Sheet 1

Recall that all vector spaces in this course are over \mathbb{C} .

- **1.1** (Basic manipulations) If *L* is a Lie algebra, and $x, y \in L$, show that:
 - 1. [x, 0] = 0 = [0, x].
 - 2. If $[x, y] \neq 0$, then x and y are linearly independent.
- **1.2** (Common subalgebras) Recall that \mathfrak{gl}_n is just the set of all $n \times n$ matrices.
 - 1. Verify that \mathfrak{gl}_n is a Lie algebra with bracket [x, y] = xy yx.
 - 2. Show that $\mathfrak{sl}_n := \{x \in \mathfrak{gl}_n \mid \mathrm{Tr}(x) = 0\}$ is a subalgebra of \mathfrak{gl}_n .
 - 3. Show that upper triangular matrices

$$\mathfrak{b}_n := \{x \in \mathfrak{gl}_n \mid x_{ij} = 0 \text{ for } i > j\}$$

is a subalgebra of \mathfrak{gl}_n .

4. Show that strictly upper triangular matrices

$$\mathfrak{n}_n := \{ x \in \mathfrak{gl}_n \mid x_{ij} = 0 \text{ for } i \ge j \}$$

is a subalgebra of \mathfrak{gl}_n .

5. Show that diagonal matrices

$$\mathfrak{d}_n := \{x \in \mathfrak{gl}_n \mid x_{ij} = 0 \text{ for } i \neq j\}$$

is a subalgebra of \mathfrak{gl}_n .

6. Pick an $n \times n$ matrix S, and define

$$\mathfrak{gl}_{S} := \{ x \in \mathfrak{gl}_{n} \mid x' S = -Sx \}.$$

Show that \mathfrak{gl}_S is a subalgebra of \mathfrak{gl}_n . As a special case,

$$\mathfrak{so}_n := \{x \in \mathfrak{gl}_n \mid x^T = -x\}$$

is a subalgebra of \mathfrak{gl}_n .

1.3 (A useful fact for later) Show that as a vector space, \mathfrak{sl}_n has a basis

 $\{e_{ij} \mid i \neq j\} \cup \{e_{ii} - e_{i+1 i+1} \mid 1 \le i < n\}.$

1.4 (A counterexample) Following [EW, p4], verify that for $n \ge 2$, \mathfrak{b}_n is a subalgebra of \mathfrak{gl}_n , but is not an ideal

- **1.5** (Centres)
 - 1. If L is a Lie algebra, verify that its centre Z(L) is an ideal.
 - 2. (A bit fiddly) Show that $Z(\mathfrak{gl}_n) = \{\lambda \operatorname{Id} \mid \lambda \in \mathbb{C}\}.$
 - 3. Deduce that $Z(\mathfrak{sl}_n) = \{0\}$.

1.6 (Similar to groups) If $\varphi \colon L \to M$ is a homomorphism of Lie algebras, show that

- 1. The kernel ker φ is an ideal of L
- 2. The image Im φ is a subalgebra of M.

1.7 (Classifying abelian Lie algebras is easy) Suppose L and M are abelian Lie algebras. Show that $L \cong M$ if and only if L and M have the same dimension.

1.8 (Associativity Question, optional) If *L* is a Lie algebra, by definition [-, -] is an operation. If we temporarily denote the operation $a \cdot b := [a, b]$, then in all previous mathematical structures you have studied, brackets do not matter, namely

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

for all a, b, $c \in L$. However, in Lie algebras they do! Prove the following:

$$[a, [b, c]] = [[a, b], c]$$
 for all $a, b, c \in L \iff [x, y] \in Z(L)$ for all $x, y \in L$