Candidates must answer four questions in total, and must answer at least one question from each section.

SECTION 1.

(1) (a) Prove that $\sqrt{2} \notin \mathbb{Q}$.
(b) Consider the function

$$
\begin{aligned}
\phi: \mathbb{Z} \times \mathbb{Z} & \rightarrow \mathbb{R} \\
(a, b) & \mapsto a+b \sqrt{2} .
\end{aligned}
$$

Prove that ϕ is an injection.
[3 marks]
(c) Find the number of injective functions from the set $\{1,2\}$ to the set $\{1,2,3\}$.
[3 marks]
(d) Recall that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called strictly decreasing if $f(x)<f(y)$ whenever $x<y$.
(i) Prove that if f is strictly decreasing, then f is injective.
(ii) If f is strictly decreasing, is f surjective? Justify your answer.
(e) Recall that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called decreasing if $f(x) \leq f(y)$ whenever $x \leq y$. Is a decreasing function always injective? Justify your answer.
[2 marks]
(2) (a) Determine whether the following are TRUE or FALSE. If they are true, give a short proof. If they are false, give a counterexample.
(i) If X is a set containing n elements, then its power set $\mathcal{P}(X)$ contains n ! elements.
[2 marks]
(ii) If X and Y are sets, then $X \cap Y$ is always a subset of $X \cup Y$.
[2 marks]
(iii) Let $f: X \rightarrow Y$ be a function. Then f is surjective if and only if there exists a function $g: Y \rightarrow X$ such that $f \circ g=\operatorname{id}_{Y}$, where id_{Y} denotes the identity function on Y.
(b) Describe the solution set of $x \in \mathbb{R}$ such that:
(i) $|x|>x$.
[2 marks]
(ii) $|x+1|+|x-1|<1$.
[2 marks]
(c) Give an example of a surjective function $\mathbb{N} \rightarrow \mathbb{Z}$. Justify your answer.
[3 marks]

SECTION 2.

(3) (a) Define what we mean by a series, and what it means for a series to converge to a limit.
[2 marks]
(b) Determine whether the following statements are TRUE or FALSE. If they are true give a (short) proof, if they are false give a counterexample.
(i) The series $\sum_{k=1}^{\infty} \frac{1}{k}$ does not have a limit.
(ii) If $\sum_{n=1}^{\infty} a_{n}$ has a limit, then $a_{n} \rightarrow 0$ as $n \rightarrow \infty$.
(iii) If $a_{n} \rightarrow 0$ as $n \rightarrow \infty$, then $\sum_{n=1}^{\infty} a_{n}$ has a limit.
(c) For $x \in \mathbb{R}$, consider the series $\sum_{n=1}^{\infty}(n+1) x^{n}$.
(i) Denote $s_{k}:=\sum_{n=1}^{k}(n+1) x^{n}$. Show that

$$
(1-x) s_{k}=\frac{1-x^{k+1}}{1-x}-(k+1) x^{k+1}
$$

[2 marks]
(ii) Hence, or otherwise, show that when $|x|<1, \sum_{n=1}^{\infty}(n+1) x^{n}=\frac{1}{(1-x)^{2}}$.
[3 marks]
(d) Determine the rational number which has decimal expansion $0.12121212 \ldots$.
[2 marks]
(4) (a) Let $n \in \mathbb{N}$ with $n \geq 2$.
(i) Show by induction that the product of $n-1$ terms

$$
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \ldots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n} .
$$

[3 marks]
(ii) Hence or otherwise determine the limit of the sequence

$$
a_{n}:=\prod_{i=2}^{n}\left(1-\frac{1}{i^{2}}\right)
$$

You may use any result from lectures, provided that it is clearly stated.
[3 marks]
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely differentiable function. Define the Maclaurin series of f.
(c) Determine the Maclaurin series for each of the following functions:
(i) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\cos x$.
[3 marks]
(ii) $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $g(x)=e^{5 x}+1$.
[2 marks]
(d) For the function f defined in (c)(i), determine the values of x for which the Maclaurin series converges to $f(x)$. In your answer, you may use any theorems or results from lectures, provided that they are clearly stated.
[3 marks]

SECTION 3.

(5) (a) Give an example of:
(i) A 3×3 matrix B such that $B^{3}=B$.
(ii) A 3×3 matrix B such that $B^{3} \neq B$.
(iii) A 3×3 matrix B such that $B^{\mathrm{T}}=B$.
(iv) A 3×3 matrix B with determinant 4 and trace 3 .
(b) Suppose that A is an $n \times n$ real matrix. Define what we mean by the eigenvalues of A, and the eigenvectors of A.
(c) Determine whether the following are TRUE or FALSE. If they are true give a (short) proof. If they are false, provide a counterexample.
(i) Every real matrix has a real eigenvalue.
(ii) Every 2×2 matrix has two distinct eigenvalues.
(iii) 0 is an eigenvalue of every matrix.
(d) Find the eigenvalues and the eigenvectors of the following matrix:

$$
\left(\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right)
$$

(6) (a) (i) By Gaussian elimination or otherwise, find the inverses of the following matrices:

$$
A:=\left(\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right) \quad B:=\left(\begin{array}{lll}
0 & 2 & 1 \\
2 & 1 & 3 \\
1 & 1 & 1
\end{array}\right)
$$

(ii) Hence determine the inverse of the matrix

$$
C:=\left(\begin{array}{lllll}
2 & 1 & 0 & 0 & 0 \\
2 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 2 & 1 & 3 \\
0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

(b) Find the solution set of the following linear equations:

$$
\begin{aligned}
x-y+z & =12 \\
3 x-2 y+2 z & =1 \\
x+5 y+z & =3
\end{aligned}
$$

