## Sheet 4

4.1 (Our first weight decomposition) Consider $L=\mathfrak{d}_{n}$, diagonal $n \times n$ matrices, which is a subalgebra of $\mathfrak{g l}(V)$ for $V=\mathbb{C}^{n}$. Define $\lambda_{i}: L \rightarrow \mathbb{C}$ by

$$
\left(\begin{array}{cccc}
\alpha_{1} & 0 & \ldots & 0 \\
0 & \alpha_{2} & \ldots & 0 \\
& & & \vdots \\
0 & 0 & \ldots & \alpha_{n}
\end{array}\right) \mapsto \alpha_{i}
$$

Show that $V_{\lambda_{i}}=\operatorname{Span}\left\{e_{i}\right\}$ and that

$$
V=V_{\lambda_{1}} \oplus \ldots \oplus V_{\lambda_{n}} .
$$

4.2 Consider $L=\mathfrak{b}_{n}$, upper triangular $n \times n$ matrices. Show that $e_{1}$ is an eigenvector for $L$, find the corresponding weight and determine its weight space.
4.3 (Basics before the Invariance Lemma)

1. (Easy!) If $f, g: V \rightarrow V$ satisfy $f \circ g=g \circ f$, show that $g: \operatorname{ker} f \rightarrow \operatorname{ker} f$, i.e. ker $f$ is $g$-invariant.
2. Show that Lemma 5.4 in the book really does generalise this statement.
4.4 Check the induction step in the proof of the Invariance Lemma.
4.5 (Part 1 generalises the $i \ell=\ell i+[i, \ell]$ trick)
3. Show that for any linear maps $f, g: V \rightarrow V$, and for any $m \geq 1$

$$
f \circ g^{m}=g^{m} \circ f+\sum_{k=1}^{m}\binom{m}{k} g^{m-k} \circ f_{k}
$$

where $f_{1}=[f, g]$ and $f_{k}=\left[f_{k-1}, g\right]$ for all $k \geq 2$.
2. Deduce that

$$
\operatorname{ad} g^{m}=\sum_{k=1}^{m}(-1)^{k}\binom{m}{k} G^{m-k} \circ(\operatorname{ad} g)^{k}
$$

where $G^{m-k}: \mathfrak{g l}(V) \rightarrow \mathfrak{g l}(V)$ is defined by sending $X \mapsto g^{m-k} X$.

