR.
(3) The exchange sequences

0→ N ′i → Vi → Ni and 0→ Ni → Ui → N ′i

satisfy Ui
∼= Vi and indM Ni + indM N ′i = indM Ui = indM Vi.

Proof. Let Λ = EndR(N).
(1)(⇒) By 8.11, νΛei(Λ) ∈ ref-tilt Λ. Using (9.5.B), there exists N ′i 6∼= Ni such that

(N/Ni)⊕N ′i ∈ MMNR and νΛei(Λ) = HomR(N, (N/Ni)⊕N ′i).
(⇐) Again by (9.5.B), HomR(N, (N/Ni)⊕N ′i) ∈ ref-tilt Λ. Thus νi(Λ) belongs to ref-tilt Λ.
By 8.11(1), νi(N) is artinian mutation.
(2) On one hand, by 8.11(1) νi(Λ) ∼= HomR(N,νi(N)). On the other hand, by (1) above
νi(Λ) ∼= HomR(N, (N/Ni) ⊕ N ′i). Hence by reflexive equivalence νi(N) ∼= (N/Ni) ⊕
N ′i . Since HN = 〈indM N1, . . . , indM Nn〉 holds by 9.17, the dual argument tells us that
µi(N) ∼= (N/Ni)⊕N ′i .
(3) Applying HomR(M,−) to the second sequence, we obtain an exact sequence

0→ HomR(M,Ni)→ HomR(M,Ui)→ HomR(M,N ′i)→ 0

by 8.11(2). Dually, applying HomR(−,M) to the first sequence, we obtain an exact
sequence

0→ HomR(Ni,M)→ HomR(Vi,M)→ HomR(N ′i , V )→ 0.

Now the assertions follow from 9.18. �

Remark 9.27. If νi(N) is not an artinian mutation, then νi(N) ∈ MMNR does not
necessarily hold. For example, let R = k[[x, y, u, v]]/(x3 − uv) and N = R⊕ (u, x). Then

µ2(N) = R⊕ (u, x2) does not belong to MMNR. We do not know whether νi(N) ∼= µi(N)
holds in general.

This has the following striking consequence.

Corollary 9.28. Let N ∈ modif R, and L be an arbitrary direct summand of N
such that νL(N) is an artinian mutation. Let M ∈ MMR contain N as a summand.

(1) There is an isomorphism νL(N) ∼= µL(N), and so νL′νL(N) ∼= N .
(2) The exchange sequences

0→ L′ → V → L and 0→ L→ U → L′.

satisfy U ∼= V , and further indM L+ indM L′ = indM U = indM V .

Proof. Let L = L1 ⊕ . . .⊕ L` with indecomposable Li. For each 1 ≤ i ≤ `, by 9.26
applied to (N/L)⊕ Li, we have

(9.5.D) (N/L)⊕ L′i := νLi
((N/L)⊕ Li) ∼= µLi

((N/L)⊕ Li).

However by definition of mutation,

νL(N) = (N/L)⊕ L′1 ⊕ . . .⊕ L′` ∼= µL(N).

This proves (1). For (2), the exchange sequences are the direct sum of the exchange
sequences for the mutations (9.5.D), which satisfy the desired properties by 9.26. �

Corollary 9.29. Let R be isolated cDV. If N ∈ modif R, then MMNR coincides
with the mutation classes of N .
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Proof. Let X ∈ MMNR. First, consider the exchange sequence

0→ Xi → Ui → X ′i,

then by 9.24 indUi = indXi + indX ′i. Hence, combining 9.21(1) and 9.22(1), indM Ui =

indM Xi + indM X ′i. This shows that νi(X) ∈ MMNR, and so MMNR is closed under

mutation. In particular MMNR contains the mutation class of N .
We next claim that MMNR is the full mutation class. Consider the composition

(9.5.E) MMNR
HomR(N,−)−−−−−−−−→ ref-tilt EndR(N) ↪→ tilt ΓJN

∼−→ Cham(∆aff , JN ),

where the first bijection is (9.5.B), the second injection is 8.3(1), and the third is 5.26.

Since MMNR is closed under mutation, the first bijection is clearly compatible with mu-
tation; the second map is compatible with mutation by 8.3(3), and in the third, mutation
corresponds to wall crossing by 5.2.

Consider an arbitrary chamber C in Cham(∆aff , JN ). By 1.20(2), this chamber can
be connected to (1, JN ), the chamber corresponding to N , via a finite sequence of wall
crossings. By induction starting at N , it follows that the chamber C is the image of
some Y ∈ MMNR, and furthermore Y can be obtained from N via a finite sequence
of mutations. In particular, the composition (9.5.E) is a bijection. It also follows that

MMNR is precisely the mutation class of N . �

As notation for the next corollary, for N ∈ modif R write A = EndR(N), and
S0, . . . , Sn for the simple A-modules. These correspond bijectively with the indecom-
posable summands N0, . . . , Nn of N . For any subset I ( {0, . . . , n}, set NI =

⊕
i∈INi,

νI(N) = νNI
(N), and write AI = A/(1−∑i∈I ei) for the associated contraction algebra.

In the case when R is isolated, all mutations are artinian, so the following generalises
[DW3, 4.7, 4.9] by removing all restrictions on I. It is also required for applications to
twist autoequivalences in Part 4.

Proposition 9.30. Let R be cDV, suppose that N ∈ modif R and I ( {0, . . . , n} is
such that νIN is an artinian mutation. Then the minimal projective resolution of AI is

0→
⊕

i∈I
Pi → Q→ Q→

⊕

i∈I
Pi → AI → 0

where Pi /∈ addQ for all i ∈ I. In particular, proj.dimA AI = 3 and

ExttA(AI, Si) =

{
C if t = 0, 3,
0 else.

Proof. Since R is isolated, dimC AI < ∞. Further, we know νIνIN ∼= N by 9.28.
These last two conditions are precisely the assumptions [W2, A.6(b)], hence the projective
resolution of AI is now immediate from [W2, A.7]. Since the approximation sequences
are minimal, the projective resolution is minimal, and so all other statements follow. �

The following is largely a summary of some of the results so far, in the special case
that R is isolated.

Corollary 9.31. Let R be isolated cDV, and N ∈ modif R with associated J = JN .
Then the following hold.

(1) The exchange graph of N equals the 1-skeleton of Level(Jaff). In particular, the
exchange graph is connected.

(2) If further R ∈ addN , then

(a) The elements of MMNR ∩ CMR are in bijection with Cham(∆, JN ). Wall
crossing corresponds to mutation at non-free summands.

(b) MMNR ∩ CMR coincides with the mutation classes of N where we only
mutate at non-free summands. In particular, this is a finite number, and
this subgraph is connected.
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Proof. (1) As already remarked in the proof of 9.29, the composition MMNR →
Cham(∆aff , JN ) in (9.5.E) is bijective, and mutation corresponds to wall crossing. Since

by 9.29 MMNR is the mutation class of N , the result follows.
(2) Elements of MMNR ∩ CMR are precisely those elements of MMNR which contain R

as a summand. Across the bijection MMNR → Cham(∆aff , JN ), this corresponds to all
chambers in the image of Cham(∆, JN )→ Cham(∆aff , JN ). Part (a) follows. For part (b),
we can run the argument in 9.29, since we can connect any two chambers in Cham(∆, JN )
by a finite sequence of wall crossings, at each step remaining in Cham(∆, JN ). �

Example 9.32. Suppose that R is isolated of type cE7, and that N ∈ modif R has

corresponding . Such an example exists. Combining 9.31 with 4.23, the exchange
graph of N is illustrated as follows.

9.6. The J-cone Groupoid

In this section we will re-interpret the above results in terms of the Deligne groupoid
GJaff

from §2.3, and we show that the mutation functors between EndR(N) and EndR(νiN),
ranging over the whole mutation class, form a representation of the groupoid. This sub-
section is the 3-fold version of §5.7.

To set notation, throughout this section R will be isolated cDV, N ∈ modif R, with
associated J = JN . By 9.31, we know the following.

• The mutation class of N is in bijection with the chambers Cham(∆aff , JN ). Write
X 7→ CX for this bijection.

• If further R ∈ addN , then the Cohen–Macaulay mutation class of N is in bi-
jection with the chambers Cham(∆, JN ). We will abuse notation and still write
X 7→ CX for this bijection.

Definition 9.33. Let R be isolated cDV, and N ∈ modif R, with associated J = JN .

(1) The groupoid HJaff
is defined as follows. As objects, to the chamber CX as-

sociate a vertex labelled Db(mod EndR(X)). The morphisms are generated by
the simple wall crossings, where to ωi : X → νiX we associate the equivalence
RHomEndR(X)(HomR(X,νiX),−).

(2) If R ∈ addN , we also associate the groupoid HJ. This is defined in a similar
way, where now the vertices are labelled Db(mod EndR(X)) for those X in the
Cohen–Macaulay mutation class of N . Wall crossing is as above.

The following is the three-dimensional version of 5.30. It extends [HW1, 4.6] in two
ways: firstly by constructing the affine version, and secondly by removing all smoothness
assumptions.

Proposition 9.34. Let R be isolated cDV, and N ∈ modif R with associated J = JN .
Consider a chain of simple mutations

N = N1 → N2 → . . .→ Nm → Nm+1
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then via 9.31, this corresponds to a path in Cham(∆aff , J). If this path is reduced, then
there is a bimodule isomorphism

HomR(Nm, Nm+1)
L
⊗ . . .

L
⊗ HomR(N2, N3)

L
⊗ HomR(N,N2) ∼= HomR(N,Nm+1)

where, reading right to left, the tensors are over EndR(Mi) for i = 2, . . . ,m.

Proof. Exactly as in 5.30, we induct on the length of the path. Setting Λm =
EndR(Mm), it suffices to prove that there is an isomorphism

(9.6.A) HomR(Nm, Nm+1)⊗L
Λm

HomR(N,Nm) ∼= HomR(N,Nm+1)

in the category of bimodules. Since the path is reduced, HomR(N,Nm) > HomR(N,Nm+1).
Given this last fact, as is standard (see e.g. [HW1, B.1]), it follows that the left hand
side of (9.6.A) is concentrated in degree zero. Truncating in the category of bimodules,
it follows that

HomR(Nm, Nm+1)⊗L
Λm

HomR(N,Nm) ∼= HomR(Nm, Nm+1)⊗Λm
HomR(N,Nm)

as bimodules. From here, the proof is word-to-word identical to [HW1, 4.6]. Namely,
set Λ = EndR(N), F = HomR(N,−) and T = HomR(N,Nn), then there is a chain of
isomorphisms

HomR(Nm, Nm+1)⊗HomR(N,Nm)
∼−→ HomΛ(T,FNm+1)⊗ T ∼−→ FNm+1

where the first is reflexive equivalence g⊗f 7→ (g◦−)⊗f , and the second is the adjunction
from the derived equivalence (using the last statement in [HW1, B.1]), which takesϕ⊗t 7→
ϕ(t). The above composition takes g⊗f 7→ g◦f , which by inspection this an isomorphism
in the category of bimodules. �

Example 9.35. Suppose that N ∈ modif R such that JN = . Such an example
exists. Drawing the picture as in 5.27, consider the following part of the exchange graph:

N
N1

N12

N121
N21

N2

Set Λi = EndR(Ni), and Λ = EndR(N). Then, as a direct consequence of 9.34, the
following diagram commutes.

Db(Λ)

Db(Λ1)

Db(Λ12)

Db(Λ121)

Db(Λ21)

Db(Λ2)

⊗L
ΛHomR(N,N1)

⊗L
Λ1

HomR(N1,N12)

⊗L
Λ12

HomR(N12,N121)

⊗L
Λ21

HomR(N21,N121)

⊗L
Λ2

HomR(N2,N21)

⊗L
ΛHomR(N,N2)

⊗L
Λ

HomR(N,N12)

⊗
L
Λ
H
om

R
(N
,N

12
1
)

⊗
L Λ
H

o
m

R
(N

,N
2
1
)
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The above generalises to the following statement, which is the 3-fold version of 5.35.

Theorem 9.36. Let R be isolated cDV, and N ∈ modif R with associated J = JN .
Then there are functors:

GJ → HJ

GJaff
→ HJaff

given, in both cases, by sending a vertex corresponding to a chamber labelled CX to
Db(mod EndR(X)). On morphisms, since wall crossing corresponds to mutation, the func-
tor takes a wall crossing X → νiX to RHomEndR(X)(HomR(X,νiX),−).

Proof. In either case, denote the functor above by F . It suffices to show that the
relations on GJ and GJaff

in 2.16 are satisfied functorially in GJ and GJaff
. By definition,

in 2.13, it suffices to show that any positive two reduced paths

α,β : CX → CY

in Cham(∆aff , JN ) give rise to isomorphic functors F (α) ∼= F (β).
We can view both paths as a sequence of mutations in Cham(∆aff , JX), starting at C+.

Clearly this reindexing does not effect whether the paths are reduced. The result then
follows immediately from 9.34, since both F (α) and F (β) are isomorphic to the direct
functor given by RHomEndR(X)(HomR(X,Y ),−). �

Recall the notation π1(J) and π1(Jaff) from 2.18. By passing to vertex groups, the
following is then immediate from 9.36, and is the 3-fold version of 5.36.

Corollary 9.37. Let R be isolated cDV, and N ∈ modif R with associated J = JN .
Then there are group homomorphisms such that the following diagram commutes.

π1(J)

π1(Jaff)

Auteq Db(mod EndR(N))
ϕ

ϕ̃

We will show in Part 4 that ϕ is faithful.

9.7. Global Ordering

One of the remarkable properties of Coxeter arrangements in Rn is that their 1-skeleta
can be labelled by s1, . . . , sn, globally, in such a way that:

(1) Every vertex has precisely the labels s1, . . . , sn emerging from it.
(2) If si labels the simple wall crossing C → D, then si also labels the simple wall

crossing D → C.

For our restriction arrangements, which need not be Coxeter, the existence of such a global

ordering is not so clear. For example, consider the example J = in 3.3(1), in which
wall crossing in Cham(D4, J) is given by

(1, ) (s1s2s4, ) (s1s2s4s3s2s1, )

(s3s2s4, ) (s3s2s4s1s2s3, ) (s1s2s4s3s2s1s4s2s3, )

1

4

3

1

1

3

4

1

34 43

Even although this is itself a Coxeter arrangement, the ‘natural’ numbers on the wall
are written on the arrows, are induced from the number of the vertex being mutated.
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These are constantly changing. The other ‘natural’ labelling on the walls is induced by
multiplying by the relevant wJwJ+i, namely:

1

s3s2s4

s1s2s3

s4s2s1

s4s2s3

s3s2s1

s1s2s4

However, whilst this satisfies property (2) above, it does not satisfy property (1).
To rectify this, we can always find some isolated cDV singularity R admitting a crepant

resolution X → SpecR which slices to the minimal resolution of R/gR (see e.g. [T]). By
HomMMP [W2], the associated basic modifying module M , which is a generator, has
associated JM = ∅. Thus, the following hold.

• For any choice K ⊆ ∆aff , we may find a summand of N of M such that JN = K.
• For any choice J ⊆ ∆, we may find a summand L of M , which contains R as a

summand, such that JL = J, thought of as a subset of ∆aff .

The purpose of this section to use the Krull–Schmidt decomposition of L and N to
put a global ordering on the 1-skeleton of the arrangements Cone(∆, J) and Cone(∆aff ,K),
satisfying conditions (1) and (2).

We do this for (∆aff ,K), with the finite type case being similar. Fix a Krull–Schmidt
decomposition

N ∼= N1 ⊕ . . .⊕Nn.

The summands Ni give rise to mutations νi(N) = νNi
(N) of N , which by 9.31 correspond

to wall crossings out of the chamber (1,K). Label these n wall crossings (1,K)→ Cνi(N)

by si, and in chamber Cνi(N) fix the ordering

νi(N) ∼= N1 ⊕ . . .⊕Ni−1 ⊕N ′i ⊕Ni+1 ⊕ . . .⊕Nn.

Reading from left to right, the n indecomposable summands give rise to n mutations of
Cνi(N), which we write νjνi(N), as j runs from 1 to n. Label these n wall crossings
Cνi(N) → Cνjνi(N) by sj , and in the chamber Cνjνi(N) fix the ordering on νjνi(N) from
the fixed ordering on νi(N), replacing the jth summand.

Continue in this way. Given an arbitrary chamber C, find a positive minimal path
α : (1,K) → C. Repeating the above steps at each simple wall crossing of α gives a
fixed ordering on the module L corresponding to C. Reading left to right of this fixed
ordering of the summands of L gives mutations ν1, . . . ,νn, and we use these to label the
wall-crossings out of C by s1, . . . , sn.

Theorem 9.38. For any pair (∆aff ,K) or (∆, J), where ∆ is ADE Dynkin, the above
construction gives a well-defined global ordering on Cone(∆, J) and Cone(∆aff ,K), satisfy-
ing properties (1) and (2) above.

Proof. The main problem is to show that the second part of the construction is
well-defined. Suppose that α,β : (1,K) → CX are both positive minimal paths. Then
they induce the same Krull–Schmidt ordering on the summands of X if and only if

β−1 ◦ α : (1,K)→ (1,K)

induces the fixed Krull–Schmidt order N1 ⊕ . . . ⊕ Nn of N . But we can write the cycle
of mutations N → N corresponding to β−1 ◦α as a product of conjugate rank two cycles
(i.e. cycles around a codimension two wall crossings). Since by inspection in the rank
two setting, which is in effect a finite hyperplane arrangement in R2, the mutation cycle
induces the same fixed ordering, the above procedure is well defined.

Given it is well-defined, property (1) is clear by construction. Property (2) is just the
statement that νiνi(X) ∼= X. �





Part 4

Applications to Birational Geometry





CHAPTER 10

Autoequivalences and Faithful Actions

Given a subset J ⊆ ∆, where ∆ is an ADE Dynkin diagram, we can associate:

(1) By Part 1, the following combinatorial data:
(a) A finite hyperplane arrangement Cone(J) inside R|Jc|.
(b) The J-Tits cone Cone(∆aff , J), and its level Level(Jaff) which is an infinite

hyperplane arrangement inside R|Jc|.
(c) The arrangement groupoids GJ and GJaff

of 2.16, and the vertex groups π1(J)
and π1(Jaff) of 2.18.

(2) The following surfaces data:
(a) A Kleinian singularity C2/G, where G corresponds to ∆ by McKay corre-

spondence.
(b) A partial crepant resolution g : Y → C2/G, obtained from the minimal

resolution by blowing down the curves in J.
(c) A canonical tilting bundle VY on Y , such that its dual is generated by global

sections [VdB]. It is well known [KIWY] that EndY (VY ) ∼= eJΠeJ = ΓJ,
where Π is the preprojective algebra of type ∆aff .

(d) The derived equivalence

(10.0.A) RHomY (VY ,−) : Db(cohY )
∼−→ Db(mod ΓJ).

(3) The following 3-fold data:
(a) A (in fact many) flopping contraction f : X → SpecR, where X has only

terminal singularities, which slices to Y under generic g ∈ R. Namely, there
is a pullback diagram

Y X

SpecR/g SpecR

f

where by Reid’s general elephant SpecR/g = C2/G, and furthermore the
left hand vertical map is precisely that appearing in (2) above.

(b) The derived equivalence

(10.0.B) RHomX(VX ,−) : Db(cohX)
∼−→ Db(mod EndR(N)).

where VX is the canonical tilting bundle on X such that its dual is generated
by global sections [VdB].

(c) The R-module N := f∗VX . It is well-known that N ∈ modif R, and since
by construction VX has summand OX , necessarily R ∈ addN .

Conversely, given either a crepant partial resolution Y → C2/G, or a flopping contrac-
tion X → SpecR where X has only Gorenstein terminal singularities, we can associate
such a J via slicing if necessary, then using McKay correspondence. Thus, throughout
this chapter, the question of what is the input is really just a function of viewpoint.

The purpose of this chapter is to transfer the results of the previous parts across the
derived equivalences above, and to spell out all the geometric corollaries. In §10.1 we
will use the tilting theory of ΓJ from Part 2 to give new results about crepant partial
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resolutions C2/G, and in §10.2 we use the results about modifying modules in Part 3 to
give new results about flopping contractions. In §10.3 we prove that the ‘finite’ group
actions constructed in both settings are faithful generalising [BT, HW1].

10.1. Surfaces

As notation, consider a partial crepant resolution Y → C2/G for some finite subgroup
G ≤ SL(2,C). As Y is dominated by the minimal resolution, it can be obtained by blowing
down a subset J of curves in the minimal resolution, and thus by McKay correspondence
a subset J of an ADE Dynkin configuration.

Remark 10.1. Recall that the nodes in J are shaded •, and the curves not in J are
coloured. Thus, the coloured vertices correspond to curves in the partial resolution.

10.1.1. Twists for Wall Crossings. Here we gives an intrinsic description of cer-
tain wall crossing in terms of twist functors, and in the process produce new phenomena
of spherical twists. Simple wall crossing can only possibly give an autoequivalence if the
categories on both sides of the wall are equal; this translates into the condition that the
label J does not change under the wall crossing. In the case J = ∅ below, we recover the
Seidel–Thomas twists on the minimal resolution.

As notation, for a fixed ΓJ, which has unit eJ, for each i ∈ Jc consider the factor ΓJ,i =
ΓJ/ΓJ(eJ − ei)ΓJ. This is the algebra that represents the noncommutative deformations of
the simple ΓJ-module Si at the vertex i of ΓJ.

Proposition 10.2. Suppose that in the simple wall crossing formula, ωi(x, J) =
(xx0, J), i.e. the second term J does not change. Set Twisti = RHomΓJ(eJIx0eJ,−),
which is the wall crossing equivalence from 5.32. Then the following hold.

(1) ΓJ,i has finite projective dimension, as a ΓJ-module.
(2) There is a functorial triangle

RHomΓJ(ΓJ,i,−)⊗L
ΓJ,i
ΓJ,i → (−)→ Twisti(−)→

Proof. Set j = ιJ+i(i), then by assumption j = i. It follows that

eJIx0
eJ = eJ(Ix0

(eJ − ei)⊕ Ix0
ej)(since i = j)

= eJ(〈eJ − ei〉(eJ − ei)⊕ 〈eJ − ei〉ej)(by 5.14(5))

= eJ〈eJ − ei〉eJ
= eJΠ(eJ − ei)ΠeJ
= eJΠeJ(eJ − ei)eJΠeJ(since eJei = ei = eieJ)

= ΓJ(eJ − ei)ΓJ.

It follows that ΓJ,i = ΓJ/eJIx0eJ, and so there is a short exact sequence of bimodules

0→ eJIx0
eJ → ΓJ → ΓJ,i → 0.

Since eJIx0
eJ is tilting, and thus has projective dimension one, part (1) follows. Part (2)

follows from the above bimodule exact sequence, exactly as in [DW1, 6.10]. �

Example 10.3. Consider J = . This is fixed under all wall crossing rules.

In this example, a knitting calculation [DW1, 3.16, 3.17] confirms that ΓJ, ∼= C, and
ΓJ, ∼= C〈x, y〉/(x2, xy+yx, y2). The green wall crossing thus gives rise to a spherical twist
over C, which is a classical spherical twist, and the red wall crossing gives a spherical twist
over the exterior algebra in two variables.
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10.1.2. Finite and Affine Actions. Keeping the notation that Y → C2/G is a
crepant partial resolution corresponding to J, from Part 1, consider the associated finite
hyperplane arrangement Cone(∆, J), and infinite hyperplane arrangement Level(Jaff), both
of which are hyperplane arrangements inside R|∆\ J|. Write X for the complexification of
Cone(∆, J), and Xaff for the complexification of Level(Jaff).

Theorem 10.4. Consider a partial crepant resolution Y → C2/G for some finite
subgroup G ≤ SL(2,C), with associated X and Xaff as above. Then there exist group
homomorphisms such that the following diagram commutes.

π1(X)

π1(Xaff)

Auteq Db(cohY )
ϕ

ϕ̃

Proof. This follows from 2.15 and 5.36, passing through (10.0.A). �

In general, since labels J change under wall crossing, and so the spaces on each side
of the wall need not be isomorphic, the fundamental group action is the best we can hope
for. However, when J is always fixed, below we improve the above to a braid group action
(possibly of a non-ADE braid group!). When J is sometimes fixed, we improve the above
to a mixed braid group action.

We first translate the spherical twists above into geometric notation. Under the
equivalence (10.0.A), suppose that Ei corresponds to ΓJ,i. It turns out that Ei is the
universal sheaf from the noncommutative deformation theory of OCi

(−1) [DW1, §3.2].

Proposition 10.5. Suppose that in a simple wall crossing, ωi(x, J) = (xx0, J), i.e.
the second term J does not change. Then the following hold.

(1) Ei is perfect, as a complex in Db(cohY ).
(2) There is an autoequivalence Twisti fitting into a functorial triangle

RHomY (Ei,−)⊗L
ΓJ,i

Ei → (−)→ Twisti(−)→

Proof. Part (1) follows immediately from 10.2(1), since derived equivalences pre-
serve perfect complexes. Part (2) is a translation of 10.2(2), exactly as in [DW1, §6.4]. �

Warning 10.6. The assumption in 10.5 that the second term J does not change
under wall crossing cannot be removed. In general, the sheaf Ei is not perfect. This
should be contrasted with the 3-fold terminal flops setting, where the universal sheaf of the
noncommutative deformation theory is automatically perfect [DW1, 5.6]. Homologically,
canonical singularities behave much worse than terminal singularities.

In the case when the label never changes under wall crossing, we can identify all
chambers and obtain a group action by an appropriate braid group. We now illustrate
this via examples, which illustrate the key features.

Remark 10.7. In the following examples, the label never changes under wall crossing.

(1) Consider J = and the corresponding partial resolution

Y → C2/G

where G is the binary dihedral group of order eight. In this case, the finite hyper-
plane arrangement is 3.3(2), which is B2. The infinite hyperplane arrangement
is 4.15, which is affine B2.

Since the label J is always fixed under all wall crossing rules, by 10.5 each
wall crossing is in fact a twist autoequivalence. The length two and four braid
relations have already been verified in 5.30, and so it follows that Db(cohY )
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carries the action of the braid group, and of the affine braid group, of type B2.
The actions in 10.4 are the pure braid group, and the pure affine braid group,
respectively.

(2) Consider J = , and the corresponding partial crepant resolution Y . In
this case, the finite hyperplane arrangement is 3.5(5), which is G2. The infinite
hyperplane arrangement is 4.20, which is affine G2.

Again, since the label J is always fixed under all wall crossing rules, by 10.5
each wall crossing is in fact a twist autoequivalence, and so Db(cohY ) carries
the action of the braid group, and of the affine braid group, of type G2.

In the above cases, and also in many others, the braid and affine braid group actions
of non-ADE type appear, and are quite unexpected. It is still not clear precisely which
non-ADE braid groups appear, and this problem has a similar flavour to 3.11, where
perhaps classification of all the possible intersection arrangements is required.

10.1.3. Derived Classification of Partial Resolutions. The algebraic results in
Chapter 7 have immediate geometric corollaries. The following is a derived equivalence
classification of all partial crepant resolutions of Kleinian singularities. This problem is
quite fundamental, and it is surprising it has not been investigated before.

Corollary 10.8. Suppose that Y → C2/G and Y ′ → C2/G′ are two crepant partial
resolutions, with associated J ⊂ ∆aff and J′ ⊂ ∆′aff . Consider the following two conditions.

(1) Y is derived equivalent to Y ′.
(2) ∆ = ∆′ and J ∼ J′, namely up to symmetries of the extended ADE graph, J and

J′ can be linked through a sequence of iterated wall-crossing moves.

Then (2)⇒(1). Further, if either ∆,∆′ ∈ {An, D4, D5, D6, D7, E6, E7, E8} then (1)⇒(2).

Proof. This follows from 7.21, after passing through the equivalences (10.0.A). �

10.2. Threefolds

We next consider the case of a flopping contraction f : X → SpecR, where X has
only Gorenstein terminal singularities. As before, this slices under generic g ∈ R to give
a partial crepant resolution of a Kleinian singularity. The partial crepant resolution is
obtained from the minimal resolution by blowing down the curves, and the subset J of
vertices of the associated ADE ∆ records which curves are blown down to produce it.

Remark 10.9. Recall from 10.1 that the nodes in J ⊆ ∆ are shaded •, whereas the
nodes not in J (which thus correspond to the flopping curves) are coloured.

The following result is then immediate from Part 3. The first proof of this theorem,
in the Gorenstein terminal setting, was given in [DW3] using moduli tracking and a
case-by-case analysis. This was simplified somewhat via tilting in [HW1], at the cost of
assuming that X is smooth. Here we can use the tilting results of Chapter 9 to give a
simplified proof in all cases.

Corollary 10.10. Suppose that X → SpecR is a flopping contraction, contracting
precisely two intersecting irreducible curves, where X has at worst Gorenstein terminal
singularities. Then

F1 ◦F2 ◦F1 ◦ · · ·︸ ︷︷ ︸
d

∼= F2 ◦F1 ◦F2 ◦ · · ·︸ ︷︷ ︸
d

where d is the number of hyperplanes in Cone(∆, J), where J ⊆ ∆ is the Dynkin type of
the flopping contraction.

Proof. The assumptions imply that R is isolated. By [W2, 4.2], the flop functor
is isomorphic to the inverse of the mutation functor. Hence it suffices to show that the
mutation functors braid in the stated manner. But this is just 9.36. �
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The now standard local-to-global techniques of [DW1, DW3], specifically [DW3,
3.13, 3.15], then immediately lift the above complete local result 10.10 to give the following
global consequence.

Corollary 10.11. Suppose that X → Xcon is a flopping contraction between quasi-
projective 3-folds, contracting precisely two intersecting independently floppable irreducible
curves. If X has at worst Gorenstein terminal singularities, then

F1 ◦F2 ◦F1 ◦ · · ·︸ ︷︷ ︸
d

∼= F2 ◦F1 ◦F2 ◦ · · ·︸ ︷︷ ︸
d

where d is the number of hyperplanes in Cone(∆, J), where J ⊆ ∆ is the Dynkin type of
the flopping contraction.

In addition to vastly simplifying the proof of 10.10, and avoiding case-by-case analysis,
we are for the first time able to precisely determine d, the length of the braid relation.

Corollary 10.12. Suppose that X → Xcon is a flopping contraction between quasi-
projective 3-folds, as in 10.11. Then the length of the braid relation is either 2, 3, 4, 5, 6,
or 8. The first case, namely d = 2, holds if and only if the curves are disjoint.

Proof. If the curves are disjoint, it is very well-known that the flop functors commute
(see e.g. [DW3]), so the braid relation has length two. If the curves intersect, by 10.11
the flops functors braid where d is the number of hyperplanes in Cone(∆, J). By 3.11, this
number is 3, 4, 5, 6, or 8. �

The real power of this memoir is that there are many more autoequivalences than
those given as compositions of flop functors. Before stating the full affine action results,
we restrict first to the following special cases.

As preparation, consider S0, . . . , Sn, where S0 = ωC[1], and Si = OCi(−1) for all
i > 0. By [VdB, 3.5.8], these are precisely the simple A = EndR(N)-modules under the
equivalence (10.0.B). With 9.30 now established, Part (1) of the following result removes
all restrictions on [DW3, §4.1]. Part (2) was the main motivation behind this memoir.

Theorem 10.13. Suppose that f : X → Xcon is a flopping contraction of quasi-
projective 3-folds, where X has only Gorenstein terminal singularities.

(1) For any I ( {0, . . . , n}, let EI be the universal object of the noncommutative
deformation theory of {Si}i∈I, and set AI = EndX(EI). Then there is a twist
autoequivalence, together with a functorial triangle

RHomX(EI, x)⊗L
AI

EI → x→ TwistI(x)→
(2) In particular, for I = {0}, Let Efib be the universal sheaf of the noncommutative

deformation theory of ωC, and set Afib = EndX(Efib). Then there is a fibre twist
autoequivalence FTwist, together with a functorial triangle

RHomX(Efib, x)⊗L
Afib

Efib → x→ FTwist(x)→
Proof. (1) This follows word-for-word [DW3, §5], where 9.30 replaces either [DW3,

4.7] or [DW3, 4.9] appropriately.
(2) Is an immediate special case of (1). �

The above 10.13 gives many more twist autoequivalences than just compositions of
flop functors. To give the most general result, the full affine action, as in Part 3 we pass to
the Deligne groupoid, but only from an algebraic perspective. As notation, recall that to
X → SpecR we can associate a subset J of an ADE Dynkin ∆. As in §10.1.2, consider the
associated finite hyperplane arrangement Cone(∆, J), and infinite hyperplane arrangement
Level(Jaff), both of which are hyperplane arrangements inside R|∆\ J|.

Given X → SpecR, we can associate N ∈ modif R, and by 9.36:
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(1) The mutation functors between Db(mod EndR(M)), where M ∈ MMNR∩CMR,
form a representation of the corresponding Deligne groupoid GJ.

(2) The mutation functors between Db(mod EndR(M)), where M ∈ MMNR, form a
representation of the corresponding Deligne groupoid GJaff

.

It is possible to give a strictly geometric version of (1), by replacing it with the flop
functors between Db(cohY ), where Y is obtained from X via iterated flop. However, there
is no good geometric replacement of (2), and so we must rely on the noncommutative reso-
lutions (and their variants) to construct it. Regardless of this lack of a birational-geometric
version of the affine Deligne groupoid, we still have the following. As before, write X for
the complexification of Cone(∆, J), and Xaff for the complexification of Level(Jaff).

Corollary 10.14. Let X → SpecR denote a 3-fold flopping contraction, where X
has only Gorenstein terminal singularities. Then there are group homomorphisms such
that the following diagram commutes.

π1(X)

π1(Xaff)

Auteq Db(cohX)
ϕ

ϕ̃

Proof. This follows from 2.15 and 9.37, passing through (10.0.B). �

10.3. Faithful Actions

In this section, which is a mild extension of the techniques in [HW1], we prove that
the ‘finite actions’ ϕ on surfaces and 3-folds in 10.4 and 10.14 are faithful. The action in
the surfaces case is new, when J 6= ∅, as is the faithfulness of it. The action in the 3-fold
setting was proved in [HW1] under the additional assumption that X was smooth; here
we again use the tilting advances in Part 3 to remove this.

Setup 10.15. We consider one of the following two settings.

(1) A partial crepant resolution Y → C2/G, for some finite G ≤ SL(2,C). There is
an associated subset J of an affine ADE Dynkin configuration, which does not
contain the extended vertex. As in (10.0.A), Y is derived equivalent to ΓJ.

(2) A 3-fold flopping contraction X → SpecR where X has at worst Gorenstein
terminal singularities. Necessarily X is derived equivalent to some EndR(N)
with N ∈ modif R and R ∈ addN .

In case (1), below set A = ΓJ and d = 2. In case (2), below set A = EndR(N) and d = 3. In
either case, write S0, . . . , Sn for the simple A-modules, and S =

⊕n
i=0 Sn. By convention,

in case (1) S0 corresponds to the extended vertex, and in case (2) S0 corresponds to the
summand R.

Throughout, for a triangulated category C and a, b ∈ C, we match the notation in
[BT] and write

[a, b ]t := HomC(a, b[t]).

The following is elementary.

Lemma 10.16 ([HW1, 6.2]). In Setup 10.15, suppose that N is a non-zero A-module
of finite length.

(1) If y ∈ Db(modA) is such that [S, y ]≥p = 0, then [N, y ]≥p = 0.
(2) [N,A ]d 6= 0 and [N,A ]≥d+1 = 0.

For H = Cone(∆, J), recall from §2.3 that the category of positive paths is defined
G+
J

:= Free(ΓH)/ ∼, and the Deligne groupoid is obtained as the groupoid completion of
this. Since H is a finite simplicial hyperplane arrangement, by 2.14 the natural functor
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G+
J → GJ is faithful. This fact, together with the existence of Deligne normal form for

finite simplicial arrangements, is crucial for the proofs below.
As in [HW1], for any α, define

tα = F (α),

where F is the functor in either 5.35 or 9.36. The key point, exactly as in [HW1, §5], is
that 5.30 and 9.34 allow us to give direct functors in the case of reduced paths, and thus
we can use the torsion pairs arguments from [HW1]. The following is a variation of the
main technical lemma from [BT] and [HW1], which follows in our general setting here
via the previous sections.

Proposition 10.17. In Setup 10.15, let α ∈ G+
J have Deligne normal form α =

αk ◦ . . . ◦ α1. Then the following statements hold.

(1) [S, tαA ]≥k+d+1 = 0.
(2) [Si, tαA ]k+d 6= 0 if and only if i 6= 0, and the atom αk ends (up to the relations

in G+
J ) by passing through wall i. In particular [S, tαA ]k+d 6= 0.

(3) The maximum p such that [S, tαA ]k+d 6= 0 is precisely p = k + d.

Proof. With 5.30 and 9.34 already established, this follows word-for-word as in
[HW1, 6.3], using b = A. �

Corollary 10.18. The functors F in 5.35 and 9.36 are faithful.

Proof. Given 10.17, this is now word-for-word identical to [HW1, 6.5] �
Passing to vertex groups, and using 2.15, the following is then immediate.

Corollary 10.19. Under the Setup 10.15, the following statements hold.

(1) The homomorphism π1(X)→ Auteq Db(cohY ) in 10.4 is injective.
(2) The homomorphism π1(X)→ Auteq Db(cohX) in 10.14 is injective

Remark 10.20. By exactly the same proof of 10.17, and exactly as in [HW1, p21],
it follows that the non-ADE actions of B2 and G2 in 10.7 are also faithful. These are the
first known examples of non-ADE Coxeter braid group actions in an algebraic-geometric
context.

Remark 10.21. Even in the case of the classical case J = ∅, with the affine braid
group acting on the minimal resolution, it is still not known if the affine action is faithful.
The papers [IU, IUU] establish this for the minimal resolutions of cyclic groups.
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