MOCK EXAM, November 2015.

- (1) (a) (i) Define the Lie algebras \mathfrak{gl}_n and \mathfrak{sl}_n , and prove that \mathfrak{sl}_n is an ideal of \mathfrak{gl}_n .
 - (ii) Suppose that S is an $n \times n$ matrix, and define

$$\mathfrak{gl}_S := \{ x \in \mathfrak{gl}_n \mid x^T S = -Sx \}.$$

Show that \mathfrak{gl}_S is a subalgebra of \mathfrak{gl}_n .

[8 marks]

- (b) Suppose that L is a Lie algebra.
 - (i) Define what is meant by an L-module.
 - (ii) If M and N are both L-modules, define what is meant by a L-module homomorphism

$$\theta \colon M \to N$$
.

- (iii) If M is an L-module, and K is a submodule of M, briefly explain how the quotient vector space M/K acquires the structure of an L-module, and show that this is well-defined. [8 marks]
- (c) Consider the Lie algebra of upper triangular 2×2 matrices $L = \mathfrak{b}_2$. State with justification whether the following claims are TRUE or FALSE. If they are true give a short proof, whereas if they are false give a counterexample.
 - (i) L has only two ideals.
 - (ii) L is semisimple.
 - (iii) All indecomposable L-modules are one-dimensional.

[9 marks]

- (2) Let L be a finite dimensional Lie algebra.
 - (a) Define what it means for a representation of L to be *faithful*. Give a precise criterion for when the adjoint homomorphism $L \to \mathfrak{gl}(L)$ is faithful. [4 marks]
 - (b) Define the *lower central series* of L, and define what it means for L to be *nilpotent*. [4 marks]
 - (c) Give an explicit example of:
 - (i) A 3-dimensional abelian Lie algebra.
 - (ii) A 3-dimensional solvable Lie algebra.
 - (iii) A 3-dimensional semisimple Lie algebra.

You do not need to justify your answer.

[4 marks]

(d) State both forms of Engel's Theorem. You do not need to give the proof.

[4 marks]

- (e) Prove directly that the Lie algebra \mathfrak{n}_3 (strictly upper triangular 3×3 matrices) is nilpotent. [9 marks]
- (3) Let L be a finite dimensional Lie algebra.

(a) Define the Killing form $\kappa(-,-)$, and show that it satisfies

$$\kappa([a,b],c) = \kappa(a,[b,c])$$

for all $a, b, c \in L$. [5 marks]

(b) Define the radical rad L of L. Prove that L/radL is semisimple. You may use standard results from the lectures, provided that they are clearly stated.

[4 marks]

- (c) State both of Cartan's criteria. You do not need to give a proof. [4 marks]
- (d) The Lie algebra \mathfrak{sl}_2 has basis

$$\left\{e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\right\}.$$

(i) With respect to the basis $\{e, h, f\}$, show that

$$ad_h = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}, \quad ad_e = \begin{pmatrix} 0 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad ad_f = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix}.$$

- (ii) Using this, or otherwise, compute $\kappa_{\mathfrak{sl}_2}(a,b)$ for all $a,b \in \{e,h,f\}$.
- (iii) Using the above, deduce that \mathfrak{sl}_2 is semisimple.

[12 marks]

- (4) Let L be a finite dimensional semisimple Lie algebra.
 - (a) Define what is meant by a Cartan subalgebra of L. State the Cartan subalgebra of \mathfrak{sl}_3 , and confirm that it is two-dimensional. [5 marks] For the remainder of this question, you may assume that L has a non-zero Cartan subalgebra H that satisfies $H = C_L(H)$.
 - (b) Let Φ denote the set of roots.
 - (i) Briefly justify why the formula

$$\dim L = \dim H + |\Phi|$$

holds. [5 marks]

(ii) Deduce that there cannot be a semisimple Lie algebra of dimension 5.

[5 marks]

- (c) State with justification whether the following claims are TRUE or FALSE. If they are true give a brief justification, whereas if they are false give a justification or counterexample.
 - (i) There exists a semisimple Lie algebra with precisely four roots.
 - (ii) There exists a semisimple Lie algebra with precisely five roots.
 - (iii) There exists a semisimple Lie algebra with precisely six roots. [10 marks]