Sheet 6

6.1 Consider the adjoint representation of $\mathfrak{s l}_{2}$.

1. [The order of the basis has been changed. This does not really change the question, it just permutes the matrices a bit] Show that with respect to the basis $\{e, h, f\}, \operatorname{ad}_{h}: \mathfrak{s l}_{2} \rightarrow \mathfrak{s l}_{2}$ has matrix

$$
\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

2. Find the matrices for ad_{e} and ad_{f}.
3. Is this adjoint representation simple?
6.2 (Submodules=Ideals for L) Consider L viewed as an L-module. Show that the submodules of L are precisely the ideals of L.
6.3 (An explicit example) Consider the two-dimensional Lie algebra L with basis $\{x, y\}$ and bracket $[x, y]:=x$. Show that we can construct a representation of L by considering $V=\mathbb{C}^{2}$ and defining

$$
\varphi(x):=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad \text { and } \quad \varphi(y):=\left(\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right)
$$

6.4 (The quotient space is a module) Suppose that V is an L-module, with submodule W.

1. Show that the vector space V / W becomes an L-module, under

$$
\ell \cdot(v+W):=\ell \cdot v+W
$$

for all $\ell \in L$, all $v \in V$.
2. Show that the natural map $V \rightarrow V / W$ is an L-module homomorphism.
6.5 (Test for simple) If V is an L-module and $v \in V$, consider the submodule $L v$ generated by v, which by definition is the subspace of V spanned by all elements of the form

$$
\left.x_{1} \cdot\left(x_{2} \cdot \ldots\left(x_{m} \cdot v\right)\right)\right)
$$

where $x_{1}, \ldots, x_{m} \in L$.

1. Show that $L v$ is a submodule of V
2. Show that V is simple $\Longleftrightarrow L v=V$ for all $0 \neq v \in V$.
6.6 (Indecomposable does not imply simple) Consider \mathfrak{b}_{2}, upper triangular 2×2 matrices. Show that the natural representation V is indecomposable, but is not simple.
6.7 (The $\mathfrak{s l}_{2}$ classification contains things we know!) Consider the Lie algebra $\mathfrak{s l}_{2}$, and the simple modules V_{n} defined in lectures. Show that
3. V_{0} is the trivial representation.
4. V_{1} is the natural representation.
5. V_{2} is the adjoint representation.
