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Abstract. This paper determines the full derived deformation theory of certain

smooth rational curves C in Calabi-Yau 3-folds, by determining all higher A∞-products

in its controlling DG-algebra. This geometric setup includes very general cases where
C does not contract, cases where the curve neighbourhood is not rational, all known

simple smooth 3-fold flops, and all known divisorial contractions to curves. As a corol-

lary, it is shown that the noncommutative deformation theory of C is described via a
superpotential algebra derived from what we call free necklace polynomials, which are

elements in the free algebra obtained via a closed formula from combinatorial gluing

data. The description of these polynomials, together with the above results, establishes
a suitably interpreted string theory prediction due to Ferrari [F], Aspinwall–Katz [AK]

and Curto–Morrison [CM]. Perhaps most significantly, the main results give both the

language and evidence to finally formulate new contractibility conjectures for rational
curves in CY 3-folds, which lift Artin’s celebrated results [A] from surfaces.
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1. Introduction

Rational curves in Calabi–Yau 3-folds C ⊂ X are fundamental building blocks of geom-
etry, and yet some of even their most basic properties remain wide open. The main reason,
in contrast to when X is a surface, is that various key properties of C in X including its
formal neighbourhood, its contractibility and its deformation theory, are structural and
not combinatorial. The controlling structure of all three properties now lies in homological
and noncommutative algebra.

The purpose of this paper is to describe the full, derived, deformation theory of C in X,
for the general curves described in §1.1 below. This information is then used to (1) give
the first general closed-formula description of the associated noncommutative deformation
algebra of C, (2) build, in the context of mirror symmetry, a B-side geometric model from
the purely algebraic data of a given superpotential, and (3) use the evidence from these
results, and others, to finally be in a position to formulate and conjecture contractibility
criteria for formal neighbourhoods of curves in 3-folds. Noncommutative deformations
are the language and framework needed in order to lift Artin’s 60-year old work [A] from
surfaces to 3-folds.

1.1. Geometric Setup. For many reasons, some explained in §1.5, the crucial open and
key benchmarking case for all the problems listed above is when C ∼= P1 is a single curve,
with normal bundle O(−3)⊕ O(1). This is a vast set of curves, an uncharted zoo, known
to contain an array of different and surprising geometric behaviour. It is thus important
to understand such curves, and to establish their deformation properties.

The authors were supported by EPSRC grant EP/R034826/1 and by the ERC Consolidator Grant

101001227 (MMiMMa).
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Deformation theory is local, and so this problem at once reduces to a local model,
patching together two copies of affine space (after completion, when necessary). In full
generality, there is no known description of this model. However inside this general situa-
tion sits a very large subset, which is expected to be representative of general behaviour.
This is provided by the string theory literature [F, K2, CM], where a smooth rational
curve C inside a 3-fold X is built as follows.

Set λ00 = λ10 = λ01 = 0, and choose finitely many scalars λjk where j, k ≥ 0 and
j + k ≥ 2. Given this choice of data, consider the scheme X defined by the two open
patches U1 = A3

a,v2,v1 and U2 = A3
b,w2,w1

glued along

(a, v2, v1)
a 6=0←→ (a−1, a−1v2, a3v1 +

∑
j,k≥0

λjka
2−kvj+k−1

2 ). (1.A)

The locus v2 = v1 = 0 glues with the locus w2 = w1 = 0 to create a curve C ∼= P1 ⊂ X.
Both the scheme X, and the properties of the curve C ⊂ X, depend heavily on the choice

of λjk, but this is suppressed from the notation. We show in 2.3 that C ⊂ X has normal
bundle O(−3) ⊕ O(1) if and only if there are no small degree terms in (1.A). Given our
motivation, for the remainder of this introduction we assume that this condition holds.

1.2. Free Necklace Polynomials. To state our main results requires some new non-
commutative objects, which we briefly summarise here. Given two integers j, k ≥ 0 such
that n := j + k ≥ 1, consider the set Neckj,k consisting of coloured n-gons, or necklaces,
where there are precisely j nodes shaded and precisely k unshaded nodes .

The cyclic group Zn acts on the set Neckj,k via clockwise rotation by 2π/n, partitioning
Neckj,k into a set orbits, written Orbj,k. To each m ∈ Orbj,k we then prescribe a monomial
pm in the free algebra C〈x, y〉. This is achieved by choosing a representative of the orbit
m, then starting in the bottom left corner and working clockwise, writing x for and
y for . As an example, Z6 partitions the 15 elements of Neck4,2 into three orbits: the
following illustrates representatives of the three orbits, together with the corresponding
monomial pm ∈ C〈x, y〉, and the number of elements in that orbit.

6 6 3

xxxxyy xxxyxy xxyxxy

Now, given j, k, the free necklace polynomial Nj,k(x, y) is defined to be

Nj,k(x, y) :=
1

j + k

∑
m∈Orbj,k

|m| · pm,

which is a well defined element of C〈x, y〉, up to cyclic permutation.

For its commutative version, consider N ab
j,k, which is defined to be the image of Nj,k

under the abelianisation map C〈x, y〉 → C[x, y]. The difference between Nj,k and N ab
j,k

becomes stark as j + k increases. To calibrate, N4,2 = x4y2 + x3yxy + 1
2x

2yx2y whilst

N ab
4,2 = 5

2x
4y2.

1.3. Main Results. Given a curve C in X locally modelled on (1.A), as explained in
§3.4–3.5 there is a DG-algebra C that controls the deformation theory of OC, in the sense
that its A∞-products describe the prorepresenting hull of the deformation functor. There
are many such abstract models for C, with the challenge being to construct one where the
A∞-products can be calculated.

Consider the graded vector space A =
⊕

i∈Z Ai where

Ai =


C if i = 0, 3

C2 if i = 1, 2

0 else.
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Write x, y for the basis of A1, and X,Y for the basis of A2, and s for the basis of A3. The
following is our main result.

Theorem 1.1 (5.13). Given a curve C in X locally modelled on (1.A), the following
defines an A∞-structure {mn}n≥2 on the vector space A above. Furthermore, the resulting
A∞-algebra is quasi-isomorphic to the DG-algebra C = RHomX(OC,OC).

(1) For any n ≥ 2 and any decomposition n = j + k with j, k ≥ 0,

mn(x, . . . , x︸ ︷︷ ︸
j

, y, . . . , y︸ ︷︷ ︸
k

) = λj+1,k X + λj,k+1Y,

where the λ’s are the coefficients from the glue in (1.A).
(2) More generally, mn with n ≥ 2 applied only to degree one inputs (so, combinations

of x and y) does not depend on the order of those degree one inputs, and thus is
determined by (1) above.

(3) The only other non-zero products are

m2(x,X) = −s m2(y,Y) = −s
m2(X, x) = s m2(Y, y) = s.

Retrospectively, the fact that the order of the inputs does not matter in 1.1(2) should
be viewed as the remnants of all the data being determined from the geometric setup
(1.A), which is described from commutative gluing data.

There are two main remarkable aspects of 1.1. Perhaps the first is that describing the
full A∞-structure is possible at all, never mind with such precision on the coefficients λjk.
The second is that the proof goes counter to expectations: we do not assume the abstract
existence of an A∞-structure then argue it has nice properties. Instead, the A∞-structure
is constructed from the ground up, using the Kadeishvili algorithm [K1]. One of the main
novelties is that it is possible to construct, in §3.1, a uniform locally free resolution E of
OC. In turn this allows us to choose a uniform basis, which makes the computation of the
full A∞-structure possible.

Although the A∞-structure in 1.1 turns out to be a cyclic A∞-structure in the sense
of Kontsevich–Soibelman [KS], this is a consequence of the proof, not an input. It is
also unsurprising that there is some reasonable description of at least part of the A∞-
structure, given that the physics literature [AK, CM, F] predicts both a commutative and
also some form of ‘matrix’ (=noncommutative) superpotential. As sketched in §6.5, the
matrix prediction of [F] turns out to be consistent with, and mathematically explained
by, the main result 1.1. Much of this paper, and our broader work, is inspired by this
physics prediction.

1.4. Corollaries. The first main consequences of 1.1 are to deformation theory. Given
a curve C in X locally described by (1.A), the sheaf OC ∈ cohX has an associated non-
commutative (NC) deformation functor, recalled in §6.1. This functor always admits a
prorepresenting hull, Λdef , called the NC deformation algebra (see §6.1).

Abstractly Λdef is always a superpotential algebra, however describing the superpoten-
tial has been a key open question. The following gives the first closed-formula description.

Corollary 1.2 (6.4). The NC deformation algebra Λdef of OC ∈ cohX is described by

Λdef
∼= Jac(W) =

C〈〈x, y〉〉
((δxW, δyW))

where W =
∑
λjk Nj,k ∈ C〈〈x, y〉〉 is the sum of free necklace polynomials, and the λjk are

the data in the glue (1.A).

The above then immediately implies a classical 1972 result of Namba [N, K2], proved
using complex analysis methods and the existence of Kuranishi spaces. As is standard,
taking the abelianisation of Λdef , which just means formally commuting the variables,
recovers commutative deformations of OC. After formally commuting variables, each pm
in Nj,k(x, y) becomes xjyk, and so Nj,k(x, y)ab = 1

j+k

(
j+k
k

)
xjyk.
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Corollary 1.3 (6.5, Namba, Katz). Classical commutative deformations of OC ∈ cohX

are prorepresented by

Λab
def
∼= Jac(W)ab =

C[[x, y]]

(δxV, δyV)

where V =
∑
λjk N

ab
j,k =

∑ λjk
j+k

(
j+k
k

)
xjyk.

The other consequence of 1.1 is categorical. Given a quiver with superpotential (Q,W),
Ginzburg associates a 3-CY category DW. It is a basic question in mirror symmetry to
find geometric models for such categories, on both the A- and B-sides.

Corollary 1.4 (6.6). Let W ∈ C〈x, y〉 and consider the associated 3-CY category DW. If
there exist scalars λjk for which W =

∑
λjk Nj,k, then there exists a 3-fold X and smooth

rational curve C ⊂ X such that

Db(cohX) ⊃ 〈OC〉 ∼= DW.

The above gives the first hint that perhaps not all superpotentials can be realised, whilst
simultaneously not giving any hint on what general reasonable restrictions might be, given
that necklace polynomials are not preserved under automorphisms. After imposing strong
extra conditions such as dimC Λdef < ∞, the realisation problem is expected to be true
[BW, 1.11].

1.5. Contractibility. In 1962 Artin [A] established that the contractibility of curves in
smooth surfaces is (suitably locally) a combinatorial problem. This is no longer true for
3-folds. It has been an open question as to what should replace this in higher dimension,
and only special cases such as smooth curves currently have a criterion [J].

Corollary 1.2 gives a presentation of Λdef . Based on empirical evidence from many
computer algebra calculations [BCP] on these presentations, and from theoretical evi-
dence in [BW], we conjecture that in the 3-fold setting Artin’s combinatorics are replaced
by numerical properties of Λdef . One of the advantages of the NC deformation theory
technology is that it finally permits clean statements for multi-curves.

Conjecture 1.5 (‘3-fold Artin contractibility’). Let C be a connected union of n smooth
rational curves in a CY 3-fold, and write Λdef for its multi-pointed NC deformation
algebra. Then, in a formal neighbourhood of C, the following are equivalent.

(1) C contracts to a point, with an isomorphism elsewhere.
(2) dimC Λdef <∞.

This conjecture is a reinterpretation of Artin’s results for surfaces, where crepant curves
contract if and only if they are in ADE formation. The NC deformation algebra in this case
is the preprojective algebra, which is finite dimensional if and only if the curve configura-
tion is ADE. Note also for 3-folds that the conjecture is numerical, but not combinatorial:
to illustrate this, whilst the superpotential determined in 1.1 is a combinatorial object,
determining whether the numerical condition dimC Λdef <∞ holds is much more subtle.

The direction (⇒) of 1.5 is known, by [DW]. In the case of single curves, [BW, 1.10]
shows that the only case of (⇐) that remains open is when the normal bundle is O(−3)⊕
O(1). The results of this paper give strong evidence towards, but do not quite yet prove,
that final case.

Acknowledgements. The authors thank Yujiro Kawamata and Franco Rota for helpful
conversations, and the referee for many helpful and clarifying remarks.

Conventions. We work over an algebraically closed field K. Commas will be suppressed
on the subscripts on scalars wherever possible, so e.g. λj,k = λjk. A further restriction to
C, or any algebraically closed field of characteristic zero, is made in §6. This is needed for
the deformation theory to work nicely, and also to be able to integrate relations to obtain
a superpotential, where the free necklace polynomials first appear.

2. Setup and Preliminaries

This section introduces C ⊂ X, describes its basic properties, and sets notation that
will be used throughout.



DERIVED DEFORMATION THEORY OF CREPANT CURVES 5

2.1. Gluing of a (−3, 1) neighbourhood. Choose finitely many non-zero scalars λjk ∈
K for all j, k ≥ 0, where λ0,0 = λ1,0 = λ0,1 = 0, and consider the scheme X defined by
gluing the two open patches U1 = A3

a,v2,v1 and U2 = A3
b,w2,w1

along

(a, v2, v1)
a 6=07−→ (a−1, a−1v2, a3v1 +

∑
j,k≥0

λjka
2−kvj+k−1

2 ). (2.A)

It is easily checked that the inverse map is given by

(b, w2, w1)
b 6=07−→ (b−1, b−1w2, b3w1 −

∑
j,k≥0

λjkb
2−jwj+k−1

2 ). (2.B)

Write U = {U1,U2} for the above open cover, with common open U12 = U1 ∩ U2.
The ideal (v1, v2) glues with the ideal (w1, w2) to give an ideal sheaf I ⊂ OX, the

quotient of which defines C ⊂ X.

Remark 2.1. If all λj,k are zero, then X is the total space of the vector bundle OP1(−3)⊕
OP1(1). Furthermore, in this case the zero section C = P1 is very well known to have non-
commutative deformation algebra K〈〈x, y〉〉, and commutative deformation algebra K[[x, y]].
In §6 we will interpret this as being given by the zero potential.

Lemma 2.2. X is quasi-compact and separated.

Proof. Since X has the finite open cover U1 ∪ U2, where each Ui is Spec of a polynomial
ring, it follows that X is a noetherian scheme [H, p83], and thus in particular is quasi-
compact [H, 3.1.1, Ex I.1.7(b)].

Now X is obtained from the separated K-schemes U1 = A3 and U2 = A3, glued together
via the open subsets φ : {a 6= 0} → {b 6= 0} in (2.A) above. Now X ×K X is covered by
{U1×U1,U1×U2,U2×U1,U2×U2} [S, Tag 01JS], and so by the standard [S, Tag 01KJ]
the scheme X is separated if and only if the ‘diagonal’ map

U12 → U1 × U2

is a closed immersion. Since U1 and U2 are affine, this condition is equivalent to the
surjectivity of the map

K[a, v2, v1]⊗K K[b, w2, w1]→ K[b±1, w2, w1]

sending a⊗b 7→ φ(a)b. Since clearly at⊗wi1
1 wi2

2 7→ b−twi1
1 wi2

2 and 1⊗btwi1
1 wi2

2 7→ btwi1
1 wi2

2 ,
the map clearly hits the monomial basis of K[b±1, w2, w1], and thus is surjective. �

Lemma 2.3 (Ferrari [F]). With the notation as above,

NC|X ∼= O(−3)⊕ O(1) ⇐⇒ λ20 = λ11 = λ02 = 0.

In the remaining case where some λ20, λ11, λ02 is nonzero, set ∆ = λ2
11 − λ20λ02. Then

NC|X ∼=
{

O(−2)⊕ O ⇐⇒ ∆ = 0
O(−1)⊕ O(−1) ⇐⇒ ∆ 6= 0.

Proof. Working mod I2 = (v1, v2)2, the glue (1.A) becomes

(a, v2, v1)
a6=0←→ (a−1, a−1v2, a3v1 +

∑
j+k≤2

λjka
2−kvj+k−1

2 ). (2.C)

Since λ00 = λ10 = λ01 = 0 by convention, by inspection of the known gluing of the total
space OP1(−3)⊕OP1(1), certainly the above curve has normal bundle O(−3)⊕O(1) if the
displayed sum in the right hand side of (2.C) is zero, equivalently λ20 = λ11 = λ02 = 0.

If one of λ20, λ11, λ02 is nonzero, then mod I2 the gluing is

(a, v2, v1)
a6=0←→ (a−1, a−1v2, a3v1 + (λ20a

2 + λ11a + λ02)v2). (2.D)

It is then a result of Ferrari [F, Appendix B] that the normal bundle is (r − 1,−r − 1),

where r is the corank of the quadratic form
(
λ20 λ11
λ11 λ02

)
, and so the result follows. �

https://stacks.math.columbia.edu/tag/01JS
https://stacks.math.columbia.edu/tag/01KJ
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2.2. The A and B Polynomials. From here on, we will consider the following setup.

Setup 2.4. Consider the glue (2.A), which by definition is given by specifying finitely
many nonzero λjk. We will assume that:

(1) λ00 = λ10 = λ01 = 0, to ensure the existence of a closed curve.
(2) λ20 = λ11 = λ02 = 0, by 2.3 to ensure that the normal bundle is O(−3)⊕ O(1).
(3) That not all λjk are zero, to exclude the easy degenerate case described in 2.1.

Under 2.4, the following three constants t, r, s ∈ N will naturally appear throughout the
analysis, as will the following polynomials A and B.

Notation 2.5. Set t = min{j + k | λj,k 6= 0}. By 2.4(3) t is defined, and by 2.4(1)(2),
t ≥ 3. Furthermore, we may write∑

λjka
2−kvj+k−1

2 = a2−rvt−1
2 A∑

λjkb
2−jwj+k−1

2 = b2−swt−1
2 B

(2.E)

where A = A(a, v2) ∈ OU1 and B = B(b, w2) ∈ OU2 are polynomials, and neither a nor v2

divides A, and neither b nor w2 divides B. In particular, 2 − r ∈ Z is the most negative
power of a appearing in (2.A) and 2 − s is the most negative power of b in (2.B). Again
using 2.4(1)(2), both r ≥ 0 and s ≥ 0.

Lemma 2.6. Restricting A ∈ OU1
and B ∈ OU2

to the common open subset OU12
, then

B = br+s−tA, equivalently A = ar+s−tB.

Proof. In the notation of 2.5, the final components of the glue equations (2.A) and (2.B)
can be written

b2−rw1 = ar+1v1 + vt−1
2 A

a2−sv1 = bs+1w1 − wt−1
2 B.

(2.F)

Rearranging for A and B gives the result. �

The following more refined notation will be needed for inductive arguments later.

Notation 2.7. Given (2.E), for all i ≥ 3 define Ai ∈ K[a] and Bi ∈ K[b] by

Ai = λi,0a
r + λi−1,1a

r−1 + . . . + λ0,ia
r−i

Bi = λ0,ib
s + λ1,i−1b

s−1 + . . . + λi,0b
s−i.

By definition of t (in 2.5), A3 = . . . = At−1 = 0 and B3 = . . . = Bt−1 = 0. The
following is the graded piece analogue of 2.6.

Lemma 2.8. For all i ≥ 3, we have Ai = ar+s−iBi and so vi−t2 Ai = ar+s−twi−t
2 Bi.

Proof. The statement Ai = ar+s−iBi is immediate by inspection, since a = b−1 on U12.
The second statement follows, since by the glue (2.A) w2 = a−1v2. �

Inspecting the graded pieces of (2.E), note that∑
j+k=i

λjka
2−kvj+k−1

2 = a2−rvi−1
2 Ai and

∑
j+k=i

λjkb
2−jwj+k−1

2 = b2−swi−1
2 Bi.

Consequently, the A and B defined in 2.5 can be written

A = At + v2At+1 + v2
2At+2 + . . .

= v3−t
2 A3 + v4−t

2 A4 + . . . + v−1
2 At−1︸ ︷︷ ︸

=0

+ At︸︷︷︸
6=0

+v2At+1 + v2
2At+2 + . . . (2.G)

and similarly B = w3−t
2 B3 + . . . + w−1

2 Bt−1 + Bt + w2Bt+1 + w2
2Bt+2 + . . . with Bt 6= 0

where all terms w−i2 Bt−i with negative w2 exponents are zero.
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2.3. Sheaves on the neighbourhood. For n ∈ Z, consider the locally free sheaves O(n)
defined on X by taking the rank one free module on U2 and the rank one free module on
U1, and gluing them on the common intersection U12 via the isomorphism

K[b±1, w2, w1] → K[a±1, v2, v1]

f(b, w2, w1) 7→ an · f(a−1, a−1v2, a
3v1 +

∑
j,k≥0 λjka

2−kvj+k−1
2 ).

A map between sheaves ϕ : O(m) → O(n) is determined by two polynomial maps in a
diagram

On U1:

On U2:

OU1
(m) OU1

(n)

OU2(m) OU2(n)

am an

ϕ1(a,v2,v1)

ϕ2(b,w2,w1)

(2.H)

that commutes after substituting for glueing expressions (2.A). Although it is natural to
define ϕ1 and ϕ2 in the coordinates on their patch, we may use expressions in any of the
variables that remain regular on the given patch and commute up to the glue, e.g. in 3.1
below. The above picture will be abbreviated

ϕ : O(m) O(n)
ϕ1(a,v2,v1)

ϕ2(b,w2,w1)

leaving the transition maps implicit, and similarly maps between direct sums of such
bundles will be represented ⊕

O(mi)
⊕

O(nj)
Φ1(a,v2,v1)

Φ2(b,w2,w1)

where Φi are represented by matrices representing the maps on the two charts, and the
transition maps are given by the matrices diag(ami) and diag(anj ).

3. Constructing the DG-model

For any choice of scalars λjk satisfying 2.4, consider the scheme X defined by the gluing
rule in (2.A), which contains C ∼= P1. This section builds a particular DG-algebra that
controls the deformation theory of OC.

In §3.1 below, which is the key new construction, we exhibit a uniform locally free
resolution E of OC. Using this, together with standard results involving homological DG-
algebras (in §3.2) and Čech enhancements (in §3.4), we then exhibit a complex (C,D) which
computes the modules ExtiX(OC,OC). After some some sign adjustments to multiplication
(in §3.5), we obtain an explicit DG-algebra (C, ?,D) that models RHomX(OC,OC).

3.1. Locally Free Resolution of OC. This subsection constructs a locally free resolution
of the structure sheaf OC. Recall the polynomials A ∈ C[a, v2] and B ∈ C[b, w2] from 2.5
and the abbreviated notation for maps of sheaves on X = U1 ∪ U2 from §2.3.

Theorem 3.1. Under Setup 2.4, the following is a locally free resolution of OC.

0 O(−r−s)

O(1−r−s)
⊕

O(1−s)
⊕

O(1−r)

O(2−s)
⊕

O(−1)
⊕

O(2−r)

O

( v2
−ar+1

−1

)
( w2
−1
−bs+1

)
(

ar+1 v2 0

vt−2
2 A −v1 b2−rw1

−1 0 −v2

)
(

1 w2 0

wt−2
2 B −a2−sv1 w1

−bs+1 0 −w2

) ( v1 v2 b2−rw1 )

( a2−sv1 w2 w1 )

where in the top b2−rw1 = ar+1v1 + vt−1
2 A, and in the bottom a2−sv1 = bs+1w1 − wt−1

2 B.

Proof. We first check that the given maps on charts glue to maps of sheaves as indicated.
On the left, since w2 = a−1v2 and b = a−1, we have(

a1−r−s 0 0
0 a1−s 0
0 0 a1−r

)(
a−1v2
−1

−a−s−1

)
=

(
a−r−sv2
−a1−s

−a−r−s

)
=
( v2
−ar+1

−1

)
· a−r−s

so the local charts glue to a map O(−r − s)→ O(1− r − s)⊕ O(1− s)⊕ O(1− r).
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For the middle map, substituting also for B = at−r−sA by 2.6, we have(
ar+1 v2 0

vt−2
2 A −v1 b2−rw1

−1 0 −v2

)(
a1−r−s 0 0

0 a1−s 0
0 0 a1−r

)
=

(
a2−s a1−sv2 0

a1−r−svt−2
2 A −a1−sv1 a−1w1

−a1−r−s 0 −a1−rv2

)
=

(
a2−s 0 0

0 a−1 0
0 0 a2−r

)(
1 a−1v2 0

a2−r−svt−2
2 A −a2−sv1 w1

−a−s−1 0 −a−1v2

)
so the local charts glue to a map as indicated. Finally, on the right,

( v1 v2 ar−2w1 )

(
a2−s 0 0

0 a−1 0
0 0 a2−r

)
= ( a2−sv1 a−1v2 w1 )

so the local charts glue to a map to the trivial bundle. The sequence of maps of sheaves
is clearly a complex, so it remains to check that it is exact and has cokernel OC.

Exactness of the complex is local, and it is enough to check exactness on the two patches
separately. We do this for the first patch in coordinates OU1 = C[a, v2, v1], with the second
patch being similar. The left-most nonzero map is clearly injective. If (r1, r2, r3)T belongs
to the kernel of O3 → O3, then r1 = −v2r3 and

0 = ar+1r1 + v2r2 = (−ar+1r3 + r2)v2

so that r2 = ar+1r3, as OU1 is a domain. Thus (r1, r2, r3)T lies in the image and the
complex is exact at this point.

If (r1, r2, r3)T belongs to the kernel of the right-hand map O3 → O then by (2.F)

v1r1 + v2r2 + (ar+1v1 + vt−1
2 A)r3 = 0.

Rewriting this as (r1 + ar+1r3)v1 = (−r2 − vt−2
2 Ar3)v2 shows that r1 + ar+1r3 = Cv2 and

−r2 − vt−2
2 Ar3 = Cv1 for some C ∈ OU1 , since OU1 is a UFD. Thus (r1, r2, r3)T is the

image of (−r3, C, 0)T , as required.
Finally, it is clear that OC is the cokernel, since the equation b2−rw1 = ar+1v1 + vt−1

2 A,
together with t ≥ 2, shows that b2−rw1 ∈ (v1, v2) = IC . �

3.2. Homological DG-algebra. To immediately ease notation, write

E := 0→ E3
d3−→ E2

d2−→ E1
d1−→ E0 → 0

for the complex of locally free sheaves on X constructed in 3.1, and consider the homo-
logical DG-algebra (EndX(E), ◦, δ) defined by EndX(E) =

⊕
i∈Z Homi(E,E), where

Homi(E,E) =
⊕
n∈Z

Hom(En,En−i). (3.A)

By (3.A), a homogeneous element b ∈ Homi(E,E) of EndX(E) decomposes as b = (bn)n∈Z
with bn ∈ Hom(En,En−i), and we will refer to bn as the nth component of the homogenous
element b.

Composition ◦ gives rise to a product on EndX(E) which preserves the grading. Further,

there is a differential δ : Homi(E,E)→ Homi+1(E,E) whose nth component is

(δa)n := dn−i ◦ an − (−1)ian−1 ◦ dn. (3.B)

In the following picture, visually this is down-across −(−1)i across-down.

En En−1
dn

En−i En−i−1
dn−i

an an−1

Lemma 3.2. δ2(a) = 0 and δ(a|U) = δ(a)|U for any a ∈ Homi(E,E) and any open U ⊂ X.

Proof. The first claim is standard, and the second claim is the statement that dn and a
are maps of sheaves, so are defined by composition on the open U. �
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3.3. Čech complex. This subsection sets notation for the Čech complex (Č(U,F), d) of
a sheaf F on X relative to the open cover X = U1 ∪ U2. Recall that U12 = U1 ∩ U2.

The only nonzero terms in the Čech complex are Č0 = F|U1
⊕ F|U2

and Č1 = F|U12
.

For (a1, a2) ∈ Č0, the coboundary d : Č0 → Č1 is the map

d(a1, a2) = a1|U12
− a2|U12

. (3.C)

3.4. The total complex. Following [AK], consider C =
⊕

n∈Z Cn where

Cn :=
⊕

p+q=n

Čp(U,Homq(E,E)),

with differential D = d + (−1)pδ described below. This is the Čech complex of the sheaf
of DG-algebras EndX(E) from §3.2, c.f. [S, 01FP].

Unpacking this, since only Č0 and Č1 are nonzero, a homogenous element a ∈ Ci is a
triple of vectors of homomorphisms

a = (a1, a2, a12)

where

a1 ∈
⊕
n∈Z

HomU1(En,En−i), a2 ∈
⊕
n∈Z

HomU2(En,En−i), a12 ∈
⊕
n∈Z

HomU12(En,En−i+1)

The differential D : Ci → Ci+1 is defined by

(a1, a2, a12) 7→ (δa1, δa2, (a1|U12
− a2|U12

)− δa12) (3.D)

where δ is from (3.B) and we have applied d from (3.C).
As is well-known, the complex (C,D) computes the cohomology ExtiX(OC,OC).

Proposition 3.3. Hi(C) ∼= ExtiX(OC,OC) for all i ∈ Z.

Proof. (C,D) as defined above is equal to the complex Hom•Db
∞(X)(E,E) as defined in [A+,

§8.2.1]. Thus

Hi(C) ∼= Hi(Hom•Db
∞(X)(E,E)) ∼= HomDb(X)(E,E[i]) ∼= ExtiX(OC,OC),

where the middle isomorphism is e.g. [A+, p587]. �

3.5. The Čech enhancement. Using the well-known Čech enhancement described in
e.g. [A+, p587] or [CS, §1.2], the complex (C,D) can be upgraded to a DG-algebra. The
only slightly subtle point is the sign on the composition, which we explicitly recall here.

Definition 3.4. Given homogeneous a = (a1, a2, a12) ∈ Ci and b = (b1, b2, b12) ∈ Cj ,
define

a ? b := (a1 ◦ b1, a2 ◦ b2, a12 ◦ b2|U12
+ (−1)ia1|U12

◦ b12) ∈ Ci+j (3.E)

and extend ? to all of C by linearity.

To set notation for the next result, choose an injective resolution

0→ OC → I0 → I1 → . . .

of OC. Then consider the DG-algebra EndDG
X (I) =

⊕
t∈Z EndDG

X (I)t, where

EndDG
X (I)t := {(fs)s∈Z | fs : Is → Is+t}.

Multiplication is given by composition, and the differential is defined as in §3.2.

Proposition 3.5. (C, ?,D) is a DG-algebra, and this is quasi-isomorphic to the DG-

algebra EndDG
X (I).

Proof. The first statement can be checked manually. Alternatively, as in the proof of 3.3,
(C,D) equals the complex Hom•Db

∞(X)(E,E). Now Db
∞(X) is in fact a DG category, under

the composition described in [A+, p587]. In our restricted setting, with only two open
affine sets, this translates precisely into the operation ? defined above (see also [AK]). The
second statement follows since X is quasi-compact and separated by 2.2, so the Čech DG
enhancement of perfect complexes is quasi-equivalent to the injective DG enhancement of
perfect complexes; see [CS, §1.2] or [LS, 3.19]. �
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4. Generators and Homotopies

This section constructs certain elements of the DG-algebra (C, ?,D) from §3.5. In
§4.1–4.4 some key elements of C are introduced. Various easy relations between these
elements involving both D and ? are then computed in §4.5 and §4.6. Inductive notation
is introduced in §4.7. The totality of elements considered is summarised in §4.8. The whole
section is elementary, essentially being nothing more than multiplication of matrices, with
care taken about degrees.

To set and ease notation throughout, under Setup 2.4 write

0→ E3
d3−→ E2

d2−→ E1
d1−→ E0 → 0

for the complex of locally free sheaves on X constructed in 3.1 that resolves OC.

4.1. Degree One Generators. Consider x := (x1, x2, 0) ∈ C1, where

x1 =

E3 E2 E1 E0

( v2
−ar+1

−1

) (
ar+1 v2 0

vt−2
2 A −v1 b2−rw1

−1 0 −v2

)

E3 E2 E1 E0

(
ar+1 v2 0

vt−2
2 A −v1 b2−rw1

−1 0 −v2

)
( v1 v2 b2−rw1 )

(−1
0
0

) (
0 −1 0

vt−3
2 A 0 0

0 0 1

)
( 0 −1 0 )

x2 =

E3 E2 E1 E0( w2
−1
−bs+1

) (
1 w2 0

wt−2
2 B −a2−sv1 w1

−bs+1 0 −w2

)

E3 E2 E1 E0(
1 w2 0

wt−2
2 B −a2−sv1 w1

−bs+1 0 −w2

)
( a2−sv1 w2 w1 )

b

(−1
0
0

)
b

(
0 −1 0

wt−3
2 B 0 0
0 0 1

)
b( 0 −1 0 )

Under the sign convention defining δ in (3.B), which for odd degree is down-across+across-
down, δ(x1) = 0 = δ(x2). Further, it follows from (2.H) and 2.6 that each pair of vertical
maps glue to give a global map, so d(x1, x2) = 0. Hence Dx = 0.

Similarly, write y = (y1, y2, 0) ∈ C1 where y1 is defined by multiplying all the vertical
maps of x1 by a, and y2 by dividing all the vertical maps of x2 by b. It follows, in a similar
way, that D(y) = 0.

Lemma 4.1. With notation as above, x and y give linearly independent elements of
H1(C) ∼= Ext1(OC,OC) ∼= K2.

Proof. The first isomorphism holds by 3.3 and the second holds since NC|X ∼= O(−3)⊕O(1).
Both x and y are closed, as observed above, so suppose there exists α = (α1,α2,α12) ∈

C0 such thatDα = λx+µy for some λ,µ ∈ K. Restricting to U1, we have δ(α1) = λx1+µy1,
and by (3.B) and 3.1 the component E1 → E0 of this element is

δ(α1) = (v1, v2, a
r+1v1 + vt−1

2 A)M + c(v1, v2, a
r+1v1 + vt−1

2 A)

for some 3 × 3 matrix M with entries in OU1
, and some c ∈ OU1

. In particular, all
entries of δ(α1) lie in the ideal 〈v1, v2〉 ⊂ OU1 and so vanish on C. In contrast, the second
entry −(λ + µa) of λx1 + µy1 = λ(0,−1, 0) + µ(0,−a, 0) does not vanish on C unless
λ = µ = 0. �

4.2. Shapes and Degree One Homotopies. Alongside closed elements of C such as x
and y of §4.1 that appear in Theorem 1.1, it is convenient to define simpler elements of
C that we call shapes, which are akin to elementary matrices. As we will see repeatedly,
these shapes will help distinguish between identities that hold for trivial reasons — matrix
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products vanishing because all terms have a factor of zero — and those that vanish because
some nontrivial cancellation occurs.

With this in mind, and adopting the convention that degree one elements are denoted
in lower case sans font, consider (g1, g2, 0) ∈ C1 defined by

g1 =

E3 E2 E1 E0

( v2
−ar+1

−1

) (
ar+1 v2 0

vt−2
2 A −v1 b2−rw1

−1 0 −v2

)

E3 E2 E1 E0

(
ar+1 v2 0

vt−2
2 A −v1 b2−rw1

−1 0 −v2

)
( v1 v2 b2−rw1 )

(
0
0
0

) (
0 0 0
0 0 1
0 0 0

)
( 0 0 1 )

with g2 being given by the same three vertical matrices, but considered on the other chart.
Similarly, define (h1, h2, 0) ∈ C1 by

h1 =

E3 E2 E1 E0

( v2
−ar+1

−1

) (
ar+1 v2 0

vt−2
2 A −v1 b2−rw1

−1 0 −v2

)

E3 E2 E1 E0

(
ar+1 v2 0

vt−2
2 A −v1 b2−rw1

−1 0 −v2

)
( v1 v2 b2−rw1 )

(
0
0
0

) (
0 0 0
0 1 0
0 0 0

)
(−1 0 0 )

with h2 being given by the same three vertical matrices, but considered on the other chart.

Notation 4.2. For g and h defined above, define ki ∈ C1 by

ki :=

{
(ai · g1, br−2−i · g2, 0) if 0 ≤ i ≤ r − 2

(ai−(r+1) · h1, b(r+s−1)−i · h2, 0) if r + 1 ≤ i ≤ r + s− 1

where terms such as ai ·g1 should be interpreted as multiplying all the three vertical maps
of g1 by the coefficient ai.

Remark 4.3. In 4.2, and in similar definitions such as 4.4 below, we say that ki is based
on the shape g (or h), as a reminder that its three components are polynomial multiples of
the corresponding components of g (or h). This is not strictly essential, but it does help
to navigate the array of constructions, and is summarised in §4.8.

Lastly consider the shape (z1, z2, 0) ∈ C1, defined as

z1 =

E3 E2 E1 E0

( v2
−ar+1

−1

) (
ar+1 v2 0

vt−2
2 A −v1 b2−rw1

−1 0 −v2

)

E3 E2 E1 E0

(
ar+1 v2 0

vt−2
2 A −v1 b2−rw1

−1 0 −v2

)
( v1 v2 b2−rw1 )

(
0
0
0

) (
0 0 0
−1 0 0
0 0 0

)
( 0 0 0 )

with z2 being given by the same three vertical matrices, but considered on the other chart.
This shape will appear again as a killing homotopy in §4.5 and §4.7.

4.3. Degree Two Shapes and Generators. Adopting the convention that degree two
elements will be denoted in upper case sans font, consider the shape Z = (Z1,Z2, 0) ∈ C2
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defined as

Z1 =

E3 E2 E1 E0

( v2
−ar+1

−1

)

E3 E2 E1 E0

( v1 v2 b2−rw1 )

(
0
−1
0

)
(−1 0 0 )

with Z2 being given by the same two vertical matrices, but considered on the other chart.

Notation 4.4. Set X = (ar · Z1, bs−1 · Z2, 0) ∈ C2 and Y = (ar−1 · Z1, bs · Z2, 0) ∈ C2.

Thus both X,Y ∈ C2 are based on the shape Z. Under the sign convention defining δ
in (3.B), which for even degree is down-across−across-down, δ(X1) = 0 = δ(X2). Further,
it follows from (2.H) and (2.A) that the pair of vertical maps (E3 → E0)|Ui

glue to give a
global map, so d(X1,X2) = 0. Hence DX = 0, and similarly DY = 0.

These give generators of H2(C).

Lemma 4.5. X and Y are linearly independent elements of H2(C) ∼= Ext2(OC,OC) ∼= K2.

Proof. This is similar to 4.1, with only linear independence to check. Suppose there exists
c = (c1, c2, c12) ∈ C1 such that Dc = λX + µY for some λ,µ ∈ K. Restricting to U1, we
have δ(c1) = λX1 + µY1, and by (3.B) and 3.1 the component E2 → E0 of this element is

δ(c1) = (v1, v2, a
r+1v1 + vt−1

2 A)M + (e1, e2, e3) Mat(d2)

for some 3 × 3 matrix M with entries in OU1
, and some ei ∈ OU1

, where Mat(d2) is the
matrix of d2 on U1 from 3.1. Considering only the first component of this, and equating
to that of λX1 + µY1, we have at once that

ar+1e1 − e3 ≡ −λar − µar−1 mod IC = 〈v1, v2〉 . (4.A)

Consider now c12, which is an element in
⊕

n∈Z HomU12(En,En), and work in the coordi-
nates on U12 induced from U1. It is immediate that the components of δc12 : E1 → E0 all
lie in IC, since the two summands of this map each factor through d1. Thus the condition
that (Dc)12 = 0 implies that

c1|U12
− c2|U12

≡ 0 mod IC. (4.B)

Expressing the component c2 : E1 → E0 in coordinates by (e′1, e
′
2, e
′
3) for e′i ∈ OU2

, then
modulo IC each e′i is a polynomial in b ∈ OU2 . In particular, modulo IC and working in
the coordinates of U12 ⊂ U1 with b = a−1, (4.B) implies for e′3(b) that

e3(a) ≡ ar−2e′3(a−1) mod IC.

The righthand side is a polynomial in a of degree at most r − 2, so (4.A) implies that
λ = µ = 0. �

Now consider the shape (G1,G2, 0) ∈ C2, defined as

G1 =

E3 E2 E1 E0

( v2
−ar+1

−1

)

E3 E2 E1 E0

( v1 v2 b2−rw1 )

(
0
0
0

)
( 0 0 −1 )

with G2 being given by the same two vertical matrices, but considered on the other chart.
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Similarly, define (H1,H2, 0) where

H1 =

E3 E2 E1 E0

( v2
−ar+1

−1

)

E3 E2 E1 E0

( v1 v2 b2−rw1 )

(
0
0
0

)
( 0 −1 0 )

with H2 being given by the same two vertical matrices, but considered on the other chart.
The following should be viewed as the degree two version of 4.2, with slightly different
superscripts, and slightly larger intervals.

Notation 4.6. With G and H defined above, define Ki ∈ C2 by

Ki :=

{
(ai · G1, br−1−i · G2, 0) if 0 ≤ i ≤ r − 1

(ai−(r+1) · H1, br+s−i · H2, 0) if r + 1 ≤ i ≤ r + s.

4.4. Degree Three Shapes and Generator. Adopting the convention that degree
three elements will be denoted in lower case mathfrak, consider the shape (s1, s2, 0) ∈ C3

defined as

s1 =

E3 E2 E1 E0

( v2
−ar+1

−1

)

E3 E2 E1 E0

−1

with s2 being given by the same vertical matrix, but considered on the other chart.

Notation 4.7. Set s = (ar · s1, b
s · s2, 0) ∈ C3.

It is easy to verify that D(s) = 0, and it is clear that s is a basis element for H3(C) ∼= K.

4.5. Elementary Relationships Involving D. This subsection establishes some ele-
mentary relationships between the degree one elements in §4.1, the degree two elements
in §4.3, and the degree three elements in §4.4 under the differential D.

Lemma 4.8. For any f ∈ OU1
and g ∈ OU2

,

D(f · g1, g · g2, 0) = ( f · Z1, bs+1g · Z2, (f − ar−2g) · g1|U12)

D(f · h1, g · h2, 0) = (ar+1f · Z1, g · Z2, (f − as−2g) · h1|U12
)

D(f · z1, g · z2, 0) = ( v2f · Z1, w2g · Z2, (f − ar+s−2g) · z1|U12).

Proof. (1) By definition, D(f · g1, g · g2, 0) = (δ(f · g1), δ(g · g2), f · g1|12 − g · g2|12). We
first claim that δ(g1) = Z1 and δ(g2) = bs−1 · Z2. Under the sign convention in (3.B),
which for degree one is down-across+across-down, the differential δ(g1) equals

E3 E2 E1 E0

E3 E2 E1 E0

(
0 0 0
0 0 1
0 0 0

)( v2
−ar+1

−1

)
( v1 v2 b2−rw1 )

(
0 0 0
0 0 1
0 0 0

)
+ ( 0 0 1 )

(
ar+1 v2 0

vt−2
2 A −v1 b2−rw1

−1 0 −v2

)
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which is Z1. Similarly δ(g2) equals

E3 E2 E1 E0

E3 E2 E1 E0

(
0 0 0
0 0 1
0 0 0

)( w2
−1
−bs+1

)
( a2−sv1 w2 w1 )

(
0 0 0
0 0 1
0 0 0

)
+ ( 0 0 1 )

(
1 w2 0

wt−2
2 B −a2−sv1 w1

−bs+1 0 −w2

)

which is bs+1 · Z2. To calculate the final entry f · g1|12 − g · g2|12, we work on the U1

coordinates on U12. The first non-zero map in f · g1|12 − g · g2|12 is given by

E2

E1

(
0 0 0
0 0 f
0 0 0

)
−

E2 E2

(
ar+s−1 0 0

0 as−1 0
0 0 ar−1

)

E1 E1

(
a2−s 0 0

0 a−1 0
0 0 a2−r

) (
0 0 0
0 0 g
0 0 0

)
=

E2

E1

(f−ar−2g)

(
0 0 0
0 0 1
0 0 0

)

and the second possible non-zero map is given by

E1

E0

( 0 0 f ) −

E1 E1

(
as−2 0 0

0 a1 0
0 0 ar−2

)

E0 E0
1

( 0 0 g ) =

E1

E0

(f−ar−2g)( 0 0 1 )

and so f · g1|12 − g · g2|12 = (f − ar−2g) · g1|U12
as claimed.

(2) Again by direct calculation as above, δ(h1) = ar+1 ·Z1 and δ(h2) = Z2. The calculation
that f · h1|12 − g · h2|12 = (f − as−2g) · h1|U12 is also similar.
(3) Here, again by direct calculation, δ(z1) = v2 · Z1 and δ(z2) = w2 · Z2. Now the only
possible non-zero map in f · z1|12 − g · z2|12 is the map E2 → E1 given by

E2

E1

(
0 0 0
−f 0 0
0 0 0

)
−

E2 E2

(
ar+s−1 0 0

0 as−1 0
0 0 ar−1

)

E1 E1

(
a2−s 0 0

0 a−1 0
0 0 a2−r

) (
0 0 0
−g 0 0
0 0 0

)

which is clearly (f − ar+s−2g) · z1|U12
. �

The following asserts that, although ki is defined on two different intervals, the effect
of applying D always looks the same.

Corollary 4.9. For all i such that ki is defined,

D(ki) = (ai · Z1, br+s−1−i · Z2, 0).

Proof. In the first interval ki = (ai ·g1, b
r−2−i ·g2, 0), so the statement follows from the top

line in 4.8 applied to f = ai and g = br−2−i, where f −ar−2g = 0 since a = b−1. Similarly,
in the second interval ki = (ai−(r+1) · h1, b(r+s−1)−i · h2, 0) so the statement follows from
the second line in 4.8. �

As a consequence of 4.9, every element in the sequence

(a0·Z1, b
r+s−1·Z2, 0), . . . , (ar−2·Z1, b

s+1·Z2, 0), (ar+1·Z1, b
s−2·Z2, 0), . . . , (ar+s−1·Z1, b

0·Z2, 0)
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belongs to the image of D. In contrast, by 4.5 the two ‘missing’ elements in this sequence,
namely Y = (ar−1 · Z1, b

s · Z2, 0) and X = (ar · Z1, b
s−1 · Z2, 0), do not lie in the image of

D. The following corollary formalises this fact.

Corollary 4.10. Given f(a) = α0+α1a+. . .+αr+s−1a
r+s−1 ∈ K[a], set g = br+s−1f(b−1),

namely g = α0b
r+s−1 + α1b

r+s−2 + . . . + αr+s−1. Then in C

(f · Z1, g · Z2, 0) =

r−2∑
i=0

αiD(ki) + αr−1Y + αrX +

r+s−1∑
i=r+1

αiD(ki).

Proof. By construction of g, we may write

(f · Z1, g · Z2, 0) =

r+s−1∑
i=0

αi(a
i · Z1, b

r+s−1−i · Z2, 0).

The result then follows directly from 4.9, and the definition of X and Y. �

The next elementary relationship is an analogue of 4.8 under D : C2 → C3.

Lemma 4.11. For any f ∈ OU1
and g ∈ OU2

,

D(f · G1, g · G2, 0) = ( f · s1, bs+1g · s2, (f − ar−1g) · G1|U12)

D(f · H1, g · H2, 0) = (ar+1f · s1, g · s2, (f − as−1g) · H1|U12
)

Proof. By definition, D(f ·G1, g ·G2, 0) = (δ(f ·G1), δ(g ·G2), f ·G1|12− g ·G2|12). Under
the sign convention in (3.B), which for degree two is down-across minus across-down, it
is clear that δ(G1) = s1 and δ(G2) = bs+1s2. Now the only possible non-zero map in
f · G1|12 − g · G2|12 is the map E2 → E0 given by

E2

E0

( 0 0 −f ) −

E2 E2

(
ar+s−1 0 0

0 as−1 0
0 0 ar−1

)

E0 E0
1

( 0 0 −g )

which is clearly (f − ar−1g) · G1|U12 . This proves the first statement. In a similar way,
δ(H1) = ar+1s1, δ(H2) = s2 and f · H1|12 − g · H2|12 = (f − as−1g) · H1|U12 . �

As in 4.9, the following asserts that although Ki is defined on two different intervals,
the effect of applying D always looks the same.

Corollary 4.12. For all i such that Ki is defined,

D(Ki) = (ai · s1, br+s−i · s2, 0).

Proof. In the first interval Ki = (ai ·G1, br−1−i ·G2, 0), so the statement follows from the
top line in 4.11 applied to f = ai and g = br−1−i, where f − ar−1g = 0 since a = b−1.
Similarly, in the second interval, Ki = (ai−(r+1) ·H1, br+s−i ·H2, 0) so the statement follows
from the second line in 4.11. �

4.6. Elementary Relationships Involving ?. This subsection establishes some elemen-
tary relationships between the degree one elements in §4.1, and the degree two elements
in §4.3, under the operation ?.

Lemma 4.13. In C, the following statements hold.

x ? x = ( vt−3
2 A · Z1, b2wt−3

2 B · Z2, 0)

x ? y = y ? x = ( avt−3
2 A · Z1, bwt−3

2 B · Z2, 0)

y ? y = ( a2vt−3
2 A · Z1, wt−3

2 B · Z2, 0)
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Proof. Note x ? x = (x1 ◦ x1, x2 ◦ x2, 0). Now on U1, the composition x1 ◦ x1 is

E3 E2 E1 E0

( v2
−ar+1

−1

)

E3 E2 E1 E0

( v1 v2 b2−rw1 )

vt−3
2 A

(
0
−1
0

)
vt−3
2 A(−1 0 0 )

which equals vt−3
2 A ·Z1. On U2, x2 ◦x2 it is similar, with b2wt−3

2 B replacing the coefficient
vt−3

2 A in the two vertical maps above. The first statement follows.
The second and third statements follow in an identical fashion. �

Lemma 4.14. In C, the following hold.

−g1 ◦ x1 = G1 −g1 ◦ y1 = a · G1 −g2 ◦ x2 = b · G2 −g2 ◦ y2 = G2

x1 ◦ g1 = G1 y1 ◦ g1 = a · G1 x2 ◦ g2 = b · G2 y2 ◦ g2 = G2

−h1 ◦ x1 = H1 −h1 ◦ y1 = a · H1 −h2 ◦ x2 = b · H2 −h2 ◦ y2 = H2

x1 ◦ h1 = H1 y1 ◦ h1 = a · H1 x2 ◦ h2 = b · H2 y2 ◦ h2 = H2

Proof. The first column holds by inspection. The second column follows from the first
since y1 = a ·x1. The fourth is U2 version of the first column, and the third column follows
from the fourth since x2 = b · y2. �

In the following, note that whenever ki is defined, both Ki and Ki+1 are defined.

Corollary 4.15. For all i such that ki is defined, in C there are equalities

x ? ki = Ki = −ki ? x,
y ? ki = Ki+1= −ki ? y.

Proof. In the first interval, ki = (ai · g1, b
r−2−i · g2, 0), so by 4.14

−ki ? x = −(ai · g1 ◦ x1, b
r−2−i · g2 ◦ x2, 0) = (ai · G1, b

r−1−i · G2, 0) = Ki.

Similarly, in the second interval, by 4.14

−ki ? x = −(ai−(r+1) · h1 ◦ x1, b
(r+s−1)−i · h2 ◦ x2, 0) = (ai−(r+1) · H1, b

r+s−i · H2, 0) = Ki.

All other claims are similar. �

The following deals with ? between degree one and degree two inputs.

Lemma 4.16. In C, for all i, j ≥ 0, there are equalities

x ? (ai · Z1, bj · Z2, 0) = −( ai · s1, bj+1 · s2, 0) = (ai · Z1, bj · Z2, 0) ? x

y ? (ai · Z1, bj · Z2, 0) = −(ai+1 · s1, bj · s2, 0) = (ai · Z1, bj · Z2, 0) ? y.

Proof. The first statement follows from the fact that x1 ◦Z1 = −s1 = Z1 ◦x1 and x2 ◦Z2 =
−b · s2 = Z2 ◦ x2, as can be directly verified. The second statement follows similarly. �

4.7. Notation for Induction. This subsection lays down some notation useful for the
induction in 5.12, and furthermore introduces some key homotopies.

Recall the polynomials Aj and Bj from §2.2.

Notation 4.17. For i ≥ 3, set A≥i =
∑

j≥i v
j−t
2 Aj and B≥i =

∑
j≥i w

j−t
2 Bj .

Remark 4.18. By (2.G) and the definition above, A = A≥3.

Multiplying the definition by the appropriate power of v2, it is clear that

vt−i2 A≥i = Ai + vt−i2 A≥i+1

wt−i
2 B≥i = Bi + wt−i

2 B≥i+1.
(4.C)

Lemma 4.19. For all i ≥ 3, A≥i = ar+s−tB≥i and a2−r−svt−i2 A≥i = bi−2wt−i
2 B≥i.
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Proof. The statement A≥i = ar+s−tB≥i is immediate from the last statement in 2.8. The
second statement follows by the first, since v2 = aw2 by the glue (2.A). �

The following, which are based on the shape z, will be the key inductive homotopies.

Notation 4.20. For any i ≥ 3, and for any 0 ≤ k ≤ i− 1, set

ei,k := (ak(vt−i−1
2 A≥i+1) · z1, bi−k−1(wt−i−1

2 B≥i+1) · z2, 0) ∈ C1. (4.D)

By (4.C), all entries in (4.D) are polynomials.

Corollary 4.21. With notation as above,

D(ei,k) = ( ak(vt−i2 A≥i+1) · Z1, bi−k−1(wt−i
2 B≥i+1) · Z2, 0).

Proof. Set f = ak(vt−i−1
2 A≥i+1) and g = bi−k−1(wt−i−1

2 B≥i+1), which are both polyno-
mials by (4.C). Now by the first statement in 4.19, A≥i+1 = ar+s−tB≥i+1, so

akvt−i−1
2 A≥i+1 = ak+r+s−tvt−i−1

2 B≥i+1 (A≥i+1 = ar+s−tB≥i+1)

= ak+r+s−i−1wt−i−1
2 B≥i+1 (by glue (2.A))

= ar+s−2bi−k−1wt−i−1
2 B≥i+1. (ab = 1)

Thus f = ar+s−2g, equivalently a2−r−sf = g. The result is then a direct application of
the general 4.8, where the third entry is now zero since a2−r−sf = g. �

Lemma 4.22. For any i ≥ 3, and for any 0 ≤ k ≤ i− 1, there are equalities

(1) ei,k ? x = ei,k−1 ? y and x ? ei,k = y ? ei,k−1 provided that k ≥ 1.

(2) x ? ei,k + ei,k ? x = −( akv
t−(i+1)
2 A≥i+1 · Z1, bi−kw

t−(i+1)
2 B≥i+1 · Z2, 0)

Proof. (1) Since k ≥ 1, the element ei,k−1 is defined. The result then follows since

x ? ei,k = (akvt−i−1
2 A≥i+1 · x1 ◦ z1, bi−k−1w

t−(i+1)
2 B≥i+1 · x2 ◦ z2, 0)

= (ak−1v
t−(i+1)
2 A≥i+1 · (a · x1) ◦ z1, bi−kw

t−(i+1)
2 B≥i+1 · (b−1 · x2) ◦ z2, 0)

= (ak−1v
t−(i+1)
2 A≥i+1 · y1 ◦ z1, bi−kw

t−(i+1)
2 B≥i+1 · y2 ◦ z2, 0)

= y ? ei,k−1.

The other claim is similar.
(2) By definition, x ? ei,k + ei,k ? x equals

(akv
t−(i+1)
2 A≥i+1 · (x1 ◦ z1 + z1 ◦ x1), bi−k−1w

t−(i+1)
2 B≥i+1 · (x2 ◦ z2 + z2 ◦ x2), 0).

The statement follows since x1 ◦ z1 + z1 ◦ x1 = −Z1 and x2 ◦ z2 + z2 ◦ x2 = −b · Z2, as can
be directly verified. �

The following products all vanish for very elementary reasons.

Lemma 4.23. Wherever K∗, k∗ and e∗,∗ are defined, the following products

k∗ ? e∗,∗ e∗,∗ ? k∗ k∗ ? k∗′ e∗,∗ ? e∗′,∗′
k∗ ? X X ? k∗ k∗ ? Y Y ? k∗
e∗,∗ ? X X ? e∗,∗ e∗,∗ ? Y Y ? e∗,∗
K∗ ? k∗ k∗ ? K∗ K∗ ? e∗,∗ e∗,∗ ? K∗
Ki ? x x ? Ki Ki ? y y ? Ki

all equal 0C.

Proof. Most follow at once from the shapes of these elements. The first row holds since
all compositions involving z, g and h are identically zero. The second and third row holds
since all compositions of Z with g, h and z are zero. For the fourth line, K∗ is based on G
or H, so its only nonzero maps are E2 → E0, whilst k∗ is based on g or h, both of which
have zero map E3 → E2. Thus any composition of k∗ with K∗ is zero. Similarly e∗,∗ is
based on z, which again has zero map E3 → E2 and the vanishing follows. The last line
holds since all compositions of x and y with G and H are zero, as again can be explicitly
observed. �
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4.8. Summary. As a summary of this section, the closed elements x, y induce generators
of H1(C), and likewise X,Y induce generators of H2(C), whilst s generates H3(C). These,
together with their corresponding underlying shapes, are summarised as follows

element x y X Y s
shape Z Z s

see §4.1 4.4 4.4 4.7

where we note that x and y are not usefully defined by shapes. In contrast, the elements

element ki ei,k Ki Dki Dei,k DKi

shape g, h z G,H Z Z s
see 4.2 4.20 4.6 4.9 4.21 4.12

will provide homotopies needed to control the Kadeishvili algorithm in §5 below.

5. The A∞ Minimal Model

In this section, regardless of char K, we describe the A∞-minimal model of the DG-
algebra C constructed in §3.5, and in the process pin down all its higher products.

5.1. Recap on Minimal Models. The main result will be proved by a very careful
use of the A∞-minimal model due to Kadeishvili [K1], which we state to set notation.
As in [K1], all A∞-algebras considered in this paper are strictly unital, meaning there is
an element 1 ∈ A0 which is the identity with respect to multiplication m2, and further
mn(. . . , 1, . . .) = 0 for all n ≥ 3.

Under Setup 2.4, consider the DG-algebra C in §3.5, and consider the finite dimensional
vector space A := H∗(C). Following [K1], for a homogeneous element a ∈ Ai set â =
(−1)|a|a where |a| = i.

Theorem 5.1 ([K1, Theorem 1]). There is an A∞-structure on A = H∗(C) given by

mn : ⊗n A→ A for every n ≥ 1

with m1 = 0, where on homogeneous inputs m2(a1, a2) = −â1a2, and furthermore an
A∞-morphism

fn : ⊗n A→ C for every n ≥ 1

for which f1 : A→ C is a quasi-isomorphism.

The construction is recalled below. For notational convenience, write A∞-maps as e.g.
mn(a1, . . . , an) rather than mn(a1 ⊗ . . .⊗ an).

Remark 5.2. By definition of an A∞-algebra, the A∞-structure maps mn are graded of
degree 2− n, namely

mn(Ai1 ⊗ . . .⊗ Ain) ⊆ Ai1+...+in+2−n.

Thus, for example, on degree one inputs a1, . . . , an ∈ A1, mn(a1, . . . , an) ∈ A2 for all
n ≥ 1. In the setup A = A0 ⊕ . . . ⊕ A3 below, it follows at once that on homogeneous
inputs bi ∈ Adi with all di ≥ 1, if either

(1) some di ≥ 3 or
(2) there are two distinct i1 and i2 with di1 = di2 = 2

then mn(b1, . . . , bn) = 0.

Notation 5.3. If a ∈ C withD(a) = 0, write [a] for a viewed in cohomology H∗(C) = A. To
implement Kadeishvili’s construction we must, once and for all, choose (closed) elements
{bi} of C which descend to a basis {[bi]} of A. This defines an injective map of vector
spaces

ι : A −→ C

sending [bi] 7→ bi, which is a quasi-isomorphism of complexes of vector spaces (where A
has trivial boundary maps). We make this choice now, using the generators of 4.8:

ι : [1C] 7→ 1C,
[x] 7→ x
[y] 7→ y

,
[X] 7→ X
[Y] 7→ Y

, [s] 7→ s,

where recall 1C = (1, 1, 0). For inductive purposes, set f1 = ι.
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The task is to construct all the higher products mn : A⊗n → A. The construction works
inductively, constructing mn and fn in tandem, employing the following auxiliary sequence
Un. Removing the k = 0, j = n term from [K1, (2)], following [K1]1 for any n ≥ 2 define
Un : A⊗n → C in terms of already defined f<n and m<n by

Un(a1, . . . , an) :=

n−1∑
`=1

(−1)|f`(a1,...,a`)|+1 f`(a1, . . . , a`) ? fn−`(a`+1, . . . , an)

−
n−2∑
k=0

mn,k∑
j=2

(−1)k fn−j+1(â1, . . . , âk,mj(ak+1, . . . , ak+j), ak+j+1, . . . , an)

(5.A)

where mn,k = min{n − k, n − 1}. The condition [K1, (2′)] that the fn determine an
A∞-morphism is

(ιmn − Un)(a1, . . . , an) = Dfn(a1, . . . , an). (5.B)

As explained in more detail below, passing to cohomology by applying [−], equation (5.B)
defines mn, which in turn defines ιmn, which in turn (up to choice) determines fn.

Notation 5.4. For closed ci ∈ C, to ease notation throughout we will write mn(c1, . . . , cn)
as shorthand for mn([c1], . . . , [cn]), and similarly for fn and Un. In other words, since the
inputs to mn, fn and Un must be cohomology classes, our convention is that should inputs
not be this, make them so. This is a mild abuse of notation, but it is unambiguous.

Concretely, the above translates into the following. For •, N ∈ {x, y,X,Y, s}, by the
above abuse of notation

U2(•, N) := (−1)|ι(•)|+1ι(•) ? ι(N) = (−1)|•|+1(• ? N).
The right hand side is (closed and) determined by f1, and thus so are both U2(•, N) and
[U2(•, N)]. Using (5.B) defines m2(•, N), as expressing this known [U2(•, N)] in terms of the
chosen basis [bi], there exists scalars αi such that

m2(•, N) (5.B)
= [U2(•, N)] =

∑
αi[bi].

Applying ι it follows that ιm2(•, N) =
∑
αibi, and so on the chain level (5.B) is simply∑

αibi − (−1)|•|+1(• ? N) = Df2(•, N). (5.C)

The left hand side is all determined, so determines some choice f2(•, N) : A⊗2 → C. It
should be noted that f2 is not unique, but some choice of f2(•, N) satisfying (5.C) can
always be made. In the course of the proof below we will use this freedom explicitly, see
5.7 and (0) in the proof of 5.12.

We next move to determine m3 and f3. Now by definition

U3(•, N, �) := (−1)|•|+1 • ? f2(N, �) + (−1)|•|+|N|f2(•, N) ? �

+ (−1)|•|f2(•,m2(N, �))− f2(m2(•, N), �),
(5.D)

which is fully determined by the previous data of m2 and f2. Expressing this known
cohomology class [U3(•, N, �)] in terms of the basis [bi], there exists scalars βi such that

m3(•, N, �) (5.B)
= [U3(•, N, �)] =

∑
βi[bi].

Applying ι it follows that ιm3(•, N, �) =
∑
βibi, and so on the chain level (5.B) is simply∑

βibi − U3(•, N, �) = Df3(•, N, �). (5.E)

Again, since the left hand side is all determined, this gives some non-unique choice of
f3(•, N, �) : A⊗3 → C.

The calculation continues in this manner. The chain-level Un is determined by smaller
mi and fi. This then determines [Un], which can be written in terms of the basis [bi]. In
turn, applying [−] to (5.B), the expression for [Un] determines mn and thus ιmn, which
in turn by (5.B) gives some non-unique choice of fn.

1[K1] writes instead +
∑

(−1)k+1, which is equivalent, and also writes the second sum
∑n−1

j=2 , with the

convention that terms are zero when they do not make sense.
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5.2. Degree One m2 Inputs. This subsection calculates m2 on all degree one inputs,
namely combinations of x and y. The point is that this is described by a very particular
linear combination of X and Y, up to some homotopies of the form D(ki), plus in all cases
some higher order term of the form D(e). This latter term will, in later subsections, allow
all higher products mn to be computed inductively.

Proposition 5.5. In C, the following statements hold

x ? x = λ30X + λ21Y +D(λ12kr−2 + λ03kr−3 + e3,0)

x ? y = y ? x = λ21X + λ12Y +D(λ30kr+1 + λ03kr−2 + e3,1)

y ? y = λ12X + λ03Y +D(λ30kr+2 + λ21kr+1 + e3,2).

Proof. By 4.18, A = A≥3. Applying (4.C) to i = 3 gives vt−3
2 A≥3 = A3 + vt−3

2 A≥4, and

so combining gives vt−3
2 A = A3 + vt−3

2 A≥4. Similarly wt−3
2 B = B3 + wt−3

2 B≥4.
Thus, decomposing 4.13 we may write

x ? x =
(

A3 · Z1, b2B3 · Z2, 0
)

+
(

vt−3
2 A≥4 · Z1, b2wt−3

2 B≥4 · Z2, 0
)

x ? y = y ? x =
(

aA3 · Z1, bB3 · Z2, 0
)

+
(

avt−3
2 A≥4 · Z1, bwt−3

2 B≥4 · Z2, 0
)

y ? y =
(
a2A3 · Z1, B3 · Z2, 0

)
+
(
a2vt−3

2 A≥4 · Z1, wt−3
2 B≥4 · Z2, 0

)
.

By 4.21, the final terms can be rewritten, to give

x ? x =
(

A3 · Z1, b2B3 · Z2, 0
)

+D(e3,0)

x ? y = y ? x =
(

aA3 · Z1, bB3 · Z2, 0
)

+D(e3,1)

y ? y =
(
a2A3 · Z1, B3 · Z2, 0

)
+D(e3,2).

Now writing 2.7 backwards

A3 = λ03a
r−3 + λ12a

r−2 + λ21a
r−1 + λ30a

r

aA3 = λ03a
r−2 + λ12a

r−1 + λ21a
r + λ30a

r+1

a2A3 = λ03a
r−1 + λ12a

r + λ21a
r+1 + λ30a

r+2.

For each of these three polynomials in a, consider the corresponding polynomial g ∈ K[b]
defined in 4.10. By definition 2.7, for the top polynomial this is b2B3, for the middle this
is bB3, and for the bottom this is B3. Hence, by 4.10 we may write(

A3 · Z1, b2B3 · Z2, 0
)

= λ03D(kr−3) + λ12D(kr−2) + λ21Y + λ30X(
aA3 · Z1, bB3 · Z2, 0

)
= λ03D(kr−2) + λ12Y + λ21X + λ30D(kr+1)(

a2A3 · Z1, B3 · Z2, 0
)

= λ03Y + λ12X + λ21D(kr+1) + λ30D(kr+2),

and the statement follows. �

In particular, in the notation of §5.1, since on degree one inputs U2(•, N) = • ? N,
applying [−] then ι to 5.5 shows that

ιm2(x, x) = λ30X + λ21Y

ιm2(x, y) = ιm2(y, x) = λ21X + λ12Y

ιm2(y, y) = λ12X + λ03Y.

(5.F)

Substituting (5.F) and 5.5 directly into the left side of (5.C), it follows that we may choose

f2(x, x) = −(λ12kr−2 + λ03kr−3 + e3,0)

f2(x, y) = f2(y, x) = −(λ30kr+1 + λ03kr−2 + e3,1)

f2(y, y) = −(λ30kr+2 + λ21kr+1 + e3,2).

(5.G)

5.3. All m2 Products. By Remark 5.2, when all inputs have degree one or higher, if
one of the inputs for m2 has degree three, or if both have degree two, then the product is
necessarily zero. Thus the only remaining m2 to consider are those having one input of
degree one, and one input of degree two.
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Lemma 5.6. In C, the following statements hold.

x ? X = −s = X ? x x ? Y = −D(Kr−1) = Y ? x

y ? Y = −s = Y ? y y ? X = −D(Kr+1) = X ? y

Proof. Since Y = (ar−1 ·Z1, b
s ·Z2, 0) and X = (ar ·Z1, b

s−1 ·Z2, 0), it follows directly from
4.16 that

x ? X = −(ar · s1, bs · s2, 0) = X ? x x ? Y = −(ar−1 · s1, bs+1 · s2, 0) = Y ? x

y ? Y = −(ar · s1, bs · s2, 0) = Y ? y y ? X = −(ar+1 · s1, bs−1 · s2, 0) = X ? y.

Now the statement follows since s = (ar · s1, b
s · s2, 0), and 4.12. �

Now m2(•, N) = (−1)|•|+1[• ? N], so applying [−] then ι to 5.6 gives

ιm2(x,X) = −s ιm2(x,Y) = 0C

ιm2(X, x) = s ιm2(Y, x) = 0C

ιm2(y,Y) = −s ιm2(y,X) = 0C

ιm2(Y, y) = s ιm2(X, y) = 0C.

(5.H)

Substituting (5.H) and 5.6 directly into the left hand side of (5.C), it follows that

0C = Df2(x,X) D(Kr−1) = Df2(x,Y)

0C = Df2(X, x) −D(Kr−1) = Df2(Y, x)

0C = Df2(y,Y) D(Kr+1) = Df2(y,X)

0C = Df2(Y, y) −D(Kr+1) = Df2(X, y),

thus we may choose

f2(x,X) = 0C f2(y,Y) = 0C f2(x,Y) = Kr−1 f2(y,X) = Kr+1

f2(X, x) = 0C f2(Y, y) = 0C f2(Y, x) = −Kr−1 f2(X, y) = −Kr+1.
(5.I)

5.4. Simple Maps and Consequences of Degree. As the collection of a1 ⊗ . . . ⊗ an
with each ai ∈ {x, y,X,Y, s} is linearly independent in the tensor algebra TK(A), the map
fn may be defined by making a choice for each fn(a1, . . . , an) independently, compatible
with (5.B). The following is clear, and is well-known.

Lemma 5.7. Suppose that fi is defined for 1 ≤ i ≤ n − 1, and further that the defin-
ing equation (5.A) gives Un(a1, . . . , an) = 0C where a1, . . . , an ∈ {x, y,X,Y, s}. Then
mn(a1, . . . , an) = 0A and we may choose the map fn so that fn(a1, . . . , an) = 0C.

Proof. Since ι is injective, (5.B) is satisfied only if mn(a1, . . . , an) = [Un(a1, . . . , an)] = 0A.
Since D(0C) = 0C = (ιmn − Un)(a1, . . . , an), the choice fn(a1, . . . , an) := 0C is compatible
with (5.B). �

Convention 5.8. If Un(a1, . . . , an) = 0C, we choose fn so that fn(a1, . . . , an) = 0C.

Usually controlling Un and fn is hard, but properties of both will be significantly sim-
plified in our setting by the following.

Definition 5.9. We say that a collection of maps
{
f` : A⊗` → C

}k
`=1

is simple if for all

1 ≤ ` ≤ k, and for all inputs ai ∈ {x, y,X,Y, s},
f`(a1, . . . , a`) = (S,T, 0) ∈ Cd1+···+d`+1−`

for some chains S,T that depend on ` and the ai, where di = |ai|.

It will turn out, as part of our inductive process, that we may choose the fn to be
simple to any degree. As such, later we will require the following two results.

Lemma 5.10. Fix n ≥ 2. Suppose that the set of maps {f1, . . . , fn−1} is simple and
consider inputs ai ∈ {x, y,X,Y, s} for 1 ≤ i ≤ n satisfying

∑
(|ai| − 1) ≥ 2. Then the

following statements hold.

(1) For all ` such that 1 ≤ ` ≤ n− 1,

f`(a1, . . . , a`) ? fn−`(a`+1, . . . , an) = 0C.
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(2) Un(a1, . . . , an) = 0C.

Proof. (1) Set di = |ai|. Each map fn has degree 1− n, so that

f`(a1, . . . , a`) ∈ Cd1+···+d`+1−` and fn−`(a`+1, . . . , an) ∈ Cd`+1+···+dn+1−(n−`).

By assumption, both f` and fn−` are simple, and so multiplying these two chains together
by ? still gives an element of the form (S,T, 0) ∈ Cd, where

d := (d1 + . . . + d` + 1− `) + (d`+1 + · · ·+ dn + 1− (n− `)) = 2− n +
∑

di.

If d ≥ 4, then trivially S = T = 0 since by definition C4 = 0⊕ 0⊕ Č1(U,Hom3(E,E)) and
C≥5 = 0. Since d ≥ 4 is equivalent to

∑
(di − 1) ≥ 2, the claim follows.

(2) By (1), the top right sum in (5.A) is zero. Now again using the assumption that the
fi are all simple, any term of the bottom line of (5.A) is of the form

fn−j+1(â1, . . . , âk,mj(ak+1, . . . , ak+j), ak+j+1, . . . , an) = (S,T, 0) ∈ Ce

where e =
∑

di + 2 − n. Since by hypothesis
∑

di ≥ n + 2, necessarily e ≥ 4 and thus
again S = T = 0. �

Whilst 5.10 deals with
∑

(|ai| − 1) ≥ 2, the case
∑

(|ai| − 1) = 1 is mildly more tricky,
and requires more assumptions.

Proposition 5.11. For n ≥ 3, suppose that the set of maps {f1, . . . , fn−1} are simple,
and have been chosen to adhere to Convention 5.8.

(1) Consider inputs ai ∈ {x, y,X,Y} with 1 ≤ i ≤ n, where precisely one of the ai has
degree two. Then

Un(a1, . . . , an) =

n−1∑
`=1

(−1)|f`(a1,...,a`)|+1 f`(a1, . . . , a`) ? fn−`(a`+1, . . . , an). (5.J)

(2) Suppose in addition that
(a) for any choices of b∗ ∈ {x, y} for 2 ≤ ` ≤ n− 1 each f`(b1, . . . , b`) ∈ C1 is a

K-linear combination of ki terms and ej,j′ terms, and
(b) for b ∈ {x, y} and B ∈ {X,Y} both f2(b,B) and f2(B, b) are polynomial mul-

tiples of some Ki.
Then Un(a1, . . . , an) = 0C.

Proof. (1) The bottom line of (5.A) is a linear combination of terms of the form f`(b1, . . . , b`)
where bi ∈ {x, y,X,Y}, 2 ≤ ` ≤ n− 1, and

|b1|+ . . . + |b`| = ` + 2.

By 5.10(2) applied to `, U`(b1, . . . , b`) = 0C. By the assumption that Convention 5.8
holds, f`(b1, . . . , b`) = 0C. Thus the bottom line of (5.A) is zero, proving the claim.
(2) We work by induction on n ≥ 3. For the initial case n = 3,

U3(a1, a2, a3) = ±a1 ? f2(a2, a3)± f2(a1, a2) ? a3.

Term by term, if the inputs to f2 have degree one, then the singleton is X or Y and so the
term vanishes by assumption (a) and 4.23. On the other hand, if one of the arguments to
f2 has degree two, then the singleton is x or y, and so the term vanishes by assumption
(b) and 4.23. Thus U3(a1, a2, a3) = 0C.

If n > 3, then each individual term in (5.J) vanishes as follows:

• a1 ? fn−1(a2, . . . , an): if |a1| = 1 then by induction Un−1(a2, . . . , an) = 0C, so by
the assumption that Convention 5.8 has been adhered to, fn−1(a2, . . . , an) = 0C,
and thus the term vanishes. Otherwise a1 = X or Y, and so the term vanishes by
(a) and 4.23.

• f2(a1, a2) ? fn−2(a3, . . . , an): if n = 4, then by (a) and (b) this is a product of
a multiple of K∗ with ki and ej,j′ terms, so vanishes by 4.23. For n > 4, if
|a1| = |a2| = 1 then the second factor fn−2(a3, . . . , an) = 0C again by induction
and Convention 5.8. Otherwise, one of a1, a2 has degree two, so the term vanishes
by (b), (5.I) and 4.23.

• f`(a1, . . . , a`) ? fn−`(a`+1, . . . , an) with `, n− ` ≥ 3: one of the two factors vanishes
again by induction and Convention 5.8.
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Similarly, the terms fn−2(a1, . . . , an−2) ? f2(an−1, an) and fn−1(a1, . . . , an−1) ? an vanish by
symmetry. Thus Un(a1, . . . , an) = 0C, as required. �

5.5. All Higher mn Products. The following is the main result of this paper. Note
that the sum in (1) generalises the right hand side of the displayed equations in 5.5.

Theorem 5.12. For any n ≥ 2 and any decomposition n = j + k with j, k ≥ 0, the
following statements hold.

(1) For all sequences a1, . . . , an ∈ {x, y}, where there are j occurrences of x and k
occurrences of y, in C there is an equality

Un(a1, . . . , an) = λj+1,k X + λj,k+1Y −Dfn(a1, . . . , an)

where

fn(a1, . . . , an) = −

j−1∑
i=0

λi,n+1−i kr+i−(j+1) +

n+1∑
i=j+2

λi,n+1−i kr+i−(j+1) + en+1,k

 .

In particular, Un is not affected by the order of the sequence of degree one inputs.
(2) Suppose that n ≥ 3 and a1, . . . , an ∈ {x, y,X,Y, s}, with

∑
|ai| ≥ n + 1. Then

Un(a1, . . . , an) = 0C.

The case n = 2 has already been considered: since U2(a1, a2) = (−1)|a1|+1a1 ? a2, on
ai ∈ {x, y,X,Y, s} the possible nonzero values of U2 are 4.13 and 5.6.

Proof. Fix some n ≥ 3. By induction we can choose fi for 2 ≤ i < n such that the
following three conditions hold.

(1′) The condition (1) holds for all i < n. Indeed, the case n = 2 for (1) was established
in 5.5, after recalling that on degree one inputs U2(•, N) = • ? N.

(S) The collection {fi}n−1
i=1 is simple, since both f1 and f2 are simple by definition,

(5.G) and (5.I).
(0) Whenever Ui(a1, . . . , ai) = 0C for some i < n and a1, . . . , ai ∈ {x, y,X,Y, s}, then

fi(a1, . . . , ai) = 0C. That is, we adhere to Convention 5.8.

With these choices, given degree one inputs b1, . . . , bn−1 ∈ {x, y} where there are j
occurrences of x and k occurrences of y, the following statements hold.

(a) After passing to cohomology, writing in terms of the basis, then applying ι, as
explained in §5.1 (and underneath 5.5) mn−1(b1, . . . , bn−1) = λj+1,k X + λj,k+1Y.

(b) There are equalities

fn−1(b1, . . . , bn−1) = −

(
j−1∑
i=0

λi,n−i kr+i−(j+1) +

n∑
i=j+2

λi,n−i kr+i−(j+1) + en,k

)

= −

(
n∑

i=k+2

λn−i,i kr+k−i +

k−1∑
i=0

λn−i,i kr+k−i + en,k

)
where the second line is just the reindexing i 7→ n− i, using n− 1 = j + k.

(c) For any 2 ≤ ` ≤ n− 2,

f`(b1, . . . , b`) ? fn−`(b`+1, . . . , bn) = 0C.

Indeed, each f` evaluated on degree one inputs is a linear combination of k∗ and
e∗,∗, and these multiply to zero by 4.23.

Now consider Un(a1, . . . , an) for a1, . . . , an ∈ {x, y}, where there are j occurrences of x
and k occurrences of y. We consider the two rows of (5.A) separately. In the first row,
for each 2 ≤ ` ≤ n− 2, the term f`(a1, . . . , a`) ? fn−`(a`+1, . . . , an) vanishes by (c). In the
second row of (5.A), whenever j is such that 2 ≤ j ≤ n− 2 the term

fn−j+1(â1, . . . , âk,mj(ak+1, . . . , ak+j), ak+j+1, . . . , an)

has n−j ≥ 2 arguments of degree one and a single argument mj(ak+1, . . . , ak+j) of degree
two. This vanishes by 5.11(2) and (0) above, since the hypotheses there hold by (b) and
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(5.I). These vanishing statements leave only

Un(a1, . . . , an) = a1 ? fn−1(a2, . . . , an) + fn−1(a1, . . . , an−1) ? an

− f2(a1,mn−1(a2, . . . , an))− f2(mn−1(a1, . . . , an−1), an).
(5.K)

The heart of the proof is to use the inductive hypothesis to prove the following claim.

Claim A. With notation as above, (5.K) simplifies to

Un(a1, . . . , an) = ( akv
t−(n+1)
2 A≥n+1 · Z1, bjw

t−(n+1)
2 B≥n+1 · Z2, 0).

The proof of this claim splits into two cases.

Case 1: a1 = an. In this case, the number of occurrences k of y in a1, . . . , an−1 equals the
number of occurrences of y in a2, . . . , an. Similarly for the number of x’s. The inductive
hypothesis (a) implies that mn−1(a2, . . . , an) = mn−1(a1, . . . , an−1), and this clearly has
degree two. But by (5.I) f2 is antisymmetric on any mix of degree one and degree two
inputs, thus the bottom two terms in (5.K) cancel to give

Un(a1, . . . , an) = a1 ? fn−1(a2, . . . , an) + fn−1(a1, . . . , an−1) ? an. (5.L)

Now again since the number of occurrences k of y in a1, . . . , an−1 equals the number of
occurrences of y in a2, . . . , an, and similarly for the x’s, the inductive hypothesis (b) implies
that fn−1(a2, . . . , an) = fn−1(a1, . . . , an−1), and furthermore both terms equal expressions
of the form {

−
∑
λ∗k∗ − en,k if a1 = an = x (so k = k)

−
∑
λ∗k∗ − en,k−1 if a1 = an = y (so k = k − 1).

Substituting this into (5.L), and using the fact that every degree one input anti-commutes
with ki by 4.15, the above (5.L) simplifies to

Un(a1, . . . , an) =

{
−(x ? en,k + en,k ? x) if a1 = an = x

−(y ? en,k−1 + en,k−1 ? y) if a1 = an = y

= −(x ? en,k + en,k ? x) (by 4.22(1))

= ( akv
t−(n+1)
2 A≥n+1 · Z1, bjw

t−(n+1)
2 B≥n+1 · Z2, 0) (by 4.22(2))

since n = j + k, which verifies Claim A in case 1.

Case 2: a1 6= an. Write k1 for the number of occurrences of y in a1, . . . , an−1, and k2 for
the number of occurrences of y in a2, . . . , an. Thus, by inductive hypothesis (a),

mn−1(a1, . . . , an−1) = λn−k1,k1
X + λn−k1−1,k1+1Y

mn−1(a2, . . . , an) = λn−k2,k2X + λn−k2−1,k2+1Y,

and so the general formula (5.K) reads

Un(a1, . . . , an) = a1 ? fn−1(a2, . . . , an) + fn−1(a1, . . . , an−1) ? an

− f2(a1, λn−k2,k2
X + λn−k2−1,k2+1Y)− f2(λn−k1,k1

X + λn−k1−1,k1+1Y, an).

Substituting in the inductive hypothesis (b) for the fn−1 terms,

Un(a1, . . . , an) = −a1 ? (
∑
λ∗k∗ − en,k2

) − (
∑
λ∗k∗ − en,k1

) ? an

− f2(a1, λn−k2,k2
X + λn−k2−1,k2+1Y)− f2(λn−k1,k1

X + λn−k1−1,k1+1Y, an).

Since an anti-commutes with any k∗ by 4.15, and up to sign on the bottom right we can
swap the order of the inputs by (5.I), it follows that Un(a1, . . . , an)−(a1 ?en,k2

+en,k1
?an)

equals

− a1 ? (
∑
λ∗k∗) + an ? (

∑
λ∗k∗)

− f2(a1, λn−k2,k2X + λn−k2−1,k2+1Y) + f2(an, λn−k1,k1X + λn−k1−1,k1+1Y).
(5.M)

Claim B. The expression (5.M) is zero.

To ease notation, the proof of Claim B splits into two subcases.
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Subcase B(1) a1 = x, so an = y. The precise indices on the top leftmost term in (5.M) are

−a1 ? (
∑
λ∗k∗) = −x ?

(
n∑

i=k2+2

λn−i,i kr+k2−i +

k2−1∑
i=0

λn−i,i kr+k2−i

)
.

By 4.15 x?ki = Ki, thus −a1 ?(
∑
λ∗k∗) is the sum −

∑
λn−i,iKr+k2−i containing all λn−i,i

terms except i = k2 and i = k2 + 1. Now since a1 = x, by (5.I), it follows that

−f2(a1, λn−k2,k2X + λn−k2−1,k2+1Y) = −λn−k2−1,k2+1Kr−1.

Thus the two leftmost terms in (5.M) equal −
∑
λn−i,iKr+k2−i, where the sum contains

all λn−i,i terms except i = k2.
On the other hand, the precise indices on the top rightmost term in (5.M) are

an ? (
∑
λ∗k∗) = y ?

(
n∑

i=k1+2

λn−i,i kr+k1−i +

k1−1∑
i=0

λn−i,i kr+k1−i

)
.

Since a1 = x, it follows that k1 = k2 − 1, and thus

an ? (
∑
λ∗k∗) = y ?

(
n∑

i=k2+1

λn−i,i kr+k2−1−i +

k2−2∑
i=0

λn−i,i kr+k2−1−i

)
.

By 4.15 y ?Ki = Ki+1, thus an ? (
∑
λ∗k∗) is the sum

∑
λn−i,iKr+k2−i containing all λn−i,i

terms except i = k2 and i = k2 − 1. Again by (5.I) it follows that

f2(an, λn−k1,k1
X + λn−k1−1,k1+1Y) = λn−k1,k1

Kr+1 = λn−k2+1,k2−1Kr+1.

Thus the two rightmost terms in (5.M) equal +
∑
λn−i,iKr+k2−i where the sum contains

all λn−i,i terms except i = k2.
Combining, the leftmost terms in (5.M) cancel the rightmost terms, and thus (5.M) is

zero. This verifies Claim B in subcase B(1).

Subcase B(2) a1 = y, so an = x and now k2 = k1 − 1. In a similar manner to the above,

−a1 ? (
∑
λ∗k∗) = −y ?

(
n∑

i=k2+2

λn−i,i kr+k2−i +

k2−1∑
i=0

λn−i,i kr+k2−i

)

= −y ?

(
n∑

i=k1+1

λn−i,i kr+k1−1−i +

k1−2∑
i=0

λn−i,i kr+k1−1−i

)

= −
n∑

i=k1+1

λn−i,i Kr+k1−i −
k1−2∑
i=0

λn−i,i Kr+k1−i,

and so the two leftmost terms of (5.M) now equal −
∑
λn−i,iKr+k1−i where the sum

contains all λn−i,i terms except i = k1. Similarly the rightmost terms of (5.M) give the
same sum, with the sign swapped. Thus again the leftmost and rightmost terms cancel,
so (5.M) is zero. This verifies Claim B in subcase B(2).

Thus Claim B holds, and so

Un(a1, . . . , an) = −(a1 ? en,k2
+ en,k1

? y).

Now if a1 = x, necessarily an = y and so there k1 = k− 1 and k2 = k. Similarly, if a1 = y,
then k1 = k and k2 = k − 1. Consequently, it follows that

Un(a1, . . . , an) =

{
−(x ? en,k + en,k−1 ? y) if a1 = x

−(y ? en,k−1 + en,k ? x) if a1 = y

= −(x ? en,k + en,k ? x) (by 4.22(1))

= ( akv
t−(n+1)
2 A≥n+1 · Z1, bjw

t−(n+1)
2 B≥n+1 · Z2, 0). (by 4.22(2))

This completes the proof of Claim A in case 2, and thus the proof of Claim A overall.



26 GAVIN BROWN AND MICHAEL WEMYSS

Thus always Un(a1, . . . , an) = ( akv
t−(n+1)
2 A≥n+1 · Z1, bjw

t−(n+1)
2 B≥n+1 · Z2, 0), and

from here the proof is elementary. Decomposing the right hand side using (4.C),

Un(a1, . . . , an)

= ( akAn+1 · Z1, bjBn+1 · Z2, 0) + ( akv
t−(n+1)
2 A≥n+2 · Z1, bjw

t−(n+1)
2 B≥n+2 · Z2, 0)

= ( akAn+1 · Z1, bjBn+1 · Z2, 0) +D(en+1,k). (by 4.21)

Now by definition (reading 2.7 backwards)

akAn+1 = λ0,n+1a
r−(n+1)+k + . . . + λj,k+1 a

r−1 + λj+1,k a
r + . . . + λn+1,0 a

r+k,

which is a polynomial in a. The corresponding polynomial g ∈ K[b] defined in 4.10 is
equal to bjBn+1, again by definition 2.7. Hence, applying 4.10 we may write

( akAn+1 · Z1, bjBn+1 · Z2, 0) = λj+1,k X + λj,k+1Y

+D

j−1∑
i=0

λi,n+1−i kr+i−(j+1) +

n+1∑
i=j+2

λi,n+1−i kr+i−(j+1)

 .

Consequently we can choose fn on degree one inputs to satisfy the condition in (1).

For (2), consider Un(a1, . . . , an) with ai ∈ Adi
. If

∑
di ≥ n+2, then Un(a1, . . . , an) = 0C

by 5.10(2). If
∑

di = n + 1, that is one of the inputs has degree two and all the others
have degree one, then Un(a1, . . . , an) = 0C by 5.11(2): as before, the hypotheses there
hold by induction hypothesis (b), (0) and (5.I).

This establishes (1) and (2) for n. By 5.7, we can choose the map fn to be zero whenever
at least one input is not degree one. Since further on degree one inputs fn is a combination
of k and e, it follows that fn is simple. This verifies (S) and (0) replacing n by n+1. Thus
(1′), (S) and (0) all hold replacing n by n + 1, allowing the induction to proceed. �

5.6. Summary. The previous subsections combine to verify the following, which is the
main result in the introduction. To be consistent with the notation there (where x and
X are the classes in cohomology), this subsection introduces the one further abuse of
notation that x,X now also denote their classes in cohomology [x], [X], etc. Since no more
calculations with chains are needed, this introduces no ambiguities.

Thus consider the graded vector space A =
⊕

i∈Z Ai, where

Ai =


K if i = 0, 3

K2 if i = 1, 2

0 else,

and write 1 for the basis of A0, x, y for the basis of A1, and X,Y for the basis of A2, and s
for the basis of A3. Recall that all A∞-algebras in this paper are strictly unital.

Corollary 5.13. The following defines an A∞-structure on A, and furthermore the re-
sulting A∞-algebra is quasi-isomorphic to the DG-algebra C.

(1) For any n ≥ 2 and any decomposition n = j + k with j, k ≥ 0,

mn(x, . . . , x︸ ︷︷ ︸
j

, y, . . . , y︸ ︷︷ ︸
k

) = λj+1,k X + λj,k+1Y,

where the λ’s are the coefficients from the glue in (2.A).
(2) More generally, mn with n ≥ 2 applied only to degree one inputs (so, combinations

of x and y) does not depend on the order of those degree one inputs, and thus is
determined by (1) above.

(3) The only other non-zero products are

−m2(x,X) = s = m2(X, x) −m2(y,Y) = s = m2(Y, y).

Proof. This is now a direct consequence of 5.12 and (5.H), given those followed the con-
struction for Kadeishvili’s Theorem 5.1 outlined in §5.1. �
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6. Corollaries

This section works over K = C, or any algebraically closed field of characteristic zero
(which we still denote C), and gives the deformation theory and mirror symmetry con-
sequences of the previous sections. Throughout, given scalars λjk ∈ C subject to 2.4,
consider the variety X defined by (2.A), with associated P1 ∼= C ⊂ X.

6.1. NC Deformation Theory Summary. Maintaining the setup above, the sheaf
OC ∈ cohX gives rise to the noncommutative deformation functor

DefOC
: art1 → Set

defined in e.g. the survey [K3, 2.1] or [B]. As is well known e.g. [K3, §2], this functor
admits a prorepresentable hull, written Λdef , called the NC deformation algebra.

As is also well-known (see e.g. [T, p615], or [K3, §5]), Λdef can be explicitly presented

using the A∞-structure of any DGA quasi-isomorphic to EndDG
X (I) as in §3.5, where I is

an injective resolution of OC. Indeed, the A∞-morphisms give a morphism

m :=
∑
i≥2

mi :
⊕
i≥2

Ext1
X(OC,OC)⊗i → Ext2

X(OC,OC)

which dualises to give a presentation

Λdef
∼=

C〈〈Ext1
X(OC,OC)∗〉〉

Image(m∗)
=

C〈〈x, y〉〉
Image(m∗)

.

By 3.5, we can compute the above instead using the A∞-algebra structure on the more
manageable DGA C, and thus below we will freely use 5.13 to describe Λdef .

6.2. Superpotentials and Necklaces. Following the conventions in e.g. [DWZ, BW, D],
consider the C-linear map 6x : C〈〈x, y〉〉 → C〈〈x, y〉〉 which simply ‘strikes off’ the leftmost
x of each monomial. Thus, on monomials

6x(m) =

{
n if m = xn

0 otherwise,

with 6y being defined similarly. In contrast, the cyclic derivative is the C-linear map
δx : C〈〈x, y〉〉 → C〈〈x, y〉〉 which on monomials sends

xi1 . . . xit 7→
t∑

j=1

6x(xijxij+1 . . . xit · xi1 . . . xij−1),

with δy being defined similarly. For f ∈ C〈〈x, y〉〉, the Jacobi algebra is defined to be

Jac(f) :=
C〈〈x, y〉〉

((δxf, δyf))

where ((δxf, δyf)) is the closure of the two-sided ideal (δxf, δyf).

Recall from the introduction that the free necklace polynomial is defined to be

Nj,k(x, y) :=
1

j + k

∑
m∈Orbj,k

|m| · pm.

Remark 6.1. It is immediate from the definition that, if we instead work up to cyclic
rotation, we may replace |m|pm with the m distinct representatives of the orbit. In this
way, up to cyclic permutation, Nj,k is clearly then equal to all terms with j occurrences
of x in the free algebra expansion of 1

j+k (x + y)j+k.

Notation 6.2. Write Monoj,k for the sum of all monomials in x and y, inside the free
algebra, where there are j occurrences of x, and k occurrences of y.

For calibration, Mono2,2 = xxyy + xyyx+ yyxx+ yxxy + xyxy + yxyx. The following
is elementary, where K = C is used to allow the denominators in the proof.

Lemma 6.3. δx(Nj+1,k) = Monoj,k and δy(Nj,k+1) = Monoj,k.
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Proof. This follows at once from the definitions, since

δx(Nj+1,k) =
∑

m∈Orbj+1,k

|m|
j + 1 + k

· δx(pm) = Monoj,k . �

6.3. Deformation Theory Corollaries. The following is now immediate, and is one of
the main results.

Corollary 6.4. The NC deformation algebra Λdef of OC ∈ cohX is described by

Λdef
∼= Jac(W) =

C〈〈x, y〉〉
((δxW, δyW))

where W =
∑
λjk Nj,k ∈ C〈〈x, y〉〉 is the sum of free necklace polynomials, and the λjk are

the data in the glue (1.A).

Proof. As in [K3, below 4.3], and summarised in §6.1 above, the NC deformation algebra
Λdef can be presented as the completed tensor algebra over A∗1, subject to the relations
induced by the map

A∗2 → T̂C(A∗1) (6.A)

which is dual to
∑∞

i=2 mi. Now, in 5.13 the term λj,kX appears precisely in those mn

when there are j − 1 occurrences of x and k occurrences of y. Similarly the term λj,kY
appears precisely in those mn when there are j occurrences of x and k − 1 occurrences
of y. Writing x = x∗ and y = y∗, then under (6.A) it follows that

X∗ 7→
∑

j+k≥3

λj,k Monoj−1,k(x, y),

Y∗ 7→
∑

j+k≥3

λj,k Monoj,k−1(x, y).

The first relation is thus
∑

j+k≥3 λj,k Monoj−1,k, which equals δxW by 6.3. In a similar
way, the second relation equals δyW. �

The above then immediately recovers Katz–Namba [K2, N].

Corollary 6.5. Classical commutative deformations of OC ∈ cohX are prorepresented by

Λab
def
∼= Jac(W)ab =

C[[x, y]]

(δxV, δyV)

where V =
∑
λj,k N

ab
j,k =

∑ λj,k
j+k

(
j+k
k

)
xjyk.

Proof. This follows from 6.4, since as is standard the versal space for commutative defor-
mations is the abelianisation of the noncommutative version (e.g. [T, (13)]). �

6.4. Mirror Models. The next application of 5.13 is categorical. Given a quiver with
superpotential (Q,W), Ginzburg [G] associates a 3-CY category DW. It is a basic ques-
tion to find geometric models for such categories, on both the A- and B-sides of mirror
symmetry.

Corollary 6.6. Let W ∈ C〈x, y〉 and consider the associated 3-CY category DW. If there
exist scalars λjk for which W =

∑
λjk Nj,k, then there exists a smooth 3-fold X and

rational curve C ⊂ X such that

Db(cohX) ⊃ 〈OC〉 ∼= DW.

Proof. On one hand, the category 〈OC〉 can be described using the A∞-structure on the
DG-endomorphism ring of OC, which is computed in 5.13 above. On the other hand,
by definition DW = Dfd(Γ) where Γ is the Ginzburg DGA associated to the quiver with
potential. This category has a canonical heart, generated by the simple modules indexed
over the vertices of the quiver, which in our case (the two-loop quiver) consists of a unique
simple S. Thus DW is described using the A∞-structure on the DG-endomorphism ring
of S, which by [K4, §A.15] is entirely encoded by the pairing and the superpotential on
degree one inputs. But this is precisely the A∞-structure described in 5.13 above, and so
the result follows. �
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6.5. Relationship to Physics. The majority of the physics literature for rational curves
(e.g. [K2, AK, CM]) considers superpotentials viewed inside the commutative power se-
ries ring C[[x, y]]. However, [F, §3.3.1] observed that ordering ambiguities arise when D5
branes are considered, and proposed the matrix rule [F, (3.18)] over 10 years before non-
commutative deformation theory entered rational curves [DW]. This subsection explains
why Ferrari’s predicted rule is consistent with 6.4, and in the process establishes 6.4 as
the mathematically precise formulation of these physical predictions.

In 2003 Ferrari [F, (3.18)] predicted that in any commutative potential, xjyk should
get replaced by a noncommutative term in variables X and Y , under the rule

xjyk −→ j! k!

(j + k)!

∮
C0

dz

2πi
z−k−1tr(X + Y z)j+k.

Taking the coefficient to the other side, the prediction can be rewritten(
j+k
k

)
xjyk −→

∮
C0

dz

2πi
z−k−1tr(X + Y z)j+k

and so the commutative potential V =
∑ λjk

j+k

(
j+k
k

)
xjyk of 6.5 (known to [K2, N]) should

be replaced with an element in the free algebra, via the rule

V −→W =
∑
j,k

λjk

j + k

∮
C0

dz

2πi
z−k−1tr(X + Y z)j+k. (6.B)

There is a mild ambiguity about whether the right hand side should be viewed in the free
algebra F in variables X and Y , or in its quotient F/[F, F ]. Regardless, each contour
integral in the right hand side (6.B) can be viewed as an element of F , where the integral is
determined by simply computing the residue. As the coefficient of the 1/z term is precisely
the sum of all terms containing k occurrences of Y in the expansion of (X + Y )j+k, and
this equals (j + k)Nj,k, it follows that2

λjk

j + k

∮
C0

dz

2πi
z−j−1tr(X + Y z)j+k =

λjk

j + k
· (j + k)Nj,k(X,Y )

and so W =
∑
λjk Nj,k, which is the noncommutative potential in 6.4.
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