Solution(s) to Week 2 Assignment

(a)(i) If $A \subseteq F$, then $|A| \leq|F|$.

Solution 1: Since $A \subseteq F$, every element in A is an element in F. This means that if there are n elements in A, there are at least n elements in F. Hence $|A| \leq|F|$.
Solution 2: Since $A \subseteq F$, every element in A is an element in F. It may be true that F has other elements in addition to the ones that are in A, so $|A| \leq|F|$.
(other variations of the above two solutions are also possible)
(a)(ii) $|A| \leq|A \cup B|$.

Solution: Since $A \subseteq A \cup B$, this follows immediately from (a)(i) (with $F:=A \cup B$).
(a)(iii) $|A \cup B| \leq|A|+|B|$.

Solution: If $A \cap B=\emptyset$ then the list of elements of $A \cup B$ consists of the complete list of the elements of A adjoined with the complete list of the elements of B. Hence in this case $|A \cup B|=|A|+|B|$. On the other hand, if $A \cap B \neq \emptyset$ (i.e. A and B have elements in common) then elements in $A \cap B$ are listed only once in $A \cup B$. However in $|A|+|B|$, the elements in $A \cap B$ are counted twice, hence $|A \cup B|<|A|+|B|$. (again, many other solutions are possible)
(a)(iv) $|A \cup B| \geq \max (|A|,|B|)$.

Solution: Since $A \subseteq A \cup B$, by (a)(i) $|A \cup B| \geq|A|$. But also $B \subseteq A \cup B$, so again by (a)(i) $|A \cup B| \geq|B|$. This shows that $|A \cup B|$ is greater than or equal to both $|A|$ and $|B|$, hence it follows that $|A \cup B| \geq \max (|A|,|B|)$.
(a)(v) $|A \cap B| \leq \min (|A|,|B|)$.

Solution: Since $A \cap B \subseteq A$, by (a)(i) $|A \cap B| \leq|A|$. But also $A \cap B \subseteq B$, so again by (a)(i) $|A \cap B| \leq|B|$. This shows that $|A \cap B|$ is less than or equal to both $|A|$ and $|B|$, hence it follows that $|A \cap B| \leq \min (|A|,|B|)$.
(b)(ii) $|A|=|A \cup B| \Longleftrightarrow B \subseteq A$.

Solution 1: (\Rightarrow) Suppose that $|A|=|A \cup B|$. Then since $A \subseteq A \cup B$, it follows that $A=A \cup B$. In particular, there cannot be a member of B which does not belong to A, so $B \subseteq A$.
(\Leftarrow) Suppose that $B \subseteq A$, then certainly $A=A \cup B$. In particular their sizes are the same, i.e. $|A|=|A \cup B|$.
Solution 2: (proves both directions at the same time) Since $A \subseteq A \cup B,|A|=$ $|A \cup B| \Longleftrightarrow A=A \cup B$. But this holds if and only if $B \subseteq A$.
(b)(iii) $|A \cup B|=|A|+|B| \Longleftrightarrow A \cap B=\emptyset$.

Solution 1: The proof of (c) shows that $|A \cup B|=|A|+|B|-|A \cap B|$. Hence

$$
|A \cup B|=|A|+|B| \Longleftrightarrow|A \cap B|=0 \Longleftrightarrow A \cap B=\emptyset
$$

Solution 2: (direct, not using (c)) (\Leftarrow) Suppose that $A \cap B=\emptyset$, then the list of elements of $A \cup B$ consists of the complete list of the elements of A adjoined with the complete list of elements of B. Hence $|A \cup B|=|A|+|B|$.
(\Rightarrow) Suppose that $|A \cup B|=|A|+|B|$. If $A \cap B \neq \emptyset$ we can find an element $a \in A \cap B$.
But this element is listed only once in $A \cup B$, whereas it is counted twice in $|A|+|B|$. This implies that $|A \cup B|<|A|+|B|$, which is a contradiction. Hence $A \cap B=\emptyset$.
(b)(iv) $|A \cup B|=\max (|A|,|B|) \Longleftrightarrow A \subseteq B$ or $B \subseteq A$.

Solution: From the definition of maximum, we have that

$$
\begin{equation*}
|A \cup B|=\max (|A|,|B|) \Longleftrightarrow|A \cup B|=|A| \text { or }|A \cup B|=|B| \tag{1}
\end{equation*}
$$

But by (b)(ii) we have

$$
\begin{equation*}
|A \cup B|=|A| \Longleftrightarrow B \subseteq A \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
|A \cup B|=|B| \Longleftrightarrow A \subseteq B \tag{3}
\end{equation*}
$$

Combining (1), (2) and (3) gives

$$
|A \cup B|=\max (|A|,|B|) \Longleftrightarrow A \subseteq B \text { or } B \subseteq A
$$

Remark: You might find it easier to first argue the (\Rightarrow) direction (i.e. suppose that $|A \cup B|=\max (|A|,|B|)$ and argue that either $A \subseteq B$ or $B \subseteq A)$, then second argue the (\Leftarrow) direction (i.e. suppose that $A \subseteq B$ or $B \subseteq A$, then argue that $|A \cup B|=$ $\max (|A|,|B|))$
(b) (v) $|A \cap B|=\min (|A|,|B|) \Longleftrightarrow A \subseteq B$ or $B \subseteq A$.

Solution: From the definition of minimum, we have that

$$
\begin{equation*}
|A \cap B|=\min (|A|,|B|) \Longleftrightarrow|A \cap B|=|A| \text { or }|A \cap B|=|B| \tag{4}
\end{equation*}
$$

Since $A \cap B \subseteq A$,

$$
\begin{equation*}
|A \cap B|=|A| \Longleftrightarrow A=A \cap B \Longleftrightarrow A \subseteq B \tag{5}
\end{equation*}
$$

Similarly since $A \cap B \subseteq B$,

$$
\begin{equation*}
|A \cap B|=|B| \Longleftrightarrow B=A \cap B \Longleftrightarrow B \subseteq A \tag{6}
\end{equation*}
$$

Combining (4), (5) and (6) gives

$$
|A \cap B|=\min (|A|,|B|) \Longleftrightarrow A \subseteq B \text { or } B \subseteq A
$$

Remark: Again, you might find it easier to first argue the (\Rightarrow) direction (i.e. suppose that $|A \cap B|=\min (|A|,|B|)$ and argue that either $A \subseteq B$ or $B \subseteq A$), then second argue the (\Leftarrow) direction (i.e. suppose that $A \subseteq B$ or $B \subseteq A$, then argue that $|A \cap B|=$ $\min (|A|,|B|))$.
(c) $|A \cup B|=|A|+|B|-|A \cap B|$.
(d) Proof: (similar to (a)(iii)) If $A \cap B=\emptyset$ then the list of elements of $A \cup B$ consists of the complete list of the elements of A adjoined with the complete list of elements of B. Hence in this case $|A \cup B|=|A|+|B|=|A|+|B|-|A \cap B|$. On the other hand, if $A \cap B \neq \emptyset$ (i.e. A and B have elements in common) then elements in $A \cap B$ are listed only once in $A \cup B$. However in $|A|+|B|$, the elements in $A \cap B$ are counted twice, hence $|A \cup B|=|A|+|B|-|A \cap B|$.
(There are many other possible proofs of this)
(e) $|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C|$.

Even although the question did not ask for a proof, here is one:

$$
\begin{aligned}
|A \cup B \cup C| & =|(A \cup B) \cup C| \\
& \stackrel{(c)}{=}|A \cup B|+|C|-|(A \cup B) \cap C| \\
& =|A \cup B|+|C|-|(A \cap C) \cup(B \cap C)| \\
& \stackrel{(c)}{=}|A \cup B|+|C|-(|A \cap C|+|B \cap C|-|(A \cap C) \cap(B \cap C)|) \\
& =|A \cup B|+|C|-|A \cap C|-|B \cap C|+|A \cap B \cap C| \\
& \stackrel{(c)}{=}(|A|+|B|-|A \cap B|)+|C|-|A \cap C|-|B \cap C|+|A \cap B \cap C| \\
& =|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C|
\end{aligned}
$$

2.4. (i) Consider the function $f:[0,1] \rightarrow[0,1]$ defined by $f(x):=1$. Since $f(0)=$ $f(1)$ with $0 \neq 1, f$ is not injective. Further, since $0 \in[0,1]$ and there does not exist $a \in[0,1]$ such that $f(a)=0$, it follows that f is not surjective.
(ii) Consider the function $g:[0,1] \rightarrow[0,1]$ defined by $g(x):=4\left(x-\frac{1}{2}\right)^{2}$. Since $g(0)=g(1)$ with $0 \neq 1, g$ is not injective. However, for all $y \in[0,1]$ there exists $x \in[0,1]$ such that $g(x)=y$ (to see this just draw the graph of the function; I cannot do this easily on the computer I am using), hence it follows that g is surjective.
(iii) Consider the function $h:[0,1] \rightarrow[0,1]$ defined by $h(x):=\frac{x}{2}$. Suppose that $x_{1}, x_{2} \in[0,1]$ with $h\left(x_{1}\right)=h\left(x_{2}\right)$. Then $\frac{x_{1}}{2}=\frac{x_{2}}{2}$ and so $x_{1}=x_{2}$. This shows that h is injective. However, $1 \in[0,1]$ and there does not exist $x \in[0,1]$ such that $h(x)=1$ (since if $\frac{x}{2}=1$ then $x=2$, which does not belong to the domain), hence it follows that h is not surjective.
(iv) Consider the function $j:[0,1] \rightarrow[0,1]$ defined by $j(x):=1-x$. Suppose that $x_{1}, x_{2} \in[0,1]$ with $j\left(x_{1}\right)=j\left(x_{2}\right)$. Then $1-x_{1}=1-x_{2}$ and so $x_{1}=x_{2}$. This shows that j is injective. Also, if $y \in[0,1]$ then take $x:=1-y \in[0,1]$. Since $j(x)=1-(1-y)=y$, it follows that j is surjective.

