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Abstract

The first part of this memoir assigns hyperplane arrangements to any choice of vertices
in a Coxeter graph, by taking an intersection arrangement inside a Tits cone. For each
such arrangement obtained in this way, a combinatorial labelling of the chambers is given,
and under mild assumptions a combinatorial description of wall crossing is also described.
As a special case, given any choice J° of n nodes in any Dynkin diagram, a tiling of R™
is produced. In the case n = 2 there are are precisely sixteen tilings, where three are the
standard affine Lie algebra arrangements, and thirteen are new. The special case when J¢
equals all nodes gives the full affine arrangement, however the flexibility of choice allows
for the construction of affine-type structures, even in R? and R?, when the non-affine
situation does not classically have an affine analogue.

The second part is representation-theoretic, and is based around tilting theory. It
is shown that the above combinatorial tilings control the tilting theory of contracted
preprojective algebras, namely those algebras elle, where TT is the preprojective algebra
associated to some Dynkin, or extended Dynkin quiver. This is used to give a derived
classification of such algebras in both cases.

The third part is also algebraic, and focuses on cDV singularities, from the viewpoint
of noncommutative resolutions and their variants. A bijection is established between
the building blocks of noncommutative resolutions, namely modifying modules, and var-
ious (higher codimension) walls of the arrangement, thus classifying for the first time all
such modules. Furthermore, it is shown that mutation corresponds to wall crossing, and
from this, many strong properties are extracted, such as mutation being an involution on
arbitrary modifying modules, at arbitrary summands. As a consequence, the Auslander—
McKay Correspondence for ¢cDV singularities [W2] is strengthened, and is furthermore
extended into the affine setting by using the new infinite arrangements.

The final part contains all the geometric corollaries. The new combinatorial structure,
together with the previous algebraic results, are combined to put the first affine-type
actions both on the derived categories of 3-folds that admit flopping contractions, and
on singular surfaces arising from partial resolutions of Kleinian singularities. A derived
classification of partial crepant resolutions of Kleinian singularities is given. The fibre twist
of | ] is extended to cover non-Q-factorial singularities, and the non-affine actions
from | ] is extended to cover flops with at worst Gorenstein terminal singularities.
The maximum length of the braid relation for 3-fold flops is described, and various ‘finite-
type’ group actions are shown to be faithful.

Osamu Iyama was supported by JSPS Grant-in-Aid for Scientific Research (B)24340004, (B)16H03923,
(C)23540045 and (S)15H05738, and Michael Wemyss was supported by EPSRC grants EP/K021400/2
and EP/R009325/1.






Introduction

The purpose of this work is to extend and generalise hyperplane arrangements from
Coxeter theory, and to use these new structures as the fundamental ingredient that then
establishes results in various algebraic geometric situations, such as surfaces and 3-folds,
and also in various representation theoretic contexts, such as in contracted preprojective
algebras, in noncommutative resolutions, and in all their variants. In essence, we first pro-
vide the correct combinatorial structure and describe its wall-crossing rules, then use this
information to derive results in homological algebra, commutative algebra through reflex-
ive modules, tilting theory of preprojective algebras, group actions on derived categories,
and stability conditions.

There are many further consequences, all underpinned by the same new combinatorial
rules and structure. The hyperplane arrangements and tilings that are obtained, whilst
not forming part of classical Coxeter theory, turn out to be surprisingly rich and beautiful,
much like their classical Coxeter cousins.

When and What is Affine? Our original motivation stems from the following
simple problem. Classical Coxeter theory asserts that various braid and Coxeter groups
associated to the Coxeter graph I5 do not admit an affine version. However, there is a
situation arising in algebraic geometry, namely 3-fold flopping contractions, that suggests
something ‘affine’ exists. This memoir grew out of first trying to uncover this structure,
and as such, it is instructive to first review this motivational setting in slightly more detail.

Three dimensional flops are perhaps the most elementary higher-dimensional bira-
tional surgery, however many of their properties remain mysterious. It was observed in
[W2, 7.2] that there exists a 3-fold flop

» Xt

N

SpecR

where both f and fT contract two intersecting curves to a point, and for which the movable
cone of f is described, in suitable co-ordinates, by the following hyperplane arrangement

inside R?. As is well known, the fundamental group of the complexified complement
C:\Hc is equal to the pure braid group PBr(I5) associated to the Coxeter graph Is.
Starting from X, iteratively flopping the two individual curves (that is, performing the
birational surgery of flop on the two curves individually and repeatedly), gives ten different

vii



viii INTRODUCTION

flopping contractions X; — Spec R. These correspond to the chambers of the movable
cone, and so to the chambers of the above hyperplane arrangement.

All the X;, whilst being non-isomorphic as R-schemes, are derived equivalent via the
Bridgeland—Chen flop functors. It was shown in | ] that, in this example, the length
five braid relation holds for the flops functors, namely

F10F20F10F2OF1gFQOFlOFQOFlOFQ.

Visually, this can be viewed as

Fo

The existence of a group homomorphism PBr(I5) — Auteq DP(coh X) follows immediately.
This homomorphism turns out to be quite important: it is injective | ], and its image
is the Galois group of the universal cover Stab’°@ — C2\Hc, where € is the null category
inside DP(coh X), see | ]

However, this is not the whole picture. It was furthermore shown in | | that,
provided X is smooth (or more generally, Q-factorial), there exists an additional autoe-
quivalence, called the fibre twist, which, motivated by happens for smooth surfaces [B6],
should be some affine element in some naturally occurring ‘affine’ version of PBr(I5). The
question is: what is this affine structure? In classical Coxeter theory, there is no affine
pure braid group associated to I5.

Solution: Finite and Affine. Of course, the question is not well posed, as the
algebraic geometric setup contains more information. Whilst the finite arrangement with
10 chambers can be identified with the root system Iy, it turns out that it is much more
natural to view it as the intersection arrangement (or localisation arrangement) inside a Eg
root system. Indeed, via Reid’s general elephant conjecture and McKay correspondence,
it is more natural to identify the two curves with a subset of vertices of an Eg Dynkin
diagram. For the f: X — Spec R example above, the two curves correspond to the
unshaded vertices in the following: celee.

In turn, the two unshaded vertices correspond to linearly independent vectors in the
Eg root system, taking so their span gives R2. Intersecting all the reflecting hyperplanes
inside the root system (which is R®) with this R? cuts out a hyperplane arrangement on
the R2, which gives precisely the 10 chamber example above. A cartoon description of
this intersection in R® is depicted by the following diagram.

|
I/
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In particular, before even extending into the affine case, this on its own motivates us to
develop a full theory for intersection arrangements inside all Coxeter root systems.

Our construction of the ‘affine’ version is verified in Example 2.10. It involves first
adding the extended vertex

@)

° °
cecee YT oecee

Then, inside the full Tits cone of the affine Eg root system sits R2, based by the three
unshaded vertices. Intersecting all the hyperplanes in the Tits cone with this R? gives a
cone, and after taking a suitable ‘level’ (for details, see below), the corresponding infinite
hyperplane arrangement in R? is precisely:

In general, taking intersection arrangements leaves the world of Coxeter arrangements,
and so the language adopted is not one of global rules, governed by the Coxeter matrix,
but rather a language of local rules, governing local wall crossing behaviour. Explicitly
describing the affine arrangements produced in principle remains easy, as it is possible to
start anywhere and iterate well-described local rules. In practice, these calculations are
quite involved: even in the case of two curves, which produces a tiling of the plane, Theo-
rem 0.5 below demonstrates that the tilings produced exhibit quite exceptional behaviour,
and they take much longer to repeat than might naively be expected.

Nonetheless, Parts 2, 3 and 4 provide justification for calling these new infinite ar-
rangements ‘affine’; since they achieve our geometric motivation, and much more.

Forward. With this motivation in hand, we start at the beginning, and develop a
general theory for intersection arrangements in both finite and affine cases. We then
use this new theory to help uncover and prove results in various algebraic and geometric
settings. To achieve this, the memoir naturally splits into four parts.

e Part 1, which is entirely combinatorial and logically independent of all the other
Parts, develops the general theory of intersection arrangements inside Coxeter
arrangements. It constructs the arrangements and labels the chambers using
Coxeter data, describes the local wall crossing rules, and classifies the arrange-
ments, finite and affine, that arise in low dimension.

e Part 2 considers, for the first time, contracted preprojective algebras, which are
elle where IT is the usual preprojective algebra and e is some idempotent. Un-
der various assumptions on the underlying quiver, one of the main results is
that the tilting theory of these algebras is controlled by the affine arrangements
constructed in Part 1. A derived classification is given.

e Part 3 lifts the technical heart of Part 2 into the world of 3-folds, and completely
describes all noncommutative resolutions and their variants for compound Du
Val (=cDV) singularities, again in terms of the affine hyperplane arrangements
of Part 1. The finite arrangements correspond to a certain natural subset. In
all cases, mutation corresponds to wall crossing, and crucially the topology of
the arrangements is used to strengthen and extend many results in mutation to
cover arbitrary rigid reflexive modules.

e The techniques in all of the Parts 1, 2 and 3 then allows, in Part 4, a return to
the original algebraic geometry motivation, where the geometric corollaries are
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spelled out in some detail in dimensions two and three. The advances in Part 3
allow many of the assumptions in the literature to be swept away, generalising
many results from smooth flops to terminal flops, including braiding, existence
of the fibre twists, affine actions, and various results on faithful actions.

‘We now describe the content of each of the four Parts in more detail.

Part 1. Intersection Arrangements. The construction requires two pieces of
input data. The first is an n x n Coxeter matrix M = (m;;), with entries in the set
{1,2,...,00}. As is standard, M can alternatively be described by a Coxeter graph A
with n nodes, where we draw an edge between ¢ and j if and only if m;; > 3. There is a
naturally associated Coxeter group, denoted Wh.

Let V be the R-vector space with basis {«; | i € A}, and B the symmetric bilinear
form on V' defined by B(e,«;) = —cos(m/m;;). The Coxeter group Wa acts on V
by s;(v) = v — 2 B(a;,v)x;. Set © := V* to be the dual space of V, which has basis
{af | i € A}. The Tits cone Cone(A) is defined to be

Cone(A) := U z(C),
rz€EWA
where C:= {9 € © | 9; > 0 for all i € A}.
Our second piece of input data is a choice J of a subset of vertices of A. Given this
input pair (A, J), consider the vector space

@32:{8€@|81‘:0ifi€3},

which has as basis {a} | ¢ ¢ J}. The main object of our study, called the J-cone, is the
intersection

Cone(A, J) := Cone(A) N Oy.
In order to describe this object, we first label its chambers. For § C A, let Cham(A, J) be
the set of those pairs (z, J), where x is an element of the Weyl group Wx, J is a subset
of A, satisfying the two properties that £(z) = min{l(y) | y € 2W;}, and Wyx = 2W).

THEOREM 0.1 (1.12). Let A be a Cozeter graph. Then there is a bijection from the
set Cham(A, J) to the set of chambers in Cone(d), given by

Cham(4,J) > (z, J) — z(Cy).

Now for any (z,J) € Cham(A, J), by the above theorem topologically we land in some
chamber of Cone(A,J). From this, we try to wall cross into an adjacent chamber. Walls
of the chamber z(C}) correspond to i € J°. In particular, there are |J¢| of them.

To describe this, suppose we are in a situation where ¢ € J¢ is such that Wy, is
finite. This happens often, and for example holds automatically for all extended ADE
Dynkin diagrams. In this case, we define simple wall crossing by

wi(z, J) = (zwywy, J +1i—1y,(9),

where w; is the longest element in Wy, w;1; is the longest element in W, and (7, is
the involution on the graph J + 4 from 1.2(2).

The name simple wall crossing in 1.16 is justified by the following theorem, which is
the main result of Chapter 1.

THEOREM 0.2 (1.20). Let A be a Cozeter graph, and J a subset of A.
(1) For any (z,J) € Cham(A,J) and i € J® such that J + i is Dynkin, the following
assertions hold.
(a) w;i(z,J) belongs to Cham(A,J) for any (x,J) € Cham(A,J) and i € J°.
(b) x <zs; = (x,J) < w(x,J), and x > zs; = (z,J) > w;(z,J).
(¢) Wall crossing is involutive, that is,
wiyw;(z,J) = (z,J)

fori = 154(4).
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(d) Let (y,J") := w;i(z,J). Then the g-chambers x(Cy) and y(Cy') are adjacent
via the wall x(Cyi;).
(2) If J is strongly Dynkin, then the following assertions hold.
(a) Any two elements in Cham(A,J) are connected by a finite sequence of wall
CTrossings.
(b) Two elements in Cham(A,J) are related by a simple wall crossing if and
only if the corresponding J-chambers are adjacent.
(3) If Wa is finite, then Cham(A,J) has the minimum element (1,d) and the maxi-
mum element (wgwa,ta(J)).

It is the ADE Dynkin, and extended Dynkin cases that interest us the most. Suppose
that A is ADE Dynkin, J C A, then the simplest case is when J¢ = A\J is small. The case
when |J°| = 1 is degenerate, always having precisely two chambers (Lemma 3.1). The
case |J°| = 2 is much more surprising.

THEOREM 0.3 (3.11). Suppose that A is ADE Dynkin, and § C A is such that |J°| = 2.
Then, up to changing the slopes of some of the hyperplanes, Cone(A,d) is one of the
following five hyperplane arrangements.

N

In each case, the number of chambers is 6,8,10,12 and 16 respectively.

If we take into account the precise slopes of the hyperplanes, then more arrangements
can occur, but for the vast majority of our applications the slopes of the hyperplanes
do not matter. The slopes, and also an associated weighting of each hyperplane, do
give a method of computing the infinite arrangement below, but this data is not strictly
necessary; the infinite arrangement can be computed without knowledge of the slopes.

Consider next the extended Dynkin case A,¢. Given a subset J of vertices of the
Dynkin diagram A, we can consider J as a subset of A,¢. We then call

Cone(gaff) = Cone(AafF,g) - R‘Aaff\f\g\

the J-affine Tits cone. As for usual Tits cones, there is redundancy as Cone(da) does not
fill RI2#1=131 Suppose that A, has corresponding © = V*, then for any K C A,q, the
level is defined to be

Level(X) := {9 € Cone(Aur, K) | D 8idp = 1}.
kgx

Thus for J C A, the level Level(Ja) inside Cone(A,, ) is an infinite hyperplane arrange-
ment in R!°I, where J¢ = A\J. The chambers of Cone(d.;) partition Level(d.s) into
alcoves. More details are given in Section 2.2, and all these concepts are illustrated in
Example 2.9.

One remarkable feature is that different choices in different Dynkin diagrams can lead
to the same finite hyperplane arrangement, but different affine arrangements.

ExXAMPLE 0.4. Consider the following Dynkin diagrams D4 and D5, where the shaded
vertices denote the elements of a subset J.

L D

In both cases, Cone(A,J) gives the second-left hyperplane arrangement in Theorem 0.3,
with eight chambers. However, the levels Level(da¢) differ, and they are both illustrated
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below. On top of these arrangements, we have drawn the dual groupoid, to illustrate the
difference.

The left arrangement is the traditional affine By arrangement, and the right arrangement
is obtained from the left by removing hyperplanes.

The level Level(dag) then becomes the fundamental new object. In turn, this mo-
tivates the investigation of its basic properties, especially when |J¢| is small. The case
|J°| = 1 is described in | R ], which finds precisely six infinite hyperplane ar-
rangements (equipped with Z-action) in R. Far from being the trivial case, these have
already uncovered surprising new phenomena in derived autoequivalence groups.

The next case is |J¢| = 2, which is treated in Chapter 4, where a full classification is
obtained. Again, this unveils surprising structure.

THEOREM 0.5 (Section 4.2). Suppose that Ay is extended ADE Dynkin, and K C Ay
satisfies |X| = 3. Then, up to changing the slopes of some of the hyperplanes, Level(X) is
one of following sizteen hyperplane arrangements:

INISININININININININES,
NINININISININININININ
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y
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AN
7NN N N N N I
S SR A
OO0 e
BOnOEOROILOD 2O OO
ol o Qi g
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In addition, each of the sixteen arrangements appears as Level(Jag) for some subset of the
ADE Dynkin § C A satisfying |J°| = 2.

The first and third tilings in the top row are the same as abstract hyperplane ar-
rangements, but they have different Z? actions, illustrated by black dots. More details
are given in Section 4.2. What is perhaps the most striking about the above is the sheer
complexity of some of the tilings. This was unexpected, from the viewpoint of both the
algebraic and the geometric applications below.
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Part 2. Contracted Preprojective Algebras. To the input of a Coxeter graph A
and a choice of vertices J C A, Part 2 investigates the first, and most basic, representation
theory questions.

Let Q = (Qo, Q1) be any quiver with underlying graph A, and let @ be the double
quiver of @. The preprojective algebra TT associated to this data is the (complete) pre-
projective algebra of A, that is the complete path algebra of @, modulo the closure of the
ideal generated by the element

Z (aa™ — a*a).

a€Qr
For each vertex i € A, there is a corresponding idempotent e; of TT. Given the subset
d C A, consider the idempotent

eg:i=1— Z €j.

Jj€d
The following is our fundamental new object of study.

DEFINITION 0.6. For any J C A, we call Ty := eglleg the contracted preprojective
algebra associated to J.

It turns out that tilting theory for Iy is controlled by the chambers Cham(A,J). Set
tilt Ty to be the the set of isomorphism classes of basic tilting E-modules of projective
dimension one. As notation, for i € A, let I; be the two-sided ideal of TT generated by
1 —e;. For w € W with reduced expression w = s;, ... s;,, recall that the ideal I, of TT is
defined

Iw = Iil .. ~Iig~
This is independent of a choice of reduced expression | |. By convention, I; = TI.

THEOREM 0.7 (5.2). Let A be a non-Dynkin graph without loops, and TT the prepro-
jective algebra of A. Let J be a strongly Dynkin subset of A.

(1) There is a map
Cham(A,J) — tilt Ty

given by (z,J) — eglzey.

(2) Wall crossing is compatible with mutation, that is, if w;(z,J) = (y,J’), then
vi(egler) =eglyey .

(3) If A is extended Dynkin, then the above map Cham(A,J) — tilt Ty is a bijection.

An immediate corollary of the above theorem is that the set of algebras I'y, as J runs
over J C A, is split into derived equivalence classes. Indeed, Ty and 'y, are derived equiv-
alent provided that J and J’ can be linked through a sequence of iterated combinatorial
wall-crossing moves. In the extended Dynkin setting, this gives the first known derived
equivalences between partial crepant resolutions of Kleinian singularities (see 0.23 below).

In Chapter 6 we consider the case when A is ADE Dynkin, and § C A. In this
setting, both TT and Ty are finite dimensional algebras, but since TT is self-injective it has
no classical tilting modules. The algebras TT and Ty do, however, have both silting and
tilting complexes. Our main result in this context is the following, where 2silt Iy denotes
the two-term silting complexes, and 2tilt T3 denotes the two-term silting complexes. The
assumption t(J) = J is necessary to ensure that Iy is also self-injective (see 6.2).

THEOREM 0.8 (6.4). Let A be ADE, and § C A with (J) = J.

(1) There are bijections

Cham(A,J) «—— 2silt Ty

J J

Cham(A,J)t «— 2tilt Ty.
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(2) The endomorphism algebra of any irreducible left tilting mutation of Ty is iso-
morphic to Ty for some J C A such that there exists (z,J) € Cham(A,J)'. In
particular, KP(projTy) is tilting-discrete.

(3) The derived and Morita equivalence classes of Ty coincide. The basic algebras in
this class are precisely {Ty | J C A, 3(x,J) € Cham(A,J)'}.

The focus of Chapter 7 is the case when A,¢ is extended ADE, and J C A.¢. The
main idea is that, in this setting, the derived equivalence classification of all contracted
preprojective algebras (not only those derived equivalent to partial resolutions) is always
combinatorially determined, and furthermore the derived equivalence class does not con-
tain anything unexpected.

CONJECTURE 0.9 (7.1). Suppose that I C Ay where Ay is extended ADE Dynkin,
and let A be a basic ring. Then A is derived equivalent to Ty if and only if there exists
I C Au such that A =Ty, and furthermore J and 3’ are iterated combinatorial mutation
of each other, up to symmetries of Aa-

The direction (<) is clear follows using 0.7, since wall crossing gives derived equiva-
lences (§5.6), as do isomorphisms. The content in the conjecture is the (=) direction. In
Chapter 7 we prove the conjecture in all cases, except when A = D,, with n > 8, due to
its combinatorial complexity. To this end, we introduce the following four invariants: the
type, the cotype, the Grothendieck group, and the subgroup Hy + Kj; for definitions see
§7.1. Our main result is the following.

THEOREM 0.10 (7.21). Suppose that I C Ay and ' C ALy where A and A" are ADE
Dynkin. Consider the following conditions.
(1) Ty is derived equivalent to Ty, .
(2) The types match (namely A=AN'), and I ~ 7.
(3) The types match, the cotypes match, Go(Ty) = Go(Ty/), and Hy+ Ky = Hy + Ky,

Then (2)@(1)#(3) IfA S {An,D4,D57D6,D77E6,E7,E8}, then (1)@(2)@(3)

In most cases it is possible to get by using less than the four invariants in (3) above;
see 7.21 for a more precise statement.

Although slightly technical, the above 0.7 together with the natural partial order on
the set tilt Iy is the key to much of what follows. It allows us to describe a large portion of
the autoequivalence group of DP(modTy), to deduce many of the homological properties
of three-dimensional c¢DV singularities below, to classifying noncommutative resolutions
and their variants, and to verify that the wall crossing functors satisfy the relations of the
Deligne groupoid, and hence give affine group actions in geometric settings.

Part 3. cDV Singularities. Compound du Val (=cDV) singularities are fundamen-
tal objects in birational geometry. Those cDV singularities with only isolated singularities
are precisely the Gorenstein terminal singularities in dimension three, and these form the
base of flopping contractions [R]. More generally, cDV singularities that are not isolated
form the base of crepant divisor-to-curve contractions.

The distinction between isolated and non-isolated cDV singularities is in many ways
artificial. The unifying feature is that each any such R admits a crepant birational mor-
phism X — SpecR, with only one-dimensional fibres, such that X has only Q-factorial
terminal singularities. The variety X is called a minimal model for SpecR; there are
finitely many such minimal models, and they are all linked by flops. When one such X is
smooth, all minimal models are smooth.

Our motivation behind Part 3 is to understand the birational geometry of Spec R
from a derived and homological perspective. We achieve this through understanding the
representation theory of cDV singularities, namely through those modules which give rise
to noncommutative minimal models of R, and their variants.
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Given a Gorenstein ring R, recall that a reflexive R-module M is called modifying if
Endr(M) is (maximal) Cohen-Macaulay, as an R-module. Further, M is called maximal
modifying provided it is modifying and maximal with respect to this property, and in such
a case we call Endg(M) a maximal modification algebra (=MMA). In analogy with the
paragraph above, if one MMA has finite global dimension, all MMAs have finite global
dimension.

Henceforth, let R be a complete local cDV singularity. We first give a purely algebraic
proof of the following result, first obtained in [W2]. The proof here is much shorter, and
does not rely on tilting and on the existence of minimal models.

PROPOSITION 0.11 (9.4). Let R be a ¢DV singularity, then R admits an MMA.

Much of, in fact almost all of, the homological aspects of the MMAs of R turn out
to be controlled by a factor of R. Given an MMA Endx (M), for generic g € R there are
isomorphisms

Endg(M)/g = Endg/4(M/g) = elle

for some idempotent e, linking the setting to the previous parts of this memoir. The
following is then key, since it relates properties of maximal modifying R-modules to tilting
modules on elle, and hence to our previous affine hyperplane arrangements.

We remark that the following holds more generally; see 8.17 for full details. As
notation, write MM®R for the isomorphism classes of basic maximal modifying modules,
and MMGRR for the subset for those which have R as a direct summand.

PROPOSITION 0.12 (8.17). With notation as above, set A := Endx(M). Then for any
0 # g € R, there is an injective map MMR < tilt(A/g). If further that R is an isolated
singularity, then the following statements hold.

(1) The map is compatible with mutation.
(2) If the exchange graph of tilt(A/g) is connected, then the map is bijective.

Our main result is the following, which gives a full classification of maximal modifi-
cation R-modules. The result is quite unexpected, and is very specific to the cDV setting;
usually there is no hope in being able to classify maximal modification modules in this way.
The following can also be viewed as an extension of the Auslander-McKay correspondence
in [W2] into the affine setting, which justifies the name.

THEOREM 0.13 (9.8, Affine Auslander-McKay Correspondence). Let R be a complete
normal cDV singularity of type A and Ay the corresponding extended Dynkin graph. Then
the following assertions hold.

(1) There exists a subset J C A and an injective map
MMR — Cham(Aafh 3)

This induces an injective map MMGR — Cham(A, J).

(2) Wall crossing corresponds to mutation.

(3) There exist only finitely many maximal modifying generators of R, and finitely
many indecomposable modifying Cohen-Macaulay R-modules.

(4) If furthermore R is an isolated singularity, then the following diagram commutes,
where the horizontal arrows are bijections.

MM®R ———— Cham(Auq,d)

J J

MMGR ———— Cham(A, J)

COROLLARY 0.14. Let R be a complete local cDV singularity. Then the exchange
graphs of both MMR and MMGR are connected.
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In particular, it follows that the exchange graph of MM®R has a highly regular struc-
ture. An example of such an exchange graph, drawn on top of the associated hyperplane
arrangement (see Example 4.29), is illustrated below in one case where the maximal mod-
ifying modules have three indecomposable summands.

e

\ AP PN/ \ AP ‘%/
/O Pl /R 4?\

One of our new observations is that the sets MMXR and MMGR, and by extension their
geometric counterparts, do not have a natural order. However, for any fixed M € MM®R,
the equivalence

Homg (M, —): MM®R — tilt Endg (M)

transfers information from MM®R to the category of reflexive tilting modules, which does
have a partial order. It is by exploiting this partial order that we are able to obtain,
rather easily, many of our results.

Perhaps the main content of Chapter 9 though, is that we then extend the Affine
Auslander-McKay Correspondence in 0.13 to also cover the case when the modifying
modules are not maximal. The extension of the representation theory to cover this case
is much harder, since usually the set modif R of modifying modules is not well behaved.
For ¢DV singularities however, the payoff is significant: it turns out that the mutation
class of any N € modif R also exhibits highly regular behaviour, and is again controlled
topologically by some intersection arrangement. The extension of the theory to cover the
non-maximal case, and the fact that mutation is still highly regular, is crucial later in
order to understand the special case of a flopping contractions X — Spec R where X has
only terminal singularities.

For N € modif R, write modif™ R for those modifying reflexive R-modules than have
a two-term approximation by add N, and write MM R for those L € modif” R which
have the same number of indecomposable summands as N.

THEOREM 0.15 (9.25). Let R be a ¢DV singularity, and fixt N = N1 @ ... ® N; €
modif R with indecomposable. For any X € modif R, the following holds.
(1) X € modif™R if and only if Homg (N, X) € ref-ptilt Endg (N).
(2) X € MMV R if and only if Homg (N, X) € ref-tilt Endg (N).
(3) There are bijections
Homgx (N, —): modif¥ R =5 ref-ptilt Endx(N)
Homg (N, —): MMY R =5 ref-tilt Endg (V)

where ref-tilt are those classical tilting modules that are reflerive with respect to R, and
ref-ptilt is the partial version, where we do not require generation.

Given a summand X of N € modif R, there always is a well-defined left and right
mutation vy and px of the module M. Over general Gorenstein rings, it is very rare that
these operations coincide, even when X is indecomposable. The following result is thus
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very remarkable, even more so since we can use any summand. To ease the exposition
we state the following in the case when R is isolated; the more general statement can be
found in 9.28.

COROLLARY 0.16 (9.28). Suppose that R is isolated ¢DV, N € modif R, and X is an
arbitrary summand of N.
(1) vx(N) = px(N).
(2) Vx'Vx(N) >~ N,

Since left mutation equals right mutation, we henceforth just refer to this process as
mutation, and denote it vx. This means that in the exchange sequences, the same module
appears on both the right and on the left. The power of 0.16 comes since it holds for any
summand of N, where N is any modifying module; the proof boils down to mutation
being a topological property of the hyperplane arrangement.

In fact, the statement vy vy N = N can be strengthened further, as there is an even
more remarkable symmetry in the exchange sequences. Again, there is a more general
version of the following, but the case when R is isolated is easiest to state.

THEOREM 0.17 (9.29, 9.28). Suppose that R is isolated ¢cDV, and let N € modif R.

(1) MMYR coincides with the mutation classes of N.
(2) For any direct summand X = Ny of N, consider the exchange sequences

0—>N[—>UI—>V(N[) and O%V(N[)—)V[—)N[.
Then there is an isomorphism Uy = V7.

The first part is a strong version of the fact that for a maximal rigid object N in a
2-CY Krull-Schmidt triangulated categories, N *N[1] coincides with the mutation class
of N. Again, this is not typical behaviour for rigid objects, which makes the first part of
0.17 all the more remarkable. The second part, namely U; = V;, should be viewed as a
strong form of Ext vanishing (see 9.30), and this has many consequences in the study of
twist autoequivalences, developed further in Part 4.

The above combines to give the following general form of the Affine Auslander—-McKay
Correspondence. Again, for ease of exposition, here we restrict to the case where R has
only isolated singularities.

THEOREM 0.18 (Affine Auslander-McKay Correspondence, general version). Let R
be ¢cDV singularity of type A, with isolated singularities. Fiz N € modif R.

(1) There exist a subset J C A and horizontal bijective maps

MMV R ———— Cham(Auxr, J)

J J

MMCNR ———— Cham(A, J)

such that the diagram commutes. Furthermore, MMM R coincides with the full
mutation classes of N, and MMGYN R coincides with the Cohen-Macaulay muta-
tion class of N.

(2) Wall crossing corresponds to mutation.

Part 4. Applications to Birational Geometry. Given a cDV singularity R, and
crepant birational map X — Spec R where X has only Gorenstein terminal singularities
(e.g. a minimal model), then for generic g € R consider the pullback diagram

Y ——X

(0.0.A) J Jf

SpecR/g — Spec R
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By Reid’s general elephant, the ring R/g is a Kleinian singularity, and the left hand
morphism is a partial crepant resolution of singularities. Given the fibre dimension is at
most one, there are canonical tilting bundles on X and Y. The endomorphism ring of
the tilting bundle on X will be denoted A, and it is well-known that A 2 Endx (M) for
some M € modif R. The endomorphism ring of the tilting bundle on Y is isomorphic to
I’y = eglleg, where TT is the preprojective algebra of extended Dynkin type, and J C A is
some subset of the vertices of the non-extended Dynkin diagram. This is summarised in
the following commutative diagram.

cth E— Db cth

/ul()(l R/g) » DP( mOde
>(mod Fg —=— D¥( moc%

DP(mod fR/g) —— DP(mod R)

Problems on the geometry of the back square can thus be transferred to the front
square, involving I’y and A, where the techniques of the previous Parts come to the fore.
Being derived equivalent to Y, the homological algebra of Iy, developed in Part 2, thus
controls partial crepant resolutions of Kleinian singularities, which are surfaces. In con-
trast, being derived equivalent to X, the homological algebra of A developed in Part 3
controls the 3-folds X — SpecXR, where R is ¢cDV. Thus, as a special case, it controls all
terminal 3-fold flopping contractions.

Our applications now split into two, depending on the dimension.

Surfaces. For simplicity, consider first g: Y — C?/Z3, the minimal resolution of
the Z3-Kleinian surface singularity, although all the arguments do work generally. It is
well known that in this case the fibre above the origin, with reduced scheme structure,
is C; U Cy, with both C; = P!. To each of these curves we can associate the sheaf
E; := Oc¢;(—1) € cohY, and these are examples of spherical objects, namely they satisfy

C ift=0,2
t AN it
Ext!, (E;, E;) = { 0 elso
and F; ®y wy = E;. Thus, by [ST], we obtain two derived autoequivalences 77 and T5.

It is not difficult to show that the relation T o T5 o Ty = T o T o T holds, and so there
is an induced group homomorphism

(0.0.B) @: Bry — AuteqDP(cohY),

where Bry is the braid group. With some more work, ¢ is even injective [BT].

On the other hand, the whole scheme-theoretic fibre C' := ¢g~1(0) gives a sheaf O¢,
and this also turns out to be spherical, and thus give another derived autoequivalence
Tc. Adding this to the existing group above, it is easy to check that T, T, Ts satisfy the
relations of the affine braid group, and so @ lifts to a group homomorphism

(0.0.C) @: Bry — AuteqDP(coh V),

which we will refer to as the affine action on the derived category.

Our results on contracted preprojective algebras generalise this to any partial crepant
resolution of any Kleinian singularity. The caveat is that, for general partial resolutions,
the best we can hope for is a pure braid-type action, due to the presence of other partial
resolutions in the same derived equivalence class. This manifests itself as the fundamental
group in the following result.
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As notation, consider a partial crepant resolution Y — C2 /G for some finite subgroup
G < SL(2,C). AsY is dominated by the minimal resolution, it can be obtained by blowing
down a subset J of curves in the minimal resolution, and thus by McKay correspondence
a subset J of an ADE Dynkin configuration. From Part 1, consider the associated finite
hyperplane arrangement Cone(A, J) and infinite hyperplane arrangement Level(Ja¢), both
of which are hyperplane arrangements inside RI%°l. Write X for the complexification of
Cone(A, ), and X, for the complexification of Level(Jafr).

THEOREM 0.19 (10.4). Consider a partial crepant resolution Y — C2/G for some
finite subgroup G < SL(2,C), with associated X and X as above. Then there exist group
homomorphisms such that the following diagram commutes.

0 (X) - Auteq DP(cohY)
s
e
701 (Xafr)

The above is in fact a direct consequence of a more general statement about the
existence of a functor from the Deligne groupoid; we refer the reader to 5.35 for more
details. The groupoid viewpoint illustrates one key difference between the classical case
of the minimal resolution (which is J = @) and here. Namely, in the formula for simple
wall crossings, J + J +i — t;,;(i), and so J changes, in general. This translates into
the categories in the groupoid not being equal, and thus we must monodromy in order to
guarantee autoequivalences.

Thus, in general, the 7t; actions in 0.19 are the best that we can hope for. The
homomorphism ¢ should be thought of as generalising and extending the pure braid group
action on the minimal resolution in (0.0.B) to partial resolutions. The homomorphism @
generalises and extends the pure affine braid group action in (0.0.C). Also, as usual, the
arrangements Cone(A, J) and Level(Ja) need not be Coxeter, and so there is no braid or
affine braid group to aim for.

However, in some cases, most notably when J = () but also in many others examples,
there will be some wall crossings in which the categories in each side of the wall are equal.
In this case, it is reasonable to expect that wall crossing is given by some twist, over some
possibly noncommutative base. Indeed, this is the case, and more surprisingly some new
phenomena appear.

As notation, suppose that our partial crepant resolution Y — C2/G corresponds to
J C A. For i € A\ 3, set 8; = O¢,(—1) if i is not the extended vertex, and 8; = wcll]
if ¢ is the extended vertex. In all cases, consider the noncommutative deformation theory
(see e.g. | ]) of 8;, which in this setting is representable. Write &; for the universal
sheaf, with endomorphism ring Iy;.

PROPOSITION 0.20 (10.5). Suppose that in a simple wall crossing, w;(z,d) = (zxo,d),
i.e. the second term J does not change. Then the following hold.
(1) &; is perfect, as a complex in DP(cohY).
(2) There is an autoequivalence Twist; fitting into a functorial triangle

RHomy (&;, —) ®|I";M & — (=) — Twist;(—) —

The algebras I}y; are finite dimensional and self-injective, but they are not symmetric
in general. For example, in 10.3 we obtain a spherical twist over the exterior algebra
in two variables. This is a new example of a natural geometric autoequivalence over a
noncommutative base, and is the first where the base is not a symmetric algebra. In
particular, the cotwist is not the identity.

REMARK 0.21. In some cases, it may be the case that J # 0 (so, Y is not the minimal
resolution), but yet all wall crossing rules satisfy the conditions in 0.20. In this case, the
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71 actions in 0.19 can be improved substantially, as we no longer require to monodromy
to obtain autoequivalences. Using this observation, many partial resolutions of ADE
singularities admit braid and affine braid group actions, but crucially these braid actions
need not be of ADE type. Example 10.3 constructs an action of type By on a certain
partial resolution of the Dy surface singularity. By 4.20 (see also Example 10.3) there
also exists partial resolutions of the Eg, 7 and Eg surface singularities that admit braid
actions of type Ga.

Whilst 0.20 gives an intrinsic description of wall crossing, in some cases, in terms of
twist functors and noncommutative deformation theory, we remark that we do not give an
intrinsic geometric description of monodromy. There is an algebraic description, via ten-
soring by compositions of the ideals in 0.7, but an intrinsic twist-functor characterisation
requires derived noncommutative deformation theory, since Y has canonical singularities.

Booth describes the image of some monodromy under the finite action ¢ in [B1]; the
general case remains open.
A small extension of the techniques in [ ] then gives the following, which asserts

that the finite action is faithful.
THEOREM 0.22 (10.19). The homomorphism @ in 0.19 is injective.

We conjecture that our affine action is also faithful. However, even in the case of
the classical affine braid group action on minimal resolutions, this is still not known in
general. The papers [IU, | establish this for minimal resolutions of cyclic groups
(Type A), and are still the state-of-the-art.

The other main corollary of the results in the previous sections, and in particular of
0.7, is the implication (2)=-(1) in the following. As above, by McKay correspondence we
can identify partial crepant resolutions with subsets J of nodes of the associated ADE
Dynkin diagram.

COROLLARY 0.23 (10.8). Suppose that Y — C?/G and Y’ — C? /G’ are crepant partial
resolutions, with associated J C Ay and J' C A;fr- Consider the following conditions.
(1) Y is derived equivalent to Y.
(2) G =G (equivalently A = A') and up to symmetries of the extended ADE graph,
J and J' can be linked through a sequence of iterated wall-crossing moves.
Then (2)=(1). Further, if either AN € {A,,, Dy, D5, Dg, D7, Eg, E7, Eg} then (1)=(2).

We conjecture that (1)=-(2) is always true, and indeed this would follow from the
stronger algebraic Conjecture 0.9.

Threefolds. The main applications of this memoir are to 3-folds. For the ease of
exposition in this introduction, we restrict to the special case when X — SpecR is a
flopping contraction, where X has only Gorenstein terminal singularities; necessarily R
is isolated ¢cDV. Many of the results below generalise to crepant partial resolutions of
arbitrary cDV singularities.

The partial order on the tilting theory, and using 0.15 above, first allows us to elegantly
recover, via an independent proof, the braiding of flop functors in | , 1.1]. The
following is stated globally, but it follows from the complete local case. In that setting,
the technical assumption that the curves are independently floppable automatically holds.

COROLLARY 0.24 (10.11). Suppose that X — Xcon is a flopping contraction be-
tween quasi-projective 3-folds, contracting precisely two independently floppable irreducible
curves. If X has at worst Gorenstein terminal singularities, then

F10F20F10"'gF20F10F20'~'

d d

where d is the number of hyperplanes in Cone(A,J), where J C A is the Dynkin type of
the flopping contraction.
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The number d is called the length of the braid relation. Whilst 0.24 above recovers a
known result, from here onwards the results are new. Theorem 0.3 now gives very precise
information on the possible braid relation lengths for 3-fold flops.

COROLLARY 0.25 (10.12). Suppose that X — Xcon is a flopping contraction be-
tween quasi-projective 3-folds, as in 0.24. Then the length of the braid relation is either
2,3,4,5,6, or 8. The first case, namely d = 2, holds if and only if the curves are disjoint.

We are next able to extend previously known constructions. As one example, the
following was established in | ] with an additional technical assumption that X is
Q-factorial. We can now drop this assumption, treating all simples same, and putting
them on the same footing. There is a much more general version of the following result
stated in 10.13; here we highlight only the second part.

THEOREM 0.26 (10.13). Suppose that f: X — X.on is a flopping contraction of quasi-
projective 3-folds, where X has only Gorenstein terminal singularities. Let Egy, be the uni-
versal object of the noncommutative deformation theory of Oc, and set Ag, = Endx (Eqp).
Then there is a fibre twist autoequivalence FTwist, together with a functorial triangle

RHomx (Egp, 7) ®F,, Eab — = — FTwist(z) —

A consequence of our earlier tilting results in Part 2 is that there are a lot more
autoequivalences than this. The following is one of main results, and is new even in the
case when X is smooth. For convenience, we state the following locally. Recall that to
X — SpecR we can associate a partial crepant resolution of a Kleinian singularity by
(0.19), and thus associate a subset J of an ADE Dynkin diagram A exactly as above 0.19,
with complexifications X and X¢.

THEOREM 0.27 (10.14). Let X — SpecR denote a 3-fold flopping contraction, where
X has only Gorenstein terminal singularities. Then there are group homomorphisms such
that the following diagram commutes.

1 (X) % AuteqDP(coh X)
P
/
701 (Xafr)

The above is a consequence of a more general result (explained in 9.36) that the
mutation functors between DP(mod Endz(M)), where M € MM” R, form a representation
of the corresponding Deligne groupoid. A small extension of the techniques in | ]
then gives the following, which asserts that the finite action is faithful.

THEOREM 0.28 (10.19). The homomorphism @ in 0.27 is injective.

Summary Theorem. We end this introduction with a summary theorem to illus-
trates the commonalities amongst all the four parts of the memoir. Given a subset J of
nodes in an ADE Dynkin diagram A, we can associate:

e A partial crepant resolution Y — C2/G, given by blowing down the curves in J
from the minimal resolution.

e A contracted preprojective algebra I’y = eglleg, where TT is the preprojective
algebra of extended type A,f.

e A flopping contraction X — SpecXR, where X has only terminal singularities,
which slices to Y under generic g € R.

e To this flopping contraction, via Auslander-McKay, is a corresponding N €
modif R such that R € add N.

e A finite hyperplane arrangement Cone(J) inside RI3°I.

e The J-Tits cone Cone(A,f, J), and its level Level(Jar) which is an infinite hyper-
plane arrangement inside RI9°I.
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Alas, it is not possible in general to construct such an X — Spec R above where X is also
smooth [ ]. Indeed, this is why the techniques in Part 3 are necessary.
The following summary theorem links all these notions, through a series of bijections.

THEOREM 0.29. Let A be ADE Dynkin, and J C A be arbitrary. With notation as
above, there exist bijections between the following sets.

(1) Chambers of Cone(Aaf,J).

(2) Alcoves in Level(Jag).

(3) Classical tilting modules for the contracted preprojective algebra T'y = eglley.

(4) Reflexive classical tilting modules for Endg(N).

(5) Elements in the mutation class of N.

(6) Reflexive R-modules with the same number of indecomposable summands as N,
which furthermore admit a two-term approximation by add N.

If further X — Spec R is minimal model (equivalently, N is a maximal rigid module), the
above sets are further in bijection with:

(7) Mazimal rigid R-modules.
If further X is smooth (equivalently, N is a cluster tilting object), the above sets are further
in bijection with:

(8) Cluster tilting R-modules.

In all cases, mutation corresponds to wall crossing.

The above bijections are set-theoretic, with an action by mutation/wall crossing.
One level up, we have already seen above that these lift to the next categorical level,
namely the corresponding categories and mutation functors form a representations of the
corresponding Deligne groupoid. One further level up, summarised in the next subsection,
all this information glues together to describe the stability manifold associated to X.

The finite analogue of 0.29 is the following, which may be of independent interest.

THEOREM 0.30. If J C A with A ADE Dynkin, then there are bijections between the
following sets.
1) Chambers of the finite arrangement Cone(A,J) C RII°I,
2) Classical tilting modules for Ty which contain eglley as a summand.
3) Reflexive classical tilting modules for Endg (N) containing summand Homg (N, R).
4) Elements in the mutation class of N containing R as a summand.
5) Elements in the Cohen—-Macaulay mutation class of N.
6) L € CMR with the same number of summands of N, which have a two-term
approximation by add N.

Again the above can be categorified, and lifted to the Deligne groupoid and Bridgeland
stability manifold levels.

Further Uses. There are many further consequences of the results above, many
of which appear elsewhere. As a quick summary, given a flopping contraction f: X —
Spec R, with scheme fibre C, consider the subcategories

C:={F € D’(coh X) | Rf.F = 0}
D :={F € DP(coh X) | SuppF C C}.
Further consequences of this memoir include the following.

(1) The J-Tits cones Cone(Aufr,d) and their levels give a description of Bridgeland
stability conditions on D [ ]. Indeed, there is a component of normalised
stability conditions Stab; D such that the forgetful map

Stab%@ — xaff



INTRODUCTION xxiii

is a regular covering map, with Galois group given by the image of the homo-
morphism ¢ from 0.27. Even in the case when X is smooth, the hyperplane
technology in this memoir is heavily required to prove this result.

(2) The finite Cone(A, J) describe stability conditions on €, again in | ]. There
is a component of stability conditions such that the forgetful map

Stab’C — X

is the universal covering map, with Galois group given by the image of the
homomorphism ¢ from 0.27. By 0.22, this group is isomorphic to 7ty (X).

(3) Autoequivalence groups. Let PBr € denote the image of ¢, and APBrD denote
the image of @. It turns out that for suitably defined autoequivalences preserving
the stability manifold, Aut®D = APBrD x Pic X, and Aut’C = PBr@ | ].

(4) The local wall-crossing rules developed here, together with the stability condition
results above, allow for the first full computation of the Stingy K&ahler Moduli
Space (SKMS) in the flops setting [ ]. Furthermore, the mutation results,
most notably 0.17, allow for a full geometric description of monodromy on the
SKMS to be realised, in terms of twist functors.

(5) Via Aulander-McKay, f: X — SpecR corresponds to some N € modif R. The
algebra Aco, := Endg(N) is called the contraction algebra; it is a finite dimen-
sional symmetric algebra. The strong form of mutation in 0.17 allows for a
description of stability conditions on an arbitrary contraction algebra Ay, not
just those from smooth minimal models, via Cone(A, J) [AW]. It turns out that
the forgetful map from the full space of Bridgeland stability conditions

Stab (D°(mod Acon)) — X

is the universal cover. In turn, since A, is silting discrete, this establishes a
homological proof of K (7, 1) for all intersection arrangements inside ADE root
systems [AW].

Conventions. All modules are left modules. If A is a ring, mod A is the category of
finitely generated A-modules, and proj A is the subcategory of those projective modules.
For M € mod A, we write add M to denote all summands of finite sums of M, and say
that M is a generator if A € add M.
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CHAPTER 1

J-Cones, J-Chambers and Wall Crossing

This chapter investigates intersection arrangements inside Tits cones, in various levels
of generality, and is fundamental to all what follows.

1.1. Coxeter Preliminaries

Recall that a symmetric n x n matrix M = (m,;), with entries in the set {1,2, ..., 00},
is called Cozeter if m;; =1 <= ¢ = j. As is standard, M can be represented by a
Cozeter graph A = (A, A1) whose nodes are A := {1,...,n} and where we draw an edge
between ¢ and j if and only if m;; > 3. The edges with m;; > 4 are labelled by that
number. Typical examples arise from the following simply laced Dynkin graphs

A, (n>1) o—o— —0—o0

D,, (n>4) Q—I+ —o0
E, (n=6,7,8) o—o—i—o— —0

however, throughout when we refer to Dynkin diagrams, we will also allow for the non-
simply laced cases B,, = Cy,, Fu, G2, Hz 34, and I,,.
The matrix M = (m;;) determines the Cozeter group Wa, which is given abstractly
as the group generated by {s; | ¢ € A}, subject to the relations
(1) s?2 =1 for any i € A.
(2) ...os5;08, =...0s;0s; for all 4,5 € A with i # j.

mgj mij

For x € Wa, we say that an expression z = s;,8;, - -- 8;, is reduced if k is smallest
possible. In this case we write k = £(z). We denote by < the right order (=weak order)
on the Coxeter group, that is, we write x < y if £(y) = £(x) +£(x~'y) holds. Topologically,
viewing elements of Wy as paths in the associated hyperplane arrangement ending at a
fixed chamber C,

Y

D

D/

C

NoTAaTION 1.1. To set notation, for a subset J C A,
(1) If j € J and i € A\J, we will write
J+i:=Ju{i},
T=ji= I\
(2) Write J¢ = A\J, and note that this corresponds to the full subgraph obtained
from A by removing the vertices in J.
(3) Consider the subgroup W := (s; | ¢ € J) of Wa, which is called a parabolic sub-
group. This is isomorphic to the Coxeter group associated with the full subgraph
of A with vertices J, see e.g. [BB, 2.4.1(i)].

3



4 1. J-CONES, J-CHAMBERS AND WALL CROSSING

1.2. The Finite Case

Although we will not always be considering the case when W) is finite, later we will
sometimes have finite, or at least locally finite, assumptions, so we briefly recall some
known facts here.

When W, is finite we will write wa for the longest element in W, . For reference later,
the length of the wa for ADE A is summarised in the following table.

A A, D, Es FE; Eg

Cwa) ™MD (1) 36 63 120

(1.2.A)

The following observation is basic, as is well-known. Throughout, we regard Wx as a
poset with respect to the right order <.

LEMMA 1.2. Let W = W be a finite Coxeter group, and wa be the longest element.
(1) () wa: W =W and wa(=): W — W are anti-automorphisms, and

wa(—)wa: W =W

is an automorphism of the poset W.
(2) There exists an automorphism v = ta: A — A of the graph A such that for all
i €A,
WA S; WA = Sl(i)'
(3) For allie€ A,
(a) wa—jwawa—(wa = 1.
(b) wa—iwa = wWAWA_ (3)-

ProoF. (1) is [BB, 3.1.5(i)(ii)], and (2) and (3) are consequences of (1). O
By 1.2, when W) is finite, certainly wa satisfies wawa = 1, and further it induces an

involution ta of the graph A. Again, although we do not need this until much later, for
reference the involution tp for ADE A is summarised in the following table:

A An D2n D2n+1 EG E7 E8
A ! id ! ' id id

(1.2.B)

where id is the identity, and ! is the unique non-trivial involution.

1.3. The Tits Cone

Let A = (A, A1) be the Coxeter graph arising from a Coxeter matrix Ma = (m;;).
Following [H, §5.13], we now recall the Tits cone associated with Wa. Let V be the
R-vector space with basis {e; | i € A}, and B the symmetric bilinear form on V defined
by

B(O(i, ocj) = — cos(ﬂ/mij).
Then the Coxeter group Wx acts on V by
si(v) == v — 2 B(o, v) e,

and let @ := {z(x;) | i € A, x € Wa} denote the set of roots.

The V* be the dual space of V. To ease notation with duals, and so as to match the
notation in [W2, §5], write V* = ©. Note that © has basis {«] | ¢ € A}. Throughout,
elements of ® will be written with respect to this basis, so 3 € ® will mean

3= (Si)ieA = ZSZOC:(

i€EA
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The group Wy acts on © by (29)(v) = 9(ztv) for all z € Wa, ¥ € © and v € V. Each
1 € A induces a hyperplane in @, namely

H,:={9€0O |9 =0},
and a decomposition
©=H; UH;UH},
where H, := H,, and H:r and H; are the half-spaces
Hf={0€0©|9; >0}
H ={3e0]|¥; <0}
Below, it will be convenient to consider the upper orthant C in ©, defined as
C:={0ecO|9 >0forallicA}=)(HUH),
ieA
and its open interior C:= {8 € © | 9; > 0 for all i € A} = ;. H'.
DEFINITION 1.3. Suppose that A is a Coxeter graph.
(1) The Tits cone Cone(A) is defined to be
Cone(A) := U z(C).
rEWA
(2) A Weyl chamber is an open subset of Cone(A) of the form z(C) for some z € Wa.

Weyl chambers are the connected components of Cone(A)\ Jycq Ha, where
Hy = {0 €0|9(x) = 0}.

It is well known that the Tits cone spans the whole of © (that is, Cone(A) = ©) if and
only if Wj is finite (see e.g. | , Prop 4.3A]).

1.4. J-cones and J-chambers

This subsection considers intersections of the Tits cone Cone(A) with certain sub-
spaces, and produces the combinatorial objects that will be needed later. These intersec-
tions need not give Coxeter arrangements; however, they still exhibit somewhat remark-
able behaviour. Some limited examples are given throughout, with the understanding
that many more can be found in Chapter 3.

DEFINITION 1.4. For a subset J of A, we set

__ 9, =0 ified
CJ'—{‘(’E@’apo itigJ }
that is Cy = (ﬂieJ Hl) N (ﬂieJC H:r)

The degenerate case is J = (), when Cy = C. Every element in C; has stabilizer W,
and the Tits cone decomposes, although not into chambers, as

(1.4.A) Cone(A)= | | || =(Cy).
JCA zeW/Wy

The following is our key new definition, which is motivated by finding an affine version
of [W2, §5] and | ]

DEFINITION 1.5. For every subset J C A, consider the following.
(1) The subspace Oy of O, defined as
Oy ={8e® | =0ifi e J}.
That is, @y is the subspace with basis {of | i ¢ }. Note that @y := (,c; H;.
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(2) We define the J-cone to be the intersection
Cone(A, J) := Cone(A) N Oy.
(3) We call g :={ax € ® | Oy € Hy} the set of J-roots.
Once J has been fixed, we can consider x € W and another J C A. Note that either

z(Cy) C Cone(A,J), or z(Cy) N Cone(A,J) = 0 holds, therefore it follows from (1.4.A)
that Cone(A,J) decomposes, although again not into chambers, as

Cone(A,d) = | | | ] z(Cy).
JEA g€ W/WJ,
z(Cy) C Oy
We next consider the chamber structure of Cone(A, J).

DEFINITION 1.6. Let A = (A, A;) be a graph without loops, and W = W) the Coxeter
group. Fix a subset J of A.
(1) For J C A and x € W/Wj, we say that x(C) is an J-chamber if 2(Cy) C Oy
and |J| = 7]
(2) A wall of a g-chamber z(C) is the intersection of the closure of z(C) with Hy
for some oc € Dy.

The J-chambers are the connected components of Cone(A, )\ Uyeq, Ha-

EXAMPLE 1.7. Let A = A3 = é—g—g .

(1) If g = {2, 3}, then Cone(A43,7) is
8182830{1,2} 0{2,3}

L4l

(2) If § = {3}, then Cone(As,J) is

bp
a2l
c ) x € Oy Hyperplane in @4
518283

@ 9 010, 011 4 =0

1 100 ¥ =0
5253C 2} 110, 111 D+ =0
51525351520{1}
528381820{1}

We refer the reader to 2.10 and Chapter 3 for many more examples of Cone(A,J).
One of the key points is that Cone(A, J) need not be Coxeter.

1.5. Labelling the J-chambers

It will be convenient, especially with respect to wall crossing later, to be able to label
the J-chambers in a slightly different way.

DEFINITION 1.8. Let A = (A, A1) be a Coxeter graph, then for a fixed subset J C A,
let Cham(A,J) be the set of pairs (x, J) of elements x € W and subsets J C A satisfying
the following two conditions.

(1) £(x) = min{l(y) | y € 2V},

(2) Wya = aWj.
By 1.14, we can identify Cham(A, ) with the set of all left cosets C' in Wy\Wj satisfying
the following conditions.
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(1) There exists a subset J C A such that C' is a right coset in W /Wj.

We remark that the extreme case is § = (), where since Wy = {1},
Cham(A,0) = {(z,0) | z € Wa}.
Thus in this case we can identify the set Cham(A, §)) with Wh.
NoTATION 1.9. We will depict a subset J C A as a shading of the vertices of the

graph A. The vertices j for which j € J will be shaded (i.e. drawn e), whilst the vertices
j for which j ¢ g will be unshaded (i.e. drawn o).

REMARK 1.10. As calibration in our algebraic geometric flops setup in later chapters,
J will correspond to the choice of curves that get contracted from the minimal resolution
to describe the generic slice. Thus, the vertices not in {, those drawn o, will correspond
to the flopping curves. See Remark 10.9 for more information.

EXAMPLE 1.11. Continuing the examples in 1.7, for J = {2,3} and J = {3}, the labels
in Cham(A, J) are, respectively

Lp
(s1,000@)

(1,000)

(s15283,000) (1,000) (s15283,000)

191 191

(8283,000)

(8182838152, .OO)

($2538152,000)

The benefit of the above approach is that wall crossing will become easier to describe
visually, and we do this in the next subsection. The main result of this subsection is the
following theorem, which verifies that the labelling is correct.

THEOREM 1.12. Let A be a Coxeter graph. Then there is a bijection from the set
Cham(A, J) to the set of chambers in Cone(A,J), given by

Cham(A,3) > (z,J) — x(Cy).
We prove the theorem by first preparing a series of lemmas. As before, regard the

Coxeter group W as a poset with respect to the right (weak) order <, and for J C A,
consider the parabolic subgroup W = (s; | i € J) of Wh.

By [BB, 2.4.4], for any element z € Wy, there exist unique 7/ € xW; and ‘2 € Wz
such that
(1.5.A) Uz - y) = L) + Uy) and Ly-Tz) = €(y) + (("x)

for all y € Wj. The following observations follow immediately.

LEMMA 1.13. Let A be a Coxeter graph. Fiz x € Wa and J C A.
(1) The subposet Wy of W is isomorphic to Wy .
(2) If Wy is finite, then the map (-wy): Wy — aWy is an anti-automorphism of
posets. Thus Wy has minimum element 7 and mazimum element 7 w;.

ProoF. For (1), by (1.5.A), the map (z7-): W; — z/W; = W is an isomorphism
of posets. Part (2) then follows immediately from (1), using 1.2(1). O

The special case when a right coset coincides with a left coset is of particular interest.

LEMMA 1.14. Let A be a Cozeter graph. Consider subsets J and J of A, and x € Wh.
(1) The following conditions are equivalent.
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(a) Wz = aWj.
(b) There exists a bijection a: J — J such that x7s; = sa(j)x‘] forall j € J.
If these conditions are satisfied, then the following assertion holds.

(2) Wyz = Wy has minimum element 7 = Iz and mazimum element wyz’ =

x/wy with respect to both of the left order and the right order.

PRrOOF. (1) It suffices to show that the first condition implies the second one. Since
both of 27 and 9z are the unique elements with the minimal length in Wyx = 2Wj, we
have 2/ = 3. For any i € J, using (1.5.A) twice, we have

U7 si(2?)™h) + la”) = U’ s:) = L) +
and so £(x7s;(z7)~!) = 1. Thus stZ = Sq(iyz” holds for some a(i) € A. Then a has to
be a bijection J — J by [BB, 2.4.1(v)].
(2) We have shown 27/ = Iz. By (1.5.A), both of 27wy and wg Iz are the unique elements
with the maximal length in Wyax = W}, thus they must coincide. (]

It follows from 1.14(1) that a pair (z,J) € Cham(A,J) is uniquely determined by x,
thus we can regard Cham(A,J) as a subset of Wa. This need not be a subgroup, but
nevertheless the right order on Wy induces a right order on Cham(A,J), via

(2,0) < (3, J') <=z <y.
Also, by 1.14(2), the following is immediate.

COROLLARY 1.15. If Wyx = W, then the following are equivalent.
(1) (z,J) € Cham(A,J).

(2) €(z) = min{l(y) |y € 2Wy}.
(3) x is the minimum element in xW; with respect to the right order.
(4) x is the minimum element in xWy with respect to the left order.

Now we are ready to prove 1.12.

PRrROOF OF 1.12. Let (x,J) € Cham(A,J). Then Wyz = zW; holds. Thus there
exists a bijection a: J — J such that s;z = xs,(;) by 1.14(1). Comparing fixed points of
i = TSq(nx ", we have x(Hg(;)) = H;. Therefore

2(Cy) € (a(Hi) =) Hi = Oy
ied i€d
holds, and z(C) is a J-chamber in Cone(A, J).

Conversely, assume that z(C) is a J-chamber in Cone(A, J). Then any p € Cy has a
stabilizer W;. Since zp € @ = ;¢4 Hi, it is stablized by Wj. Therefore Wiz~ C Wy
holds. Since |J| = |J| by definition of J-chamber, the equality holds and so Wyx = «W;.
Replacing 2 by the minimum element z” in xWj, it follows that (x, J) € Cham(A,d). O

1.6. Simple Wall Crossing

In this subsection we use the above labelling give a combinatorial model of simple
wall crossing in the set of chambers Cham(A,J). This holds under a suitable assumption
on the label of the chamber, and on its wall. We remark that this assumption is local,
and does not require any finiteness of the global Whx.

DEFINITION 1.16. Let A = (A, A1) be a Coxeter graph, and J C A. For any (z,J) €
Cham(A, J) and i € J¢ such that W, is finite, we define simple wall crossing by

wi(xv J) = (wawJ+ia J+i-— U+i(i))’

where w; is the longest element in Wy, w;1; is the longest element in W, and t;; is
the involution on the graph J + 4 from 1.2(2).
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REMARK 1.17. When A is ADE, the element wa_;wa € Wa appears naturally in
study of the Grassmannian of type A associated with the vertex ¢ (e.g. | D.

EXAMPLE 1.18. In the running example 1.11 with J = {3}, simple wall crossing in
the set Cham(As,d) is given as follows

(s1,000) — (1,000)

L ws |
(s15283,000) (s253,000)
w: | L
($1525838152,000) Pl ($2535182,000)

Again we refer the reader to Chapter 3 for more substantial examples. Note that
when W is infinite, it is still possible that the local assumption in 1.16 can hold at all
chambers and all walls of Cone(A, J).

DEFINITION 1.19. We say that a subset § C A is strongly Dynkin if Wy, is finite for
all ¢ € J¢, that is the full subgraph J + ¢ of A is a disjoint union of Dynkin graphs for all
i€ g°.

For example, if A is Dynkin, then every subset J C A is strongly Dynkin. Furthermore,
if A is extended Dynkin, then every subset J of A with |J¢| > 2 is strongly Dynkin.

The name simple wall crossing in 1.16 is justified by the following theorem, which is
the main result of this subsection. Note that the assumptions become gradually stronger,
as we move from (1) to (3).

THEOREM 1.20. Let A be a Cozxeter graph, and J a subset of A.

(1) For any (z,J) € Cham(A,J) and i € J¢ such that J + i is Dynkin, the following
assertions hold.
(a) wy(z,J) belongs to Cham(A,J) for any (x,J) € Cham(A,J) and i € J°.
(b) x < zs; <= (x,J) < w;i(z, ), and x > xs; <= (x,J) > w;(z, ).
(¢) Wall crossing is involutive, that is,

wi’wi(xv J) = (1‘, J)

for i == 174:(3).
(d) Let (y,J") = w;(x,J). Then the J-chambers x(Cy) and y(Cj) are adjacent
via the wall x(Cyi;).
(2) If 3 is strongly Dynkin, then the following assertions hold.
(a) Any two elements in Cham(A,d) are connected by a finite sequence of wall
Crossings.
(b) Two elements in Cham(A,J) are related by a simple wall crossing if and
only if the corresponding J-chambers are adjacent.
(3) If Wa is finite, then Cham(A,J) has the minimum element (1,d) and the maxi-
mum element (wywa,ta(d)).

The proof will be split into three propositions, and in the process we prove more than
that stated above. We begin with the following lemma.

LEMMA 1.21. Let W be a Coxeter group of a graph A, and J a subset of A. For any
(z,J) € Cham(A,J), the following assertions hold.

(1) Wyz = 2W; has minimum element x and mazimum element wyz = xwy.
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(2) Ifi € J¢, then either x < xs; or x > xs; holds. Furthermore, the minimum and
mazimum elements of Wy, are

min element mazx element

T < TS x TWJ+i
xr > xS; TWIWJj44 Twy

PRrROOF. By 1.13(1), we know that xW;; is isomorphic to the Coxeter group Wjy;.
(1) This is 1.14(2).
(2) The first assertion is a basic fact about the weak order. Suppose that z < xs;, then
by 1.2(2), we only have to show that z is the minimum element in W) ,. It suffices to
show < xsy, holds for all k € J+i. If k € J, then this follows from (1). Otherwise k = ¢
holds, and we have = < xs; by our assumption.

Suppose that = > xs;, then by 1.2(2), we only have to show that zw; is the maximum
element in xWj,;. It suffices to show that zw; > xw;ssy holds for any k € J+1. If k € J,
then this follows from (1). Otherwise k = i holds. Since xs; < x holds by our assumption,

Lzwys;) = (wyxs;) < L(wg) + L(xs;)
< l(wg) +£(z) = l(z) + L(wy) = L(zwy).
Thus zwjys; < zw;y holds. ([l
We are ready to prove 1.20(1).

PROPOSITION 1.22. Let A be a graph, and J a subset of A. For any (x,J) €
Cham(A,J) and i € J¢ such that J + i is Dynkin, we have the following assertions.
(1) wy(z,J) belongs to Cham(A,J).
(2) z <zs; <= (x,]) <wi(z,]), and x > xs; = (z,J) > w;(x,J).
(3) Mutation is involutive, that is, wyw;(x,J) = (x,J) holds for i := v;4,;(7).
(4) Let (y,J') := wi(z,J). Then the J-chambers x(Cy) and y(Cy) are adjacent
through the wall x(Cyy;).

ProOF. (1) Let (y,J’) := w;(z,J) = (zwyjwytqi, (J +14) — 7). Then y = zwywyr.
We first show that Wy = yWj/. Since Wz = 2W; holds, we have

Wiy = Wyzwywyyi
= aWjwjwy
= ywjriwgWiwywy; = ywy+Wiwyi
(by 1.2(2)) =yWi, ) =yWy.

We next show that y is the minimum element in yW}., and to do this we divide into
two cases. If x > xs;, then y = zwjywyy,; is the minimum element in Wy, D yWy by
1.21(2). If < xs;, then zwy4; is the maximum element in zW;y; D yWy by 1.21(2),
and so y = xwsy;wy is the minimum element in yWy by 1.2(2). In either case, the
assertion follows.

(2) Again by 1.21(2), the assertions follow.

(3) This is immediate from 1.2(3).

(4) Since Cy4; is a wall of Cy, it follows that z(C4;) is a wall of 2(C). Similarly y(C ;)
is a wall of y(Cj/). Moreover =1y = wyw;y; € Wy, holds. Since Cjy; is stabilised by
Wii, we have y(Cji;) = 2(Cyyy), and so the assertion follows. O

Next we prove 1.20(2).
PROPOSITION 1.23. Let A be a graph, and J a strongly Dynkin subset of A.

(1) Any two elements in Cham(A,J) can be connected by a finite sequence of simple
wall crossings.
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(2) For any (z,J) € Cham(A,J), there exists a finite sequence (zt, Jt) fort =0,...,s
satisfying the following conditions.
(a) (z°,9) = (1,9) and (2°,J°) = (x,J).
(b) (2T, J1) is a mutation of (zt,Jt) for anyt=0,...,s — 1.
() l=a"<al <. <2t =u.

(3) Two elements in Cham(A,J) are related by a simple wall crossing if and only if
the corresponding J-chambers are adjacent.

PrROOF. (2) Fix (z,J) € Cham(A,J). If > xs; holds for some i € J¢, then (x,J) >
w;(z,J) by 1.22(2). Thus an inductive argument on £(z) proves the assertion.

Now assume that z < zs; holds for all i € J¢. Then (z,J) € Cham(A,J) implies that
x < xs; holds for all ¢ € A, from which z = 1 follows. The equality W3 = W implies
J =] by [BB, 2.4.1(v)]. The assertion is clear in this case (z,J) = (1,J).
(1) This follows immediately from (2).
(3)(=) is 1.22(4). For (<), since all the walls of the J-chamber z(C) are given by 2(Cy;)
for i € J¢, and the chamber at the other side of these walls are given by the simple wall
crossing formula by 1.22(4), the assertion follows. O

Finally we prove 1.20(3).

PROPOSITION 1.24. Suppose that W is finite, and J is a subset of A.

(1) If (z,J) € Cham(A,J), then (wgzwa,a(J)) € Cham(A, 7).

(2) Cham(A,J) has an anti-automorphism (x,J) — (wyzwa, ta(J)).

(3) Cham(A,J) has minimum element (1,J) and mazimum element (wywa, ta(3)).

(4) (z,J) € Cham(A,J) satisfies (z,J) < wq(x,J) (respectively, (z,J) > w;(z,J))

for alli € J¢ if and only if (x,J) = (1,3) (respectively, (z,J) = (wywa,ta(d))).
PRrROOF. (1) We have
wygzwaW,, (5) = wgzWiwa = wgWyzwa = Wywgzwa.
Since x is the minimum element in Wiz, the element wyz is the maximum element in
Wy by 1.2(1). Thus the element wyzwa is the minimum in Wyazwa = Wywyzwa again
by 1.2(1). Thus (wgzwa, ta(J)) belongs to Cham(A, 7).
(2) Assume that (z, J), (y, J') satisfy = < y, that is, £(y) = ¢(x) + ¢(z~'y). Then
Uwgy) = L(wg) + £(y) = L(wy) + L(x) + L(z™"y)
= ((wgz) + (((wyz) ™ wgy),

which implies that wyz < wyy. Thus wyzwa > wyywa holds by 1.2(1).
(3) Clearly (1,d) is the minimum element in Cham(A,J). By (2), (wgwa,ta(d)) is the
maximum element in Cham(A, J).
(4) We only have to prove “if” part. It follows from 1.23(2) that (x,J) < w;(x,J) for
any ¢ € J¢ implies (z,J) = (1,J). Dually, by (2), (z,J) > w;(x,J) for any i € J¢ implies
(2, J) = (wywa, a(d)). O






CHAPTER 2

Affine Arrangements, Levels and Groupoids

In this chapter we apply the theory in the last chapter to the case of affine, or extended,
Dynkin diagrams. Given a subset J of an ADE Dynkin A, we may also view J as a subset
of the extended diagram Aug. Then, applying 1.5 to J C A constructs Cone(A,J), and
applying 1.5 to J C A, constructs Cone(Aus, J).

The arrangement Cone(A, J) is finite and fills RI*\3. However, just as for the usual
Tits cone (see 2.1), Cone(Auf,d) does not fill the vector space RI2\dl As such, it is
convenient to take the level in (2.1.B) below, which we will denote Level(Ja¢). This exists
in our more general setting, and we thus obtain an infinite hyperplane arrangement in
one dimension lower, back in RI4\d|, Taking the level make the picture easier to draw,
without losing information, and also overlays the infinite arrangement on top of the finite
arrangement, making the comparison easier.

Topologically, both the finite and infinite hyperplane arrangement is largely controlled
by the Deligne, or arrangement, groupoid. We also introduce these here, mainly to set
notation, as they will be heavily used in later chapters.

2.1. O, for extended Dynkin case

We mostly follow the setting Humphreys [H], but sometimes using different notation.
Let A be an ADE Dynkin diagram, and A,¢ the corresponding extended Dynkin diagram.
Let ©,¢ be an R-vector space with basis ] for i € A, and let L be the lattice in O,

generated by oF. Thus
O, = @ ROL: O L= @ ZO(Z.

1€ A 1€ Aaf
We denote the dual vector space with dual basis «; by

Vart = @ Ro;.
(ASYAW
Write (—, —): Vagr X O,¢ — R for the natural paring, and for simplicity write -« and 9-
for the maps (—, a): Vg — R and (8, —): O,¢ — R, respectively.
Furthermore, write Wy for the affine Weyl group, and
Q= {woy; |1 € Aagr, w € Wae} C Vagr
for the set of real roots. Consider also the null root
(2.1.A) § = Z diot; € Vagr
1€ A
Any element o € ® LU {8} gives rise to a hyperplane
Hy :=Ker(-at) C Oy
and a decomposition
O. = Hy UH,UHY,
where Hy = {9 €O, |9 - <0} and Hf = {9 € Oup | 9- & > 0}.
Recall that the Tits cone Cone(A,f) is defined in 1.3 as
Cone(Auf) := U z(C).
€Wt

13
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and by definition is subset of @,¢. As is standard, in the Tits cone does not fill G,.
PROPOSITION 2.1. [H, §6.5] If A is ADE, then Cone(Aa) = Hy U {0}.

By definition, a chamber is a connected component of Cone(Auf) \ Uyecqp Ho, and
we write Cham(A,¢) for the set of all chambers. As usual, we describe Cham(A,q) by
projecting to the hyperplane

Level :=871(1) C O.5.
For each o € @, we consider the intersection hyperplane
(2.1.B) Hy := Level N Hy.

An alcove is a connected component of Level \ | J, <4 Ha, and we write Alcove(Ays) for the

set of all alcoves. Since there is a homeomorphism
R x Level = H;‘
given by (r,9) — 19, the following is immediate.
PROPOSITION 2.2. [H, §6.5] The maps C — CNE and A — RsoA give a bijection
Cham(A,¢) — Alcove(Aar).

Next, consider the R-vector space
V.= @RO@ C Vags.
icA
Since Vo = V @ RJ, the pairing (—, —): Oa X Vagg — R restricts to a non-degenerate
pairing
(=,—): Hs xV = R.
Let {@;}ica C Hs be the dual basis of {«;};ea C V. Let
CoWt = @Z@l C Hs.
icA
be the coweight lattice. In what follows, we write the roots «g, . . ., &, where 0 corresponds
to the extended vertex.
LEMMA 2.3. With notation as above, the following statements hold.
(1) of =d;af + @; for alli € A.
(2) L =Zo§ & CoWt and L N Level = afj + CoWt.

PROOF. (1) We compare both sides by evaluating elements in the basis {o;,8 | j € A}
of Vagg. For all j € A, we have (af, &;) = &;; = (8,05 + @;, &;). Further («f,8) =6, =
(0;fy + @4, 8), thus the assertion follows.

(2) Immediate from (1). O

2.1.1. Oy,, for Extended Dynkin Diagrams. Throughout A is ADE Dynkin di-
agram, with extended diagram A,g. For a subset J of A, we may view J as a subset of
A, and consider

Ly:= €P Za&; and CoWty := P Zw..
1€A\J 1€A\J

The following is immediate from 2.3.
PROPOSITION 2.4. For any subset J of A, we have

Ly =Zaj @ CoWty and Ly N Level = o + CoWty.
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In particular, there is a bijection
(2.1.A) Ly N Level ~ CoWty given by x+— x — o).

Regarding J as a subset of A, we can form ©5 as as subspace of ©, as in 1.5. On the
other hand, regarding J as a subset of @,¢, we can also form the corresponding subspace
of Ay. To avoid confusion, we will denote this by @y, so that

Oy, = {D €Oy |9 =0ifi €7}

Thus, Oy, is the subspace of @u with basis {a) | i € Aur\d}.
Similarly, using the coefficients of the null root in (2.1.A), consider

8g,6 = Z &,

1€ A \J
which via the natural pairing (—,—): 03, X0, — R can be viewed as a linear map
Oj3., = R. Thus we define
(2.1.B) Level(Jarr) := 8L (1) C O,

It is clear that Level(J.¢) = Level M@y, since intersection is associative.
DEFINITION 2.5. Suppose that A is ADE Dynkin, with extended diagram A,¢. Then
for any J C A,

(1) We call Cone(A,J) C RIA\Il the J-finite hyperplane arrangement.
(2) We call Cone(Au,d) C R4\l the J-affine Tits cone.
(3) We call Level(dai) C RI\Il the g-level.

The above constructions allow us to produce an infinite hyperplane arrangement for
any subset of nodes J in any ADE Dynkin diagram. Indeed, continuing the notation and
setting from above, specifically (2.1.B), let

05, = f{a€®| Oy, ¢ Ha} =2\ P Rexs.
1€ Jaff

Thus inside Level(Jae) is the infinite collection of hyperplanes
J{gaff = {HCX n ®3afr | x € (I)Haff}'

DEFINITION 2.6. A J-alcove is a connected component of

Level@.r)\ | H.

HEQ‘CQEFF

We write Alcove(Jas) for the set of all J-alcoves.
The following is clear, and generalises 2.2.
PROPOSITION 2.7. The maps C — CNE and A — R-gA give a bijection
Cham(A,q,d) = Alcove(Jasr).

The labelling of the chambers of Cone(A,q,d) in 1.12 allows for a more precise de-
scription and labelling of the alcoves, which we will need in Chapter 4. Consider again
the open chamber decomposition

|_| z(Cy) C Cone(Aarr, d)-
(z,J)ECham(Aa,d)

This induces an open decomposition of the level, and thus a labelling of the J-alcoves.
Indeed, for (z,J) € Cham(Aaf, dafr), set

Alcove(, yy := 2(Cy) N Level(daf).
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From the induced open decomposition

A= |_| Alcove, sy C Level(darr),
(w,J)ECham(Aaff,H)

we recover the infinite hyperplane arrangement Hy_ . above as Level(Jag)\ A.

For Dynkin A and g C A, it is clear that J{;,, is an infinite hyperplane arrangement
in RI*\Jl. For extended Dynkin case, the J-Tits cone does not fill Ay, and so sometimes
the following is convenient.

NoOTATION 2.8. For J C A,, consider Wy, the set of full hyperplanes that separate
the open chambers of Cone(A,g,J). This is an infinite hyperplane arrangement in RI4=m\7I,

These concepts are illustrated in the example below.

ExXAMPLE 2.9. When A = Dy and J is

.

1

Viewing J as a subset of A,g, then Wy is the infinite hyperplane arrangement

The hyperplanes converge on the line 99 + 287 = 0, but W5 does not contain this line.
In contrast, Cone(dae) is the shaded region in the following picture, and Level(Jaf) is
illustrated by the dotted blue line 9y + 28; = 1.

D1

The circles on the blue line are, reading top left to bottom right, at %; = %, 1, %, 0, —%, —1.

Thus basing Level(d.¢) by of (see §1.3), the level is the infinite hyperplane arrangement

O o O
0 - -1

9y <

—
[SIEe]
N

The J-alcoves are the open intervals on the blue line between two adjacent dots, and Hy,,
is the infinite collection of dots.

ExXAMPLE 2.10. When A = Eg and J is

S
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then Cone(Jarr) C R3 is harder to draw, but Level(J,¢) C R? is easier. Indeed, in suitable
coordinates Example 4.19 shows that Level(J.f) is the arrangement given by all lines

T\
W

Q
A

Note that, as in the introduction, Cone(A, J) does not traditionally have an affine version.

Drawing Cone(A, J) and Cone(J.¢) in a canonical way, with all the correct angles, is
possible, but it is long and tedious to calculate all the angles in all cases. We refrain from
doing this since from the viewpoint of the applications in later chapters, the precise angles
in the arrangements are not important. Even if we did calculate all the angles, coding the
resulting pictures accurately is a non-trivial task.

2.2. K-affine Arrangements and Levels

In the affine case, as already remarked in 2.1, the full Tits cone does not fill O =
RIA=1 and indeed Cone(A,f) is the region

{9€Our| > 89 >0}
1€ AL

The previous subsection required the assumption that J C A. From this, we then viewed J
as a subset of Asq, and from this constructed objects such as Cone(Auf, J) and Level(Jas).
However, for much of the previous subsection (except notably 2.4), the assumption that
d C A is not required. We may in fact consider any subset KX C A,x, and form a
corresponding Cone(A,s, X) and Level (Auf, K)

DEFINITION 2.11. Suppose that A, is extended Dynkin, then for any K C A, the
level is defined to be

LeveI(AafFJ() = {19 (S Cone(AafhiK) | Z 00 = 1}.
kgx

For most of our applications, this level of generality is not required. However, in
Chapter 4 when we are classifying the possible arrangements in low dimension, we will
work in this more general setting.

2.3. The affine J-pure braid group

Let A be ADE Dynkin, and consider the extended diagram A,g. For J C A, consider
the finite Cone(A,J) and the infinite Level(d.¢), both of which are inside RIZ°l, where
J¢ := A\J. Both these arrangements are locally finite, i.e. every point of Rl is contained
in at most finitely many hyperplanes, and essential, i.e. the minimal intersections of
hyperplanes are points.



18 2. AFFINE ARRANGEMENTS, LEVELS AND GROUPOIDS

2.3.1. Arrangements groupoids. In this subsection we briefly recall the basics of
the arrangement (=Deligne) groupoids, mainly to set notation. In order to later apply
this to both Cone(A, J) and Level(daf), throughout this subsection let H be any essential,
locally finite arrangement inside R™.

The graph I'g¢ of oriented arrows is defined as follows. The vertices of I'q¢ are the
chambers (i.e. the connected components) of R™\H. There is a unique arrow a: vy — v9
from chamber vy to chamber vs if the chambers are adjacent, otherwise there is no arrow.
For an arrow a: v; — vg, we set s(a) := vy and t(a) := vy. By definition, if there is an
arrow a: v; — vo, there is a unique arrow b: v9 — v1 with the opposite direction of a.

A positive path of length n in T'g¢ is defined to be a formal symbol

p=a,0...0a20a,

whenever there exists a sequence of vertices vy, . . ., v, of I'3¢ and exist arrows a;: v;_1 — v;
in Tgc. Set s(p) = vg, t(p) = vn, and £(p) := n, and write p: s(p) — ¢(p). The
notation o should remind us of composition, but we will often drop the o’s in future. If
q = by o...0bg 0by is another positive path with ¢(p) = s(q), we consider the formal
symbol

qgop:=bypo...obyobioa,o0...0az0a,
and call it the composition of p and q.

A positive path is called reduced if it does not cross any hyperplane twice. In this
setting where J is locally-finite, reduced positive paths coincide with shortest positive
paths; see e.g. [S, Lemma 2].

Following [D2, p7], let ~ denote the smallest equivalence relation, compatible with
morphism composition, that identifies all morphisms that arise as positive reduced paths
with same source and target. Then consider the free category Free(T's¢) on the graph Ty,
where morphisms are directed paths, and the quotient category

G = Free(Tyc)/ ~,
called the category of positive paths.

EXAMPLE 2.12. For the infinite hyperplane arrangement in 2.10, 9;}'{ is generated by
the following arrows:

The relations in this example are generated by the polygon face relations, namely the two
shortest paths around any 4-gon, 6-gon or 10-gon are identified.

DEFINITION 2.13. The arrangement (=Deligne) groupoid SGg¢ is defined to be the
groupoid completion of 9;%, that is, a formal inverse is added for every morphism in SJ{C.

WARNING 2.14. In this level of generality, it is not known whether the natural mor-
phism 9;} — Gg¢ is injective. When H is a finite simplicial arrangement, the morphism is
injective [D].
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The following is well-known [D, P1, P2, S]. The statement below in our possibly infi-
nite setting can be found for example in [D2, p9]. Recall that throughout this subsection,
H is a locally finite, essential, arrangement inside R™.

THEOREM 2.15. If v € Gg¢ is any vertex, then Endg,, (v) = m (C™"\Hc).

2.3.2. Groupoids for Intersection Arrangements. We revert to the setting of
intersection arrangements. In this subsection we apply the above to these special cases,
mainly to set notation for future sections.

NOTATION 2.16. Suppose that A is ADE Dynkin, and J C A.

(1) For 3 = Cone(A,J), which is a finite simplicial arrangement inside RI3°!, the
resulting Deligne groupoid will be written Gg.

(2) For H = Level(Jas), which is an infinite arrangement inside RI?°l, the resulting
Deligne groupoid will be written Gy_,.

ExXAMPLE 2.17. For the J the subset of Eg in 2.10, then Gy, and Gy are respectively:

The following definition solves one of our main motivations, namely it constructs what
we think of as the affine pure braid group, even when the affine braid group need not exist.

DEFINITION 2.18. Suppose that A is Dynkin, and J C A.

(1) Write 7t1(J) for any vertex group of Gy, and call it the J-pure braid group.
(2) Write 71(Jasr) for any vertex group of Gy, and call it the affine J-pure braid

group.

By 2.15 both 71(J) and m1(dae) are fundamental groups of the complexified com-
plements of the associated hyperplane arrangements. It will be through controlling the
groupoids Gg and Gy, that we will be able, in later sections, to produce 7t;-group actions
on derived categories in various algebraic and geometric settings.






CHAPTER 3

Finite Type Examples and Classification

In this chapter, when A is an ADE Dynkin diagram, we classify all the possible
Cham(A, J) that arise when |J¢| = 1,2, and illustrate the complexity in the general case.
Furthermore, the techniques developed (specifically 3.4) significantly simplify the general
theory of Chapter 1, which in turn simplify the calculation of the infinite arrangements
in Chapter 4.

3.1. Degenerate Cases

When J = ), as already remarked, Cham(A,0) = {(x,0) | * € Wa}, which can be
identified with the usual root system for A. The other extreme is J = A, in which case
Cham(A,A) = {(1,A)}.

The other main degenerate case is when |J¢| = 1, which we will refer to as rank one.

LEMMA 3.1. If A is Dynkin and § = A — i for some i € A, (equivalently, |J°| = 1),
then wall crossing in Cham(A,J) is described by

(17A - Z) ‘]7 (U)A_Z"UJA7A - .])

where j = 1a(4). In particular, there are only ever two chambers, and one wall.
ProoF. This is a direct consequence of 1.20. (Il

The other slightly degenerate case is when A = A,, and J is arbitrary. As is typical in
this setting, see e.g. | , 6.5], constructions in type-A only ever give type-A phenomena.
This is made precise in the following (see also 4.5).

PROPOSITION 3.2. If A = A,, and J C A, then the arrangement Cone(A,J) is the
finite root system of type A,_ 3.

PROOF. There are many ways to see this. Consider J¢, and order its elements in
increasing order j; < ... < jn,. It is easy to check, in a similar way to 3.4 below, that the
vertices j; and j; 41 braid under iterated wall crossing, with a length three braid relation.
It is also easy to check that wall crossing under js and j; commute provided that [s—t| > 1,
since there is a vertex in between them, which splits the Dynkin diagram into two disjoint
pieces. Thus, although the local labels change, the arrangement is controlled by the same
global rules as the finite root system of type A,,_ 5/, and so it is A,_g.

The other way to see this is from the explicit description of roots of A,, in terms of
connected chains of 1s on the Dynkin diagram. This immediately implies that the set of
restricted roots on {ji,...,jm} is also given in terms of connected chains of 1s. From this,
it follows that the arrangement is A,,_ 4. O

3.2. Rank Two Examples and General Techniques

This section illustrates how to use the general theory to calculate any given Cham(A, J)
with |J¢| = 2, which we will refer to as rank two. Example 3.3 explains this in full detail,
however keeping track of the full Weyl group elements quickly becomes cumbersome. As
such, group elements are then replaced by their length, leading to slimlined Examples 3.5,
3.6 and 3.7. These illustrate some phenomena appearing in the cases of Fg, F7 and Ejg

21
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respectively, such as the slopes of the hyperplanes changing. These turn out to be a
representative of the full rank two classification, which appears in the next section.

As before, in what follows we depict vertices in J by e. It will be convenient to colour
the other vertices, those in J¢, so for example the picture

[ ]
o000000O
depicts the case A is Fg, with J equal to the set of black vertices.

EXAMPLE 3.3. Let A = Dy,.
(1) For g = 1Y Cham(Dy, ) is

1 3
(l,o:o) 7‘ (515254,0:0) p— (515234335231,0:0)

1
4 1 J 3 3

1

° ° X °
(835254,000) (8352545818253, 000) — (815254835251545253,008)

and Cone(Dy,J) is the hyperplane arrangement as in 1.7(2), with the same re-
stricted roots 10, 01 and 11.
(2) For g = oo, Cham(Dy, J) is given by the following calculation

1 2

e . ° - °
(1,000) —_— (s1,000) - (51528354592, 000)
ZHQ 1|1
(32333432,0:0) (313233343251,0:0)

i I

o . 2 ° °
(5253845251,000) — ($25354525152535452,008) (52535452515283545281,000)
2

Furthermore, Cone(D4,o:o) is the following hyperplane arrangement

D2

Hyperplane Restricted Roots

9 =0 10

1 192:0 01
H+9=0 11
H+28,=0 12

In this example the equality vivoviva(1,d) = vavivavi(l,J) implies that
52535452515253545251 = 51525354525152535452,
which takes some time to be checked directly by hand.

REMARK 3.4. In the case |J¢| = 2, in fact we do not have to check such kind of equality
since the chamber structure of Cham(A, J) is given by positive roots. Indeed, consider first
the table below (found using (1.2.A)), which records £(wa_;wa) = ¢(wa) — f(wa—;) for
each Dynkin diagram A and each vertex ¢ € A.

It follows from 1.20(2) that alternating wall crossings gives all elements in Cham(A, J).
Moreover, thanks to 1.20(3), we only have to calculate £(z) for each (z,J) € Cham(A,J)
until it reaches ¢(wywa). This can be done inductively, using the table below.
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A é(wA_iwA) = é(wA) - E(wA_i)
A, n 2n-1) 3n—-2) -+ ("—-23 (n—1)2 n
n(n—1)
2
Dy, n(n—1) (n+5)(n—2) (n+8)(n—=3) (n+11)(n—4) .  (4n—7)2 (4n—4)1
2 2 2 2 2 2
21

Ee 16 25 29 25 16
B 42

7 33 47 53 50 42 27
B 92

8 78 98 106 104 97 83 57

In the examples that follow, we thus write (¢(x), J) instead of (z, J).

ExXAMPLE 3.5. Let A = Eg.
(1) When J = seses, then l(wa_gwa) = 36 — 12 = 24 and Cham(Es,J) is

(0,00:00) —_— (8,00:00) —_— (16,0.300)
l |
(8,00:00) E— (16,00:00) —_— (24,00:00)

Moreover Cone(Eg, ) is the 6-chamber example in 1.7(2) and 3.3(1), with the
same three restricted roots.

(2) When J = seeee, then £(wa_jwa) = 36 — 10 = 26 and Cham(Eg, J) is

(0,00:00) E— (l,oo:oo) — (11,00:00) — (16,..:00)
| |
(10,00:00) — (15,00:00) — (25,00:00) — (26,00:00)

Further, Cone(FEg,J) is the 8-chamber example in 3.3(2), with the same four
restricted roots.

(3) If = eeewe, then {(wa_jwp) = 36 — (6 + 1) = 29 and Cham(Eg, J) is

(O,oo:oo) (4,..:..) — (12,..:..) — (16,.0:00)
| |
(13,00300) — (17,00300) — (25,00:00) — (29,00:00)

Again, Cone(Eg,J) is the 8-chamber arrangement in 3.3(2), but now the re-
stricted roots have multiplicity.

V2

Hyperplane Restricted Roots

9 =0 10
191 1()2 = 0 01,02
H+9=0 11

H+20 =0 12
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The restricted root 02 gives the hyperplane 239 = 0, which is the same as the
hyperplane 82 = 0. However, when later in the next chapter we translate by the
integers (see 4.4), this multiplicity effects the affine arrangement that is obtained.
Compare 4.15 versus 4.16 later.

(4) If § = eoewe, then £(wa_gwp) =36 — (3+ 1+ 1) = 31 and Cham(Eg, g) is

(O,oo:oo) — (2,00:00) — (8,00:00) \ (14,0.300)) — (16,00:00))
l |
(15,00:00) — (17,.0:00) — (23,.0:00) — (29,..:00) — (31700300)

In this case, Cone(Fsg, J) is the following hyperplane arrangement.

9
i Hyperplane Restricted Roots
9 =0 10
0 ¥93=0 01,02
3 +93=0 11
H+283=0 12
H+39 =0 13

Note that these simple calculations imply the non-obvious equality

53525453555653525453555352545351525355565453555253545152535556
— 5182853555654535552535451525355565354555352515354555352535455S53
in the Weyl group Wg,.
[ J .
(5) Let J = eee@e. Then {(wa_gwa) = 36 — 6 = 30 and Cham(Es, J) is

(0,..:00) (9,..:00) — (10,..:00) — (19,..:00)) — (20,..:..))
l \
(1,..:..) (29,..:..)
\ l
(10,0.:..) — (11,..:..) — (20,..:00) — (21,..:00) — (30,00:..)

Moreover, Cone(Eg, J) is the following hyperplane arrangement.

03
Hyperplane Restricted Roots

d4=0 10

¥3=0 01

94 d1+93=0 11

Y+ 393=0 23

V4 +2835=0 12

94 +3%3=0 13

The next example, which takes place in E7, illustrates that whilst from a topological
(and 711) perspective the hyperplane arrangements can be considered the same, the slopes
of some of the hyperplanes may vary.

ExXAMPLE 3.6. Consider A = Ex.
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(1) Let J = soceee. Then £(wa_gwa) = 63 — (6+ 1+ 1) = 55 and Cham(E7,J) is

(O,oo:ooo) — (2,00:000) — (10,00:000) — (23,00:000) - (31,002000))
i \
(22,00:000) (33,00:000)
| 1

(24,.0:000) - (32,.0:000) - (45700:000) - (53,.0:000) - (55,00:000)

In this case Cone(E7,J) is the following hyperplane arrangement.

93
Hyperplane Restricted Roots
=0 10
B3 =0 01,02
91 H+03=0 11
d+295=0 12,24
Y +333=0 13
3 +493=0 14

Note that, up to gradients, this is the same as Example 3.5(5) above.

(2) Let J = eoce@e. Then £(wa_gwa) =63 — (3+ 3+ 1) = 56 and Cham(E,J) is

(07003000) — (29,00:000) - (32,003000) - (38,00:000) - (47,00:000)
1 l
(3700:000) (53,..:...)
l l

(9700:000) — (18,.0:000) — (24,..:000) — (27,..:...) . (56,0.:...)

Moreover Cone(E?7,J) is the same hyperplane arrangement as in (1) above, but
the multiplicities of the restricted roots differ.

O3
Hyperplane Restricted Roots
H =0 10
B3 =0 01,02,03
LSl H+93=0 11
Y +203=0 12
9 +3%3=0 13
9 +495=0 14

The multiplicities effect the affine arrangements later; compare 4.23 and 4.25.

ExAMPLE 3.7. Let A = Es.
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(1) 4= eeseese. Then l(wa_gwa) =120 — (10 + 1+ 1) = 108 and Cham(Es,d) is

(O,oo:oooo) — (2,00:0000) - (12,.03000.) - (37,..:....) — (41,0030.00)
1 l
(30,00:0000) (66,00:0000)
l 1
(32,.0:0000) (76,00:0000)
! |
(42,.0:0000) (78,00:0000)
| !

(67,00:....) > (71,00:....) > (96,00:0000) - (106700:0000) - (108,0.:....)

In this case Cone(FEjs,d) is the following hyperplane arrangement.

9 Hyperplane Restricted Roots

9 =0 10

V3 =0 01,02
4 +93=0 11

91 d+293=0 12,24
9 +395=0 25

D +393=0 13,26
H+493=0 14
dH +5%3=0 15

(2) d= eeceses. Then l(wa—gwa) =120 — (6 +3 + 1) = 110 and Cham(Es,J) is

(0,..:....) - (53,.0300.0) > (57,0.3000.) - (63,.0:0000) — (75,00:0000)

1 l
(4,..:....) (88,.0:0000)
l 1
(10,.0:0000) (100,00:....)
! l
(22,.0:0000) (106,0.:....)
l !

(35,00:....) > (47,.0:0000) > (53,0.:....) — (57,00:....) — (110,..:....)

In this case Cone(Fs,d) is the following hyperplane arrangement

93

Hyperplane Restricted Roots
g =0 10
¥93=0 01,02,03,04

dg+93=0 11

s s +295=0 12

ds+395=0 13,26

Vg +4835 =0 14

¥ +533=0 15

¥ +693=0 16
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Up to gradients, this is the same hyperplane arrangement as in (1) above. The
gradients, and their multiplicities, effect the corresponding affine arrangements;
compare 4.25 and 4.26.

3.3. Rank Two Classification

In this section we consider Cone(A,J) when A is ADE Dynkin and |J¢| = 2, and we
classify the hyperplane arrangements that can arise. The methods of the previous section
allows for a full calculation of the arrangement, including the slopes of the hyperplanes,
but for most purposes of this section (and for our applications in finite type), we will
ignore the slopes.

The following results asserts that for A = A,,, D,,, and |J¢| = 2, few possibilities occur.

PROPOSITION 3.8. Consider § C A with |J¢| = 2.

(1) Cone(A,,d) is the finite root system Az, which has 6 chambers.
(2) Up to permutation of the co-ordinates, Cone(D,,,d) is one of the following:

where the red line is x +y = 0 and the green line 2x +y = 0.

PRrROOF. (1) This follows immediately from 3.2.

(2) The case of Dy is slightly degenerate. Up to mutation, and symmetries of the graph
any J with |J¢| = 2 is either the example in 3.3(1) or 3.3(2). These have have either six
chambers, or eight chambers respectively, and are precisely the arrangements claimed.

Hence we can consider D,, with n > 5, and we draw this as :°“°. Consider the
leftmost vertex in J°, and suppose it contains at least one of the left rank-one vertices.
If it contains both, namely J = .0“°, then the restricted roots are 10,01,11 and so we
obtain the six chamber arrangement claimed. Note that this J is mutation equivalent to

2e--® and so this too gives the six chamber arrangement. Hence, we can assume that the
second vertex in J¢ does not have rank one, which up to symmetry of the left rank-one
vertices means J = ®®_ In this case, the restricted roots are 10,01, 11,12, which up
to permutation of the co-ordinates is the eight chamber arrangement claimed.

Hence we can assume that the leftmost vertex in J¢ does not have rank one. If the
rightmost element of J¢ has rank one, there are two cases. Firstly, if J = o ® then
the restricted roots are 10,01, 11,21, which is the eight chamber arrangement claimed.
Secondly, if J = R - ®® then this is mutation equivalent to e®®-®_ This has restricted
roots 10,01, 11, 22,21, which gives the eight chamber arrangement claimed.

Hence we can assume that both vertices in J¢ have rank two, and further by the above
paragraph the case when both vertices are adjacent has already been covered. This means
that J = @--®®-®-®_ In this case, the restricted roots are 01, 10, 20, 11, 22,21, and again
we obtain the eight chamber arrangement claimed. O

REMARK 3.9. Another way to approach 3.8(2) is to classify the mutation classes in
D,, with |J¢| = 2, then run the techniques as in 3.3, with the simplification in 3.4. This
method is slightly more time-consuming to write, but in practice is often more useful. It
turns out that D4 has four mutation classes, Do, 41 with n > 2 has n? mutation classes,
and Dy, with n > 3 has n? — 1 mutation classes. Up to symmetries of the graph, D, has
two classes, Dy, 41 has n? classes, and Ds,, with n > 3 has n? — (n —1) classes.

The following classifies Cone(A, J) when A = Eg, E7, Es, and |J¢| = 2, by first classify-
ing the mutation classes, then performing a single calculation for each one. This reduces
the number of cases substantially, whilst giving very precise information in each case.
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Remarkably, all phenomena can be found using only Fg, E7, and Es. The hyperplane ar-
rangements from Type A and D repeat here, but more arrangements are obtained. Later
in Chapter 4 the same phenomena occurs: all our affine tilings in R? can also be realised
using only type E.

THEOREM 3.10. For A = Eg, Er, Es, and |J¢| = 2, the mutation classes, and in each
case the number of chambers in Cone(A,J), are as follows.

Family Mutation Class |Chambers|
Es 1 e0ces eecee ecese scsee seses 10
Es 2 cesee 6
Es 3 cscee 12
° ° ° °

Es1 ©ceee ceeee eoeeo eeeoo 8
° ° ° °

Ess e©ceee eceee ecece oceece 8

E7q ceceee ocecees 8
° ° ° ° °

E7o2 eceeee eceeee eeecee eeecee ocecece 10
°

E73 e 12
° ° °

E7 4 000000 000000 000000 12
° ° °

E7 5 000000 000000 000000 12
° ° °

E76 000000 000000 000000 12
°

E77 oeecece 8

E7s escece 12

E7 9 cecees ocesece 8

Es 1 cececes 8

Es 2 cscesce 12

Eg 3 cececee 12

Eg 4 c0ceces eesecee cesesce 12

Eg 5 c0ceces cesecee scsesee 12

Es ¢ ecceees eceecee seseece 12

Eg 7 ceccess cescece 16

Eg g 0000000 eco00ce eccecss cecesee 16

Eg 9 0000000 000000e c0ccces cesceee 16

Es, 10 ec00cee ecscees ceccess eeceses 16

Es 11 eececce eeseces 16

PROOF. In each line, it is easy to verify that the diagrams listed are all linked via
the wall crossing rule 1.16, and further that the diagrams listed exhaust all possibilities
of wall crossing at the coloured vertices. In particular, each line is a full mutation class.
Since (g) = 15, and the total number of diagrams in the five stated Fg families is
also 15, we have exhausted all possible choices of two nodes in an Fg Dynkin diagram.
Consequently, there can be no further Eg families. Similarly, since (1) = 21, and (3) = 28,
and there are 21 diagrams in the E7 families above, and 28 diagrams in the Fg families
above, there are no further E; or Fg mutation families. It follows that the above is a
complete classification of mutation classes for Fg, E7 and Fj.

The last column is a case-by-case analysis, using the method in 3.5, 3.6 and 3.7, or
by looking at the restricted roots. O

The following is the main result in this section.
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COROLLARY 3.11. Suppose that A is Dynkin, and § C A with |J¢| = 2. Then, up

to changing the slopes of some of the hyperplanes, Cone(A,J) is one of the following five
hyperplane arrangements.

ERIENEREN
R

In each case, the number of chambers is 6,8,10,12 and 16 respectively.

PROOF. Simplicial hyperplane arrangements in R? are determined, up to the slopes
of the hyperplanes, by the number of chambers. Since we are ignoring slops, the result
follows from the either 3.8 or the last column in 3.10, which is always 6,8,10,12 or 16. [J

3.4. Rank Three Phenomena

The last section classified the Cone(A, J) inside R?, when A is ADE Dynkin. It is clear
that all simplicial arrangements inside R? are, up to moving the slopes of the hyperplanes,
Coxeter arrangements. In this section we will consider those Cone(A,J) inside R® when
A is ADE Dynkin, and demonstrate both the non-Coxeter nature, and also the surprising
complexity that occurs.

By 3.2, any choice of three vertices in Type A only ever gives Type As, which has 6
hyperplanes and 24 chambers. Thus, to find new phenomena, we must consider types D
and E. The following is the most elementary example.

ExAMPLE 3.12. Consider J = eee. Then Cone(Dy, J) is the following non-Coxeter
arrangement.

=0

192:0

d¥3 =
V1 + 9o =
Y +93=0
Dy +03 =

191 +192 +193 :0

It turns out that there are many more possible arrangements that can occur. Both
the number of hyperplanes and the number of chambers becomes surprisingly large.

THEOREM 3.13. Let A be ADE, and consider § C A with |3¢| = 3. Then Cone(A, J)
has either 6,7,8,9,10,11,13,16,17 or 19 hyperplanes.

Proor. This is a case-by-case analysis over all types. As above, by 3.2, any choice
of three vertices in Type A only ever gives Type As, which has 6 hyperplanes and 24
chambers. Type D is mildly harder, as in 3.8(2), however, any choice of three vertices
gives 7, 8 or 9 hyperplanes. For Ejg, via an exhaustive calculation aided by magma, any
choice of three vertices gives either 8 or 10 hyperplanes. Similarly, for E;, any choice of
three vertices gives either 9, 10, 11 or 13 hyperplanes, and for Eg, any choice of three
vertices gives 13, 16, 17 or 19 hyperplanes. (]

REMARK 3.14. At this stage, it is not clear whether the number of hyperplanes in
3.13 determine the arrangement. It would seem that there are always 24, 32, 40, 48, 60,
72, 96, 144, 160, or 192 chambers respectively, but it is not clear whether the 1-skeleta
remain constant within a given class.
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The following is one example of a Cone(A,d) inside R? with 19 hyperplanes. This
ignores multiplicity; with multiplicity there are 23. We explicitly describe the arrangement
here, given it is our largest example inside R3.

EXAMPLE 3.15. Consider J = eeseses. Then Cone(Eg, J) is the following hyper-
plane arrangement, which has 19 hyperplanes and 192 chambers.

4+ Y+ 93=0
Y+ B+293=0
= H+ d+3903=0
Vo=0 9 +20,+203=0
VU3 =0 9 +20,+383=0

it D2=0 5 4o 44, =0
D2t Oy =0 30, 1305 =0
202+ 3093 =0 ! 2 3=

B +203=0 Bt + 3% +495=0
V+393=0 91 +302+593=0
B9 +39+683=0
Y +49:,+693=0




CHAPTER 4
Affine Tilings in R?

Given a subset J of vertices of the Dynkin diagram A, Section 2.2 constructs an infinite
hyperplane arrangement Level(J.¢) inside Rl The case [J°| = 2 is then particularly
important: given any choice of two vertices J¢ in an ADE Dynkin diagram, there is a
corresponding tiling of the plane R2. This chapter classifies the tilings that are constructed
in this way. The main result is that there are precisely sixteen tilings, counted with Z?2
action, or fifteen counted without the Z? action. Only three of the fifteen are Coxeter.

We view these new tilings as fundamental building blocks, and so in this chapter we
draw each of them in some detail. They turn out to exhibit remarkable phenomena, which
have further applications later in this memoir, and also elsewhere in the literature.

4.1. The Main Techniques

In this section we show how to calculate the associated tiling of the plane in one
extended example. In later sections we use this technique implicitly, and for brevity
we will mainly just present the results for the exceptional types, without outlining the
underlying calculations.

Since wall crossing is combinatorial, we will begin in one chamber, and wall-cross
repeatedly. The first step is always to view Cone(A,J) inside Level(Ja), as illustrated in
the following example.

EXAMPLE 4.1. Consider § = eee, which is J = ®e® when viewed inside the affine
diagram. Since Cone(A,J) C Level(dar), we begin by fixing the extended vertex, and
mutating at the two other colours. Since the wjwjy; wall crossing rules are not effected
by the addition of the extended vertex, the calculation 1.11 can be transferred to describe
part of the affine tiling (see also 5.27). This is illustrated below, where in the right hand
picture we drop the labelling coming from the Weyl group for convenience.

(s1,000)
(1,000) oo ——oge
(515253, 000)
PN oge '3
(s283,000)
(5152535152,000) ege | ege
($25838182,000)

All the tilings below will be calculated by taking the first step Cone(A, J) C Level(Ja),
and for each of those chambers, calculating the wall crossing for the extended vertex. From
here, the calculations in the rank two ADE setting in §3.2, and especially 3.4, will be used
to determine the size of the new tiles that are glued on. The calculation repeats, stopping
once it becomes clear that the same tiles are being repeated.

We illustrate this main argument in one extended example.

31
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[ J

EXAMPLE 4.2. As in 3.5(3) consider J = sesee, which is sesee when viewed inside
the affine diagram. Asin 4.1, we begin with Cone(A, J) C Level J,5, obtained by fixing the
extended vertex, and mutating at the others. As above, since the wjwyy; wall crossing
rules are not effected by the addition of the extended vertex, the extended vertex can
be ignored for the purposes of this calculation. So, 3.5(3) gives the left hand side of the
following, namely an 8-gon with appropriate labels. The right hand side views this inside
the affine picture.

° °
e _ @ e _ o
eeoce ~oosoe eecce ~ecoee
g A e 7 N e
° ° ° °
sesce eceeo secce [
\ — \
° °
se80e eodes sedee 00800
G e _ o
® ® ° °
ecece ocooe eccce occeoe

The calculation continues by crashing through the remaining wall in each of these cham-
bers. In each case, this is the wall crossing given by the extended vertex. We thus extend
the calculation out, to cover these green wall crossings, and obtain the following.

° °
3 3
00000 o000
| |
o ° ° °
® e _ 0 °
oeece 00000 o000 o000
/ AN

° °
ce000 , ece00
N /
° e _ o °
° ° ° °
s0e0e ee00e ooo00 e0000

We next complete the outer edges into full n-gons. The value of n varies. For example,
consider the very bottom of the above picture, where red is being fixed, and we are
mutating green and blue. Since removing the green vertex leaves a disjoint union, in
which the red and blue vertices are in different pieces, the wall-crossing rules in §3.2
imply a length two braid relation, and so we glue on a 4-gon to the bottom of the picture.

In contrast, consider the right hand side of the above, where red is fixed, and we are
mutating green and blue. As in 4.1, the wyw y; wall crossing rule is not effected if we
delete the fixed red vertex. Doing this we obtain the situation in 3.5(3), and thus we glue
an 8-gon onto the right hand side.

Continuing, completing the outer edges into full n-gons gives the following.

° °
sesee eooee
° e _ e [
° ° ° °
o000 00000 00000 00000
e e s s s e
s0s0e — 00000 q.:.. - ..:.p 00800 — 00:..

.l:.. ..E.. ..E.. ..:l.
. : : .
.l:.. ..:.. ..:.. ..:l.
N e AN 7
L] — ] o — o [ — [ 3
sesee oooce eosce eosee eo8e0 00:..

: s e :

..:.. 00000 ~eoeee .c:.o
: / N :
se00e o000

We next continue by completing the new outer edges into full n-gons. Again, in each case,
6-gons and 8-gons arise by 3.5(3) or 3.5(2), and sometimes 6-gons arise by the Type A
situation (see 3.2). The 4-gons always arise whenever removing the fixed vertex leaves a
disjoint union, in which the two remaining vertices are in different pieces.
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Continuing in this way, over and over, we obtain the following.

° ° ° ° °
ses0e ectes ssses cotoe 9319
v AN 7 N 7 AN 7 N 7 AN
° e _ o e _ o e _ o e _ o o
° ° ° ° ° ° ° ° ° °
cooce ®eoce oocooe ece0e oeo0o eceee ooceoe eeece oocooe ecece
. s e s e + e s e .
° e _ o e o o e e _ o °
cooce [TITT Bk YT Y LT TR T YT T ®ce0e oceoe eeece oecooe ecece
H H
eeoce eco0e
! .
codoe eose0
AN 7 N 7 AN
S8 ol :
®000e o000 e000e ooo00 [T TT)
s e s e .
e ___ 0 e __ e °
00000 00000 00000 00000 e0000
TS %9 ..E.-
; ;
N o ee000 ~ 2 e0000 N
e _ o e _ o o
° ° ° ° ° ° ° ° ° °
cooce ®eoce oocooe ece0e oeo0o eceee ooceoe eeece ocooe ecece
. .o . s .. L :
cooce [TITT Rk YTV CXT L TR T YT Y ®ceee eceee eeece oecooe ecece
cesse eodeo coseo codoe esde0
: : : : .
cesse eodeo coseo eodoe eode0
v AN 7 N 7 AN 7 N 7 AN
° e _ o e _ o e _ o e _ o °
° ° ° ° ° ° ° ° ° °
ce00e ee00e ooo00 00000 00000 ®000e o000 e000e ooo00 [T TT)
. s e s e s e s e .
° e _ o e o o e e _ o °
cooce [TITT Bk YT VY CXT T TR T YT 1Y ®ceee oceoe eeece oecooe ecece
H ° ° ° H

There is a clear line of reflection in a central vertical line, which fixes blue but swaps
green and red. The is also a line of reflection in a central horizontal line, which fixes all
colours. This determines the rest of the tiling.

Since in the above picture, at every label there are three wall crossings, it follows
that there are no further chambers, and so the above is the 1-skeleton of the hyperplane
arrangement. As such, the infinite hyperplane arrangement is the following.

This is example &g 5 in 4.16 later.
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All the hyperplane arrangements in §4.2 below are calculated using the above method.
In each case, after deleting the fixed vertex for any potential n-gon, the value of n is
calculated using 3.4.

REMARK 4.3. The above calculation enriches the hyerplane arrangement with the
information of the null root 6 := Zie A d;0;. Indeed, if at the centre of each n-gon we
record the value of §; for the vertex in J¢ which is being fixed, we obtain the following.

INC)
B
B
INC)
B
L)

INCY

INCY
B
INCY
L)
INCY

INCY
B
N

The 1’s form a Z?2 lattice, which we will later refer to as the action of the class group.
This action becomes very important in Part 3.

REMARK 4.4. It is possible to calculate the hyperplane arrangements by translating
the finite arrangements and their multiples (see below). However, the above gives us
more information, as it links different choices through wall crossing, and thus makes
classification significantly easier. The above method gives the class group action, and the
other numbers in 4.3 also become important in Part 3 later.

We also illustrate the translation method here. Consider J = oo:oo, which exactly
as 3.5(3) has the following finite arrangement:

D2
A
Hyperplane Restricted Roots
B =0 — 01,02
91 H+20=0 — 12
H+9=0 N 11
9, =0 I 10

We then translate all hyperplanes given by the restricted roots, and so consider

192:,2’,

191 =% 2192 =z,

N +d=2 D +20 ==z
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for all z € Z. The set where all z = 0 is precisely the finite arrangement illustrated, whilst
translating all by the integers give the following infinite arrangement, extended to infinity
in all directions:

\

N

The area in bold bounds a rectangle from (0,0) to (1,1), and is the fundamental region.
It terms of the arrangement in 4.3, this bold region corresponds to the following:

4.2. Summary of Classification

Given a subset J of vertices of a Dynkin diagram A, such that |A\J| = 2, this section
classifies the infinite hyperplane arrangements Level(Ja¢) that can occur. Equivalently, in
the notation of §2.2, it classifies those Level(Au, X) such that |Au\K| = 3 and further-
more X is mutation equivalent to J such that A,¢\J contains the extended vertex.

For our applications later, we are mostly interested in the hyperplane arrangements
Level(da¢r) equipped with their class group Z2-action explained in 4.3. Consequently, we
classify not the abstract arrangements (of which there are 14), but instead the arrange-
ments together with the Z2-action (of which there are 16). Of course, by the wall crossing
rules, the only possible Level(Auy, X) that have a class group action are those X which
are, up to symmetries of the graph, mutation equivalent to J such that A,¢\J contains
the extended vertex. This is why we restrict our attention to Level(Ja¢). However, many
of our arguments are more general, and we will make various remarks on the more general
case Level(A,f, X) throughout.

4.2.1. Extended Type A. Exactly as above 3.2 in the finite type A setting, it
turns out that constructions in extended Type A also only ever give extended Type A
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phenomena, as follows. This implies that no new phenomena arise in extended Type A,
and so for classification purposes it can largely be ignored.

PROPOSITION 4.5. Let A = A,. Then for any X C A, the cone Cone(Aqs,XK) is
precisely the Tits cone Cone(lugr) for I' = A, _ x|

PrOOF. If X = () then Cone(A,sr, X) = Cone(A,¢) and there is nothing to prove, hence
we can assume that X # (). This being the case, label the vertices of A, by 0,1,...,n,
reading around the circle clockwise, where 0 is the extended vertex, and suppose that the
elements of A;r\X are 44 < ... < ;. By rotating if necessary, up to symmetries of the
graph we can assume that ¢; = 0.

The fact that the vertices g, ..., satisfy the Type A braid rules is 3.2, using 4.1 to
see that adding the extended vertex does not effect the braiding. It is easy to check that
the extended vertex braids with 75 and i;, and commutes with the others. Thus, although
the local labels change, Cone(A,g,X) is controlled by the same global rules as the Tits
cone for affine A,,_ x|, and hence it is the Tits cone Cone(Iyg) for ' = A,,_ x|

The other way to see the result is that, since we can assume ¢; = 0 by rotating if
necessary, as in 4.4 the level can be obtained from the finite root system by translating
the restricted roots. By 3.2 these are connected chains of 1s, and hence translating them
gives the standard level of affine A, _|x|. Since by 2.2 the cones can be recovered from
their levels, the result follows. ([l

REMARK 4.6. The rotational symmetry used in the proof of 4.5 above shows that, for
A = A, the more general setting of Level(Au, K) from §2.2 yields no new arrangements
than simply considering those Level(J.¢) with § C A, irrespective of |J|

4.2.2. Extended Type D. In this subsection we consider the case A = D,,. By
3.8(2), up to slopes, Cone(A,J) with |J¢| = 2 can be one of two options. However, both
the slopes and the multiplicities of the hyperplanes are required in order to translate these
arrangements, as in 4.4, to obtain the affine versions.

The following show that, in total, if A = D,, and § C A with |J¢| = 2, then Level(Jaf)
is one of four affine arrangements. One is the classical affine As arrangement, and two
(4.15 and 4.17) are the classical affine By arrangement, albeit with different Z2-lattices.
The other, namely 4.16, is similar to affine By, but is mildly different.

PROPOSITION 4.7. Let A = D,,, and J C A with |J¢| = 2. Then Level(Ja), together
with its class group action, is one of the four arrangements on the right hand side of the
following table. The middle column shows the restricted roots that translate to give the
affine arrangement, and thus g is mutation equivalent to some J for which Cone(A,J) has
these restricted roots.

Family Name Finite Arrangement  Affine Arrangement

D1 {10,01,11} 4.18
Do {10,01,11,21} 4.15
Dy {10,01,11,22,21} 4.16
Dy {01,10,20,11,22,21} 4.17

PROOF. The key point is that, inspecting the proof of 3.8(2), we see that J is mutation
equivalent to some J for which Cone(A,J) is given by one of the four sets of restricted roots
listed. Our method of calculating the affine arrangement via wall crossing in 4.2 shows
that Level(Jarr) = Level(Jue), i.e. the affine arrangements are the same. As in 4.4, we
can then calculate Level(J,¢) by translating the finite hyperplanes listed, together with
multiplicity. This results in 4.18, 4.15, 4.16, and 4.17 respectively, where in each case the
translation is visually illustrated. O

REMARK 4.8. The ‘up to mutation’ in the statement and proof of 4.7 is important,
but subtle. Indeed, Cone(A,J) may be given by a different set of restricted roots than
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those listed, but after translation these still give the affine arrangement listed. Such a
phenomena already appears in 4.4, where given the representative J = eeees of the
mutation class, both the affine fundamental region and the finite hyperplane arrangement
are illustrated below, with the fundamental region being exactly as in 4.4.

2

1
1
Hyperplanes
01 —
1 11 \
21 -
10, 20 I

°
Note that, in 4.4, the affine representative eeeee sits in the bottom left triangle of this
fundamental region. Also, we remark that the bottom horizontal line on the left hand side
corresponds to the vertical y-axis in the above arrangement, and the leftmost diagonal on

the left hand side corresponds to the x-axis.
[ ]

On the other hand, the representative eeeee can be obtained as a single wall cross-
ing. In contrast, its fundamental region and finite hyperplane arrangement (ignoring the
extended vertex) are illustrated in 4.16. Both of these are mildly different to the fun-
damental region and the finite hyperplane arrangement above, however, being mutation
equivalent, they give the same tiling. Visually, the two fundamental regions are as follows.

4.2.3. Extended Type Fs. In the previous subsections, Level(Ja¢) with J C A, D,
and |J¢| = 2 has yielded only four affine arrangements. Many more arise from extended
type E, and in this subsection we consider the case A = Eg, and K C A, with |Au\K| =
3. In this case, it turns out to be easiest to first classify the affine mutation classes, then
in each case to calculate the associated affine arrangement.

As symmetries of the graph do not effect the arrangements, in fact it suffices to classify
the mutation classes, up to symmetries.

PrOPOSITION 4.9. Up to symmetries, there are five mutation classes for X C Ay,
when A = Eg and |Ay\X| = 3. Four of these can be realised via J C A, and one cannot.
The table below summarises a representative of each mutation class, the number in each,
and in the case when the class arises from A, where the associated affine arrangement
may be found.

[ ] [ ] [ ] [ ] [ ] [ ]
Rep ..:.. ..:.. ..:.. ..:.. ..:.. ..:..
Label &g 1 6,2 6,3 6,4 6,5 6,6
|Class| 15 1 1* 6 9 1

Arr. 4.19 4.18 4.20 4.15 4.16 X
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The star denotes a mutation class that is not closed under symmetries. Thus E¢ 3 repre-
sents any of three singleton mutation classes obtained from the representative above, and
its image under the action of Zs.

Proor. Via the wall-crossing rule 1.16, it is very easy to check, in each case, that
the number in the mutation class is as claimed. Since there are three versions of €6 3, in
total there are 15+ 143+ 6 + 9 4+ 1 = 35 diagrams in the above mutation classes. Since
(;) = 35, the above classes must be them all. In each case, the affine arrangement can
be calculated by using either the method in 4.2, or the translation method in 4.4. This is
briefly summarised in each of the corresponding linked examples. Il

REMARK 4.10. The method in 4.2 can be used to calculate Level(Auy,X) for the
family €g,6. This gives the honeycomb tiling, but where the numbers on the intersection
points (as in 4.3) are always 2. Hence, ignoring the Z? lattice, this is 4.18.

4.2.4. Extended Type E7;. This subsection considers the case A = E;, and X C
A, with |A\XK| = 3. Again, it turns out to be easiest to first classify the affine mutation
classes, then in each case to calculate the associated affine arrangement. The symmetry
group is now Zs.

PROPOSITION 4.11. Let A = Er, and KX C A,p with |A\K| = 3. Up to symmetries
of the graph, the table below summarises the mutation classes, a representative of each,
the number in each, and in the case when the class arises from A, where the associated
affine arrangement may be found.

Rep. ...:... ...:.‘.. ...:... ...:... ...:... ...:...
Label &7 €70 &3 Era €75 &6
|Class| 3 10 1% 8 5* 11
Arr. 4.16 4.19 4.20 4.22 4.23 4.25
Rep. ...:... ...:... ...:... ...:... ...:...

Label Err Ers E7.9 E7.10 E711

|Class| 1* 2* 2 3 1

Arr. 4.17 4.21 4.15 X X

Again, * denotes a mutation class that is not closed under symmetries, so each class
starred represents two classes, of the size stated.

PROOF. The proof is the same as 4.9: via the wall-crossing rule 1.16, it is very easy to
check, in each case, that the number in the mutation class is as claimed. As each starred
class is doubled, since it represents two classes, the total number in the classes above is
56, which equals (g) Hence these are the only classes. Again, in each case, the affine
arrangement can be calculated either by using 4.2 or 4.4. O

REMARK 4.12. As in 4.10, ignoring the Z2-lattice, the family €7 11 gives the affine By
arrangement 4.15, and the family €7 ¢ gives the arrangement 4.16.

4.2.5. Extended Type FEg. This subsection considers the case A = Eg, and K C
Auge with [Ay\X| = 3. As above, we first classify the affine mutation classes, then in each
case to calculate the associated affine arrangement. The symmetry group is now trivial.

PROPOSITION 4.13. Let A = Eg, and X C Ay with |Ays\K| = 3. The table below
summarises the mutation classes, a representative of each, the number in each, and in the
case where the class arises from A, where the associated affine arrangement may be found.

Rep. ..:..... ..:..... ‘..:..... ..:..... ..:..... .‘.:.....
Label Es1 Eg,2 €83 Eg 4 Es5 Es.6
|Class| 1 1 2 5 4 7

Arr. 4.17 4.20 4.21 4.23 4.22 4.24
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Rep. ..:..... ..:..... ..:..... ..:..... ..:.....

Label Es,7 Es8 €s,9 €s,10 €s11

|Class| 5 12 11 15 10

Arr. 4.29 4.27 4.28 4.26 4.30

Rep. ..:..... ..:..... ..:..... ..:..... ..:..... ..:.....
Label €s,12 €813 €s,14 8,15 €316 Es,17
|Class| 2 1 1 1 1 5
Rep. X X X X b X

PROOF. The proof is the same as 4.11: via the wall-crossing rule 1.16, it is very
easy to check, in each case, that the number in the mutation class is as claimed. The
total number in the classes stated above is 84, which equals (g), hence these are the only
mutation classes. Again, in each case, the affine arrangement can be calculated either by
using 4.2 or 4.4. ([

REMARK 4.14. As in 4.10 and 4.12, using the method in 4.2 if we ignore the Z2-
lattices, the families €g 12, €813, €814, €8,15, €316, and g 17 give the arrangements 4.21,
4.15, 4.15, 4.20, 4.20 and 4.23 respectively.

4.2.6. Summary of Notation and Tables. Using the above subsections, the fol-
lowing sixteen pages summarise the classification of arrangements in R? obtained as
Level(Jar) for some J C A, with A ADE Dynkin.

In each case, we draw the arrangement equipped with the Z2-lattice explained in
4.3. We will also draw a fundamental domain in each case. As in 4.8, the fundamental
domain depends on the choice of representative, and so in each case we also state the
representative for the fundamental domain we choose. This representative will always
correspond to the bottom left triangle, in the chamber marked with a dot in the following
picture. From that chamber, we extend out arrows until they reach lattice points. The
fundamental region, shown on the right, is the rectangle enclosing this.

NS

VeV

AV
VAVVAV:
W

NN

SVANYAY
N\

AV

AN=VAV=VAV=VAN
<

NN\ LNY
AN=AVVAV=VAN
PN\

PN




IIIIIIIIIIIIIIIIIII

Affine arrangement:
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EXAMPLE 4.16. The families D3, &5, and €7 1.

Affine arrangement:

Made of: 8-gons, 6-gons, 4-gons.

1
2
Hyperplanes
01 —
1 11,22 \
21 -
10 I

°
Fundamental domain representatives: eeoe - o 00 cee respectively.
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EXAMPLE 4.17. The families Dy, €77, and g 1.

Affine arrangement:

Made of: 8-gons, 4-gons. Same arrangement as 4.15, but the Z2-lattice is different.

2

1
2
Hyperplanes
01 —
1 11,22 \
21 -
10,20 I

Fundamental domain representatives: eeoe® - o 00 cecece respectively.
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EXAMPLE 4.18. The families A, Dy, and &g 2.

Affine arrangement:

NN/
ININN NN

Made of: 6-gons. This is affine As.

Hyperplanes
01 —
11 \
10 I

Fundamental domain representative: ee HYY



)\.) \.) \.) \.)\

R AVATAC VA VAV <
Y VY,
ASTATA VAN VA-VA
S OSPSESS
R ACVATAC VA VAV <
Y VY,
ACTANTA-VANVA-VA
S OSPSESS

S AV=VAVVAV VAV VAV
ey

ANVAVVAV:VAV VAV VAN

NN NNLNLS 6
AN A A NN

VAV
FSTANSTANSTA ST AST A

=)

=)

<
S
=

llllll
000000




Affine arrangement:
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EXAMPLE 4.21. The families €75 and &g 3.

Affine arrangement:

L INAR INAR INARS INAR/ NS/,
A

Made of: 12-gons, 8-gons, 6-gons, 4-gons.

Hyperplanes

01 —_
11,22 \
1 32 -
21,42 —_

31 —_
10,20 |

Fundamental domain representatives: eee® ceo e, and oo ceceee respectively.
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EXAMPLE 4.22. The families €7 4 and g 5.

Affine arrangement:

S Srs Sres Sei s St S
G
RS
Sius e is sty
RS
LA SVATINS SV IS S

Made of: 12-gons, 6-gons, 4-gons.

SRS
V2
=

Hyperplanes

01
11
32
21
31

10,20

7 1

Fundamental domain representatives: eee® HYS e, and ee ecsese respectively.
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EXAMPLE 4.23. The families €75 and g 4.

Affine arrangement:
v

AN

Made of: 12-gons, 8-gons, 6-gons, 4-gons.

Hyperplanes

01
11
1 21,42
31
41

10,20

Fundamental domain representatives: eeoe® coe e, and ee cecese.
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EXAMPLE 4.24. The family g .

Affine arrangement:
v

R
RS
BT
R
T
R

AN

Made of: 12-gons, 8-gons, 6-gons, 4-gons.

=
Ju
[\
—
—
w

Fundamental domain representative: ee ceccce.

Hyperplanes

01
11
21,42
31
41

10, 20, 30
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EXAMPLE 4.25. The family €7 .

Affine arrangement:

%
NN %\%

Made of: 12-gons, 8-gons, 6-gons, 4-gons.

gl
! Hyperplanes
01
11
1 21
31
41
10, 20, 30

Fundamental domain representative: eee cese.
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EXAMPLE 4.26. The family &g 19.

Affine arrangement:

Made of: 16-gons, 12-gons, 8-gons, 6-gons, 4-gons.

14
1 2t

Fundamental domain representative: ee cecese.

Hyperplanes

01
11
21
31,62
41
51
61
10, 20, 30, 40

7|

51



4. AFFINE TILINGS IN R?

EXAMPLE 4.27. The family €g,

\V
\‘VA
Lﬂk(
A4

rangement:

A
.
)
e
4%,
2
4%,
N
A\

: 16-gons, 10-gons, 8-gons, 6-gons, 4-gons.

=
Q.

Hyperplanes

Fundamental domain representative: ee® ceceee

01
11
21,42
52
31,62
41
51
10, 20

el I I B B

AN AN A AN YA AN VA AN
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EXAMPLE 4.28. The family €gg.

Affine arrangement:

Y,

</

8

N
<IN KT
N

d

A A A A

Made of: 16-gons, 8-gons, 6-gons, 4-gons.

11111 3

Hyperplanes

Fundamental domain representative: ee ccesse.

01

11

21

52

31

41

51
10, 20, 30

53
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EXAMPLE 4.29. The family g 7.

Affine arrangement:

Made of: 16-gons, 8-gons, 6-gons, 4-gons.

Hyperplanes

Fundamental domain representative: ee HYYYYS

01
11
32
21,42
52
31
41

10,20




4.2. SUMMARY OF CLASSIFICATION

EXAMPLE 4.30. The family €g11.

Affine arrangement:

Made of: 16-gons, 12-gons, 10-gons, 8-gons, 6-gons, 4-gons.

2 Hyperplanes

01
11,22
32
1 21,42, 63
52
31,62
41
10, 20,30

Fundamental domain representative: ee Ceccee.
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Part 2

Contracted Preprojective Algebras






CHAPTER 5

Classical Tilting Modules of Contracted Preprojective
Algebras

In this chapter we introduce contracted preprojective algebras Iy, and then describe
their classical tilting modules using the combinatorics of J-chambers from the previous
sections. These classical tilting modules have a partial order, which can be described
using the Coxeter combinatorics of Part 1. We exploit this in §5.7 to prove that Ty
carries the action of the fundamental group 7ty (Jas), which generalises the braiding of
spherical twists of Seidel-Thomas. More generally, we construct a representation of the
corresponding infinite groupoid.

5.1. Contracted Preprojective Algebras

Let Q = (Qo, Q1) be a quiver with underlying graph A, and @ the double quiver of
Q. Let IT be the (complete) preprojective algebra of A, that is the complete path algebra
of @, modulo the closure of the ideal generated by the element

Z (aa™ — a*a).

a€@Q
For each vertex i € A, we write e; for the corresponding idempotent of TT. Subsets
d € A can be identified with idempotents of TT which are sums of ey, ...,e,, and we use

the convention that
eg:i=1— Z €j.
j€d
DEFINITION 5.1. For any subset J C A, we call Iy := eglley the contracted preprojec-
tive algebra associated to .

The aim of this section is to understand, for every g C A, classical tilting I';-modules
in terms of elements of Cham(A, 7). For i € A, let I; := (1 — ¢e;) be the two-sided maximal
ideal of TT generated by 1 — e;. For w € Wa with reduced expression w = s;, ... s;,, recall
that the ideal I, of TT is defined by

I’w = Iil PN Ii('

This is independent of a choice of reduced expression | |. By convention I; = TI.
The aim of this chapter is to prove the following result.

THEOREM 5.2. Let A be a non-Dynkin graph without loops, and TT the preprojective
algebra of A. Let J be a strongly Dynkin subset of A.
(1) There is a map
Cham(A,J) — tilt Ty
given by (z,J) — eglzey.
(2) Wall crossing is compatible with mutation, that is, if w;(x,J) = (y,J’), then
Vi(eg_[xej) = egfyej/,
(3) The tilting order is the reflection of the weak order. Namely, if w;(x,J) = (y,J'),
then eglze; > eglyey if and only if x < y.
(4) If A is extended Dynkin, then the above map Cham(A,J) — tilt Ty is a bijection,
and the exchange graph of tilt Ty is connected.

59



60 5. CLASSICAL TILTING MODULES OF CONTRACTED PREPROJECTIVE ALGEBRAS

COROLLARY 5.3. Let A be a Dynkin graph, J C Aa, with contracted preprojective
algebra Ty. Then the following assertions hold.

(1) There exist bijective maps
ptilt Ty = Lj and C: tiltTy = Cham(Aux, 7).
Moreover, if T =T, ® --- & T, € tiltIy is basic with indecomposable T;, then

T1,...,T, is a basis of C(T) N Ly.
(2) If 0 ¢ J, then the maps above restrict to bijective maps

ptilt(Ty, Theg) = LZJ and C: tilt(ly, Theg) — Cham(A, 7).

In particular, # tilt(Ty, Trep) < co.
(3) Let T,U € tiltTy. Then T and U are mutation of each other if and only if C(T')
and C(U) are wall crossing of each other.

The proof will be split into a series of lemmas; parts (1), (2) and (3) will be proved
at the end of §5.4, and part (4) will be proved in §5.5. All results need properties of the
preprojective algebras I, and the ideals I,,, which we briefly review in the next subsection.

5.2. Reminder on Tilting Modules

Let A be a ring. For an A-module X, we write add X for the category of A-modules
which are direct summands of finite direct sums of copies of X.

DEFINITION 5.4. T € mod A is called tilting if the following are satisfied.

(1) There exists an exact sequence 0 — P; — Py — T — 0 with Py, P; € add A

(2) There exists an exact sequence 0 — A — T% — T! — 0 and T°, 7" € add T.

(3) Extly(T,T) = 0.
T is called partial tilting if it satisfies (1) and (3). Write ptilt A for the set of isomor-
phism classes of (not necessarily basic) partial tilting A-modules, and tilt A for the set of
isomorphism classes of basic tilting A-modules.

If T € tilt A, then it is very well-known that A and End(7T) is derived equivalent,
via the functor RHom 4 (T, —).

Let A be a noetherian ring, and X,Y € mod A. A morphism f: X' — Y is called a
right add X -approzimation of Y if X’ € add X and the map

f: Homp (X, X') — Homy (X,Y)

is surjective. It is called right minimal if each morphism ¢ : X’ — X' satisfying f = fg is
an automorphism. A right add X-approximation which is right minimal is called a minimal
right add X -approzimation. Dually, we define a (minimal) left add X -approzimation.’

It is basic that Y has a right (respectively, left) add X-approximation if and only
if Homa(X,Y) is finitely generated as an Enda(X)-module (respectively, End (Y")°P-
module). This condition is automatically satisfied if A is a module-finite algebra over
a commutative noetherian ring. More strongly, if A is a module-finite algebra over a
commutative noetherian complete local ring, then each Y € mod A has a minimal right
(respectively, left) add X-approximation.

The following result is basic (see e.g. [IR, 5.2]).

PROPOSITION 5.5. Let A be a ring and T = X ® U a tilting A-module.

(1) Suppose 0 — X LU 5 v 5 0ds an ezact sequence where f is a left add U-
approzimation of X, and proj.dim,Y < 1. ThenY @& U is a tilting A-module.

(2) Suppose 0 =Y — U’ Ly X 50 s an ezact sequence where f is a right add U-
approzimation of X. Then'Y @ U is a tilting A-module.

I right (respectively, left) add X-approximation is often called an add X -precover (respectively, add X -
preenvelope).
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If either case occurs, we write vx (T') := Y @ U, and call it the tilting mutation of T at
X. Now recall that A-modules X and Y are called additively equivalent if add X = addY
holds; we write tilt A for the set of additive equivalence classes of tilting A-modules. For a
ring A and T € tilt A, we assume that End 4(7) is semiperfect and that T =T, ®---® T,
for non-isomorphic indecomposable A-modules T;. In this case, we write

vi(T) = vp,(T).
One of the key properties of tilt A is that it has a partial order, defined by
T >U = FacT D FacU.

PROPOSITION 5.6. [AI, 2.25] Let A be a semiperfect ring. For T € tilt A, take a
minimal projective resolution 0 — P, — Py — T — 0. Then Py and P; do not have
non-zero common direct summands.

The following is due to Riedtmann—Schofield [RS] in the context of finite dimensional
algebras.
PROPOSITION 5.7. [IR, 4.2] Suppose that A is a module-finite algebra over a com-

mutative noetherian complete local ring. If T € tilt A, with indecomposable summand T;,
then there is at most one T! 2 T; such that (T/T;) & T! € tilt A.

We recall basic properties on tilting mutation which will be used later.

PRrROPOSITION 5.8. If T > U, then there exists exact sequences
0T —=U"=U"-0 and0 =Ty =Ty - U — 0
with U € addU and T; € add T.
PROPOSITION 5.9. Let A be a ring A and T,U € tilt A. Assume that Enda(T) is

semiperfect and that T =T, & --- BT, for non-isomorphic indecomposable A-modules T;.
If T > U, then there exists i € {1,...,n} such that v;(T) > U.

PRrOOF. This follows easily from [AT, 2.36] (see also | , 4.4]). O

5.3. Recap on Tilting on Preprojective Algebras

Throughout this subsection A will be a non-Dynkin graph without loops, and TT the
preprojective algebra of A. For an idempotent e € TT, set T, :=TT/(e).

The following singular 2-Calabi-Yau property of elle is known. Recall that if A is a
k-algebra, we write A" = A ®; A°P.

PropPOSITION 5.10. Suppose that A is a non-Dynkin graph without loops, and let e be
an idempotent of TT such that dimy(TT.) < co. There is a functorial isomorphism

RHom,p.(X,Y) =2 D RHom,n. (Y, X[2])
for all X € KP(projelle) and Y € DY, ;. (Mod elTe).
PRrROOF. It is well-known (e.g. [K2]) that TT is a 2-Calabi-Yau algebra, that is, 1T €
per IT* and RHompyyen (TT, TT*?) 22 TT[—2] in D(Mod TT¢*). Our assumption dimg(TT.) < oo
impies that elle is a singular 2-Calabi-Yau algebra, that is,
(5.3.A) RHom ryeen (elTe, (elTe)™) = TT[—2]

in D(Mod(eTTe)*™) by | , Remark 2.7], noting that the assumption (A2) there is not
used in the proof.

As is then standard, the assertion follows from (5.3.A) using an identical argument as
in the proof of [I, 4.1], where our assumption X € KP(proj elTe) replaces the smoothness
assumption of [K]. O

LEMMA 5.11. Suppose that A is a non-Dynkin graph without loops. For a subset
JCA, lete= Zjea ej =1—eg. Then for any i € g, the following statements hold.
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(1) Me—e,e; = Tle ecrre Si as T-modules.
(2) €ilTe—e, =2 S ®ere €T as TT°P-modules.

PROOF. We only prove (1), since (2) is the dual. Since S; = ell._.,e; as (elle)-
modules, it follows that

ﬂei
Mel(e — e;)e;

LEMMA 5.12. Suppose that A is a non-Dynkin graph without loops, and let e be an
idempotent of TT such that dimyg(TT.) < co.
(1) If X is a (elle)-submodule of ell with proj.dim.;,X < oo, then necessarily
proj.dim ., X < 1.
(2) I Y is a finite dimensional (elle)-module, then
(a) dimg(TTe Qerre ¥) < 0.
(b) Extl,(Y,ell) =0 fort =0,1.

TTe Rerre S’L = Tle ®er1e eﬂe—e,;ei = = ﬂe—eiei- O

PRrOOF. (2) For any simple (elle)-module S;, by 5.11 TTe ®crre S; = Te—e,e;, which
is finite dimensional since TT. is by assumption. Therefore, if Y is a finite dimensional
(eTTe)-module, then so is TTe ®.r. Y. Thus

L
RHom,p. (Y, elT) = RHomp (TTe ®erre Y, TT)
L
(by 5.10) = DRHomp (T, TTe Gerre Y[2])

L
= D(TTe ®cre Y)[—2].
Taking cohomology, it follows that for ¢t =0, 1

t _ pyt—2 L _ 20—t (17, & _
Exton . (Y, ell) = H = *(D(Me®cne Y)) = DH**(TTe @erre Y) = 0,

L
since H*(TTe ®cme Y) = 0 for all i > 0.
(1) Since proj.dim ., X < oo, we have

EXt%‘ine)OP (X’ Sl) Séo D Hom(EWE)Op (Si7 X) = 07

where the last equality holds by (2) since X is a submodule of ell. By the existence of a
minimal projective resolution of X, the result follows. O

We next recall some basic properties of the ideals I, of TI.

LEMMA 5.13. Suppose that A is a non-Dynkin graph without loops, and let x,y € Wx.
(1) If l(zy) = £(x) + L(y) holds, then we have I, = I, I,. Moreover
I, 2 Hom (I, Iy) and I, = Homrpeo (I, Iyy).

via a — (b ba) and a — (b — ab) respectively.

(2) L(six) = L(x) + 1 if and only if I;1, C I, if and only if Homp (I, S;) # 0 if and
only if BExty; (I, S;) = 0 if and only if BExty;(S;, I,) = 0.

(3) L(s;x) =€(x) — 1 if and only if LT, = I, if and only if Homp (I, S;) = 0 if and
only if Ext; (I, S;) # 0 if and only if Exti(S;, I,) # 0.

(4) If L(s;x) = L(x) — 1, then I5,, is mazimum among left ideals I of TI satisfying
the following condition.

o [ D I, and any composition factor of the TT-module 1/1, is S;.

ProOF. (1) This is shown in | , Part 1.
(2)(3) The first equivalence is | , II1.1.10]. The second one is clear. The third is
basic in tilting theory. The fourth follows from 5.10.
(4) Since £(s;(s;x)) = £(x) = L(s;x) + £(s;) holds, there is an isomorphism Iy, =
Homp(1;, I;), a — (b +— ba) by (1). Thus I;,, = {a € T | L,a € I,} holds, the as-
sertion follows. (]
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The following properties of I, , play a key role. Recalle; = 172jeJ ej = Zi¢J €;-

PROPOSITION 5.14. Suppose that A is a non-Dynkin graph without loops, and let
J CA. Forie J such that J + i is Dynkin, let j := v;1;(i) and xo := wyjwyi;.
(1) We have (es) = Ly, and (ej — €;) = Lu,,,-
(2) Iz, D (eg —e;) and (eg) Iy, = (eg — €;).
(3) I, is maximum among left ideals I of TT satisfying the following condition.
o I D (esj—e;) and S; is not a composition factor of the TT-module I /{e;—e;).
(4) I, is mazimum among right ideals I of T1 satisfying the following condition.
o I D (ey—e;), and furthermore S; is not a composition factor of the TI°P-
module I/{e; — ¢;).
(5) We have I (e; —e;) =Tl(es —e;) = (e —e;)(es —€;) and Iz e; = (eg — e;)e;.

PRrROOF. (1) This is shown in | , 111.3.5].
(2) Since {(wy) + (o) = l(Wrti),
1 5.13(1 1
<€J>I$0 (:) Lo Iz, :( )IU1J+i (:) (eg — €3).

(3) Applying 5.13(4) repeatedly, we know from (2) that any composition factor of the TT-
module I,,/{e; —e;) has a form Sy, for some k € J. In particular, S; is not a composition
factor of I,,/(e; — e;). Now for all k € J, there is an inequality
U(spxo) = L(wyts) — L(spwy) > L wyyi) — L(wy) = €(x0).

Thus Extf;(I,,,Sk) = 0 holds by 5.13(2). This implies the desired maximality.
(4) Since Iy, = Lu,,, w, holds by 1.2(3), the assertion is dual to (3).
(5) Since TT D I, D (e — e;), it follows that

Mey —e;) DIy, (es —e;) Dles—e)ey —e) =Tl(es —e;).
Thus the first assertion follows. Further by (4), (I5,/(es — €;))e; = 0 and so the second
assertion follows. O

5.4. Tilting Mutation for Contracted Preprojective Algebras
Again, throughout this section let A be a non-Dynkin graph without loops, and TT the

preprojective algebra of A. We require the following basic result.
PROPOSITION 5.15. Let e be an idempotent of TT with dimg(T1.) < oo, and x,y € Wa.
(1) If x <y, then there is an isomorphism
Homp (I, Iy) — Endere(ely, ely,), f—ef.
(2) There is an isomorphism of k-algebras
M — Endcre(ely), a— (-a).
(3) There are equivalences
el, ®n —: addpn TT — addene(ely),
Homryor (—, €l;): add Ty — addeme(el,,).
PrOOF. (1) For injectivity, suppose that f € Homp(1,,I,) satisfies ef = 0. Then
Im f is a finitely generated TT.-module, and thus dimg(Im f) < co by our assumption. It
follows that
Hompy(Im £,TT) = D Ext# (M, Tm f) = 0

by 5.10, so Homp(Im f, I,;) = 0 holds. Thus f = 0.
For surjectivity, let g € Endere(el,,ely). Consider the obvious multiplication map
my: Tle ®cme €I, — I, then there is an exact sequence

0 — Kermy — Te ®erre eIy —= I, — Cokmy — 0.
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Since emy: elle e €l, — el is an isomorphism, both Kerm, and Cokm, are TI.-
modules, and hence by our assumption are finite dimensional. Thus Homy(Kerm,,TT) =0
again by 5.10, which implies that Homp (Ker m, I,) = 0 and so Homp (Ker mg, Imm,) =
0.

Therefore 1 ® g € TTe ®crre Homyy(el,, el,) gives a commutative diagram

0— Kerm;, ——Tle®cne el ——Imm, ——0

N

0 — Kermy —— Tle ®crre eIy ——— Immy —— 0

for some h € Homy(Imm,,Imm,). Since Cokm, is a factor of I, and Extll-[(lx, I,)=0
by [ , I1.1.13] since x < y, it follows that Extll-[(ly, Cokm,) = 0. Hence by 5.10,

Extf(Cokmy, I,)) = D Ext(I,, Cokm,) = 0.

We can thus lift & to a morphism f € Homp (1, I,,) fitting into a commutative diagram

0— Imm, I, Cokm, — 0
I
0—Imm, I, Cokmy — 0

Now ef = eh = e(1l ® g) = g, as required.
(2) Since TT is non-Dynkin, by | , II1.1.6] there is an isomorphism of k-algebras
T — Endy (1) given by a — (-a). This gives an isomorphism of k-algebras

M— Endn(l;), aw— (-a).

Thus it is enough to show that the map Endr(I,) — Endere(el,) given by f — ef is an
isomorphism, which follows by (1).
(3) This is immediate from (2). O

COROLLARY 5.16. Let A be a non-Dynkin graph without loops, and suppose § C A
such that eg =1 — 3,4 e; satisfies dimy(Tle,) < co. Then for any J C A and for any
x € Wa, there is an isomorphism of k-algebras

Iy — Endr, (egler), a— (-a).

PROOF. By 5.15(2) there is an isomorphism TT — End., e, (eg1;) given by a — (-a).
Applying e;(—)es gives the result. O

As in the case e = 1, the following result plays an important role.

PROPOSITION 5.17. Suppose that A is a non-Dynkin graph without loops. For a subset
J C A andie€ J° assume that J +i is Dynkin, and let e = ey and j := vy4;(i). Then
there exists an exact sequence

0—>ﬂeii>P—><e—ei>ej—>0

of TM-modules with a left addT1(e — e;)-approzimation f.

PrROOF. Since TT is complete, let 0 — P’ Lp (e — e;)e; — 0 be a minimal
projective resolution of the I-module (e —e;)e;. Then P € addTI(e —e;) holds. Applying
Homp(—, TT) to the exact sequence

0—>P’i>P—>ﬂej—>ﬂe_eiej—>O
gives an exact sequence

(5.4.A) Homp (P, TT) £ Homp (P, TT) — Extl((e — e5)e;, TT) = 0
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of TT°P-modules. Since f: Homp (P, TT) — Homp (P’,TT) belongs to the radical and

5.10
(5.4.B) Exth({e — e;)ej, TT) = Ext? (Te_c,e;, TT) = D(Me_,ej) = eilTo_,
holds, it follows that P’ 2 TTe;. On the other hand, multiplying (5.4.B) by e — e; on the
right,
Extf((e —e;)ej, TI(e —e;)) & e;TTe_., (e — e;) = 0.
Hence multiplying (5.4.A) by e — e; on the right gives an exact sequence
Homp (P, TT(e — e;)) L Homp (P!, T(e — e;)) = 0,
showing that f is a left addTT(e — e;)-approximation. The assertions follow. O
We need the following vanishing property.
LEMMA 5.18. If x < ws;, then Tor) (I, TT._.,) = 0 holds.

PROOF. Our assumptions (x,J) € Cham(A,J) and = < zs; imply & < xsy for any
k€ J+i. By 5.13(2), we have Extiop (I, Sx) = 0 for any k € J + i and hence

Tor} (I, Sg) = D Exthon (I, Sk) = 0.
Since any composition factor of the TT-module TT._., has the form Sy for some k € J + 4,
we have Torj; (I, TT_.,) = 0. O

In the rest of this subsection, we will consider the following setup.

SETUP 5.19. Suppose that J C A, and (z,J) € Cham(A,J) with J strongly Dynkin.
For i € J¢, set
i = ypi(i), J = (T +14) =4 and (y,J') = (zwywyyi, J) = wi(z, J).
The following is our crucial observation.

PROPOSITION 5.20. Under Setup 5.19, assume that x < xs; and eglyey € tilt eglley.
Then vi(eglyes) = eglyey, and so in particular eglyey € tilt eglley.

PROOF. Recall that ej = 1‘2;@1 €j = D pee €k- Note that Tl is the preprojective
algebra of type J, where J is Dynkin by assumption, and thus TT., is finite dimensional.
Hence we can appeal to 5.17, under which applying ejI, @ (—) to the exact sequence

O%ﬂeiLP%(leeer%O
and using Tor|'(eg L., (e; — ei)e;) = Tory (eg(TT/1,), e, _c,e;) = 0 by dimension shifting
(twice), gives an exact sequence
(5.4.C) 0—eglye; ELEN egly, @ P — egl, @n (eg —e;)e; — 0.
Moreover the map 1 ® f is a left add(eyTT(e; — e;))-approximation by 5.15(3).
On the other hand, applying e5I, & (—) to the exact sequence
0— <6J — 61'>€j i) ﬂej — ﬂeJ_eiej — 0

gives an exact sequence

5.18 1

02" Tory (egly, e, —c,e5) — egl, @1 {eg — e;)e; 199, eglze;,

where Im(1® g) = egl,(es —e;)e; holds. Therefore egl, @ {ey —e;)e; = egly (e —e;)e;.
Hence proj.dim,, 1., (eg [z (es — €;)e;) is finite by the sequence (5.4.C), so it is at most
one by 5.12(1). By 5.5(1), it follows that
vi(eglye) = egly(e; —e;) B egly(es —e)e;
(by 5.14(5)) =eglp Ly, (€7 — e+ ¢€))
= egfxfw

Jwyy; €J
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Since our assumption z < xs; implies that © < y = zwywyy; by 1.22(2), by 5.13(1) we

see that egly Ly, w,,,e;r = eglye;. The assertion follows. O

With the above, we can now prove 5.2(1)—(3).

PROOF. (1) Since I; =TI, and eglyeg = eglley is clearly a tilting e5TTeg module, the
assertion follows inductively by using 5.20 and the wall crossing sequence given in 1.23(2).
(2) Certainly either z < y or > y by 1.22(2). Replacing (z,J) by (y,J’) as necessary,
we can assume that ¢ < y. In this case z < xs;, again by 1.22(2). The assertion then
follows from 5.20.

(3)(«) If z < y, then x < ms; by 1.22(2), and so by the proof of 5.20 there is an
isomorphism ezl ®r (€ — e;)e; = egl, (e — e;)e;. Consequently, (5.4.C) becomes

0— eglze; 1o/, egly, @ P — egl, (e —e;)e; — 0.

In passing from egl ey to v;(eglzes), we replace the summand ejl,e; with egl, (e —e;)e;.
As is standard, the approximation sequence above implies that ejl.e; > v;(egl e).

(=) By contrapositive, suppose that £ £ y. As in the proof of (2) above, since either
x < yory < zx holds, we deduce that y < z. Exactly the same reasoning as above,
now using 5.20 applied to y < ys;, gives egl e > vi(egly ey ) = eglyey. It follows that
eglze; # eglyes, as required. [l

5.5. The Extended Dynkin Setting

The proof of the last part of 5.2, namely 5.2(4), we involve a localization argument,
and this requires TT to have a large centre; this is why we will restrict to the extended
Dynkin setting. However, most of the preparatory results in this subsection hold more
generally.

The following is a mild generalization of 5.15(2).

LEMMA 5.21. Suppose that A is a non-Dynkin graph without loops, and let e be an
idempotent such that dimy T, < co. Then for any x € W, the map TT — Homerre (el elT)
given by a — (-a) is an isomorphism.

PROOF. Applying Homer.(—, elT) to 0 — el, — elT — e(TT/I,) — 0, gives an exact
sequence
Hom,rre (e(TT/1,,), eTT) — Homere (elT, elT) — Homerye (el elT) — Extly. (e(TT/1,.), eTT)

where the two outer spaces are zero by 5.12(2). Therefore there are isomorphisms

=

—_

5(2

M = Homere(elT, elT) = Homere(el, elT)

—~

and it is easy to check that the composition is given by a — (-a). ([l

LEMMA 5.22. Suppose that A is a non-Dynkin graph without loops, and let e be an
idempotent such that dimy T, < co. Then for any chain x1 > xo > ... in W,

(1) lim; dimg(TT/1,,) = oo,
(2) lim; dimg (e(TT/1;,)e) = co.
PROOF. (1) By the dual of 5.13(2) there is a strictly descending chain I,, 2 I, 2 ...,
proving the assertion.
(2) Assume that lim; dimy,(e(TT/1,,)e) < co. Then n:= ()5 (el,,e) satisfies n = el e for
i > 0 and hence dimg(elTe/n) < co. Using 5.12 twice,

dimg (TTe erre (elTe/n)) < oo and dimy (TTe ®erre (elTe/n) Rerre €lT) < 0.
But since there is a surjective map

TMe Qerre (elTe/n) Qerye elT — TelT/TTnTT,
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it follows that dimyg (TTeTT/TTnTT) < oo and hence dimy (TT/TTnTT) < co. But then since
I, O Tlel,,elT S TTnTT,
it follows that
dimy, (TT/I;,) < dimg(TT/TTalT) < oo
for all ¢ > 0, which contradicts lim; dimg (TT/1,,) = oo. O

The following is the key technical result of this subsection; we show below that all the
assumptions hold in the extended Dynkin case.

PROPOSITION 5.23. Let Ty = eglleg be a complete partial preprojective algebra of
non-Dynkin type, and J a strongly Dynkin subset of A. If a tilting Ty module T satisfies

I
(55A) dimy < 00,
ZfeHomrg (T,Ty) Im f
then there exists (z,J) € Cham(A,J) such that add T = add(egl,ey).

PROOF. To ease notation, set I' := I;. Assume that 7" does not satisfy the desired
condition. Using 5.9 repeatedly, there is an infinite sequence

r>7'>72%> ...
of tilting mutation such that 7% > T for all i > 0. By 5.2(2), there exists (z;,J%) €
Cham(A, d) such that T® = egl,,e;:. Then T% > T implies that
Z Im f C Z Im f 521 (egly,ei)(eyilleg) Cegl,,e5
feHomr (T,T") f€Homr (T%,T)

for all 7. Hence

r
dimy, > dimk(eg(ﬂ/fxi)eg)
(ZfEHomr(T,F) Im f)

for any ¢ > 0, which contradicts the fact lim; dimy (es(IT/I;,)es) = oo in 5.22. O

As final preparation before 5.2(4) we require the following, which is very well-known.

LEMMA 5.24. Let TT be a preprojective algebra of extended Dynkin type.

(1) The centre R of T1 is a simple singularity in dimension two.
(2) M= Endg(M) for some Cohen-Macaulay R-module M.
(3) T, is Morita equivalent to the local ring Ry, for all non-mazimal primes p of R.

PROOF. (1) and (2) are well-known | ], and (3) follows since TT, = Endg, (M,)
where M, is a free Ry-module for all non-maximal primes. O

With the above, we now prove 5.2(4).

PROOF. Again set I := eglleg, and consider €' := s C
fEHom

(T, Im f*
have to check that dimy C < oo.
To prove this, it suffices to show that C, = 0 holds for any non-maximal prime ideal
p of R. Since T, = egTl ey is Morita equivalent to the local ring R, by 5.24(3), any tilting
I',-module is a progenerator. Since tilting modules are preserved by localization, it follows
that T, a progenerator, and so certainly

M = > Im f

f€Homr, (Ty,Ty)

By 5.23, we only

holds. Since Homrp (7', T), = Homr, (7}, T}), this implies that C, = 0. O
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We can now use 5.2(4), in the extended Dynkin setting, to link tilting to chambers
via K-theory. As such, let A be ADE Dynkin, with affine version A,¢, and recall that ©
is a R-vector space with basis of with ¢ € A, and that L is the lattice in © generated
by «f with ¢ € Ay. There is a natural identification

B: Ko(projTl) = L,
given by TTe; — «F. The following is known.

THEOREM 5.25. [IR] There are natural bijections

(1) ptilt TT = Lt given by T — B[T).
(2) tiltTT = Cham(Auf) given by T=T1 & ... ® T, = > Roo(BT3]).

For any subset J of A, recall that @y is the subspace of © spanned by «! with i ¢ J,
and that Ly is the lattice in @5 generated by of with ¢ ¢ J. Set

L; = Lg N Cone(AafF,H).
As above, set eg =1 — Zjeg ej, and Iy = eglleg, where IT is the preprojective algebra of
type Asfr. There is a natural identification
Bg: Ko(projTy) = Lg,
given by Tye; — o . The following extends 5.25, and will be used later.

THEOREM 5.26. For any subset J of Aag, there are natural bijections
(1) ptilt Ty = L7 given by T — B4[T].
(2) tiltTy = Cham(Augr,d) given by T =T1 & ... & T, — > Roo(B3[T3]).

PROOF. By 5.25, there is an isomorphism B: Ko(projTl) = L given by Tle; — oc.
For any x € W and i € A, we have B[le;] = zx].

Every element of tilt Iy is isomorphic to egl ek for some (x, K) € Cham(Aag, J), using
5.2(4). Since eglyex = @,¢f ealoei, and Pyleglzei] = za holds via the commutative
diagram

Ko (proj 1) ——

| ]

Ko(projTy) — Ly

we see that [—] o 3 takes elements of tilt Ty to the primitive vectors defining the chambers
Cham(A, J). Thus (2) holds. Part (1) follows immediately, since by Bongartz completion,
every partial tilting module is the summand of a (not necessarily basic) tilting module. O

5.6. Orders, Paths and Basepoints

As notation, recall for a fixed J C A, by 5.2 there is a bijection
Cham(AafF, 3) — tilt Iy
given by (z,J) — egl ey, under which wall crossing corresponds to mutation.

ExaAMPLE 5.27. Continuing Example 1.11, for the As Dynkin diagram consider the
choice J = eee, viewed in affine A3 as J = ®e®, where green is the extended vertex. As
in 4.1, provided that we do not mutate at the extended vertex, then the wjw;i; wall
crossing rules are not effected by this additional vertex, so the calculation 1.11 can be
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transferred to describe part of the affine tiling. This is illustrated below.

(s1,000)
(1 ...) (317.:.) (17.:.)
515953,000
( 17208 ) (8132337 °
— o2e) (5253,%0®)
(s253,000)
(8182838182,..0) (s2835182,
(s1s2535152, ...)
°
(82838182,...) .:.)

It is easier to draw the left hand side, but to emphasise that we are working with the
preprojective algebra of the extended Dynkin quiver, we will always label the chambers
there with the extra green extended vertex. Doing this, the map Cham (A, d) — tilt Ty
restricted to Cham(A, d) then sends

(81’.:.) I
(1’.:.) Cogel g, Coge
(515253,°9°)
6-:01313253 Cole

[ J
(82837...) 6-.[ €Coo
(51528331327.:.) ®e® L S253 V%"
e.g.151525351526.3.

(52835152,°:°)

6.3.1525351 5o Cege

We now decompose the elements of tilt Ty into smaller pieces. For the case J = {), in
which case Iy = TI, this was achieved in [BIRS]; see also [SY, 2.13(2)]. Indeed, when
Jd = 0 then every tilting module has the form I, for some w € W, and any choice of
reduced expression w = s;, o...0s;, induces isomorphisms

Ly 21, ... 1, =1, ®fo...o®xl, .
The purpose of this section is to replicate the above decomposition in the setting of tilting
modules for an arbitrary I}.

Recall that, for any hyperplane arrangement, the length of a positive path is the
number of simple wall crossings that it traverses.

LEMMA 5.28. If B: (x1,d1) — (x2,d2) is a positive path in Cham(A.x,d), then the
following are equivalent.

(1) B is reduced, that is, it does not cross any hyperplane twice.
(2) B is minimal, that is, there is no path (r1,d1) — (x2,d2) of shorter length.

PROOF. This is a property of locally finite arrangements; see e.g. [S, Lemma 2]. O

LEMMA 5.29. Suppose that 3: (1,d) — (x,J) is a reduced path, and consider a simple
wall crossing w;: (x,J) — (y,J’). The following are equivalent
(1) w;o P is reduced.
(2) w;oP is minimal.
(3) z <.



70 5. CLASSICAL TILTING MODULES OF CONTRACTED PREPROJECTIVE ALGEBRAS

ProoF. Write H for the hyperplane separating (x, J) and (y, J'). Since f is reduced,
w; o B is not reduced if and only if B also crosses H.
(1)(2) is 5.28.
(3)<(1) By 5.2(3), y < « if and only if eglye; > egl ey . Passing to K-theory classes
using 5.26, an argument similar to | , B.4] shows that egl,e; > eglyey if and only
if the chamber (y,.J’) is on the same side of H as [Iy] € (1,d). Clearly this holds if and
only if w; o  crosses H at least twice, which holds if and only if 3 crosses H. By the top
paragraph of the proof, this holds if and only w; o  is not reduced. O

Consider a positive reduced path «: (1,J) — (z, J), and then decompose o into simple
wall crossings

ar (L,3) = (21,81) —2 (22,82) —2 ... 2 (241, dng) = (,0)  in Cham(Aug,d)

By 5.29, necessarily 1 < x2 < ... < Zpy1. Recall from 1.16 that every simple wall
crossing is of the form

Wi, (21,dt) = (Tewgwy, i, J¢ + 1t — g, 44, (3)).
Thus, under each wall crossing (z¢,d:) — (%141,J¢+1), we can obtain 441 from x; by post
multiplying by wywy, ;-
Consider now instead Cham(A,fr, J+), which is in bijection with tilt Iy,. From (1,d:) €
Cham(Aas, dt), we can still wall cross w;,, which now becomes

Wi, (1,d¢) = (wywy, 44,5 Jt41)  in Cham(Auq, ).

Applying 5.2 to J;, we obtain ey, I

wy g, it € tiltTy, for all t =1,...,n. For calibra-
tion, when J = (), all §; = (), and these tilting modules are precisely I, .

Summarising, for every decomposition of a reduced positive path « into simple wall
crossings,
Wi,

o (1,d) = (z1,d1) L, (x2,32) ks N LN (Tnt1,dnt1)

L L L
we can form eglwawﬂileg2 ®r, 632171,32%2“2 €gs OF,, - OF, egnlwanwamm €g,4.- As the
derived tensor of tilting modules, this is a tilting complex. The following is the main
result of this section, which in particular asserts that this tilting complex is in fact a

tilting module, and it is independent of the decomposition of «.

THEOREM 5.30. Suppose that Ay is extended Dynkin, and J is a subset of vertices.
Then for any decomposition of a positive reduced path «: (1,d) — (x,J) as above, there
are isomorphisms of bimodules

L L L
egl, e eg,1. e eg 1 e
d wywy d2 ®F32 d2 wy Wy ds ®F33 ®F3n Intwy wy o\ Cdntr
= 631w3w3+i1 €3, ®r32 632Iw32w32+i2 €33 ®r33 cee ®an 63nlw9nw3n+in [
~
= eHIIn+163n+1

PrROOF. We proceed by induction on the length of the path «, where in the case of
length one there is nothing to prove. Hence we can assume that the result is true for paths
of smaller length, and so it suffices to prove that there are bimodule isomorphisms

L ~ ~
ealﬂéneﬂn ®an eanl’wan'wgn+in €Jny1 — 631%6371 ®r3n eH"Iwgnwgan €Fny1 — 631$n+1€3n+1'

To ease notation, set A = egl, e3,, B = egnlwgnwgan €g,.1, S0 that we need to prove
there are bimodule isomorphisms
(56A) A ®|I"‘37LB =A ®I"3WB = eHIIn+1€5n+1'

As above, since « is reduced, by 5.29 necessarily ,, < x,41, and thus by 5.2(3) A > v, A.
Given this last fact, as is standard (see e.g. | , B.1]), it follows that

Vi, A2 A®Gq, (4) Vi, Bndry(A)
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as left Ty-modules, and further RHomr, (A4,v;, A) = Homr, (A, v;, A)
By 5.16, Endr,(A) = Ty, and by definition v; Endr,(A) = B. Note that under the

isomorphism in 5.16, the natural right action of I’;, on A by multiplication coincides with

the natural right action of Endr,(A) on A, and thus
‘VZ"A = A ®l]—:‘élnB

as left Ij-modules. In particular, the right hand side is only concentrated in degree zero,
so truncating in the category of bimodules establishes the first isomorphism in (5.6.A).

For the second bimodule isomorphism in (5.6.A), note first that

B=eg,I e
In g, wy, i, “Onia

(by 5'13(1>) = eHnHomﬂ(IIn’IIn+1)63n+1
(by 5'15(1)) = eHnHomrg (eﬂllnvealwn+1 )63n+1
= Homr, (eg 1z, €3, €512,11€5,41)

= Homr, (4,v;, A),
and so B = Homr, (A, v;, A) via b — (-b). Then, consider the composition of isomorphisms
A®r, B= A®r, Homr,(A,v;, A) = v; A
where the first given by a ® b +— a ® (-b) above, and the second is the derived adjunction

(after noting RHomr, (A, v;, A) = Homr, (A, v;, A) above), which is a ® f + f(a). The
composition is the isomorphism a ® b — ab, which is clearly a bimodule isomorphism. [

ExaAMPLE 5.31. Continuing the running Example 5.27, as a consequence of 5.30, the

following diagram commutes.
. ®|I:'H egls eoze
DP(T,e
®|I:...€.:.Iszsg €ege ( .'.)
‘ 3€8°_ DP(T;
®‘€363151<2 368 (Tg)
DP(Ne.) os®
o ) ®%3 €glsysz€e80
&Y L)
D o
[ 3 s
Py K
L Q’%/\ f:) 2
®r.=.€.:.13132 €eg é’(“o K
g DP(Ms.)
&
Db(ro:o) ®I[:.:‘5.gszlsgeo=v
\_/ Db(ro:o)
{]

L
BT, €ogol s Cog

5.7. The J-cone Groupoid
In this section we will re-interpret the above results in terms of Deligne groupoid
94, from §2.3, and show that iterated tilts form a representation of the groupoid. As
a corollary, we obtain an action of both the finite and affine J-pure braid group on the
derived category of contracted preprojective algebras.
We observed above that under each wall crossing w;(x,J1) — (y,J2), we can obtain

y from x; by post-multiplying by wy wy .
DEFINITION 5.32. Let A be ADE Dynkin, and consider J C A.

(1) The groupoid Gy,, is defined as follows. As objects, for every chamber (x,J) €
Cham(A,g, ), associate a vertex labelled DP(mod ;). The morphisms are gen-
erated by the simple wall crossings, where to w;(z,J1) = (y,J2) we associate the

Iw w, €75, _)'
'3, Wy y +i

equivalence RHomr, (eg,
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(2) The groupoid Gy is defined as follows. As objects, for every chamber (z,J) €
Cham(A, J), associate a vertex labelled DP(mod Ty). The morphisms are gener-
ated by the simple wall crossings, where to w;(z,J1) = (y,J2) we associate the

equivalence RHomr, (eg, ijlwglﬂ €7y, —)-

EXAMPLE 5.33. Continuing the example 2.17, the groupoids Gy, and Gy are obtained

from those pictures by replacing each dot with an appropriate derived category of a
contracted preprojective algebra, and each arrow by the equivalence described in 5.32.

REMARK 5.34. Even although by 1.20 simple wall crossing is an involution, the
functorial version is not an involution. Indeed, even in the case § = (), the functor
RHomy(/;, —) c RHomp (I;, —) =& RHomp (I; ®ﬁ I;,—) is not the identity, and is instead
a spherical twist. A generalisation of this, in special cases, is given in 10.2 below, however
the general description of monodromy in terms of spherical twists needs derived noncom-
mutative deformation theory in this setting; see [B1].

The following is the main result of this section.

THEOREM 5.35. Suppose that A is ADE Dynkin, and § C A. Then there are functors:

93 — Gg
93aff - Gaa«
given, in both cases, by sending a vertex corresponding to a chamber labelled (x,J) to
DP(modTy), and to w;(x,J1) = (y,J2) the equivalence RHomr, (ejlijleﬁieg27 -)

PrOOF. All the work has already been done. In either case, denote the functor above
by F. It suffices to show that the relations on G5 and Gy, in 2.16 are satisfied functorially
in Gy and Gy,,. By definition, in 2.13, it suffices to show that any positive two reduced
paths

&, B: (xvjl) - (yan)
give rise to isomorphic functors F(«) = F(f). This is just a relabelling trick. We can
change the labels of the chambers, indexing instead by Cham(Au,J1), such that both
« and B start at (1,J;), and end at (y’,J2) say. This reindexing does not effect the
wall crossing functors, and thus does not effect the functors F(«) or F(f3), which are
compositions of these. The result then follows immediately from 5.30, since both F'(«)
and F'(B) are isomorphic to the direct functor given by RHomr, (eg, Iyes,, —). O

Recall the notation 711 (J) and 7 (Ja) from 2.18. By passing to vertex groups, the
following is then immediate from 5.35.

COROLLARY 5.36. Suppose that A is ADE Dynkin, and J C A. Then there are group
homomorphisms such that the following diagram commutes.
7 (9) % Auteq DP(mod Ty)
7
/
701 (Jaff)

We will show in Part 4 that ¢ is faithful.



CHAPTER 6

Derived Classification: Dynkin Type

Throughout this chapter, let TT be the preprojective algebra of an ADE Dynkin quiver,
and for a fixed subset J C A, consider the corresponding contracted preprojective algebra
Iy := e4lles. In this setting, both TT and Iy are finite dimensional algebras.

In this setting, since IT is self-injective, the only modules of finite projective dimension
are free. Thus TT has no classical tilting modules, and the results of the previous chapter
do not apply. The algebra TT does, however, have both silting and tilting complexes, and
its derived equivalence class is understood [ ]

In this chapter we describe two-term silting and tilting complexes for Iy, under the
assumption that ((J) = J. This assumption is needed to ensure that Ty is also self-
injective (see 6.2 below). We establish that various silting and tilting complexes for Ty
can be described in terms of the intersection arrangements from Chapter 1 and in the
process, intersection arrangements from non-ADE Dynkin diagrams naturally arise. This
gives some justification to the level of generality developed in Part 1. One of the main
consequences of this chapter is that in the case ((J) = J, the algebra I}y is tilting-discrete,
its derived equivalence class is finite, and we give a complete classification of all basic
members of this class.

6.1. Silting, Tilting and Folding

This chapter, and Chapter 7, will be concerned with properties of silting and tilting
complexes. We recall the following, mainly to set notation.

DEFINITION 6.1. Let A be aring, P=... = P_; — Py — P, — ... € KP(proj A).
(1) P is called two-term if P; =0 for all ¢ # —1,0.
(2) P is called silting if Homgo (o5 4y (P, P[i]) = 0 for all i > 0.
(3) P is called tilting if Homgo (o5 4y (P, Pli]) = 0 for all i # 0.
When proj A is Krull-Schmidt, We write tilt’'A for the set of basic tilting complexes,

2silt A for the set of basic two-term silting complexes, and 2tilt A for the set of basic
two-term tilting complexes.

It is a classical fact that the preprojective algebra TT of Dynkin type is self-injective
finite dimensional algebra; this corresponds to the J = () case of the following. Recall the
notation 1o =t from 1.2, which denotes the Dynkin involution.

LEMMA 6.2. Let A be ADE Dynkin and § C A. Then Ty is self-injective if and only
Zf A (3) = 3

PROOF. Ty is self-injective if and only if the Nakayama functor N = D Homr, (—,Ty)
preserves projectives. These are precisely the ejlTe; with i € A\J. Now

N(egTle;) = D Home, e, (egTTes, egTleg) = D Homyy(TTe;, Teg) = egD Homp (e, TT).

Since D Hompy(—, TT) is the Nakayama functor on TT, and 1, is the Nakayama permutation,
D Homyy(TTe;, TT) = Tle, ;). Hence N(eglTe;) = eglle,;), so N preserves projectives if and
only if 1(i) € A\J for all i € A\J. Clearly this is equivalent to (J) = J. O
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In what follows, we will largely restrict to the case ((J) = J. Now recall that the
non-ADE Dynkin diagrams B,, and F} are defined to be:

B, oio— —0—o0 (n>1)
Fy o—oio—o

Given any ADE Dynkin digram A, we now fold the diagram under the action of the
Dynkin involution to obtain the folded graph A¢, defined using the following table.

A Asn1 Az Doy Dopyr Eg Er Eg
Af Bn Bn DQn BQn F4 E7 ES

There is a natural map A — A¢ which induces a natural map
{dCAYd) =3} = {XC A},
which, to set notation, sends J — Js.
EXAMPLE 6.3. If J = ®®®, then J; = eeee, viewed as a subset of Ay = Bjy.

These foldings arise naturally via the subgroup (Wa)' = {w € Wx | ((w) = w}, where
recall from 1.2 that ((w) = wawwa. Indeed, it is easy to show that (Wa)' = (t; | i € Ag),
where

s, ifi=1(i)
ti = SiS.ss: if there is an edge i — 1(7)
58,y  if there is no edge i — (7),

and that ¢: Wa, — (Wa)" as groups, via ¢(s;) = t; (see e.g. [ , 3.1]). Furthermore,
given any J C A such that (J) = J, the following diagram commutes

&
Wa, (Wa)*

(6.1.A) ] ; ]
Wy ——— (Wy)*

~

To apply this to intersection arrangements, consider the fixed subset

Cham(A, g)" := {(z,J) € Cham(A,3) | (=, ) = (t(w),(]))}.

6.2. Main Results, and Derived Classification

The aim of this section is to prove the following result. The first part generalises
[M, ], and the other parts | ], who all considered the case J = 0.

THEOREM 6.4. Let A be ADE, and § C A with (J) = 3. Then the following hold.

(1) There are bijections

Cham(A,J) «——— 25iltTy

J J

Cham(A,J)t «—— 2tilt Ty.

(2) The endomorphism algebra of any irreducible left tilting mutation of Ty is iso-
morphic to Ty for some J C A such that there exists (x,J) € Cham(A,J)'. In
particular, KP(projTy) is tilting-discrete.

(3) The derived and Morita equivalence classes of Ty coincide. The basic algebras in
this class are precisely {Ty | J C A, 3 (x,J) € Cham(A,J)'}.
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Part (1) follows from 6.7 and 6.8 below. Parts (2) and (3) are 6.12, 6.13 and 6.14
respectively.

To approach these problems, our main main new insight is to leverage the fact that
the natural restriction of scalars functor

F: DP(modTy) — DP(mod Ay)

is spherical, where Ay is the contracted preprojective algebra of extended Dynkin type
(see below). Mapping the tilting theory for Ay, established in 5.2, under the left adjoint
of F' will rather easily establish the properties for the silting and tilting modules for T7y.
Even in the case J = (, this is a considerable simplification.

Since we will be passing to the extended Dynkin diagram, to avoid a proliferation of
tildes, or affs, we now ease notation.

SETUP 6.5. For the remainder of this chapter, let A be ADE Dynkin, and consider
a subset J C A, satisfying ((J) = J. The preprojective algebra associated to A will be
written TT, and the preprojective algebra associated to A, will be written A. Viewing
d C A, we will write

Iy = eylley,

which is a finite dimensional algebra. Viewing J as a subset of A,¢, we will write
Ag = eg/\ey,

which is 2-sCY. Denote the extended vertex by 0, so that Iy = Ay /{eq).

6.2.1. Two-term silting and tilting. By 5.2, all tiling Aj-modules are of the form
eglyey for (xz,J) € Cham(A.,d). Consider again the natural inclusion

Y. Cham(A,d) — Cham (A, J).

We will be interested in those tilting Aj-modules that arise from the image of W, which
we then push down to Iy as follows.

DEFINITION 6.6. Under Setup 6.5, for (z,J) € ImV¥ define S, ; to be
— L
Sz’.] = rg ®/\3 631956].

Since proj.dimy, eglze; < 1, the Sy ; are clearly two-term complexes of projective
I3-modules. We will show in 6.7 below, using the crucial assumption ((J) = g, that the
Sg,; are precisely the two-term silting complexes for I}.

Since (J) = J, the kernel of the natural homomorphism Aj — Ty is given by
egluw,waeg, by 1.20(3). Hence, it follows that

(6.2.A) 0— eglyywaeg = Ng—Tg =0
is a short exact sequence of Ag-bimodules.
LEMMA 6.7. Under Setup 6.5, the map
Cham(A, J) — 2silt Ty
sending (z, J) — Sg.y is a bijection.

PRrROOF. We first claim that S, ; € 2silt Ty for (z,J) € ImY¥. Since they are clearly
two-term complexes of projectives, we just need to show that Homr, (S, s, S,7[1]) = 0.
To ease notation write I = egly,w,eg from (6.2.A), and a = egle;. Applying
- ®5‘\3 a to (6.2.A) gives a triangle
I®}‘\ga—>a—>Fg®£‘\ﬂa
of (left) Ag-modules. Applying Homn, (a, —) then gives an exact sequence

0 — Homn, (a, Ty ®}‘\8 a[l]) = Homa, (a, I ®k3 al2]) — 0,



76 6. DERIVED CLASSIFICATION: DYNKIN TYPE

where we have used Exti\g (a,a) =0 for i > 0 since a € tilt Ay. Hence
Homry, (Sy, 7, 5z,7[1]) = Homr, (I ®£‘\3 a,ly ®k3 a[l])
(ext/res of scalars) = Homnp, (a,Ty ®k3 all])
= Homnp, (a,I®}‘\g al2]).

We claim that this last group is zero. Indeed, we can compute this group by replacing a
by its projective resolution (which is a complex in degrees —1 and 0), and computing the
Hom space in the homotopy category. However, I ®RJ a[2] is given by applying I ®a, — to
the projective resolution of a and shifting, hence is a complex in degrees —3 and —2. Thus
there can be no morphisms in the homotopy category, and so Homr, (S,, s, Sz, s[1]) = 0.
It follows that S, ; € 2siltTy.

To prove the bijection, we use g-vectors. By 5.3(2), for (z,J) € ImV¥, each egl e
has Py as a summand, and the g-vectors of the other summands describe the intersection
arrangement Cone(A,J). Since tensoring Iy ®a, — sends Py +— 0, but maps the other
projective Ag-modules to projective I'y-modules, it is clear that the g-vectors of the S, ;
still describe the (finite) intersection arrangement Cone(A,J). In particular, the open
chambers of the associated S, ; are the chambers of the finite hyperplane arrangement,
so we deduce the following.

(1) The open chambers for the varying S, ; do not overlap. Hence the S, ; are
mutually non-isomorphic, and so (z, J) — S, j is injective.

(2) The closure of the union of the all the open chambers is the whole vector space.
As is now standard | ], this implies that S, ; are all elements of 2silt Iy, and
thus (z,J) — S, is surjective. O

It is also possible to describe explicitly which of the S, ; are tilting. Recall that N is
the Nakayama functor on Ty.

PROPOSITION 6.8. Under Setup 6.5, for (x,J) € ImV¥, the following are equivalent.
(1) Sw)J € 2tilt Ty.
(2) N(Sl,J) = S$,J-
(3) (x,J) € Cham(A, J)" = Cham(Ay¢, Js).
4) (z) ==.

PrOOF. (1)=(2) It is a general fact that a basic silting object is tilting iff it is fixed
by the Nakayama functor, see e.g. [A, A.4].
(2)<(3). As already observed in 6.2, N(eglTe;) = eglle,(;), and so N acts on Ko(projly)
via L. Since two-term silting complexes are determined by their g-vectors,

N(Sz,7) =2 85,50 ©N(C(Sz,5)) ZC(Ss,5) & (z(Cy)) =2(Cy) & Uz, ]) = (z,]).

This holds iff (z, J) € Cham(A,J)".

(3)=(4) is clear, and (4)=-(3) holds since both (z,J) and (z,(J)) = ((z),(J)) belong
to Cham(A,d), and by 1.14(1) any chamber (y, K) is determined by y. Hence J = ((J),
and so (z,J) € Cham(A,J)*. O

6.2.2. Endomorphism rings of two-term tilting complexes. Leading up to
a proof of 6.4(2), we need to control the endomorphism rings of the two-term tilting
complexes established in 6.8. This requires the following two results. The first is a
general fact, since given any ring homomorphism p: A — B we can consider the following
four functors Mod A — Mod A, and natural transformations between them

14— Homp(B,B ®4 —)

(6.2.4) j |-
pe

A®y— —— BRa,—
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All morphisms are given by the obvious maps, and by inspection of these maps the diagram
commutes. Furthermore, the top map 1 is the unit of the restriction and extension of
scalars adjunction. The leftmost functors are exact, whilst the rightmost functors are
right exact, so we can form their left derived functors. The following is standard.

LEMMA 6.9. Given a ring homomorphism A — B, consider the derived restriction
and extension of scalars adjunction, with unit . Then the following diagram commutes

14— Homp(B, B &Y% —)

1

A®p— —— BeL —

PROOF. The commutativity follows formally from the commutativity of (6.2.A), to-
gether with standard properties of derived functors. (I

Now, under Setup 6.5 consider a two-term tilting complex S, ;. By 6.8, necessarily
(x,J) € Cham(A,J)', and so (J) = J. Thus, on one hand we have I := egly,w, €5 and
the short exact sequence of Ag-bimodules (6.2.A), which we now write as
(6.2.B) 0=T5 A 5Ty=0

On the other hand, we have I’ := eI, ey and a short exact sequence of A j-bimodules

JWA
(6.2.C) 01 S A; =Ty —0.

In both cases, i denotes the inclusion map. In the following, to again ease notation, for
any K C A, set @x = @A -

PROPOSITION 6.10. Under Setup 6.5, for (z,J) € Cham(A,J)" consider a = egle;.
Then there is an isomorphism of Ag-Aj-bimodules I ®5a ~ a ®; I' such that

i®l

I®ja Ng®ga
J 1i J
Q®JI/ © a®y Ny

commutes, where the right hand map sw sends 1 ® a — a® 1.

ProOOF. This is just a repeated use of 5.30. Set y := z~twywa = wywazr™!, and

consider b := el ey € tilt T';. Since (x, J) € Cham(A, J), and the longest positive minimal
path (1,J) — (wgwa,d) factors into positive minimal paths

(173) - (CE,J) - (ng.)A,g),
it follows from the proof of 5.30 that there is a bimodule isomorphism
a®;b> 1

which sends f ® g — fg. Write p for this multiplication map.
Similarly, since (y,d) = (wyjwaz™1,J) € Cham(A,J), and the longest positive minimal
path (1,J) — (y,wywa, J) factors into positive minimal paths

(]-7 ‘]) - (yag) - (waAv J)v
it follows from the proof of 5.30 that there is a bimodule isomorphism
b ®g a =T

which sends f ® g — fg. Again, write pu for this multiplication map.
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Consider also the multiplication maps p: b ®5a¢ — Ay and p: a ® 5 b — Ay, then
it is clear by inspection that the top and the bottom squares in the following diagram
commute:

I®ja ANy ®ga
pel
a®Jb®3a4>/\3®3a

stw
1®

a®Jb®ga4u>a®J/\J

(1®JI/

a®y Ay

The middle square also commutes, by inspection. Composing horizontal maps from top
to bottom gives the required statement. [

THEOREM 6.11. Under Setup 6.5, if (z,J) € Cham(A,J)" then there is an isomor-
phism of rings Endr, (S,7) = T;.

PROOF. Asin 6.10, set a = egl,e;. We first claim that RHomr, (a, I ®5a) = I'. This
follows since

(by 6.10) RHomr, (a,I ®3 a) = RHomr, (a,a @ I')
(see e.g. [IR, 2.10(2)]) =~ RHomn, (a,a) @ I’
(since a € tilt Ay) >~

In particular, Homr, (a, I ®j a[1]) = 0. Further, since S, ; is tilting by 6.8, by extension
and restriction of scalars we have

Homr, (a, Ty ®:5’ a[—1]) = Homr, (Sz,7, Sz,7[—1]) = 0.

Using these facts, first applying — ®§4 a to (6.2.B), then applying Homr, (a, —) gives a
short exact sequence

0 — Homr, (a, I ®3 a) — Homr, (a, Ay ®3 a) — Homr, (a,Ty @5 a) — 0.

Now consider the ring homomorphism p in (6.2.B). Set F' = Homr, (I3, —) to be restriction
of scalars, with left adjoint FT4 = T} ®}\g —. Dropping Homr, from the notation, we
claim that the following diagram commutes. Indeed, the top square follows from standard
properties of adjunctions, and the second square follows from 6.9. The third square is
6.10, and the bottom square is clear; again RHomn, (a,a ® d) = RHoma,(a,a) ® d = d
since a is tilting.



6.2. MAIN RESULTS, AND DERIVED CLASSIFICATION 79

LA

(a,a) SN (FAa, FM%a)
[adj
(a,a) ° (a, FF*Aq)

(i®l)o (p®1)o
0 —— (0,1 @5 a) —— (a,Ag @5 0) —— (a,Ty @ a) —— 0

~ ‘ ~ | SWOo

(1®i)o
(a,a®;1") —— (a,a®,; Ay)

N‘ -

I Ay

Since unadorned maps are the obvious ones, the middle vertical maps compose to give
a map Ay — (a,a) sending
A= (a—a@A=aA®1) = (a— 1®al) = (a— al),
which is clearly a ring homomorphism. Hence, composing with the top right ring homo-

morphism given by F'A, we obtain a surjective ring homomorphism A; — (F LAg F LAa),
with kernel I’. It follows that Endr, (F**a) = A;/I' 2T, using (6.2.C). O

6.2.3. Tilting discrete and derived classification. In this subsection we finally
prove 6.4(2) and 6.4(3). In particular, we show that under Setup 6.5, the number of basic
algebras in the derived equivalence class of I} is finite, and has a very precise description.

LEMMA 6.12. Under Setup 6.5, the endomorphism algebra of any irreducible left tilting
mutation of Ty is isomorphic to Ty for some J C A such that 3 (z,J) € Cham(A,J)".

Proor. This is a simple induction on the length of T' = ) ... w)ly, where each
() is an irreducible tilting mutation, with the case ¢ = 1 being 6.11. Hence we can
assume that 7" = p_qy ... w)ly satisfies Endr, (T") = Tk for some K C A such that
3(z,K) € Cham(A,J)". But since 7" is tilting, there exists an equivalence
K"(projTy) = K°(projIx)
sending T” — T'x. Since equivalences preserve mutation, necessarily
Endr, (T) = Endr, (H(t)T/) = EndrK(u(t)l“K).

Applying 6.11 to T, it follows that Endr, (u k) = Ty for some J such that 3 (y,J) €
Cham(A, K)'. Now Wyzy = z2Wiy = zyWy, and the element zy(Cy) € Cone(A, J) is fixed
by t. Hence, under the bijection in 1.12, the corresponding (z,J) € Cham(A,J) is fixed
by (, and the statement follows. O

PROPOSITION 6.13. Under Setup 6.5, KP(projTy) is tilting-discrete.

Proor. With 6.12 in hand, this is quite elementary. We just need to check [ ,
2.11), namely {U € tilt'Ty | T > U > T[1]} is a finite set for all T obtained from Ty by
iterated irreducible tilting mutation. Choose such a T', then by 6.12 Endr, (T') = Iy say.
Since T is tilting, there exists an equivalence

K" (projTy) = K"(projIy)
sending T+ T';. Thus
{U S tﬂt'rg | T>U> T[].]} = {V € tilt' Ty | I, >V > FJ[l]}
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But this is precisely the set of two-term tilting complexes for Ty, which is finite by 6.8. O
The following is the main result of this chapter.

COROLLARY 6.14. Under Setup 6.5, there are only finitely many basic algebras derived
equivalent to Ty, and these are precisely {Ty | J C A, 3 (x,J) € Cham(A,J)'}.

PrOOF. Let T € tilt'Ty. By [AI, 2.4] there exists £ > 0 such that Iy > T'[(]. Thus,
since Ty is tilting discrete by 6.13, T'[(] can be obtained from Ty by iterated irreducible
left mutation [A, 3.5]. Now Endr,(7") = Endr,(T[¢]), and by 6.12 this is isomorphic to
Iy for some J C A such that 3 (z, J) € Cham(A,J)". That all such Iy arise in the derived
equivalence class follows from 6.8 and 6.11. O



CHAPTER 7

Derived Classification: Extended Dynkin Type

Given an extended ADE Dynkin diagram A,¢, write TT for the associated preprojective
algebra. For any subset J C A,g, consider the corresponding contracted preprojective
algebra Iy = eglleg, where recall that eg := 1 — ), _5e;. For our geometric applications,
we will be most interested in the case when J C A, which we then view as a subset of Ay
and form Iy = eglTey.

The following asserts that the derived equivalence classification of contracted prepro-
jective algebras is entirely combinatorial, and also that the derived equivalence class does
not contain anything unexpected.

CONJECTURE 7.1. Suppose that 3 C Ay where Ay is extended ADE Dynkin, and let
A be a basic ring. Then A is derived equivalent to Ty if and only if there exists 7' C Ay
such that A = Ty, and furthermore J and J' are iterated combinatorial mutation of each
other, up to symmetries of A -

The direction (<=) is clear, since wall crossing gives derived equivalences (§5.6), as do
isomorphisms. The content in the conjecture is the (=) direction, where amongst other
things we need to produce invariants that distinguish between different mutation classes.

In this chapter we prove the conjecture in all cases, except when A = D,, with n > 8,
due to its combinatorial complexity. Our main result is 7.21, which also describes which
invariants are needed in order to distinguish the derived equivalence classes; this varies,
according to Dynkin type. Geometric applications are given later, in 10.8.

The above shows that the endomorphism rings of all tilting complexes for I are well
behaved. For applications to stability manifolds and autoequivalences, it is in fact more
important to show that the tilting complexes themselves are controlled, and behave well.
We then make partial progress towards this in §7.4, where in 7.24 we show that the 2-term
tilting complexes for Iy are also controlled by Coxeter-style data, in the form of the infinite
hyperplane arrangement Wy from 2.8.

7.1. Derived Invariants

As in Chapter 3, in what follows we depict vertices in J by e. It will be convenient
to colour the other vertices red, which are precisely the vertices in Au\J. The ‘up to
symmetries’ part of 7.1 is important: the two choices of J given by

°
°
eee and eeeee

are not in the same mutation class, but one can be obtained from the other via a symmetry.
The corresponding contracted preprojective algebras are isomorphic, so in particular they
are derived equivalent.

REMARK 7.2. As calibration, the case where all vertices are red corresponds to [} =
T, and thus the minimal resolution. The case where only the extended vertex is red
corresponds to Iy = JR/g, and thus the singularity C?/G.

DEFINITION 7.3. Define ~ by J; ~ Js if and only if J; can be obtained from J5 by a
finite sequence of mutation moves and symmetries of the graph.

(1) The resulting equivalence classes are called the symmetric mutation classes.

81
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(2) A symmetric mutation class is called geometric if there is some element of the
class in which the extended node is red.

We approach 7.1 by first associating a triple of invariants to each contracted preprojec-
tive algebra 7. This will consist of the type of the extended Dynkin diagram to which J is a
subset, the cotype defined below, and the Grothendieck group Go(Ty) := Ko(DP(mod I7y)).
We will see below that all three of these invariants are preserved under derived equiv-
alence, and furthermore the triple distinguishes the derived equivalence classes when
A € {A,, D4, D5, Dg, Eg, Eg}. In other cases, we will need slightly finer invariants.

DEFINITION 7.4. We say that the partial preprojective algebra Iy = eglTes has cotype
A' ... A™ if the full subgraph given by the vertices in J is a disjoint union of A, ... A™.

EXAMPLE 7.5. J=e eeee has cotype A As.

It is clear that the type and cotype are constant over all members of a given symmetric
mutation class. The Grothendieck group Gy(Ty) is also an invariant of the symmetric
mutation class, since it is invariant under derived equivalences. Our next result will show
that in fact all three invariants can be extracted from just the derived equivalence class.
This requires the following preparation, where Dgg(I5) = DP(mod Iy)/ KP(proj Iy).

PROPOSITION 7.6. For a subset J C Ay, the following conditions hold.

(1) The centre Z(Ty) is isomorphic to a Kleinian singularity, and the type of J equals
the type of this Kleinian singularity.
(2) The AR quiver of Dsg(Iy) is the double quiver of the cotype graph.

In particular, both the type and cotype can be obtained from the derived equivalence class.
PRrROOF. (1) It is clear that Z(Ty) = Z(IT), and hence by 5.24 is isomorphic to a

Kleinian singularity of the given type.

(2) By 5.24, we can write IT 2 Endg (M) with M = &

setting Mg = @ZEAQ“\H M;, it follows that

Fg = egﬂeg = EndR(Mj).

ey Mi- Since eg :=1— 3.5 e,

Since dim R = 2, reflexive equivalence is Homp(Mj, —): CM R = CM Iy, where by
CM I3 we mean those l5-modules that are maximal Cohen—Macaulay as an R-module.
Clearly, this equivalence sends add My to proj Iy, and so induces an equivalence

(CM R)/[My] = CMTy

where the Hom-spaces on the left hand side are modulo those morphisms that factor
through add My, and the Hom-spaces on the right hand side are modulo those morphisms
that factor through proj[ly. Furthermore, since Iy & Endg(My) is 2-sCY by [IW, 2.22],
it follows that CM modules in the sense above are precisely the Gorenstein projective
modules. Consequently, (CM R)/[Mj] ~ CM Ty ~ Dgy(Iy), and so the result follows. [

COROLLARY 7.7. The type, cotype and Grothendieck groups are derived invariants.

PROOF. The type is a derived invariant by 7.6(1), since derived equivalences preserve
the centre | , 9.2]. Cotype is a derived invariant by 7.6(2), since derived equivalences
induce equivalences of singularity categories. The fact that the Grothendieck group is a
derived invariant is clear. O

The following will be used to calculate the Grothendieck group Go(Iy), which since Iy
has infinite projective dimension, is a priori difficult. The point is that IT has finite global
dimension, and all its simples have prescribed projective resolutions.

PROPOSITION 7.8. For J C Aug, the Grothendieck group Go(Ty) is isomorphic to
the free abelian group with basis {P; | i € Asr}, modulo the subgroup generated by the
projective resolution of the simple TT-modules 8; with i € J.



7.1. DERIVED INVARIANTS 83

ProOF. For a partial preprojective algebra Iy = eglleg, the standard idempotent
recollement induces equivalences
D(mod Ty) 2 D*(mod IT) /DY, (1 (1 ey (mod TT)
= K(proj M) /Dy oa(rr/(1—e ) (mod IT).
Since 1 —eg = ;4 ¢€;, it follows that the Grothendieck group Go(Iy) = Ko (DP(mod Ty))

is the quotient of the free abelian group with basis {P; | i € Ay} modulo the subgroup
generated by the projective resolution of the simple TT-modules §; with ¢ € . ([l

The following illustrates how to use 7.8, and also demonstrates that the type and
cotype alone are not enough to distinguish symmetric mutation classes.

COROLLARY 7.9. Consider J; = °e und Jy = ®2  Both have type extended Dy,
and cotype As. However, Ty, and Ty, are not derived equivalent, since Go(Ty,) 2 Go(Ty,).

PROOF. Label the vertices 134§ so that J; = {4,5,6} and J, = {3,4,5}. By 7.8,

On the other hand, again by 7.8,

-1-12 -1 0 0
GO(ng) = Z6/<S3,S4,S5> = ZG/ < 8 8 —01 31 —21 —01) >~ 73,
Since the Grothendieck groups differ, I'5, and Iy, are not derived equivalent. O

It turns out that the triple (type, cotype, Go) also does not distinguish symmetric
mutation classes, as 7.11 below demonstrates. In this case, we will use the following
more refined invariants. Any derived equivalence DP(modTy) = DP(modTy) preserves
the subcategory of perfect complexes, and also the subcategory of compactly supported
objects, so restricts to give the following commutative diagrams

DP(mod ;) —— DP(mod Ty) DP(mod Iy) —— DP(mod Ty)
J J J J
KP(proj Iy) ——— KP(proj Ty) DP, (mod Ty) —— D& (mod Ty)

The inclusion DY, (mod Ty) < DP(mod Ty) gives rise to a homomorphism
Ko(Dpy(modTy)) — Go(Ty)

sending [8] — [8], and let Hy denote the image. Writing Go(Iy) = (D;ca,, Z[Pi])/R by
7.8, then Hj is the subgroup generated by {[S;] + R | i € A.\T}.
Similarly, the inclusion KP(projTy) < DP(modTy) induces a homomorphism
Ko(KP(projTy)) — Go(Ty)

sending [P] — [P]. Let Ky denote the image, so that Ky is the subgroup of Gg(Iy)
generated by {[P;] + R | i € Ar\T}.
LEMMA 7.10. The subgroups Hy, Ky and Hy+ Ky of Go(Ty) are all derived invariants.

PROOF. The first two statements are a consequence of the above commutative dia-
grams. The final statement follows from the first two. O

COROLLARY 7.11. Consider J = ¢°®®e and 7 = ¢®®®e. Both have type extended
Dg, cotype (A1)3, and Grothendieck group Z* ©7./27. However, Ty and Ty are not derived
equivalent, since Hy + Ky =2 Z* whilst Hy + Ky = 7* © /27, so Hy + Kg % Hy + Ky.
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PROOF. Label the vertices $234¢ so that J = {1,3,6} and 3 = {2,5,6}. The type

is extended Dg, and cotype of both J and J’ is clearly (A;)3. Further, using 7.8
~ T - 2:109000)§4
Go(Iy) =27 /(1 8,86) =27/ (0 =12 <1000 ) = 74 & (2/22).
Inside this group,

[-12 -10 0 0 —1] [0100000]
/10 0 -12 -1-10] _/[oo001000]
H3_<[0 00 -12 0 0]> and K3_<[0000100]>

[0-10 0 0 0 2] (0000001 ]

By elementary transformations of integer matrices, Hy + K5 = Z*. The verifications that
Hy + Kg = 7Z* © 7/27 is very similar. O

7.2. Symmetric Mutation Classes

In this section we determine the symmetric equivalence classes for all extended ADE
Dynkin diagrams (except D,, with n > 8), since this will be required for the derived
equivalence classification in the next section. We keep the notation that elements in
J C (A)af are drawn black, the other vertices are drawn red, and recall that we mutate at
the red vertices.

We begin with Type A, which is elementary. By convention, Ay = (.

LEMMA 7.12. Let A = A,, with n > 1, and consider Aus.
(1) IfJ1 and I3 are subsets of As with the same cotype, then they can connected by
a finite sequence of mutations, up to symmetries of the graph.
(2) For each i such that 0 < i <mn, A has a unique symmetric mutation class with
cotype A;, and this class contains ("jl) elements.

In particular, symmetric mutation classes are indexed by cotype.
PROOF. (1) is a direct verification, using the wall-crossing rule, and (2) follows. O

NOTATION 7.13. In the notation (a;b) below, a is the rank, and b is the torsion. So,
for example (1;3,3) = Z ® Z/3Z & Z/3Z, and (6;0) = Z5. Also, in what follows we will
discount the case J = A, since in that case I7 = 0.

PRrROPOSITION 7.14. The symmetric mutation classes for extended Dy and Ds are as
follows. In each case, a representative of the class, and the number in each class is listed.
For convenience later, we also list the cotype and Go(Ty).

0
HH 1,(5;0) H TH 1,(6;0)
A A
e 5 (40) °*%e 6 (50)
HEH HLH HTHEHTHE1H
(A1)? Ag (A1)? (A1)? Az
6,(3;2) 4,(3;0) 8,(4:0)  2,(42) 5,(40)
HEH ML HTHEET LR L T
(Ay)3 Az Az Az (Ar)? A1 Ay
4,(2;2,2) 6,(2;2) 2,(3;2)  4,(30)  6,(32)  8,(3;0)
HLH HH ceeg Jeeq  Jeeq  Jeel  Qeeg
Dy (A1)* A1 Az Dy (A1)% A, Ay (Aq)*
4,(1;2,2) 11,(152,2,2) 4,(24)  2,(%2)  4,(22)  4(%0) 1,(232,2)
Seed ool
Ds (A1)%A3
4,(L;4) 2,(152,4)
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Furthermore, the symmetric equivalence classes for extended Dg are as follows:

° ° 0
0®%% 1 (1;0)
° ° Ay
0%%%e 7 (6;0)
° o o e o °
000l Jeced Jeced
(A1)? (A1)? Az
13,(5;0)  2,(5;2)  6,(5;0)
° e o o o o o e o °
ceceg Joeed 2eecg Jeceg Jeceg
Az Az (Aq)? (A1)? Ay Az
2,(42)  5,(40)  4,(42)  8,(42) 16,(40)
c00e %0002 20003 Seceg Jc0eel Jeeeg 2000l Seeed
Ay A3 A1ds (A1)?Ar (A2)? Dy Ay (Ar)* (Ar)*
6,(3;2)  8,(3:2)  6,(32)  4,(30  2,(32)  4,(30) 4,(3;2,2):1,(3;2,2)
c0eey J0eeg Jecel 20002 20003 Secel :ooor:

5 A1Dy A2A3 As (A1)?As © (A1)?As (A1)”
2,(22)  4,(2;2,2)  4,(2;2) 4,(2;2)  4,(2:2,2) 12,(2:2,2) 1,(22,2,2)
Seeey Jeeel Sece?

De (A1)?Dy (As)?
4,(1;2,2) 12,(152,2,2) 1,(152,4)

and the symmetric equivalence classes for extended Dy are:

° ° 0
0%0%% 1,(8,0)
° ° Ay
0®00%; 5 (1;0)
° o o e o °
seeeeg Jeccel Secee?
(A1)? (A1)? A
19, (6;0) 2,(6;2) 7,(6;0)
° e o o o o o o o °
c00eed Joecseg 20eceg Jecceg Jeeced
A Az (Ar)? (Ar)? A
6, (5;0) 2, (5;2) 12, (5;0) 10, (5;2) 26, (5;0)
° o o o o o o °
Seccey Jeceeg 2ecee; S0ece
A1 Az A4z Ay (A1)* ° °
8, (4;2) 16, (4;0) 5, (4;0) 10, (4;2) = g®®®eg
(An*
° o o o o e o °
0000y 20000y Jeccel Jeseeg 1 (422
(A1)?A, (A1)% A, Az Az Dy
12, (4;0) 8,(4;2) 8,(4;0) 2, (4;2)
° o o o o o o o o °
ceeceq Jeceel Jecec] Jeceel Jeecel
° ° Az Az Az Az (A1)* Az A1Dy (A1)°
...:.. 6,(3;2) 8,(3;0) 8,(3;2) 6,(3;2) 2,(3;2,2)
(‘2(13);2‘?3 Sceeeg 2ecee; Jceeel 2ceced Jecee
A Ay As Ds (A1)%A; (A1)%24;
8,(3;0) 4,(3;0) 2,(3;2) 4,(3;4) 2,(3;2,2)
° o o o o o o o o °
S00003 Jeceel 2e00cel Jeccel Jeeecy
(A1)% A4 Az Dy (As)? (As)? (A1) Ay
4,(2;2) 4,(2;2) 4,(2;4) 1,(2:2,2)  1,(2;2,2)
° o o e o o o o o °
0000y Jecee? Jeceeg geeceg Jecend
A1Ds5 Ag Dg (A1)2D4 (A1)3A3
4,(2;4) 4,(2;0) 2,(2;2) 2,(2;2,2)  2,(2;2,4)
° o o e o °
Seeeel cecel Secee?
Dy (A1)?Ds A3zDy
4,(154) 2,(1;2,4)  2,(1;2,4)

The classes boxed are precisely those symmetric equivalence classes that are not geometric.
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PrOOF. Each row in each case is a direct verification. Here, we prove the third row
for A = Dy, to illustrate the method. For this, consider the set € = {J C Au: |I] = 2},
which has (g) = 28 elements, and begin by choosing an element in C, say J = soeeeg Tt
is easy to verify that the set

is closed under the wall crossing, and symmetries of the graph. Hence it is precisely the
symmetric mutation class containing J.

Next, choose an element of € which is not in the above class. There are 28 — 19 =9
to choose from, say J = e®®°°Q Tn this case, the set

is closed under wall crossing and symmetries, so is the second symmetric mutation class.
Finally, choose an element in C which is not in the above two classes. There are
28 — (19 + 2) = 7 to choose from, say c°®eel i this case, the set

is closed under wall crossing and symmetries, so is the third symmetric mutation class.
The above three classes total 28 elements, so exhaust all elements of the €. As such,
there can be no more symmetric mutation classes with |J| = 2. The number of elements
in each of the three classes is 19, 2, 7 respectively, and the cotype is (A1)?, (A1)? and Ay
respectively. In each class, the Grothendieck group I7 is calculated using 7.8, and is easily
seen to be Z8, Z5 @ (Z/27) and Z respectively. O

PROPOSITION 7.15. Let A = Fg. Then Ay has the following 21 symmetric equivalence

classes. In each case, a representative of the class, the number in each class, the cotype
and Go(Ty) is listed.

° 0
essees 1,(750)

H A
eocee 7:(60)

(A1)? A
15,(5;0)  6,(5;0)

° ° °
° ° °
®e00e ocecoe o000
A1 Az (A1)? As
18,(4;0)  11,(40)  6,(40)
° ° ° ° ° °

A1 As (A1)? A, Ay (Az)? Dy (A)*
9,(3;0)  15,(3;0)  6,(3;0)  3,(3%3)  1,(3;0) | 1,(3;2)

[ ] [ ] [ [ [ )
[ ] [ ] [ ] [ ] [
00000 0000 [ XX XX ] 00000 [ XX X J
As Aq(A2)? A1Ay D5 (A1)% A3
3,(2;3) 6,(2;3) 6,(2;0) 3,(2;0) 3,(2;2)
[ ] o [

Eg (Ag)? Ay As
3,(1;3)  :1,(1;3,3)  3,(1;6)

The classes boxed are precisely those symmetric equivalence classes that are not geometric.
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ProOOF. This is also a direct verification, exactly as in 7.14. Note that here, the case
|9] =4 is 4.9. (]

REMARK 7.16. Direct inspection of 7.12, 7.14 and 7.15 reveals the following.

(1) For A € {A,, D4, Eg}, cotype distinguishes all symmetric equivalence classes.

(2) For A € {Ds3, D7}, the pair (cotype, Gg) distinguishes the symmetric equivalence
classes. For example, when A = Ds, everything is distinguished just using
cotype, with the exception of (A4;)? and Az, each of which is the cotype for two
different classes. However, in these two, cases G distinguishes.

(3) For A = Dg, the pair (cotype, Go) does not distinguish the classes, but later the
triple (cotype, Go, H + K) will.

PROPOSITION 7.17. Let A = E; and consider Ays. Then Ay has the following 44
symmetric equivalence classes. In each case, a representative of the class, the number in
each class, the cotype and Go(Ty) is listed.

° 0
oo00000 1,(8;0)

° Ay
esce000 3§ (7:0)

Ay Ay A Ay (A1)2A, Dy Ay (A2)? (A)*
4,(4;2) 16, (4;0) 28, (4;0) 1,(4;0) 6, (4;0) 8,(4;0) 6, (4;2) 1,(4;2)
[ ] [ ] [ ] [ ] [ ] [ ]
o000 000 o000000 000000 000000 o000 000 (I X XX LY J
As As Az As A1 Ay (A1)? A3 (A1)?As
3,(3;0) 2,(3;2) 8,(3;0) 10, (3;0) 10, (3;2) 3,(3;2)

[ ] [ ] [ ] [ ] [ ]
0000000 0000000 0000000 0000000 0000000
A1 (As)? (A1)3 A, A1Dy Ds (Ay)°
11, (3;0) 4,(3;2) 2, (3;2) 2, (3;0) 1,(3;2,2)
[ ] [ ] [ ] [ ] [ ] [ ]
0000000 0000000 0000000 0000000 0000000 0000000
Az Ay A1 A2 A3 Ag A1 As A1 As (A1)*As
4,(2;0) 6, (2;2) 2,(2;0) 4,(2;2) 2,(2;2) 2,(2;2,2)
° ° ° ° ° °
0000000 0000000 0000000 0000000 0000000 0000000
A1 Ds Dg Eg (A1)®Dy (A2)® (As)?
2,(2;2) 2,(2;2) 1,(2;0) 1,(2;2,2) 1,(2;3) 1,(2;4)
° ° ° ° °
0000000 0000000 0000000 0000000 0000000
A1 Dg Az As A1(A3)?
2,(1;2) 2,(1;2,2) 1,(1;4) 2,(1;6) 1,(1;2,4)

The classes boxed are precisely those symmetric equivalence classes that are not geometric.

PROOF. This is again a direct verification, exactly as in 7.14. The case |J| = 5 has

[ ] [ ]
000000 o00000OO
Az (A1)?
7,(6;0) 21, (6;0)

[ ] [ ] [ ] [ ]
0000000 0000000 0000000 0000000
(A1)? (Ar)? As A1 Ay
19, (5;0) 2,(5;2) 7,(5;0) 28, (5;0)

already been verified in 4.11, but the classes here are permuted.
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PRrROPOSITION 7.18. Let A = Eg and consider Ay. Then Aug has the following 67
symmetric equivalence classes. In each case, a representative of the class, the number in
each class, the cotype and Go(Ty) is listed.

PY 0
00000000 1, (9;0)

° A
o0000000 9 (8;0)

° °
00000000 ocee0co0e
(A1)? Az
28, (7;0) 8,(7;0)

[ o [ J
00000000 00000000 00000000

A1 A2 AS (Al )3

40, (6;0) 8, (6;0) 36, (6;0)

[ ] [ ] [ ]
00000000 00000000 00000000
(Az)? Ay
13, (5;0) 7,(5;0)

ceeceses
(A1)? A,
56, (5; 0)

[ J
oc000000
A1 A3
31, (5;0)

[ ] [ ]
........‘........
(Ar)*
17, (5;0)

(A)?
1, (5;2)

[ ] [ ] [ ]
00000000 00000000 OOOGOVONOO
A1(Az)? Az Az (A1)?As
22, (4;0) 19, (4;0) 24, (4;0)

ecececes
(A1)® Ay
25, (4 0)

o0000000O
(A1)%As
3,(4;2)

°
ev000000
(Ar)°
2,(42)

[ ] [ ] [ ]
00000000 00000000 o000O0OVONVOO
A1 Ay As Ds
21, (4;0) 5, (4;0) 2,(4;0)

°
se000000
A1Dy
3,(4;0)

°
00000000
A1 AsAs
15,(3;0)

eeceeces
(A1)*(A9)?
10, (3; 0)

[ ]
00000000
AU%A4
6,(2;0)

°
00000000
A1 Eg
2,(2;0)

°
T
Eg
1,(1;0)

eeececee
(A1)? Ay
12, (3;0)

°
eee00000
Eg
1,(3;0)

[ ]
00000000
Ag
4,(3;0)

[ ]
00000000
Az Ay
5,(2;0)

[ ]
00000000
A1 Ag
3,(2;0)

°
ce000000
D~
1,(2;0)

[ ]
00000000
AzxAq
11, (3;0)

°
00000000
A1D5
5,(3;0)

[
0000000
AaxDy
2,(3;0)

[ ]
00000000
Aq
2,(2;0)

[ ]
00000000
A2Ds
3,(2;0)

°
e0000000
Er
1,(2;0)

°
ve000000
(As)?
5,(3;0)

°
00000000
Au%
7,(3;0)

°
see00000
Dg
1,(3;0)

(As)?
1,(3:2)

°
0000000
Au%
2,(3;2)

(Ag)®
1,(3;3)

eesecece
(A1)*A,
1,(3;2)

ecsscece
(A1) As
5,(352)

cesssece
(A1)’ Dy
1,(3;2)

°
ccec0ce0e
Az
1,(2;2)

..:.O...
Aq(A3)?
1,(2;4)

°
YY)
Az As
2,(2;3)

eeseecee
AﬂAﬁa
1,(2;3)

0.:.....
(A1)%As
3,(2;2)

°
cececo0e
AzDy
1,(2;2)

[ ]
o0000000
A1D5
1,(2;2)

o
00000000
(A1)* Az A3
2,(2;2)

eececece
(A1)’ Ds
1,(2;2)

Dsg
1,(1;2)

A1 A7
1, (1;4)

(Aq)?
1,(1;5)

A2E5
1,(1;3)

° ° ° °
00000000 00000000 000OCGOCFOCOOS OQOOOCGOOOOO
A1A2A5
1,(1;6)

° ° ° °
00000000 00000000 00000000 00000000
A3z Ds
1,(1;4)

Asg
1,(1;3)

A1E7
1,(1;2)

The classes boxed are precisely those symmetric equivalence classes that are not geometric.
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PROOF. Direct verification, exactly as in 7.14. The case |J| = 6 is 4.13. O

REMARK 7.19. Direct inspection of 7.18 reveals that when A = Eg, the pair (cotype,
Gy) distinguishes the symmetric mutation classes for Aug.

7.3. The Derived Classification

The main result in this section, 7.21, gives a full derived equivalence classification of
contracted preprojective algebras Iy of extended Dynkin type, in particular confirming
7.1, when A € {A,,, Dy, D5, Dg, D7, Eg, E7, Eg}. Partial results are obtained in all cases,
including the (<) direction of 7.1.

The following also verifies that the first part of (=) in 7.1 holds in all cases.

LEMMA 7.20. Suppose that I C Ay where A is ADE Dynkin, and suppose that A is
a basic ring that is derived equivalent to Ty. Then there exists I’ C Ay such that A =Ty,

PROOF. Using the notation from the proof of 7.6, say Iy = Endg(Mjy). Since dim R =
2, it is automatic that Iy € CM R, so Ty is a modifying R-algebra. By [I'W, 4.6(1)], since
A is derived equivalent to Ty, necessarily A = Endg (V) for some modifying R-module N.
Since R has finite CM type, necessarily N = My, for some subset J'. O

Thus, to verify 7.1, we can restrict to considering derived equivalences between con-
tracted preprojective algebras, of the same type.

THEOREM 7.21. Suppose that I C Ay and I’ C ALy where A and A are ADE Dynkin.
Consider the following conditions.

(1) Ty is derived equivalent to Ty, .
(2) The types match (namely A=AN'), and I ~ 7.
(3) The types match, and the cotypes match.
(4) The types match, the cotypes match, and Go(I7) = Go(Ty).
(5) The types match, the cotypes match, Go(Ty) =2 Go(Iy/), and Hy+ Ky = Hy + Ky
Then (2)=(1). If A € {A,, D4, D5, Dg, D7, Eg, E7, Eg}, then (1)=(2). Furthermore:
o IfA € {A,, Dy, Eg} then (1)<(2)<(3).
o If A €{Ds, D7, Es} then (1)&(2)(4).
o If A€ {Dg, E;} then (1)(2)<(5).

PRrROOF. The implication (2)=-(1) always holds, since wall crossing gives derived
equivalences (§5.6), as do isomorphisms. The statement regarding (1)=-(2) follows from
the bulleted statements, which we prove now.

o If Ac {A,, Dy, Eg}, then (1)=(3) by 7.7, and 7.16(1) shows that (3)=(2).

o If A € {Ds, D7, Eg}, then (1)=(4) by 7.7, and 7.16(2) and 7.19 show that (4)=(2).

o If A € {Dg, E7}, then (1)=(5) by 7.7 and 7.10. Hence it suffices to show (5)=-(2).
For E;, by 7.17 the pair (cotype, Go) distinguishes all classes except the following.
These are distinguished by considering H + K, which are calculated using 7.11.

° ° ° ° ° °
0000000 0000000 0000000 0000000 e0c0000 0000000
cotype (Ap)* (A1)* (A1)% A3 (A1)%As A As A As
Go (4;2) (4;2) (3;2) (3;2) (2;2) (2;2)
H+ K (4;0) (4;2) (3;0) (3;2) (2;0) (2;2)

For Dg, by 7.14 the pair (cotype, Gq) distinguishes all classes except the following,
which are again distinguished by considering H + K

c0ced 20009 Seecg Jecel Q0003 9000l %000l Jece?

cotype A As A1 A3 (A1) (A1) (Ap)* (A1) (A1)?As (A1)%As
Go (3;2) (3;2) (4:2) (4:2) (3;2,2)  (352,2) (2;2,2)  (252,2)
H+ K (3;2) (3;0) (4;0) (4;2) (3;0)  (3;2,2) (2;0)  (2:2,2)

The result follows. O
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COROLLARY 7.22. Conjecture 7.1 is true if A € {A,, D4, D5, D¢, D7, Eg, E7, Eg}.
PROOF. (=) holds by combining 7.20 with 7.21(1)=(2). (<) is 7.21(2)=(1). O

REMARK 7.23. Consider J — ¢°°®®®2 a1 7/ — 2200002  Theee are in different

symmetric mutation classes, but both have type extended Dg, and both have cotype (A;)%.
Furthermore, in both cases the Grothendieck group Gy is isomorphic to Z° @ Z/27Z, and
in both cases H + K = Z5 @ Z/2Z. This is the first case where the invariants in 7.21 do
not distinguish between I and T35.. Consequently, to extend 7.21 to cover all of type D,,
will require finer invariants.

7.4. Two-term Tilting Complexes

This section classifies all 2-term tilting complexes for T5, for any J C A,¢. The main
result 7.24 is that the 2-tilting complexes of Iy are in bijection with chambers of the infinite
arrangement Wy from 2.8, which is the ‘double’ of the associated Tits cone (see e.g. 2.10).
Just as @7 splits into two halves, it turns out that there are two types of 2-term tilting
complexes, and their mutation graphs never meet. This whole section should be seen as
generalisation of | ], which described the case J = .

7.4.1. Construction. For (z,J) € Cham(A.,7), set I, ; = eglyey. By 5.2, each
I j is a tilting T5-module with projective dimension one, and so in particular their pro-
jective resolutions give two-term tilting complexes. Below, these will give half of the
two-term tilting complexes.

In order to obtain the other half, recycling the notation from the proof of 7.6, say
Iy = Endg(Mjy). Then I7P = Endg(M;), where ()* = Hompg(—, R). But under McKay
Correspondence, the dual (—)* fixes the extended vertex, and acts as the Dynkin involution
on the other vertices. Write ¢ for this symmetry. Thus Endg(M;) = Ty, where I’ =
taff (7). Since J and 7’ differ by the symmetry of the graph tug, it is clear that they induce
exactly the same Tits cone, and so have exactly the same tilting theory.

Now, since Iy is a symmetric R-order, by [IR, p1103], there is a duality
RHomr, (—,Ty) RHom op (—,Ty)
D~ (mod Iy) — =" D (mod [?) ———— D~ (mod T}).

The strategy is to apply the functor RHomrer (—, T5[1]) to tilt Ty = tilt I7P to obtain the
‘other half’ of the two-term tilting complexes. As notation, set

Rva = RHOlejOP (ej’lyeKv rj[l])

for (y, K) € Cham(A,g,J"). Replacing ey I ex by its two-term projective resolution, it is
clear that R, g is a two-term tilting complex for Ij.

7.4.2. Two-Term Tilting. Our previous 7.21 showed which algebras are in the de-
rived equivalence class of Iy, and so demonstrated that the endomorphism rings of general
tilting complexes behave well. In comparison, the following, which is a generalisation of
[ , 2.7, 3.1], takes this further, and gives evidence that the set of all tilting complexes
could in fact be very well-behaved, not just their endomorphism rings.

THEOREM 7.24. Suppose that A is ADE, I C Ay, and I’ = ta5(J).
(1) {Ix“] | (SL‘, J) S Cham(Aaff,fJ)} n {R%K ‘ (y,K) S Cham(Aafr,J’)} =0. In
particular, there exist two different families of tilting complexes for Ty.
(2) 2 tilt Fg = 2silt Fg.
(3) Under the isomorphism ©g = Ky(projTy),

05\ W3 = U ¢t |U U C®yx)

(x,J)ECham(Aa,9) (y,K)eCham(A.x,")

Furthermore, the closure equals ©y.
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(4) 2 tilt Fg = {ILJ | (:17,.]) S Cham(AaffJ)} U {Ry,K | (y,K) € Cham(Aafr,J')}.

PRrROOF. (1) By 5.2 the I, j = egl e  are classical tilting modules, and so give 2-term
tilting complexes with homology only in degree zero. In contrast, since ey I ex € tilt Iy
and so give two-term tilting complexes for I;¥, by construction the R, j are two-term
tilting complexes for I;. They certainly have homology in degree —1. For these homology
reasons, the intersection is thus empty.

(2) Since Ty is a symmetric R-order, this is clear (see e.g. | , A2]).
(3) Under the isomorphism, we already know that elements in tilt Iy, namely

U C(Ix,J)
(x,J)eCham(Aa,T)
gives Cone(A,r,J). This fills precisely half of K(projTy), and so half of ©;.
Applying the same logic to tilt Iy,

U C(Iy,K)
(y,K)eCham(A,x,I")

gives precisely half of Ky(projly/). Since the dividing half-plane for both J and J’ is the
same (dual respects the rank), mapping this across the duality, it is clear that

U @)
(y,K)eCham(A,q,T")
fills the other half of ®;. Furthermore, since J and J’ differ by the symmetry (g, it is
clear that their Tits cones are identical. Consequently, the full hyperplanes Wy describe
the walls on both halves of the dividing half-plane, and so the statement about ©4\Wy
follows. That the closure is everything is clear.

(4) As is standard, this follows from (3) by a [DIJ]-type argument (see e.g. | , 3.8(2)]).
O

°
ExAMPLE 7.25. Continuing 2.9, consider J = *e® Then by 7.24, the g-vector fan of

the two-term tilting complexes for I5 is the following.

Iy

T3(1]

The hyperplanes converge on the line [Pg] + 2[P1] = 0, but Wy does not contain this line.
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CHAPTER 8

Tilting Modules and Modifying Modules

This chapter is concerned with general properties of tilting, and tilting modulo a
regular element. These results obtained here are general; they are then specialised, and
strengthened, in the cDV setting in Chapter 9.

The first section describes tilting modules modulo a regular element for module-finite
R-algebras. Section 8.2 recalls the setting of 3-dimensional Gorenstein rings, recaps the
notion of modifying modules and mutation, and recalls known theorems. The section after,
8.3, generalises some of these, and gives three new general results, the most notable that
K-theory can be used to detect partial tilting modules. All these results, new and old,
are combined in Section 8.4 to give the most general results for 3-dimensional Gorenstein
rings, and their associated modification algebras.

8.1. Tilting Modules Modulo a Regular Element
When R is a commutative noetherian ring and g € R, write R := R/gR and
@ :=R®p —: mod R — mod R.
In particular, if A is an R-algebra, then we can consider the R-algebra A.

NoOTATION 8.1. Given an R-algebra A, and g € R, write tilty A for the subset of tilt A
consisting of those T' on which g acts a non-zerodivisor.

We need the following elementary observation.
LEMMA 8.2. If g is a non-zerodivisor on R, then for any X € mod R,
Torf(R,X) = {z € X | gz = 0}.
_PRrROOF. The short exact sequence 0 — R HR—R—0 gives a projective resolution
of R. Applying — ®r X gives an exact sequence
0 — Torf(R, X) - X & X,

which proves the assertion. (I

The following general observation is the main result of this section.

THEOREM 8.3. Let R be a commutative noetherian ring and A a module-finite R-
algebra. Assume that g is a non-zerodivisor on R.

(1) There is a map

(—): tilty A — tilt A

making the following diagram commute.

tilty A S

(8.1.A) J - J

. (=) .
Ko(proj A) —— Ko (proj A)

(2) If g is contained in all maximal ideals of R, then the map in (1) is injective.
(3) If R is complete local, then the map in (1) is compatible with mutation.

95
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ProoF. (1) Fix T € tilt, A, and let
(8.1.B) 0P —-P—>T—0
be a projective resolution of the A-module T. Applying R @z — gives an exact sequence
(8.1.0) 0= Torf(R,T) - P, = Py - T — 0,

where the first term is zero by 8.2, since T € tilt, A. Thus T has projective dimension at
most one, as a A-module.

Applying Homa (—,T) to (8.1.B), and Homg(—,T) to (8.1.C), gives a commutative
diagram of exact sequences

Homy (P, T) — Homy (P, T) — Ext}(T,T) = 0

| |

Homy (P1,T) — Homy (P, T) —— Exti (T, T) —— 0

where the vertical maps are clearly surjective. It follows that Ext% (T,T)=0.
_ Lastly, take an exact sequence 0 — A — Ty — 11 — 0 with 7; € addT. Applying
R ®p — gives an exact sequence

0=Tor¥ (R, T1) = A - Ty = T) =0,
where the first term is zero by 8.2, since T' € tilty A. Consequently, T' € tilt A. Using

(8.1.B) and (8.1.C), [T] = [Po] — [P1] = [Po] — [P1] = [T] and so the diagram commutes.

(2) Without loss of generality, we can assume that R is complete local. Indeed, by [IW,

2.26), if add(Ry ®p T) = add(Ry ®g U) for all maximal ideals m, then add T = add U .
For any T € tilt A, write FacT for the full subcategory of mod A consisting of the

factor modules of an object in add T'. It is well-known in tilting theory that
FacT = {X € mod A | Ext} (T, X) = 0}

holds, and we can recover add T from FacT as Ext-projective objects, that is,

(8.1.D) addT = {X € FacT | Ext)(X,FacT) = 0}.

Assume that T,U € tilty A satisfies addT = addU. To prove addT = addU, it
suffices to show FacT = FacU by (8.1.D), and by symmetry, we only have to show
U € FacT. For any ¢ > 0, consider the short exact sequence

£—1
(8.1.E) 0 U/gU L— U/g'U 25 U/g" U — 0.

Since U = U/gU belongs to add T C FacT and Fac T is closed under extensions, it follows
that U/g'U € FacT for all £ > 0 by using (8.1.E) repeatedly. Therefore Ext} (T,U/g‘U) =
0 holds for all £ > 0.

Now fix an epimorphism f;: 7" — U = U/gU for T' € addT. Using the sequence
(8.1.E) repeatedly, there is a morphism f,: 77 — U/g‘U satistying hy o fo = fr—1. We
lift (f¢)¢ to a morphism f: 7" — Liile U/g'U = U, where the equality holds since R is
complete. By Nakayama’s Lemma, f is surjective, and thus U € FacT holds.

(3) This is clear, since if T, U € tilt, A share all summands except one, then T,U € tilty A
share all summands except one. O

8.2. Modifying Modules, Mutation and Tilting

In this section we recall various concepts and results, mainly to set notation. Let R
be a local Gorenstein normal ring, write ref R for the category of reflexive R-modules, and
CM R for the category of Cohen-Macaulay R-modules. For a module-finite R-algebra A,
we consider the category

ref A :={X € mod A | X € ref R}.
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For non-zero M € ref R, there is an equivalence [RV, 1.2] (see also [IR, 2.4(2)(i)])
(8.2.A) Homp(M, —): ref R = ref Endg(M).

which we will refer to as reflexive equivalence.

Recall from [IW] that M € ref R is called modifying if Endg(M) € CMR. An R-
module M is called mazimal modifying if it is modifying, and maximal with respect to
this property; equivalently

addM = {X €ref R | Endg(M @ X) € CM R}.

We write MM R (respectively, MMG R) for the set of additive equivalence classes of max-
imal modifying R-modules (respectively, maximal modifying generators of R).
The following properties are elementary.

LEMMA 8.4. [IW, 2.7, 5.12] With notation as above,

(1) If M € CM R is a modifying R-module, then so is R® M. Therefore a mazimal
modifying R-module M is Cohen-Macaulay if and only if R € add M.

(2) If dim R = 3, then M € CMR is modifying if and only if Extkr(M, M) has
positive depth.

(3) If dim R = 3 and R is isolated, then M € CM R is modifying if and only if M
is rigid (that is, Extp(M, M) = 0).

As for tilting modules, there is an operation on MM R called mutation [I'W, §6]. We
describe this for the case when R is complete local. Let M € modif R be basic, and let
M = N @ L be a direct sum decomposition. There exists an exact sequence
(8.2.B) o-KSvLiL

where f is a minimal right (add N )-approximation. We call (8.2.B) an exchange sequence,
and set

n(M) = N & Ker f,

which is called the right mutation of M at L. Furthermore, we say (M) is an artinian
mutation if Endr(M)/[N] is an artinian ring. Later, when we work over a field, this
condition is equivalent to Endg(M)/[N] being a finite dimensional algebra.

Dually, there exists an exact sequence

(8.2.0) o-LLuse
where f is a minimal left (add N)-approximation, such that
0 Sy L
is exact. We call (8.2.C) an exzchange sequence. Set
VL(M) =N® C,

and call v, (M) the left mutation of M at L. Again, we call vy (M) an artinian mutation
if Endr(M)/[N] is an artinian ring. Clearly this is equivalent to pz (M) being an artinian
mutation.

PRrROPOSITION 8.5. The following assertions hold.

(1) [TW, 6.10] ug (M), v (M) € modif R.

(2) [TW, 6.4] g in (8.2.B) is a minimal left (add N)-approzimation, and g in (8.2.C)
is a minimal right (add N)-approximation.

(3) [IW, 6.5] u and v are inverse operations of each other, that is,

VL’OH'L(M)%M G,nd Wr OVL(M)%M
hold for L' :=Ker f and L" := (Ker g)*.



98 8. TILTING MODULES AND MODIFYING MODULES

(4) IW, 6.14] If up, (M) and vi,(M) are artinian mutations, then
Homp(pur (M), M) € ref-tilt A’ and Hompg(M,v(M)) € ref-tilt A.
hold for A = Endr(M), and the following sequences are exact.

0 = Hompg (L, M) — Homg(V, M) = Hompg(K, M) — 0,
0 — Hompg (M, L) - Homgr(M,U) — Homgr (M, C) — 0.

Now let M = M; & ... ® M, € modif R be a basic modifying R-module such that
each M; is indecomposable. For simplicity, set

wi(M) = ppr, (M) and v;(M) := vy, (M),
and call them simple mutation. In the following case, simple mutation behaves nicely.

PROPOSITION 8.6. [IW, 6.25] Assume dim R = 3 and M € MMR. Let M = My, ®
... ® M, with indecomposable M;. For each 1 < i < n, the following assertions hold.

(1) vi(M) = i (M).
(2) vi(M) and w;(M) are finite dimensional mutations if and only if v;(M) 2 M if
and only if w;(M) 2 M.

In the setting of the above proposition, we define the exchange graph as follows.

NoTATION 8.7. The exchange graph of MMR is the graph where:

e The vertices are the elements of MM R.
e For M;N € MMR, we draw an edge between M and N if they are can be
obtained from each other by a simple mutation.

In the rest of this section, we assume dim R = 3 in addition to the first assumptions
that R is a local Gorenstein normal ring.

PROPOSITION 8.8. [IW, 4.12] Let R be a local Gorenstein normal ring with dim R = 3.
For each M € MMR and N € modif R, there exists exact sequences

2. — M; —- My =N and 0 - N = —
(8.2.D) 0= M — My LN and 0N % M® — M

with M;, M* € add M such that f is right minimal, g is left minimal and the following
sequences are exract.

0 — Homp(M, M;) — Homp(M, My) — Hompg(M, N) — 0,
0 — Homp(M', M) — Homp(M°, M) — Homg(N, M) — 0.

Moreover, My and M; do not have non-zero common direct summands, and M° and M?!
do not have non-zero common direct summands.

PRrROOF. In [IW, 4.12], clearly we can choose the sequences such that f is right min-
imal and g is left minimal. The last assertion follows from 5.6. [

NoTATION 8.9. For a module-finite R-algebra A, write

ref-ptilt A := {T" € ptilt A | T € ref R},
ref-tilt A := {T € tilt A | T € ref R}.

The following bijections are fundamental, and will be heavily used.

PROPOSITION 8.10. [IW, 4.17] Let R be a Gorenstein normal local domain such that
dim R = 3. For each M € MMR, there are bijections
(8.2.E) Hompg(M, —): modif R =5 ref-ptilt End g (M)

(8.2.F) Homp (M, —): MMR =5 ref-tilt Endg(M).



8.3. THREE GENERAL RESULTS 99

8.3. Three General Results

This section contains three new general results, which for the most part are just mild
extensions of known techniques. All are needed for our applications in Chapter 9.

The following result gives a characterization of artinian mutation. The first part
justifies our abuse of notation of writing v; for simple mutation on modifying modules,
and also writing v; for mutation on tilting modules.

THEOREM 8.11. Let R be a complete local Gorenstein normal domain with dim R = 3.
Let N=N1 ®...® N, € modif R be basic with indecomposable N;, A = Endr(N), and
let © be such that 1 < i <n.
(1) The following conditions are equivalent.

(a) v;i(N) is an artinian mutation

(b) vi(A) € ref-tilt A.

(¢) vi(A) 2 Hompg(N,v;(N)).
Assuming any of the equivalent conditions in (1), then the following holds.

(2) Let0 = N; = U i> L be the exchange sequence. For any M € modif R such
that N € add M, the map f is a right (add M)-approzimation.

We need the following preparation.
LEMMA 8.12. If R is a complete local Gorenstein normal ring with dim R = 2, and

(8.3.A) 0X5vhz

be an exact sequence with terms in ref R such that b: Homp(X,Y) — Homp(X, Z) is
surjective. Then a is a split monomorphism.

PrRoOOF. Write X = X’ ® P, where P is the maximal projective direct summand
of X. By our assumptions on R, Auslander—Reiten translation 7 is the identity, and
there is a functorial isomorphism Ext}z(L, M) =2 DHomg(M, L) for L, M € ref R, called
Auslander—Reiten duality.

First, consider the case P = 0. For Z’ := Im b, there is an exact sequence

Homp(X,Y) — Homg(X, Z') — Exth(X, X) — Extx(X,Y).

By our assumption, the left map is surjective and hence the right map is injective. By
Auslander—Reiten duality, the map Hompg(Y, X) — Hompg(X, X) is surjective. Since X
does not have a non-zero projective direct summand, the map Homg(Y, X) — Homg(X, X)
is also surjective. Thus a is a split monomorphism.

Next, we consider the case P # 0. Then b must be surjective. Further, since Z € ref R
implies Exth(Z, R) = 0, the sequence (8.3.A) is a direct sum of 0 — P -5 P — 0 and
0— X' a—/> Y’ — Z, where the latter sequence satisfies the same condition. By the first
case, a’ is a split monomorphism. Thus so is a. (Il

With this preparation, we now prove 8.11.

ProOF OF 8.11. (1)(a)=-(b) If v;(IN) is an artinian mutation, then by 8.5(4), we
obtain v;(A) = Hompg(N, v;(N)) € ref A.

(b)=(c) Assume v;(A) € ref A. By construction [I'W, 6.8], applying Hompg (N, —) to
the exchange sequence
(8.3.B) 0N, U — L,

gives an exact sequence

0 Ae; —— Homp(N, V') —— Homg(N, L)

(8.3.0) \ -
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where f is a right add A(1 — ¢;)-approximation, v;(A) = A(1 — ;) ® C, and « is a height
one isomorphism. Since C' € ref R by our assumption, « is thus a height one isomorphism
between reflexive modules, and thus is an isomorphism.

(c)=(a) Assume v;(A) = Hompg(N, v;(N)), then in particular v;(A) € ref R. Hence,
by the above, applying Hompg (N, —) to the exchange sequence gives an exact sequence

(8.3.D) 0 — Homg(N, N;) = Hompg(N,U) — Homg(N, L) — 0.
Now we fix p € Spec R with dim R, = 2. Localising (8.3.B) at p gives an exact sequence
0= Nip -2 Uy — Ly

with terms in ref Ry, such that Hompg, (N, U,) — Hompg, (N, Ly). By 8.12, the map a,
is a split monomorphism.

The sequence obtained by applying Hompg(—, N;) to (8.3.B) is isomorphic to the
sequence obtained by applying Homy (—, Hompg (N, N;)) to (8.3.D), hence

(8.3.E) Homp (U, N;) 220N, omp (N, Ny) = A/(1— ¢;) — 0.

is exact. Since a, is a split monomorphism, Homg, (ap, (N;)p) is a split epimorphism.
Localising the sequence (8.3.E) at p then implies that (A/(1 — e;)), = 0, and so the
support of the R-module A/(1 — ¢;) contains only the maximal ideal of R. Consequently,
it is an artinian ring.

(2) Applying Homp (FM, —) to (8.3.D), where F = Hompg(N, —), then applying reflexive
equivalence (8.2.A) gives an an exact sequence

0 — Homp(M, N;) — Homp(M,U) — Homp(M, L) — Ext} (FM,FN;).

The last term vanishes since FM € CM A and FN; € proj A, so the assertion follows. [

LEMMA 8.13. For any N € modif R and T € ref-ptilt Endg(N), there exists L €
modif R such that T = Hompg(N, L).

PROOF. The assertion is clear for N = 0, so assume N # 0 and set A = Endg(N).
Take T € ref-ptilt A. By Bongartz completion [IR, 2.8], there exists U such that T® U €
ref-tilt A. By reflexive equivalence (8.2.A), Hompg(N, —): ref R = ref A, so there exists
L' € ref R such that T ® U = Homp(N, L’). Thus Endr(L') = Enda(T @& U) is derived
equivalent to A. Since modifying algebras are closed under derived equivalences [IW,
4.6(1)], we obtain L' € modif R. Again by reflexive equivalence, L’ has a direct summand
L such that T = Hompg(N, L). O

Approximations behave well with respect to rank.

LEMMA 8.14. Let R be a commutative normal ring, M, N € ref R such that f: M’ —
N is a right add M -approximation. Write K := Ker f, then the following hold.

(1) 0= Ky — My, — Ny — 0 is evact for all height one primes p € Spec R.
(2) rankg M’ = rankp K + rankg N.

PROOF. (1) By definition there is an exact sequence
(8.3.F) 0 — Hompg (M, K) — Homg(M, M) — Homg (M, N) — 0

Localising at a height one prime p gives the following commutative diagram, where the
top row is exact

0 — Hompg(M, K), —— Hompr(M, M), —— Homgr(M,N), — 0

| | |

0— HOHIRp (MP7KP) — HOme (Mp’Ml;) — I‘IOHIRp (Mp,Np) — 0

Hence the bottom row is exact. Since R is normal, M, € add R,, so the assertion follows.
(2) This is immediate from (1), after further localising to the zero ideal. O
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K-theory can be used to detect partial tilting modules.

THEOREM 8.15. Let R be a complete local Gorenstein normal domain with dim R =
3, and M € MMR. Let N = N1 & ... ® Ny € add M with indecomposable N;, and
I' = Endg(N). Then for any X € modif R, the following conditions are equivalent.
(1) Hompg(N, X) is a partial tilting T'-module.
(2) [Hompg(M, X)] belongs to the subgroup of Ko(projI') generated by the elements
[Hompg(M, N;)] with 1 <i < t.

PrOOF. (2)=(1) By (8.2.E) we know that Homp (M, X) is a partial tilting I'-module.
Thus there exists a projective resolution

00— P — P —)HOHIR(M,X) —0

such that Py and P; do not have common direct summands. Then [Homg(M, X)] =
[Po]—[P1] holds in Ko(Endg(M)). Since [Homg (M, X)] belongs to the subgroup generated
by [Hompg(M, N;)] with 1 < i <t, and Py and P; do not share any common summands,
it follows that both [Py] and [P;] also belong to the subgroup.

By projectivisation, for ¢ = 0,1, write P; := Hompg (M, M;) with M; € add M. Since
[Po] and [Py] belong to the subgroup, M, and M; belong to add N. Since the above
projective resolution induces an exact sequence

0 — Homp (N, M) = Hompg(N, My) — Homp(N, X) — 0,

it follows again by projectivisation that Hompg(N, X) has projective dimension at most
one, as a [-module. As in [['W, §4], it is routine to check that it has no self Ext’s.
(1)=(2) Write F = Hompg(N, —). By assumption FX is a partial tilting I'-module, so in
particular it has projective dimension at most one. Thus there is an exact sequence

0—>FM; -FMy —-FX —0

for some My, My € add N. Applying Homp (FM, —), and dropping Hom from the notation,
we obtain a commutative diagram

0 — r(FM,FM;) — r(FM,FMy) — 1(FM,FX) —— ExtL(FM,FM;)

N

0 — r(M, M) —— r(M, My) —— r(M, X)

where the vertical isomorphisms are reflexive equivalence. Since N is a summand of
M € MMR, we have FM € CM R. Thus by [IR, 3.4(5)], since T is 3-sCY, Extf(FM,T) =
Extp(FM, R) = 0, from which since M; € add N, Ext(FM,FM;) = 0 follows. Hence the
top row of the above diagram is a short exact sequence, and hence so too is the bottom
row. This clearly implies that [Hompg(M, X)] belongs to the stated subgroup. O

8.4. Modifying Modules Modulo a Regular Element

We now apply the general 8.3 to the setting in §8.2 of modifying modules over Goren-
stein local normal domains in dimension three, and obtain some general corollaries. These
can, and will, be strengthened in the cDV setting in Chapter 9. Both here and later, re-
stricting to subsets of tilt A that share common summands will be useful.

NOTATION 8.16. If A is a ring, and P € mod A, write tilt(A, P) for the subset of
tilt A consisting of those T' which satisfy P € addT.

THEOREM 8.17. Let R be a complete local Gorenstein normal domain with dim R = 3,
M € MMR, and set A := Endg(M). Then for any 0 # g € R, the following hold.
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(1) There is an injective map
F :=Hompg(M,—): MMR — tilt A,

which induces an injective map F: MMGR — tilt(A, FR).
(2) If N € MMR satisfies v;(N) % N, then F(v;(N)) 2 v;(FN).
(3) If R is an isolated singularity, then the map in (1) is compatible with mutation.

PROOF. (1) By (8.2.F), there is a bijection
F :=Hompg(M,—): MMR =5 ref-tilt A.

Since g is a non-zero element in the domain R, it is a non-zerodivisor on any N € ref R
and also on Hompg(M, N). Therefore ref-tilt A C tilty A, so composing with the injective
map

(—): tilty A < tilt A

in 8.3 gives an injective map F: MMR — tilt A. This clearly induces an injective map
F: MMGR — tilt(A, FR).

(2) Since both F(v;(N)) and v;(FN) are tilting modules, distinct from FN, and they
have the same indecomposable direct summands except one, they must be isomorphic by
5.7.

(3) If R has an isolated singularity, then v;(N) % N holds by [I'W, 6.22]. Thus (3) follows
immediately from (2). O

Immediately we obtain the following corollary, which reduce many questions regarding
the representation theory of CM and reflexive modules to the tilting theory of an algebra
one dimension lower.

COROLLARY 8.18. In 8.17, assume further that R is an isolated singularity.
(1) If the exchange graph of tilt A is connected, then F': MM R — tilt A is bijective.
(2) If the exchange graph tilt(A, FR) is connected, then F: MMGR — tilt(A, FR)
1s bijective.

ProoF. (1) By 8.17(1) it suffices to prove surjectivity. Let T € tiltA. By our

assumption, there is a finite sequence of mutations such that T' = v;,...v;,(A). Then
N :=v;,...v;, (M) satisfies FN =T by 8.17(2)(3).
(2) The proof is very similar to (1). O

The following criterion for connectedness of the exchange graphs plays a key role in
the next chapter.

PROPOSITION 8.19. In 8.17, assume that there is no T' € tilt A and an infinite se-
quence A =Ty > Ty > Ty > ... such that T; > T for all i > 0. Then the exchange graph
of MMR is connected.

ProoFf. Fix M, N € MMR. We will find a sequence of mutation from M to N. Let
A =Endgr(M) and F := Hompg(M,—): MMR — tilt A. Then FN € ref-tilt A. Applying
5.9 to A > FN repeatedly, we obtain a sequence of mutations
(84A) A=Uy>U >U; > ...

such that

(1) U; > FN for each i > 0.
(2) Either there exists £ > 0 such that Uy = FN, or the sequence is infinite.

By 5.8, the first condition implies that there exists an exact sequence

0—=U; =V =V 0
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with VO, V! € add FN. Since FN € ref-tilt A, and reflexive modules are closed under
kernels, it follows that U; € ref-tilt A C tilt, A. By 8.3(3), applying @ gives a sequence
of mutations

K:UO>U1>U2>...
such that T; > FN for each i > 0. By our assumption, the sequence has to be finite, and
hence Uy, = F'N holds for some £ > 0. Since U; € ref-tilt A for each ¢ > 0, by 8.17(2) the
sequence (8.4.A) corresponds to a sequence of mutations in MM R from M to N. O

For a commutative ring R and g € R, recall (—) = R ®p —. Consider the functor
(—)* :=Homp(—, R): mod R — mod R

and the evaluation map ex: X — X** for each X € mod R. The following result will
play a key role in the next charter.

PROPOSITION 8.20. Let R be a noetherian local ring with dim R = 3, and g € R a
non-zerodivisor on R such that R is a normal domain. For M € ref R, the following hold.
(1) M e CMR.
(2) €37 ts injective.
(3) (ex7)p is an isomorphism for all non-mazimal prime ideals p € Spec R.
(4) If M € modif R, then there is a canonical isomorphism Endg (M) = EndR(M**)
of R-algebras.

PRrOOF. (1) Since R is normal, M~ € ref R. Further, since g is a non-zerodivisor
on R, clearly dim R = 2. By Serre’s (S3) criteria, normal surfaces are automatically CM,
and so ref R = CM R.

(2) Since M € ref R, by applying (—)* = Hompg(—, R) to a projective presentation of M*,
and splicing, gives exact sequences

0O0—->M—Fy—>N—0 and 0> N — F}

with F; € proj R. Since g is a non-zerodivisor on R, the second sequence and 8.2 implies
that Torf" (R,N) = 0. Applying (—) to the first sequence then gives an exact sequence

(8.4.B) 0=Torl(R,N) - M % Fy - N — 0.

Since a is injective, and the evaluation gives the commutative diagram

M Fy
5MJ "‘JEFO
M** a FO**.

it follows that ¢5; is injective.

(3) For each non-maximal prime ideal p of R, since Rp is regular, the sequence (8.4.B)
shows that M, € proj R, and hence (¢5;7)p is an isomorphism. .

(4) Since g is a non-zerodivisor on R, it is also a non-zerodivisor on M € ref R. Thus
0> ML M — M — 0 is exact. Applying Homp (M, —) and using Homp (M, M) =

Endgr(M) = Endz (M) gives an exact sequence
0 — Endg(M) % Endg(M) — Endz(M)
and thus an injective morphism of rings
¢: Endg(M) — Endgz(M).

We now show that ¢, is an isomorphism for each non-maximal p € Spec R. Take q €
Spec R such that p = q/gR. Then Ry/gRq; = R, is regular since R is normal and
dim R = 2. Since g is a non-zerodivisor on Rg, we have dim Ry /gRq = dim Rq — 1. Thus
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R, is also regular, by inspection of the minimal number of generators of the maximal ideal
qR,. In particular, M, € ref Ry = proj Rq. Thus

Endr(M), = Endg, (M,)/g Endg, (M) = Endg, /gr, (Mq/gMy) = EndR(ZW)p,
where the middle isomorphism holds since M, € proj R,.

On the other hand, consider the canonical morphism of rings

V: Endg(M) — Endg(M ™).

Each b € End;(M) gives a commutative diagram

— b
M-—————

M
EM j £M
= k% b** k%

M — M .

Since €37 is injective by (2), b** = 0 implies b = 0, so 1 is injective. For each non-maximal

p € Spec R, (e57)p is an isomorphism by (1), and hence 1, is also an isomorphism.
Consequently, the composition
Yod: Endg(M) — Endg(M ™)
is injective and (\ o ¢), is an isomorphism for each non-maximal p € Spec R. Thus
Cok(P o ¢) € fd R. Since M € modif R, it follows that Endz(M) € CM R. Further, since
— k%

M™ € CM R by (1), and R is a normal surface, Endﬁ(ﬂ**) € CM R. In particular, both
Endgr(M) and Endﬁ(]W**) have depth two. Thus Cok( o ¢) = 0 holds, as desired. O

8.5. Summary of Notation

In what follows, all modules are finitely generated, A is a module-finite R-algebra,
and whenever basic is mentioned, implicitly R will be complete local.

Notation  Reference Meaning

CMR §8.2 (Maximal) Cohen-Macaulay R-modules

ref A §8.2 A-modules which are reflexive as R-modules.

modif R §8.2 Modifying reflexive R-modules.

MMR 68.2 Maximal modifying reflexive R-modules.

MMGR 68.2 Those X € MM R such that R € add X.

v (M) §8.2 Left mutation of M at L.

wr (M) §8.2 Right mutation of M at L.

tilt A 5.4 Basic tilting A-modules of projective dimension one.
ptilt A 5.4 Not-necessarily-basic partial tilting A-modules.

tilt(A, P) 8.16 Basic tilting A-modules containing fixed projective P.
tiltg A 8.1 Those elements of tilt A where g acts a non-zerodivisor
2tilt A 6.1 Two-term tilting complexes for A

ref-ptilt A 8.9 Elements in (ref A) N (ptilt A). These need not be basic.
ref-tilt A 8.9 Elements in (ref A) N (tilt A). These are basic.




CHAPTER 9

Modifying Modules on cDV Singularities

Throughout this chapter, let R be a complete cDV singularity, that is,

R =Klz,y, 2 1]/(f(,y,2) + tg(x,y,2,1))
for some simple surface singularity f and arbitrary g. Note that R is normal if k is perfect;
see 9.2 below. We write modif R for the set of isomorphism classes of not-necessarily-basic
modifying R-modules, and MM®R (respectively, MMG®R) for the set of isomorphism classes
of basic maximal modifying R-modules (respectively, generators of R). By [B2, VIL.4.7],
there is an isomorphism
(9.0.A) Z @ Cl(R) = Ko(mod R) /([ X] | dimg X < 1).
In particular, there is a natural map
(9.0.B) mod R — Z & CI(R).

Below we will introduce the index as the composition

(9.0.C) ind: mod® =5 Ko(mod ®) L 7.4 ciw),

which sends M to (rankg M, det M), and consider the submonoid of Z @ Cl(R) defined by
(Z& CUR)) 1 1= (Zo & CI(R)) U {0}.
The purpose of this chapter is to prove the following result, in the setting of isolated
cDV singularities.

THEOREM 9.1. Let R be an isolated cDV singularity.
(1) There exists N € MMR, say N = @, N;.
(2) There is an isomorphism Cl(R) = Z"~1.
(3) The map (9.0.C) restricts to a bijection modif R = (Z & Cl(R)) 4.
(4) There exists an extended Dynkin diagram A, a subset J, and bijections
modif R = Lj and MMR = Cham(A,¢, J).
(5) #(modif RNind CMR) < co and #MMGR < co.

The proof is split across the following subsections. Many of the preparatory results
do not require the assumption that R is not isolated, and so in what follows, we do not
assume that R has an isolated singularity unless explicitly stated otherwise. For example,
in the case g = 0, R = k[[z, vy, 2,t]]/(f) is a non-isolated cDV singularity.

9.1. Existence of Maximal modifying modules
Throughout this subsection, let R be an arbitrary ¢cDV singularity.
PROPOSITION 9.2. When k is a perfect field, R is a normal domain.

PROOF. Let R = S/hS be a ¢cDV singularity for S = k[[z,y, z,t]]. Since R is Cohen-
Macaulay, by Serre’s normality criterion, it suffices to show dim(SingR) < 1. By the
Jacobian criterion [E, 16.20], Sing R = V(J)NSpec R = Spec A where J is the Jacobi ideal
and A := S/(J+hS). Again by the Jacobian criterion, Sing(R/tR) = V(J)NSpec(R/tR) =
Spec(A/tA) and thus

dim(Sing R) — dim(Sing(R/tR)) = dim A — dim(A/tA) < 1.

105
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Since R/tR is a simple singularity, dim(Sing(R/tR)) = 0, which proves the assertion. [

For a ¢DV singularity R, we take a hyperplane g € R such that
R:=R/gR
is a simple singularity of type A. Let A, be the extended Dynkin graph as above, and
6 = Zz’eAaff d;0; the imaginary root, where {of | ¢ € Ayr} and {; | ¢ € A} are the
dual basis. We regard 6 as a map ® — R. The following is well-known by McKay
Correspondence, where indec C denotes the set of indecomposable objects of a category C.

PROPOSITION 9.3. The following assertions hold.

(1) There exists a bijection Ay — indec(CM R) given by i — N;, such that ranks; N; =
0; fO’I“ all i € Aygs.

(2) There is an algebra isomorphism TT = End5 (D
jective algebra of type Ay

PROOF. See e.g. [AV, 1.11], [LW, 6.31]. O

iea,; Ni), where TT is the prepro-

Consider (—) := R®x —. The following result is the starting point of our study of R.
PROPOSITION 9.4. Under the above setting, let M € modif R. Then the following
statements hold.

(1) There exist a subset Jpr C Asr and an isomorphism of algebras:
End(R(M) = rgM.

(2) There exist a natural bijection from Aus \ dnr to the isomorphism classes of
indecomposable direct summands of M.

(3) Let M; be an indecomposable direct summand of M corresponding to i € Ay \Jmr
via the bijection in (2). Then rankg M; = §;.

PrOOF. (1) Let (—)* = Homg(—,R). By 8.20(4), Endg(M) = Endz(M ™). By

8.20(1), M € CMR holds. Thus the assertion follows from 9.3.
(2) Let E := Endx(M). By projectivisation there is a bijection

indec(add M) ~ indec(proj F).

On the other hand, any maximal left ideal I of F contains gFE by Nakayama’s Lemma for
R-modules. Thus gF belongs to the radical of F, and there is a bijection

indec(proj E) ~ indec(proj E).

The righthand side corresponds bijectively with A\ . Composing the above bijections
gives the desired one. o
(3) This is immediate since rankg M; = ranks; M;, and this equals 8; by 9.3. d

The following result follows immediately from 9.4(2). This was shown in [W2, 1.12]
by using minimal models of Spec R.

THEOREM 9.5. Let R be a cDV singularity of type A. Then any modifying R-module
has at most 1 + |A| non-isomorphic indecomposable direct summands. In particular, R
has a maximal modifying generator.

9.2. Modifying Modules and Chambers

Let R be an arbitrary complete local cDV singularity, and let M € MM®R, which exists
by 9.5. Since R is a three-dimensional Gorenstein normal domain, recall from (8.2.E) and
8.2.F) that there are bijections

(
(9.2.A) Homg (M, —): modif R = ref-ptilt Endx (M)
(9.2.B) Homg (M, —): MMR =5 ref-tilt Endg (M).
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These bijections hold for general three dimensional Gorenstein normal domains admit-
ting a maximal modifying module. The point here is that cDV singularities R have much
more structure, and we now extend these bijections, and describe them using Coxeter
combinatorics.

As above, choose a hyperplane g € k[[z,y, z, t]] such that R/gR is a simple singularity

of type A, and write R := R/(g) and (—) := R ®@x —. From 9.4 recall that:

e There is a bijection indec(CM R) = A,¢ for some extended Dynkin A,
e There exists a subset Jps of Ay such that Endg (M) = Ty,,.

Then, using 8.3, it follows that there are injections:

(9.2.C) (—): ref-ptilt Endg (M) — ptilt Ty,,

(9.2.D) (=): ref-tilt Endg (M) — tilt Ty, .

Combining these facts, we immediately obtain the following crucial result.

THEOREM 9.6. Let R be cDV, M € MMR and set Fy; = Homg (M, —).
(1) For P:=TFyR, there are injections

Fpr: modif R — ptilt Ty,,

Far: MMR — tilt Ty,

Fpr: modif RN CM R — ptilt(Ty,,, P)
Fpr: MMGR — tilt(Ty,,, P).

(2) Let L, N € MMR with L % N. Then L and N are related by a simple mutation
if and only if the tilting modules Fy;L and Fpar N are related by a simple tilting
mutation.

(3) The exchange graphs of MMR and MMGR are connected.

(4) If R is an isolated singularity, then all the maps in (1) are bijective.

PRrROOF. (1) This is now immediate, by composing (9.2.A) and (9.2.C), respectively
(9.2.B) and (9.2.D).
(2)(=) follows using 8.17(2). (<) follows by injectivity of the map in (1). Indeed,
suppose that Fp;L and Fj; N share all summands except one. Since (9.2.D) is injective,
Homg (M, L) and Homg (M, N) share all summands except one. Given this, the fact that
L and N are linked by a simple mutation is | , 4.5(2)].
(3) We apply the criterion 8.19 for connectedness, namely there is no T € tilt Iy, and an
infinite sequence Ty,, =Ty > 11 > Ts > ... such that T; > T for all ¢ > 0. Since each T;
corresponds to a chamber, this follows using exactly the same argument as in 5.23.
(4) The exchange graph of tilt Iy, is connected by 5.2. Thus all the assertion follow from
8.17(1). O

To apply our results in tilting theory of contracted preprojective algebras, recall from
5.26 that there is a natural bijection

BHM : Ko(proj FHM) = LHM'

The following index allows us to assign to every modifying R-module a point in a combi-
natorial lattice described using the Coxeter combinatorics of Part 1.

DEFINITION 9.7. For M € MMZ®R, write indy; for the composition of bijections

Homa (M=) Ba s ol-]
RO ilery,, — M

modif X (9.2.E) (5.26) In
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For N= N1 &...85 N, € modif R, let
¢
CM(N) = ZR>O(indM Nz) C @gM.

i=1
The following is the main result of this section. The injections in part (2) are known by
[ |, but here we reprove it without using any birational geometry. All other parts are
new, and should be viewed as the providing the affine version of the Auslander—-McKay
correspondence in [W2].

COROLLARY 9.8. Let R be ¢DV of type A, and fir M € MMR. Then the following
assertions hold.

(1) There exists a subset Jpy C A and injective maps
indp;: modif R — L;{M and Cpr: MMR — Cham(Aas,dnr)-

Furthermore, if N = N1 & ... ® N,, € MMR is basic with indecomposables N;,
then indps Ny, ..., indpyr Ny, is a basis of Cvi(N) N Ly, -
(2) If M has R as a direct summand, then the maps above restrict to injective maps

indps: modiffRﬂCMiR%LzﬁM and Cpr: MMGR < Cham(A, Jar).

In particular, #(modif R Nindec CMR) < oo and # MMGR < co.

(3) Let L,N € MMR with L % N. Then L and N linked by a simple mutation if
and only if Cpr(L) and Cpr(N) are linked by a simple wall crossing.

(4) If R has an isolated singularity, then the maps in (1) and (2) are bijective.

PRrROOF. All the assertions follow from 9.6 and 5.3. O
For a fixed M € MM®R, the following property of the index indj; is elementary.

PROPOSITION 9.9. Let N € modif R, and consider 0 — My — My — N, namely the
exact sequence (8.2.D). Then

(921) indM N = il’ldM MO — indM Ml.

PRrROOF. Since 0 — Homg (M, M;) — Homg (M, My) — Homg (M, N) — 0 in 8.8 is
exact, this is clear. (I

Let 8=, A, 0 be the imaginary root for the extended Dynkin graph Aug, where
{of | i € Ay} and {; | i € Ay} are the dual basis. We regard § as a map O, — R.

PRrROPOSITION 9.10. For M € MMX, the following statements hold.
(1) If N € modif R, then rankg N = §(indps N).
(2) For each positive integer r, there is an injection

indys: {X € modif R | rank X =7} — Ly, N3 ().

In particular, there is an injection indpr: CI(R) — Lg,, N Level.
(3) Assume that R has an isolated singularity. Then the maps in (2) are bijective.
Moreover, Lg,, = indp (CY(R)) + Zindps R holds.

Proor. (1) By 9.4(3), we have M = @B,ca.\,, M? and rankg M* = §;. Thus
(9.2.7) rankg M* = 8; = 8(af) = &(indps M*).

Now consider an arbitrary N € modif R. For any N € modif R, there exists an exact
sequence 0 — M; — My — N with M; € add M where the last map is an add M-
approximation. By (9.2.I), we obtain indp; N = indys My — indps M;. By 8.14(2) we see
that rankg N = rankg My — ranky M;. Thus

)

rankg N = rankg My — rankg My =" 8(indys Mo) — 8(indas M) = 8(indas N).
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(2) The first assertion is clear from (1) and 9.8(1). The second one is clear since CI(R) =
{N € modif R | rank N = 1}.

(3) The first assertion follows from (2) and 9.8(4). To show the second assertion, fix
x € Lg,,. For r :=8(z) and y :== x — (r — 1)indps R, we have z = y + (r — 1) indps R,
where y € Lg,, N571(1) = ind s (CL(R)). O

9.3. Universality of index

The definition of the index indy; given in the previous section depends on the choice
of a fixed M € MM®R. We now show, in 9.11, that ind;; does not depend on this choice
of M, up to a specific isomorphism, then in 9.17 show that it is left /right symmetric.

As such, consider N € MM®R. By 9.4 applied to N, there is an associated subset Jn
of A,f. Furthermore, it is clear that the image of N under the map

MMR — tilt rgM = Cham(Aaff, HM)

has the form (znns, ) for some element xyps of the affine Weyl group. It is also clear that
multiplication xnps: Oa.r — O relabels chambers, and so restricts to an isomorphism
xnm: Ly, — Lyg,, via the labelling rules of 1.12.

THEOREM 9.11. For M, N € MMZR, the following diagram is commutative.

ind N
modif R ———— Ly,

JffNM

ind
modif R ————— Lg,,

To prove this requires the following notion.

DEFINITION 9.12. For J C A,s, we call a map
f: modif R — L;

compatible if it is injective and, furthermore, the following two conditions hold for each
N=N&...H5 N, € MMR with indecomposable N;.

(1) The elements f(N1),..., f(N,) form a Z-basis of some Cy(N) € Cham(A., J).
(2) For all my, ..., my > 0, (@, NE™) = S0, mif(N).

We also require the following easy observations.

LEMMA 9.13. Let J be a subset of Ay.

(1) For each M € MMR, the map indps: modif R — Lyg,, is compatible.

(2) Let (x,J) € Cham(Aa,d) and f: modif R — Lj be a compatible map. Then
zo f: modif R — Ly is also a compatible map.

(3) Let f: modif R — Ly be a compatible map and M, N € MM®R. If M and N
are linked by a simple mutation, then C¢(M) and Cy(N) are related by a simple
wall crossing.

(4) Let f,g: modif R — Ly be compatible maps. Then f = g holds if there exists
basic M = My @ ... ® M, € MMR with indecomposable M; such that f(M;) =
g(M;) for all i with 1 <14 <mn.

PRrOOF. (1) This is an immediate consequence of the definition, using 9.8(1).
(2) This is clear since the isomorphism x: Ly — Lj sends the chambers in Cham(A,x, J)
to those in Cham(Au¢, J).
(3) This is clear, since M and N share all summands except one.
(4) By [IW, 4.18(1)], any element in modif R belongs to add N for some N € MMR. It
suffices to show that f = g holds on add N for each N € MMZR.
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Let N,L € MM®R be linked by a simple mutation. If f = g holds on add N, then
f = g holds on add L by (3). Since the exchange graph of MM®R is connected by 9.6(3),
the existence of M implies that f = ¢ holds on add L for each L € MMZR. (]

Now for M, N € MM®R there are isomorphisms
Endg (M) =Ty, and Endx(N) =Ty,
of algebras and an isomorphism
(9.3.A) Homg (M, N) = eg,, Lo €9 n
of (Endg (M), Endx(N))-bimodules.

Proor oF 9.11. By 9.13(1)(2), the maps indy; and s o indy are compatible.
Let N =N; ®...& N, with indecomposable N;. Then

. ————— (9.3.A % .
lnd]\/[ Ni = BgN[HOIn:R(M, Nl)] ( = ) [engzNMei J,‘NM(O(Z») = xNM(ll’ldN Nl)

By 9.13(3), it follows that indy; = znps 0 ind . O

] 5.26

REMARK 9.14. It follows from the above that the following diagram commutes.

HOmR(N,—) .
modif R ——— Ko (proj Endg(N))

[ [RHomy ,, (Homg (M,N),—)]

Homx (M,—) .
modif R —————  Ko(proj Endr(M))

In what follows, a key role is played by the swap involution

sw: T =5 TT°P

of the preprojective algebra TT defined by

sw(e;) =e; and sw(a) =a".

Let J be a subset of A. Since sw fixes the idempotent ej € T1, it induces an involution
sw: Ty = TP,

This induces an equivalence sw*: mod I’y = mod I"; P which clearly gives rise to bijections

sw*: ptilt Ty = ptilt T;¥ and sw*: tiltTy = tilt I}

Similarly, if M € MMR, then R-dual satisfies M* € MMR, and furthermore Endg (M*) &
Endg (M)°P. Then the dual version of (9.2.A) is

Homg (M*, —) = Homg (—, M) : modif R — ref-ptilt Endx (M )°P
The right module version of 8.3 asserts that
(—): ref-tilt Endg (M) < tilt T3P |
and so combining gives the dual version of (9.2.E), namely
(9.3.B) Homg(—, M): modif R < tilt Ty".
LEMMA 9.15. If M € MMZR, then the following diagram is commutative.

Homy (M,—) . (=) .
modif R ————— ref-ptilt Endg (M) ——— ptilt Iy,

Nsz’K
Homgz(—,M

modif R —)> ref-ptilt Endg (M)°P L ptilt ;P
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PROOF. By the same argument as in the proof of 9.13(4), it suffices to show that the
diagram commutes for each indecomposable direct summand M; of M. Let e; € A be
the idempotent corresponding to M;. Then Homx (M, M;) = Ty,,e; and Homg (M;, M) =
e;ly,, hold. Thus

sw*Homg (M, M;) = sw*(Ty,,e:;) = e;Tg,, = Homg (M;, M).
Hence the diagram commutes for M;, as desired. [

Next we show that the index is left-right symmetric in the following sense. Fix
M € MMZR, then in a similar way to 5.26, there is a bijection

BSY, + Ko(proi [37) ™ Ly,,.
sending e;ly,, — .
DEFINITION 9.16. For M € MM®R, write ind™ for the composition
. Homgz(—,M) 1 rop ?'[1)\/10[_] +
modif R W ptilt Iy ———— Ly .

THEOREM 9.17. For any M € MM®R, we have indy; = ind™ .

PRrROOF. Consider the following diagram, where the top row is indy; and the bottom
row is ind™.

Homg (M,—) Bayol-]
modif R # ptilt Ty, AL AN Ly,

Homg (—,M)

modif R ——————— ptilt 77 ———— Ly,

The left hand square commutes by 9.15, and the right hand square clearly commutes. [

A corollary of the above is the following remarkable symmetry property for cDV
singularities, which does not usually hold for general 3-dimensional Gorenstein rings. We
will extend the following in §9.5 later.

COROLLARY 9.18. Let M € MMR and L € modif R. Then the sequences (8.2.D)
0—-L—-Uy—U; and 0—-Vi; = Vy— L
satisfy Uy = Vi and Uy 2 Vy. Moreover, indy; L = indy; Uy — ind s Uy holds.

PROOF. By 9.9 and its dual, we have indy L = indps Vy — inday Vi and ind™ L =
ind Uo—indM U;. Hence, using 9.17, indy; Vo —indas Vi = indyy L = indyy Ug—ind s Us .
In particular

mdM(Vo D Ul) =indy; Vo +indy, U; = indpy Vi +indy Uy = indM(V1 D Uo)

Hence, by injectivity of indps, Vi ® Ug = Vy @ Up. Since Vp and Vi (respectively, Uy and
U;) do not share non-zero common direct summands by 8.8, the assertion follows. (]

As a consequence, we obtain the following remarkable property of exchange sequences.

PROPOSITION 9.19. Let M = M, & ... ® M, € MMR with indecomposable M;. For
all i such that 1 < i < n, consider the exchange sequences

0—-N;,—-V,—M; and 0 — M; — U; — N;.
Then U; 2 V;. Moreover, indy; M; + indys N; = indyy U; = ind s V;.
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PRrROOF. Let A; = Endg(M)/(1 — e;). The proof divides into two cases. If A; is not
artinian, then M; = N; holds by 8.6(2). Thus the two exchange sequences are isomorphic
by 8.5(2), and, in particular, U; 2 V;. On the other hand, if A; is artinian, then by 8.5(4),
U; — N; is a right (add M)-approximation, and N; — V; is a left (add M )-approximation.
By 9.18, U; = V; holds.

In either case, using 9.9, indp; N; = indps U; — indp; M; holds. [l

9.4. Class Group and Global Index

Throughout this section, let R be a ¢cDV singularity. We regard Z® C1(R) has a factor
group of Ko(R) by the map (9.0.B), and as in (9.0.C) we define the global index to be the
composition

) (-] (9.0.B)

ind: modR — Kg(modR) — Z @ CI(R).
This sends M to (rankg M,det M). In this section, for each M € MMR, we will show in
9.21 that ind and indj; are related by a specific isomorphism.

We begin by constructing a morphism from Lg,, to Z ® C1(R). Consider the triangle
functor

L
M Rpndp ) —: Kb(proj Endg(M)) — Db(mod R),
which induces a group homomorphism
L
[M @Endyg () —): Ko(projEndx(M)) — Ko(mod R).

We define the group homomorphism ys: Lg,, — Z®CI(R) via the following commutative
diagram.

Bap (5
Ko(proj Endx (M)) UVL Lo
(9.4.A) (M Q%Endgg(M) _]J JYM
(9.0.B)
Ko (mod R) Z® CUR)

Leading up to our next result, we need the following general observations. Note that
all are clear for the case M € MMGZR, since then M is a projective A-module.

LEMMA 9.20. Let M € ref R and A = Endg (M).

L
(1) For each X € mod A, we have [M ® X] = [M @4 X] in Z ® CI(R).
(2) For each N € ref R, we have

[M &, Homg (M, N)] = [M @x Homg (M, N)] = [N] in Z & CI(R).

PRrROOF. (1) Let A = Endx(M). For all height one prime ideal p € Spec R, the
Rp-module M, is free. Hence M, is projective as a module over Endg, (M) = A,. In
particular,

Tor™(M, N), = Tor"* (M,, N,) = 0
holds for all i > 0. Thus dimpg Tor?*(M, N) < 1 for all i > 0. By (9.0.A), we obtain the
assertion.
(2) The first equality is (1). For the second equality, by the same argument as above, the

canonical map M ®, Homg (M, N) — N becomes an isomorphism after localising at each
height one prime ideal of R. O

THEOREM 9.21. Let R be a cDV singularity and M € MMR.
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(1) The following diagram commutes.

ind s

modif R Ly,

JYM
ind

mod R ————  Z ® CI(R)

(2) var is surjective, and satisfies ypr(indpr I) = (1,1) for all T € CI(R).
(3) If R is isolated, then the map &: Lg,, — Z coincides with the composition of
Yum: Lg,, — Z ® CUR) and the first projection Z & CI(R) — Z.

PRrROOF. (1) Let N € modif R. Then

(9.4.A) 9.20(2)

Yar(indar N) = yar o By, ([Homz (0, N)]) =Y (1 & Homa (1, N)] "2 ().

(2) By (1), we have ya(indps I) = [I] = (1, ). Since yp(indps R) = (1,0), the image of
Ym COIltalIlb both Z and CL(R). Thus vy is surjective.

(3) It suffices to show the assertion for each element z € L+M. Since R is isolated, by
9.8(4) we can write = indps N by some N € modif R. The assertion then follows since

yar(e) 2 ind N = (rankg N, det N) 2V (5(z), det N). O

As a consequence, we obtain the following explicit description of C1(R). The first part
can also be obtained using the theory of minimal models, but the following description
falls out of the Coxeter combinatorics.

COROLLARY 9.22. Let R be isolated cDV, and M € MMZR.
(1) va: Lg,, — Z&CUR) is a group isomorphism. Therefore CI(R) = Z"~1, where
n 1s the number of indecomposable direct summands of M.
(2) If M € MMGR, then vy restricts to a group isomorphism CoWtg,, — CI(R).
(3) There are bijections

ind s

modif R —— L = —

(Z®ClR))T

PROOF. (1) The map var: Lg,, — Z @ CI(R) is surjective by 9.21(2), so it suffices
to prove injectivity. Let r = indjy; R € Lg,,. Since R has an isolated singularity, 9.10(3)
shows that each x € Lyj,, can be written as = indy; I + £indp; R for some I € CI(R)
and ¢ € Z. If yp(x) = 0, then

0=var(x) "2 ind I + ¢ind R = (1 +¢,1).

Thus ¢ = —1 and I = R hold, and hence x = 0. This proves the first assertion. The
second assertion follows, since Lg,, = Z".

(2) Since M € MMGR, the subset Jp; C A, can be viewed as a subset of A. Hence, as in
§2.1, it is possible to consider CoWty,,. Since CoWty,, = Lg,, N871(0), the result follows
by combining (1) and 9.21(3).

(3) The first bijection is 9.8(4), and the second bijection is a direct consequence of (1). O

The following observation is elementary.

PROPOSITION 9.23. Let X € modif R, and I € CI(R).

(1) ind X + ind X* = (2,0).
(2) ind((I ®x X)**) =ind X + rank X (ind I — ind R).
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PROOF. (1) This is clear.
(2) We have det(] @ X) = det X +rank X - det I (e.g. | , 3.1]). Thus

ind(I ®x X) = (rank(l ®x X), det(I ®x X))
= (rank X, det X +rank X - det I)
= ind X + rank X (ind I — ind R). O

One of the advantage of the global index is that it simplifies some arguments.

LEMMA 9.24. Let A, B,C € ref R, and let

0—>A—>Bi>C

be exact such that either

(1) dimg Cok f <1, or
(2) there exists non-zero X € ref R such that Homx (X, f) is surjective.
Then ind B =ind A+ ind C.
PROOF. (1) This is clear since Cok f is zero in Z @ CI(R).
(2) Let p € SpecR be a height one prime ideal. Then X, is a non-zero free R,-module.

Since Homg, (X, fp): Homg, (X, By) — Homg, (X, Cy) is surjective, f,: By, — C, is
surjective. It follows that dimg Cok f < 1, so the assertion follows from (1). O

As an application, we give a more direct proof of 9.18 for isolated cDV singularities.
Another application will be in 9.29 below.

PROOF OF 9.18 FOR ISOLATED CASE. Since the sequences
0 — Homg (M, V;) — Homg (M, Vo) — Homg(M,L) — 0

0 — Homg (M*,Us) — Homg (M*,Uy) — Homg (M*,L*) — 0

are exact, by 9.24 we have ind L = ind V) —ind V; and ind L* = ind Uj — ind Uy". Hence
(by 9.23(1)) ind L = ind L* — 2(rank L, 0)
= ind L* — 2(rank Uy, 0) 4 2(rank Uy, 0)
= (ind U§ — ind Uy) — 2(rank Up) + 2(rank Uy )
(by 9.23(1)) =ind Uy — ind U;.
Equating both expressions for ind L, it follows that
ind(Vo @ Uy) =ind Vo +ind Uy = ind Uy + ind V4 = ind(Up & V1),

and hence Vp ® Uy ~ Uy & V; since ind is bijective on modifying modules by 9.21(1) and
9.22(3). Since Vj and Vi (respectively, Uy and U;) do not have non-zero common direct
summands by 8.8, the assertion follows. (]

9.5. Extension to Modifying Modules

In this subsection we extend the above symmetry properties to all modifying modules.
Geometrically this is important; later, this is precisely what allows us to work on arbitrary
crepant partial resolutions. The consequences are striking: we prove in 9.28 that when
R is isolated, the mutation of any modifying module, at any summand, is an involution.
This is not the typical behaviour for 3-dimensional Gorenstein rings.

Let R be a cDV singularity. For a fixed modifying R-module

N=N;®...® N; € modif R
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with indecomposable summands N;, choose some M € MM®R, and define
Hy := (indps N1,...,indps Ny) C Lg,,,
modif VR := {L € modif R | indy; X € Hy},
MMYR := {L € modif "R | |L| = |N|}.

where | X| denotes the number of non-isomorphic indecomposable summands of X. By
9.11 (see also 9.25(3)), modif¥ R and MM R are independent of the choice of M € MMZ®R.
Note that MMY R is not a subset of MM®R, unless N € MM®R.

In the following theorem, we remark that all parts are not typical behaviour of mod-
ifying modules on 3-dimensional Gorenstein rings. The key point is that it is our precise
understanding of the K-theory of MMAs for ¢DV singularities in the previous sections,
via Coxeter combinatorics, that allows us to extract these corollaries.

THEOREM 9.25. Let R be a cDV singularity and M € MMR. Fix N = N1®... &N, €
modif R with indecomposable. For any X € modif R, the following holds.
(1) X € modifV R if and only if Homg (N, X) € ref-ptilt Endg (N).
(2) X € MMV R if and only if Homg (N, X) € ref-tilt Endg (N).
(3) There are bijections
(9.5.A) Homg (N, —): modif™ R =5 ref-ptilt Endy (N)
(9.5.B) Homg (N, —): MMV R = ref-tilt Endg (N).
PRrROOF. (1) The following diagram is clearly commutative, where the symbol ~ de-
notes a bijection, and the symbol 2 a group isomorphism.

= Bayrol-]
ref-ptilt Endg (M) — —— ptilt Ty, —— L+
I |

Ko(proj EndR(M)) i) KO(prOj rHM) T) L3M

Thus X € modif™ R holds if and only if [Homg (M, X)] € Ko(proj Endg(M)) belongs to
the subgroup generated by [Homg (M, N;)] with 1 < ¢ < ¢. By 8.15, this is equivalent to
Homg (N, X) € ref-ptilt Endg (V).

(2) This is clear from (1).

(3) If N = 0, then the assertion is clear since modif’ R = 0. Assume N # 0. The maps
are well-defined by (1) and (2). Since N # 0, there is a reflexive equivalence

(9.5.C) Homg (N, —): ref R =5 ref Endg (V)

by (8.2.A). In particular, both maps in the statement are injective. To prove the
surjectivity, fix T € ref-ptilt Endx(N). By 8.13, there exists L € modif R such that
T = Homg(N, L). By (1), L € modif¥R. This shows that the first map is surjective. If
T € ref-tilt Endg (N), then

(9.5.0) (9.5.0)
|rL] =" [AT| = [aA] =" [rN].

Thus L € MMV R holds, and the second map is also surjective. O

We will now work towards showing that, when R is isolated, MM" R is the mutation
class of N, and modifVR are all possible summands of these. Although many of the
arguments below are more general, the non-isolated case remains more subtle; see 9.27.

The following is a generalisation of 9.19, and also generalises [W2, 5.22].

COROLLARY 9.26. Let N = N1 @ ... ® N,, € modif R be basic with indecomposable
N;, and let M € MMR contain N as a summand. Then for each i such that 1 < i < n,
the following statement holds.
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(1) vi(N) is an artinian mutation if and only if there exists N] % N; such that
(N/N;) ® N} € MM R.
Assuming further the equivalent conditions in (1), then the following statements hold.
(2) vi(N) = w(N) = (N/N;) @ N/ € MMV R.
(3) The exchange sequences
0— N, —-V,—N; and 0— N; - U; — N;
satisfy U; =2 V; and indp N; + indpy N = indpy U; = indy V.

PRrROOF. Let A = Endg (V).
(1)(=) By 8.11, vae;(A) € ref-tilt A. Using (9.5.B), there exists N/ % N; such that
(N/N;) ® N} € MMV R and v, (A) = Homg (N, (N/N;) @ N).
(<) Again by (9.5.B), Homx (N, (N/N;)@&N;]) € ref-tilt A. Thus v;(A) belongs to ref-tilt A.
By 8.11(1), v;(IN) is artinian mutation.
(2) On one hand, by 8.11(1) v;(A) = Homg (N, v;(N)). On the other hand, by (1) above
v;(A) =2 Homgx (N, (N/N;) @ N/). Hence by reflexive equivalence v;(N) = (N/N;) &
N!. Since Hy = <indM Ni,...,ind™ N,,) holds by 9.17, the dual argument tells us that
Wi (V) = (N/N;) & Nj.
(3) Applying Homg (M, —) to the second sequence, we obtain an exact sequence

0 — Homg (M, N;) — Homx (M, U;) — Homg (M, N}) — 0

by 8.11(2). Dually, applying Homx(—, M) to the first sequence, we obtain an exact
sequence

0 — Homg (N;, M) — Homg (V;, M) — Homx (N/,V) — 0.

Now the assertions follow from 9.18. O

REMARK 9.27. If v;(N) is not an artinian mutation, then v;(N) € MM"R does not

necessarily hold. For example, let R = k[[z,y,u,v]]/(z® — uwv) and N = R ® (u,z). Then

o (N) = R (u, 2%) does not belong to MMY R. We do not know whether v;(N) 2 w;(N)
holds in general.

This has the following striking consequence.

COROLLARY 9.28. Let N € modif R, and L be an arbitrary direct summand of N
such that v (N) is an artinian mutation. Let M € MM®R contain N as a summand.

(1) There is an isomorphism vi(N) = up(N), and so v, vp(N) = N.
(2) The exchange sequences

0L -V =L and 0L —-U— L.
satisfy U =2V, and further indys L 4+ indys L' = indp; U = indp, V.

ProoF. Let L = L1 & ... ® Ly with indecomposable L;. For each 1 <i </, by 9.26
applied to (N/L) & L;, we have

(9.5.D) (N/L) & Ly i= Vi, (N/L) @ L) = g, (N/L) & Ly).
However by definition of mutation,
VL(N)=(N/L)® L} &...® L, 2 ur(N).

This proves (1). For (2), the exchange sequences are the direct sum of the exchange
sequences for the mutations (9.5.D), which satisfy the desired properties by 9.26. O

COROLLARY 9.29. Let R be isolated ¢DV. If N € modif R, then MMNR coincides
with the mutation classes of N.
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PROOF. Let X € MMYR. First, consider the exchange sequence
0— X, > U; = X/,

then by 9.24 ind U; = ind X; + ind X]. Hence, combining 9.21(1) and 9.22(1), indpy, U; =
indps X; + indps X[, This shows that v;(X) € MMV R, and so MMV R is closed under
mutation. In particular MMY R contains the mutation class of N.

We next claim that MMY R is the full mutation class. Consider the composition

(9.5.E) MMYR ZOE N T o bile Enda (V) < til6 Ty, > Cham(Aagr, I ),

where the first bijection is (9.5.B), the second injection is 8.3(1), and the third is 5.26.
Since MMM R is closed under mutation, the first bijection is clearly compatible with mu-
tation; the second map is compatible with mutation by 8.3(3), and in the third, mutation
corresponds to wall crossing by 5.2.

Consider an arbitrary chamber C' in Cham(Au,dn). By 1.20(2), this chamber can
be connected to (1,Jn), the chamber corresponding to N, via a finite sequence of wall
crossings. By induction starting at N, it follows that the chamber C is the image of
some Y € MMV®R, and furthermore Y can be obtained from N via a finite sequence
of mutations. In particular, the composition (9.5.E) is a bijection. It also follows that
MMM R is precisely the mutation class of N. O

As notation for the next corollary, for N € modif R write A = Endg(N), and
So,--.,9, for the simple A-modules. These correspond bijectively with the indecom-
posable summands No, ..., N, of N. For any subset J C {0,...,n}, set Ny = P,.4 Ni,
vg(N) = vy, (N), and write Ay = A/(1 -, e;) for the associated contraction algebra.

In the case when R is isolated, all mutations are artinian, so the following generalises
[ , 4.7, 4.9] by removing all restrictions on J. It is also required for applications to
twist autoequivalences in Part 4.

PROPOSITION 9.30. Let R be ¢DV, suppose that N € modif R and I C {0,...,n} is
such that v4N is an artinian mutation. Then the minimal projective resolution of Ag is

O—>@TPZ-—>Q—>Q—>@T¢—>A3—>O
icd i€J
where P; ¢ add Q for alli € J. In particular, proj.dim, Ay = 3 and

¢ L_J C ift=0,3
EXtA(Aj’SZ){ 0 else.

PROOF. Since R is isolated, dim¢ Ay < co. Further, we know vyvsN = N by 9.28.
These last two conditions are precisely the assumptions [W2, A.6(b)], hence the projective
resolution of Aj is now immediate from [ , A.7]. Since the approximation sequences
are minimal, the projective resolution is minimal, and so all other statements follow. [

The following is largely a summary of some of the results so far, in the special case
that R is isolated.

COROLLARY 9.31. Let R be isolated ¢cDV, and N € modif R with associated J = Jn.
Then the following hold.

(1) The exchange graph of N equals the 1-skeleton of Level(Ja). In particular, the
exchange graph is connected.
(2) If further R € add N, then
(a) The elements of MMYR N CM R are in bijection with Cham(A,Jy). Wall
crossing corresponds to mutation at non-free summands.
(b) MMV R N CMR coincides with the mutation classes of N where we only
mutate at non-free summands. In particular, this is a finite number, and
this subgraph is connected.
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PROOF. (1) As already remarked in the proof of 9.29, the composition MMVR —
Cham(Aas,dn) in (9.5.E) is bijective, and mutation corresponds to wall crossing. Since
by 9.29 MMV R is the mutation class of N, the result follows.

(2) Elements of MMYR N CM R are precisely those elements of MM R which contain R
as a summand. Across the bijection MMYR — Cham(A,fr,dwv), this corresponds to all
chambers in the image of Cham(A,Jn) — Cham(Au,dn). Part (a) follows. For part (b),
we can run the argument in 9.29, since we can connect any two chambers in Cham(A, Jx)
by a finite sequence of wall crossings, at each step remaining in Cham(A,Jx). O

ExXAMPLE 9.32. Suppose that R is isolated of type cFEr, and that N € modif R has
corresponding eseceee. Suchan example exists. Combining 9.31 with 4.23, the exchange
graph of IV is illustrated as follows.
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9.6. The J-cone Groupoid

In this section we will re-interpret the above results in terms of the Deligne groupoid
Gg.« from §2.3, and we show that the mutation functors between Endy (N) and Endg (v;N),
ranging over the whole mutation class, form a representation of the groupoid. This sub-
section is the 3-fold version of §5.7.

To set notation, throughout this section R will be isolated cDV, N € modif R, with
associated J = Jn. By 9.31, we know the following.

e The mutation class of N is in bijection with the chambers Cham (A, Jn). Write
X +— Cx for this bijection.

o If further R € add N, then the Cohen—Macaulay mutation class of N is in bi-
jection with the chambers Cham(A,Jy). We will abuse notation and still write
X — Cx for this bijection.

DEFINITION 9.33. Let R be isolated cDV, and N € modif R, with associated J = J .
(1) The groupoid Hy,, is defined as follows. As objects, to the chamber Cx as-
sociate a vertex labelled DP(mod Endg (X)). The morphisms are generated by
the simple wall crossings, where to w;: X — v;X we associate the equivalence
RHOHlEndR(X)(HOInR (X, ViX), 7).
(2) If R € add N, we also associate the groupoid Hy. This is defined in a similar
way, where now the vertices are labelled D’(mod Endg (X)) for those X in the
Cohen—Macaulay mutation class of N. Wall crossing is as above.

The following is the three-dimensional version of 5.30. It extends [FIW1, 4.6] in two
ways: firstly by constructing the affine version, and secondly by removing all smoothness
assumptions.

PROPOSITION 9.34. Let R be isolated ¢cDV, and N € modif R with associated J = Jn .
Consider a chain of simple mutations

N=N; =+ Ny—...=> Ny = Nppi
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then via 9.31, this corresponds to a path in Cham(Aggk,d). If this path is reduced, then
there is a bimodule isomorphism
L L L
Homx (Npy, Nppt1) @ ... @ Homg (N2, N3) @ Homxg (N, Na) =2 Homg (N, Nypt1)
where, reading right to left, the tensors are over Endg (M;) fori=2,...,m.

ProoF. Exactly as in 5.30, we induct on the length of the path. Setting A,, =
Endx (M,,), it suffices to prove that there is an isomorphism
(9.6.A) Homx (Npy, Nypt1) @) Homg (N, Nyy) = Homxy (N, Npyt1)

in the category of bimodules. Since the path is reduced, Homg (N, N;,,) > Homg (N, Nyyq1)-
Given this last fact, as is standard (see e.g. [ , B.1]), it follows that the left hand
side of (9.6.A) is concentrated in degree zero. Truncating in the category of bimodules,

it follows that
Homg (Npy, Nyy1) @, Homz (N, Ny) = Homg (N, Niy1) @4, Homz (N, Nyy,)

as bimodules. From here, the proof is word-to-word identical to | , 4.6]. Namely,
set A = Endg(N), F = Homx(N,—) and T = Homx (N, N,,), then there is a chain of

isomorphisms
Homgz (N, Npt1) @ Homgy (N, N, ) — Homp (T, FNp 1) @ T =5 FNp, 41

where the first is reflexive equivalence g® f +— (go—)® f, and the second is the adjunction

from the derived equivalence (using the last statement in | , B.1]), which takes @®t —
@(t). The above composition takes g® f — go f, which by inspection this an isomorphism
in the category of bimodules. O

EXAMPLE 9.35. Suppose that N € modif R such that Jy = ®e®. Such an example
exists. Drawing the picture as in 5.27, consider the following part of the exchange graph:

N7 T
N
Nio \
[
\ |
Ny

Ni2y
Noy

Set A; = Endx(V;), and A = Endx(N). Then, as a direct consequence of 9.34, the
following diagram commutes.

®%Homg (N,Ny)

b <«
®k1HOm92(N1, 12) D (Al) _\

(N.N12)_ D(A)

@RHonx
DP(A N
(A12) 60} ~ ®xHomg (N,N2)

[ E

S <

o —

v$ &

®k12Hom9<(N12,N121) ® 5

k; DP(A2)
DP(A121) szom‘rR(N%Nﬂ)

™~ | D"(Aa)

®k21H0m5a(N217Nl21)
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The above generalises to the following statement, which is the 3-fold version of 5.35.

THEOREM 9.36. Let R be isolated ¢cDV, and N € modif R with associated J = Jn.
Then there are functors:

93 — Hg
93aff - Hﬂafr

given, in both cases, by sending a wverter corresponding to a chamber labelled Cx to
DP(mod Endg (X)). On morphisms, since wall crossing corresponds to mutation, the func-
tor takes a wall crossing X — v; X to RHomgyq,, (x)(Homg (X, v; X), —).

PROOF. In either case, denote the functor above by F. It suffices to show that the
relations on G5 and Gy, in 2.16 are satisfied functorially in Gy and Gy,,. By definition,
in 2.13, it suffices to show that any positive two reduced paths

(X,B:CX*)CY

in Cham(Aas,dn) give rise to isomorphic functors F'(x) = F(f3).

We can view both paths as a sequence of mutations in Cham(A.g, Jx ), starting at C..
Clearly this reindexing does not effect whether the paths are reduced. The result then
follows immediately from 9.34, since both F(«) and F(f) are isomorphic to the direct
functor given by RHomgpq,, (x)(Homg (X,Y), —). O

Recall the notation 71 (J) and 711 (Ja) from 2.18. By passing to vertex groups, the
following is then immediate from 9.36, and is the 3-fold version of 5.36.

COROLLARY 9.37. Let R be isolated ¢cDV, and N € modif R with associated J = Jn .
Then there are group homomorphisms such that the following diagram commutes.

71 (J) —2— Auteq DP(mod Endx (N))
o
/
701 (Jaff)

We will show in Part 4 that ¢ is faithful.

9.7. Global Ordering

One of the remarkable properties of Coxeter arrangements in R” is that their 1-skeleta
can be labelled by s1,..., sy, globally, in such a way that:

(1) Every vertex has precisely the labels sq,..., s, emerging from it.
(2) If s; labels the simple wall crossing C' — D, then s; also labels the simple wall
crossing D — C.
For our restriction arrangements, which need not be Coxeter, the existence of such a global
ordering is not so clear. For example, consider the example J = oo in 3.3(1), in which
wall crossing in Cham(Dy, J) is given by
3

[ J [ J - - [ d
(1, ..) (818284,.. )% (818254535251,.. )

° 4
(s358284,000) (8382848152583, 000) — (815284835251545253,000)

Even although this is itself a Coxeter arrangement, the ‘natural’ numbers on the wall
are written on the arrows, are induced from the number of the vertex being mutated.
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These are constantly changing. The other ‘natural’ labelling on the walls is induced by
multiplying by the relevant wjwyy;, namely:

S38284

—
S§1828 _\\\

[
843251\

518284

838281

|
54828

However, whilst this satisfies property (2) above, it does not satisfy property (1).

To rectify this, we can always find some isolated cDV singularity R admitting a crepant
resolution X — Spec R which slices to the minimal resolution of R/gR (see e.g. [T]). By
HomMMP | ], the associated basic modifying module M, which is a generator, has
associated Jp; = (0. Thus, the following hold.

e For any choice KX C A,¢, we may find a summand of N of M such that Jy = XK.
e For any choice J C A, we may find a summand L of M, which contains R as a
summand, such that J; = J, thought of as a subset of A,.

The purpose of this section to use the Krull-Schmidt decomposition of L and N to
put a global ordering on the 1-skeleton of the arrangements Cone(A, J) and Cone(Au¢, K),
satisfying conditions (1) and (2).

We do this for (Au, K), with the finite type case being similar. Fix a Krull-Schmidt
decomposition

NZN &...®&N,.
The summands N; give rise to mutations v;(N) = vy, (N) of N, which by 9.31 correspond
to wall crossings out of the chamber (1,X). Label these n wall crossings (1,X) — Cy,(n)
by s;, and in chamber C,(y) fix the ordering

Vi(N)gNl@“-@Ni—l@NZ*/EBNi+1EB...EBNn,

Reading from left to right, the n indecomposable summands give rise to n mutations of
Cy,(n), which we write v;v;(N), as j runs from 1 to n. Label these n wall crossings
Cyv, vy = Cy,v,(n) by sj, and in the chamber O, () fix the ordering on v;v;(N) from
the fixed ordering on v;(N), replacing the jth summand.

Continue in this way. Given an arbitrary chamber C, find a positive minimal path
a: (1,X) — C. Repeating the above steps at each simple wall crossing of « gives a
fixed ordering on the module L corresponding to C. Reading left to right of this fixed
ordering of the summands of L gives mutations vq,...,Vv,, and we use these to label the
wall-crossings out of C' by s1,..., 8.

THEOREM 9.38. For any pair (A, K) or (A,J), where A is ADE Dynkin, the above
construction gives a well-defined global ordering on Cone(A,J) and Cone(Au,XK), satisfy-
ing properties (1) and (2) above.

PROOF. The main problem is to show that the second part of the construction is
well-defined. Suppose that o, 3: (1,X) — Cx are both positive minimal paths. Then
they induce the same Krull-Schmidt ordering on the summands of X if and only if

Bloa: (1,%) — (1,%)

induces the fixed Krull-Schmidt order Ny & ... & N,, of N. But we can write the cycle
of mutations N — N corresponding to ' o « as a product of conjugate rank two cycles
(i.e. cycles around a codimension two wall crossings). Since by inspection in the rank
two setting, which is in effect a finite hyperplane arrangement in R?, the mutation cycle
induces the same fixed ordering, the above procedure is well defined.

Given it is well-defined, property (1) is clear by construction. Property (2) is just the
statement that v;v;(X) = X. O
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CHAPTER 10

Autoequivalences and Faithful Actions

Given a subset J C A, where A is an ADE Dynkin diagram, we can associate:

(1) By Part 1, the following combinatorial data:

(a)
(b)

()

A finite hyperplane arrangement Cone(d) inside RI%°I

The J-Tits cone Cone(Auf,d), and its level Level(Ja) which is an infinite
hyperplane arrangement inside RI7°I,

The arrangement groupoids G5 and Gy, of 2.16, and the vertex groups 71 (J)
and ﬂl(gafr) of 2.18.

(2) The following surfaces data:

(a)

(10.0.A)

A Kleinian singularity C2/G, where G corresponds to A by McKay corre-
spondence.

A partial crepant resolution g: Y — C2?/G, obtained from the minimal
resolution by blowing down the curves in J.

A canonical tilting bundle Vy on Y, such that its dual is generated by global
sections | ]. It is well known | | that Endy (Vy) 2 eglley = Ty,
where TT is the preprojective algebra of type Aus.

The derived equivalence

RHomy (Vy, —): DP(cohY) =5 DP(mod Ty).

(3) The following 3-fold data:

(a)

A (in fact many) flopping contraction f: X — SpecR, where X has only
terminal singularities, which slices to Y under generic g € R. Namely, there
is a pullback diagram

Y ——X

.

SpecR/g — Spec R

where by Reid’s general elephant SpecR/g = C2/G, and furthermore the
left hand vertical map is precisely that appearing in (2) above.
The derived equivalence

RHomy (Vx,—): D?(coh X) = D(mod Endg(N)).

where Vx is the canonical tilting bundle on X such that its dual is generated
by global sections | ].

The R-module N := f,Vx. It is well-known that N € modif R, and since
by construction Vx has summand Oy, necessarily R € add N.

Conversely, given either a crepant partial resolution Y — C2?/G, or a flopping contrac-
tion X — SpecR where X has only Gorenstein terminal singularities, we can associate

such a J via
this chapter,

slicing if necessary, then using McKay correspondence. Thus, throughout
the question of what is the input is really just a function of viewpoint.

The purpose of this chapter is to transfer the results of the previous parts across the
derived equivalences above, and to spell out all the geometric corollaries. In §10.1 we
will use the tilting theory of Ty from Part 2 to give new results about crepant partial
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resolutions C?/G, and in §10.2 we use the results about modifying modules in Part 3 to
give new results about flopping contractions. In §10.3 we prove that the ‘finite’ group
actions constructed in both settings are faithful generalising [BT, ].

10.1. Surfaces

As notation, consider a partial crepant resolution Y — C?2 /G for some finite subgroup
G < SL(2,C). AsY is dominated by the minimal resolution, it can be obtained by blowing
down a subset J of curves in the minimal resolution, and thus by McKay correspondence
a subset J of an ADE Dynkin configuration.

REMARK 10.1. Recall that the nodes in J are shaded e, and the curves not in J are
coloured. Thus, the coloured vertices correspond to curves in the partial resolution.

10.1.1. Twists for Wall Crossings. Here we gives an intrinsic description of cer-
tain wall crossing in terms of twist functors, and in the process produce new phenomena
of spherical twists. Simple wall crossing can only possibly give an autoequivalence if the
categories on both sides of the wall are equal; this translates into the condition that the
label J does not change under the wall crossing. In the case J = () below, we recover the
Seidel-Thomas twists on the minimal resolution.

As notation, for a fixed Iy, which has unit ey, for each ¢ € J¢ consider the factor Iy; =
Iy /T3(eg — e;)Ty. This is the algebra that represents the noncommutative deformations of
the simple Iy-module §; at the vertex ¢ of Ty.

PROPOSITION 10.2. Suppose that in the simple wall crossing formula, w;(z,d) =
(xx0,d), i.e. the second term J does not change. Set Twist; = RHomr, (egly,eq5,—),
which is the wall crossing equivalence from 5.32. Then the following hold.

(1) Ty, has finite projective dimension, as a Ty-module.
(2) There is a functorial triangle

RHomr, (T, —) ®F,, Ty — (=) = Twist;(—) —
PROOF. Set j = t;4;(i), then by assumption j = i. It follows that

(since i = j) eglz eg = eg(Iy,(eg — €;) ® I €j)
(by 5.14(5)) =eg((eg —ei)(eg — €) & (eg — ei)e;)
=eg(eg —eieg
=eyll(eg — e;)Tey
(since ege; = e; = e;eyg) = eglleg(eg — e;)eglley
=Ty(eg —e)ly.
It follows that Iy; = Iy/egl;,eg, and so there is a short exact sequence of bimodules

0— 63[1063 — rg — rg’i — 0.

Since egl;, ey is tilting, and thus has projective dimension one, part (1) follows. Part (2)

follows from the above bimodule exact sequence, exactly as in | , 6.10]. (]
[ ]

ExXAMPLE 10.3. Consider § = @®g® . This is fixed under all wall crossing rules.

In this example, a knitting calculation [ , 3.16, 3.17] confirms that Iy e = C, and

Mye = Clz,y)/(z%, zy+yz,y?). The green wall crossing thus gives rise to a spherical twist
over C, which is a classical spherical twist, and the red wall crossing gives a spherical twist
over the exterior algebra in two variables.
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10.1.2. Finite and Affine Actions. Keeping the notation that Y — C?/G is a
crepant partial resolution corresponding to J, from Part 1, consider the associated finite
hyperplane arrangement Cone(A, J), and infinite hyperplane arrangement Level(J,¢), both
of which are hyperplane arrangements inside RI2\3l. Write X for the complexification of
Cone(A, J), and X, for the complexification of Level(Jaf).

THEOREM 10.4. Consider a partial crepant resolution Y — C2/G for some finite
subgroup G < SL(2,C), with associated X and Xu¢ as above. Then there exist group
homomorphisms such that the following diagram commutes.

(X)) -2 Auteq DP(cohY)
|
~
701 (Xafr )

Proor. This follows from 2.15 and 5.36, passing through (10.0.A). O

In general, since labels J change under wall crossing, and so the spaces on each side
of the wall need not be isomorphic, the fundamental group action is the best we can hope
for. However, when J is always fixed, below we improve the above to a braid group action
(possibly of a non-ADE braid group!). When J is sometimes fixed, we improve the above
to a mixed braid group action.

We first translate the spherical twists above into geometric notation. Under the
equivalence (10.0.A), suppose that &; corresponds to Iy;. It turns out that &; is the
universal sheaf from the noncommutative deformation theory of Oc,(—1) | , §3.2].

PROPOSITION 10.5. Suppose that in a simple wall crossing, w;(x,d) = (xxo,d), i.e.
the second term J does not change. Then the following hold.
(1) &; is perfect, as a complex in D(cohY).
(2) There is an autoequivalence Twist; fitting into a functorial triangle

RHomy (&, —) ®F,, & — (=) — Twist;(—) —

PRrROOF. Part (1) follows immediately from 10.2(1), since derived equivalences pre-
serve perfect complexes. Part (2) is a translation of 10.2(2), exactly asin | ,86.4]. O

WARNING 10.6. The assumption in 10.5 that the second term J does not change
under wall crossing cannot be removed. In general, the sheaf &; is not perfect. This
should be contrasted with the 3-fold terminal flops setting, where the universal sheaf of the
noncommutative deformation theory is automatically perfect [ , 5.6]. Homologically,
canonical singularities behave much worse than terminal singularities.

In the case when the label never changes under wall crossing, we can identify all
chambers and obtain a group action by an appropriate braid group. We now illustrate
this via examples, which illustrate the key features.

REMARK 10.7. In the following examples, the label never changes under wall crossing.

°
(1) Consider § = ®3® and the corresponding partial resolution

Y - C?/G

where G is the binary dihedral group of order eight. In this case, the finite hyper-
plane arrangement is 3.3(2), which is By. The infinite hyperplane arrangement
is 4.15, which is affine Bs.

Since the label J is always fixed under all wall crossing rules, by 10.5 each
wall crossing is in fact a twist autoequivalence. The length two and four braid
relations have already been verified in 5.30, and so it follows that DP(cohY")
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carries the action of the braid group, and of the affine braid group, of type Bs.
The actions in 10.4 are the pure braid group, and the pure affine braid group,
respectively.

(2) Consider J = eeeee, and the corresponding partial crepant resolution Y. In
this case, the finite hyperplane arrangement is 3.5(5), which is Go. The infinite
hyperplane arrangement is 4.20, which is affine G.

Again, since the label J is always fixed under all wall crossing rules, by 10.5
each wall crossing is in fact a twist autoequivalence, and so DP(cohY) carries
the action of the braid group, and of the affine braid group, of type Gs.

In the above cases, and also in many others, the braid and affine braid group actions
of non-ADE type appear, and are quite unexpected. It is still not clear precisely which
non-ADE braid groups appear, and this problem has a similar flavour to 3.11, where
perhaps classification of all the possible intersection arrangements is required.

10.1.3. Derived Classification of Partial Resolutions. The algebraic results in
Chapter 7 have immediate geometric corollaries. The following is a derived equivalence
classification of all partial crepant resolutions of Kleinian singularities. This problem is
quite fundamental, and it is surprising it has not been investigated before.

COROLLARY 10.8. Suppose that Y — C?/G and Y' — C?/G’ are two crepant partial
resolutions, with associated J C Ay and J' C Alg. Consider the following two conditions.

(1) Y is derived equivalent to Y.
(2) A=A" and J ~ 7', namely up to symmetries of the extended ADE graph, J and
J’ can be linked through a sequence of iterated wall-crossing moves.

Then (2)=(1). Further, if either AN € {A,,, Dy, D5, Dg, D7, Eg, E7, Eg} then (1)=(2).
ProoFr. This follows from 7.21, after passing through the equivalences (10.0.A). O

10.2. Threefolds

We next consider the case of a flopping contraction f: X — SpecXR, where X has
only Gorenstein terminal singularities. As before, this slices under generic g € R to give
a partial crepant resolution of a Kleinian singularity. The partial crepant resolution is
obtained from the minimal resolution by blowing down the curves, and the subset J of
vertices of the associated ADE A records which curves are blown down to produce it.

REMARK 10.9. Recall from 10.1 that the nodes in § C A are shaded e, whereas the
nodes not in J (which thus correspond to the flopping curves) are coloured.

The following result is then immediate from Part 3. The first proof of this theorem,
in the Gorenstein terminal setting, was given in | ] using moduli tracking and a
case-by-case analysis. This was simplified somewhat via tilting in | ], at the cost of
assuming that X is smooth. Here we can use the tilting results of Chapter 9 to give a
simplified proof in all cases.

COROLLARY 10.10. Suppose that X — SpecR is a flopping contraction, contracting
precisely two intersecting irreducible curves, where X has at worst Gorenstein terminal
singularities. Then

FioFsoFio0--- =2 Fy0F 0F30---

d d
where d is the number of hyperplanes in Cone(A,J), where J C A is the Dynkin type of
the flopping contraction.

PROOF. The assumptions imply that R is isolated. By | , 4.2], the flop functor
is isomorphic to the inverse of the mutation functor. Hence it suffices to show that the
mutation functors braid in the stated manner. But this is just 9.36. O
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The now standard local-to-global techniques of [ , |, specifically [ ,
3.13, 3.15], then immediately lift the above complete local result 10.10 to give the following
global consequence.

COROLLARY 10.11. Suppose that X — Xcon s a flopping contraction between quasi-
projective 3-folds, contracting precisely two intersecting independently floppable irreducible
curves. If X has at worst Gorenstein terminal singularities, then

FloFQOFlo--~gF20F10F20-~-

d d

where d is the number of hyperplanes in Cone(A,J), where J C A is the Dynkin type of
the flopping contraction.

In addition to vastly simplifying the proof of 10.10, and avoiding case-by-case analysis,
we are for the first time able to precisely determine d, the length of the braid relation.

COROLLARY 10.12. Suppose that X — Xcon s a flopping contraction between quasi-
projective 3-folds, as in 10.11. Then the length of the braid relation is either 2,3,4,5,6,
or 8. The first case, namely d = 2, holds if and only if the curves are disjoint.

PROOF. If the curves are disjoint, it is very well-known that the flop functors commute

(see e.g. | 1), so the braid relation has length two. If the curves intersect, by 10.11
the flops functors braid where d is the number of hyperplanes in Cone(A, J). By 3.11, this
number is 3,4, 5,6, or 8. O

The real power of this memoir is that there are many more autoequivalences than
those given as compositions of flop functors. Before stating the full affine action results,
we restrict first to the following special cases.

As preparation, consider Sg,...,8,, where 8§ = w¢[l], and §; = Oc¢,(—1) for all
i>0. By | , 3.5.8], these are precisely the simple A = Endg(N)-modules under the
equivalence (10.0.B). With 9.30 now established, Part (1) of the following result removes
all restrictions on [ , 84.1]. Part (2) was the main motivation behind this memoir.

THEOREM 10.13. Suppose that f: X — Xeon 1 a flopping contraction of quasi-
projective 3-folds, where X has only Gorenstein terminal singularities.

(1) For any 3 € {0,...,n}, let &5 be the universal object of the noncommutative
deformation theory of {8;}icy, and set Ay = Endx(&q). Then there is a twist
autoequivalence, together with a functorial triangle

RHomx (&g, x) ®kg &y — x — Twisty(z) —

(2) In particular, for 3= {0}, Let Eqy, be the universal sheaf of the noncommutative
deformation theory of we, and set Ag, = Endx (Egv,). Then there is a fibre twist
autoequivalence FTwist, together with a functorial triangle

RHomx (Egp, ) ®/I§ﬁb Eap — « — FTwist(z) —

PRrOOF. (1) This follows word-for-word | , 85], where 9.30 replaces either | ,
4.7) or | , 4.9] appropriately.
(2) Is an immediate special case of (1). O

The above 10.13 gives many more twist autoequivalences than just compositions of
flop functors. To give the most general result, the full affine action, as in Part 3 we pass to
the Deligne groupoid, but only from an algebraic perspective. As notation, recall that to
X — Spec R we can associate a subset J of an ADE Dynkin A. As in §10.1.2, consider the
associated finite hyperplane arrangement Cone(A, J), and infinite hyperplane arrangement
Level(d.¢), both of which are hyperplane arrangements inside R4\l

Given X — SpecR, we can associate N € modif R, and by 9.36:
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(1) The mutation functors between DP(mod Endg (M)), where M € MMYRNCM R,
form a representation of the corresponding Deligne groupoid 9.

(2) The mutation functors between DP(mod Endg (M)), where M € MMY R, form a
representation of the corresponding Deligne groupoid Gy, .

It is possible to give a strictly geometric version of (1), by replacing it with the flop
functors between DP(coh Y), where Y is obtained from X via iterated flop. However, there
is no good geometric replacement of (2), and so we must rely on the noncommutative reso-
lutions (and their variants) to construct it. Regardless of this lack of a birational-geometric
version of the affine Deligne groupoid, we still have the following. As before, write X for
the complexification of Cone(A, J), and Xa for the complexification of Level(Jaf).

COROLLARY 10.14. Let X — SpecR denote a 3-fold flopping contraction, where X
has only Gorenstein terminal singularities. Then there are group homomorphisms such
that the following diagram commutes.

(X)) -2 Auteq DP(coh X)
s
e

701 (Xafr)
PRrROOF. This follows from 2.15 and 9.37, passing through (10.0.B). O

10.3. Faithful Actions

In this section, which is a mild extension of the techniques in | |, we prove that
the ‘finite actions’ @ on surfaces and 3-folds in 10.4 and 10.14 are faithful. The action in
the surfaces case is new, when J # 0, as is the faithfulness of it. The action in the 3-fold
setting was proved in | ] under the additional assumption that X was smooth; here
we again use the tilting advances in Part 3 to remove this.

SETUP 10.15. We consider one of the following two settings.

(1) A partial crepant resolution Y — C? /G, for some finite G < SL(2,C). There is
an associated subset J of an affine ADE Dynkin configuration, which does not
contain the extended vertex. Asin (10.0.A), Y is derived equivalent to T}y.
(2) A 3-fold flopping contraction X — SpecR where X has at worst Gorenstein
terminal singularities. Necessarily X is derived equivalent to some Endg(N)
with NV € modif R and R € add N.
In case (1), below set A =Ty and d = 2. In case (2), below set A = Endx(N) and d = 3. In
either case, write 8o, ..., 8, for the simple A-modules, and 8§ = @?:0 S,. By convention,
in case (1) 8¢ corresponds to the extended vertex, and in case (2) 8y corresponds to the
summand R.

Throughout, for a triangulated category € and a,b € C, we match the notation in
[BT] and write
[a,b]; := Home(a, b[t]).

The following is elementary.

LEMMA 10.16 (| ,6.2]). In Setup 10.15, suppose that N is a non-zero A-module
of finite length.
(1) If y € DP(mod A) is such that [$,y]>p = 0, then [N,y]s, = 0.
(2) [N,Alq #0 and [N, A]>q41 = 0.

For H = Cone(A,J), recall from §2.3 that the category of positive paths is defined
9; := Free(I's¢)/ ~, and the Deligne groupoid is obtained as the groupoid completion of
this. Since I is a finite simplicial hyperplane arrangement, by 2.14 the natural functor
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93‘ — Gy is faithful. This fact, together with the existence of Deligne normal form for
finite simplicial arrangements, is crucial for the proofs below.
Asin | ], for any o, define

to = F((X),
where F' is the functor in either 5.35 or 9.36. The key point, exactly as in | , 85], is
that 5.30 and 9.34 allow us to give direct functors in the case of reduced paths, and thus
we can use the torsion pairs arguments from | ]. The following is a variation of the
main technical lemma from [BT] and | ], which follows in our general setting here
via the previous sections.

ProrosiTION 10.17. In Setup 10.15, let o € 93‘ have Deligne normal form « =
X o...0«1. Then the following statements hold.
(1) 8 taA]>k4at1 = 0.
(2) [8iytaAlk+a # 0 if and only if i # 0, and the atom & ends (up to the relations
in 9;) by passing through wall i. In particular [8,txA]g+d # 0.
(3) The mazimum p such that [8,txAlk+a # 0 is precisely p =k + d.

Proor. With 5.30 and 9.34 already established, this follows word-for-word as in
[ , 6.3], using b = A. O

COROLLARY 10.18. The functors F in 5.35 and 9.36 are faithful.

PROOF. Given 10.17, this is now word-for-word identical to | , 6.5] O

Passing to vertex groups, and using 2.15, the following is then immediate.

COROLLARY 10.19. Under the Setup 10.15, the following statements hold.
(1) The homomorphism m1(X) — AuteqDP(cohY') in 10./ is injective.
(2) The homomorphism 11(X) — Auteq DP(coh X) in 10.14 is injective

REMARK 10.20. By exactly the same proof of 10.17, and exactly as in | , p21],
it follows that the non-ADE actions of By and G4 in 10.7 are also faithful. These are the
first known examples of non-ADE Coxeter braid group actions in an algebraic-geometric
context.

REMARK 10.21. Even in the case of the classical case J = ), with the affine braid
group acting on the minimal resolution, it is still not known if the affine action is faithful.
The papers [[U, ] establish this for the minimal resolutions of cyclic groups.
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