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Abstract. This paper classifies spherical objects in various geometric settings in dimen-

sion two and three, including both minimal and partial crepant resolutions of Kleinian
singularities, as well as arbitrary flopping 3-fold contractions with only Gorenstein ter-

minal singularities. The main result is much more general: in each such setting, we prove

that all objects in the associated null category C with no negative Ext groups are the
image, under the action of an appropriate braid or pure braid group, of some object in

the heart of a bounded t-structure. The corollary is that all objects x which admit no

negative Exts, and for which HomC(x, x) = C, are the images of the simples. A varia-
tion on this argument goes further, and classifies all bounded t-structures on C. There

are multiple geometric, topological and algebraic consequences, primarily to autoequiva-

lences and stability conditions. Our main new technique also extends into representation
theory, and we establish that in the derived category of a finite dimensional algebra which

is silting discrete, every object with no negative Ext groups lies in the heart of a bounded

t-structure. As a consequence, every semibrick complex can be completed to a simple
minded collection.

1. Introduction

In reasonable categories, an object is spherical if its self-extension groups behave like the
cohomology of a sphere. These objects have attracted interest across symplectic geometry,
algebraic geometry and representation theory, since each spherical object generates a sym-
metry in the form of a twist autoequivalence [ST]. It turns out that these control much of
the structure of autoequivalence groups, at least in small dimension.

The question of classifying spherical objects has been approached by various authors
[AS, IU, IUU, ST, BDL, SW], not least because of the resulting topological and geometric
consequences. The viewpoint of this paper is that any such classification must necessarily
be the consequence of something more general. Spherical objects are not strictly speaking
the correct objects in either dimension two [IW2, §10] or dimension three [T, DW1], and
furthermore birational geometry requires us to work with singular varieties, for which the
self-extension groups are usually unbounded.

Our main new insight is that a more general classification is indeed possible, and we
identify the homological condition for which such a result exists. In the happy situation
when spherical objects exist, and are relevant, their classification is a consequence.

1.1. Motivation and Setting. This paper is concerned mainly with the following three
geometric settings, but later in §1.5 it also works much more generally.

(1) (surfaces) The minimal resolution Z→ C2/Γ of a Kleinian singularity.
(2) (surfaces) A crepant partial resolution Y→ C2/Γ of a Kleinian singularity.
(3) (3-folds) A 3-fold flopping contraction X→ SpecR, where X has at worst Gorenstein

terminal singularities, e.g. X is smooth, and R is complete local.

The case when Z → C2/Γ is the minimal resolution has attracted the most attention [IU,
BDL]. That situation is unnaturally easy for two separate reasons. First, there are very
few examples: just two infinite families and three sporadic cases. Second, the category
C below is then controlled by an intrinsically formal DG-algebra [ST], which makes many
computations easier, and in particular shows that C is equivalent to many other categories
in the literature. In the other geometric settings we should expect neither, as the controlling
DG-algebra is usually unbounded, and is far from formal.
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Nonetheless, for any X = X,Y or Z above, consider

C := {x ∈ Db(cohX) | Rf∗x = 0} ⊂ Db(cohX). (1.A)

The category C has finite dimensional Hom spaces, and further is d-CY, where d = dimX,
if X is smooth. Our interest will be in spherical objects, namely those x ∈ C for which

HomC(x, x[i]) =

{
C if i = 0, d

0 else.

In the case of the minimal resolution Z → C2/Γ, and also for some very special smooth
flopping contractions, these objects are intimately related to generation questions regarding
the autoequivalence group of C, and to the existence of Lagrangians in plumbings of spheres.

However, in general, autoequivalences are controlled by more complicated objects [T,
DW1, B1], and what makes these objects interesting is that they are not determined by
their self-extension groups, even in the lucky case when those groups are bounded. This fact
has, until now, hampered any attempt to classify them, since it is not even clear what we
are supposed to classify.

The main results below show that, rather remarkably, the only conditions that matter
are that HomC(x, x[i]) = 0 for all i < 0, and HomC(x, x) = C. These would seem to be
rather weak conditions, however we will prove that these objects are precisely the orbits of
the simples under the natural action of the mutation functors, even in very singular settings.
In particular, there are actually very few of them.

In fact, and much more generally, it is possible to completely characterise those objects
which satisfy only the condition HomC(x, x[i]) = 0 for all i < 0. These, it turns out,
are precisely the objects in the orbits of the standard t-structure under the action of the
mutation functors. Furthermore, all bounded t-structures on C can be similarly classified.
From these results, and others, we extract geometric, topological and algebraic corollaries.

1.2. Main Results. For partial resolutions Y, or for 3-fold flopping contractions X, it is the
lack of uniqueness that makes these settings complicated, not the fact that they are singular.
Whilst there is only one minimal resolution Z, there are plenty of partial resolutions Y, and
furthermore the lack of uniqueness is the defining feature of the 3-fold flops setting. To
compensate for this requires us to work, at least initially, in groupoids.

As is well-known, and is recalled in §2.2, to each X, Y or Z is an associated finite sim-
plicial hyperplane arrangement H. In the case of the minimal resolution, this is simply the
associated ADE root system, and in general the construction is roughly similar. To each
chamber C in H we assign a category CC, defined in §2.4 in terms of an associated noncom-
mutative resolution (or variant). To each path in the Deligne groupoid β : C→ D, we assign
a composition of mutation functors Φβ : CC → CD.

Theorem 1.1 (3.5). If x ∈ C = CC satisfies HomC(x, x[i]) = 0 for all i < 0, then there
exists β : C→ D such that Φβ(x) ∼= y, where y is an object in homological degree zero.

The proof is both short and elementary, and there are only two key points. First, co-
homology spread should be measured with respect to the noncommutative (equivalently,
perverse) t-structure, not with respect to coherent sheaves. Second, if say x has cohomology
lying within some bounded region [a, b], then the proof finds some Φα(x) whose cohomology
lies in a strictly smaller region [a + 1, b]. This is achieved by using the fact that any finite
poset has a maximal element.

The first corollary is the following. To set notation, write S1, . . . , Sn for the simple modules
in the heart of the standard algebraic t-structure (see §2.6).

Corollary 1.2 (3.6). Suppose that x ∈ CC satisfies Hom(x, x[i]) = 0 for all i < 0.

(1) If dimC Hom(xi, xj) ∼= Cδij for all indecomposable summands xi, xj of x, then there
exists a subset I ⊆ {1, . . . , n} and a path γ : C→ E such that Φγ(x) ∼=

⊕
i∈I Si.

(2) If dimC Hom(x, x) ∼= C, then there exists γ : C→ E and i such that Φγ(x) ∼= Si.
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Given the control of the mutation functor orbit obtained in 1.2, a standard variation on
results of [IUU] and [BDL] can then be used to show that the space of stability conditions
on C is connected and thus Stab◦C = StabC. However, a much stronger statement holds.

The following result classifies all bounded t-structures on C in terms of the standard
hearts. These are, by definition, the extension closures of the simples S1, . . . , Sn (see §2.5).
This is a purely homological result, which is new in all cases, and its proof does not require
stability techniques.

Corollary 1.3 (4.6). If H is the heart of a bounded t-structure on CC, then there exists Φβ

for some β : C → D such that Φβ(H) is the standard heart on CD. In particular, H is a
finite length category, with finitely many simples.

From this, in 5.8 the statement Stab◦C = StabC immediately follows, and avoids the use
of any fancy deformation argument. In 5.9 we also give an intrinsic characterisation of the
group AuteqC in terms of certain FM transforms.

1.3. Geometric Corollaries. By removing the noncommutative resolutions technology
implicit in the previous subsection, in particular the use of the mutation functors, it is
possible to translate the above results into more standard geometric language. We translate
some results here, with more details and results given in §5.

In the case of the minimal resolution Z, the mutation functors are functorially isomorphic
to the Seidel–Thomas twist functors. Recall that C is the category geometrically defined in
(1.A), and to each exceptional curve Ci in Z, the associated OCi(−1) is spherical, so gives
rise to a spherical twist functor ti. These generate a subgroup Br of AuteqC.

Part (2) of the following recovers the main result of [BDL].

Corollary 1.4 (5.1). Consider Z→ C2/Γ, and let x ∈ C. Then the following hold.

(1) If HomC(x, x[j]) = 0 for all j < 0, then there exists T ∈ Br such that T (x) is a
concentrated in homological degree zero.

(2) Every spherical object in C belongs to the orbit, under the action of the braid group,
of the objects OC1(−1), . . . ,OCn(−1).

Furthermore, the heart of every bounded t-structure on C is the image, under the action of
the group Br, of the module category of the preprojective algebra of (finite) ADE type.

The case of partial resolutions Y→ C2/Γ is similar, but mildly more difficult to state, so
details are left to 5.2.

For 3-fold flopping contractions X → SpecR, the mutation functor Φi is functorially
isomorphic to the inverse of the Bridgeland–Chen flop functor [W, 4.2], which will be written
Flopi. These are the square roots of the spherical twist functors, suitably interpreted (see
2.13). The following generalises the particular example in [SW, 6.12(1)] to all 3-fold flops.

Corollary 1.5 (5.5). Let X→ SpecR be a 3-fold flopping contraction, where X has at worst
Gorenstein terminal singularities, and consider x ∈ C.

(1) The following statements are equivalent.
(a) HomC(x, x[j]) = 0 for all j < 0.
(b) There exists a sequence of flop functors such that Flopβ(x) belongs to perverse

sheaves, on a possibly different X+ → SpecR.
(2) Furthermore, the following are equivalent.

(a) HomC(x, x[j]) = 0 for all j < 0 and HomC(x, x) ∼= C.
(b) There exists β such that Flopβ(x) ∼= OCi

(−1) for some curve Ci on a possibly

different X+ → SpecR.

Furthermore, the heart of every bounded t-structure on C is the image, under the action of
the group generated by the flop functors, of the module category of the contraction algebra
of some X+ → SpecR obtained from X→ SpecR by iterated flop.

In particular, when X is smooth, x ∈ C is spherical if and only if there exists a (−1,−1)-
curve Ci, on a possibly different X+, and a composition β : D→ C in the Deligne groupoid
such that Flopβ(OCi(−1)) ∼= x. Perhaps of more interest is when the groupoid result 1.5
is used to prove statements regarding the orbit of the pure braid group PBr on a fixed C.
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In 5.6 we describe the spherical objects in terms of the orbit under this action, generalising
[SW, 6.12(2)] to all 3-fold flops.

1.4. Algebraic Corollaries. A more algebraic corollary of 1.2 is a generalisation of a
result of Crawley–Boevey [CB, Lemma 1] which states that every brick for the preprojective
algebra Π of type ADE has dimension vector equal to a root. The categories C are either
controlled by algebras of the form eIΠeI, or by contraction algebras, depending on the
setting. The underlying combinatorial structure of these are restricted roots, recalled in §2.2
and illustrated in 2.2.

Corollary 1.6 (3.7). Consider the projective algebra Π of type ADE, and I ⊆ ∆. Then
every brick in mod eIΠeI has dimension vector equal to a primitive restricted root.

A version of the above is proved in 3.9 for contraction algebras Λcon, which are recalled
in §2.5. These algebras control much of the birational geometry of 3-folds, and their repre-
sentation theory is usually wild.

1.5. Silting Discrete Derived Categories. The above techniques extend further. Recall
that a finite dimensional algebra A is called silting discrete if the category Kb(projA) is a
silting discrete triangulated category (see §6.1).

This class of silting discrete finite dimensional algebras is surprisingly rich: it contains
all local algebras, Erdmann’s algebras of dihedral, semidihedral and quaternion type, various
preprojective algebras and Brauer graph algebras, together with more obvious representation-
finite examples (see e.g. [AH, p1]). From the viewpoint of this paper the important point is
that the full list of examples also includes all 3-fold contraction algebras Λcon. The result-
ing categories Db(Λcon) are related to, but are very different from, the categories C in the
previous sections.

The analogy between C and Db(Λcon) allows us to push the previous techniques into the
general silting discrete setting. The following is new in all cases.

Theorem 1.7 (6.11). If A is silting discrete, T = Db(A) and x ∈ T, then the following
statements are equivalent.

(1) HomT(x, x[i]) = 0 for all i < 0.
(2) x belongs to the heart of a bounded t-structure.

In this level of generality, there are fewer autoequivalences, so the strategy for the proof
of 1.7 minimises the cohomology with respect to the bounded t-structures on the fixed T.
This avoids groupoids. The object x has cohomology lying within some bounded region
[a, b] with respect to the standard t-structure. The proof first finds a new t-structure whose
cohomology functors applied to x lie in a strictly smaller region [a+1, b]. A simple induction
argument then shows that there is a bounded t-structure such that x[b] belongs to its heart.

The following are immediate consequences, which may be of independent interest. The
definition of brick and semibrick complexes is recalled in 6.5.

Corollary 1.8 (6.12). Let A be silting discrete, T := Db(A) and x ∈ T.

(1) x is a sum of simples in the heart of a bounded t-structure iff x is a semibrick.
(2) x is a simple in the heart of a bounded t-structure iff x is a brick.

In particular, if x ∈ T is a semibrick complex, then there exists a simple minded collection U

such that x is contained in U.

It follows in 6.13 that for silting discrete algebras, every semibrick pair forms a subset of
a simple minded collection, and further that every semibrick pair of maximal rank is itself
a simple minded collection. The slightly subtle point is that in general the simple minded
collection containing the semibrick pair need not be 2-term with respect to the standard
t-structure, which explains why 1.8 does not contradict [HI, BH]. We give some explicit
examples in 6.16 and 6.17 which illustrate this phenomenon.

The above general results apply to 3-fold contraction algebras Λcon, where more can be
said. The autoequivalence group of Db(Λcon) is large, and so the above simplifies. We show
in 6.14 that for contraction algebras the brick and semibrick complexes can be characterised
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as orbits of the brick modules under the action of the autoequivalence group. The result
further improves if we instead pass to the groupoid, but details are left to §6.3.
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many insights into simple minded collections in silting discrete triangulated categories,
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Deopurkar and Matt Pressland for very helpful conversations, and ICERM for hosting the
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Conventions. To be consistent between the algebraic and geometric settings considered,
all objects will be taken over C. Furthermore, since e.g. Hom(Hi(Φj(y)),Hi(x)) is slightly
painful, brackets will often be dropped when applying functors to objects. Doing this, the
above simplifies to Hom(Hi(Φjy),Hix).

2. Preliminaries

This section briefly recalls the known properties of the category C, and sets notation.
This is largely a summary of [HW2, IW2] suitable for our purposes.

2.1. Noncommutative Resolutions and Variants. Since by definition C is a full sub-
category of Db(cohX), it is possible to take cohomology of objects in C with respect to
the standard t-structure on Db(cohX). These cohomology sheaves were used heavily e.g.
in [IU]. However, as in [SW, §6] it turns out to be easier to control the cohomology with
respect to a different t-structure, namely perverse sheaves.

Throughout this paper we will abuse notation, and write f for either the minimal res-
olution Z → C2/Γ, a fixed partial crepant resolution Y → C2/Γ, or a fixed 3-fold flopping
contraction X → SpecR where X has only Gorenstein terminal singularities and R is com-
plete local. It is well known that the reduced fibre above the unique singular point is a tree
of curves, with each irreducible component Ci ∼= P1. Furthermore, X will denote the choice
of fixed Z, Y or X, and from that choice the category C is defined to be

C = {a ∈ Db(cohX) | Rf∗a = 0}.

By [VdB] there exists a tilting bundle O⊕N on X, where N∗ is generated by global sections,
which induces an equivalence of categories

ΨX : Db(cohX)
RHomX(O⊕N,−)−−−−−−−−−−−→ Db(mod Λ) (2.A)

where Λ = EndX(O ⊕ N). The algebra Λ admits an idempotent e corresponding to the
summand O, and across the equivalence (2.A), C corresponds to those complexes whose
cohomology groups are all annihilated by e, or in other words, those complexes whose
cohomology groups are Λ/(e)-modules.

2.2. Intersection Arrangements. To any X equal to Z, Y or X in §2.1, it is possible to
associate Dynkin data in the form of a subset I ⊂ ∆ with ∆ ADE.

(1) For the minimal resolution Z→ C2/Γ, ∆ is the ADE Dynkin diagram corresponding
to Γ via McKay Correspondence, and I = ∅.

(2) For a partial crepant resolution Y → C2/Γ, ∆ is the ADE Dynkin diagram corre-
sponding to Γ via McKay Correspondence, and I is the subset of curves that are
contracted by the morphism Z→ Y.

(3) For a flopping contraction X → SpecR, a generic hyperplane section slices to a
partial crepant resolution as in (2) above [R], which thus associates some I ⊂ ∆.

Remark 2.1. The exceptional curves in Z will be written Ci with i ∈ ∆. For partial
resolutions, the subset I is the choice of curves that get contracted from Z. We will abuse
notation, and write Ci with i ∈ Ic = ∆ \ I for the exceptional curves that survive, namely
the curves in Y. Further, we will also write Ci with i ∈ Ic for the exceptional curves in X.
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The ADE diagram ∆ has an associated Cartan h =
⊕

Rαi, where αi are the simple roots.
For any I ⊂ ∆, define hI to be the quotient of h by the subspace spanned by {αi | i ∈ I}.
The associated quotient map will be written

πI : h→ hI,

and note that hI has basis {πI(αi) | i /∈ I} = {πI(αj) | j ∈ Ic}. The restricted positive roots
in hI are precisely the non-zero images of positive roots under πI. A restricted positive root
is primitive if it is not a multiple of another positive restricted root.

Example 2.2. Consider the Dynkin data , where I is the set of black nodes. Projecting
all twenty positive roots of D5 via πI, and discounting the zeros, gives the set

{10, 01, 11, 21, 22}
where for example 11 is shorthand for the coordinate (1, 1) in hI under the prescribed basis
above. These are the restricted roots. The primitive restricted roots are {10, 01, 11, 21}.

Now write ΘI for the dual of the real vector space hI. For each restricted positive root
0 6= β = πI(α) ∈ hI consider the dual hyperplane

Hβ := {(ϑi) |
∑
βiϑi = 0} ⊆ ΘI.

Since there are only finitely many restricted roots, the collection of Hβ forms a finite hy-
perplane arrangement in ΘI, which we refer to as the intersection arrangement. In general,
this need not be Coxeter.

Example 2.3. Continuing 2.2, for example the restricted root 21 gives the dual hyperplane
2x + y = 0. The full intersection arrangement is the following.

x

y
Restricted Root

01
11, 22

21

10

2.3. Deligne Groupoid. Write H for the arrangement obtained from the Dynkin data
I ⊂ ∆ as defined in §2.2, which is a finite simplicial hyperplane arrangement. This subsection
summarises well-known constructions associated to H.

Definition 2.4. Consider the graph ΓH of oriented arrows, which has as vertices the cham-
bers (i.e. the connected components) of Rn\H, and there is a unique arrow a : C→ D from
chamber C to chamber D if the chambers are adjacent, otherwise there is no arrow. For an
arrow a : C→ D, write s(a) := C and t(a) := D.

By definition, if there is an arrow a : C→ D, there is a unique arrow b : D→ C.

Definition 2.5. Given C, then a chamber op(C) is said to be opposite C if there is a line in
Rn passing through C, op(C), and the origin. The opposite chamber op(C) is unique.

As for quivers, a positive path of length n in ΓH is defined to be a formal symbol

p = an ◦ . . . ◦ a2 ◦ a1,

whenever there exists a sequence of vertices v0, . . . , vn of ΓH and arrows ai : vi−1 → vi in
ΓH. Set s(p) := v0 and t(p) := vn, and write p : s(p)→ t(p). The notation ◦ is composition,
but we will often drop the ◦’s in future. If q = bm ◦ . . . ◦ b2 ◦ b1 is another positive path with
t(p) = s(q), consider the formal symbol

q ◦ p := bm ◦ . . . ◦ b2 ◦ b1 ◦ an ◦ . . . ◦ a2 ◦ a1,

and call it the composition of p and q.
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Definition 2.6. A positive path is called reduced if it does not cross any hyperplane twice.

Since H is finite, reduced positive paths coincide with shortest positive paths [P, 4.2], in
the sense that there is no positive path in ΓH of smaller length, with the same endpoints.

Example 2.7. Consider the following hyperplane arrangement H with 6 chambers, and
with chamber C marked. Then op(C), and all reduced paths leaving C, are illustrated below.

C

op(C)

As in [D2, p7], let ∼ denote the smallest equivalence relation, compatible with composi-
tion, that identifies all morphisms that arise as positive reduced paths with the same source
and target. Write Free(ΓH) for the free category on the graph ΓH, where morphisms are
directed paths. The quotient category

G+
H

:= Free(ΓH)/ ∼,

is called the category of positive paths.

Definition 2.8. The elements of G+
H which are reduced are called atoms. That is, atoms

are the (now unique) shortest positive paths between chambers.

The set of atoms beginning from a fixed chamber admits a partial order.

Definition 2.9. If α,β are atoms that both begin at C, write α ≥ β if there exists an atom
γ such that α = γ ◦ β.

The identity is minimal, and any atom ` : C → op(C) is the maximal element. This
convention is chosen to match the Bruhat order, but has the rather unfortunate consequence
of being opposite to the order on tilting and silting complexes. This explains why maximal
elements in §3 switch to minimal elements in §6.

Definition 2.10. The arrangement (=Deligne) groupoid GH is the groupoid defined as the
groupoid completion of G+

H, that is, a formal inverse is added for every morphism in G+
H.

Paths in the groupoid GH can be positive, or negative, or mixed.

2.4. Categorical Representations and HomMMP. In each of the settings X = X,Y or
Z of §2.1, it is possible to produce a categorical representation of the Deligne groupoid by
associating categories to each chamber, and certain equivalences to the wall crossings. This
subsection summarises this construction, mainly to set notation.

Below consider the preprojective algebra Π of an extended ADE Dynkin diagram ∆aff .
By convention the vertices will be labelled i = 0, 1, . . . , n, with 0 being the extended vertex,
and thus the vertex idempotents are labelled e0, . . . , en. For a subset I ⊂ ∆ ⊂ ∆aff , to match
the notation in [IW2] set

eI = 1−
∑
i∈I

ei (2.B)

and consider the associated contracted preprojective algebra eIΠeI. The notation creates
one ambiguity, namely that e{i} and ei are different, since e{i} = 1− ei.

To each geometric setting (1)–(3), §2.2 assigns a subset I ⊂ ∆ and thus a corresponding
intersection arrangement H.

(1) For the minimal resolution Z→ C2/Γ, consider the preprojective algebra Π associ-
ated to ∆aff . To every chamber C assign the following subcategory of Db(modΠ)

CC := {a ∈ Db(modΠ) | e0 H∗(a) = 0}
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where as above e0 is the idempotent corresponding to the extended vertex. Note that
CC does not depend on C. To each simple wall crossing si : C→ D with i = 1, . . . , n,
is assigned the mutation functor Φi ∼= RHomΠ(Ii,−) where Ii is the bimodule kernel
of the map Π→ Π/(ei).

(2) For a partial crepant resolution Y→ C2/Γ, again consider the preprojective algebra
Π associated to ∆aff . Now chambers in H are indexed by certain pairs (x, J) where
x belongs to the Weyl group of ∆, and J ⊂ ∆ [IW2, 1.12]. To a chamber C = (x, J)
assign the subcategory of Db(mod eJΠeJ) defined to be

CC := {a ∈ Db(mod eJΠeJ) | e0 H∗(a) = 0}
where again e0 is the idempotent corresponding to the extended vertex. To each sim-
ple wall crossing ωi : C→ D is an associated mutation functor Φi, defined generally
in [IW1, §6], and in the setting here in [IW2, §5.6].

(3) For a flopping contraction X → SpecR, by [W, IW2] there is a bijection C 7→ MC

between chambers in H and certain rigid objects in the category of Cohen–Macaulay
modules CMR. Necessarily MC has R as a summand. Thus to a chamber C set
ΛC := EndR(MC), and assign the subcategory

CC := {a ∈ Db(mod ΛC) | eH∗(a) = 0}
where e is the idempotent corresponding to the summand R. To each simple wall
crossing si : C→ D, assign the mutation functor Φi ∼= RHomΛC

(HomR(MC,MD),−).

In each case (1)–(3) above, the category CC corresponds to the more geometric C defined in
(1.A) across the derived equivalence Ψ in (2.A). The above assignments generate a groupoid
G, since all functors are equivalences, and in all cases (1)–(3) there is a homomorphism

GH → G. (2.C)

In the case of the minimal resolution, and in the notation here, this homomorphism was
established in [IR, 6.6] (but really first in [ST]), for partial resolutions this is [IW2, 5.30],
and for 3-fold flopping contractions the homomorphism is [DW3, 3.22].

Notation 2.11. For α ∈ GH, write Φα for the image of α under (2.C).

From (2.C), it is immediate that there is an induced homomorphism from the vertex
group of the Deligne groupoid to AuteqCC for any fixed CC. Since the vertex group is
always π1(Cn\HC) [D1, P, S], it follows that there is an induced homomorphism

π1(Cn\HC)→ AuteqCC. (2.D)

This is known as the pure braid group action. Write PBr for the image of this homomophism.

Example 2.12. Continuing 2.7, label the six chambers as in the left hand side of the
following diagram. The right hand side contains the categorical representation, where each
chamber has been replaced by a category, and each wall crossing by a mutation functor.

C+

C1

C12

C121

C21

C2

C+

C1

C12

C121

C21

C2

Φ1

Φ1

Φ2

Φ2

Φ1

Φ1

Φ2

Φ2

Φ1

Φ1

Φ2
Φ2

The precise definition of the categories CC and the mutation functors depends on the setting
(1)–(3). In this example, the existence of the homomorphism (2.C) is simply the statement
that there is a functorial isomorphism Φ1Φ2Φ1

∼= Φ2Φ1Φ2 whenever that makes sense.

In general, higher length braid relations hold between the mutation functors [DW3].
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Remark 2.13. The following calibration is important. In the setting of the minimal res-
olution (1), Φi is functorially isomorphic to the spherical twist of [ST] around the sheaf
OCi(−1). In the setting (3), Φi is functorially isomorphic to the inverse of the Bridgeland–
Chen flop functor [B2, C], and further ΦiΦi is the twist functor around the NC deformations
of OCi

(−1) [DW1, DW3]. When OCi
(−1) is spherical, namely Ci is a (−1,−1)-curve, then

ΦiΦi is the standard spherical twist. In particular, in the 3-fold setting the functor Φi should
be thought of as the square root of twist functors.

Remark 2.14. In the case of the minimal resolution Z → C2/Γ, the categories in each
chamber are equal, not just equivalent. As such, they can be identified, using the Weyl
group W , and so (2.D) can be improved to a homomorphism

π1

(
(Cn\HC)/W

)
→ AuteqCC.

This is precisely the statement that the braid group acts on any fixed CC, generated by the
mutation functors Φi. In the other settings (2) and (3), usually the categories in different
chambers are not equal, and so we cannot make this identification. As such, usually in the
setting (2) and always in the setting (3), the homomorphism (2.D) is the best possible.

The main technical point below is that in all settings (1)–(3), the mutation functor
Φi ∼= RHom(Ti,−) where Ti is a tilting module of projective dimension one. This fact is
what allows all cases to be treated uniformly.

2.5. Standard Hearts and Deformation Algebras. The categories CC inherit a stan-
dard t-structure. Maintaining the notation in §2.4, consider the following.

(1) For the minimal resolution Z → C2/Γ, the standard t-structure on Db(modΠ)
restricts to give a bounded t-structure on CC with heart mod(Π/(e0)). Note that
Π/(e0) is the preprojective algebra of (finite) type ADE.

(2) For a partial resolution Y → C2/Γ, the standard t-structure on Db(mod eJΠeJ)
restricts to give a bounded t-structure on CC with heart mod(eJΠeJ/(e0)).

(3) For a flopping contraction X → SpecR, the standard t-structure on Db(mod ΛC)
restricts to give a bounded t-structure on CC with heart mod(ΛC/(e)). Note that
ΛC,con := ΛC/(e) ∼= EndR(MC) is known as the contraction algebra.

Notation 2.15. Write mod AC,con for the standard heart in CC, where AC,con varies de-
pending on the setting (1)–(3), and so equals Π/(e0), eJΠeJ/(e0) or ΛC/(e).

Although the precise algebra AC,con varies, it is always finite dimensional. Furthermore, in
all cases AC,con represents noncommutative deformations of the reduced fibre.

2.6. Simples. All the standard hearts mod AC,con above have finite length, with finitely
many simples. As such, recording the action of functors on the simples becomes important.

Notation 2.16. For any chamber C, write S1,C, . . . , Sn,C for the simple AC,con-modules, and
consider SC :=

⊕n
i=1 Si,C. If it is implicitly clear to which category the simples belong, we

will drop the subscript C and write S1, . . . , Sn for the simples and S =
⊕

Si for their sum.

By [VdB, 3.5.8] Si,C corresponds to the sheaf OCi(−1) under the derived equivalence
(2.A). The labelling is consistent so that mutation Φi always shifts Si to the right by one
homological degree, in all three settings.

Lemma 2.17. For a chamber C, consider a length one wall crossing si : C → D, and also
the ‘longest element’ atom ` : C→ op(C). Then the following statements hold.

(1) Φi(Si) = Si[−1],
(2) There exists a permutation σ such that Φ`(Si) ∼= Sσ(i)[−1] for all i = 1, . . . , n.
(3) If x ∈ mod AC,con, then Φ`(x) ∼= y[−1] for some y ∈ mod Aop(C),con.

Proof. (1) and (2) are contained in [W, 6.3]. Part (3) follows easily from (2) since all such
x are filtered by simples. �

3. Classification of Spherical Objects

Throughout this section, let CC be the category defined in §2.4, and we will freely use the
equivalent categories CD and the functors Φα explained in §2.4 and 2.11.
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3.1. Bounded Regions. Given x ∈ CC, write H∗(x) or sometimes more simply H∗x for the
cohomology of x with respect to the standard heart mod AC,con on CC. So, H∗(x) always
denotes cohomology with respect to the standard heart of the category to which x belongs.
To illustrate this, if x ∈ CC and β : C → D, then Φβ(x) ∈ CD and so H∗(Φβx) denotes the
cohomology of Φβ(x) with respect to the standard t-structure on CD.

Notation 3.1. Write x ∈ [a, b], where a ≤ b, to mean Hi(x) = 0 if i < a and i > b, and
write x ∈ [[a, b]] to mean x ∈ [a, b] where furthermore Ha(x) 6= 0 and Hb(x) 6= 0.

There are obvious self-documenting variations, such as [[a, b]. The above notation can be
interpreted using vanishings of Hom against the direct sum of the simples S =

⊕
Si. The

following is an easy consequence of the fact that every bounded complex admits a morphism
from its (shifted) bottom cohomology, and a nonzero map to its (shifted) top cohomology,
together with the fact that two objects in a heart admit no negative Exts. A more general
version of the following, and proof, can be found in 4.3.

Lemma 3.2. If x ∈ C, then the following are equivalent.

(1) x ∈ [a, b].
(2) Hom(S, x[i]) = 0 for all i < a and Hom(x, S[i]) = 0 for all i < −b.

Under these conditions, x ∈ [[a, b] iff Hom(S, x[a]) 6= 0, and x ∈ [a, b]] iff Hom(x, S[−b]) 6= 0.

The following lemma is a summary of known results, and is ultimately an easy consequence
of the mutation functors being induced by tilting modules of projective dimension one. The
main point is that for atoms α, the functor Φα can at worst move cohomology to the right.

Lemma 3.3. Let x ∈ CC with x ∈ [[a, b]], and let α : C→ D be an atom. Then the following
statements hold.

(1) Φα
∼= RHom(Tα,−) for some Tα satisfying pd Tα ≤ 1.

(2) Φα(x) ∈ [a, b + 1].
(3) If Φα(x) ∈ [a, b], then Φα(x) ∈ [a, b]].
(4) If there exists Si with HomC(Hbx, Si) = 0, then Φi(x) ∈ [a, b].
(5) si ◦ α is an atom if and only if Φi ◦ Φα(S) := Φsi◦α(S) ∈ [0, 1].
(6) Consider the longest element atom ` : C→ op(C). Then Φ`(x) ∈ [[a + 1, b + 1]].

Proof. (1) In the flops setting, this is [HW, 4.6] when X is smooth, and [IW2, 9.34] in general.
The case of partial resolutions, or the minimal resolution, is covered by [IW2, 5.30].
(2) Consider the spectral sequence

Ep,q2 = Hp
(
Φα(Hqx)

)
⇒ Hp+q

(
Φαx

)
.

By (1), the only non-zero E2 terms are E0,q
2 and E1,p

2 . Thus the spectral sequence degenerates
immediately, and the statement follows.
(3) If Hb(Φαx) = Hb+1(Φαx) = 0, then in particular the whole top row of the spectral
sequence in (2) must be zero, namely H0(Φα(Hbx)) = H1(Φα(Hbx)) = 0. It follows that
Φα(Hbx) = 0, and so Hbx = 0, contradicting x ∈ [[a, b]].
(4) Since y = Hbx has finite length, the assumption Hom(y, Si) = 0 immediately implies
that Hj(Φiy) = 0 for all j 6= 0, by e.g. [W, 5.10]. Thus H1(Φi(H

bx)) = 0, from which the
spectral sequence in (2) implies that Hb+1(Φix) = 0 and so Φi(x) ∈ [a, b].
(5) By [HW, 6.3] in the smooth case, and [IW2, 10.17] in general, si◦α is an atom if and only
if the maximum p with Extp(S,Φsiα(Λ)) 6= 0 is p = 1 + d. Since Λ is d-singular CY (see e.g.

[IW1, §2.4]), this holds iff the maximum p for which Extd−p(Φsiα(Λ), S) ∼= Hd−p(Φ−1
siαS) 6= 0

is p = 1 + d. In other words, iff the minimum q for which Hq(Φ−1
siαS) 6= 0 is q = −1, which

holds iff Φ−1
siα(S) ∈ [−1, 0]. It is clear, using (2), that this is equivalent to Φsiα(S) ∈ [0, 1].

(6) This is an easy consequence of 2.17(3). �

The following technical lemma is a very mild generalisation of [SW, 6.8]. A more general
statement and proof, which also avoids spectral sequences, is given in 4.2 later.

Lemma 3.4. Let x, y ∈ C with x ∈ [[a, b] and y ∈ [c, d]].

(1) If HomC(y, x[a− d]) = 0, then HomC(Hdy,Hax) = 0.
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(2) If x ∈ [[a, b]], a < b, HomC(x, x[i]) = 0 for all i < 0, then HomC(Hbx,Hax) = 0.

Proof. (1) Since C ⊂ Db(mod Λ), by [IU, §4.1] there is a spectral sequence

Ep,q2 =
⊕
i

Homp
C(Hiy,Hi+qx)⇒ Homp+q

C (y, x).

Since x ∈ [[a, b] and y ∈ [c, d]], Ep,q2 = 0 for all q with q < a − d. Further, since modules
have no negative Exts, Ep,q2 = 0 for all p with p < 0. It follows that the bottom left term is

E0,a−d
2 = HomC(Hdy,Hax), which survives to give HomC(y, x[a − d]). Since this is zero by

assumption, necessarily HomC(Hdy,Hax) = 0.
(2) This is an immediate consequence of (1). �

3.2. Main Results. The following is the first main result of this paper. It asserts that any
object x ∈ C which behaves like it lies in the heart of a t-structure, namely it admits no
negative self-extension groups, does lie in the heart of a t-structure.

Theorem 3.5. Suppose that x ∈ CC satisfies HomC(x, x[i]) = 0 for all i < 0. Then there
exists β : C→ D such that the corresponding Φβ : CC → CD satisfies Φβ(x) ∈ mod AD,con.

Proof. Since x is a bounded complex, there exists a ≤ b such that x ∈ [[a, b]]. If a = b
then x is the shift of a module. Consider the longest element atom ` : C → op(C), then
Lemma 2.17(3) shows that applying either Φ` or Φ−1

` repeatedly results in a module, over
the relevant AD,con, in degree zero.

Hence we can assume that a < b. The trick is to consider the set

∆ := {α | α is an atom, and Φα(x) ∈ [a, b] },
which in light of 3.3(2) is the set of atoms which do not make x homologically worse. Clearly
the trivial atom C → C belongs to ∆, and the longest atom ` : C → op(C) does not belong
to ∆ since Φ`(x) ∈ [[a + 1, b + 1]] by 3.3(6).

The set ∆ admits a partial order, since the set of all atoms does (see 2.9), and further
the set ∆ is finite, since the set of all atoms is finite. Every finite poset has at least one
maximal element, so consider a maximal element β ∈ ∆. By definition Φβ(x) ∈ [a, b], which
by 3.3(3) forces Φβ(x) ∈ [a, b]].

We claim that Φβ(x) ∈ [a+1, b]]. This implies that β has improved the complex x, which
in turn will allow us to induct. Since Φβ(x) ∈ [a, b]], the claim is simply that Ha(Φβx) = 0.
This will be proved by assuming that Ha(Φβx) 6= 0, and deriving a contradiction.

Well, if Ha(Φβx) 6= 0, then Φβ(x) ∈ [[a, b]] and so by 3.4(2) since a < b

Hom(Hb(Φβx),Ha(Φβx)) = 0. (3.A)

Since Ha(Φβx) 6= 0, pick a simple Si ↪→ Ha(Φβx). From (3.A) it follows that

Hom(Hb(Φβx), Si) = 0.

Applying 3.3(4) to Φβ(x) shows that ΦiΦβ(x) ∈ [a, b], i.e. Φsiβ(x) ∈ [a, b]. Now if β = Id
then clearly si ◦β is an atom, and so Φsiβ(x) ∈ [a, b] contradicts the maximality of β. Hence
we can assume that β 6= Id.

Since the longest atom does not belong to ∆, and β 6= Id, necessarily Φβ(S) ∈ [[0, 1]]. The
assumption x ∈ [[a, b]] implies that Hom(Φβ(S),Φβ(x)[a− 1]) ∼= Hom(S, x[a− 1]) = 0 by 3.2,
and so it follows from 3.4 that

0 = Hom(H1(ΦβS),Ha(Φβx)). (3.B)

The injection Si ↪→ Ha(Φβ(x)) together with (3.B) implies that

Hom(H1(ΦβS), Si) = 0.

Applying 3.3(4) to Φβ(S) shows that ΦiΦβ(S) ∈ [0, 1], so by 3.3(5) si ◦β is an atom. Again,
Φsiβ(x) ∈ [a, b] contradicts the maximality of β. Thus Ha(Φβ(x)) = 0, as claimed.

We conclude that Φβ(x) ∈ [a + 1, b]], and so the complex Φβ(x) is strictly shorter than
that of x. Replacing x by Φβ(x) we can then repeat the above argument, and by doing this
find a composition γ such that Φγ(x) lies in precisely one homological degree. As in the

first paragraph, repeatedly applying either Φ` or Φ−1
` results in a module, over the relevant

AD,con, in degree zero. �
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From the viewpoint of our applications in §5, the following consequence of 3.5 is important.
The power in the statement, and the reason that the proof is a little involved, is precisely
since part (1) considers direct sums. We explain in 3.10 that for the minimal resolution, and
other special cases, an easier proof of (2) exists.

Corollary 3.6. Suppose that x ∈ CC satisfies Hom(x, x[i]) = 0 for all i < 0.

(1) If dimC Hom(xi, xj) ∼= Cδij for all indecomposable summands xi, xj of x, then there
exists a subset I and a path γ : C→ E such that Φγ(x) ∼=

⊕
i∈I Si.

(2) If dimC Hom(x, x) ∼= C, then there exists γ : C→ E and i such that Φγ(x) ∼= Si.

Proof. We prove (1), since (2) is a special case. Consider first the 3-fold setting.
By 3.5, there exists β : C→ D such that Φβ(x) ∼= y, where y is a ΛD,con-module in homo-

logical degree zero. Now by assumption x is a direct sum of Hom-orthogonal indecomposable
summands, hence so too is y. Thus in the language of §6.1, y is a semibrick in the category
mod ΛD,con. Since ΛD,con is silting discrete [A2, 3.12], by [A1] y is a subset of a 2-simple
minded collection, which by definition and the Koenig–Yang bijections implies that y is a
subset of simples in the heart H of an intermediate bounded t-structure in Db(mod ΛD,con).

Now by [A3, 1.1], for every atom α : D→ E there exists an autoequivalence Fα such that
the following diagram commutes

Db(mod ΛD,con) Db(mod ΛD)

Db(mod ΛE,con) Db(mod ΛE)

res

Fα Φα

res

(3.C)

and further by [A3] the heart of every intermediate bounded t-structure in Db(mod ΛD,con)
equals F−1

α (mod ΛE,con) for some atom α : D→ E.
Thus there exists a subset I such that F−1

α (
⊕

i∈I Si,E) = y. Since the diagram (3.C)
commutes, necessarily Φα(y) ∼=

⊕
i∈I Si,E, and so the path α◦β : C→ E satisfies Φα◦β(x) =

ΦαΦβ(x) = Φα(y) =
⊕

i∈I Si,E, as required. This completes the proof in the 3-fold setting.

Consider now the surfaces setting. By 3.5, there exists β : C → D such that Φβ(x) ∼= y,
where y is a (eIΠeI)con-module in homological degree zero. Now CD ⊂ Db(mod eIΠeI) say,
where Π is the preprojective algebra of affine ADE, and eI is some idempotent. As in [T,
§3] or [KM, §4.3], we can construct a 3-fold flopping contraction X→ SpecR, where X has
Gorenstein terminal singularities (where X tilts to ΛD), such that the generic hyperplane
section g ∈ R satisfies (ΛD)/g ∼= eIΠeI.

Furthermore, for any atom α : D → E, then [IW2] shows that the following diagram
commutes.

Db(mod eIΠeI) Db(mod ΛD)

Db(mod eKΠeK) Db(mod ΛE)

res

Φα Φα

res

Since y is a module in homological degree zero, res(y) ∈ CD is likewise still a module, and
thus it has no negative Exts. Further by adjunction

HomC(res(yi), res(yj)) ∼= Cδij
for all indecomposable summands yi, yj , and thus res(y) is a semibrick. The 3-fold proof
above shows that there exists some atom α such that Φα(res(y)) ∼= U, where U =

⊕
i∈I Si

for some subset I. The commutativity of the diagram implies that res(Φα(y)) ∼= U. But
also res(U) = U, so since res reflects isomorphisms when restricted to the module category,
Φα(y) ∼= U follows. �

3.3. Algebraic Corollaries. It is a result of Crawley–Boevey [CB, Lemma 1] that every
brick for the preprojective algebra Π of type ADE has dimension vector equal to a root of the
corresponding Dynkin diagram. This subsection generalises this to contracted preprojective
algebras Γ = eIΠeI, and also to contraction algebras Λcon.
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Recall the notion of restricted roots from §2.2, and the conventions in 2.1 and (2.B). The
following is then a consequence of 3.6.

Corollary 3.7. Consider the projective algebra Π of type ADE, and I ⊂ ∆. Then every
brick in mod eIΠeI has dimension vector equal to a primitive restricted root.

Proof. If x ∈ mod Λcon is a brick, then by 3.6 there exists β such that Φβ(Si) ∼= x. Writing
ϕβ for the action of Φβ on K0(C), it follows that ϕβ(ei) = dimx. But, as explained in e.g.
[NW, §5.1, Rem 5.12], ϕβ can be written as a composition of matrices Ni, each of which
takes primitive restricted roots to primitive restricted roots. Since ei is clearly a primitive
restricted root, so too is dimx. �

Remark 3.8. It should also be possible to prove 3.7 using the fact that c-vectors are the
dimension vectors of bricks, and these are dual to g-vectors [T2]. The g-vectors for some
eIΠeI are known [IW2, §6], but these results currently require some restrictions on I.

Recall that to every contraction algebra Λcon, there exists a central element g in the
radical of Λcon such that Λcon/(g) ∼= eIΠeI for some I ⊂ ∆, where ∆ is ADE [DW1, DW3].

Corollary 3.9. If Λcon is the contraction algebra associated to a 3-fold flopping contraction
X → SpecR where X is at worst Gorenstein terminal, then every brick in mod Λcon has
dimension vector equal to a primitive restricted root.

Proof. This is an immediate consequence of 3.7, since by the standard reduction theorems
[EJR, §4] and [A1, 1.29], bricks on Λcon are the same as bricks for Λcon/(g). �

Remark 3.10. The proof of 3.6(2), but alas not 3.6(1), can be simplified in the case of the
minimal resolution, or in the case of 3-fold crepant resolutions which slice to the minimal
resolution. Indeed, in the case of the minimal resolution Crawley–Boevey [CB, Lemma 1]
implies that every brick x has dimension vector equal to a real root. Hence there exists a
sequence of Weyl reflections such that sit · . . . · si1 · dim(x) = ei for some i.

Now, since x is a brick, either Hom(x, Si1) = 0 or Hom(Si1 , x) = 0. Set F1 := Φi1 in
the first case, or F1 := Φ−1

i1
in the second, then F1(x) is a module, of dimension vector

si1 · dim(x). Clearly F1(x) is still a brick, so we can repeat the argument. At each stage, we
can choose Fj equal to either Φij or Φ−1

ij
to guarantee that Fj . . . F1(x) remains a module,

and by doing this Ft . . . F1(x) is a module of dimension vector equal to ei, a simple root.
Thus Ft . . . F1(x) ∼= Si. If the analogue of Crawley–Boevey’s result 3.7 can be proved first,
then the above argument simplifies the proof of 3.6(2) in all cases.

4. Classification of t-Structures

The previous section proved that for every object x ∈ C with no negative Exts, there
exists Φβ such that Φβ(x) is concentrated in homological degree zero. In particular, x ∈ C

belongs to a standard heart in the groupoid. A second and related problem is whether,
given the heart H of an arbitrary bounded t-structure, there exists Φγ such that Φγ(H) is
a standard heart. Whilst the problems are similar, one does not obviously imply the other.
A priori, the heart H does not have finite length, and so the element-wise arguments of the
previous section do not apply.

This section strengthens the results of the previous section to also solve the second prob-
lem, and thus fully classifies all bounded t-structures on C in terms of the orbits under the
groupoid action. This is new in all cases, even for the minimal resolution Z→ C2/Γ.

4.1. t-Structure Generalities. Let T be a triangulated category with full additive sub-
category H. Then, as explained in e.g. [B3, 2.3], H is the heart of a bounded t-structure on
T if and only if

(1) HomT(x, y[j]) = 0 for all x, y ∈ H and all j < 0.
(2) For every non-zero object x ∈ T there exists integers a ≤ b and triangles

0 = xa−1 xa xa+1 . . . xb−1 xb = x

ha ha+1 ha+2 hb
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such that hi[i] ∈ H for all i.

As is standard, the objects hi[i] ∈ H are called the cohomology objects of x with respect to
H, and will be written Hi

H(x) := hi[i]. The following mirrors 3.1.

Notation 4.1. Let H be the heart of a bounded t-structure in a triangulated category T.
For integers c ≤ d, write x ∈ [c, d]H to mean Hi

H(x) = 0 for all i < c and for all i > d. Write
x ∈ [[c, d]H if x ∈ [c, d]H and furthermore Hc

H(x) 6= 0.

As in §3.1 we will use other self-documenting variations, such as [c, d[]H and [[c, d[]H. The
following generalises 3.4, and satisfyingly its proof avoids the use of spectral sequences.

Lemma 4.2. Let H be the heart of a bounded t-structure in a triangulated category T. If
x, y ∈ T with x ∈ [[a, b]]H and y ∈ [[c, d]]H, then

HomT(y, x[a− d]) ∼= HomT(Hd
H(y),Ha

H(x))

Proof. We prove the case when a < b and c < d, since the other cases are degenerate.
To ease notation set Hi = Hi

H, and consider the sequence of triangles (2) for x, and the
analogous sequence

0 = yc−1 yc yc+1 . . . yd−1 yd = y

h′c h′c+1 h′c+2 h′d

(4.A)

for y. Using the vanishing of negative Ext groups (1), applying HomT(−,H) it is easy to
verify that

HomT(xt,H[−t− j]) = 0 = HomT(yt,H[−t− j]) for all j ≥ 1. (4.B)

Now applying HomT(y[d],−) to the sequence of triangles (2) for x, and temporarily dropping
Hom from the notation, gives the following exact sequences.

T(y[d], hb[a− 1]) T(y[d], xb−1[a]) T(y[d], x[a]) T(y[d], hb[a])

T(y[d], hb−1[a− 1]) T(y[d], xb−2[a]) T(y[d], xb−1[a]) T(y[d], hb−1[a])
...

T(y[d], ha+2[a− 1]) T(y[d], xa+1[a]) T(y[d], xa+2[a]) T(y[d], ha+2[a])

T(y[d], ha+1[a− 1]) T(y[d], xa[a]) T(y[d], xa+1[a]) T(y[d], ha+1[a])

Since y = yd it follows from (4.B) that all Hom sets within the dotted boxes are zero. Hence,
since further xa ∼= ha, there are thus isomorphisms

HomT(y[d], x[a]) ∼= . . . ∼= HomT(y[d], xa[a]) ∼= HomT(y[d],Ha(x)).

Now applying HomT(−,Ha(x)) to the rightmost triangle in (4.A) gives an exact sequence

T(yd−1[d + 1],Ha(x))→ T(Hd(y),Ha(x))→ T(y[d],Ha(x))→ T(yd−1[d],Ha(x))

where the outer two sets are again zero by (4.B). It follows that

HomT(y[d], x[a]) ∼= HomT(y[d],Ha(x)) ∼= HomT(Hd(y),Ha(x)). �

It is also possible to detect membership of [a, b]A using Hom vanishings. The following
result is the more general version of 3.2.

Lemma 4.3. Let A be the heart of a bounded t-structure, x ∈ T an object, and let a ≤ b be
integers. Then the following are equivalent.

(1) x ∈ [a, b]A.
(2) Hom(A, x[i]) = 0 for all i < a and Hom(x,A[i]) = 0 for all i < −b.

Furthermore x ∈ [[a, b] iff Hom(A, x[a]) 6= 0, and x ∈ [a, b]] iff Hom(x,A[−b]) 6= 0
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Proof. If x ∈ [[c, d]], then there is an exact triangle

τ≤0(x[c])→ x[c]→ τ>0(x[c])→
Now Hc(x) = (τ≤0τ≥0)(x[c]), so since x[c] = τ≥0(x[−c]) by the assumption x ∈ [[c, d]], the
above triangle gives a non-zero morphism Hc(x)→ x[c]. In a similar way, there exists non-
zero map x→ Hd

A(x)[−d].
(2)⇒(1) The above paragraph shows that if Hom(A, x[i]) = 0 for i < a, then the lowest
nonzero cohomology of x must be ≥ a. Similarly, if Hom(x,A[i]) = 0 for i < −b hold, then
the highest nonzero cohomology of x must be ≤ b.
(1)⇒(2) Conversely, let x ∈ T and assume that x ∈ [[c, d]]A for some a ≤ c ≤ d ≤ b . To
prove the vanishings, we use induction on d − c. If d = c, then x is an object in A up to
shift, and the vanishings are trivial. When d− c > 0, consider the triangle

Hc
A(x)[−c]→ x→ x′ → Hc

A(x)[−c + 1].

with x′ ∈ [c+ 1, d]]A. Applying the inductive hypothesis to x′ implies that for all i < a(≤ c)

Hom(A, x[i]) ∼= Hom(A,Hc
A(x)[−c + i]) = 0

which proves one of the desired vanishings. The other vanishing is similar.
The final statement follows from the first paragraph. �

By a slight abuse of notation, if A and H are the hearts of two bounded t-structures,
write H ∈ [a, b]A if x ∈ [a, b]A for all x ∈ H.

Corollary 4.4. Let A and H be the hearts of two bounded t-structures, and let a ≤ b be
integers. Then the following are equivalent.

(1) H ∈ [a, b]A.
(2) Hom(A,H[i]) = 0 for all i < a and Hom(H,A[i]) = 0 for all i < −b.

In particular, H ∈ [a, b]A iff A ∈ [−b,−a]H

Proof. (1)⇔(2) follows by applying 4.3 to all objects x of H. The final statement follows
from the symmetry of A and H in the condition (2). �

Corollary 4.5. Let A and H be the hearts of two bounded t-structures, and suppose that A
is a length heart with finitely many simples, where S is their direct sum. Then there exist
integers a ≤ b such that H ∈ [a, b]A.

Proof. The boundedness of the t-structure giving H implies that the cohomology of the
single object S with respect to H is bounded, and hence S ∈ [c, d]H for some c ≤ d. Since
A is the extension closure of S in T, the above bound on S implies that A ∈ [c, d]H. By 4.4,
this is equivalent to H ∈ [−d,−c]A. �

4.2. Main Results. The above results allow us to easily extend 3.5. The proof of the
following reverts to the conventions of §3.1, namely that unadorned [a, b] are by default with
respect to cohomology of the standard t-structure on CC.

Theorem 4.6. If H is the heart of a bounded t-structure on CC, then there exists β : C→ D
such that Φβ(H) is the standard heart on CD. In particular, H is a finite length category,
with finitely many simples.

Proof. Since the standard heart on CC is finite length with finitely many simples, by 4.5,
there exists integers a ≤ b such that H ∈ [[a, b]]. If a = b, then H is a contained in a shifted
standard heart, and thus it equals that shifted standard heart since if the heart of a bounded
t-structure includes inside another, they must be equal. The result then follows from 3.3(6),
since applying either Φ` or Φ−1

` repeatedly takes this to the standard heart in degree zero.
Now assume a < b and consider the set

∆ := {α | α is an atom, and Φα(H) ∈ [a, b] }.
Since ∆ contains the trivial atom, this is a non-empty partially ordered finite set, and hence
there exists a maximal element β ∈ ∆. For this β we claim that Φβ(H) ∈ [a + 1, b]. We
assume the contrary, namely there exists an object x ∈ H such that Φβ(x) ∈ [[a, b], and will
derive a contradiction. Since Ha(Φβx) 6= 0, fix a simple Si ↪→ Ha(Φβx).
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Let y ∈ H be any object, then we claim that ΦiΦβ(y) ∈ [a, b]. If Φβ(y) ∈ [a, b− 1], then
this follows from 3.3(2), hence assume that Φβ(y) ∈ [a, b]], so Hb(Φβy) 6= 0. Since x and y
are objects of the heart H, the vanishing Hom(Φβy,Φβx[j]) = 0 holds for all j < 0. Thus
it follows from 3.4 (or 4.2) that

0 = Hom(Hb(Φβy),Ha(Φβx)). (4.C)

The injection Si ↪→ Ha(Φβ(x)) together with (4.C) implies that

Hom(Hb(Φβy), Si) = 0.

Applying 3.3(5) to Φβ(y) gives ΦiΦβ(y) ∈ [a, b]. Since this holds for all y ∈ H, it follows
that ΦiΦβ(H) ∈ [a, b].

Since Φβ(x) ∈ [[a, b], exactly the same argument as in the proof of 3.5 shows that si ◦ β
is an atom, and thus si ◦β remains an element of ∆. This is the desired contradiction, as β
is maximal in ∆, and thus Φβ(H) ∈ [a + 1, b] holds, as claimed.

Repeating the above argument, there exists β : C → D such that Φα(H) is contained in
a shifted standard heart. As in the first paragraph, applying either Φ` or Φ−1

` repeatedly
takes this to degree zero. �

Remark 4.7. It is also possible to prove 4.6 by adapting the proof of [PSZ, Lemma 9]. The
main benefit of the cohomology argument here is that it is uniform: the same technique that
works for a single brick also works for the heart of a bounded t-structure.

The key fact required to adapt the proof of [PSZ, Lemma 9] to the geometric setting C is
that all standard hearts from the groupoid (and thus all the hearts that appear in the [PSZ]
induction) admit only finitely many torsion theories. In the 3-fold setting all contraction
algebras are silting discrete, so the fact there are only finitely many torsion theories is the
last statement in [DIJ, 3.8]. In the surfaces setting(s), by Asai [A1, 1.29] bricks modules on
eIΠeI are the same as on Λcon, and so in particular there only finitely many. Thus by [DIJ,
1.4] each eIΠeI is τ-tilting finite, and so by [DIJ, 3.8] each mod eIΠeI has only finitely many
torsion theories. See also [AMY].

5. Geometric Corollaries

This section translates the algebraic results of §3 and §4 into geometric language, then
uses these results to create new geometric corollaries.

5.1. Surfaces. For the minimal resolution Z→ C2/Γ, the braid group Br acts on C defined
in (1.A), generated by spherical twists in the objects OC1(−1), . . . ,OCn(−1).

Corollary 5.1. Consider Z→ C2/Γ, and let x ∈ C. Then the following hold.

(1) If HomC(x, x[j]) = 0 for all j < 0, then there exists T ∈ Br such that T (x) is a
concentrated in homological degree zero.

(2) Every spherical object in C belongs to the orbit, under the action of the braid group,
of the objects OC1(−1), . . . ,OCn(−1).

Furthermore, the heart of every bounded t-structure on C is the image, under the action of
the group Br, of the module category of the preprojective algebra of (finite) ADE type.

Proof. Under the derived equivalence ΨZ in (2.A), the geometric category C defined in
(1.A) corresponds to the CC in §2.4. Furthermore, the mutation functors are functorially
isomorphic to spherical twist, via the following commutative diagram.

Db(cohZ) Db(modΠ)

Db(cohZ) Db(modΠ)

ΨZ

ΨZ

ti Φi

In this setting all the categories CC, as C varies, are equal. Further, all functors in the above
diagram restrict to the relevant C, respectively CC. Part (1) then follows from 3.5, part (2)
by 3.6(2) since Si corresponds to OCi(−1), and the final statement is 4.6. �
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The following result is slightly more difficult to state, firstly due to the non-uniqueness
of partial resolutions, and secondly since unlike the case of Z or X, the functor Ψ−1

Y′ ΦβΨY

below does not yet have a good geometric interpretation. We further remark that in general,
the following is the best possible, but afterwards in 5.3 and 5.4 we illustrate how in some
situations the result can be improved.

Corollary 5.2. Consider a partial crepant resolution Y→ SpecC2/Γ, and let x ∈ C.

(1) The following statements are equivalent.
(a) HomC(x, x[j]) = 0 for all j < 0.
(b) There exists β, and a partial resolution Y′ → C2/Γ obtained from Y by iterated

wall crossing, such that Ψ−1
Y′ ΦβΨY(x) belongs to perverse sheaves.

(2) Furthermore, the following are equivalent.
(a) HomC(x, x[j]) = 0 for all j < 0 and HomC(x, x) ∼= C.
(b) There exists β, a partial resolution Y′ → C2/Γ obtained from Y by iterated wall

crossing, and some Ci ⊂ Y′ such that Ψ−1
Y′ ΦβΨY(x) ∼= OCi(−1).

Proof. (1) is an immediate consequence of 3.5, and (2) follows from 3.6(2) since Si corre-
sponds to OCi

(−1). �

Example 5.3. Consider the partial resolution Y→ C2/D4 given by the Dynkin data ,
where I is the set of black nodes. That is, Y is obtained from the D4 minimal resolution by
contracting the two curves corresponding to the black nodes. The following illustrates the
associated intersection arrangement H.

y

x
Restricted Root

10
11
12

01

In this example, the wall crossing rule of [IW2, 1.16] returns the same indexing set
in each chamber and thus in §2.4 the identical category CC gets assigned to each chamber.
Further, each wall crossing is a twist autoequivalence [IW2, 10.5] over noncommutative
deformations of the corresponding curve. Thus, as in the case of the minimal resolution,
the categories can be identified and thus there is a braid group action of B2 on Db(cohY).
The result 5.2(1) then translates (since always Y′ = Y) to give the analogue of 5.1(1) for the
braid group of B2, and 5.2(2) gives the analogue of 5.1(2).

Example 5.4. Continuing 2.2, for the Dynkin data the intersection arrangement
for Y → C2/D5 is given in 2.3. Now the wall crossing rule of [IW2, 1.16] returns different
indexing sets to the chambers, as follows.

Thus as the chambers vary the categories CC are sometimes equal, and sometimes are not.
This translates into a mixed braid group action on Db(cohY).



18 WAHEI HARA AND MICHAEL WEMYSS

5.2. 3-folds. In the 3-fold setting of flopping contractions X→ SpecR, our main interest is
in establishing 5.6 below. However, there seems to be no method of proving that without
taking square roots, and first establishing the following result.

Corollary 5.5. Let X → SpecR be a 3-fold flopping contraction, where X has at worst
Gorenstein terminal singularities, and consider x ∈ C.

(1) The following statements are equivalent.
(a) HomC(x, x[j]) = 0 for all j < 0.
(b) There exists a sequence of flop functors such that Flopβ(x) belongs to perverse

sheaves, on a possibly different X+ → SpecR.
(2) Furthermore, the following are equivalent.

(a) HomC(x, x[j]) = 0 for all j < 0 and HomC(x, x) ∼= C.
(b) There exists β such that Flopβ(x) ∼= OCi

(−1) for some curve Ci on a possibly

different X+ → SpecR.

Furthermore, the heart of every bounded t-structure on C is the image, under the action of
the group generated by the flop functors, of the module category of the contraction algebra
of some X+ → SpecR obtained from X→ SpecR by iterated flop.

Proof. Under the derived equivalence ΨX in (2.A), the geometric category C defined in
(1.A) corresponds to the CC in §2.4. Furthermore by [W, 4.2], the mutation functors are
functorially isomorphic to inverse of the flop functor, via the following commutative diagram.

Db(cohX) Db(mod Λ)

Db(cohX+
i ) Db(modνiΛ)

ΨX

Ψ
X

+
i

Flop−1
i Φi

Part (1) then follows from 3.5, part (2) by 3.6(2) since Si corresponds to OCi
(−1), and the

final statement is 4.6. �

In terms of applications, fixing a category C it is desirable to know for example the
spherical objects under the action of the autoequivalence group. The following generalises
[SW, 6.12(2)] to all 3-fold flops.

Corollary 5.6. Let X → SpecR be a 3-fold flopping contraction, where X is at worst
Gorenstein terminal, with contraction algebra Λcon. For x ∈ C, the following are equivalent.

(1) HomC(x, x[i]) = 0 for all i < 0 and HomC(x, x) ∼= C
(2) Under the action of PBr on C, x is in the orbit of the (finitely many) brick Λcon-

modules, or their shifts by [1].

All such x noncommutatively deform to give a spherical twist autoequivalence.

Proof. (1)⇒(2) Consider the β : D→ C from 5.5(2) and also the atom α : D→ C. By torsion
pairs (see e.g. [HW, §5]), each Φα(Si) is either a brick module, or the shift [1] applied to a
brick module. Hence applying Φβ ◦ Φ−1

α to either this brick or its shift shows that x is in
the desired orbit. The reverse direction (2)⇒(1) is trivial. The final statement follows from
5.5(2) since the sheaves OCi

(−1) satisfy the conclusion [DW1, DW3]. �

Remark 5.7. As demonstrated in the example [SW, 6.12(2)], it is possible to construct a
subset of bricks, for which 5.6(2) can be improved to the statement that x is in the orbit
under PBr of this subset, and their shifts by [1]. In general, it is not clear how to construct
a subset of minimal size for which 5.6(2) remains true.

5.3. Topological Corollaries. For any triangulated category T there is an associated com-
plex manifold StabT, whose points are Bridgeland stability conditions on T. Every exact
equivalence Φ: T → T′ induces a homeomorphism Φ∗ : StabT

∼−→ StabT′.
Again let C = CC be the category defined in §2.4, and UC ⊂ StabCC be the subset of

stability conditions with the standard heart. Since UC
∼= H⊕n where n is the number of

simples, which is connected, there exists a connected component Stab◦C ⊂ StabC containing
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UC. For a path β : D→ C, write Uβ ⊂ StabCC for the image of UD under (Φβ)∗, and further
write Term(C) for all morphisms in the Deligne groupoid ending at C.

Corollary 5.8. The set {Uβ | β ∈ Term(C)} covers StabC. In particular, Stab◦C = StabC.

Proof. For a simple mutation si : C→ Ci, the UC and UCi share a codimension one boundary
(see e.g. [HW, 6.3], [B4, 5.5]). In particular, the associated homeomorphism (Φi)∗ restricts
to

(Φi)∗ : Stab◦CC → Stab◦CCi
.

Let σ = (Z,A) be an arbitrary point in StabCC. Then by 4.6, there exists a path β : C→ D
such that Φβ(A) is the standard heart of CD. Now Φβ is a composition of simple mutations
Φi or their inverses, and thus this also preserves the components Stab◦CC and Stab◦CD.
Since (Φβ)∗(σ) ∈ UD ⊂ Stab◦CD, applying Φβ−1 = Φ−1

β gives σ ∈ Uβ−1 ∩ Stab◦CC, where

β−1 : D → C. Since Uβ−1 is connected and Stab◦CC is a connected component, necessarily
σ ∈ Uβ−1 ⊂ Stab◦CC, which proves the result. �

Consider the group AuteqFM C consisting of those Φ|C where Φ is a Fourier–Mukai equiv-
alence Db(cohX)→ Db(cohX) that commutes with Rf∗. Automatically Φ|C : C→ C.

Corollary 5.9. Suppose that X → SpecR is a 3-fold flop, where X has at worst terminal
singularities. Then AuteqFM C ∼= PBrC.

Proof. Consider the subgroup Aut◦C of AuteqFM C that preserves Stab◦C. By [HW2, 7.1] it is
known that Aut◦C ∼= PBrC. But now using 5.8 Stab◦C = StabC, hence every autoequivalence

preserves Stab◦C and thus Aut◦C = AuteqFM C. �

6. Silting Discrete Derived Categories

This section generalises the argument in §3 to the setting of derived categories Db(modA)
where A is a silting discrete finite dimensional algebra. This gives applications to represen-
tation theory.

6.1. Silting Discrete Preliminaries. Throughout this section, A will be a finite dimen-
sional k-algebra, which to be consistent with the earlier parts of this paper requires k = C.
As is standard, this can be easily be generalised to other fields by weakening the condition
on the endomorphism ring of a brick to be a division ring, rather than the base field.

We briefly recall silting objects and simple minded collections, following [AI, KY]. Set
K = Kb(projA) and T = Db(modA). An object x ∈ K is called silting if HomK(x, x[i]) = 0
for all i > 0, and further thick(x) = K. By contrast, a collection {y1, . . . , yn} of objects of
T are called a simple minded collection (smc) if HomT(yi, yj [t]) = 0 for all i, j and all t < 0,
HomT(yi, yj) ∼= Cδij , and thick(y1, . . . , yn) = T. We will often blur the distinction between
the set {y1, . . . , yn} and the single object y =

⊕
yi.

The standard example of a silting object is A, considered as a complex in degree zero,
and the standard example of an smc is S =

⊕
Si, the sum of the simple A-modules.

Below, we will often use the Koenig–Yang bijections. For the categories K and T above,
there are bijections [KY, §5]

{basic silting objects in K} ←→ {bounded t-structures in T with length heart} (6.A)

←→ {smcs in T}
where an object is basic if there are no repetitions in its Krull–Schmidt decomposition. The
following is the standard definition, translated into the notation of 4.1.

Definition 6.1. Let H be the heart of a bounded t-structure on a triangulated category T.
An smc U is called 2-term with respect to H if U ∈ [−1, 0]H. In Db(A), the set of 2-term
smcs with respect to the standard heart of Db(A) will be written 2 -smcA. Under (6.A), the
corresponding set of silting objects will be written 2 -siltA.

Notation 6.2. If V is an smc, we will abuse notation in 4.1 and write [a, b]V = [a, b]HV

where HV is the heart of the bounded t-structure corresponding to V under the Koenig–
Yang bijection (6.A). Note that with this abuse, U ∈ 2 -smcA if and only if U ∈ [−1, 0]S,
which by 4.4 is equivalent to S ∈ [0, 1]U. This is the formulation used in 6.11 below.
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As in 3.2 and 4.3, the notation 6.2 can be interpreted in terms of the Hom vanishings.

Lemma 6.3. Let U be an smc, and x ∈ T = Db(A). Then the following are equivalent.

(1) x ∈ [a, b]U.
(2) Hom(U, x[i]) = 0 for all i < a and Hom(x,U[i]) = 0 for all i < −b.

Definition 6.4. [AM, 2.4] A is called τ-tilting finite if the set 2 -smcA, equivalently 2 -siltA,
is finite. If for all smcs U there are only finitely many smcs V for which V ∈ [0, 1]U, then A
is called silting discrete.

It is clear that any silting discrete algebra is τ-tilting finite.

Definition 6.5. A basic x ∈ Db(A) is a semibrick complex if HomDb(A)(x, x[j]) = 0 for
all j < 0 and further HomDb(A)(xi, xj) ∼= Cδij for all indecomposable summands xi, xj of
x. A brick complex is a semibrick complex which is indecomposable. If x happens to be
an A-module in homological degree zero, we will emphasise this by calling x a semibrick
module, or brick module, respectively.

The following is known [KY, PSZ, IJY].

Lemma 6.6. Let A be a silting discrete finite dimensional algebra, and H be the heart of a
bounded t-structure of Db(A). Then the following statements hold.

(1) There exists a finite dimensional algebra Γ such that H ' mod Γ.
(2) The realisation functor real : Db(Γ)→ Db(A) induces an injective map from the set

2 -smcΓ to the set of smcs in Db(A) which are 2-term with respect to H.
(3) Γ is a τ-tilting finite algebra.

Proof. (1) Since A is silting discrete, any heart of a bounded t-structure has finite length
[PSZ, Thm A]. Under the Koenig–Yang bijection [KY, 6.2] it follows that H = mod Γ for
some Γ = EndKb(projA)(M), where M ∈ Kb(projA) is silting.
(2) As explained in [KY, 7.8], the induced map

HomΓ(x, y[i])→ HomDb(A)(real(x), real(y)[i])

is bijective for all x, y ∈ mod Γ and i ≤ 1. Let U ∈ 2 -smcΓ, say U = {y1, . . . , yr}. Then
by [BY, 4.11], each yi is either in mod Γ or (mod Γ)[1]. Therefore, setting zi := real(yi), the
direct sum z =

⊕r
i=1 zi remains a semibrick complex. Since each zi is either in H or H[1],

clearly z is 2-term with respect to H.
Since U is an smc, by definition thick(U) = Db(Γ) and thus mod Γ ⊂ thick(U). Applying

the triangulated functor real then gives

H = real(mod Γ) ⊂ real(thick(U)) ⊆ thick(real(U)) := thick(z)

Thus thick(z) contains the heart of a bounded t-structure on Db(A), and so necessarily
thick(z) = Db(A). This shows that z is also an smc, and so real has induced the claimed map
out of 2 -smcΓ. Since real is an equivalence on mod Γ→ H, and thus on (mod Γ)[1]→ H[1],
it follows that the induced map is injective.
(3) Consider the silting object M in (1), so that Γ = EndKb(projA)(M). By [IJY, 0.2] there
is a bijection between silting objects in M ∗M [1] and the set of support τ-tilting modules
sτ-tiltΓ (see e.g. [AIR]). But as is standard [PSZ, §1.2], a silting object T ∈M ∗M [1] if and
only if M ≥ T ≥ M [1], and so since A is silting discrete, this set is finite. Hence the set
sτ-tiltΓ is finite. �

The following consequence of 6.6 is also somewhat implicit in the literature. As notation,
write sbrickA for the set of all (basic) semibrick modules.

Corollary 6.7. Let A be silting discrete, and suppose that x is a semibrick complex in
Db(A) that is contained in the heart H of a bounded t-structure. Then there exists a simple
minded collection U in Db(A) that contains all indecomposable summands of x and is 2-term
with respect to H.
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Proof. By 6.6, H ' mod Γ where Γ is τ-tilting finite. Let y ∈ mod Γ be the semibrick
corresponding to x ∈ H under the equivalence. Since Γ is τ-tilting finite, every torsion
class in mod Γ is functorially finite [DIJ, 1.2]. Thus the ‘functorially finite’ hypothesis can
be dropped from the statement in Asai [A1, 2.3], so that [A1, 2.3] then asserts there is a
bijection

2 -smcΓ→ sbrickΓ

given by X → X ∩ mod Γ. Thus there exists U ∈ 2 -smcΓ such that U contains all the
indecomposable summands of y. It follows from 6.6(2) that real(U) gives the desired smc. �

The challenge, and the content of the next subsection, is to prove that any semibrick
complex in Db(A) is automatically contained in the heart H of a bounded t-structure. In
fact, this works much more generally.

6.2. Main Result. Throughout this section, as above, A is a finite dimensional C-algebra.

Definition 6.8. If U,V are smcs in Db(A), write U ≥ V if Hom(V,U[j]) = 0 for all j < 0.

Note that, by 6.3, U ≥ V if and only if V ∈ [a, 0]U for some a ≤ 0. The relation ≥ endows
the set smcDb(A) with the structure of a partially ordered set [KY, 7.9].

To prove the main result requires the ability to mutate simple minded collections.

Definition 6.9 ([KY]). Let U = {y1, . . . , yr} be an smc in the derived category Db(A) of a
finite dimensional algebra A, and choose yi in U. The left mutation νiU := {y′1, . . . , y′r} of
S at yi is defined as follows.

(1) If j 6= i, then y′j is defined to be the cone of the minimal left approximation yj [−1]→
yij in the extension closure of yi.

(2) If j = i, then y′i := yi[1]

By [KY, 7.8], the new collection νiU is again an smc. Note that U > νiU holds since
νiU ∈ [−1, 0]U by construction. Right mutations are defined similarly, but below we will
only require left mutations.

Lemma 6.10. Set T = Db(A), let U = {y1, . . . , yr} ⊂ T be an smc, and suppose that x ∈ T

satisfies x ∈ [a, b]U. Then the following statements hold.

(1) x ∈ [a, b + 1]νiU for all i.
(2) If HomT(Hb

U(x), yi) = 0, then x ∈ [a, b]νiU.

Proof. (1) Fix any i and put νiU = {y′1, . . . , y′r}. By 6.3, proving x ∈ [a, b + 1]νiU is
equivalent to showing that

(a) HomT(
⊕r

j=1 y
′
j , x[a + k]) = 0 for all k < 0, and

(b) HomT(x,
⊕r

j=1 y
′
j [−b− 1 + k]) = 0 for all k < 0.

Since y′j is contained in the extension closure of y =
⊕r

l=1 yl for all j 6= i, and since y′i = yi[1],
the first vanishing (a) follows from the assumption x ∈ [a, b]U. Again since y′j is contained
in the extension closure of y for all j 6= i, the vanishing HomT(x,

⊕
j 6=i yj [−b+k]) = 0 holds

for any k < 0. For the remaining case, there is an equality

HomT(x, y′i[−b− 1 + k]) = HomT(x, yi[−b + k])

by definition, and the RHS is zero for all k < 0 by the assumption x ∈ [a, b]U.
(2) The proof of (1) also shows that x ∈ [a, b]νiU if and only if Hom(x, yi[−b]) = 0. Since
x ∈ [a, b]U and y is an object in the heart corresponding to U, applying 4.2 yields an
isomorphism Hom(x, yi[−b]) ∼= Hom(Hb

U(x), yi), which proves the result. �

The following is the main result of this section.

Theorem 6.11. If A is silting discrete, T = Db(A) and x ∈ T, then the following statements
are equivalent.

(1) HomT(x, x[i]) = 0 for all i < 0.
(2) x belongs to the heart of a bounded t-structure.
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Proof. The only non-trivial direction is that (1) implies (2). Choose an smc U, then there
exists integers a ≤ b such that x ∈ [[a, b]]U. If a = b, then there is nothing to prove. Thus we
assume a < b, and claim that there is another smc V such that x ∈ [a+ 1, b]V. If this is true,
then by induction we can find an smc whose corresponding heart contains the object x.

To prove the claim, consider

∆ = {W ∈ smcDb(A) | U ∈ [0, 1]W and x ∈ [a, b]W}.

This is a poset with respect to ≥. Further, the poset ∆ is finite since A is silting discrete
(see 6.4), and thus there exists a minimal element V = {y1, . . . , yr}. We will show that this
V satisfies the desired property. Assume, for the aid of a contradiction, that Ha

V(x) 6= 0, and
choose a simple yi ↪→ Ha

V(x). By 4.2, since x ∈ [[a, b]]V and U ∈ [0, 1]V, necessarily

Hom(U, x[a− 1]) ∼= Hom(H1
V(U),Ha

V(x)).

The LHS is zero by 6.3 since x ∈ [[a, b]]U. Similarly, since a < b and x has no negative Exts,
it also follows from 4.2 that Hom(Hb

V(x),Ha
V(x)) = 0. Then our choice of yi together with

these vanishings yields

Hom(H1
V(U), yi) = 0 and Hom(Hb

V(x), yi) = 0.

By 6.10, these imply that U ∈ [0, 1]νiV and x ∈ [a, b]νiV, respectively. But then νiV is an
smc in ∆ with V > νiV, which contradicts the minimality of V. �

Recall that a semibrick complex x is said to have maximal rank if the number of indecom-
posable summands of x equals the number of simple A-modules. The following is immediate
from 6.11, where part (3) generalises [DIJ].

Corollary 6.12. If A is silting discrete, then the following statements hold.

(1) Any semibrick complex is a subcollection of a simple minded collection.
(2) Any semibrick complex of maximal rank is a simple minded collection.

Proof. (1) Let x be a semibrick complex. Then 6.11 implies that there exists the bounded
heart H that contains x, so the result is a special case of 6.7.
(2) Let x be a semibrick complex of maximal rank. By (1), x is a subcollection of a simple
minded collection. But by [KY, 5.5] every simple minded collection has maximal rank, thus
x itself is a simple minded collection. �

For the next corollary, recall that sbrickA is the set of all semibrick modules. If x, y ∈
sbrickA, then x⊕ y[1] is called a semibrick pair if HomA(x, y) = 0 = Ext1

A(x, y). Note that
automatically a semibrick pair x⊕ y[1] is a semibrick complex.

Part (3) of the following answers a general question of [BH, HI].

Corollary 6.13. If A is silting discrete, then the following statements hold.

(1) Every semibrick pair is a semibrick in the heart H of a bounded t-structure satisfying
H ∈ [−1, 0] with respect to the standard t-structure.

(2) Every semibrick pair is a subset of the simples in the heart A of a bounded t-structure
satisfying A ∈ [−2, 0] with respect to the standard t-structure.

(3) Every semibrick pair of maximal rank is a 2-term simple minded collection.

Proof. Let x⊕ y[1] be a semibrick pair.
(1) Let S be the smc consisting of simple A-modules, so that the heart corresponding to S

is the standard heart. Consider the finite partially ordered set

∆ = {W ∈ smcDb(A) | S ∈ [0, 1]W and x⊕ y[1] ∈ [−1, 0]W}.

Then the proof of 6.11 shows that a minimal element U of ∆ satisfies x ∈ [0, 0]U = HU,
where HU is the heart of the corresponding bounded t-structure. Since S ∈ [0, 1]HU

by
definition, 6.2 shows that HU ∈ [−1, 0] with respect to the standard t-structure.
(2) Let H be the heart of the t-structure in (1). Then 6.7 allows us to find the heart A of
another t-structure such that A ∈ [−1, 0]H, and the smc corresponding to A contains all
indecomposable summands of x⊕ y[1]. Each a ∈ [−1, 0]H and so has a 2-term filtration as
in (4.A), thus applying H∗ with respect to the standard t-structure and using H ∈ [−1, 0],
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it is easy to see that A ∈ [−2, 0].
(3) This follows from (1) and 6.12. �

6.3. Special Case: Contraction Algebras. A large class of silting discrete algebras are
the contraction algebras Λcon from §2.5. The associated category Db(Λcon) is of particular
interest, since it conjecturally is the classifying object of smooth flops. As such, Db(Λcon)
should not exhibit any exotic behaviour, nor contain any ‘unexpected’ objects. The following
result confirms this, adding to the existing evidence in [A3].

In what follows, Fβ are compositions of the standard equivalences in (3.C), which fixing
the same start and end point, generate a subgroup PBr of Auteq Db(Λcon).

Corollary 6.14. Let Λcon be the contraction algebra associated to a 3-fold flopping con-
traction X → SpecR, where X has at worst Gorenstein terminal singularities, and let
x ∈ Db(Λcon). Then the following statements hold.

(1) If x is a semibrick complex, then there exists β, and a sum of simple modules
⊕

i∈I Si
on a possibly different contraction algebra Γcon, such that Fβ(

⊕
i∈I Si)

∼= x.

(2) Every semibrick complex in Db(Λcon) is in the orbit, under the action of PBr, of the
(finitely many) semibrick modules or their shift by [1].

Proof. (1) By 6.12(1) the object x is a subcollection of a simple minded collection and thus
by the KY bijections x is a sum of simples in the heart of a bounded t-structure. But by
[A2, 3.16] all such t-structures are of the form Fβ(mod Γcon) for some β.
(2) This follows from (1), in the same way as in 5.6. Say β : D→ C, then consider the atom
α : D→ C. By torsion pairs, each Fα(Si) is either a brick module, or the shift [1] applied to
a brick module. Hence Fβ ◦ F−1

α shows that x is in the desired orbit. �

Remark 6.15. In the flops setting above, the previous results 5.5 and 5.6 classify the
semibrick complexes in the category C, whilst 6.14 classifies the semibrick complexes in the
category Db(Λcon). The fact that these results are so similar is all the more remarkable,
given the categories C and Db(Λcon) are never equivalent.

Indeed, it follows from the description of all bounded t-structures in [A3] that the cate-
gory Db(Λcon) enjoys the following property: the heart H of every bounded t-structure on
Db(Λcon) satisfies ExttH(a, b) ∼= HomDb(Λcon)(a, b[t]) for all a, b ∈ H and all t ∈ Z. We claim

that C does not satisfy this property, and so C and Db(Λcon) are not equivalent.
As before, consider the bounded heart H := mod Λcon on C. Writing S for the sum of the

simple Λcon-modules, then since Λcon is projective,

Ext3
H(Λcon, S) = Ext3

mod Λcon
(Λcon, S) = 0.

But as in the setup (§2.4), C ⊆ Db(Λ), thus

HomC(Λcon, S[3]) = HomDb(Λ)(Λcon, S[3]) = Ext3
Λ(Λcon, S),

which is non-zero by [DW3, 4.7], as a consequence of the 3-sCY property.

6.4. Further Remarks. The question of whether a semibrick complex can be completed
to a 2-simple minded collection has been addressed elsewhere (e.g. [BH, HI]), but the ap-
pearance of the interval [−2, 0] in 6.13 gives some evidence that this is the wrong question.

Example 6.16. Consider the projective algebra Π of type D4, which is silting discrete by
[AD], and the explicit semibrick pair (M ⊕N)⊕E[1] constructed in [BH, 4.0.8]. As shown
in loc. cit., this does not complete to a 2-smc. However by 6.13(2) it does complete to an
smc in the region [−2, 0]. This shows that the region [−2, 0] cannot be improved to [−1, 0].

In fact, the proof of 6.13(2) shows that the full strength of silting discrete is not required
to answer the question of whether a semibrick pair completes to an smc. The following
example illustrates this in the case of the preprojective algebra Π of type A, where it is still
not known whether Π is silting discrete.
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Example 6.17. Consider the preprojective algebra Π of type A3, namely the path algebra
of the quiver

a

a∗

b

b∗

subject to the relations aa∗ = 0, a∗a = bb∗ and b∗b = 0. Set T = Db(modΠ) and

x :=
(
C C 0

1

0

)
⊕
(
C C C

1

0

1

0

)
[1].

As can be checked by hand, using the fact that Π has finite representation type, or by using
GAP [QPA], x satisfies HomT(x, x[i]) = 0 for all i < 0, and is a semibrick pair. It does not
complete to a 2-smc. But consider the 2-smc

S′ :=
(
C C 0

1

0

)
⊕
(
C 0 0

)
[1]⊕

(
0 C C

1

0

)
[1]

In particular, S′ is the sum of the simples in a certain heart H of a bounded t-structure,
which is intermediate between modΠ and modΠ[1]. Again, either by hand or by GAP
[QPA], it can be seen that

HomT(S′, x[i]) = 0 = HomT(x, S′[i])

for all i < 0, and so since every object of H is filtered by S′, it follows that

HomT(H, x[i]) = 0 = HomT(x,H[i])

for all i < 0. Since H is the heart of a bounded t-structure, x ∈ H. Thus, x is a semibrick
in the heart of a bounded t-structure which is intermediate between modΠ and modΠ[1].
Whilst x is not a sum of simples in this heart, if this heart is τ-tilting finite (this seems to
be conjecturally true in the literature), then the proof of 6.7 can be used to show that x is
the simples in a different heart H′, for which H′ ∈ [−2, 0].
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