## Solution to Week 10 Assignment

Q19.4. For $A:=\left(\begin{array}{cc}1 & -3 \\ 2 & 3\end{array}\right)$, the characteristic equation is given by

$$
\operatorname{det}\left(\begin{array}{cc}
1-\lambda & -3 \\
2 & 3-\lambda
\end{array}\right)=0
$$

i.e. $(1-\lambda)(3-\lambda)+6=0$, which re-arranges to $\lambda^{2}-4 \lambda+9=0$. The matrix $A$ satisfies its own characteristic equation since

$$
A^{2}=\left(\begin{array}{cc}
1 & -3 \\
2 & 3
\end{array}\right)\left(\begin{array}{cc}
1 & -3 \\
2 & 3
\end{array}\right)=\left(\begin{array}{cc}
-5 & -12 \\
8 & 3
\end{array}\right)
$$

so

$$
\begin{aligned}
A^{2}-4 A+9 \mathbb{I} & =\left(\begin{array}{cc}
-5 & -12 \\
8 & 3
\end{array}\right)-4\left(\begin{array}{cc}
1 & -3 \\
2 & 3
\end{array}\right)+9\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
-5-4+9 & -12+12+0 \\
8-8+0 & 3-12+9
\end{array}\right) \\
& =\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Q20.8. For $A:=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, the characteristic equation is given by

$$
\operatorname{det}\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right)=0
$$

i.e. $(a-\lambda)(d-\lambda)-b c=0$, which re-arranges to $\lambda^{2}-(a+d) \lambda+(a d-b c)=0$. This is clearly just $\lambda^{2}-(\operatorname{Tr} A) \lambda+\operatorname{det} A=0$.
Since $A$ is real, the eigenvalues of $A$ are real if and only if the discriminant of the characteristic polynomial is non-negative, i.e. if and only if

$$
(-\operatorname{Tr} A)^{2}-4 \operatorname{det} A \geq 0
$$

i.e. if and only if $(\operatorname{Tr} A)^{2} \geq 4 \operatorname{det} A$. In terms of $a, b, c$ and $d$, this condition holds if and only if $(a+d)^{2} \geq 4(a d-b c)$.

