Sheet 2

2.1 (A very good exercise! A bit fiddly, but worth it) Recall \mathfrak{sl}_2 has basis

$$e:=\begin{pmatrix}0&1\\0&0\end{pmatrix}\quad h:=\begin{pmatrix}1&0\\0&-1\end{pmatrix}\quad f:=\begin{pmatrix}0&0\\1&0\end{pmatrix},$$

with relations

$$[e, f] = h$$
, $[h, e] = 2e$, $[h, f] = -2f$.

- Prove that \$\varsigmal{sl}_2\$ has no non-trivial ideals (later in the course, this means that \$\varsigmal{sl}_2\$ is simple).
- 2. Deduce that $\mathfrak{sl}_2' = \mathfrak{sl}_2$.

2.2 Prove directly (without appealing to general results for ideals) that $\mathfrak{gl}_2 \cong \mathbb{C} \oplus \mathfrak{sl}_2$.

2.3 (Ideals and direct sums) Let L_1 , L_2 be Lie algebras, and $I_1 \subseteq L_1$ and $I_2 \subseteq L_2$ be ideals.

1. Show that the subspace

$$I_1 \oplus I_2 \subseteq L_1 \oplus L_2$$

is an ideal of $L_1 \oplus L_2$.

- 2. Do all ideals of $L_1 \oplus L_2$ arise in this way? (*hint:* consider $\mathbb{C} = L_1 = L_2$).
- 3. Show that $Z(L_1 \oplus L_2) = Z(L_1) \oplus Z(L_2)$ and $(L_1 \oplus L_2)' = L'_1 \oplus L'_2$.

2.4 (Will be used later) **[Question has been corrected]** Let L_1 , L_2 be Lie algebras, and inside $L_1 \oplus L_2$ consider

$$L_1 \cong \{(x, 0) \mid x \in L_1\}$$

 $L_2 \cong \{(0, y) \mid y \in L_2\},\$

which are both ideals of $L_1 \oplus L_2$. For the rest of the question, suppose that L_1 and L_2 do not have any non-trivial ideals, and are not abelian (i.e. are *simple*).

- 1. If J is a non-zero ideal of $L_1 \oplus L_2$ such that $J \cap L_1 = \{0\}$ and $J \cap L_2 = \{0\}$, show that $J = \{0\}$.
- 2. Deduce that $L_1 \oplus L_2$ has only two non-trivial ideals.

2.5 Let $x \in \mathfrak{gl}_n$ be a diagonal matrix with entries $\lambda_1, \ldots, \lambda_n$. Show that $\operatorname{ad}_x \colon \mathfrak{gl}_n \to \mathfrak{gl}_n$ is also diagonalisable, with eigenvalues $\lambda_i - \lambda_j$ for $1 \leq i, j \leq n$.

2.6 Recall from [EW,p3] the matrices e_{ii}, which satisfy the relations

$$[e_{ij}, e_{kl}] = \delta_{jk} e_{il} - \delta_{li} e_{kj}.$$

Using these relations, show that $\mathfrak{gl}'_n = \mathfrak{sl}_n$.