Sheet 7

7.1 Let L be a Lie algebra.

1. Show that the Killing form $\kappa(-,-): L \times L \rightarrow \mathbb{C}$ defined by

$$
\kappa(x, y):=\operatorname{Tr}\left(\mathrm{ad}_{x} \circ \mathrm{ad}_{y}\right)
$$

is a symmetric bilinear form.
2. Prove that the Killing form is associative, i.e.

$$
\kappa([a, b], c)=\kappa(a,[b, c])
$$

for all $a, b, c \in L$.
7.2 Using Q6.1, calculate the Killing form $\kappa_{\mathfrak{F l}_{2}}(a, b)$ for $a, b \in\{e, f, h\}$.
7.3 Show that $\kappa_{\mathfrak{g l}}^{n}(x, y)=2 n \operatorname{Tr}(x y)-2 \operatorname{Tr}(x) \operatorname{Tr}(y)$ for all $x, y \in \mathfrak{g l}_{n}$ by using the following strategy:

1. Recall the matrices $e_{i j}$, and the relations in Q2.6. Using these, write a formula for $\operatorname{ad}_{e_{i j}} \circ \operatorname{ad}_{e_{k \ell}}\left(e_{g h}\right)$.
2. Deduce that

$$
\kappa_{\mathfrak{g l}_{n}}\left(e_{i j}, e_{k \ell}\right)=2 n \operatorname{Tr}\left(e_{i j} e_{k \ell}\right)-2 \operatorname{Tr}\left(e_{i j}\right) \operatorname{Tr}\left(e_{k \ell}\right) .
$$

3. By linearity, deduce the result.
7.4 Compute directly (using a basis of your choice!) the Killing form for \mathfrak{b}_{2}.
7.5 Show that the Killing form on L is identically zero if L is a nilpotent Lie algebra.
