Sheet 2

2.1 (A very good exercise! A bit fiddly, but worth it) Recall $\mathfrak{s l}_{2}$ has basis

$$
e:=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad h:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad f:=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

with relations

$$
[e, f]=h, \quad[h, e]=2 e, \quad[h, f]=-2 f .
$$

1. Prove that $\mathfrak{s l}_{2}$ has no non-trivial ideals (later in the course, this means that $\mathfrak{s l}_{2}$ is simple).
2. Deduce that $\mathfrak{s l}_{2}^{\prime}=\mathfrak{s l}_{2}$.
2.2 Prove directly (without appealing to general results for ideals) that $\mathfrak{g l}_{2} \cong \mathbb{C} \oplus \mathfrak{s l}_{2}$.
2.3 (Ideals and direct sums) Let L_{1}, L_{2} be Lie algebras, and $I_{1} \subseteq L_{1}$ and $I_{2} \subseteq L_{2}$ be ideals.
3. Show that the subspace

$$
I_{1} \oplus I_{2} \subseteq L_{1} \oplus L_{2}
$$

is an ideal of $L_{1} \oplus L_{2}$.
2. Do all ideals of $L_{1} \oplus L_{2}$ arise in this way? (hint: consider $\mathbb{C}=L_{1}=L_{2}$).
3. Show that $Z\left(L_{1} \oplus L_{2}\right)=Z\left(L_{1}\right) \oplus Z\left(L_{2}\right)$ and $\left(L_{1} \oplus L_{2}\right)^{\prime}=L_{1}^{\prime} \oplus L_{2}^{\prime}$.
2.4 (Will be used later) [Question has been corrected] Let L_{1}, L_{2} be Lie algebras, and inside $L_{1} \oplus L_{2}$ consider

$$
\begin{aligned}
& L_{1} \cong\left\{(x, 0) \mid x \in L_{1}\right\} \\
& L_{2} \cong\left\{(0, y) \mid y \in L_{2}\right\},
\end{aligned}
$$

which are both ideals of $L_{1} \oplus L_{2}$. For the rest of the question, suppose that L_{1} and L_{2} do not have any non-trivial ideals, and are not abelian (i.e. are simple).

1. If J is a non-zero ideal of $L_{1} \oplus L_{2}$ such that $J \cap L_{1}=\{0\}$ and $J \cap L_{2}=\{0\}$, show that $J=\{0\}$.
2. Deduce that $L_{1} \oplus L_{2}$ has only two non-trivial ideals.
2.5 Let $x \in \mathfrak{g l}_{n}$ be a diagonal matrix with entries $\lambda_{1}, \ldots, \lambda_{n}$. Show that ad ${ }_{x}: \mathfrak{g l}_{n} \rightarrow$ $\mathfrak{g l}_{n}$ is also diagonalisable, with eigenvalues $\lambda_{i}-\lambda_{j}$ for $1 \leq i, j \leq n$.
2.6 Recall from [EW,p3] the matrices $e_{i j}$, which satisfy the relations

$$
\left[e_{i j}, e_{k l}\right]=\delta_{j k} e_{i l}-\delta_{l i} e_{k j} .
$$

Using these relations, show that $\mathfrak{g l}_{n}^{\prime}=\mathfrak{s l}_{n}$.

