Sheet 3

3.1 (Nice for Lie's Theorem later) Let L be a Lie algebra.

1. Identify the kernel of the adjoint homomorphism

$$
\text { ad }: L \rightarrow \mathfrak{g l}(L) .
$$

2. Let ad L denote the image of the above homomorphism. Prove that:
L is a solvable Lie algebra \Longleftrightarrow ad L is a solvable subalgebra of $\mathfrak{g l}(V)$.
3. Show the above also holds if we replace 'solvable' with 'nilpotent'.
3.2 (Standard example of nilpotent) Consider $L=\mathfrak{n}_{n}$, strictly upper triangular matrices. Show that L^{k} has basis $\left\{e_{i j} \mid j>i+k\right\}$, and hence show that L is nilpotent.

Note that in pictures, for $n=4$ this can be visualised as:

$$
\underset{L}{\left(\begin{array}{cccc}
0 & * & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & * \\
0 & 0 & 0 & 0
\end{array}\right)},\left(\begin{array}{llll}
0 & 0 & * & * \\
0 & 0 & 0 & * \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{cccc}
0 & 0 & 0 & * \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

3.3 (Standard example of solvable) Consider \mathfrak{b}_{n}, upper triangular matrices.

1. Show that $\mathfrak{b}_{n}^{\prime}=\mathfrak{n}_{n}$.
2. By combining this with Q3.2, or otherwise, prove that \mathfrak{b}_{n} is solvable.
3. For $n \geq 2$, justify why \mathfrak{b}_{n} is not nilpotent.
3.4 Let L be a simple Lie algebra, and let K be a solvable Lie algebra.
4. Prove that if $\varphi: L \rightarrow K$ is a homomorphism, then $\varphi=0$.
5. On the other hand, find an example of a simple L, solvable K, and a non-zero homomorphism $K \rightarrow L$.
3.5 Give an example of a Lie algebra homomorphism $\varphi: L \rightarrow M$ such that $\varphi(Z(L))$ is not contained in $Z(M)$.
3.6 (Part 2 is important, we will also prove the converse is true later)
6. Let L be a Lie algebra, and let I be an ideal of L. Prove that if $\operatorname{rad}(I)=0$ and $\operatorname{rad}(L / I)=0$, then $\operatorname{rad}(L)=0$.
7. Show that if $L=L_{1} \oplus \ldots \oplus L_{n}$ where each L_{i} is simple, then $\operatorname{rad}(L)=0$.
