Sheet 1

Recall that all vector spaces in this course are over \mathbb{C}.
1.1 (Basic manipulations) If L is a Lie algebra, and $x, y \in L$, show that:

1. $[x, 0]=0=[0, x]$.
2. If $[x, y] \neq 0$, then x and y are linearly independent.
1.2 (Common subalgebras) Recall that $\mathfrak{g l}_{n}$ is just the set of all $n \times n$ matrices.
3. Verify that $\mathfrak{g l}_{n}$ is a Lie algebra with bracket $[x, y]=x y-y x$.
4. Show that $\mathfrak{s l}_{n}:=\left\{x \in \mathfrak{g l}_{n} \mid \operatorname{Tr}(x)=0\right\}$ is a subalgebra of $\mathfrak{g l}_{n}$.
5. Show that upper triangular matrices

$$
\mathfrak{b}_{n}:=\left\{x \in \mathfrak{g l}_{n} \mid x_{i j}=0 \text { for } i>j\right\}
$$

is a subalgebra of $\mathfrak{g l}_{n}$.
4. Show that strictly upper triangular matrices

$$
\mathfrak{n}_{n}:=\left\{x \in \mathfrak{g l}_{n} \mid x_{i j}=0 \text { for } i \geq j\right\}
$$

is a subalgebra of $\mathfrak{g l}_{n}$.
5. Show that diagonal matrices

$$
\mathfrak{d}_{n}:=\left\{x \in \mathfrak{g l}_{n} \mid x_{i j}=0 \text { for } i \neq j\right\}
$$

is a subalgebra of $\mathfrak{g l}_{n}$.
6. Pick an $n \times n$ matrix S, and define

$$
\mathfrak{g l}_{S}:=\left\{x \in \mathfrak{g l}_{n} \mid x^{\top} S=-S x\right\} .
$$

Show that $\mathfrak{g l} l_{S}$ is a subalgebra of $\mathfrak{g l} l_{n}$. As a special case,

$$
\mathfrak{s o}_{n}:=\left\{x \in \mathfrak{g l}_{n} \mid x^{T}=-x\right\}
$$

is a subalgebra of $\mathfrak{g l}_{n}$.
1.3 (A useful fact for later) Show that as a vector space, $\mathfrak{s l}_{n}$ has a basis

$$
\left\{e_{i j} \mid i \neq j\right\} \cup\left\{e_{i i}-e_{i+1 i+1} \mid 1 \leq i<n\right\} .
$$

1.4 (A counterexample) Following [EW, p4], verify that for $n \geq 2, \mathfrak{b}_{n}$ is a subalgebra of $\mathfrak{g l} l_{n}$, but is not an ideal

1.5 (Centres)

1. If L is a Lie algebra, verify that its centre $Z(L)$ is an ideal.
2. (A bit fiddly) Show that $Z\left(\mathfrak{g l}_{n}\right)=\{\lambda I d \mid \lambda \in \mathbb{C}\}$.
3. Deduce that $Z\left(\mathfrak{s l}_{n}\right)=\{0\}$.
1.6 (Similar to groups) If $\varphi: L \rightarrow M$ is a homomorphism of Lie algebras, show that
4. The kernel $\operatorname{ker} \varphi$ is an ideal of L
5. The image $\operatorname{Im} \varphi$ is a subalgebra of M.
1.7 (Classifying abelian Lie algebras is easy) Suppose L and M are abelian Lie algebras. Show that $L \cong M$ if and only if L and M have the same dimension.
1.8 (Associativity Question, optional) If L is a Lie algebra, by definition $[-,-]$ is an operation. If we temporarily denote the operation $a \cdot b:=[a, b]$, then in all previous mathematical structures you have studied, brackets do not matter, namely

$$
a \cdot(b \cdot c)=(a \cdot b) \cdot c
$$

for all $a, b, c \in L$. However, in Lie algebras they do! Prove the following:

$$
[a,[b, c]]=[[a, b], c] \text { for all } a, b, c \in L \Longleftrightarrow[x, y] \in Z(L) \text { for all } x, y \in L
$$

